Science.gov

Sample records for geothermal hydrogen sulfide

  1. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  2. Updated cost estimates of meeting geothermal hydrogen sulfide emission regulations

    SciTech Connect

    Wells, K.D.; Currie, J.W.; Weakley, S.A.; Ballinger, M.Y.

    1981-08-01

    A means of estimating the cost of hydrogen sulfide (H/sub 2/S) emission control was investigated. This study was designed to derive H/sub 2/S emission abatement cost functions and illustrate the cost of H/sub 2/S emission abatement at a hydrothermal site. Four tasks were undertaken: document the release of H/sub 2/S associated with geothermal development; review H/sub 2/S environmental standards; develop functional relationships that may be used to estimate the most cose-effective available H/sub 2/S abatement process; and use the cost functions to generate abatement cost estimates for a specific site. The conclusions and recommendations derived from the research are presented. The definition of the term impacts as used in this research is discussed and current estimates of the highest expected H/sub 2/S concentrations of in geothermal reservoirs are provided. Regulations governing H/sub 2/S emissions are reviewed and a review of H/sub 2/S control technology and a summary of the control cost functions are included. A case study is presented to illustrate H/sub 2/S abatement costs at the Baca KGRA in New Mexico.

  3. A fatal case of hydrogen sulfide poisoning in a geothermal power plant.

    PubMed

    Kage, S; Ito, S; Kishida, T; Kudo, K; Ikeda, N

    1998-07-01

    An adult man entered an oil separator room to remove waste oil from a vacuum pump in a geothermal power plant. He suddenly collapsed and died soon after. Since hydrogen sulfide gas was detected in the atmosphere at the scene of the accident, poisoning by this gas was suspected and toxicological analysis of sulfide and thiosulfate in blood, brain, lung, femoral muscle was made using the extractive alkylation technique combined with gas chromatography/mass spectrometry (GC/MS). The concentrations of sulfide in these tissues were similar to those previously reported for fatal cases of hydrogen sulfide gas. The concentration of thiosulfate in the blood was at least 48 times higher than the level in control samples. Based on these results, the cause of death was attributed to hydrogen sulfide gas poisoning. PMID:9670519

  4. HYDROGEN SULFIDE

    EPA Science Inventory

    This document is a review of the scientific knowledge of hydrogen sulfide in the environment. Chapter 2 contains a review of the occurrences, properties, and uses of hydrogen sulfide. In Chapter 3, the biogeochemical aspects of the sulfur cycle are discussed. Chapter 4 describes ...

  5. State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979

    SciTech Connect

    Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

    1980-03-01

    Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

  6. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revie

  7. Spatial distribution of hydrogen sulfide from two geothermal power plants in complex terrain

    NASA Astrophysics Data System (ADS)

    Olafsdottir, S.; Gardarsson, S. M.; Andradottir, H. O.

    2014-01-01

    Concerns have arisen about the health impact and odor annoyance of hydrogen sulfide (H2S) emissions associated with geothermal power production. Measurements have been made at stationary measuring stations in inhabited areas but little is known about the spatial behavior of the H2S plumes. This study presents field measurements of the spatial distribution of the ground concentration of H2S within a 30 km radius of two geothermal power plants during 20 distinct events spanning one year. The results showed that high H2S concentration was correlated with high air stability, low wind speed and absence of precipitation. The odor threshold (11 μg m-3) was exceeded in all events. The instantaneous measurements exceeded the 24-h average national health limit (50 μg m-3) up to 26 km from the power plants. The shape of the measured plumes at the same location was similar between events, indicating repeated patterns in plume distribution. Convergence of plumes was observed due to spatial variability in wind direction. Plumes were found to follow mountain passes and accumulate alongside a mountain range. AERMOD modeling demonstrated that narrower plumes with higher concentration can be expected for smoother terrain, such as lakes, consistent with measurements.

  8. Impacts of meteorological factors on hydrogen sulfide concentration downwind of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Olafsdottir, S.; Gardarsson, S. M.

    2013-10-01

    Hydrogen sulfide (H2S) concentration in the city of Reykjavik, downwind of geothermal power plants has been studied with respect to meteorological factors as the odor and other effects are starting to become a nuisance. The main sources of H2S in Reykjavik City were the Nesjavellir and Hellisheidi Geothermal Power Plants, which are both less than 35 km east of the city. The H2S concentration in Reykjavik was correlated with the H2S emissions from the power plants but was also heavily influenced by weather conditions. The results showed that the H2S concentration at the Grensasvegur Measuring Station was elevated when the wind direction was from 54° to 125°, especially when the wind direction was stable for several hours. The H2S concentration in Reykjavik was highest when the wind speed in the city was between 1.5 and 4 m s-1, and decreased rapidly with higher wind speeds. H2S concentration showed correlation with the air temperature in the city below 3 °C and the concentration rose as the temperature decreased, and the air became more stable and was highest when there was a temperature inversion. The quantitative effects of precipitation on H2S concentration could not be determined in this study although the events with the highest H2S concentration occurred when there was no precipitation. The results showed that favorable conditions for high H2S events can be expected in Reykjavik 2-6 times per year and events with H2S concentration exceeding 50 μg m-3 might be expected on average about 2 times per year. The results also indicate that events with high H2S concentration can be predicted by using a current weather forecast.

  9. Natural near field sinks of hydrogen sulfide from two geothermal power plants in Iceland

    NASA Astrophysics Data System (ADS)

    Olafsdottir, S.; Gardarsson, S. M.; Andradottir, H. O.

    2014-10-01

    Hydrogen sulfide (H2S) emissions have been growing with the increasing utilization of geothermal resources. Atmospheric H2S concentration has been measured and studied but less is known about the natural sinks of the chemical. This study investigates the atmospheric depletion of H2S within a 35 km distance from two Icelandic power plants. The results showed that atmospheric oxidation by the OH radical was the largest sink in the area. The second largest sink was H2S uptake in surface water, in a neighboring lake, but it was, however, small compared to the reported difference of sulfur amount in the lake in- and outflow. Sulfur was found to accumulate in moss close to the power plants at a maximum rate of about 1500 mg S/kg moss per year and decreased exponentially from the source, being negligible at a distance of a few kilometers. Soil uptake was limited by diffusion of H2S into the porous media and was thus much smaller than the estimated soil uptake potential. Washout with precipitation was estimated to be the smallest sink due to the low H2S reactivity in the precipitation (pH = 5.6), compared to the surface water (pH ˜8). Depletion of H2S from the atmosphere in the study area was estimated to be about 1.2% of the 2012 power plants emissions of over 20,000 tons. Although the uncertainties in the depletion estimates were considerable, most of the H2S emitted from the power plants was strongly indicated to be transported out of the study area as H2S.

  10. Hydrogen sulfide intoxication.

    PubMed

    Guidotti, Tee L

    2015-01-01

    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. PMID:26563786

  11. Interstellar hydrogen sulfide.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  12. Cost of meeting geothermal hydrogen sulfide emission regulations. [DOW, EIC, Stretford, and iron catalyst processes

    SciTech Connect

    Wells, K.D.; Currie, J.W.; Weakley, S.A.; Ballinger, M.Y.

    1980-01-01

    H{sub 2}S emission abatement processes considered feasible for control of airborne emissions included two upstream and two downstream treatment techniques. From literature describing the technical aspects of the processes, individual treatment cost functions were developed. These functions were then used to estimate the range of costs that may be encountered when controlling H{sub 2}S emissions to meet given standards. Treatment costs include estimates of certain fixed charges and overheads that normally apply to long lived capital investment projects of similar nature. Continuing experience with control technology for H{sub 2}S abatement indicates process application may have a significant impact on the total cost of geothermal electricity at sites with H{sub 2}S concentrations in excess of 50 ppM{sub w}. Approximately four sites of the 38 USGS high temperature hydrothermal systems fall into this category. At Baca, New Mexico the cost of controlling H{sub 2}S emissions was estimated to be 5.5 mills per kWh. Calculations were based on a 50 MWe flashed steam plant using the Stretford-Peroxide combination of processes to achieve 99% abatement.

  13. Demonstration of EIC's copper sulfate process for removal of hydrogen sulfide and other trace contaminants from geothermal steam at turbine inlet temperatures and pressures. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results obtained during the operation of an integrated, one-tenth commercial scale pilot plant using EIC's copper sulfate process for the removal of hydrogen sulfide and other contaminants from geothermal steam at turbine upstream conditions are discussed. The tests took place over a six month period at Pacific Gas and Electric Company's Unit No. 7 at The Geysers Power Plant. These tests were the final phase of a development effort which included the laboratory research and engineering design work which led to the design of the pilot plant. Broadly, the objectives of operating the pilot plant were to confirm the preliminary design criteria which had been developed, and provide data for their revisions, if appropriate, in a plant which contained all the elements of a commercial process using equipment of a size sufficient to provide valid scale-up data. The test campaign was carried out in four phases: water testing; open circuit, i.e., non integrated scrubbing, liquid-solid separation and regeneration testing; closed circuit short term; and closed circuit long term testing.

  14. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  15. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  16. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  17. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  18. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  19. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  20. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  1. Arsenic speciation in natural sulfidic geothermal waters

    NASA Astrophysics Data System (ADS)

    Keller, Nicole S.; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    The speciation of arsenic in natural sulfidic geothermal waters was studied using chemical analyses and thermodynamic aqueous speciation calculations. Samples were collected in three geothermal systems in Iceland, having contrasting H2S concentrations in the reservoir (high vs. low). The sampled waters contained 7-116 ppb As and <0.01-77.6 ppm H2S with pH of 8.56-9.60. The analytical setup used for the determination of arsenic species (Ion Chromatography-Hydride Generation Atomic Fluorescence Spectrometry, IC-HG-AFS) was field-deployed and the samples analyzed within ∼5 min of sampling in order to prevent changes upon storage, which were shown to be considerable regardless of the sample storage method used. Nine aqueous arsenic species were detected, among others arsenite (HnAsO3n-3), thioarsenite (HnAsS3n-3), arsenate (HnAsO4n-3), monothioarsenate (HnAsSO3n-3), dithioarsenate (HnAsS2O2n-3), trithioarsenate (HnAsS3O) and tetrathioarsenate (HnAsS4n-3). The results of the measured aqueous arsenic speciation in the natural geothermal waters and comparison with thermodynamic calculations reveal that the predominant factors determining the species distribution are sulfide concentration and pH. In alkaline waters with low sulfide concentrations the predominant species are AsIII oxyanions. This can be seen in samples from a liquid-only well, tapping water that is H2S-poor and free of oxygen. At intermediate sulfide concentration AsIII and AsV thio species become important and predominate at high sulfide concentration, as seen in two-phase well waters, which have high H2S concentrations in the reservoir. Upon oxidation, for instance due to mixing of the reservoir fluid with oxygenated water upon ascent to the surface, AsV oxyanions form, as well as AsV thio complexes if the sulfide concentration is intermediate to high. This oxidation process can be seen in samples from hot springs in the Geysir geothermal area. While the thermodynamic modeling allows for a first-order estimation of the dominant species, discrepancies between the model results and the field data highlight the fact that for such dynamic chemical systems the exact speciation cannot be calculated, thus on-site and preferentially in-situ analysis is of crucial importance.

  2. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  3. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  4. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  5. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  6. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  7. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  8. Investigation of Hydrogen Sulfide Exposure and Lung Function, Asthma and Chronic Obstructive Pulmonary Disease in a Geothermal Area of New Zealand

    PubMed Central

    Bates, Michael N.; Crane, Julian; Balmes, John R.; Garrett, Nick

    2015-01-01

    Background Results have been conflicting whether long-term ambient hydrogen sulfide (H2S) affects lung function or is a risk factor for asthma or chronic obstructive pulmonary disease (COPD). Rotorua city, New Zealand, has the world’s largest population exposed to ambient H2S—from geothermal sources. Objectives We investigated associations of H2S with lung function, COPD and asthma in this population. Methods 1,204 of 1,639 study participants, aged 18–65 years during 2008–2010, provided satisfactory spirometry results. Residences, workplaces and schools over the last 30 years were geocoded. Exposures were estimated from data collected by summer and winter H2S monitoring networks across Rotorua. Four metrics for H2S exposure, representing both current and long-term (last 30 years) exposure, and also time-weighted average and peak exposures, were calculated. Departures from expected values for pre-bronchodilator lung function, calculated from prediction equations, were outcomes for linear regression models using quartiles of the H2S exposure metrics. Separate models examined participants with and without evidence of asthma or COPD, and never- and ever-smokers. Logistic regression was used to investigate associations of COPD (a post-bronchodilator FEV1/FVC < 70% of expected) and asthma (doctor-diagnosed or by FEV1 response to bronchodilator) with H2S exposure quartiles. Results None of the exposure metrics produced evidence of lung function decrement. The logistic regression analysis showed no evidence that long-term H2S exposure at Rotorua levels was associated with either increased COPD or asthma risk. Some results suggested that recent ambient H2S exposures were beneficially associated with lung function parameters. Conclusions The study found no evidence of reductions in lung function, or increased risk of COPD or asthma, from recent or long-term H2S exposure at the relatively high ambient concentrations found in Rotorua. Suggestions of improved lung function associated with recent ambient H2S exposures require confirmation in other studies. PMID:25822819

  9. Ammonia and hydrogen sulfide removal using biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  10. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown, as defined in § 250.490 of this...

  11. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE...-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in...

  12. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE...-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones...

  13. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metallurgical properties that resist or prevent sulfide stress cracking (also known as hydrogen embrittlement, stress corrosion cracking, or H2S embrittlement), chloride-stress cracking, hydrogen-induced cracking... constructed of materials capable of resisting or preventing sulfide stress cracking. (5) Keep the use...

  14. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metallurgical properties that resist or prevent sulfide stress cracking (also known as hydrogen embrittlement, stress corrosion cracking, or H2S embrittlement), chloride-stress cracking, hydrogen-induced cracking... of resisting or preventing sulfide stress cracking. (5) Keep the use of welding to a minimum...

  15. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metallurgical properties that resist or prevent sulfide stress cracking (also known as hydrogen embrittlement, stress corrosion cracking, or H2S embrittlement), chloride-stress cracking, hydrogen-induced cracking... of resisting or preventing sulfide stress cracking. (5) Keep the use of welding to a minimum...

  16. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metallurgical properties that resist or prevent sulfide stress cracking (also known as hydrogen embrittlement, stress corrosion cracking, or H2S embrittlement), chloride-stress cracking, hydrogen-induced cracking... of resisting or preventing sulfide stress cracking. (5) Keep the use of welding to a minimum...

  17. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  18. Suicide by hydrogen sulfide inhalation.

    PubMed

    Bott, Eleanor; Dodd, Malcolm

    2013-03-01

    The authors report a case of suicide by hydrogen sulfide in Australia. A young woman was located in a car wearing protective eyewear. A tub of foamy yellow substance and a quantity of hydrochloric acid and lime sulfur were also located in the rear of the vehicle. Morphological findings at autopsy were nonspecific. Toxicologic analysis of a specimen of leg blood detected elevated levels of methemoglobin. If Australia follows a similar trend to Japan and the United States, it is possible that incidences of such cases will rise, probably because of Internet dissemination. From a public health perspective, emergency service providers and forensic case workers should be aware of the potential hazards to themselves and others when dealing with such cases. PMID:23361075

  19. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  20. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  1. Ridding Groundwater of Hydrogen Sulfide. Part 1.

    ERIC Educational Resources Information Center

    Lochrane, Thomas G.

    1979-01-01

    This article is the first in a series reviewing the problems associated with hydrogen sulfide in drinking water sources. Discussion centers on identification of a cost-effective balance between aeration and chlorination treatment operations. (AS)

  2. Infrared spectroscopy of solid hydrogen sulfide and deuterium sulfide.

    PubMed

    Fathe, Kristin; Holt, Jennifer S; Oxley, Susan P; Pursell, Christopher J

    2006-09-21

    The infrared spectra of solid hydrogen sulfide (H2S) and deuterium sulfide (D2S) were collected at very low temperatures. Vapor deposition of thin films at the lowest temperature of 10 K produced amorphous solids while deposition at 70 K yielded the crystalline phase III. Infrared interference fringe patterns produced by the films during deposition were used to determine the film thickness. Careful measurement of the integrated absorbance peaks, along with the film thickness, allowed determination of the integrated band intensities. This report represents the first complete presentation of the infrared spectra of the amorphous solids. Observations of peaks near 3.915 and 1.982 microm (ca. 2554 and 5045 cm(-1), respectively) may be helpful in the conclusive identification of solid hydrogen sulfide on the surface of Io, a moon of Jupiter. PMID:16970373

  3. Hydrogen sulfide and translational medicine

    PubMed Central

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S is a signaling molecule without definite effect. The use of existing H2S donors is limited because of the instant release and short lifetime of H2S. Thus, translational medicine involving the sustained and controlled release of H2S is of great value for both scientific and clinical uses. H2S donation can be manipulated by different ways, including where H2S is given, how H2S is donated, or the specific structures of H2S-releasing drugs and H2S donor molecules. This review briefly summarizes recent progress in research on the physiological and pathological functions of H2S and H2S-releasing drugs, and suggests hope for future investigations. PMID:24096643

  4. Hydrogen Sulfide and Urogenital Tract.

    PubMed

    di Villa Bianca, Roberta d'Emmanuele; Cirino, Giuseppe; Sorrentino, Raffaella

    2015-01-01

    In this chapter the role played by H2S in the physiopathology of urogenital tract revising animal and human data available in the current relevant literature is discussed. H2S pathway has been demonstrated to be involved in the mechanism underlying penile erection in human and experimental animal. Both cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE) are expressed in the human corpus cavernosum and exogenous H2S relaxes isolated human corpus cavernosum strips in an endothelium-independent manner. Hydrogen sulfide pathway also accounts for the direct vasodilatory effect operated by testosterone on isolated vessels. Convincing evidence suggests that H2S can influence the cGMP pathway by inhibiting the phosphodiesterase 5 (PDE-5) activity. All these findings taken together suggest an important role for the H2S pathway in human corpus cavernosum homeostasis. However, H2S effect is not confined to human corpus cavernosum but also plays an important role in human bladder. Human bladder expresses mainly CBS and generates in vitro detectable amount of H2S. In addition the bladder relaxant effect of the PDE-5 inhibitor sildenafil involves H2S as mediator. In conclusion the H2S pathway is not only involved in penile erection but also plays a role in bladder homeostasis. In addition the finding that it involved in the mechanism of action of PDE-5 inhibitors strongly suggests that modulation of this pathway can represent a therapeutic target for the treatment of erectile dysfunction and bladder diseases. PMID:26162831

  5. Hydrogen Sulfide Inhibits Amyloid Formation

    PubMed Central

    2015-01-01

    Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer’s disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550–500 cm–1 spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm–1 band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils. PMID:25545790

  6. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen... analysis of formation fluids; and (4) Submit a request for reclassification of a zone when additional...

  7. Microwave plasma dissociation of hydrogen sulfide

    SciTech Connect

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1988-01-01

    The Claus technology and its associated tail gas cleanup (SCOT unit) for hydrogen sulfide environmental control recovers the sulfur contained in hydrogen sulfide wastes but loses the hydrogen as water. The alternative treatment process proposed in this paper uses plasma dissociation to recover the hydrogen in addition to the sulfur, thereby saving a significant fraction of the lost energy. The plasma process also appears to be more economical than the Claus/SCOT process. The total capital required for the plasma facility is projected to be $14 million, versus $26 million (including capital cost for the incremental hydrogen generation capacity) for the Calus/SCOT process. Because of energy savings, the annual operating costs for the plasma process are also lower than for the Claus/SCOT process. Assuming a 15% rate of return on capital, the plasma process will produce a net annual profit of $1.8 million relative to the Claus/SCOT. 4 refs., 6 figs., 3 tabs.

  8. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  9. Sulfur recovery from low hydrogen sulfide gases

    SciTech Connect

    Chute, A.E.

    1982-10-01

    Describes processes for recovering sulfur from acid gases containing less hydrogen sulfide than can be processed satisfactorily in a typical Claus sulfur recovery unit (as shown in diagram). One feature of the Recycle Selectox process is that the circulating gas acts like a flywheel to maintain steady operating conditions, even when the acid gas feed fluctuates. When the acid gas concentration falls below that which can be handled in a Claus or Selectox plant, direct conversion in a Stretford of similar process such as Unisulf is indicated. When the acid gases are weak in hydrogen sulfide, there are several considerations in conditioning the feed gas. Most of the hydrocarbons entering a Clause plant are oxidized to water and oxides of carbon. The weaker the acid gas feed, the greater is the advantage in using the Recycle Selectox process. Below 30%, the sulfur-burning Claus process can be applied. At 30% and lower, or even at higher concentrations, the Recycle Selectox or Selectox process offers a simpler yet effective means of converting and recovering sulfur. Concludes that simple modifications to the Claus process are adequate to convert hydrogen sulfide to elemental sulfur from reasonably prepared acid gases (CO/sub 2/ + H/sub 2/S) having hydrogen sulfide concentrations as low as 30%.

  10. Redetermination of piperidinium hydrogen sulfide structure

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  11. Hydrogenating properties of unsupported transition metal sulfides

    SciTech Connect

    Lacroix, M.; Boutarfa, N.; Guillard, C.; Vrinat, M.; Breysse, M. )

    1989-12-01

    Group VI and Group VIII transition metal sulfides (TMS) have been widely used in hydrotreating catalysis. In addition to hydrogenation reactions, these processes involve removal of sulfur (hydrodesulfurization: HDS) and nitrogen (hydrodenitrogenation: HDN). Until now, HDN has not received as much attention as HDS, probably because sulfur compounds have historically been of prime importance. As petroleum feedstocks dwindle, the need for hydroprocessing oils containing larger amounts of heteromolecules will increase and industry will require more active materials. For this purpose, researchers may either improve the current catalysts of develop a new generation of catalysts based on transition metal sulfides presenting higher activities, stabilities, and selectivities toward desired compounds. The objective of the present work is to classify the hydrogenation performances of well-defined unsupported transition metal sulfides. These catalysts have been chosen since their characterization by physiochemical techniques, mainly X-ray diffraction (XRD), is easier than that for supported materials. Actually, it has been shown in several cases that the catalytic properties are closely related to the crystalline structure and the stoichiometry of the different phases which can be encountered for a given element. The catalyst were tested in the hydrogenation of biphenyl (HN of BP) as well as in the hydrodesulfurization of dibenzothiophene (HDS of DBT) in order to compare the present results to previous studies. To evaluate the hydrogenating function, the HN of BP has been chosen preferably to the consecutive HN of BP resulting from the HDS of DBT.

  12. Hydrogen sulfide prodrugs—a review

    PubMed Central

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  13. Hydrogen sulfide prodrugs-a review.

    PubMed

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-09-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  14. Production of Dissolved and Particulate Hydrogen Sulfide by Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Grace, C.; Davis, J. A.; Cutter, G. A.

    2002-12-01

    Hydrogen sulfide is a reactive gas that in its dissolved form can be found as dissociated ions and meta-sulfide complexes, or in the particulate state as insoluble metal-sulfides. In oxygenated surface seawater the source of this hydrogen sulfide is the hydrolysis of dissolved carbonyl sulfide, but also emissions from marine phytoplankton. In this way, the phytoplankton production of hydrogen sulfide can affect the cycling of dissolved trace metals such as zinc, copper, and mercury. To examine phytoplankton production of hydrogen sulfide, four different phytoplankton species were grown in batch cultures and the concentrations of dissolved (<0.4 um) and particulate sulfide (>0.4 um) monitored over time. The chlorophyte Dunaliella produced the most hydrogen sulfide (diss>part), followed by the diatom Skeletonema (part>diss), the chryptophyte Rhodomonas (diss>part), and finally the prymnesiophyte E. huxleyi. (part>diss). Thus, all of the phytoplankton cultured emitted hydrogen sulfide, and the fact that particulate sulfide was present demonstrated that it reacts with metals to form insoluble metal sulfides, thus affecting metal cycling.

  15. Structure of 4-methylpyridinium Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Martuch, Robert A.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    4-Methylpyridinium hydrogen sulfide, (C6H7NH)HS, M(sub r) = 127.21, consists of C6H7NH(+) cations and HS(-) anions. Z = 2 for the crystal with monoclinic space group Cm (#8), dimensions of a = 8.679(2) A, b = 7.964(1) A, and c = 4.860(2) A, an angle beta of 101.10(2) degrees, and a volume of V = 329.6(3) A(exp 3). R = 0.039 and R(sub w) = 0.048 for 385 reflections with F(sub o)(exp 2) greater than 3 sigma(F(sub o)(exp 2)) and 59 variables. Both the C6H7NH(+) cation and the HS(-) anion lie on crystallographic mirror planes with the N,S, two carbon atoms, and two hydrogen atoms positioned in the planes. The hydrogen atom of the HS(-) anion was not located.

  16. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  17. Intermittent control procedures for the Geysers hydrogen sulfide emission abatement

    SciTech Connect

    Buick, B.D.; Mooney, M.L.

    1984-01-01

    Pacific Gas and Electric Company (PG and E) operates the world's largest geothermal steam electric power generation facility, currently about 1.140 megawatts (Mw). This facility is located about 80 miles north of San Francisco, California and is within a region referred to as the Known Geothermal Resource Area (KGRA). Pollutants resulting from this method of electric power generation are due to impurities in the geothermal steam. A major contaminate in the steam is hydrogen sulfide (H/sub 2/S), a regulated pollutant in California. The ambient air quality standard (AAQS) for this pollutant in California is 0.03 parts per million (ppM) averaged over one hour. H/sub 2/S is an invisible, unpleasant smelling gas present in varying concentrations in the geothermal steam. Its odor has been compared to the smell of rotten eggs. Since PG and E is increasingly relying on this source of electrical power generation, it has committed millions of dollars to the development, testing, acquisition, and installation of abatement equipment to reduce H/sub 2/S emissions during the past ten years. In order to reduce the number of exceeds of the AAQS during this developmental period, a predictive model was needed for interim abatement purposes. Most of the high hourly H/sub 2/S values occur with meteorological conditions having poor ventilation resulting from a combination of low wind speed and reduced mixing layer depths. This weather condition is most common during the months of June through October in California. A predictive model was developed from three years of hourly H/sub 2/S measurements of 0.03 ppM or greater in populated areas downwind of the generation facility and from observations of associated meteorological data.

  18. Investigation of Microbial Respirometry for Monitoring Natural Sulfide Abatement in Geothermal Cooling Tower Basins

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    Geothermal plant operators are interested in investigating the ability of micro-organisms found in the cooling tower basin to metabolize and cycle sulfide to less toxic sulfur compounds. If the growth or activity of the organisms participating in sulfur-oxidation could be selectively enhanced, then hydrogen sulfide could be naturally abated in the cooling basin, substantially reducing the costs associated with the chemicals used for abatement. The use of respirometry has been proposed as a technique for monitoring the response of the microbial populations found in geothermal cooling towers to various conditions, including the addition of nutrients such as nitrogen and phosphorus. Respiro-metry is a manometric measurement of dissolved gases that are in equilibrium in a con-fined sample volume. Since microbes expire varying amounts of carbon dioxide or oxygen as they metabolize nutrients, this technique can be used to evaluate their activities in process streams. This report describes a series of experiments designed to determine the suitability of respirometry for tracking microbial activity for evaluating and enhancing natural abatement processes in geothermal cooling basins.

  19. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared from simple wet-chemical routes. Electron transport is sometimes slow in the particle catalysts, and an impedance model has been established to identify this slow electron transport. Finally, the amorphous molybdenum sulfide film catalyst has been integrated onto a copper(I) oxide photocathode for photoelectrochemical hydrogen evolution. The conformal catalyst efficiently extracts the excited electrons to give an impressive photocurrent density of -5.7 mA/cm(2) at 0 V vs RHE. The catalyst also confers good stability. PMID:25065612

  20. Hydrogen sulfide and polysulfides as signaling molecules.

    PubMed

    Kimura, Hideo

    2015-01-01

    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  1. Hydrogen sulfide and polysulfides as signaling molecules

    PubMed Central

    KIMURA, Hideo

    2015-01-01

    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  2. Chemical foundations of hydrogen sulfide biology.

    PubMed

    Li, Qian; Lancaster, Jack R

    2013-11-30

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  3. Responsive lanthanide coordination polymer for hydrogen sulfide.

    PubMed

    Liu, Baoxia; Chen, Yang

    2013-11-19

    Metal organic coordination polymers have received great attention because of their flexible compositions and architecture. Here, we report the design and synthesis of a responsive lanthanide coordination polymer (LCP) for hydrogen sulfide (H2S), utilizing self-assembling of biomolecule nucleotide with luminescent terbium ion (Tb(3+)) and sensitizing silver ion (Ag(+)) in aqueous solution. LCP is highly fluorescent due to the inclusion of Ag(+) ions, which sensitized the fluorescence of Tb(3+) ions. H2S can strongly quench the fluorescence of LCP through its high affinity for Ag(+) ions. Such configurated LCP material from initial building blocks showed high sensitivity and selectivity for H2S and was applied to the determination of H2S in human serum. LCP with Tb(3+) ions also has a long fluorescence lifetime, which allows for time-resolved fluorescence assays, possessing particular advantages to probing H2S in biological systems with autofluorescence. PMID:24191713

  4. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  5. Hydrogen sulfide exposure in an adult male

    PubMed Central

    Doujaiji, Bassam; Al-Tawfiq, Jaffar A.

    2010-01-01

    Hydrogen sulfide (H2S) is responsible for many incidents of occupational toxic exposure, especially in the petroleum industry. The clinical effects of H2S depend on its concentration and the duration of exposure. H2S is immediately fatal when concentrations are over 500-1000 parts per million (ppm) but exposure to lower concentrations, such as 10-500 ppm, can cause various respiratory symptoms that range from rhinitis to acute respiratory failure. H2S may also affect multiple organs, causing temporary or permanent derangements in the nervous, cardiovascular, renal, hepatic, and hematological systems. We present a case of occupational exposure to H2S leading to multi-organ involvement, acute respiratory failure, organizing pneumonia, and shock resembling acute sepsis. The patient also developed mild obstructive and restrictive pulmonary disease and peripheral neuropathy. PMID:20103963

  6. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    SciTech Connect

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  7. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  8. Optimization of the superconducting phase of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  9. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  10. Role of Hydrogen Sulfide in Paramyxovirus Infections

    PubMed Central

    Li, Hui; Ma, Yinghong; Escaffre, Oliver; Ivanciuc, Teodora; Komaravelli, Narayana; Kelley, John P.; Coletta, Ciro; Szabo, Csaba; Rockx, Barry; Garofalo, Roberto P.

    2015-01-01

    ABSTRACT Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. IMPORTANCE RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of immunoprophylaxis, is available for this infection as well as for other important respiratory mucosal viruses. This study identifies hydrogen sulfide as a novel cellular mediator that can modulate viral replication and proinflammatory gene expression, both important determinants of lung injury in respiratory viral infections, with potential for rapid translation of such findings into novel therapeutic approaches for viral bronchiolitis and pneumonia. PMID:25740991

  11. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  12. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  13. Sulfides in the Anaerobic Environment: The Determination of Hydrogen Sulfide and Acid-Soluble Metallic Sulfides in Sea-Floor Sediment

    NASA Astrophysics Data System (ADS)

    Christensen, Joan Kai; Høyer, Boy; Kryger, Lars; Pind, Niels; Kong, Lee Sing

    1998-12-01

    A procedure for the determination of hydrogen sulfide and acid-soluble metallic sulfides in sea floor sediment has been developed and tested as part of a laboratory course in analytical and environmental chemistry. The procedure includes (i) anaerobic sampling of sediment, (ii) a volatilization method, which discriminates between hydrogen sulfide and acid-soluble metallic sulfides in the sediment, and (iii) a quantitative determination of these sulfide components using an ion-selective electrode approach. The paper describes all experimental details and gives a brief summary of sulfide generation processes in sea-floor sediments, underlining the importance of sulfides in anaerobic environments. Representative results obtained during the laboratory course are discussed.

  14. Production and Physiological Effects of Hydrogen Sulfide

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions. It regulates synaptic transmission, vascular tone, inflammation, transcription, and angiogenesis; protects cells from oxidative stress and ischemia-reperfusion injury; and promotes healing of ulcers. Recent Advances: In addition to cystathionine β-synthase and cystathionine γ-lyase, 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase was recently demonstrated to produce H2S. Even in bacteria, H2S produced by these enzymes functions as a defense against antibiotics, suggesting that the cytoprotective effect of H2S is a universal defense mechanism in organisms from bacteria to mammals. Critical Issues: The functional form of H2S—undissociated H2S gas, dissociated HS ion, or some other form of sulfur—has not been identified. Future Directions: The regulation of H2S production by three enzymes may lead to the identification of the physiological signals that are required to release H2S. The identification of the physiological functions of other forms of sulfur may also help understand the biological significance of H2S. Antioxid. Redox Signal. 20, 783–793. PMID:23581969

  15. Hydrogen Sulfide Signaling in the Gastrointestinal Tract

    PubMed Central

    2014-01-01

    Abstract Significance: The current literature regarding the effects of the gaseous signal molecule hydrogen sulfide (H2S) in the gastrointestinal system is reviewed. Bacterial, host and pharmaceutical-derived H2S are all considered and presented according to the physiological or pathophysiological effects of the gaseous signal molecule. These subjects include the toxicology of intestinal H2S with emphasis on bacterial-derived H2S, especially from sulfate-reducing bacteria, the role of endogenous and exogenous H2S in intestinal inflammation, and the roles of H2S in gastrointestinal motility, secretion and nociception. Recent Advances: While its pro- and anti-inflammatory, smooth muscle relaxant, prosecretory, and pro- and antinociceptive actions continue to remain the major effects of H2S in this system; recent findings have expanded the potential molecular targets for H2S in the gastrointestinal tract. Critical Issues: Numerous discrepancies remain in the literature, and definitive molecular targets in this system have not been supported by the use of competitive antagonism. Future Directions: Future work will hopefully resolve discrepancies in the literature and identify molecular targets and mechanisms of action for H2S. It is clear from the current literature that the long-appreciated relationship between H2S and the gastrointestinal tract continues to be strong as we endeavor to unravel its mysteries. Antioxid. Redox Signal. 20, 818–830. PMID:23582008

  16. Hydrogen Sulfide and Cellular Redox Homeostasis

    PubMed Central

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  17. Hydrogen sulfide as a vasculoprotective factor

    PubMed Central

    2013-01-01

    Hydrogen sulfide is a novel mediator with the unique properties of a gasotransmitter and many and varied physiological effects. Included in these effects are a number of cardiovascular effects that are proving beneficial to vascular health. Specifically, H2S can elicit vasorelaxation, prevention of inflammation and leukocyte adhesion, anti-proliferative effects and anti-thrombotic effects. Additionally, H2S is a chemical reductant and nucleophile that is capable of inhibiting the production of reactive oxygen species, scavenging and neutralising reactive oxygen species and boosting the efficacy of endogenous anti-oxidant molecules. These result in resistance to oxidative stress, protection of vascular endothelial function and maintenance of blood flow and organ perfusion. H2S has been shown to be protective in hypertension, atherosclerosis and under conditions of vascular oxidative stress, and deficiency of endogenous H2S production is linked to cardiovascular disease states. Taken together, these effects suggest that H2S has a physiological role as a vasculoprotective factor and that exogenous H2S donors may be useful therapeutic agents. This review article will discuss the vascular effects and anti-oxidant properties of H2S as well as examine the protective role of H2S in some important vascular disease states. PMID:23628084

  18. Enamel surface changes caused by hydrogen sulfide

    PubMed Central

    Yamaguchi, Takao; Hanabusa, Masao; Hosoya, Noriyasu; Chiba, Toshie; Yoshida, Takumasa; Morito, Akiyuki

    2015-01-01

    Background: Volatile sulfur compounds (VSCs) produced inside the mouth are a well-known cause of halitosis. Recent studies have suggested that VSCs modify the pathology of periodontitis by encouraging the migration of bacterial toxins associated with increased permeability of gingival epithelia, and enhancing the production of matrix metalloproteinases in gingival connective tissue. Nonetheless, the effects on the enamel of direct exposure to VSCs within the oral cavity remain unclear. In the present study, we observed the effects of VSCs in the form of hydrogen sulfide (H2S) on enamel surfaces and determined their effects on restorations. Materials and Methods: Extracted human tooth and bovine tooth samples were divided into the H2S experimental side and the control side. We observed the effects of H2S on enamel surfaces using electron microscopy and conducted a shear test. Results: We found that exposure to H2S obscured the enamel surface's crystal structure. The surface also exhibited coarseness and reticular changes. Shear testing did not reveal any differences in bond strength. Conclusions: Our findings suggested that H2S occurring inside the mouth causes changes to the crystal structure of the enamel surface that can lead to tooth wear, but that it does not diminish the effects of dental bonding in adhesive restorations. PMID:26752833

  19. Hydrogen sulfide and hemeproteins: knowledge and mysteries.

    PubMed

    Pietri, Ruth; Román-Morales, Elddie; López-Garriga, Juan

    2011-07-15

    Historically, hydrogen sulfide (H(2)S) has been regarded as a poisonous gas, with a wide spectrum of toxic effects. However, like ·NO and CO, H(2)S is now referred to as a signaling gas involved in numerous physiological processes. The list of reports highlighting the physiological effects of H(2)S is rapidly expanding and several drug candidates are now being developed. As with ·NO and CO, not a single H(2)S target responsible for all the biological effects has been found till now. Nevertheless, it has been suggested that H(2)S can bind to hemeproteins, inducing different responses that can mediate its effects. For instance, the interaction of H(2)S with cytochrome c oxidase has been associated with the activation of the ATP-sensitive potassium channels, regulating muscle relaxation. Inhibition of cytochrome c oxidase by H(2)S has also been related to inducing a hibernation-like state. Although H(2)S might induce these effects by interacting with hemeproteins, the mechanisms underlying these interactions are obscure. Therefore, in this review we discuss the current state of knowledge about the interaction of H(2)S with vertebrate and invertebrate hemeproteins and postulate a generalized mechanism. Our goal is to stimulate further research aimed at evaluating plausible mechanisms that explain H(2)S reactivity with hemeproteins. PMID:21050142

  20. Hydrogen Sulfide and Ischemia - Reperfusion Injury

    PubMed Central

    Nicholson, Chad K.; Calvert, John W.

    2010-01-01

    Gasotransmitters are lipid soluble, endogenously produced gaseous signaling molecules that freely permeate the plasma membrane of a cell to directly activate intracellular targets, thus alleviating the need for membrane-bound receptors. The gasotransmitter family consists of three members: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). H2S is the latest gasotransmitter to be identified and characterized and like the other members of the gasotransmitter family, H2S was historically considered to be a toxic gas and an environmental/occupational hazard. However with the discovery of its presence and enzymatic production in mammalian tissues, H2S has gained much attention as a physiological signaling molecule. Also, much like NO and CO, H2S’s role in ischemia/reperfusion (I/R) injury has recently begun to be elucidated. As such, modulation of endogenous H2S and administration of exogenous H2S has now been demonstrated to be cytoprotective in various organ systems through diverse signaling mechanisms. This review will provide a detailed description of the role H2S plays in different model systems of I/R injury and will also detail some of the mechanisms involved with its cytoprotection. PMID:20542117

  1. Signaling Molecules: Hydrogen Sulfide and Polysulfide

    PubMed Central

    2015-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a signaling molecule as well as a cytoprotectant. It modulates neurotransmission, regulates vascular tone, and protects various tissues and organs, including neurons, the heart, and kidneys, from oxidative stress and ischemia-reperfusion injury. H2S is produced from l-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase. Recent Advances: In addition to these enzymes, we recently identified a novel pathway to produce H2S from d-cysteine, which involves d-amino acid oxidase (DAO) along with 3MST. These enzymes are localized in the cytoplasm, mitochondria, and peroxisomes. However, some enzymes translocate to organelles under specific conditions. Moreover, H2S-derived potential signaling molecules such as polysulfides and HSNO have been identified. Critical Issues: The physiological stimulations, which trigger the production of H2S and its derivatives and maintain their local levels, remain unclear. Future Directions: Understanding the regulation of the H2S production and H2S-derived signaling molecules and the specific stimuli that induce their release will provide new insights into the biology of H2S and therapeutic development in diseases involving these substances. Antioxid. Redox Signal. 22, 362–376. PMID:24800864

  2. Measurement of plasma hydrogen sulfide in vivo and in vitro

    PubMed Central

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H2S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris–HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6×250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media. PMID:21276849

  3. Hydrogen sulfide production from subgingival plaque samples.

    PubMed

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3 < 7 mm) and 35% had severe periodontal breakdown (CAL > 7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. PMID:25280920

  4. Hydrogen Sulfide in Biochemistry and Medicine

    PubMed Central

    Predmore, Benjamin Lee; Lefer, David Joseph

    2012-01-01

    Abstract Significance: An abundance of experimental evidence suggests that hydrogen sulfide (H2S) plays a prominent role in physiology and pathophysiology. Many targets exist for H2S therapy. The molecular targets of H2S include proteins, enzymes, transcription factors, and membrane ion channels. Recent Advances: Novel H2S precursors are being synthesized and discovered that are capable of releasing H2S in a slow and sustained manner. This presents a novel and advantageous approach to H2S therapy for treatment of chronic conditions associated with a decline in endogenous H2S, such as diabetes and cardiovascular disease. Critical Issues: While H2S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H2S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H2S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H2S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. Future Directions: H2S has become a molecule of great interest, and several slow-releasing H2S prodrugs are currently under development. We believe that additional agents regulating H2S bioavailability will be developed during the next 10 years. Antioxid. Redox Signal. 17, 119–140. PMID:22432697

  5. Hydrogen Sulfide as an Oxygen Sensor

    PubMed Central

    2015-01-01

    Abstract Significance Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. Recent Advances The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. Critical Issues Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. Future Directions Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications. Antioxid. Redox Signal. 22, 377–397. “Nothing in Biology Makes Sense Except in the Light of Evolution” —Theodosius Dobzhansky (29) PMID:24801248

  6. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    PubMed

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates. PMID:19327040

  7. Hydrogen Sulfide Induces Oxidative Damage to RNA and DNA in a Sulfide-Tolerant Marine Invertebrate

    PubMed Central

    Joyner-Matos, Joanna; Predmore, Benjamin L.; Stein, Jenny R.; Leeuwenburgh, Christiaan; Julian, David

    2015-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0–3 mmol L−1 for 1 h) showed dose-dependent increases in oxidative stress (as 2′,7′-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L−1 for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2′-deoxyguanosine). Worms exposed in vivo to sulfide (0–10 mmol L−1 for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates. PMID:19327040

  8. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  9. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry

    PubMed Central

    Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G

    2015-01-01

    Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544

  10. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry.

    PubMed

    Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G

    2014-09-15

    Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS(-) with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-Deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544

  11. Micro-aeration for hydrogen sulfide removal from biogas

    NASA Astrophysics Data System (ADS)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration was affected by changes in liquid heights the most, followed by changes in flow rates. Feasibility studies for H2S removal from biogas by micro-aeration were conducted at the Ames Water Pollution Control Facility (AWPCF) by using different types of liquid media available at the plant, i.e. plant effluent, mixed liquor, and digester supernatant. From the experiment at AWPCF, it was found that operating pHs were affected by the amount of alkalinity in the liquid media and that the removal efficiencies were affected by the operating pH. Among all the liquid media tested, digester supernatant showed the greatest potential with more than 99% H2S removal at an operating pH of 7.0 and volumetric biogas flow rate of 21.6 m3/m 3-hr. By increasing trace metal contents and temperature of the medium, the hydrogen sulfide removal rate was greatly improved. The operating cost of the full-scale system was estimated to be approximately $2/kg-S-removed. In addition, it was also revealed that abiotic sulfide oxidation accounted for 95% of overall sulfide oxidation. This technology is expected to widen the use of biogas as a renewable fuel since the maintenance requirements of biogas handling equipment, the methane purification costs, and the emissions of SOx will dramatically be reduced. Importantly, the technology does not require inoculation of special bacteria, addition of nutrients and trace elements, or chemicals for pH control.

  12. Nature creates, adapts, protects and sustains life using hydrogen sulfide.

    PubMed

    Tabibzadeh, Siamak

    2016-01-01

    Life emerged on Earth in an anaerobic environment, bathed in noxious gases. Among these gases, the role of hydrogen sulfide is significant since this gas, was required as a building block of life, contributed to abiogenic generation of organic compounds that gave rise to life and drove adaptations of life throughout its entire evolutionary path. During evolution, hydrogen sulfide contributed to sustaining life in face of harsh environmental conditions. Modern cells still utilize hydrogen sulfide as a signaling molecule, in pro and anti-inflammatory responses, for acquisition of tolerance against damage, in directing repair responses, as a source of energy and in modifying their genetic makeup and function to acquire a phenotype reminiscent of early life forms. PMID:26709792

  13. The summer of hydrogen sulfide: highlights from two international conferences

    PubMed Central

    2013-01-01

    A great deal of interest has been paid recently to the hydrogen sulfide, the newest member of the gasotransmitter family. With the growing interest in the biology of H2S, the need for meetings and conferences dedicated solely to the field of H2S has also grown. In 2009, scientist from around the world met in Shanghai, China for the first time to discuss the physiological relevance of H2S. In 2012, two conferences were organized to bring scientists, clinicians, and industry representatives together to discuss the latest breakthroughs concerning the emergent field of H2S. The following is a summary report of The First European Conference on the Biology of Hydrogen Sulfide and the Second International Conference on Hydrogen Sulfide Biology and Medicine. PMID:23442229

  14. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia

    PubMed Central

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:25091411

  15. Chronic Ambient Hydrogen Sulfide Exposure and Cognitive Function

    PubMed Central

    Reed, Bruce R.; Crane, Julian; Garrett, Nick; Woods, David L.; Bates, Michael N.

    2014-01-01

    Background Exposures to hydrogen sulfide gas (H2S) have been inconclusively linked to a variety of negative cognitive outcomes. We investigated possible effects on cognitive function in an urban population with chronic, low-level exposure to H2S. Methods Participants were 1,637 adults, aged 18-65 years from Rotorua city, New Zealand, exposed to ambient H2S from geothermal sources. Exposures at homes and workplaces were estimated from data collected by summer and winter H2S monitoring networks across Rotorua in 2010/11. Metrics for H2S exposure at the time of participation and for exposure over the last 30 years were calculated. H2S exposure was modeled both as continuous variables and as quartiles of exposure covering the range of 0 – 64 ppb (0-88 μg/m3). Outcomes were neuropsychological tests measuring visual and verbal episodic memory, attention, fine motor skills, psychomotor speed and mood. Associations between cognition and measures of H2S exposure were investigated with multiple regression, while covarying demographics and factors known to be associated with cognitive performance. Results The consistent finding was of no association between H2S exposure and cognition. Quartiles of H2S exposure had a small association with simple reaction time: higher exposures were associated with faster response times. Similarly, for digit symbol, higher H2S exposures tended to be marginally associated with better performance. Conclusion The results provide evidence that chronic H2S exposure, at the ambient levels found in and around Rotorua, is not associated with impairment of cognitive function. PMID:24548790

  16. Hydrogen evolution from water through metal sulfide reactions

    NASA Astrophysics Data System (ADS)

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-01

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2SX- (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4- isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4- and M2S5- isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4- and M2S5- clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6- is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  17. Transformation of two chlorinated fumigants by hydrogen sulfide species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chlorinated fumigants chloropicrin and 1,3-dichloropropene (1,3-D) are extensively used to control soilborne pests. Transformation of these two pesticides by hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid re...

  18. DETERMINATION OF HYDROGEN SULFIDE IN REFINERY FUEL GASES

    EPA Science Inventory

    Several widely employed test methods for the iodimetric measurement of hydrogen sulfide in refinery fuel gases are shown to suffer from serious thiol interferences. An absorbing solution consisting of 0.16 M cadmium sulfate/sulfuric acid at pH 3.0 is shown to be effective for the...

  19. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  20. Estimation of bacterial hydrogen sulfide production in vitro

    PubMed Central

    Basic, Amina; Blomqvist, Susanne; Carlén, Anette; Dahlén, Gunnar

    2015-01-01

    Oral bacterial hydrogen sulfide (H2S) production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways. PMID:26130377

  1. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem.

    PubMed

    Spear, John R; Walker, Jeffrey J; McCollom, Thomas M; Pace, Norman R

    2005-02-15

    The geochemical energy budgets for high-temperature microbial ecosystems such as occur at Yellowstone National Park have been unclear. To address the relative contributions of different geochemistries to the energy demands of these ecosystems, we draw together three lines of inference. We studied the phylogenetic compositions of high-temperature (>70 degrees C) communities in Yellowstone hot springs with distinct chemistries, conducted parallel chemical analyses, and carried out thermodynamic modeling. Results of extensive molecular analyses, taken with previous results, show that most microbial biomass in these systems, as reflected by rRNA gene abundance, is comprised of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen, H2. The apparent dominance by H2-metabolizing organisms indicates that H2 is the main source of energy for primary production in the Yellowstone high-temperature ecosystem. Hydrogen concentrations in the hot springs were measured and found to range up to >300 nM, consistent with this hypothesis. Thermodynamic modeling with environmental concentrations of potential energy sources also is consistent with the proposed microaerophilic, hydrogen-based energy economy for this geothermal ecosystem, even in the presence of high concentrations of sulfide. PMID:15671178

  2. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras

    PubMed Central

    Kashfi, Khosrow; Olson, Kenneth R.

    2012-01-01

    Hydrogen sulfide, H2S, is a colorless gas with a strong odor that until recently was only considered to be a toxic environmental pollutant with little or no physiological significance. However, the past few years have demonstrated its role in many biological systems and it is becoming increasingly clear that H2S is likely to join nitric oxide (NO) and carbon monoxide (CO) as a major player in mammalian biology. In this review, we have provided an overview of the chemistry and biology of H2S and have summarized the chemistry and biological activity of some natural and synthetic H2S-donating compounds. The naturally occurring compounds discussed include, garlic, sulforaphane, erucin, and iberin. The synthetic H2S donors reviewed include, GYY4137; cysteine analogs; S-propyl cysteine, S-allyl cysteine, S-propargyl cysteine, and N-acetyl cysteine. Dithiolethione and its NSAID and other chimeras such as, L-DOPA, sildenafil, aspirin, diclofenac, naproxen, ibuprofen, indomethacin, and mesalamine have also been reviewed in detail. The newly reported NOSH-aspirin that releases both NO and H2S has also been discussed. PMID:23103569

  3. Plasma-chemical conversion of hydrogen sulfide into hydrogen and sulfur

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    A waste-treatment process that recovers both hydrogen and sulfur from hydrogen-sulfide-contaminated industrial wastes is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is based on research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. In the plasma-chemical process, the gaseous stream would be purified and separated into streams containing the product hydrogen, hydrogen sulfide for recycle to the plasma reactor, and the process purge containing carbon dioxide and water. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional tail-gas clean-up processes associated with the Claus technology. Laboratory experiments with pure hydrogen sulfide have confirmed that conversions of over 90% per pass are possible. Experiments with impurities typical of petroleum refinery and natural gas production acid gases have demonstrated that these impurities are compatible with the plasma dissociation process and do not appear to create new waste-treatment problems. Other experiments show that the cyclonic-flow pattern hypothesized by the Russian theoretical analysis of the plasma-chemical process can substantially decrease energy requirements for hydrogen sulfide dissociation while increasing conversion. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology. The primary advantage is the potential for recovering hydrogen more cheaply than the direct production of hydrogen. The difference could amount to an energy savings of 40 {times} 10{sup 15} to 70 {times} 10{sup 15} J/yr in the refining industry, for an annual savings of $500 million to $1,000 million.

  4. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation. PMID:26149232

  5. Health assessment document for hydrogen sulfide: review draft

    SciTech Connect

    Ammann, H.M.; Bradow, F.; Fennell, D.; Griffin, R.; Kearney, B.

    1986-08-01

    Hydrogen sulfide is a highly toxic gas which is immediately lethal in concentrations greater than 2000 ppm. The toxic end-point is due to anoxia to brain and heart tissues which results from its interaction with the celluar enzyme cytochrome oxidase. Inhibition of the enzyme halts oxidative metabolism which is the primary energy source for cells. A second toxic end-point is the irritative effect of hydrogen sulfide on mucous membranes, particularly edema at sublethal doses (250 to 500 ppm) in which sufficient exposure occurs before conciousness is lost. Recovered victims of exposure report neurologic symptoms such as headache, fatigue, irritability, vertigo, and loss of libido. Long-term effects are similar to those caused by anoxia due to other toxic agents like CO, and probably are not due to specific H/sub 2/S effects. H/sub 2/S is not a cumulative poison. No mutagenic, carcinogenic, reproductive, or teratogenic effects have been reported in the literature.

  6. High temperature solar thermochemical processing - Hydrogen and sulfur from hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Noring, J. E.; Fletcher, E. A.

    1982-08-01

    Sunlight, concentrated to high intensities, has a rarely recognized potential for adding process heat to reactors at high temperatures. Hydrogen sulfide is a by-product of the sweetening of fossil fuels. In this paper, by way of example, the production of hydrogen and sulfur from hydrogen sulfide is used as a device for showing how solar processing might be considered as a successor to a currently used industrial process, the Claus process. It is concluded that this and other processes should be explored as means of using as well as storing solar energy.

  7. Hydrogen evolution from water through metal sulfide reactions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M{sub 2}S{sub X}{sup −} (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo{sub 2}S{sub 4}{sup −} isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} isomers. In all the lowest energy H{sub 2} elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H{sub 2} elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} clusters with water to liberate H{sub 2} are exothermic and involve modest free energy barriers. However, the reaction of water with M{sub 2}S{sub 6}{sup −} is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  8. Decomposition of Hydrogen Sulfide in a Dielectric-Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Kogelschatz, Ulrich; Killer, Eric; Eliasson, Baldur

    1999-10-01

    Hydrogen sulfide is not only an unwanted compound that has to be efficiently removed in many industrial processes but it is also an abundant source for potentially cheap hydrogen. Many natural gas reserves contain large amounts of hydrogen sulfide mixed with the natural gas. In the past plasma processing of H_2S has been extensively investigated in low-pressure microwave discharges. Some laboratory experiments have also been performed in dielectric-barrier discharges (DBDs). We report on complete decomposition of atmospheric pressure H_2S into hydrogen and solid sulfur in a small laboratory through-flow DBD reactor made of two coaxial cylindrical quartz tubes with external coaxial electrodes. The discharge is confined to an annular gap of 2 mm radial width and 110 mm length. It can be observed through a wire mesh electrode. In some of the experiments helium was used as a carrier gas. The concentrations of H2 and H_2S were measured with a gas chromatograph equipped with a PoraPlot Q column and a molecular sieve column. The dielectric-barrier discharge was operated in the frequency range 20-25 kHz or in the range 180-215 kHz. The amount of hydrogen generated was related to the amount of energy put into the discharge.

  9. ISE Analysis of Hydrogen Sulfide in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Li, Guofeng; Polk, Brian J.; Meazell, Liz A.; Hatchett, David W.

    2000-08-01

    Many advanced undergraduate analytical laboratory courses focus on exposing students to various modern instruments. However, students rarely have the opportunity to construct their own analytical tools for solving practical problems. We designed an experiment in which students are required to build their own analytical module, a potentiometric device composed of a Ag/AgCl reference electrode, a Ag/Ag2S ion selective electrode (ISE), and a pH meter used as voltmeter, to determine the amount of hydrogen sulfide in cigarette smoke. Very simple techniques were developed for constructing these electrodes. Cigarette smoke is collected by a gas washing bottle into a 0.1 M NaOH solution. The amount of sulfide in the cigarette smoke solution is analyzed by standard addition of sulfide solution while monitoring the response of the Ag/Ag2S ISE. The collected data are further evaluated using the Gran plot technique to determine the concentration of sulfide in the cigarette smoke solution. The experiment has been successfully incorporated into the lab course Instrumental Analysis at Georgia Institute of Technology. Students enjoy the idea of constructing an analytical tool themselves and applying their classroom knowledge to solve real-life problems. And while learning electrochemistry they also get a chance to visualize the health hazard imposed by cigarette smoking.

  10. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    SciTech Connect

    Sinha, Soumyadeep; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-15

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200 °C. Growth rate of 1.3 Å per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films.

  11. Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote.

    PubMed

    Jiang, Jingjing; Chan, Adriano; Ali, Sameh; Saha, Arindam; Haushalter, Kristofer J; Lam, Wai-Ling Macrina; Glasheen, Megan; Parker, James; Brenner, Matthew; Mahon, Sari B; Patel, Hemal H; Ambasudhan, Rajesh; Lipton, Stuart A; Pilz, Renate B; Boss, Gerry R

    2016-01-01

    Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induced apoptosis. Sulfide increased hydroxyl radical production in isolated mouse heart mitochondria and F2-isoprostanes in brains and hearts of mice. The vitamin B12 analog cobinamide reversed the cellular toxicity of sulfide, and rescued Drosophila melanogaster and mice from lethal exposures of hydrogen sulfide gas. Cobinamide worked through two distinct mechanisms: direct reversal of complex IV inhibition and neutralization of sulfide-generated reactive oxygen species. We conclude that sulfide produces a high degree of oxidative stress in cells and tissues, and that cobinamide has promise as a first specific treatment for sulfide poisoning. PMID:26877209

  12. Modelling studies for hydrogen sulfide fuelled SOFCs

    NASA Astrophysics Data System (ADS)

    Monder, Dayadeep

    Solid oxide fuel cells (SOFCs) are high temperature, ceramic electrolyte fuel cells. Unlike most other fuel cells, which require high purity hydrogen to generate electricity, SOFCs can utilize a variety of fuels, including hydrocarbons. This work presents modelling and experimental work performed on a laboratory scale H2S-fuelled SOFC equipped with a novel anode that can electro-oxidize H2S into water vapour and sulphur. Using H2S, a toxic by-product of the fossil fuel industry, such a fuel cell can potentially generate useful electrical energy while disposing off this toxic pollutant on site. In this dissertation, I develop a hierarchy of first principles models for H2S solid oxide fuel cells. The models developed fall into the following four categories: (i) detailed models of H2S electrochemistry; (ii) isothermal 1-D and 2-D transport and reaction models of the 'near cell' region that do not take H2S dissociation into account; (iii) chemical thermodynamics models of H2S dissociation in the fuel channel that also calculate the open circuit voltage (OCV) of the SOFC for the different possible fuels; (iv) fully coupled 2-D transport and reaction models for the complete fuel cell assembly that include heat transfer and H2S dissociation kinetics. The models in the final category above include all the physics and chemistry in a working H2S SOFC by including all transport phenomena, thermodynamically consistent kinetics of the chemical/electrochemical reactions, along with the electrical potential distribution in the fuel cell assembly. These multiphysics models are then used to estimate unknown electrochemical parameters, and to understand and explain experimental data from H2S SOFCs. Experimental results from H2S SOFCs exhibit characteristics which are either poorly explained in current literature or not explained at all e.g., an unusual dependence of cell performance on fuel composition. To support my modelling effort, I and a colleague conducted experiments where the composition and flow rates were varied for both the fuel and oxidant streams to analyze their effect on fuel cell performance. I present these experimental results and demonstrate the importance of thermodynamic and multiphysics modelling in understanding these results.

  13. Therapeutic application of hydrogen sulfide donors: the potential and challenges.

    PubMed

    Wu, Dan; Hu, Qingxun; Zhu, Yizhun

    2016-03-01

    Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of antiinflammatory drugs. PMID:26597301

  14. Micellar-mediated extractive spectrophotometric determination of hydrogen sulfide/sulfide through Prussian Blue reaction: application to environmental samples.

    PubMed

    Pandurangappa, Malingappa; Samrat, Devaramani

    2010-01-01

    A sensitive surfactant-mediated extractive spectrophotometric method has been developed, based on the reaction of ferric iron with sulfide to form ferrous iron and its subsequent reaction with ferricyanide to form Prussian Blue, to quantify trace levels of hydrogen sulfide/sulfide in environmental samples. The method obeys Beer's law in the concentration range 2-10 microg of sulfide in 25 mL of aqueous phase with molar absorptivity (epsilon) of 3.92 x 10(4) L mol(-1) cm(-1). The colored species has been extracted into isoamyl acetate in the presence of a cationic surfactant i.e. cetylpyridinium chloride, to enhance the sensitivity of the method with epsilon value 5.2 x 10(4) L mol(-1) cm(-1). The relative standard deviation has been found to be 0.69% for 10 determinations at 4 microg of sulfide and the limit of detection was 0.009 microg mL(-1). The interference from common anions and cations has been studied. The proposed method has been applied to the determination of residual hydrogen sulfide in the laboratory fume hood as well as ambient atmospheric hydrogen sulfide in the vicinity of open sewer lines after fixing the analyte in ionic form using suitable trapping medium. PMID:20065592

  15. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  16. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    SciTech Connect

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  17. Disequilibrium of hydrogen sulfide in ground water by aeration. Final report

    SciTech Connect

    Ritchey, J.D.

    1981-04-24

    This study examines removal of hydrogen sulfide gas by aeration as a result of bubbling air through water in the well before it is pumped out of the ground. The field study demonstrated that a substantial amount of hydrogen sulfide gas could be successfully removed by the method tested. Evaluation of water analyses indicated three processes that caused reduction in the concentration of hydrogen sulfide gas: (1) hydrogen sulfide gas was released from water to air by gas transfer--indicated by a strong 'rotten egg odor,' characteristic of hydrogen sulfide gas that was emitted from the wellhead; (2) hydrogen sulfide gas was oxidized to elemental sulfur--evidenced by an increase in dissolved oxygen measured in water samples and by clouding of pumped water; and (3) hydrogen sulfide gas was partially ionized--indicated by an increase in the pH and the redox potential of water samples. This field study demonstrates that in-well aeration is an effective method of hydrogen sulfide gas removal in domestic wells with potential application in larger installations.

  18. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-01-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  19. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide.

    PubMed

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S

    2009-12-01

    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media. PMID:20066911

  20. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    PubMed

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210??M temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. PMID:25630511

  1. Mitochondrial Sulfide Quinone Oxidoreductase Prevents Activation of the Unfolded Protein Response in Hydrogen Sulfide.

    PubMed

    Horsman, Joseph W; Miller, Dana L

    2016-03-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous molecule with important roles in cellular signaling. In mammals, exogenous H2S improves survival of ischemia/reperfusion. We have previously shown that exposure to H2S increases the lifespan and thermotolerance in Caenorhabditis elegans, and improves protein homeostasis in low oxygen. The mitochondrial SQRD-1 (sulfide quinone oxidoreductase) protein is a highly conserved enzyme involved in H2S metabolism. SQRD-1 is generally considered important to detoxify H2S. Here, we show that SQRD-1 is also required to maintain protein translation in H2S. In sqrd-1 mutant animals, exposure to H2S leads to phosphorylation of eIF2α and inhibition of protein synthesis. In contrast, global protein translation is not altered in wild-type animals exposed to lethally high H2S or in hif-1(ia04) mutants that die when exposed to low H2S. We demonstrate that both gcn-2 and pek-1 kinases are involved in the H2S-induced phosphorylation of eIF2α. Both ER and mitochondrial stress responses are activated in sqrd-1 mutant animals exposed to H2S, but not in wild-type animals. We speculate that SQRD-1 activity in H2S may coordinate proteostasis responses in multiple cellular compartments. PMID:26677221

  2. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  3. Wheat straw cover for reducing ammonia and hydrogen sulfide emissions from dairy manure storage

    SciTech Connect

    Xue, S.K.; Hermanson, R.E.

    1999-08-01

    Analysis of the use of a wheat straw cover for reducing ammonia and hydrogen sulfide emissions from liquid manure was conducted in both a laboratory and a pilot system. Two straw covers with different thicknesses (5 cm and 10 cm) were evaluated for their effectiveness in reducing odorous gas emissions. The rates of ammonia and hydrogen sulfide emissions from the treatments were monitored; concentrations of ammonia, dissolved sulfide, chemical oxygen demand (COD), and pH of the liquid manure were measured. Additionally, the overall mass transfer coefficients of ammonia and hydrogen sulfide were calculated for the conditions of the experiment. The results demonstrated that both the 5-cm and 10-cm straw covers were effective in reducing ammonia and hydrogen sulfide emissions from manure storage. In the laboratory tests, when a crust formed on the manure surface within three to four weeks after the straw application, ammonia emissions were reduced by up to 95%. A similar trend was observed in the pilot experiments in the field. Hydrogen sulfide emissions were suppressed by 95% with the wheat straw cover. The mass transfer coefficients of hydrogen sulfide with the straw covers were significantly lower than those of the control, which indicated the effectiveness of a straw cover as a physical barrier for reducing hydrogen sulfide emissions. Reduced pH and decreased ammonia that biological reactions might also be a factor contributing to the emission reductions.

  4. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  5. Evaluation of hydrogen sulfide conversion processes. Final report, May 1, 1987-October 15, 1989

    SciTech Connect

    Krishnan, G.N.; Pound, B.G.

    1989-10-01

    The research was sponsored by the Gas Research Institute to evaluate the status of hydrogen sulfide conversion processes and to recommend areas of research that are of interest to the natural gas industry. Several processes that convert hydrogen sulfide to sulfur and water were reviewed and they include Claus process, Claus plant tail gas treatment processes, liquid phase oxidation processes and direct catalytic oxidation processes. Electrochemical, photochemical, thermal, thermochemical and plasmachemical methods of producing both hydrogen and sulfur from hydrogen sulfide were also reviewed.

  6. The determination of hydrogen sulfide and total sulfur

    SciTech Connect

    Vincent, A.

    1995-12-01

    Producers, processors, pipelines and distribution companies measure both hydrogen sulfide (H2S) and total sulfur for compliance with purchase contracts, which generally contain sulfur quality clauses relating to those two parameters. A quarter grain of H2S per one hundred standard cubic feet (0.25 gr H2S/100 SCF) and one grain of total sulfur (1 gr S/100 SCF) are common contract limits. To ensure that both buyer and seller are dealing with gas within these limits, it is common to monitor both parameters, as well as others, on both sides of the custody transfer point. More often, sulfur monitoring entails measuring total sulfur, mercaptans, and sulfides to assure the gas is odorized at the desired level. Odorant is a combination of mercaptans and sulfides added to the gas to alert users of any leaks. Odorization at the proper level is important since over-odorization is an waste of costly chemicals resulting in excess leak calls, and under-odorization is a safety hazard for the customer which in the worst case could result in an explosion with great personal injury and property damage. Odorant monitoring should also be used in conjunction with olfactory readings as an archival record in the event of litigation. There are several means of measuring these parameters, using either manual methods or instrument techniques. The manual methods involve wet chemistry, including collecting the desired sulfur compounds in an absorbing solution and then titrating the solution with a second reactive solution of known concentration. These methods are described in detail in ASTM and the Gas Processors. In this treatment we will discuss only the instrumental means, the most common of which are gas chromatography, lead acetate tape methods. and electrolytic titration.

  7. High-temperature study of superconducting hydrogen and deuterium sulfide

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.; Szczȩśniak, R.; Pietronero, L.

    2016-05-01

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of $203$ K in hydrogen sulfide (H$_3$S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H$_3$S and D$_3$S at $150$ GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature $203$ K and $147$ K for H$_3$S and D$_3$S by using a Coulomb pseudopotential of $0.123$ and $0.131$, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D$_3$S is smaller than for H$_3$S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory.

  8. The metallization and superconductivity of dense hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

    2014-05-01

    Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

  9. The metallization and superconductivity of dense hydrogen sulfide

    SciTech Connect

    Li, Yinwei Hao, Jian; Li, Yanling; Liu, Hanyu; Ma, Yanming

    2014-05-07

    Hydrogen sulfide (H{sub 2}S) is a prototype molecular system and a sister molecule of water (H{sub 2}O). The phase diagram of solid H{sub 2}S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S–H bond and larger atomic core difference between H and S. Metallization is yet achieved for H{sub 2}O, but it was observed for H{sub 2}S above 96 GPa. However, the metallic structure of H{sub 2}S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H{sub 2}S at pressure ranges of 10–200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H{sub 2}S with an estimated maximal transition temperature of ∼80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH{sub 4}, GeH{sub 4}, etc.)

  10. Hydrogen sulfide as a potential biomarker of asthma.

    PubMed

    Chung, Kian F

    2014-02-01

    Hydrogen sulfide (H2S), a gas characterized by the odor of rotten eggs, is produced by many cells in the airways and lungs, and may regulate physiologic and pathophysiologic processes. It plays a role in cellular signaling, and represents the third gasotransmitter after nitric oxide and carbon monoxide. Endogenous and exogenous H₂S have anti-inflammatory and anti-proliferative effects, with inhibitory effects in models of lung inflammation and fibrosis. Under certain conditions, H₂S may also be proinflammatory. It is generally a vasodilator and relaxant of airway and vascular smooth muscle cells. It acts as a reducing agent, being able to scavenge superoxide and peroxynitrite. H₂S is detectable in serum and in sputum supernatants with raised levels observed in asthmatics. The sputum levels correlated inversely with lung function. H₂S may play a role in the pathogenesis of asthma. PMID:24308655

  11. Release and control of hydrogen sulfide during sludge thermal drying

    SciTech Connect

    Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan

    2015-04-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.

  12. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  13. Sulfur as a Signaling Nutrient Through Hydrogen Sulfide

    PubMed Central

    Kabil, Omer; Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H2S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H2S-based therapeutics is hampered by fundamental gaps in our knowledge of how H2S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H2S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease. PMID:25033061

  14. Protein-based nanobiosensor for direct detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Omidi, Meisam; Amoabediny, Ghasem; Yazdian, Fatemeh; Habibi-Rezaei, M.

    2015-01-01

    The chemically modified cytochrome c from equine heart, EC (232-700-9), was immobilized onto gold nanoparticles in order to develop a specific biosensing system for monitoring hydrogen sulfide down to the micromolar level, by means of a localized surface plasmon resonance spectroscopy. The sensing mechanism is based on the cytochrome-c conformational changes in the presence of H2S which alter the dielectric properties of the gold nanoparticles and the surface plasmon resonance peak undergoes a redshift. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μ \\text{M} (1.3 \\text{ppb}) by the fabricated biosensor. This simple, quantitative and sensitive sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  15. Pressure-induced decomposition of solid hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Duan, Defang; Huang, Xiaoli; Tian, Fubo; Li, Da; Yu, Hongyu; Liu, Yunxian; Ma, Yanbin; Liu, Bingbing; Cui, Tian

    2015-05-01

    Solid hydrogen sulfide is a typical molecular crystal, but its stability under pressure remains controversial. In particular, the recent experimental discovery of high-pressure superconductivity at 190 K in an H2S sample (arXiv:1412.0460) inspired efforts to revalidate this controversial issue, the pressure at which H2S decomposes and the resultant decomposition products urgent need to be evaluated. In this paper we performed an extensive structural study on different stoichiometries of HnS with n >1 under high pressure using ab initio calculations. Our results show that H2S is stable below 43 GPa and at elevated pressure it decomposes into H3S and sulfur. H3S is stable at least up to 300 GPa, while other H-rich compounds, including H4S , H5S , and H6S , are unstable in the pressure range of this study.

  16. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    SciTech Connect

    Qiao, Wang; Chaoshu, Tang; Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education ; Hongfang, Jin; Junbao, Du

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  17. Working with nitric oxide and hydrogen sulfide in biological systems

    PubMed Central

    Yuan, Shuai; Kevil, Christopher G.

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S. PMID:25550314

  18. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering.

    PubMed

    Troyan, Ivan; Gavriliuk, Alexander; Rüffer, Rudolf; Chumakov, Alexander; Mironovich, Anna; Lyubutin, Igor; Perekalin, Dmitry; Drozdov, Alexander P; Eremets, Mikhail I

    2016-03-18

    High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S. PMID:26989248

  19. Release and control of hydrogen sulfide during sludge thermal drying.

    PubMed

    Weng, Huanxin; Dai, Zhixi; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan

    2015-10-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: (1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, (2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and (3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed, by which 97.5% of H2S and 99.7% of smoke released from sludge treatments was eliminated. PMID:25913672

  20. Hydrogen sulfide at high pressure: change in stoichiometry

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander; Lobanov, Sergey; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem; Konopkova, Zuzana; Prakapenka, Vitali

    Hydrogen sulfide (H2S) was studied by x-ray synchrotron diffraction (XRD) and Raman spectroscopy up to 144 GPa at 180-295 K. We find that H2S compound become unstable with respect to formation of new compounds with different composition including pure S, H3S and HS2 depending on the thermodynamic P-T path. These results are supported by our quantum-mechanical variable-composition evolutionary simulations that show the stability of the above mentioned compounds at elevated pressures. The stability of H3S at high pressures, which we find a strong experimental and theoretical confirmation here, suggests that it is this material which is responsible for high-temperature superconducting properties reported previously. We thank DARPA, NSF, ISSP (Hefei, China), Government of Russian Federation, and Foreign Talents Introduction and Academic Exchange Program. Use of the Advanced Photon Source was supported by the U. S. Department of Energy Office of Science.

  1. Hydrogen sulfide is produced in response to neuronal excitation.

    PubMed

    Eto, Ko; Ogasawara, Miki; Umemura, Ken; Nagai, Yasuo; Kimura, Hideo

    2002-05-01

    Although hydrogen sulfide (H2S) is generally thought of in terms of a poisonous gas, it is endogenously produced in the brain. Physiological concentrations of H2S selectively enhance NMDA receptor-mediated responses and alter the induction of hippocampal long-term potentiation (LTP). Here we use cystathionine beta-synthase (CBS) knock-out mice to clearly show that CBS produces endogenous H2S in the brain and that H2S production is greatly enhanced by the excitatory neurotransmitter l-glutamate, as well as by electrical stimulation. This increased CBS activity is regulated by a pathway involving Ca2+/calmodulin. In addition, LTP is altered in CBS knock-out mice. These observations suggest that H2S is produced by CBS in response to neuronal excitation and that it may regulate some aspects of synaptic activity. PMID:11978815

  2. Brain hydrogen sulfide is severely decreased in Alzheimer's disease.

    PubMed

    Eto, Ko; Asada, Takashi; Arima, Kunimasa; Makifuchi, Takao; Kimura, Hideo

    2002-05-24

    Although hydrogen sulfide (H2S) is generally thought of in terms of a poisonous gas, it is endogenously produced in the brain from cysteine by cystathionine beta-synthase (CBS). H2S functions as a neuromodulator as well as a smooth muscle relaxant. Here we show that the levels of H2S are severely decreased in the brains of Alzheimer's disease (AD) patients compared with the brains of the age matched normal individuals. In addition to H2S production CBS also catalyzes another metabolic pathway in which cystathionine is produced from the substrate homocysteine. Previous findings, which showed that S-adenosyl-l-methionine (SAM), a CBS activator, is much reduced in AD brain and that homocysteine accumulates in the serum of AD patients, were confirmed. These observations suggest that CBS activity is reduced in AD brains and the decrease in H2S may be involved in some aspects of the cognitive decline in AD. PMID:12054683

  3. Hydrogen sulfide and cardioprotection--Mechanistic insights and clinical translatability.

    PubMed

    Salloum, Fadi N

    2015-08-01

    Hydrogen sulfide (H2S) has been long recognized as a highly poisonous gas that is rapidly lethal in intoxicating dosage. However, discoveries during the last decade on the endogenous synthesis of H2S in the mammalian system and its protective role in combating cellular necrosis, apoptosis, oxidative stress, inflammation as well as promoting angiogenesis and modulation of mitochondrial respiration in the setting of myocardial ischemia and reperfusion injury have prompted vast interest in the possibility of developing new therapies based around mimicry or facilitation of endogenous H2S for cardioprotection. These observations have inspired rapid development of H2S-releasing drugs in hopes of swift clinical translation in patients with cardiovascular disease. This review will discuss our current understanding of the protective signaling pathways elicited by H2S in the heart with an emphasis on the versatile benefits of this gasotransmitter and its potential for clinical translation in patients with cardiovascular disease. PMID:25913517

  4. Hydrogen Sulfide Chemical Biology: Pathophysiological roles and detection

    PubMed Central

    Kolluru, Gopi K; Shen, Xinggui; Bir, Shyamal C.; Kevil, Christopher G.

    2014-01-01

    Hydrogen sulfide (H2S) is the most recent endogenous gasotransmitter that has been reported to serve many physiological and pathological functions in different tissues. Studies over the past decade have revealed that H2S can be synthesized through numerous pathways and its bioavailability regulated through its conversion into different biochemical forms. H2S exerts its biological effects in various manners including redox regulation of protein and small molecular weight thiols, polysulfides, thiosulfate/sulfite, iron-sulfur cluster proteins, and anti-oxidant properties that affect multiple cellular and molecular responses. However, precise measurement of H2S bioavailability and its associated biochemical and pathophysiological roles remains less well understood. In this review, we discuss recent understanding of H2S chemical biology, its relationship to tissue pathophysiological responses and possible therapeutic uses. PMID:23850632

  5. Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury

    PubMed Central

    Wu, Dongdong; Wang, Jun; Li, Hui; Xue, Mengzhou; Ji, Ailing; Li, Yanzhang

    2015-01-01

    Ischemia-reperfusion (I/R) injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen sulfide (H2S) is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in mammals. H2S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach, hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H2S in I/R injury. In this review, we present the production and metabolism of H2S and further discuss the effect and mechanism of H2S in I/R injury. PMID:26064416

  6. Hydrogen sulfide at high pressure: Change in stoichiometry

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander F.; Lobanov, Sergey S.; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem R.; Konôpková, Zuzana; Prakapenka, Vitali B.

    2016-05-01

    Hydrogen sulfide (H2S ) was studied by x-ray synchrotron diffraction and Raman spectroscopy up to 150 GPa at 180-295 K and by quantum-mechanical variable-composition evolutionary simulations. The experiments show that H2S becomes unstable with respect to formation of compounds with different structure and composition, including Cccm and a body-centered cubic like (R 3 m or I m -3 m ) H3S , the latter one predicted previously to show a record-high superconducting transition temperature, a Tc of 203 K. These experiments provide experimental ground for understanding of this record-high Tc. The experimental results are supported by theoretical structure searches that suggest the stability of H3S , H4S3 , H5S8 , H3S5 , and H S2 compounds that have not been reported previously at elevated pressures.

  7. Hydrogen Sulfide Is a Signaling Molecule and a Cytoprotectant

    PubMed Central

    Shibuya, Norihiro; Kimura, Yuka

    2012-01-01

    Abstract Significance: Accumulating evidence shows that hydrogen sulfide may function as a signaling molecule in processes such as neuromodulation in the brain and smooth muscle relaxation in the vascular system. It also has a cytoprotective effect, since it can protect neurons and cardiac muscle from oxidative stress and ischemia-reperfusion injury, respectively. Hydrogen sulfide can also modulate inflammation, insulin release, and angiogenesis. Recent Advances: The regulation of the activity of 3-mercaptopyruvate sulfur transferase (3MST) along with cysteine aminotransferase (CAT), one of the H2S producing pathways, has been demonstrated. The production of H2S by the pathway, which is regulated by Ca2+ and facilitated by thioredoxin and dihydrolipoic acid, is also involved in H2S signaling as well as cytoprotection. Sulfur hydration of proteins by H2S has been proposed to modulate protein functions. H2S-sensitive fluorescent probes, which enable us to measure the localization of H2S in real time, have been developed. Critical Issues: The basal concentrations of H2S have recently been measured and found to be much lower than those initially reported. However, the concentration of H2S reached in stimulated cells, as well as the regulation of H2S producing enzymes is not well understood. It has been proposed that some of the effects of H2S on the regulation of enzymes and receptors might be explained through the properties of sulfane sulfur (S0), another form of active sulfur. Future Directions: The determination of H2S concentrations in activated cells using new methods including H2S-sensitive fluorescent probes, as well as the investigation of the effects of H2S using specific inhibitors, may provide better understanding of the physiological function of this molecule. Clarifying mechanisms of H2S activity may also facilitate the development of new therapeutic compounds. Antioxid. Redox Signal. 17, 45–57. PMID:22229673

  8. Low-level hydrogen sulfide and central nervous system dysfunction.

    PubMed

    Kilburn, Kaye H; Thrasher, Jack D; Gray, Michael R

    2010-08-01

    Forty-nine adults living in Lovington, Tatum, and Artesia, the sour gas/oil sector of Southeastern New Mexico, were tested for neurobehavioral impairment. Contributing hydrogen sulfide were (1) an anaerobic sewage plant; (2) two oil refineries; (3) natural gas/oil wells and (4) a cheese-manufacturing plant and its waste lagoons. Comparisons were to unexposed Wickenburg, Arizona, adults. Neurobehavioral functions were measured in 26 Lovington adults including 23 people from Tatum and Artesia, New Mexico, and 42 unexposed Arizona people. Participants completed questionnaires including chemical exposures, symptom frequencies and the Profile of Mood States. Measurements included balance, reaction time, color discrimination, blink reflex, visual fields, grip strength, hearing, vibration, problem solving, verbal recall, long-term memory, peg placement, trail making and fingertip number writing errors (FTNWE). Average numbers of abnormalities and test scores were adjusted for age, gender, educational level, height and weight, expressed as percent predicted (% pred) and compared by analysis of variance (ANOVA). Ages and educational attainment of the three groups were not statistically significantly different (ssd). Mean values of Lovington residents were ssd from the unexposed Arizona people for simple and choice reaction times, balance with eyes open and closed, visual field score, hearing and grip strength. Culture Fair, digit symbol substitution, vocabulary, verbal recall, peg placement, trail making A and B, FTNWE, information, picture completion and similarities were also ssd. The Lovington adults who averaged 11.8 abnormalities were ssd from, Tatum-Artesia adults who had 3.6 and from unexposed subjects with 2.0. Multiple source community hydrogen sulfide exposures impaired neurobehavioral functions. PMID:20504829

  9. Hydrogen sulfide accelerates wound healing in diabetic rats

    PubMed Central

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    Aim: The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Methods: Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. Results: The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. Conclusions: The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF). PMID:26191204

  10. A study of sulfur dioxide removal from flue gases with simultaneous generation of hydrogen sulfide

    SciTech Connect

    Tong, S.; Shen, S.

    1996-12-31

    This paper concerns a study for sulfur dioxide removal from a simulating flue gas comprising of sulfur dioxide and nitrogen with simultaneous generation of hydrogen sulfide for the purpose of producing elemental sulfur by Claus reaction. Experiments were proceeded in an aqueous solution of sodium sulfide in a semi flow reactor in a set of operation parameters which are temperature, partial pressure of sulfur dioxide in feeding gas, initial concentration of sodium sulfide in solution and ratio of gas to liquid. A three stage model for the reaction system was observed in terms of the profiles of changes of both pH values of solution and composition of hydrogen sulfide in exit gas with the reaction time. In the first stage, sulfur dioxide was dissolved into solution and sulfide was converted into bisulfide; stage 2 was prominently conversion of bisulfide into hydrogen sulfide with simultaneously absorption of sulfur dioxide; the stage 3 came about as a sign of sulfur dioxide in exit gas was detected. It has been also found that temperature and initial sodium sulfide in solution positively effected on the conversion rate of sodium sulfide to hydrogen sulfide. On the other hand, with an increase of sulfur dioxide content in feeding gas, the duration of both stage 1 and 2 became shorter so that the system entered the second and final stages earlier.

  11. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish.

    PubMed

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-01-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic 'naphthalene' moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems. PMID:27188400

  12. Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate.

    PubMed

    Julian, David; April, Kelly L; Patel, Shiven; Stein, Jenny R; Wohlgemuth, Stephanie E

    2005-11-01

    Sulfide-tolerant marine invertebrates employ a variety of mechanisms to detoxify sulfide once it has entered their bodies, but their integumentary, respiratory epithelium and circulatory cells may still be exposed to toxic sulfide concentrations. To investigate whether sulfide exposure is toxic to mitochondria of a sulfide-tolerant invertebrate, we used the fluorescent dyes JC-1 and TMRM to determine the effect of sulfide exposure on mitochondrial depolarization in erythrocytes from the annelid Glycera dibranchiata. In erythrocytes exposed to 0.11-1.9 mmol l-1 sulfide for 1 h, the dyes showed fluorescence changes consistent with sulfide-induced mitochondrial depolarization. At the highest sulfide concentration, the extent of depolarization was equivalent to that caused by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Even when induced by as little as 0.3 mmol l-1 sulfide, the depolarization was not reversible over a subsequent 5 h recovery period. The mechanism of toxicity was likely not via inhibition of cytochrome c oxidase (COX), since other COX inhibitors and other mitochondrial electron transport chain inhibitors did not produce similar effects. Furthermore, pharmacological inhibition of the mitochondrial permeability transition pore failed to prevent sulfide-induced depolarization. Finally, increased oxidation of the free radical indicators H2DCFDA and MitoSOX in erythrocytes exposed to sulfide suggests that sulfide oxidation increased oxidative stress and superoxide production, respectively. Together, these results indicate that sulfide exposure causes mitochondrial depolarization in cells of a sulfide-tolerant annelid, and that this effect, which differs from the actions of other COX inhibitors, may be via increased free radical damage. PMID:16244170

  13. Methods for producing hydrogen (BI) sulfide and/or removing metals

    DOEpatents

    Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

    2002-05-14

    The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

  14. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    SciTech Connect

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E

    2012-04-02

    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  15. Relating sulfide mineral zonation and trace element chemistry to subsurface processes in the Reykjanes geothermal system, Iceland

    NASA Astrophysics Data System (ADS)

    Libbey, R. B.; Williams-Jones, A. E.

    2016-01-01

    The nature and distribution of sulfide minerals and their trace element chemistry in the seawater-dominated Reykjanes geothermal system was determined through the study of cuttings and core from wells that intersect different regions of the hydrothermal cell, from the near surface to depths of > 3000 m. The observed sulfide mineral zonation and trace element enrichment correlate well with the present-day thermal structure of the system. Isocubanite and pyrrhotite are confined to the deep, low permeability regions, whereas an assemblage of chalcopyrite and pyrite predominates in the main convective upflow path. The presence of marcasite in the uppermost regions of the system reflects weakly acidic conditions (pH < 5) marginal to the upflow, where outflow and downward percolating fluids have dissolved deeply exsolved CO2. The presence of "chalcopyrite disease" in sphalerite may be an indication that the system is experiencing a heating trend, following the logic of "zone-refining" in volcanogenic massive sulfide systems. Sulfide sulfur at all analyzed depths in the Reykjanes geothermal system was derived from a mixture of basaltic and reduced seawater sources. Petrographic evidence suggests that seawater-derived hydrothermal fluids have altered primary igneous sulfides in the host rocks, a process that has been proposed as a major control of aqueous sulfide production in mid-ocean ridge environments. Calculations show that igneous sulfides in the host basalts likely account for less than 5% of the total available ore metal budget in the system, however, their contribution to fluid metal budgets is probably significant because of their relatively high solubility. The processes documented by this study are likely analogous to those operating in the feeder and deep reaction zones of mid-ocean ridge seafloor hydrothermal systems. The results show that sulfide mineral zonation and trace element chemistry vary as a function of physicochemical parameters that are relevant to the characterization and exploration of geothermal energy resources.

  16. No facilitator required for membrane transport of hydrogen sulfide.

    PubMed

    Mathai, John C; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M; Zeidel, Mark L; Lee, John K; Pohl, Peter

    2009-09-29

    Hydrogen sulfide (H(2)S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H(2)O, it was hypothesized that aquaporins may facilitate H(2)S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H(2)S flux. To measure H(2)O and H(2)S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H(2)S left arrow over right arrow H(+) + HS(-)) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H(2)S, P(M,H(2)S) >or = 0.5 +/- 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, P(M,H(2)S) remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H(2)S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H(2)S barrier indicates that H(2)S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels. PMID:19805349

  17. No facilitator required for membrane transport of hydrogen sulfide

    PubMed Central

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter

    2009-01-01

    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H2S flux. To measure H2O and H2S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H2S ⇆ H+ + HS−) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H2S, PM,H2S ≥ 0.5 ± 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, PM,H2S remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H2S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H2S barrier indicates that H2S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels. PMID:19805349

  18. Hydrogen sulfide-powered solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts comprising Co-Mo-S admixed with up to 10% Ag powder were found to have excellent performance and longevity, as well as improved electrical contact when compared with Pt/M-Mo-S anode systems. The highest current density of 450 mA/cm2 and power density of 115 mW/cm2 were achieved with an anode that consisted of 95% (Co-Mo-S) and 5% Ag.

  19. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  20. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a

  1. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  2. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.

    PubMed

    Fuller, D C; Suruda, A J

    2000-09-01

    Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities. PMID:10998771

  3. EMERSION IN THE MANGROVE FOREST FISH 'RIVULUS MARMORATUS': A UNIQUE RESPONSE TO HYDROGEN SULFIDE

    EPA Science Inventory

    The mangrove forest fish Rivulus marmoratus (Cyprinodontidae) has frequently been observed out of water, a phenomenon generally attributed to habitat drying. The authors tested the hypothesis that hydrogen sulfide, a substance characteristically found in their environment, can se...

  4. Geothermal pipeline: Progress and development update from the geothermal progress monitor

    SciTech Connect

    1995-10-01

    This document is a Progress and Development Update from the Geothermal Progress Monitor. It contains brief descriptions of progress made on varying projects involving the use of geothermal resources or research about geothermal systems. This article describes the following projects: Conversion of waste water to geothermal energy in Northern California, Hydrogen sulfide study in Hawaii, a new program at the Cerro Prieto geothermal resource in Mexico, geothermal heating of a Nevadan school, development of a geothermal fluid standard, and the broadcasting of geothermal teleconferences.

  5. Carbon-13 in black sea waters and implications for the origin of hydrogen sulfide.

    PubMed

    Deuser, W G

    1970-06-26

    A combination of measurements of carbon-13 and the hydrogen sulfide content in Black Sea waters with available data on the total carbon dioxide in these waters indicates that the contribution of organic sulfur to the hydrogen sulfide lies between 3 and 5 percent and increases with depth. Likely causes for the increase are increasing productivity or upward movement of the anoxic zone during the facts last 2000 year. PMID:17759339

  6. Hydrogen sulfide scavengers market assessment. Topical report, June 16-December 15, 1995

    SciTech Connect

    Houston, C.W.

    1996-03-01

    The report objective was to establish the dollar market size for removing low level concentrations of hydrogen sulfide from natural gas using commercially available scavengers, identify the key players, and determine significant trends in the industry. The study established the oilfield and refinery markets for the treating of natural gas, with hydrogen sulfide scavengers. The total North American market is estimated to be worth $172 million in 1995. Natural gas stream or vapor phase treating represents 85 percent of the total market.

  7. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  8. Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway*♦

    PubMed Central

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-01-01

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed. PMID:25225291

  9. Experimental Observations on the Biological Significance of Hydrogen Sulfide in Carotid Body Chemoreception.

    PubMed

    Gallego-Martin, T; Agapito, T; Ramirez, M; Olea, E; Yubero, S; Rocher, A; Gomez-Niño, A; Obeso, A; Gonzalez, C

    2015-01-01

    The cascade of transduction of hypoxia and hypercapnia, the natural stimuli to chemoreceptor cells, is incompletely understood. A particular gap in that knowledge is the role played by second messengers, or in a most ample term, of modulators. A recently described modulator of chemoreceptor cell responses is the gaseous transmitter hydrogen sulfide, which has been proposed as a specific activator of the hypoxic responses in the carotid body, both at the level of the chemoreceptor cell response or at the level of the global output of the organ. Since sulfide behaves in this regard as cAMP, we explored the possibility that sulfide effects were mediated by the more classical messenger. Data indicate that exogenous and endogenous sulfide inhibits adenyl cyclase finding additionally that inhibition of adenylyl cyclase does not modify chemoreceptor cell responses elicited by sulfide. We have also observed that transient receptor potential cation channels A1 (TRPA1) are not regulated by sulfide in chemoreceptor cells. PMID:26303462

  10. Hydrogen sulfide as a potent cardiovascular protective agent.

    PubMed

    Yu, Xiao-Hua; Cui, Li-Bao; Wu, Kai; Zheng, Xi-Long; Cayabyab, Francisco S; Chen, Zhi-Wei; Tang, Chao-Ke

    2014-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas with the characteristic smell of rotten eggs. It is synthesized endogenously in mammals from the sulfur-containing amino acid l-cysteine by the action of several distinct enzymes: cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) along with cysteine aminotransferase (CAT). In particular, CSE is considered to be the major H2S-producing enzyme in the cardiovascular system. As the third gasotransmitter next to nitric oxide (NO) and carbon monoxide (CO), H2S plays an important role in the regulation of vasodilation, angiogenesis, inflammation, oxidative stress and apoptosis. Growing evidence has demonstrated that this gas exerts a significant protective effect against the progression of cardiovascular diseases by a number of mechanisms such as vasorelaxation, inhibition of cardiovascular remodeling and resistance to form foam cells. The aim of this review is to provide an overview of the physiological functions of H2S and its protection against several major cardiovascular diseases, and to explore its potential health and therapeutic benefits. A better understanding will help develop novel H2S-based therapeutic interventions for these diseases. PMID:25058799

  11. Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide

    PubMed Central

    Mancardi, Daniele; Penna, Claudia; Merlino, Annalisa; Del Soldato, Piero; Wink, David A.; Pagliaro, Pasquale

    2012-01-01

    Hydrogen sulfide (H2S) has been known for hundreds of years because of its poisoning effect. Once the basal bio-production became evident its pathophysiological role started to be investigated in depth. H2S is a gas that can be formed by the action of two enzymes, cystathionine gamma-lyase and cystathionine beta-synthase, both involved in the metabolism of cysteine. It has several features in common with the other two well known “gasotransmitters” (nitric oxide and carbon monoxide) in the biological systems. These three gasses share some biological targets; however, they also have dissimilarities. For instance, the three gases target heme-proteins and open KATP channels; H2S as NO is an antioxidant, but in contrast to the latter molecule, H2S does not directly form radicals. In the last years H2S has been implicated in several physiological and pathophysiological processes such as long term synaptic potentiation, vasorelaxation, pro- and anti-inflammatory conditions, cardiac inotropism regulation, cardioprotection, and several other physiological mechanisms. We will focus on the biological role of H2S as a molecule able to trigger cell signaling. Our attention will be particularly devoted on the effects in cardiovascular system and in cardioprotection. We will also provide available information on H2S-donating drugs which have so far been tested in order to conjugate the beneficial effect of H2S with other pharmaceutical properties. PMID:19285949

  12. Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex

    PubMed Central

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H.; Xia, Ying

    2012-01-01

    Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H2S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na+ activity using Na+ selective electrodes in mouse cortical slices that H2S donor sodium hydrosulfide (NaHS) increased Na+ influx in a concentration-dependent manner. This effect could be partially blocked by either Na+ channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H2S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na+ influx through Na+ channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na+ currents/influx in normoxia, had no effect on H2S-induced Na+ influx, suggesting that H2S-induced disruption of Na+ homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia. PMID:22474073

  13. [Severe hydrogen sulfide intoxication: a pediatric case of survival].

    PubMed

    Claudet, I; Marcoux, M-O; Karsenty, C; Ritti, J-L; Honorat, R; Lelong-Tissier, M-C

    2012-03-01

    We report a paediatric case of survival following severe hydrogen sulfide (H2S) gas intoxication. A 13-year-old boy was found submerged to the neck in a manure tank. He was hypothermic, unresponsive with bilateral mydriasis, and had poor oxygen saturation. After intubation, he was transferred to the paediatric intensive care unit of a tertiary care children's hospital. He developed acute respiratory distress syndrome (ARDS) requiring high frequency percussive ventilation. Cardiac evaluation was significant for myocardial infarction and left ventricular function impairment. He completely recovered from the respiratory and cardiac failure. Neurological examinations showed abnormal signals on MRI in the semi-oval center and in the frontal cortex. Follow-up detected partial impairment of axonal fibers of the right external popliteal sciatic nerve. Paediatric cases of survival after H2S intoxication have been rarely reported. Such exposures can evolve to severe ARDS and benefit from high frequency percussive ventilation. Hypothermia and other metabolic abnormalities are now better explained thanks to actual knowledge about endogenous H2S function. Lessons learned from paediatric accidents should result in better information about this threat for farmers and families living in houses with septic tanks, reducing the risk to their own and their children's safety. PMID:22305402

  14. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling

    PubMed Central

    Iranon, Nicole N.; Miller, Dana L.

    2012-01-01

    The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O2 (hypoxia) to maintain O2 homeostasis, and consider interactions between hypoxia responses, nutritional status, and H2S signaling. O2 is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O2 available. Animals must sense declining O2 availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H2S) protects against cellular damage and death in hypoxia. These results suggest that H2S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H2S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals. PMID:23233860

  15. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    PubMed Central

    Meng, Guoliang; Zhu, Jinbiao; Xiao, Yujiao; Huang, Zhengrong; Zhang, Yuqing; Tang, Xin; Xie, Liping; Chen, Yu; Shao, Yongfeng; Ferro, Albert; Wang, Rui; Moore, Philip K.; Ji, Yong

    2015-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts. PMID:26078813

  16. Hydrogen Sulfide Activation in Hemeproteins: The Sulfheme Scenario

    PubMed Central

    Ríos-González, Bessie B.; Román-Morales, Elddie M.; Pietri, Ruth; López-Garriga, Juan

    2014-01-01

    Traditionally known as a toxic gas, hydrogen sulfide (H2S) is now recognized as an important biological molecule involved in numerous physiological functions. Like nitric oxide (•NO) and carbon monoxide (CO), H2S is produced endogenously in tissues and cells and can modulate biological processes by acting on target proteins. For example, interaction of H2S with the oxygenated form of human hemoglobin and myoglobin produces a sulfheme protein complex that has been implicated in H2S degradation. The presence of this sulfheme derivative has also been used as a marker for endogenous H2S synthesis and metabolism. Remarkably, human catalases and peroxidases also generate this sulfheme product. In this review, we describe the structural and functional aspects of the sulfheme derivative in these proteins and postulate a generalized mechanism for sulfheme protein formation. We also evaluate the possible physiological function of this complex and highlight the issues that remain to be assessed to determine the role of sulheme proteins in H2S metabolism, detection and physiology. PMID:24513534

  17. Hydrogen Sulfide: A Therapeutic Candidate for Fibrotic Disease?

    PubMed Central

    Song, Kai; Li, Qian; Yin, Xiao-Ya; Lu, Ying; Liu, Chun-Feng; Hu, Li-Fang

    2015-01-01

    Fibrotic diseases including chronic kidney disease, liver cirrhosis, idiopathic pulmonary fibrosis, and chronic disease account for 45% mortality in the developed countries and pose a great threat to the global health. Many great targets and molecules have been reported to be involved in the initiation and/or progression of fibrosis, among which inflammation and oxidative stress are well-recognized modulation targets. Hydrogen sulfide (H2S) is the third gasotransmitter with potent properties in inhibiting inflammation and oxidative stress in various organs. Recent evidence suggests that plasma H2S level is decreased in various animal models of fibrotic diseases and supplement of exogenous H2S is able to ameliorate fibrosis in the kidney, lung, liver, and heart. This leads us to propose that modulation of H2S production may represent a promising therapeutic venue for the treatment of a variety of fibrotic diseases. Here, we summarize and discuss the current data on the role and underlying mechanisms of H2S in fibrosis diseases related to heart, liver, kidney, and other organs. PMID:26078807

  18. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  19. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide.

    PubMed

    Pouokam, Ervice; Althaus, Mike

    2016-01-01

    Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a "gasotransmitter." A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations. PMID:26904165

  20. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide.

    PubMed

    Altaany, Zaid; Moccia, Francesco; Munaron, Luca; Mancardi, Daniele; Wang, Rui

    2014-01-01

    The endothelium is a cellular monolayer that lines the inner surface of blood vessels and plays a central role in the maintenance of cardiovascular homeostasis by controlling platelet aggregation, vascular tone, blood fluidity and fibrinolysis, adhesion and transmigration of inflammatory cells, and angiogenesis. Endothelial dysfunctions are associated with various cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and cardiovascular complications of diabetes. Numerous studies have established the anti-inflammatory, anti-apoptotic, and anti-oxidant effects of hydrogen sulfide (H2S), the latest member to join the gasotransmitter family along with nitric oxide and carbon monoxide, on vascular endothelium. In addition, H2S may prime endothelial cells (ECs) toward angiogenesis and contribute to wound healing, besides to its well-known ability to relax vascular smooth muscle cells (VSMCs), and thereby reducing blood pressure. Finally, H2S may inhibit VSMC proliferation and platelet aggregation. Consistently, a deficit in H2S homeostasis is involved in the pathogenesis of atherosclerosis and of hyperglycaemic endothelial injury. Therefore, the application of H2S-releasing drugs or using gene therapy to increase endogenous H2S level may help restore endothelial function and antagonize the progression of cardiovascular diseases. The present article reviews recent studies on the role of H2S in endothelial homeostasis, under both physiological and pathological conditions, and its putative therapeutic applications. PMID:25005182

  1. Hydrogen sulfide: the third gasotransmitter in biology and medicine.

    PubMed

    Wang, Rui

    2010-05-01

    The last two decades have seen one of the greatest excitements and discoveries in science, gasotransmitters in biology and medicine. Leading the trend by nitric oxide and extending the trudge by carbon monoxide, here comes hydrogen sulfide (H(2)S) who builds up the momentum as the third gasotransmitter. Being produced by different cells and tissues in our body, H(2)S, alone or together with the other two gasotransmitters, regulates an array of physiological processes and plays important roles in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure, to name a few. As a journal dedicated to serve the emergent and challenging field of H(2)S biology and medicine, Antioxidant and Redox Signaling assembles the most recent discoveries and most provoking ideas from leading scientists in H(2)S fields, which were communicated in the First International Conference of H(2)S in Biology and Medicine, and brings them to our readers in two Forum Issues. Through intellectual exchange and intelligent challenge with an open-mind approach, we can reasonably expect that sooner rather than later the exploration of metabolism and function of H(2)S will provide solutions for many of the biological mysteries of life and pave way for the arrival of many more gasotransmitters. PMID:19845469

  2. Endogenous hydrogen sulfide production is essential for dietary restriction benefits.

    PubMed

    Hine, Christopher; Harputlugil, Eylul; Zhang, Yue; Ruckenstuhl, Christoph; Lee, Byung Cheon; Brace, Lear; Longchamp, Alban; Treviño-Villarreal, Jose H; Mejia, Pedro; Ozaki, C Keith; Wang, Rui; Gladyshev, Vadim N; Madeo, Frank; Mair, William B; Mitchell, James R

    2015-01-15

    Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK: PMID:25542313

  3. An inhibitory enzyme electrode for hydrogen sulfide detection.

    PubMed

    poor, Neda Zia Mottalebi; Baniasadi, Ladan; Omidi, Maysam; Amoabediny, Ghasem; Yazdian, Fatemeh; Attar, Hossein; Heydarzadeh, Ali; Zarami, Ashraf Sadat Hatamian; Sheikhha, Mohammad Hassan

    2014-09-01

    An enzymatic biosensing system has been developed to study the capability of ascorbate oxidase (AOx), EC (1.10.3.3), in hydrogen sulfide (H2S) detection, based on the inhibition of AOx activity. The immobilization parameters including glutaraldehyde (GA) concentration and pH were optimized using experimental design. The optimized values of GA concentration and pH were found to be 12.5% (w/w) and 7, respectively, where the enzymatic reaction reached the steady-state level within 55 s. A linear relationship was observed between the decrease in the oxygen concentration and H2S concentration, where H2S concentration is in the range of 1-15 mg/L. Moreover, to investigate the selectivity of the biosensor, a certain H2S concentration (9 mg/L) was used against different ions. The results indicated that Fe(3+) and SO4(-2) ions had no significant (11% error) effect on the H2S detection. The operational stability of the biosensing system was determined in terms of response to H2S concentration, at optimal working conditions. The enzyme electrode could retain 73% of its original sensitivity after this period, which has made it possible for the system to measure H2S with concentrations as low as 0.5 mg/L. PMID:25039053

  4. Biofiltration of hydrogen sulfide by Sulfolobus metallicus at high temperatures.

    PubMed

    Morales, M; Silva, J; Morales, P; Gentina, J C; Aroca, G

    2012-01-01

    Biofiltration of reduced sulfur compounds such as hydrogen sulfide has been mainly applied to emissions at mild temperatures (25 to 35 °C). However, an important number of industrial gaseous emission containing sulfur compounds, from diverse industrial sectors (petroleum refinery, cellulose production, smelting, rendering plants and food industries) are emitted at temperatures over 50 °C. Most of the studies on thermophilic systems report that a higher elimination capacity can be obtained at elevated temperature, allowing the design of smaller equipment for the same loading rate than that required for removing the same load under mesophilic conditions. A biotrickling filter inoculated with Sulfolobus metallicus, which operates at three different residence times, 60, 80 and 120 s, and two different temperatures (45 and 55 °C) for treating H(2)S is reported. The input loads of H(2)S were progressively increased from 0 to 100 gS/m(3). The aim of this study was to determine the capacity and ability of S. metallicus to oxidize H(2)S at high temperatures. The better removal capacity of H(2)S obtained was 37.1 ± 1.7 gS/m(3) h at 55 °C for a residence time of 120 s. The difference of the removal capacity of H(2)S between the two temperatures was 4 g/m(3) h on average of sulfur removal for the different residence times. PMID:22925869

  5. Hydrogen Sulfide as Endothelial Derived Hyperpolarizing Factor Sulfhydrates Potassium Channels

    PubMed Central

    Mustafa, Asif K.; Sikka, Gautam; Gazi, Sadia K.; Steppan, Jochen; Jung, Sung M.; Bhunia, Anil K.; Barodka, Viachaslau M.; Gazi, Farah K.; Barrow, Roxanne K.; Wang, Rui; Amzel, L. Mario; Berkowitz, Dan E.; Snyder, Solomon H.

    2011-01-01

    Rationale Nitric oxide, the classic endothelial derived relaxing factor (EDRF), acts via cyclic GMP and calcium without notably affecting membrane potential. A major component of EDRF activity derives from hyperpolarization and is termed endothelial derived hyperpolarizing factor (EDHF). Hydrogen sulfide (H2S) is a prominent EDRF, since mice lacking its biosynthetic enzyme, cystathionine γ-lyase (CSE), display pronounced hypertension with deficient vasorelaxant responses to acetylcholine. Objective The purpose of this study is to determine if H2S is a major physiologic EDHF. Methods and Results We now show that H2S is a major EDHF, as in blood vessels of CSE deleted mice hyperpolarization is virtually abolished. H2S acts by covalently modifying (sulfhydrating) the ATP-sensitive potassium channel, as mutating the site of sulfhydration prevents H2S-elicited hyperpolarization. The endothelial intermediate conductance (IKCa) and small conductance (SKCa) potassium channels mediate in part the effects of H2S, as selective IKCa and SKCa channel inhibitors, charybdotoxin and apamin, inhibit glibenclamide insensitive H2S induced vasorelaxation. Conclusions H2S is a major EDHF that causes vascular endothelial and smooth muscle cell hyperpolarization and vasorelaxation by activating the ATP-sensitive, intermediate conductance and small conductance potassium channels through cysteine S-sulfhydration. As EDHF activity is a principal determinant of vasorelaxation in numerous vascular beds, drugs influencing H2S biosynthesis offer therapeutic potential. PMID:21980127

  6. Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits

    PubMed Central

    Hine, Christopher; Harputlugil, Eylul; Zhang, Yue; Ruckenstuhl, Christoph; Lee, Byung Cheon; Brace, Lear; Longchamp, Alban; Trevino-Villarreal, Jose H.; Mejia, Pedro; Ozaki, C. Keith; Wang, Rui; Gladyshev, Vadim N.; Madeo, Frank; Mair, William B.; Mitchell, James R.

    2014-01-01

    Summary Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine ?-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a novel mediator of DR benefits with broad implications for clinical translation. PMID:25542313

  7. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide

    PubMed Central

    Pouokam, Ervice; Althaus, Mike

    2016-01-01

    Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a “gasotransmitter.” A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations. PMID:26904165

  8. [Hydrogen sulfide: A promising therapy in neuroprotection following cardiac arrest?].

    PubMed

    Sayouri, H; Boudier, A; Vigneron, C; Leroy, P; Le Tacon, S

    2015-11-01

    Each year, in France, the number of cardiac arrests is evaluated between 30,000 to 50,000. When a patient survives, he undergoes a post-resuscitation syndrome which can aggravate the injuries and for which nowadays, no medication is available. In some kinds of cardiac arrest, a hypothermia protocol can be applied with a need for monitoring because of the appearance of side effects. In this context, hydrogen sulfide, which is a gasotransmitter with numerous physiological and pharmacological properties, may be interesting. Indeed, its use could protect against oxidative, inflammatory and apoptotic troubles induced by the post-resuscitation syndrome. The implied biochemical mechanisms are adenosine triphosphate potassium channels activation and cytochrome c oxidase inhibition. This molecule can also induce a suspended animation state characterized by a metabolism decrease, which could give a delay for physicians to start a therapeutic monitoring. Thus, in spite of a modest and sometimes contradictory literature, this compound could become the first neuroprotective molecule in cardiac arrest. PMID:26033567

  9. Fatal accidental hydrogen sulfide poisoning: a domestic case.

    PubMed

    Sastre, Caroline; Baillif-Couniou, Valrie; Kintz, Pascal; Cirimele, Vincent; Bartoli, Christophe; Christia-Lotter, Marie-Amandine; Piercecchi-Marti, Marie-Dominique; Leonetti, Georges; Pelissier-Alicot, Anne-Laure

    2013-01-01

    Hydrogen sulfide (H(2)S) poisonings are classically reported in occupational settings. We describe an unusual domestic case of fatal acute poisoning by H(2)S inhalation. A mother and her infant daughter were found dead in the kitchen of their home. The emergency medical team described a strong smell of rotten eggs, suggesting acute H(2)S poisoning. Autopsies revealed only multiorgan congestion. H(2) S was measured in blood and lung tissue samples by gas chromatography/mass spectrometry. Body fluids were negative, but H(2) S was found in the lungs of both the mother and the child at concentrations of 1.46 and 1.92 mg/kg, respectively, concentrations described in the literature as potentially lethal. Expert surveys of the premises suggested a complex mechanism involving both defective maintenance of the pipes and drains of the building and faulty assembly of the sink siphon, which led to stagnation of waste water and formation of a pocket of H(2)S. PMID:23126240

  10. Geothermal hydrogen sulfide and health in Rotorua, New Zealand

    SciTech Connect

    Siegel, S.M.; Siegel, B.Z.

    1984-02-15

    Rotorua, New Zealand, lies inside a volcanic caldera. Natural steam is extensively used for space and water heating, and electric power generation. This report presents results of a preliminary reconnaissance survey of atmospheric H/sub 2/S levels in the area and attempts to relate these levels to health statistics in the region. 5 refs., 8 tabs. (ACR)

  11. Hydrogen sulfide gas emission under turbulent conditions - an experimental approach for free-fall drops.

    PubMed

    Matias, N M; Matos, J S; Ferreira, F

    2014-01-01

    Odor nuisance and sulfide corrosion in sewers carrying septic wastewater are accelerated at points of turbulence such as drops in manholes, but accurate methods or empirical expressions to evaluate the gas stripping rate at those particular sites are still missing. With the aim of improving the current knowledge on the influence of free-fall drops on the release of hydrogen sulfide gas, an experimental set-up was built allowing different free-fall drops heights and flows. Three types of experiments were carried out: reaeration tests without sulfide; sulfide oxidation tests; and hydrogen sulfide release tests. With the increase of the free-fall drop height or of the flow, a higher rate of air-to-water mass oxygen transfer was observed. Results regarding sulfide oxidation tests with reaeration through the free-fall have shown that the oxidation rate was correlated with flow. In the hydrogen sulfide release tests, the maximum concentration in the atmosphere reached 500 ppm. Results also showed that increasing the flow rate decreased the time at which the maximum concentrations in the atmosphere were observed. PMID:24473293

  12. Sensory and Cognitive Effects of Acute Exposure to Hydrogen Sulfide

    PubMed Central

    Fiedler, Nancy; Kipen, Howard; Ohman-Strickland, Pamela; Zhang, Junfeng; Weisel, Clifford; Laumbach, Robert; Kelly-McNeil, Kathie; Olejeme, Kelechi; Lioy, Paul

    2008-01-01

    Background Some epidemiologic studies have reported compromised cognitive and sensory performance among individuals exposed to low concentrations of hydrogen sulfide (H2S). Objectives We hypothesized a dose–response increase in symptom severity and reduction in sensory and cognitive performance in response to controlled H2S exposures. Methods In separate exposure sessions administered in random order over three consecutive weeks, 74 healthy subjects [35 females, 39 males; mean age (± SD) = 24.7 ± 4.2; mean years of education = 16.5 ± 2.4], were exposed to 0.05, 0.5, and 5 ppm H2S. During each exposure session, subjects completed ratings and tests before H2S exposure (baseline) and during the final hour of the 2-hr exposure period. Results Dose–response reduction in air quality and increases in ratings of odor intensity, irritation, and unpleasantness were observed. Total symptom severity was not significantly elevated across any exposure condition, but anxiety symptoms were significantly greater in the 5-ppm than in the 0.05-ppm condition. No dose–response effect was observed for sensory or cognitive measures. Verbal learning was compromised during each exposure condition. Conclusions Although some symptoms increased with exposure, the magnitude of these changes was relatively minor. Increased anxiety was significantly related to ratings of irritation due to odor. Whether the effect on verbal learning represents a threshold effect of H2S or an effect due to fatigue across exposure requires further investigation. These acute effects in a healthy sample cannot be directly generalized to communities where individuals have other health conditions and concomitant exposures. PMID:18197303

  13. Role of hydrogen sulfide in skeletal muscle biology and metabolism

    PubMed Central

    Veeranki, Sudhakar; Tyagi, Suresh C.

    2014-01-01

    Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmittor). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H+ ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions. PMID:25461301

  14. Hydrogen sulfide improves neural function in rats following cardiopulmonary resuscitation

    PubMed Central

    LIN, JI-YAN; ZHANG, MIN-WEI; WANG, JIN-GAO; LI, HUI; WEI, HONG-YAN; LIU, RONG; DAI, GANG; LIAO, XIAO-XING

    2016-01-01

    The alleviation of brain injury is a key issue following cardiopulmonary resuscitation (CPR). Hydrogen sulfide (H2S) is hypothesized to be involved in the pathophysiological process of ischemia-reperfusion injury, and exerts a protective effect on neurons. The aim of the present study was to investigate the effects of H2S on neural functions following cardiac arrest (CA) in rats. A total of 60 rats were allocated at random into three groups. CA was induced to establish the model and CPR was performed after 6 min. Subsequently, sodium hydrosulfide (NaHS), hydroxylamine or saline was administered to the rats. Serum levels of H2S, neuron-specific enolase (NSE) and S100β were determined following CPR. In addition, neurological deficit scoring (NDS), the beam walking test (BWT), prehensile traction test and Morris water maze experiment were conducted. Neuronal apoptosis rates were detected in the hippocampal region following sacrifice. After CPR, as the H2S levels increased or decreased, the serum NSE and S100β concentrations decreased or increased, respectively (P<0.0w. The NDS results of the NaHS group were improved compared with those of the hydroxylamine group at 24 h after CPR (P<0.05). In the Morris water maze experiment, BWT and prehensile traction test the animals in the NaHS group performed best and rats in the hydroxylamine group performed worst. At day 7, the apoptotic index and the expression of caspase-3 were reduced in the hippocampal CA1 region, while the expression of Bcl-2 increased in the NaHS group; and results of the hydroxylamine group were in contrast. Therefore, the results of the present study indicate that H2S is able to improve neural function in rats following CPR. PMID:26893650

  15. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis.

    PubMed

    Xu, Suowen; Liu, Zhiping; Liu, Peiqing

    2014-03-15

    Physiological concentrations of nitric oxide (NO) and carbon monoxide (CO) have multiple protective effects in the cardiovascular system. Recent studies have implicated hydrogen sulfide (H2S) as a new member of vasculoprotective gasotransmitter family, behaving similarly to NO and CO. H2S has been demonstrated to inhibit multiple key aspects of atherosclerosis, including atherogenic modification of LDL, monocytes adhesion to the endothelial cells, macrophage-derived foam cell formation and inflammation, smooth muscle cell proliferation, neointimal hyperplasia, vascular calcification, and thrombogenesis. H2S also decreases plasma homocysteine levels in experimental animal models. In the human body, H2S production is predominantly catalyzed by cystathionine-β-synthase (CBS) and cystathionine γ-lyase (CSE). CSE is the primary H2S-producing enzyme in the vasculature. Growing evidence suggests that atherosclerosis is associated with vascular CSE/H2S deficiency and that H2S supplementation by exogenous H2S donors (such as NaHS and GYY4137) attenuates, and H2S synthesis suppression by inhibitors (such as D, L-propargylglycine) aggravates the development of atherosclerotic plaques. However, it remains elusive whether CSE deficiency plays a causative role in atherosclerosis. A recent study (Circulation. 2013; 127: 2523-2534) demonstrates that decreased endogenous H2S production by CSE genetic deletion accelerates atherosclerosis in athero-prone ApoE-/- mice, pinpointing that endogenously produced H2S by CSE activation may be of benefit in the prevention and treatment of atherosclerosis. This study will facilitate the development of H2S-based pharmaceuticals with therapeutic applications in atherosclerosis-related cardiovascular diseases. PMID:24491853

  16. MET2 affects production of hydrogen sulfide during wine fermentation.

    PubMed

    Huang, Chien; Roncoroni, Miguel; Gardner, Richard C

    2014-08-01

    The production of hydrogen sulfide (H2S) during yeast fermentation contributes negatively to wine aroma. We have mapped naturally occurring mutations in commercial wine strains that affect production of H2S. A dominant R310G mutant allele of MET2, which encodes homoserine O-acetyltransferase, is present in several wine yeast strains as well as in the main lab strain S288c. Reciprocal hemizygosity and allele swap experiments demonstrated that the MET2 R310G allele confers reduced H2S production. Mutations were also identified in genes encoding the two subunits of sulfite reductase, MET5 and MET10, which were associated with reduced H2S production. The most severe of these, an allele of MET10, showed five additional phenotypes: reduced growth rate on sulfate, elevated secretion of sulfite, and reduced production in wine of three volatile sulfur compounds: methionol, carbon disulfide and methylthioacetate. Alleles of MET5 and MET10, but not MET2, affected H2S production measured by colour assays on BiGGY indicator agar, but MET2 effects were seen when bismuth was added to agar plates made with Sauvignon blanc grape juice. Collectively, the data are consistent with the hypothesis that H2S production during wine fermentation results predominantly from enzyme activity in the sulfur assimilation pathway. Lower H2S production results from mutations that reduce the activity of sulfite reductase, the enzyme that produces H2S, or that increase the activity of L-homoserine-O-acetyltransferase, which produces substrate for the next step in the sulfur assimilation pathway. PMID:24841117

  17. Role of hydrogen sulfide in skeletal muscle biology and metabolism.

    PubMed

    Veeranki, Sudhakar; Tyagi, Suresh C

    2015-04-30

    Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmitter). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H(+) ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions. PMID:25461301

  18. Hydrogen sulfide is an endogenous stimulator of angiogenesis.

    PubMed

    Papapetropoulos, Andreas; Pyriochou, Anastasia; Altaany, Zaid; Yang, Guangdong; Marazioti, Antonia; Zhou, Zongmin; Jeschke, Mark G; Branski, Ludwik K; Herndon, David N; Wang, Rui; Szab, Csaba

    2009-12-22

    The goal of the current study was to investigate the role of exogenous and endogenous hydrogen sulfide (H(2)S) on neovascularization and wound healing in vitro and in vivo. Incubation of endothelial cells (ECs) with H(2)S enhanced their angiogenic potential, evidenced by accelerated cell growth, migration, and capillary morphogenesis on Matrigel. Treatment of chicken chorioallantoic membranes (CAMS) with H(2)S increased vascular length. Exposure of ECs to H(2)S resulted in increased phosphorylation of Akt, ERK, and p38. The K(ATP) channel blocker glibenclamide or the p38 inhibitor SB203580 abolished H(2)S-induced EC motility. Since glibenclamide inhibited H(2)S-triggered p38 phosphorylation, we propose that K(ATP) channels lay upstream of p38 in this process. When CAMs were treated with H(2)S biosynthesis inhibitors dl-propylargylglycine or beta-cyano-L-alanine, a reduction in vessel length and branching was observed, indicating that H(2)S serves as an endogenous stimulator of the angiogenic response. Stimulation of ECs with vascular endothelial growth factor (VEGF) increased H(2)S release, while pharmacological inhibition of H(2)S production or K(ATP) channels or silencing of cystathionine gamma-lyase (CSE) attenuated VEGF signaling and migration of ECs. These results implicate endothelial H(2)S synthesis in the pro-angiogenic action of VEGF. Aortic rings isolated from CSE knockout mice exhibited markedly reduced microvessel formation in response to VEGF when compared to wild-type littermates. Finally, in vivo, topical administration of H(2)S enhanced wound healing in a rat model, while wound healing was delayed in CSE(-/-) mice. We conclude that endogenous and exogenous H(2)S stimulates EC-related angiogenic properties through a K(ATP) channel/MAPK pathway. PMID:19955410

  19. Ammonium tetrathiomolybdate as a water-soluble and slow-release hydrogen sulfide donor.

    PubMed

    Xu, Shi; Yang, Chun-Tao; Meng, Fu-Hui; Pacheco, Armando; Chen, Li; Xian, Ming

    2016-03-15

    Ammonium tetrathiomolybdate (TTM) was found to be a slow hydrogen sulfide (H2S) releasing agent. Its H2S generation capability in aqueous solutions was confirmed by UV-vis and fluorescence assays. TTM also showed H2S-like cytoprotective effects in hydrogen peroxide (H2O2)-induced oxidative damage in HaCaT cells. PMID:26898812

  20. Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection

    NASA Astrophysics Data System (ADS)

    Mukamal, Harold; Cordero, Steven R.; Ruiz, David; Beshay, Manal; Lieberman, Robert A.

    2005-11-01

    Fiber optic sensors having their entire length as the sensing elements for chlorine or hydrogen sulfide are reported here. The chlorine fiber consists of a silica core and a chlorine-sensitive cladding, and the hydrogen sulfide fiber has a hydrogen sulfide sensitive cladding. Upon exposure to the corresponding challenge gas, the cladding very rapidly changes color resulting in attenuation of the light throughput of the fiber. A one-meter portion of the chlorine sensor fiber responds to 10 ppm chlorine in 20 seconds and to 1 ppm in several minutes. The attenuation after 10 minutes of exposure is very high, and is dependant on both chlorine concentration and fiber length. A ten-meter portion of the hydrogen sulfide sensor fiber responds to 100 ppm hydrogen sulfide in 30 seconds and to 10 ppm in 1 minute. The high sensitivity suggests that the propagating modes of the light interact strongly with the cladding, and that these interactions are massively increased (Beers Law) due to the extended sensor length. This approach will supersede the current method of having a collection of point-detectors to cover large areas.

  1. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  2. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency. PMID:16469434

  3. Methanol and hydrogen sulfide in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Eberhardt, P.; Meier, R.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    The Neutral Mass Spectrometer on the Giotto spacecraft measured the gas and ion composition in the coma of comet P/Halley. A detailed model of the ion chemistry inside the contact surface located at 4660 km is used to interpret the measured ion desnity profiles in the 32 to 35 amu/e mass range. The masses 33 and 35 amu/e are dominated by the protonated methanol and hydrogen sulfide ions CH3OH2(+) and H3S(+). Both profiles are essentially compatible with CH3OH and H2S originating from the nucleus only. The production rates relative to water are Y(CH3OH) = Q(CH3OH)/Q(H2O) = 1.7% and Y(H2S) = 0.41%. Our Y(CH3OH) agrees well with a determination from IR spectra obtained about 6 weeks after the Giotto encounter with P/Halley. In 7 other comets IR and microwave observations give Y(CH3OH) values between about 0.7 and 6%, indicating that the methanol abundance shows a strong variability from comet to comet. In three other comets Y(H2S) values between 0.2 and 0.5% have been reported. In addition to H2S(+), only ions containing minor isotopes of H, C, O and S contribute to mass 34 amu/e (e.g. (34)S(+), (13)CH3OH2(+), CH4DO(+)). These contributions can be calculated from the measured densities of the ions containing the major isotopes and the H2S(+) contribution from the measured H3S(+) density. From mass 34 amu/e we can also derive an upper limit of 1% for the abundance of deuterated methanol. This limit is at most marginally compatible with a direct interstellar origin of the CH3OH in P/Halley as the measured interstellar abundance of deuterated methanol is 1 to 6%.

  4. Process for purifying geothermal steam

    DOEpatents

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  5. Process for purifying geothermal steam

    DOEpatents

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  6. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco.

    PubMed

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild; Nielsen, Asbjørn Haaning

    2015-11-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit with some uncertainty. It was concluded that the model could be applied for the purpose in mind. PMID:26564586

  7. PRELIMINARY COST ESTIMATES OF POLLUTION CONTROL TECHNOLOGIES FOR GEOTHERMAL DEVELOPMENTS

    EPA Science Inventory

    This report provides preliminary cost estimates of air and water pollution control technologies for geothermal energy conversion facilities. Costs for solid waste disposal are also estimated. The technologies examined include those for control of hydrogen sulfide emissions and fo...

  8. Importance of Hydrogen Sulfide, Thiosulfate, and Methylmercaptan for Growth of Thiobacilli during Simulation of Concrete Corrosion

    PubMed Central

    Sand, Wolfgang

    1987-01-01

    Biogenic sulfuric acid corrosion of concrete surfaces caused by thiobacilli was reproduced in simulation experiments. At 9 months after inoculation with thiobacilli, concrete blocks were severely corroded. The sulfur compounds hydrogen sulfide, thiosulfate, and methylmercaptan were tested for their corrosive action. With hydrogen sulfide, severe corrosion was noted. The flora was dominated by Thiobacillus thiooxidans. Thiosulfate led to medium corrosion and a dominance of Thiobacillus neapolitanus and Thiobacillus intermedius. Methylmercaptan resulted in negligible corrosion. A flora of heterotrophs and fungi grew on the blocks. This result implies that methylmercaptan cannot be degraded by thiobacilli. PMID:16347391

  9. [The toxic complications of hydrogen sulfide-based balneotherapy in the spa and health resort practice].

    PubMed

    Khodasevich, L S

    2015-01-01

    The present literature review was designed to consider the toxic complications of hydrogen sulfide-based balneotherapy encountered in the spa and health resort practice that should actually be regarded as hydrogen sulfide intoxication taking into consideration that their severity depends on the route through which the toxicant enters the body, its concentration in the therapeutic bath, and the overall duration of balneotherapy. Although such complications rarely occur in everyday practice, they may constitute a threat to the patient's health which implies the necessity of adequate measures for their prevention. PMID:26852506

  10. Associations of Ambient Hydrogen Sulfide Exposure with Self-Reported Asthma and Asthma Symptoms

    PubMed Central

    Bates, Michael N; Garrett, Nick; Crane, Julian; Balmes, John

    2013-01-01

    Background Whether long-term, low-level hydrogen sulfide (H2S) gas is a cause of health effects, including asthma, is uncertain. Rotorua city, New Zealand, has the largest population exposed, from geothermal sources, to relatively high ambient levels of H2S. In a cross-sectional study, the authors investigated associations with asthma in this population. Methods A total of 1,637 adults, aged 18-65 years, were enrolled during 2008-2010. Residences and workplaces were geocoded. H2S exposures at homes and workplaces were estimated using city-wide networks of passive H2S samplers and kriging to create exposure surfaces. Exposure metrics were based on (1) time-weighted exposures at home and work; and (2) the maximum exposure (home or work). Exposure estimates were entered as quartiles into log-binomial regression models, with covariate data. Results Neither exposure metric showed evidence of increased asthma risk from H2S. However, some suggestion of exposure-related reduced risks for diagnosed asthma and asthma symptoms, particularly wheezing during the last 12 months, emerged. With the maximum exposure metric, the prevalence ratio for wheeze in the highest exposure quartile was 0.80 (0.65, 0.99) and, for current asthma treatment, 0.75 (0.52, 1.08). There was no evidence that this was caused by a “survivor effect”. Conclusions The study provided no evidence that asthma risk increases with H2S exposure. Suggestions of a reduced risk in the higher exposure areas are consistent with recent evidence that H2S has signaling functions in the body, including induction of smooth muscle relaxation and reduction of inflammation. Study limitations, including possible confounding, preclude definitive conclusions. PMID:23453847

  11. Effect of chemical reactions on the rate of hydrogen sulfide absorption in a drop of aqueous solution of sodium hydroxide

    SciTech Connect

    Aniskin, S.V.; Protod`yakonov, I.O.; Bessonov, N.M.

    1995-10-10

    The problem of gas treatment to remove hydrogen sulfide is currently one of the central problems of the chemical, petrochemical, pulp and paper, and other industries. The expression for determining the coefficient of acceleration of hydrogen sulfide absorption by a drop of sodium hydroxide solution through chemical reactions has been obtained.

  12. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications.

    PubMed

    Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Zhou, Kai; Liu, Keyin; Xu, Gaoping; Lin, Weiying

    2016-05-11

    By blocking the intramolecular twisted internal charge transfer (TICT) process, we designed and sythesized the first TICT-based fluorescent probe for hydrogen sulfide. The new probe exhibits high selectivity, good membrane-permeability and is suitable for visualization of exogenous and endogenous hydrogen sulfide in living cells. PMID:27090853

  13. Hydrogen sulfide selectivity with carbonyl sulfide removal to less than PPM levels

    SciTech Connect

    Bacon, T.R.; Pearce, R.L.; Foster, W.R. Jr.

    1986-01-01

    Changes in market conditions and plant operating economics require examination of traditional processes and operating practices in gas treating applications for upgrading to more stringent standards of efficiency in order to remain competitive while returning a satisfactory operating profit margin to the company. Anticipated reduction in solvent usage, improvements in Claus sulfur recovery unit performance and lower energy costs induced Ashland's Catlettsburg refinery to convert its entire sulfur removal system from monoethanolamine to methyldiethanolamine. One of the seven product streams being treated required extremely low carbonyl sulfide specifications. When the initial converted operations evidenced a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation which still achieved these objectives.

  14. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor.

    PubMed

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5. PMID:25147857

  15. The anodic behavior of iron in hydrogen sulfide solutions

    SciTech Connect

    Pound, B.G. ); Wright, G.A.; Sharp, R.M. . Dept. of Chemistry)

    1989-05-01

    The anodic behavior of iron in 0.032 mol . L/sup -1/ NaCl/0.003 mol . L/sup -1/ NaHCO/sub 3/ and 1 mol . L/sup -1/ Na/sub 2/SO/sub 4//0.003 mol . L/sup -1/ NaHCO/sub 3/ solutions containing 0.05 mol . L/sup -1/ H/sub 2/S at ambient temperature was studied using cyclic voltammetry and the potentiostatic technique. In both solutions, a nonprotective film of mackinawite (Fe/sub 1+chi/S) was formed on the iron, but the film growth kinetics differ for the two solutions. The film growth in chloride solutions does not appear to follow a conventional type of model for multilayer fils whereas the formation of the film in sulfate solutions can be represented in terms of a pre-resistance model. At more anodic potentials, the mackinawite is oxidized to a higher sulfide, possibly pyrite (FeS/sub 2/), as suggested from a comparison of the anodic and cathodic peak potentials with the equilibrium potential. The formation of the higher sulfide(s) in the chloride solution appears to follow a similar film growth mechanism to that for mackinawite, whereas it is not clear whether this is the case for the sulfate solution.

  16. Hydrogen sulfide oxidation and the arterial chemoreflex: effect of methemoglobin.

    PubMed

    Haouzi, Philippe; Bell, Harold; Philmon, Maeve

    2011-08-15

    Endogenous H(2)S has been proposed to transduce the effects of hypoxia in the carotid bodies (CB). To test this hypothesis, we created a sink for endogenously produced H(2)S by inducing ∼10% methemoglobinemia via the injection of 250 mg of sodium nitrite in spontaneously breathing anaesthetized sheep. Methemoglobinemia has been shown to catalyze the oxidation of large quantities of sulfide in the blood and tissues. We found that the presence of metHb completely abolished the ventilatory stimulation induced by 10 mg NaHS (i.v.), which in control conditions mimicked the effects of breathing 6-7 tidal volumes of nitrogen, confirming the dramatic increase in the oxidative power of the blood for sulfide. The ventilatory responses to hypoxia (10% O(2)), nitrogen and hyperoxia were in no way depressed by the metHb. Our results demonstrate that the ventilatory chemoreflex is not depressed in the presence of a high oxidative capacity for sulfide and challenge the view that H(2)S transduces the effects of hypoxia in the CB. PMID:21569867

  17. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser

    EPA Science Inventory

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  18. VERIFICATION OF AMBIENT MONITORING TECHNOLOGIES FOR AMMONIA AND HYDROGEN SULFIDE AT ANIMAL FEEDING OPERATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of two hydrogen sulfide and seven ambient ammonia monitoring technologies was recently verified by the U.S. EPA ETV Program’s AMS Center. The nine technologies verified by the AMS Center could be used to enhance the scientific understanding of the environmental effects that emissions...

  19. Removal of ammonia and hydrogen sulfide using biochar produced from pyrolyzing animal manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. The emission of these gases can be substantially reduced using adsorption filters filled with biochar produced from pyrolysis of livestock residuals such as c...

  20. Presumed Hydrogen Sulfide-Mediated Neurotoxicity Following Streptococcus Anginosus Group Meningitis

    PubMed Central

    Verma, Sumit; Landisch, Rachel; Quirk, Brendan; Schmainda, Kathleen; Prah, Melissa; Whelan, Harry T.; Willoughby, Rodney E.

    2012-01-01

    Hydrogen sulfide (H2S) is an environmental toxicant and gaseous neurotransmitter. It is produced enterically by sulfur-reducing bacteria and invasive pathogens including Streptococcus anginosus group, Salmonella and Citrobacter. We describe putative focal H2S neurotoxicity following S. constellatus meningitis, treated with adjunctive sodium nitrite and hyperbaric oxygen therapy. PMID:23014355

  1. Kinetics and mechanism of the reaction of hydrogen sulfide with diaquacobinamide in aqueous solution

    PubMed Central

    Salnikov, Denis S.; Makarov, Sergei V.; van Eldik, Rudi; Kucherenko, Polina N.; Boss, Gerry R.

    2014-01-01

    We conducted a detailed kinetic study of the reaction of the vitamin B12 analog diaquacobinamide ((H2O)2Cbi(III)) with hydrogen sulfide in water from pH 3 to 11. The reaction proceeds in three steps: (i) formation of three different complexes between cobinamide and hydrogen sulfide, viz. (HO−)(HS−)Cbi(III), (H2O)(HS−)Cbi(III), and (HS−)2Cbi(III); (ii) inner-sphere electron transfer (ISET) in the two complexes with one coordinated HS− to form the reduced cobinamide complex [(H)S]Cbi(II); and (iii) addition of a second molecule of hydrogen sulfide to the reduced cobinamide. ISET does not proceed in the (HS−)2Cbi(III) complex. The final products of the reaction between cobinamide and hydrogen sulfide were found to be independent of pH, with the main product being a complex of cobinamide(II) with the anion-radical SSH2−. PMID:25580081

  2. VERIFICATION OF AMBIENT MONITORING TECHNOLOGIES FOR AMMONIA AND HYDROGEN SULFIDE AT ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    The increasing concentration of livestock agriculture into animal feeding operations (AFOs) has raised concerns about the environmental and potential health impact of the emissions from AFOs into the atmosphere. Gaseous ammonia (NH3) and hydrogen sulfide (H2...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: HORIBA INSTRUMENTS,INC., APSA-360 AMBIENT HYDROGEN SULFIDE ANALYZER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this verification test was to evaluate the APSA-360s performance in measuring gaseous hydrogen sulfide (H2S) in ambient air at an animal feeding operation (AFO). The verification test was conducted between April 25 and June 3, 2005, at a swine finishing farm near Ames, Iowa; the AP...

  4. A near-infrared fluorescence dye for sensitive detection of hydrogen sulfide in serum.

    PubMed

    Wu, Xuanjun; Shi, Jiaqi; Yang, Liu; Han, Jiahuai; Han, Shoufa

    2014-01-01

    Cy-Cl, a cationic near-infrared cyanine dye, readily reacts with hydrogen sulfide (H2S) via nucleophilic thiolation to give dose-dependent 'turn-off' fluorescence and colorimetric read-out, allowing selective detection of low levels of H2S in serum and imaging of mitochondrial H2S in living cells. PMID:24295788

  5. Creation of active sites by impregnation of carbon fibers: application to the fixation of hydrogen sulfide.

    PubMed

    Meljac, Laure; Perier-Camby, Laurent; Thomas, Gérard

    2004-06-01

    Activated carbon fibers, which exhibit high specific area and numerous active surface sites, constitute very powerful adsorbents and are widely used in filtration to eliminate pollutants from liquid or gaseous effluents. The fibers studied in this work are devoted to the filtration of gaseous effluent containing very small amounts (few vpm) of hydrogen sulfide. Preliminary experiments evidenced that these fibers weakly adsorb hydrogen sulfide. To improve their fixation capacity toward H(2)S the activated fibers are impregnated in an aqueous solution of potassium hydroxide. The impregnation treatment usually takes place before activation but in this work it occurs at room temperature after activation of the fibers. A further thermal treatment is performed to increase the efficiency of the system. The overall treatment leads to the creation of basic sites showing a great activity for H(2)S gas in the presence of water vapor. The mechanism has been established by a series of characterizations before, during, and after the different operation units. The KOH deposited after impregnation is carbonated into KHCO(3) at room temperature and then decomposed into K(2)CO(3) during the thermal treatment. K(2)CO(3) and H(2)S dissolve in a liquid aqueous solution formed on the fiber surface. Then carbonate ions and H(2)S molecules react together almost completely to yield HS(-) species. As a consequence the sorption capacities of hydrogen sulfide on the impregnated fibers are much higher, even for small hydrogen sulfide volume fractions. PMID:15120288

  6. Genetically Anchored Fluorescent Probes for Subcellular Specific Imaging of Hydrogen Sulfide

    PubMed Central

    Jiang, Xiqian; Sizovs, Antons; Wang, Meng C.; Provost, Christopher R.; Huang, Jia

    2016-01-01

    Imaging hydrogen sulfide (H2S) at the subcellular resolution will greatly improve the understanding of functions of this signaling molecule. Taking advantage of the protein labeling technologies, we report a general strategy for the development of organelle specific H2S probes, which enables sub-cellular H2S imaging essentially in any organelles of interest. PMID:26806071

  7. Hydrogen sulfide corrosion in waste-water collection and treatment systems. Report to Congress

    SciTech Connect

    Not Available

    1991-09-01

    The report to Congress describes the corrosive effects of hydrogen sulfide in Wastewater Collection and Treatment Systems. The extent to which uniform imposition of Categorical pretreatment standards excerbates the corrosion problem and the range of available options to deal with such effects.

  8. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propen-1-ol, reaction products...

  9. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propen-1-ol, reaction products...

  10. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  11. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...

  12. Hydrogen sulfide and nonmethane hydrocarbon emissions from broiler houses in the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen sulfide (H2S) and nonmethane hydrocarbon (NMHC) emissions from two mechanically ventilated commercial broiler houses located in the Southeastern United States were continuously monitored over 12 flocks during the one-year period of 2006-2007 as a joint effort between Iowa State University a...

  13. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... a document on August 22, 1994 (59 FR 43048) imposing stays on the reporting requirements for... Register of October 17, 2011 (76 FR 64022) should have lifted the Administrative Stay of the reporting... required by 1 CFR 21.1, regarding the lifted stay of hydrogen sulfide reporting requirements. In FR...

  14. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121

  15. Cystathionine β-synthase-derived hydrogen sulfide is involved in human malignant hyperthermia.

    PubMed

    Vellecco, Valentina; Mancini, Antonio; Ianaro, Angela; Calderone, Vincenzo; Attanasio, Chiara; Cantalupo, Anna; Andria, Barbara; Savoia, Gennaro; Panza, Elisabetta; Di Martino, Antonietta; Cirino, Giuseppe; Bucci, Mariarosaria

    2016-01-01

    Hydrogen sulfide is an endogenous gasotransmitter and its mechanism of action involves activation of ATP-sensitive K(+) channels and phosphodiesterase inhibition. As both mechanisms are potentially involved in malignant hyperthermia (MH), in the present study we addressed the involvement of the L-cysteine/hydrogen sulfide pathway in MH. Skeletal muscle biopsies obtained from 25 MH-susceptible (MHS) and 56 MH-negative (MHN) individuals have been used to perform the in vitro contracture test (IVCT). Quantitative real-time PCR (qPCR) and Western blotting studies have also been performed. Hydrogen sulfide levels are measured in both tissue samples and plasma. In MHS biopsies an increase in cystathionine β-synthase (CBS) occurs, as both mRNA and protein expression compared with MHN biopsies. Hydrogen sulfide biosynthesis is increased in MHS biopsies (0.128±0.12 compared with 0.943±0.13 nmol/mg of protein per min for MHN and MHS biopsies, respectively; P<0.01). Addition of sodium hydrosulfide (NaHS) to MHS samples evokes a response similar, in the IVCT, to that elicited by either caffeine or halothane. Incubation of MHN biopsies with NaHS, before caffeine or halothane challenge, switches an MHN to an MHS response. In conclusion we demonstrate the involvement of the L-cysteine/hydrogen sulfide pathway in MH, giving new insight into MH molecular mechanisms. This finding has potential implications for clinical care and could help to define less invasive diagnostic procedures. PMID:26460077

  16. Use of AERMOD to determine a hydrogen sulfide emission factor for swine operations by inverse modeling

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Patrick T.; Altmaier, Ralph

    2011-09-01

    This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 μg m -2 s -1 was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10 -7 μg yr -1 m -2 kg -1 was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1 M kg), concentrations within 0.5 km from the CAFO exceeded 25 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels.

  17. Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling

    PubMed Central

    O’Shaughnessy, Patrick T.; Altmaier, Ralph

    2011-01-01

    This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 µg/m2-s was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10−7 µg/yr-m2-kg was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1M kg), concentrations 0.5 km from the CAFO were 35 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels. PMID:21804761

  18. Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling.

    PubMed

    O'Shaughnessy, Patrick T; Altmaier, Ralph

    2011-08-01

    This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 µg/m(2)-s was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10(-7) µg/yr-m(2)-kg was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1M kg), concentrations 0.5 km from the CAFO were 35 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels. PMID:21804761

  19. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum.

    PubMed

    Jayaranjan, Madawala Liyanage Duminda; Annachhatre, Ajit P

    2013-01-01

    Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H(2)S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation. PMID:23168629

  20. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling.

    PubMed

    Olson, Kenneth R; Straub, Karl D

    2016-01-01

    The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼ 600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling. PMID:26674552

  1. H25*HOH or H2O*HSH, which is more stable in the water-hydrogen sulfide complex?

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Bo; Tao, Fu-Ming; Pan, Yuh-Kang

    1994-12-01

    High-level ab initio calculations are carried out to study the relative stability of the two hydrogen bonded structures of water-hydrogen sulfide complex, one with water as the proton donor (A) and the other with hydrogen sulfide as the proton donor (B). The results show that structure A is considerably more stable than B at the correlated level, which is in contrast with previous results obtained from Hartree-Fock calculations.

  2. Electrochemical polishing of hydrogen sulfide from coal synthesis gas

    SciTech Connect

    Gleason, E.F.; Winnick, J.

    1995-11-01

    An advanced process has been developed for the separation of H{sub 2}S from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. H{sub 2}S is removed from the syn-gas by reduction to the sulfide ion and H at the cathode. The sulfide ion migrates to the anode through a molten salt electrolyte suspended in an inert ceramic matrix. Once at the anode it is oxidized to elemental sulfur and swept away for condensation in an inert gas stream. The syn-gas is enriched with the H{sub 2}. Order-of-magnitude reductions in H{sub 2}S have been repeatably recorded (100 ppm to 10 ppm H{sub 2}S) on a single pass through the cell. This process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. Since there are no absorbents used, there is no absorption/regeneration step as with conventional technology. Elemental sulfur is produced as a by-product directly, so there is no need for a Claus process for sulfur recovery. This makes the process economically attractive since it is much less equipment intensive than conventional technology.

  3. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  4. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park.

    PubMed

    Macur, R E; Jay, Z J; Taylor, W P; Kozubal, M A; Kocar, B D; Inskeep, W P

    2013-01-01

    Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments. PMID:23231658

  5. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  6. Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor

    PubMed Central

    Abdel-Monaem Zytoon, Mohamed; Ahmad AlZahrani, Abdulraheem; Hamed Noweir, Madbuli; Ahmed El-Marakby, Fadia

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m−3 h−1 were achieved in the airlift bioreactor under investigation at a pH range 6.5–8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0–8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8–8.5. PMID:25147857

  7. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. sulfide and silver sulfide corrosion compared to non-complaint homes (Cu(2)S: 476 vs. <32 Å/30 d, p<0.01; Ag(2)S: 1472 vs. 389 Å/30 d, p<0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006-2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with 'Chinese Drywall' in 2006-2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. PMID:22525559

  8. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Dahle, S.

    2015-10-01

    The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  9. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect

    Schwartz, Viviane; Baskova, Svetlana; Armstrong, Timothy R.

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  10. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, Ranjani V. (Morgantown, WV)

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  11. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    DOEpatents

    Siriwardane, Ranjani V. (Morgantown, WV)

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  12. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1999-02-02

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  13. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1997-12-30

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  14. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    SciTech Connect

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  15. Absence of hydrogen in superconducting molybdenum sulfide, Mo 3S 4

    NASA Astrophysics Data System (ADS)

    Baillif, R.; Yvon, K.; Fischer, P.

    1983-09-01

    Superconducting Mo 3S 4( Tc=1.8 K) was prepared from the ternary sulfides MMo 3S 4 ( M=Cu, Ni) by the acid extraction method, and was studied by neutron diffraction and NMR spectroscopy. In contrast to earlier reports no significant amounts of hydrogen could be found in the rhombohedral structure. However, large proton concentrations were found in samples which had been exposed to moist air.

  16. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    NASA Astrophysics Data System (ADS)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 0.67 (standard deviation) g d -1 bird -1, 1.27 0.78 mg d -1 bird -1 and 91.4 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 12.6, 33.4 27.4, and 78.0 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  17. Proceedings of the Hydrogen Sulfide Health Research and Risk Assessment Symposium October 31-November 2, 2000.

    PubMed

    Woodall, George M; Smith, Roy L; Granville, Geoff C

    2005-10-01

    The Hydrogen Sulfide Health Research and Risk Assessment Symposium came about for several reasons: (1) increased interest by the U.S. Environmental Protection Agency (EPA) and several state agencies in regulating hydrogen sulfide (H2S); (2) uncertainty about ambient exposure to H2S; (3) confusion and disagreement in the literature about possible health effects at low-level exposures; and (4) presentation of results of a series of recent animal bioassays. The American Petroleum Institute (API) proposed this symposium and the EPA became an early co-sponsor, with the Chemical Industry Institute of Toxicology (CIIT) and the American Forest & Paper Association (AF&PA) contributing expertise and funding assistance. The topics covered in this symposium included Animal Research, Human Research, Mode-of-Action and Dosimetry Issues, Environmental Exposure and Monitoring, Assessment and Regulatory Issues, and closed with a panel discussion. The overall goals of the symposium were to: gather together experts in H2S health effects research and individuals from governmental agencies charged with protecting the public health, provide a venue for reporting of recent research findings, identify gaps in the current information, and outline new research directions and promote research collaboration. During the course of the symposium, presenters provided comprehensive reviews of the state of knowledge for each topic. Several new research proposals discussed at the symposium have subsequently been initiated. This report provides a summary of the talks, poster presentations, and panel discussions that occurred at the Hydrogen Sulfide Health and Risk Assessment Symposium. PMID:16033755

  18. The study of an intermediate temperature solid state fuel cell utilizing hydrogen sulfide as the fuel

    NASA Astrophysics Data System (ADS)

    Peterson, David Ross

    A fuel cell using hydrogen sulfide as the fuel and consisting of a solid electrolyte, which conducts ions at intermediate temperatures (500-800sp°C), was studied. Utilization of this pollutant in this manner would produce clean electrical energy, as opposed to heat which is generated in conventional Hsb2S processing via the Claus process, and simultaneously convert a highly toxic gas into benign raw materials. The primary concern was to find a suitable electrolyte. This material must be stable to hydrogen sulfide and preferably be strictly a proton conductor since oxide conduction could lead to SOsb2 generation. The electrolytes examined include samaria-doped ceria, ytterbia-doped strontium cerate, samaria-doped barium cerate, lithium sulfate, and lithium sulfate-alumina composites. Fuel cell experimental run results acquired using these five electrolytes, with platinum for the electrodes, are discussed. The fabrication and characterization of the electrolyte membranes and powders are also addressed. The most success was obtained with samaria-doped ceria. High power densities (9.8 mW/cmsp2 at 654sp°C), low anode overpotentials, relatively high exchange current densities, and the apparent stability of this material to hydrogen sulfide all indicate the significant potential of this electrolyte in a Hsb2S fuel cell.

  19. Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy

    PubMed Central

    Großkopf, Tobias; Kalvelage, Tim; Löscher, Carolin R.; Paulmier, Aurélien; Contreras, Sergio; Siegel, Herbert; Holtappels, Moritz; Rosenstiel, Philip; Schilhabel, Markus B.; Graco, Michelle; Schmitz, Ruth A.; Kuypers, Marcel M. M.; LaRoche, Julie

    2013-01-01

    In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ∼2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters. PMID:23990875

  20. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response.

    PubMed

    Beaumont, Martin; Andriamihaja, Mireille; Lan, Annaïg; Khodorova, Nadezda; Audebert, Marc; Blouin, Jean-Marc; Grauso, Marta; Lancha, Luciana; Benetti, Pierre-Henri; Benamouzig, Robert; Tomé, Daniel; Bouillaud, Frédéric; Davila, Anne-Marie; Blachier, François

    2016-04-01

    Protein fermentation by the gut microbiota releases in the large intestine lumen various amino-acid derived metabolites. Among them, hydrogen sulfide (H2S) in excess has been suspected to be detrimental for colonic epithelium energy metabolism and DNA integrity. The first objective of this study was to evaluate in rats the epithelial response to an increased exposure to H2S. Experiments from colonocyte incubation and intra-colonic instillation indicate that low millimolar concentrations of the sulfide donor NaHS reversibly inhibited colonocyte mitochondrial oxygen consumption and increased gene expression of hypoxia inducible factor 1α (Hif-1α) together with inflammation-related genes namely inducible nitric oxide synthase (iNos) and interleukin-6 (Il-6). Additionally, rat colonocyte H2S detoxification capacity was severely impaired in the presence of nitric oxide. Based on the γH2AX ICW technique, NaHS did not induce DNA damage in colonocytes. Since H2S is notably produced by the gut microbiota from sulfur containing amino acids, the second objective of the study was to investigate the effects of a high protein diet (HPD) on large intestine luminal sulfide content and on the expression of genes involved in H2S detoxification in colonocytes. We found that HPD markedly increased H2S content in the large intestine but the concomitant increase of the content mass maintained the luminal sulfide concentration. HPD also provoked an increase of sulfide quinone reductase (Sqr) gene expression in colonocytes, indicating an adaptive response to increased H2S bacterial production. In conclusion, low millimolar NaHS concentration severely affects colonocyte respiration in association with increased expression of genes associated with intestinal inflammation. Although HPD increases the sulfide content of the large intestine, the colonic adaptive responses to this modification limit the epithelial exposure to this deleterious bacterial metabolite. PMID:26849947

  1. Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide

    SciTech Connect

    Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

    2008-05-31

    The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that steam and power generation could be optimized. For the tubular membranes that were fabricated by solution impregnation with metal carbonates, difficulties were encountered in removing the impurity salts that were trapped inside the porous support tube. The membrane tube would continue losing weight even after being heated up to 500 C in air and could not maintain its nonporous characteristics. This approach was therefore abandoned. Dual-phase membranes with molten carbonates were subsequently shown to have CO{sub 2} permeability in reducing conditions without the presence of oxygen; they were also tested for H{sub 2}S permeation. Permeation tests were conducted with a gas feed composition consisting of 33.6% CO{sub 2}, 8.4% He, 57.6% H{sub 2} and 0.4% H{sub 2}S at temperatures between 820 and 850 C and a pressure of 1 bar.

  2. Fluorescence signaling of hydrogen sulfide in broad pH range using a copper complex based on BINOL-benzimidazole ligands.

    PubMed

    Sun, Mingtai; Yu, Huan; Li, Huihui; Xu, Hongda; Huang, Dejian; Wang, Suhua

    2015-04-20

    A weakly fluorescent complex derived from a binaphthol-benzimidazole ligand was designed and synthesized for hydrogen sulfide at different pH conditions. It was demonstrated that the probe showed the same reactivity to various hydrogen sulfide species in a broad range of pH values to generate highly fluorescent product through a displacement reaction mechanism, whereas the product's fluorescence spectrum exhibited a hypsochromic shift of ∼73 nm (2393 cm(-1)) as pH increased from neutral to basic, which can be used for distinguishing the various species of hydrogen sulfide. This turn-on fluorescence probe was highly selective and sensitive to hydrogen sulfide with a detection limit of 0.11 μM. It was then applied for evaluating the total content of sulfide (including hydrogen sulfide, hydrosulfide, and sulfide) as well as for the visual detection of gaseous H2S in air using a simple test paper strip. PMID:25839192

  3. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-15

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  4. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2 concentrations in iron-oxidizing habitats will induce higher transcription rates of genes responsible for H2O2 degradation and O2 respiration. Subsequent measurements of additional ROS and analysis of transcript data will provide broader insight on the interactions and metabolic response within iron mat communities under oxidative stress.

  5. Plasma-chemical treatment of hydrogen sulfide in natural gas processing. Final report, May 1991--December 1992

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.

    1993-05-01

    A new process for the treatment of hydrogen sulfide waste that uses microwave plasma-chemical technology has been under development in Russia and the United States. Whereas the present waste-treatment technology, at best, only recovers sulfur, this novel process recovers both hydrogen and sulfur by dissociating hydrogen sulfide in a plasma by means of a microwave or radio-frequency reactor. A research project has been undertaken to determine the suitability of the plasma process in natural gas processing applications. The experiments tested acid-gas compositions with 30--65% carbon dioxide, 0--7% water, and 0--0.2% of a standard mixture of pipeline gas. The balance gas in all cases was hydrogen sulfide. The reactor pressure for the experiments was 50 torr, and the microwave power was 1.0 kW. Conversions of hydrogen sulfide ranged from 80 to 100%, while 35--50% of the carbon dioxide was converted to carbon monoxide. This conversion of carbon dioxide resulted in a loss of hydrogen production and an energy loss from a hydrogen sulfide waste-treatment perspective. Tests of a direct natural gas treatment concept showed that hydrocarbon losses were unacceptably high; consequently, the concept would not be economically viable.

  6. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  7. Abundances of hydrogen sulfide in star-forming regions

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Ziurys, L. M.; Irvine, W. M.; Mcgonagle, D.

    1991-01-01

    Interstellar H2S and its isotopic variant H2(S-34) have been observed toward several star-forming regions via their 1(10)-1(01) transitions at 2 mm, using the FCRAO telescope. In sources where both isotopic species were observed, column densities of about 10 to the 16th/sq cm were measured. Column density lower limits of about 10 to the 14th/sq cm for H2S were found for other sources, where only the main isotopic line was observed. The fractional abundances of H2S relative to molecular hydrogen appear to be enhanced by at least an order of magnitude relative to quiescent cloud values (about 10 to the -9th) for many of the observed sources.

  8. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    PubMed

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters. PMID:18261510

  9. Hydrogen Sulfide (H2S) Releasing Agents: Chemistry and Biological Applications

    PubMed Central

    Zhao, Yu; Biggs, Tyler D.

    2014-01-01

    Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in the field. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of current available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson’s reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed. PMID:25019301

  10. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2 S)-induced activation of carbon dioxide (CO2 ) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2 S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus. PMID:26781129

  11. Catalytic oxidation of aqueous hydrogen sulfide in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.; Chhatre, R.M.

    1985-06-01

    Nickel sulfate catalyzes the reaction of hydrogen sulfide with oxygen in aqueous solution. This reaction was studied, and an empirical rate expression and a reaction mechanism were deduced. The rate of oxidation is independent of oxygen concentration and pH over the range investigated. The reaction rate is one half order in nickel, and it changes from second to first order in sulfide with increasing concentration. The oxidation reaction is an autocatalytic, free radical chain reaction. Nickel catalyzes the chain initiation step, and polysulfido radical ions propagate the chains. Colloidal sulfur is a major, frequently undesirable reaction product. Sodium sulfite suppresses formation of colloidal sulfur by converting it to thiosulfate. Cobalt is an equally potent catalyst, but a colloidal dispersion of cobalt oxysulfide is produced. Iron compounds are much weaker catalysts; iron citrate and iron HEDTA (n-hydroxyethylenediaminetriacetic acid) were among those tested. 24 references, 15 figures, 3 tables.

  12. Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide-Rich Environments.

    PubMed

    Kelley, Joanna L; Arias-Rodriguez, Lenin; Patacsil Martin, Dorrelyn; Yee, Muh-Ching; Bustamante, Carlos D; Tobler, Michael

    2016-06-01

    Hydrogen sulfide (H2S) is a potent toxicant interfering with oxidative phosphorylation in mitochondria and creating extreme environmental conditions in aquatic ecosystems. The mechanistic basis of adaptation to perpetual exposure to H2S remains poorly understood. We investigated evolutionarily independent lineages of livebearing fishes that have colonized and adapted to springs rich in H2S and compared their genome-wide gene expression patterns with closely related lineages from adjacent, nonsulfidic streams. Significant differences in gene expression were uncovered between all sulfidic and nonsulfidic population pairs. Variation in the number of differentially expressed genes among population pairs corresponded to differences in divergence times and rates of gene flow, which is consistent with neutral drift driving a substantial portion of gene expression variation among populations. Accordingly, there was little evidence for convergent evolution shaping large-scale gene expression patterns among independent sulfide spring populations. Nonetheless, we identified a small number of genes that was consistently differentially expressed in the same direction in all sulfidic and nonsulfidic population pairs. Functional annotation of shared differentially expressed genes indicated upregulation of genes associated with enzymatic H2S detoxification and transport of oxidized sulfur species, oxidative phosphorylation, energy metabolism, and pathways involved in responses to oxidative stress. Overall, our results suggest that modification of processes associated with H2S detoxification and toxicity likely complement each other to mediate elevated H2S tolerance in sulfide spring fishes. Our analyses allow for the development of novel hypotheses about biochemical and physiological mechanisms of adaptation to extreme environments. PMID:26861137

  13. Health impacts of geothermal energy

    SciTech Connect

    Layton, D.W.; Anspaugh, L.R.

    1981-06-15

    The focus is on electric power production using geothermal resources greater than 150/sup 0/C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of noncondensing gases such as hydrogen sulfide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. It is shown that hydrogen sulfide emissions from most geothermal power plants are apt to cause odor annoyances among members of the exposed public - some of whom can detect this gas at concentrations as low as 0.002 parts per million by volume. A risk assessment model is used to estimate the lifetime risk of incurring leukemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. The risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic is also assessed. Finally, data on the occurrence of occupational disease in the geothermal industry are summarized briefly.

  14. Hydrogen evolution using palladium sulfide (PdS) nanocorals as photoanodes in aqueous solution.

    PubMed

    Barawi, M; Ferrer, I J; Ares, J R; Sánchez, C

    2014-11-26

    Palladium sulfide (PdS) nanostructures are proposed to be used as photoanodes in photoelectrochemical cells (PECs) for hydrogen evolution due to their adequate transport and optical properties shown in previous works. Here, a complete morphological and electrochemical characterization of PdS films has been performed by different techniques. PdS flatband potential (Vfb=-0.65±0.05 V vs NHE) was determined by electrochemical impedance spectroscopy measurements in aqueous Na2SO3 electrolyte, providing a description of the energy levels scheme at the electrolyte-semiconductor interface. This energy levels scheme confirms PdS as a compound able to photogenerate hydrogen in a PEC. At last, photogenerated hydrogen rates are measured continuously by mass spectrometry as a function of the external bias potential under illumination, reaching values up to 4.4 μmolH2/h at 0.3 V vs Ag/AgCl. PMID:25340641

  15. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes. PMID:26874757

  16. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins.

    PubMed

    Hartle, Matthew D; Prell, James S; Pluth, Michael D

    2016-03-21

    The reversible binding of hydrogen sulfide (H2S) to hemeprotein sites has been attributed to several factors, likely working in concert, including the protected binding pocket environment, proximal hydrogen bond interactions, and iron ligation environment. To investigate the importance of a sterically-constrained, protected environment on sulfide reactivity with heme centers, we report here the reactivity of H2S and HS(-) with the picket-fence porphyrin system. Our results indicate that the picket-fence porphyrin does not bind H2S in the ferric or ferrous state. By contrast, reaction of the ferric scaffold with HS(-) results in reduction to the ferrous species, followed by ligation of one equivalent of HS(-), as evidenced by UV-vis, NMR spectroscopy and mass spectrometry studies. Measurement of the HS(-) binding affinities in the picket-fence or tetraphenyl porphyrin systems revealed identical binding. Taken together, these results suggest that the protected, sterically-constrained binding pocket alone is not the primary contributor for stabilization of ferric H2S/HS(-) species in model systems, but that other interactions, such as hydrogen bonding, must play a critical role in facilitation of reversible interactions in ferric hemes. PMID:26869340

  17. A systematic review of occupational exposure to hydrogen sulfide in livestock operations.

    PubMed

    Guarrasi, Justene; Trask, Catherine; Kirychuk, Shelley

    2015-01-01

    This systematic review summarizes the current state of knowledge in hydrogen sulfide (H2S) concentrations within intensive livestock operations. The review was undertaken to better understand H2S concentrations in intensive livestock operations, in relation to the American Conference of Governmental Industrial Hygienists (ACGIH) limit reduction to a 1 ppm time-weighted average (TWA). Several online academic databases were searched using two conceptual groups of search terms: "livestock" and "hydrogen sulfide." Industry gray literature was additionally identified via targeted searches of online agriculture-specific Web sites. Title, abstract, and full-text screening were performed to select articles reporting H2S measurements made within livestock facilities. Forty-five articles were included in this review. The bulk (70%) of articles described swine operations, whereas the remaining represented poultry and dairy operations. Although 14% of the articles described task-based monitoring of H2S, the majority of articles (86%) involved only area monitoring. Weighted means from all three livestock types were below 1 ppm, although swine operations displayed a wider range of exposure (from 0 to 97 ppm). Despite most mean task-based exposures being close to 1 ppm, the peak concentrations measurements may be higher during power washing (97 ppm) and miscellaneous tasks (11.4 ppm). This review provides a novel overview of H2S levels in intensive livestock operations, including information on task-based measurements. The review highlights numerous influences that produce a wide variability of H2S levels in intensive livestock operations. The review also highlights the need for research focused on personal monitoring of daily worker exposures to hydrogen sulfide in intensive livestock operations. PMID:25906281

  18. Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice.

    PubMed

    Sojitra, Bhavesh; Bulani, Yogesh; Putcha, Uday Kumar; Kanwal, Abhinav; Gupta, Prachi; Kuncha, Madhusudana; Banerjee, Sanjay Kumar

    2012-01-01

    The cardioprotective property of hydrogen sulfide (H(2)S) is recently reported. However, cellular signaling cascades mediated by H(2)S are largely unclear. This study was undertaken to explore the molecular mechanism of H(2)S-induced cardioprotection in mouse heart by utilizing in vivo model of cardiac injury. We report here that intraperitoneal administration of sodium hydrogen sulfide (NaHS, 50 μmol kg(-1 )day(-1) for 2 days), a H(2)S donor, significantly (P ≤ 0.05) increased nitric oxide levels in serum as well as myocardium without any sign of myocardial injury. Typical characteristics of myocardial injury induced by isoproterenol (ISO) administration was significantly (P ≤ 0.05) abrogated by NaHS administration as evidenced from reduction in elevated thiobarbituric acid reactive substances (TBARS) and normalization of glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), and catalase activity. Further, decrease in TNF-α expression and improvement in myocardial architecture was also observed. However, co-administration of N-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor, and Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor along with NaHS and ISO abrogated the beneficial effect of H(2)S differentially. Inhibition of NOS significantly (P ≤ 0.05) increased serum creatine kinase, lactate dehydrogenase, serum glutamic oxaloacetic transaminase activity and myocardial TBARS, along with significant (P ≤ 0.05) reduction of myocardial GSH, SOD, and catalase. This was followed by increase in TNF-α expression and histopathological changes. Our results revealed that H(2)S provides myocardial protection through interaction with NOS and COX-2 pathway and inhibition of NOS completely abrogates the hydrogen sulfide-induced cardioprotection in mice. PMID:21879311

  19. Hydrogen sulfide and PKG in ischemia-reperfusion injury: sources, signaling, accelerators and brakes.

    PubMed

    Andreadou, Ioanna; Iliodromitis, Efstathios K; Szabo, Csaba; Papapetropoulos, Andreas

    2015-09-01

    Over the past decade, hydrogen sulfide has emerged as an important cardioprotective molecule with potential for clinical applications. Although several pathways have been proposed to mediate the beneficial effects of H2S, the NO/cGMP axis has attracted significant attention. Recent evidence has suggested that cGMP-dependent protein kinase can lie both downstream and upstream of H2S. The current literature on this topic is reviewed and data from recent studies are integrated to propose a unifying model. PMID:26318600

  20. Homocysteine is biosynthesized from aspartate semialdehyde and hydrogen sulfide in methanogenic archaea.

    PubMed

    Allen, Kylie D; Miller, Danielle V; Rauch, Benjamin J; Perona, John J; White, Robert H

    2015-05-26

    The biosynthetic route for homocysteine, intermediate in methionine biosynthesis, is unknown in some methanogenic archaea because homologues of the canonical required genes cannot be identified. Here we demonstrate that Methanocaldococcus jannaschii can biosynthesize homocysteine from aspartate semialdehyde and hydrogen sulfide. Additionally, we confirm the genes involved in this new pathway in Methanosarcina acetivorans. A possible series of reactions in which a thioaldehyde is formed and then reduced to a thiol are proposed. This represents a novel route for the biosynthesis of homocysteine and exemplifies unique aspects of sulfur chemistry occurring in prebiotic environments and in early life forms. PMID:25938369

  1. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  2. Release of hydrogen sulfide by asteroid impacts in Black Sea and risks for inland human population.

    PubMed

    Badescu, Viorel

    2007-10-01

    The hydrogen sulfide rich waters of the Black Sea pose a potential danger for the surrounding land regions. The impact of an asteroid may cause a catastrophic poisonous gas release in the atmosphere. Some effects of this last phenomenon on the Eastern Black Sea coastal regions are evaluated in this article. Two simple models are proposed to describe the generation of the H(2)S cloud. The initial diameter of the cloud depends on asteroid size. The initial thickness of the cloud depends, in addition, on sea depth at impact location. The wind speed plays an important role in H(2)S cloud dynamics. At 10 m/s wind-speed the cloud margins may be seen at about 150 km from impact location in about 3.2 h. The maximum distance traveled by the hydrogen sulfide cloud increases by increasing the asteroid size and wind speed. The influence of the impact position on the distance traveled by hydrogen sulfide clouds is rather weak, as far as the seawater depth does not change significantly. Two values are considered when referring to the effect of hydrogen sulfide concentrations on humans: the lower concentration limit of 19.88 ppm (which corresponds to fatigue, loss of appetite, headache, irritability, poor memory, dizziness) and the upper concentration limit of 497 ppm (which corresponds to death after single exposures). The land surface area covered by the H(2)S cloud generated by a 1000 m size asteroid during the run-in ranges between about 6080 and 11,520 km(2). This may affect between 145,000 and 276,000 people. When a 250 m size asteroid is considered, the covered land surface area ranges between about 840 and 1,890 km(2) and between 20,000 and 45,000 people may be affected. In case of a 70 m size asteroid, the cloud covers up to 105 km(2) of land during the run-in. This may affect about 2500 people. These are moderate estimates. They do not include the urban population and may be 10 times underestimated for some particular wind directions. General recommendations to diminish the social effects of the impacts are presented. PMID:17696133

  3. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism.

    PubMed

    Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong

    2015-12-01

    Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (<90 %) of the Ssu-Nir process were obtained using biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance. PMID:26286512

  4. Conditions under which cracks occur in modified 13% chromium steel in wet hydrogen sulfide environments

    SciTech Connect

    Hara, T.; Asahi, H.

    2000-05-01

    Occurrence of cracks in an API 13% Cr steel, modified 13% Cr steel, and duplex stainless steel were compared in various wet, mild hydrogen sulfide (H{sub 2}S) environments. The conditions under which cracks occurred in the modified 13% Cr steel in oil and gas production environments were made clear. No cracks occurred if pH > depassivation pH (pH{sub d}) and redox potential of sulfur (E{sub S(red/ax)}) < pitting potential (V{sub c}). Hydrogen embrittlement-type cracks occurred in pH > Ph{sub d} and E{sub S(red/ax)} > V{sub c}. The pH inside the pit decreased drastically and hydrogen embrittlement occurred. Cracks of the hydrogen embrittlement type occurred if pH < pH{sub d} and threshold hydrogen concentration under which cracks occur (H{sub th}) < hydrogen concentration in steel (H{sub 0}). No cracks occurred if pH < pH{sub d} and H{sub th} > H{sub 0}.

  5. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Lun; Wu, Xinglong; Zhu, Xiaoshu; He, Chengyu; Meng, Ming; Gan, Zhixing; Chu, Paul K.

    2015-06-01

    The hydrogen evolution reaction (HER), an appealing solution for future energy supply, requires efficient and inexpensive electrocatalysts with abundant active surface sites. Although crystalline MoS2 and WS2 are promising candidates, their activity is dominated by edge sites. Amorphous tungsten sulfide prepared so far lacks the required active sites and its application has thus been hampered. In this work, nickel and cobalt incorporated amorphous tungsten sulfide synthesized by a thermolytic process is demonstrated to enhance the HER efficiency dramatically. The amorphous nickel tungsten sulfide (amorphous NiWS) annealed at 210 °C delivers the best HER performance in this system boasting a Tafel slope of 55 mV per decade and current density of 8.6 mA cm-2 at 250 mV overpotential in a sustained test for 24 h. The introduction of Ni or Co into the catalyst and subsequent thermal treatment alters the porous structure and chemical bonding states thereby increasing the density of active sites on the surface.

  6. EFFECTS OF INFUSION OF HUMAN METHEMOGLOBIN SOLUTION FOLLOWING HYDROGEN SULFIDE POISONING

    PubMed Central

    Chenuel, Bruno; Sonobe, Takashi; Haouzi, Philippe

    2015-01-01

    Rationale We have recently reported that infusion of a solution containing methemoglobin (MetHb) during exposure to hydrogen sulfide results in a rapid and large decrease in the concentration of the pool of soluble/diffusible H2S in the blood. However, since the pool of dissolved H2S disappears very quickly after H2S exposure, it is unclear if the ability of MetHb to “trap” sulfide in the blood has any clinical interest and relevance in the treatment of sulfide poisoning. Methods In anesthetized rats, repetition of short bouts of high level of H2S infusions were applied to allow the rapid development of an oxygen deficit. A solution containing methemoglobin (600mg/kg) or its vehicle was administered one minute and a half after the end of H2S intoxication. Results The injection of methemoglobin solution increased methemoglobinemia to about 6%, almost instantly, but was unable to decrease the blood concentration of soluble H2S, which had already vanished at the time of infusion, or to increase combined H2S. In addition H2S-induced O2 deficit and lactate production as well as the recovery of carotid blood flow and blood pressure were similar in treated or control animals. Conclusion Our results do not support the view that administration of MetHb or drugs induced methemoglobinemia during the recovery phase following severe H2S intoxication in sedated rats can restore cellular oxidative metabolism, as the pool of diffusible sulfide, accessible to MetHb, disappears rapidly from the blood after H2S exposure. PMID:25634666

  7. Measurement, analysis, and modeling of hydrogen sulfide emissions from a swine facility in North Carolina

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica

    Annual global source contributions of sulfur compounds to the natural atmospheric environment are estimated to be 142 x 106 tons. Although not quantified, volatilization from animal wastes may be an important source of gaseous reduced sulfur compounds. Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" odor. Once released into the atmosphere, H 2S is oxidized and the eventual byproduct, sulfuric acid, may combine with other atmospheric constituents to form aerosol products such as ammonium bisulfate and ammonium sulfate. In recent years, confined animal feeding operations (CAFOs) have increased in size, resulting in more geographically concentrated areas of animals and, subsequently, animal waste. In North Carolina and across the southeastern United States anaerobic waste treatment lagoons are traditionally used to store and treat hog excreta at commercial hog farms. Currently, no state regulations exist for H2S gaseous emissions from animal production facilities in North Carolina and the amount of H2S being emitted into the atmosphere from these potential sources is widely unknown. In response to the need for data, this research initiative has been undertaken in an effort to quantify emissions of H2S from swine CAFOs. An experimental study was conducted at a commercial swine farm in eastern North Carolina to measure hydrogen sulfide emissions from a hog housing unit utilizing a mechanical fan ventilation system and from an on-site waste storage treatment lagoon. A dynamic flow-through chamber system was employed to make lagoon flux measurements. Semi-continuous measurements were made over a one-year period (2004-2005) for a few days during each of the four predominant seasons in order to assess diurnal and temporal variability in emissions. Fan rpm from the barn was continuously measured and flow rates were calculated in order to accurately assess gaseous emissions from the system. Temperature at the fan outlet and static pressure inside the barn were measured. Lagoon samples were collected daily and analyzed for sulfide content. Lagoon parameters, temperature and pH; and atmospheric environmental parameters, ambient temperature, relative humidity, wind speed and ambient hydrogen sulfide concentration were concurrently monitored on-site. The highest barn emissions were measured during the winter and appeared to be related to the age and weight of the animals housed inside the barn. (Abstract shortened by UMI.)

  8. Physiological Implications of Hydrogen Sulfide in Plants: Pleasant Exploration behind Its Unpleasant Odour.

    PubMed

    Jin, Zhuping; Pei, Yanxi

    2015-01-01

    Recently, overwhelming evidence has proven that hydrogen sulfide (H2S), which was identified as a gasotransmitter in animals, plays important roles in diverse physiological processes in plants as well. With the discovery and systematic classification of the enzymes producing H2S in vivo, a better understanding of the mechanisms by which H2S influences plant responses to various stimuli was reached. There are many functions of H2S, including the modulation of defense responses and plant growth and development, as well as the regulation of senescence and maturation. Additionally, mounting evidence indicates that H2S signaling interacts with plant hormones, hydrogen peroxide, nitric oxide, carbon monoxide, and other molecules in signaling pathways. PMID:26078806

  9. Physiological Implications of Hydrogen Sulfide in Plants: Pleasant Exploration behind Its Unpleasant Odour

    PubMed Central

    Jin, Zhuping

    2015-01-01

    Recently, overwhelming evidence has proven that hydrogen sulfide (H2S), which was identified as a gasotransmitter in animals, plays important roles in diverse physiological processes in plants as well. With the discovery and systematic classification of the enzymes producing H2S in vivo, a better understanding of the mechanisms by which H2S influences plant responses to various stimuli was reached. There are many functions of H2S, including the modulation of defense responses and plant growth and development, as well as the regulation of senescence and maturation. Additionally, mounting evidence indicates that H2S signaling interacts with plant hormones, hydrogen peroxide, nitric oxide, carbon monoxide, and other molecules in signaling pathways. PMID:26078806

  10. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

    PubMed Central

    Vacek, Thomas P; Rehman, Shahnaz; Neamtu, Diana; Yu, Shipeng; Givimani, Srikanth; Tyagi, Suresh C

    2015-01-01

    Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs); MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor-γ and N-methyl-D-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H2S) has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine. PMID:25767394

  11. Reaction-based epoxide fluorescent probe for in vivo visualization of hydrogen sulfide.

    PubMed

    Sathyadevi, Palanisamy; Chen, Yu-Jen; Wu, Shou-Cheng; Chen, Yen-Hao; Wang, Yun-Ming

    2015-06-15

    Hydrogen sulfide (H2S) has emerged as the most important biosynthetic gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). In this study, we report the design and the synthesis of a new epoxide fluorescent probe 7-glycidyloxy-9-(2-glycidyloxycarbonylphenyl)-2-xanthone (FEPO) for use in in vivo visualization of hydrogen sulfide. The probe employs a fluorescein as a fluorophore, and is equipped with an operating epoxide unit. FEPO functions via epoxide ring opening upon nucleophilic attack of H2S. This ring opening strategy may open a new avenue for the development of various H2S fluorescent sensors. FEPO showed high selectivity and high sensitivity for H2S. FEPO's cytotoxicity was tested using MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide) assay. Furthermore, the use of confocal imaging of H2S and in vivo imaging in live zebra fish demonstrated FEPO's potential biological applications. We anticipate that, owing to their ideal properties, probes of this type will find great uses in exploring the role of H2S in biology. PMID:25660659

  12. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton.

    PubMed

    Bharwana, Saima Aslam; Ali, Shafaqat; Farooq, Muhammad Ahsan; Ali, Basharat; Iqbal, Naeem; Abbas, Farhat; Ahmad, Muhammad Sajid Aqeel

    2014-01-01

    Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress. PMID:23852465

  13. Dynamic flux chamber measurements of hydrogen sulfide emission rate from a quiescent surface - A computational evaluation.

    PubMed

    Prata, Ademir A; Santos, Jane M; Beghi, Sandra P; Fernandes, Isabella F; Vom Marttens, Lya L C; Pereira Neto, Leovegildo I; Martins, Ramon S; Reis, Neyval C; Stuetz, Richard M

    2016-03-01

    Enclosure devices have been studied and used for research purposes and practical applications in order to measure the emission rate of odorous pollutants from quiescent liquid surfaces to atmosphere. However, important questions remain about the interference of these measuring devices on the actual emission rate. The main concern regarding the use of a flux chamber is the fact that odorous compounds can accumulate into the chamber and yield gas-phase concentration increase inside the equipment, which causes a reduction of the emission rate during the measurement and thus gives an inaccurate local emission rate. Furthermore, the fluid flow inside the chamber does not reproduce the atmospheric boundary layer flow. This study applied the Computational Fluid Dynamics (CFD) technique in order to investigate the influence of the fluid flow features inside a flux chamber on the measured hydrogen sulfide emission rate at quiescent liquid surfaces. The flux chamber design and operational conditions are those supported by the United States Environmental Protection Agency (US EPA). The results show that the US EPA flux chamber presents a fairly well mixed air phase. However, a trend to stagnation and hydrogen sulfide accumulation near chamber walls was detected in the computational simulation, which also indicated that the positioning of the sampling tube in relation to the inlet orifices may lead to deviations in the measurement results. CFD results showed that the wall shear and concentration gradients spatially vary at the gas-liquid interface, and friction velocity inside the chamber does not match typical values of atmospheric flow. PMID:26741548

  14. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  15. Insights into the mechanism of the reaction between hydrogen sulfide and peroxynitrite.

    PubMed

    Cuevasanta, Ernesto; Zeida, Ari; Carballal, Sebastián; Wedmann, Rudolf; Morzan, Uriel N; Trujillo, Madia; Radi, Rafael; Estrin, Darío A; Filipovic, Milos R; Alvarez, Beatriz

    2015-03-01

    Hydrogen sulfide and peroxynitrite are endogenously generated molecules that participate in biologically relevant pathways. A revision of the kinetic features of the reaction between peroxynitrite and hydrogen sulfide revealed a complex process. The rate constant of peroxynitrite decay, (6.65 ± 0.08) × 10(3) M(-1) s(-1) in 0.05 M sodium phosphate buffer (pH 7.4, 37°C), was affected by the concentration of buffer. Theoretical modeling suggested that, as in the case of thiols, the reaction is initiated by the nucleophilic attack of HS(-) on the peroxide group of ONOOH by a typical bimolecular nucleophilic substitution, yielding HSOH and NO2(-). In contrast to thiols, the reaction then proceeds to the formation of distinct products that absorb near 408 nm. Experiments in the presence of scavengers and carbon dioxide showed that free radicals are unlikely to be involved in the formation of these products. The results are consistent with product formation involving the reactive intermediate HSSH and its fast reaction with a second peroxynitrite molecule. Mass spectrometry and UV-Vis absorption spectra predictions suggest that at least one of the products is HSNO2 or its isomer HSONO. PMID:25555671

  16. Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications.

    PubMed

    Bhuiyan, Ashif Iqbal; Papajani, Vilma Toska; Paci, Maurizio; Melino, Sonia

    2015-01-01

    Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications. PMID:25608858

  17. Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels.

    PubMed

    García-Bereguiaín, Miguel Angel; Samhan-Arias, Alejandro Khalil; Martín-Romero, Francisco Javier; Gutiérrez-Merino, Carlos

    2008-01-01

    Hydrogen sulfide (H(2)S) concentration can be maintained in cell cultures within the range reported for rat brain by repetitive pulses of sodium hydrogen sulfide. Less than 2 h exposure to H(2)S concentrations within 50 and 120 microM (i.e., within the upper segment of the reported physiological range of H(2)S in rat brain), produces a large shift of the intracellular calcium homeostasis in cerebellar granule neurons (CGN) in culture, leading to a large and sustained increase of cytosolic calcium concentration. Only 1 h exposure to H(2)S concentrations within 100 and 300 microM raises intracellular calcium to the neurotoxic range, with nearly 50% cell death after 2 h. L-type Ca(2+) channels antagonists nimodipine and nifedipine block both the H(2)S-induced rise of cytosolic calcium and cell death. The N-methyl-D-aspartate receptor antagonists (+)-MK-801 and DL-2-amino-5-phosphonovaleric acid afforded a nearly complete protection against H(2)S-induced CGN death and largely attenuated the rise of cytosolic calcium. Thus, H(2)S-induced rise of cytosolic calcium eventually reaches the neurotoxic cytosolic calcium range, leading to glutamate-induced excitotoxic CGN death. The authors conclude that H(2)S is a major modulator of calcium homeostasis in neurons as it induces activation of Ca(2+) entry through L-type Ca(2+) channels, and thereby of neuronal activity. PMID:17956188

  18. Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride

    SciTech Connect

    Majumdar, A.; Mahmoodaghdam, E.; Bishnoi, P.R.

    2000-02-01

    Natural gas components such as hydrogen sulfide, carbon dioxide, and ethane form gas hydrates of structure I under suitable temperature and pressure conditions. Information on such conditions is vital to the oil and gas industry in order to design and operate processing equipment and pipelines so that hydrate formation is avoided. Incipient equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride were experimentally obtained in the temperature range 264--290 K and the pressure range 0.23--3.18 MPa. A variable-volume sapphire cell was used for the measurements.

  19. The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membranes

    SciTech Connect

    Iyoha, O.; Enick, R.M.; Killmeyer, R.P.; Morreale, B.

    2007-11-15

    The influence of H2S-to-H2 partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membrane alloys was studied using various H2Scontaining gas mixtures. The Pd membranes exposed to various H2S mixtures were in very good agreement with the thermodynamic calculations used in this study, resisting sulfidization when exposed to H2S-to-H2 ratios below the equilibrium value predicted for Pd4S formation, and experiencing sulfidization when exposed to ratios above the equilibrium values. The 70 mol% Pd–Cu membranes, however, exhibited deviations from the predicted values, resisting sulfidization at some conditions close to the equilibrium values at which sulfidization was expected, and experiencing sulfidization at some conditions at which resistance was expected. This phenomenon was attributed to deviations of the Pd–Cu alloy from ideality, probably due to Cu segregation at the membrane surface.

  20. The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd-Cu membranes

    SciTech Connect

    Iyoha, O.; Enick, R.M.; Killmeyer, R.P.; Morreale, B.D.

    2007-11-15

    The influence of H2S-to-H2 partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membrane alloys was studied using various H2S-containing gas mixtures. The Pd membranes exposed to various H2S mixtures were in very good agreement with the thermodynamic calculations used in this study, resisting sulfidization when exposed to H2S-to-H2 ratios below the equilibrium value predicted for Pd4S formation, and experiencing sulfidization when exposed to ratios above the equilibrium values. The 70 mol% Pd–Cu membranes, however, exhibited deviations from the predicted values, resisting sulfidization at some conditions close to the equilibrium values at which sulfidization was expected, and experiencing sulfidization at some conditions at which resistance was expected. This phenomenon was attributed to deviations of the Pd–Cu alloy from ideality, probably due to Cu segregation at the membrane surface.

  1. Hydrogen sulfide removal from sediment and water in box culverts/storm drains by iron-based granules.

    PubMed

    Sun, J L; Shang, C; Kikkert, G A

    2013-01-01

    A renewable granular iron-based technology for hydrogen sulfide removal from sediment and water in box culverts and storm drains is discussed. Iron granules, including granular ferric hydroxide (GFH), granular ferric oxide (GFO) and rusted waste iron crusts (RWIC) embedded in the sediment phase removed aqueous hydrogen sulfide formed from sedimentary biological sulfate reduction. The exhausted iron granules were exposed to dissolved oxygen and this regeneration process recovered the sulfide removal capacities of the granules. The recovery is likely attributable to the oxidation of the ferrous iron precipitates film and the formation of new reactive ferric iron surface sites on the iron granules and sand particles. GFH and RWIC showed larger sulfide removal capacities in the sediment phase than GFO, likely due to the less ordered crystal structures on their surfaces. This study demonstrates that the iron granules are able to remove hydrogen sulfide from sediment and water in box culverts and storm drains and they have the potential to be regenerated and reused by contacting with dissolved oxygen. PMID:24355850

  2. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment

    NASA Astrophysics Data System (ADS)

    Heinen, Wolfgang; Lauwers, Anne Marie

    1996-04-01

    The reaction of iron sulfide (FeS) with H2S in water, in presence of CO2 under anaerobic conditions was found to yield H2 and a variety of organic sulfur compounds, mainly thiols and small amounts of CS2 and dimethyldisulfide. The same compounds were produced when H2S was replaced by HCl, in the H2S-generating system FeS/HCl/CO2. The identification of the products was confirmed by GC-MS analyses and the incorporation of H2 in the organic sulfur compounds was demonstrated by experiments in which all hydrogen compounds were replaced by deuterium compounds. Generation of H2 and the synthesis of thiols were both dependent upon the relative abundance of FeS and HCl or H2S, i.e. the FeS/HCl- or FeS/H2S-proportions. Whether thiols or CS2 were formed as the main products depended also on the FeS/HCl-ratio: All conditions which create a H2 deficiency were found to initiate a proportional increase in the amount of CS2. The quantities of H2 and thiols generated depended on temperature: the production of H2 was significantly accelerated from 50°C onward and thiol synthesis above 75°C. The yield of thiols increased with the amount of FeS and HCl (H2S), given a certain FeS/HCl-ratio and a surplus of CO2. A deficiency of CO2 results in lower thiol systhesis. The end product, pyrite (FeS2), was found to appear as a silvery granular layer floating on the aqueous surface. The identity of the thiols was confirmed by mass spectrometry, and the reduction of CO2 demonstrated by the determination of deuterium incorporation with DCl and D2O. The described reactions can principally proceed under the conditions comparable to those obtaining around submarine hydrothermal vents, or the global situation about 4 billion years ago, before the dawn of life, and could replace the need for a reducing atmosphere on the primitive earth.

  3. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  4. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for...

  5. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for...

  6. AMMONIA AND HYDROGEN SULFIDE FLUX AND DRY DEPOSITION VELOCITY ESTIMATES USING VERTICAL GRADIENT METHOD AT A COMMERCIAL BEEF CATTLE FEEDLOT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia and hydrogen sulfide flux and dry deposition velocity were estimated using micrometeorological vertical gradient flux method at a commercial cattle feedyard of approximately 50,000 head of beef cattle and average 14.4 m2/head (150 ft2/head) stocking density. During summertime, NH3-N emission...

  7. Combined borax and tannin treatment of stored dairy manure to reduce bacterial populations and hydrogen sulfide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Anaerobic digestion of organic residues in stored livestock manure is associated with the production of odors and emissions. Hydrogen sulfide (H2S) is one such emission that can reach hazardous levels during manure storage and handling, posing a risk to both farmers and livestock. New te...

  8. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  9. Borax and Octabor Treatment of Stored Swine Manure: Reduction in Hydrogen Sulfide Emissions and Phytotoxicity to Agronomic Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaseous emissions from stored manure have become environmental and health issues for humans and animals as the livestock industry becomes specialized and concentrated. Of particular concern is hydrogen sulfide, which is being targeted for regulatory control in concentrated animal farm operations. ...

  10. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Number (CAS No.) 7783-06-4) (75 FR 8889). The purpose of today's action is to inform interested parties... requirements for hydrogen sulfide (75 FR 8889). B. Why and for How Long Is EPA Extending the Comment Period..., 212231, 212234, 212299 (correspond to SIC 10, Metal Mining (except 1011, 1081, and 1094)); or...

  11. Inhibitory Effects of Condensed Tannins on Sulfate-Reducing Bacteria Populations and Hydrogen Sulfide Production from Swine Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odorous compounds and emissions associated with consolidated storage of swine manure are produced as a result of anaerobic microbial digestion of materials present in the manure. Hydrogen sulfide (H2S) is one such offensive and toxic odorant that can reach hazardous levels during manure storage and...

  12. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of...

  13. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b... leveling bottle. (c) Reagents. (1) Iodine stock solution, 0.1N. Weight 12.7 g iodine, and 20 to 25 g...

  14. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... Engineers Handbook, Fuel Gas Engineering Practices, The Industrial Press, 93 Worth Street, New York,...

  15. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... Engineers Handbook, Fuel Gas Engineering Practices, The Industrial Press, 93 Worth Street, New York,...

  16. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  17. Hydrogen sulfide and reduced-sulfur gases adversely affect neurophysiological functions.

    PubMed

    Kilburn, K H; Warshaw, R H

    1995-01-01

    Hydrogen sulfide (H2S) above 50 parts per million (ppm) causes unconsciousness and death. Lower doses of H2S and related gases have been regarded as innocuous, but the effects of prolonged exposure have not been studied. This study was designed to determine whether people exposed to sulfide gases as a result of working at or living downwind from the processing of "sour" crude oil demonstrate persistent neurobehavioral dysfunction. Thirteen former workers and 22 neighbors of a refinery complained of headaches, nausea, vomiting, depression, personality changes, nosebleeds, and breathing difficulties. Their neurobehavioral functions and a profile of mood states (POMS) were compared to 32 controls, matched for age and educational level. The exposed subjects' mean values were statistically significantly abnormal compared to controls for two-choice reaction time, balance (as speed of sway), color discrimination, digit symbol, trail-making A and B, and immediate recall of a story. Their POMS scores were much higher than those of controls. Visual recall was significantly impaired in neighbors, but not in exworkers. It was concluded that neurophysiological abnormalities were associated with exposure to reduced sulfur gases, including H2S from crude oil desulfurization. PMID:7491634

  18. Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics

    PubMed Central

    Liu, Mingzhe; Wu, Lingyun; Montaut, Sabine; Yang, Guangdong

    2016-01-01

    Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer. PMID:27019751

  19. A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe.

    PubMed

    Yang, Yan; Lei, Yingjie; Zhang, Xinrong; Zhang, Sichun

    2016-07-01

    The emergence of ratiometric fluorescent probes have offered more convincing results to the bioanalytical field of research. In particular, using nanoparticles as scaffolds for the construction of ratiometric systems has received increasing attention. In this work, a novel design strategy was implemented for ratiometric sensing of hydrogen sulfide (H2S), in which bovine serum albumin templated gold nanoclusters (BSA-AuNCs) was served as the internal reference fluorophore and HSip-1, a azamacrocyclic Cu(2+) complex based fluorescent probe toward H2S, acted as both the signal indicator and specific recognition element. Under single wavelength excitation, the nanohybrid probe HSip-1@AuNC emitted dual fluorescence at 519 and 632nm, coming from HSip-1 and AuNCs respectively. The effective fluorescence response of organic dye to H2S and constant fluorescence of AuNCs enabled the proposed HSip-1@AuNC to achieve the ratiometric measurement with a dynamic linear range of 7-100μM and a detection limit of 0.73μM. This probe also possesses high selectivity, stability against pH change and continuously light illumination. In addition, we provided HSip-1@AuNC as a valuable tool to analyze sulfides in serum samples and perfect recoveries verified its potential in biological applications. PMID:27154665

  20. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  1. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide.

    PubMed

    Tran, Phong D; Tran, Thu V; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2016-06-01

    Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13](2-) building blocks. Of the three terminal disulfide (S2(2-)) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  2. An Anticancer Role of Hydrogen Sulfide in Human Gastric Cancer Cells

    PubMed Central

    Qi, Qi; Yang, Jianqiang; Sun, Dongsheng; Li, Chunfeng; Xue, Yingwei; Jiang, Qiuying; Tian, Ye; Xu, Changqing; Wang, Rui

    2015-01-01

    Hydrogen sulfide (H2S) can be synthesized in mammalian cells by cystathionine ?-lyase (CSE) and/or cystathionine ?-synthase (CBS). Both CSE and CBS are expressed in rat gastric tissues but their role in human gastric neoplasia has been unclear. The aims of the present study were to detect CSE and CBS proteins in human gastric cancer and determine the effect of exogenous NaHS on the proliferation of gastric cancer cells. We found that both CSE and CBS proteins were expressed in human gastric cancer cells and upregulated in human gastric carcinoma mucosa compared with those in noncancerous gastric samples. NaHS induced apoptosis of gastric cancer cells by regulating apoptosis related proteins. Also, NaHS inhibited cancer cell migration and invasion. An antigastric cancer role of H2S is thus indicated. PMID:26078811

  3. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Kang, Jianming; Li, Zhen; Organ, Chelsea L; Park, Chung-Min; Yang, Chun-Tao; Pacheco, Armando; Wang, Difei; Lefer, David J; Xian, Ming

    2016-05-25

    Hydrogen sulfide (H2S) is a critical signaling molecule that regulates many physiological and/or pathological processes. Modulation of H2S levels could have potential therapeutic value. In this work, we report the rational design, synthesis, and biological evaluation of a class of phosphonamidothioate-based H2S-releasing agents (i.e., H2S donors). A novel pH-dependent intramolecular cyclization was employed to promote H2S release from the donors. These water-soluble compounds showed slow, controllable, and pH-sensitive production of H2S in aqueous solutions. The donors also showed significant cytoprotective effects in cellular models of oxidative damage. Most importantly, the donors were found to exhibit potent cardioprotective effects in an in vivo murine model of myocardial ischemia-reperfusion (MI/R) injury through a H2S-related mechanism. PMID:27172143

  4. Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator

    PubMed Central

    Sen, Utpal; Pushpakumar, Sathnur B.; Amin, Matthew A.; Tyagi, Suresh C.

    2014-01-01

    Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide (H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central nervous system, recent studies however has revealed protective effects in a variety of diseases including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic demand and also act as a substrate for ATP production. This review highlights some of the recent advances in H2S research as a potential therapeutic agent targeting renovascular diseases associated with HHcy. PMID:24963795

  5. Chronic exposure to low concentrations of hydrogen sulfide produces abnormal growth in developing cerebellar Purkinje cells.

    PubMed

    Hannah, R S; Roth, S H

    1991-01-28

    Hydrogen sulfide (H2S) may produce deleterious effects on the developing central nervous system. The dendritic fields of developing cerebellar Purkinje cells were analyzed to determine the effects of chronic exposure to low concentrations of H2S during perinatal development. Treatment with two concentrations (20 and 50 ppm) of H2S produced severe alterations in the architecture and growth characteristics of the Purkinjec cell dendritic fields. The architectural modifications included longer branches, an increase in the vertex path length and variations in the number of branches in particular areas of the dendritic field. The treated cells also exhibited a nonsymmetrical growth pattern at a time when random terminal branching is normally occurring. These findings suggest that developing neurons exposed to low concentrations of H2S are at risk of severe deficits. PMID:2027523

  6. Hydrogen Sulfide Regulates Inward-Rectifying K+ Channels in Conjunction with Stomatal Closure1[OPEN

    PubMed Central

    Papanatsiou, Maria; Scuffi, Denisse; Blatt, Michael R.; García-Mata, Carlos

    2015-01-01

    Hydrogen sulfide (H2S) is the third biological gasotransmitter, and in animals, it affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here, we report the selective inactivation of current carried by inward-rectifying K+ channels of tobacco (Nicotiana tabacum) guard cells and show its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S seems to define a unique and unresolved signaling pathway that selectively targets inward-rectifying K+ channels. PMID:25770153

  7. Radiative relaxation and fragmentation dynamics of S 2p-excited hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Meyer, M.; O'Keeffe, P.; Plenge, J.; Flesch, R.; Rühl, E.

    2006-12-01

    Radiative relaxation of S 2p-excited hydrogen sulfide (H2S) is investigated by dispersed ultraviolet and visible fluorescence spectroscopies. We observe distinct changes in the fluorescence spectra as a function of excitation energy. Excitation to Rydberg states below the S 2p ionization threshold yields intense fluorescence from neutral and ionic atomic fragments (H, S+, and S2+). In addition to the atomic emission, fluorescence of the molecular fragment ion HS+ is preferably found after excitation of the S 2p electron into the unoccupied 6a1 and 3b2 orbitals with σ* character. This is interpreted as evidence for ultrafast dissociation of the core-excited molecule prior to electronic relaxation. The rotationally resolved fluorescence spectra of the AΠ3→XΣ-3 transition are analyzed in terms of the fragmentation dynamics leading to the formation of the excited molecular fragment ion, where changes in bond angle are discussed in terms of the rotational population.

  8. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    SciTech Connect

    Hayden, L.J.; Goeden, H.; Roth, S.H. )

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and in the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.

  9. Postsynthetic modification of metal-organic framework for hydrogen sulfide detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Jianmin; Hu, Quan; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-11-01

    Hydrogen sulfide (H2S) has recently been identified as the third biological gaseous messenger (gasotransmitter) that is involved in regulating many important physiological processes. The detection of H2S is thus essential for its roles but remain challenging in living systems. We report herein a novel turn-on fluorescent probe for H2S detection based on azide functionalized metal-organic framework (MOF). The MOF probe displayed high sensitivity (detection limit, 28.3 μM), excellent selectivity, and fast response (<2 min) toward H2S over other biologically relevant species. We envisage that this MOF probe can be employed as a useful tool to further elucidate the biological roles of H2S.

  10. Hydrogen Sulfide as an Endogenous Modulator in Mitochondria and Mitochondria Dysfunction

    PubMed Central

    Guo, Wei; Kan, Jun-tao; Cheng, Ze-yu; Chen, Jie-fang; Shen, Ya-qi; Xu, Jie; Wu, Dan; Zhu, Yi-zhun

    2012-01-01

    Hydrogen sulfide (H2S) has historically been considered to be a toxic gas, an environmental and occupational hazard. However, with the discovery of its presence and enzymatic production through precursors of L-cysteine and homocysteine in mammalian tissues, H2S has recently received much interest as a physiological signaling molecule. H2S is a gaseous messenger molecule that has been implicated in various physiological and pathological processes in mammals, including vascular relaxation, angiogenesis, and the function of ion channels, ischemia/reperfusion (I/R), and heart injury. H2S is an endogenous neuromodulator and present studies show that physiological concentrations of H2S enhance NMDA receptor-mediated responses and aid in the induction of hippocampal long-term potentiation. Moreover, in the field of neuronal protection, physiological concentrations of H2S in mitochondria have many favorable effects on cytoprotection. PMID:23304257

  11. Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure.

    PubMed

    Papanatsiou, Maria; Scuffi, Denisse; Blatt, Michael R; García-Mata, Carlos

    2015-05-01

    Hydrogen sulfide (H2S) is the third biological gasotransmitter, and in animals, it affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here, we report the selective inactivation of current carried by inward-rectifying K(+) channels of tobacco (Nicotiana tabacum) guard cells and show its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S seems to define a unique and unresolved signaling pathway that selectively targets inward-rectifying K(+) channels. PMID:25770153

  12. Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods.

    PubMed

    Zhang, Xuan; Zhou, Wenjuan; Yuan, Zhiqin; Lu, Chao

    2015-11-01

    As a well-known environmental pollutant but also an important gaseous transmitter, the specific detection of hydrogen sulfide (H2S) is significant in biological systems. In this study, fluorosurfactant functionalized gold nanorods (FSN-AuNRs) have been proposed to act as selective colorimetric nanoprobes for H2S. With the combination of strong gold-S interactions and small FSN bilayer interstices, FSN-AuNRs demonstrate favorable selectivity and sensitivity toward H2S over other anions and small biological molecules. The practical application of the present method in biological H2S detection was validated with human and mouse serum samples. Moreover, the proposed nanoprobe can also be used for evaluating the activity of H2S synthetase. PMID:26415625

  13. How to pressurize autoclaves for corrosion testing under carbon dioxide and hydrogen sulfide pressure

    SciTech Connect

    Crolet, J.L.; Bonis, M.R.

    2000-02-01

    All the methods presently used for pressurizing autoclaves have advantages and disadvantages. Pressurizing with pure gases is undoubtedly the surest method, since it is insensitive to the autoclave filling rate, and the influence of temperature stability readily can be controlled. The only limitation is the impossibility of accurately reproducing very low hydrogen sulfide (H{sub 2}S) partial pressures (<30 mbar) at high temperatures (>150 C). Conventional pressurizing with gas mixtures is not at all practical, since it demands either excessively large autoclaves or the bubbling of prohibitive volumes of gas. To overcome these fundamental difficulties, alternative methods are proposed, such as high-temperature bubbling using a cooled reflux condenser or presaturation of the autoclave at 60 C at a fraction of the test pressure, enabling the latter to be attained during subsequent heating by the natural increase in pressure with temperature.

  14. Systematization of published spectral data on deuterated isotopologues of hydrogen sulfide molecule

    NASA Astrophysics Data System (ADS)

    Voronina, S. S.; Naumenko, O. V.; Polovtseva, E. R.; Fazliev, A. Z.

    2014-11-01

    The report presents a description of properties of published data on spectral lines parameters of deuterated isotopologues of hydrogen sulfide - HDS, HD34S, D2S, D2 34S. Properties values characterizing data quality are calculated taking into account the validity criteria and credit estimation according to publishing criteria. Formalized criteria of data check based on the constraints and selection rules known from the vibrational-rotational theory, as well as an expert evaluation are utilized for validation of the original experimental transitions and energy levels. The consistent and accurate set of the vibration - rotation (VR) energy levels is derived based on the cleaned transitions. Published vibrational-rotational transitions and energy levels of considered molecules as well as the knowledge base are available in the Internet in W@DIS information system (IS).

  15. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy.

    PubMed

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. PMID:27055593

  16. Hydrogen Sulfide, the Next Potent Preventive and Therapeutic Agent in Aging and Age-Associated Diseases

    PubMed Central

    Zhang, Yuan; Tang, Zhi-Han; Ren, Zhong; Qu, Shun-Lin; Liu, Mi-Hua; Liu, Lu-Shan

    2013-01-01

    Hydrogen sulfide (H2S) is the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide. It is physiologically generated by cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase. H2S has been gaining increasing attention as an important endogenous signaling molecule because of its significant effects on the cardiovascular and nervous systems. Substantial evidence shows that H2S is involved in aging by inhibiting free-radical reactions, activating SIRT1, and probably interacting with the age-related gene Klotho. Moreover, H2S has been shown to have therapeutic potential in age-associated diseases. This article provides an overview of the physiological functions and effects of H2S in aging and age-associated diseases, and proposes the potential health and therapeutic benefits of H2S. PMID:23297346

  17. Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases.

    PubMed

    Zhang, Yuan; Tang, Zhi-Han; Ren, Zhong; Qu, Shun-Lin; Liu, Mi-Hua; Liu, Lu-Shan; Jiang, Zhi-Sheng

    2013-03-01

    Hydrogen sulfide (H(2)S) is the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide. It is physiologically generated by cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase. H(2)S has been gaining increasing attention as an important endogenous signaling molecule because of its significant effects on the cardiovascular and nervous systems. Substantial evidence shows that H(2)S is involved in aging by inhibiting free-radical reactions, activating SIRT1, and probably interacting with the age-related gene Klotho. Moreover, H(2)S has been shown to have therapeutic potential in age-associated diseases. This article provides an overview of the physiological functions and effects of H(2)S in aging and age-associated diseases, and proposes the potential health and therapeutic benefits of H(2)S. PMID:23297346

  18. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  19. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    PubMed

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  20. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide.

    PubMed

    Wang, Long-Jiang; Fan, Hui-Ling; Shangguan, Ju; Croiset, Eric; Chen, Zhongwei; Wang, Hui; Mi, Jie

    2014-12-10

    A series of novel zinc oxide-silica composites with three-dimensionally ordered macropores (3DOM) structure were synthesized via colloidal crystal template method and used as sorbents for hydrogen sulfide (H2S) removal at room temperature for the first time. The performances of the prepared sorbents were evaluated by dynamic breakthrough testing. The materials were characterized before and after adsorption using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the composite with 3DOM structure exhibited remarkable desulfurization performance at room temperature and the enhancement of reactive adsorption of hydrogen sulfide was attributed to the unique structure features of 3DOM composites; high surface areas, nanocrystalline ZnO and the well-ordered interconnected macroporous with abundant mesopores. The introduction of silica could be conducive to support the 3DOM structure and the high dispersion of zinc oxide. Moisture in the H2S stream plays a crucial role in the removal process. The effects of Zn/Si ratio and the calcination temperature of 3DOM composites on H2S removal were studied. It demonstrated that the highest content of ZnO could reach up to 73 wt % and the optimum calcination temperature was 500 °C. The multiple adsorption/regeneration cycles showed that the 3DOM ZnO-SiO2 sorbent is stable and the sulfur capacity can still reach 67.4% of that of the fresh sorbent at the fifth cycle. These results indicate that 3DOM ZnO-SiO2 composites will be a promising sorbent for H2S removal at room temperature. PMID:25382853

  1. Mechanisms of action of hydrogen sulfide in relaxation of mouse distal colonic smooth muscle.

    PubMed

    Dhaese, Ingeborg; Van Colen, Inge; Lefebvre, Romain A

    2010-02-25

    Hydrogen sulfide (H(2)S) has been suggested as a gaseous neuromodulator in mammals. The aim of this study was to examine the influence of H(2)S on contractility in mouse distal colon. The effect of sodium hydrogen sulfide (NaHS; H(2)S donor) on prostaglandin F(2alpha) (PGF(2alpha))-contracted circular muscle strips of mouse distal colon was investigated. In addition, tension and cytosolic calcium concentration ([Ca(2+)](cyt)) in the mouse distal colon strips were measured simultaneously in the presence of NaHS. NaHS caused concentration-dependent relaxation of the pre-contracted mouse distal colon strips. The NaHS-induced relaxation was not influenced by the K(+) channels blockers glibenclamide, apamin, charybdotoxin, barium chloride and 4-aminopyridine. The relaxation by NaHS was also not influenced by the nitric oxide inhibitor L-NAME, by the soluble guanylate cyclase respectively adenylate cyclase inhibitors ODQ and SQ 22536, by the nerve blockers capsazepine, omega-conotoxin and tetrodotoxin or by several channel and receptor blockers (ouabain, nifedipine, 2-aminoethyl diphenylborinate, ryanodine and thapsigargin). The initiation of the NaHS-induced relaxation was accompanied by an increase in [Ca(2+)](cyt), but once the relaxation was maximal and sustained, no change in [Ca(2+)](cyt) was measured. This calcium desensitization is not related to the best known calcium desensitizing mechanism as the myosin light chain phosphatase (MLCP) inhibitor calyculin-A and the Rho-kinase inhibitor Y-27632 had no influence. We conclude that NaHS caused concentration-dependent relaxations in mouse distal colon not involving the major known K(+) channels and without a change in [Ca(2+)](cyt). This calcium desensitization is not related to inhibition of Rho-kinase or activation of MLCP. PMID:19919833

  2. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways

    PubMed Central

    Trevisani, Marcello; Patacchini, Riccardo; Nicoletti, Paola; Gatti, Raffaele; Gazzieri, David; Lissi, Nicola; Zagli, Giovanni; Creminon, Christophe; Geppetti, Pierangelo; Harrison, Selena

    2005-01-01

    Hydrogen sulfide (H2S) is described as a mediator of diverse biological effects, and is known to produce irritation and injury in the lung following inhalation. Recently, H2S has been found to cause contraction in the rat urinary bladder via a neurogenic mechanism. Here, we studied whether sodium hydrogen sulfide (NaHS), used as donor of H2S, produces responses mediated by sensory nerve activation in the guinea-pig airways. NaHS evoked an increase in neuropeptide release in the airways that was significantly attenuated by capsaicin desensitization and by the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. In addition, NaHS caused an atropine-resistant contraction of isolated airways, which was completely prevented by capsaicin desensitization. Furthermore, NaHS-induced contraction was reduced by TRPV1 antagonism (ruthenium red, capsazepine and SB366791), and was abolished by pretreatment with the combination of tachykinin NK1 (SR140333) and NK2 (SR48968) receptor antagonists. In anesthetized guinea-pigs, intratracheal instillation of NaHS increased the total lung resistance and airway plasma protein extravasation. These two effects were reduced by TRPV1 antagonism (capsazepine) and tachykinin receptors (SR140333 and SR48968) blockade. Our results provide the first pharmacological evidence that H2S provokes tachykinin-mediated neurogenic inflammatory responses in guinea-pig airways, and that this effect is mediated by stimulation of TRPV1 receptors on sensory nerves endings. This novel mechanism may contribute to the irritative action of H2S in the respiratory system. PMID:15937520

  3. Role of Hydrogen Sulfide in Early Blood-Brain Barrier Disruption following Transient Focal Cerebral Ischemia

    PubMed Central

    Jiang, Zheng; Li, Chun; Manuel, Morganne L.; Yuan, Shuai; Kevil, Christopher G.; McCarter, Kimberly D.; Lu, Wei; Sun, Hong

    2015-01-01

    We determined the role of endogenous hydrogen sulfide (H₂S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn’t further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia. PMID:25695633

  4. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice

    PubMed Central

    2012-01-01

    Background Local pulmonary and systemic infections can lead to acute lung injury (ALI). The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S) appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ protective effects in vivo. This study was designed to define its potentially protective role in sepsis-induced lung injury. Methods C57BL/6 N mice received lipopolysaccharide (LPS) intranasally in the absence or presence of 80 parts per million H2S. After 6 h, acute lung injury was determined by comparative histology. Bronchoalveolar lavage (BAL) fluid was analyzed for total protein content and differential cell counting. BAL and serum were further analyzed for interleukin-1β, macrophage inflammatory protein-2, and/or myeloperoxidase glycoprotein levels by enzyme-linked immunosorbent assays. Differences between groups were analyzed by one way analysis of variance. Results Histological analysis revealed that LPS instillation led to increased alveolar wall thickening, cellular infiltration, and to an elevated ALI score. In the presence of H2S these changes were not observed despite LPS treatment. Moreover, neutrophil influx, and pro-inflammatory cytokine release were enhanced in BAL fluid of LPS-treated mice, but comparable to control levels in H2S treated mice. In addition, myeloperoxidase levels were increased in serum after LPS challenge and this was prevented by H2S inhalation. Conclusion Inhalation of hydrogen sulfide protects against LPS-induced acute lung injury by attenuating pro-inflammatory responses. PMID:23025523

  5. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  6. Application of bacteriophages specific to hydrogen sulfide-producing bacteria in raw poultry by-products.

    PubMed

    Gong, Chao; Liu, Xiaohua; Jiang, Xiuping

    2014-03-01

    Hydrogen sulfide-producing bacteria (SPB) can spoil raw animal materials and release harmful hydrogen sulfide (H2S) gas. The objective of this study was to apply a SPB-specific bacteriophage cocktail to control H2S production by SPB in different raw poultry by-products in the laboratory (20, 30, and 37C) and greenhouse (average temperature 29 to 31C, humidity 34.8 to 59.8%, and light intensity 604.8 Wm(2)) by simulating transportation and a rendering facility. The amount of H2S production was determined using either test strips impregnated with lead acetate or a H2S monitor. In the laboratory, phage treatment applied to fresh chicken meat inoculated with SPB, spoiled chicken meat, chicken guts, and chicken feathers reduced H2S production by approximately 25 to 69% at temperatures from 20 to 37C. In the greenhouse, phage treatment achieved approximately a 30 to 85% reduction of H2S yield in chicken offal and feathers. Among all phage treatments, multiplicity of infection (MOI) of 100 exhibited the highest inhibitory activities against SPB on H2S production. Several factors such as initial SPB level, temperature, and MOI affect lytic activities of bacteriophages. Our study demonstrated that the phage cocktail is effective to reduce the production of H2S by SPB significantly in raw animal materials. This biological control method can control SPB in raw poultry by-products at ambient temperatures, leading to a safer working environment and high quality product with less nutrient degradation for the rendering industry. PMID:24604865

  7. Assessment of ruminal hydrogen sulfide or urine thiosulfate as diagnostic tools for sulfur induced polioencephalomalacia in cattle.

    PubMed

    Drewnoski, Mary E; Ensley, Steve M; Beitz, Don C; Schoonmaker, Jon P; Loy, Dan D; Imerman, Paula M; Rathje, John A; Hansen, Stephanie L

    2012-07-01

    To determine if ruminal hydrogen sulfide, urine thiosulfate, or blood sulfhemoglobin could be used as diagnostic indicators for sulfur-induced polioencephalomalacia, 16 steers (8 cannulated, 368 ± 12 kg; 8 unmodified, 388 ± 10 kg; mean ± standard error) were fed 1 of 2 dietary treatments. Diets consisted of a low sulfate (0.24% S; control) wheat midd-based pellet or the control pellet with sodium sulfate added to achieve a high-sulfate (0.68% S) pellet. As designed, intake did not differ (P = 0.80) between treatments. At 8 hr postfeeding, ruminal hydrogen sulfide was not affected by cannulation (P = 0.35) but was greater (P < 0.01) in high S (6,005 ± 475 mg/l) than control (1,639 ± 472 mg/l) steers. Time of day of sampling affected (P = 0.01) ruminal hydrogen sulfide, with peak concentrations occurring 4-12 hr after feeding. Urine was collected prefeeding (AM) and 7-9 hr postfeeding (PM). Urine thiosulfate concentrations of high S steers sampled in the PM were greater (P > 0.01) than in the AM. However, there was no difference due to time of sampling for control. In both the AM and PM, urine thiosulfate concentrations of high S were greater (P > 0.01) than control. Although hydrogen sulfide and thiosulfate were elevated by increased dietary S intake, a concentration at which polioencephalomalacia is likely to occur could not be determined. Sampling urine for thiosulfate or rumen gas for hydrogen sulfide of nonsymptomatic pen mates 4-8 hr after feeding may be useful to assess sulfur exposure and differentiate between causes of polioencephalomalacia. PMID:22643342

  8. Assessment of ruminal hydrogen sulfide or urine thiosulfate as diagnostic tools for sulfur induced polioencephalomalacia in cattle.

    TOXLINE Toxicology Bibliographic Information

    Drewnoski ME; Ensley SM; Beitz DC; Schoonmaker JP; Loy DD; Imerman PM; Rathje JA; Hansen SL

    2012-07-01

    To determine if ruminal hydrogen sulfide, urine thiosulfate, or blood sulfhemoglobin could be used as diagnostic indicators for sulfur-induced polioencephalomalacia, 16 steers (8 cannulated, 368 ± 12 kg; 8 unmodified, 388 ± 10 kg; mean ± standard error) were fed 1 of 2 dietary treatments. Diets consisted of a low sulfate (0.24% S; control) wheat midd-based pellet or the control pellet with sodium sulfate added to achieve a high-sulfate (0.68% S) pellet. As designed, intake did not differ (P = 0.80) between treatments. At 8 hr postfeeding, ruminal hydrogen sulfide was not affected by cannulation (P = 0.35) but was greater (P < 0.01) in high S (6,005 ± 475 mg/l) than control (1,639 ± 472 mg/l) steers. Time of day of sampling affected (P = 0.01) ruminal hydrogen sulfide, with peak concentrations occurring 4-12 hr after feeding. Urine was collected prefeeding (AM) and 7-9 hr postfeeding (PM). Urine thiosulfate concentrations of high S steers sampled in the PM were greater (P > 0.01) than in the AM. However, there was no difference due to time of sampling for control. In both the AM and PM, urine thiosulfate concentrations of high S were greater (P > 0.01) than control. Although hydrogen sulfide and thiosulfate were elevated by increased dietary S intake, a concentration at which polioencephalomalacia is likely to occur could not be determined. Sampling urine for thiosulfate or rumen gas for hydrogen sulfide of nonsymptomatic pen mates 4-8 hr after feeding may be useful to assess sulfur exposure and differentiate between causes of polioencephalomalacia.

  9. Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor.

    PubMed

    Holwerda, Kim M; Burke, Suzanne D; Faas, Marijke M; Zsengeller, Zsuzsanna; Stillman, Isaac E; Kang, Peter M; van Goor, Harry; McCurley, Amy; Jaffe, Iris Z; Karumanchi, S Ananth; Lely, A Titia

    2014-04-01

    Soluble fms-like tyrosine kinase 1 (sFlt1), a circulating antiangiogenic protein, is elevated in kidney diseases and contributes to the development of preeclampsia. Hydrogen sulfide is a vasorelaxant and proangiogenic gas with therapeutic potential in several diseases. Therefore, we evaluated the potential therapeutic effect and mechanisms of action of hydrogen sulfide in an animal model of sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis created by adenovirus-mediated overexpression of sFlt1 in Sprague-Dawley rats. We injected sFlt1-overexpressing animals intraperitoneally with the hydrogen sulfide-donor sodium hydrosulfide (NaHS) (50 µmol/kg, twice daily) or vehicle (n=7 per group). Treatment with NaHS for 8 days significantly reduced sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis. Measurement of plasma protein concentrations with ELISA revealed a reduction of free plasma sFlt1 and an increase of free plasma vascular endothelial growth factor (VEGF) after treatment with NaHS. Renal VEGF-A mRNA expression increased significantly with NaHS treatment. In vitro, NaHS was proangiogenic in an endothelial tube assay and attenuated the antiangiogenic effects of sFlt1. Stimulation of podocytes with NaHS resulted in both short-term VEGF release (120 minutes) and upregulation of VEGF-A mRNA levels (24 hours). Furthermore, pretreatment of mesenteric vessels with a VEGF receptor 2-neutralizing antibody significantly attenuated NaHS-induced vasodilation. These results suggest that hydrogen sulfide ameliorates sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis in rats by increasing VEGF expression. Further studies are warranted to evaluate the role of hydrogen sulfide as a novel therapeutic agent for vascular disorders such as preeclampsia. PMID:24335973

  10. Methane, Carbon Dioxide, and Hydrogen Sulfide Production from the Terminal Methiol Group of Methionine by Anaerobic Lake Sediments

    PubMed Central

    Zinder, S. H.; Brock, T. D.

    1978-01-01

    A significant portion of the sulfide in lake sediments may be derived from sulfur-containing amino acids. Methionine degradation in Lake Mendota (Wisconsin) sediments was studied with gas chromatographic and radiotracer techniques. Temperature optimum and inhibitor studies showed that this process was biological. Methane thiol and dimethyl sulfide were produced in sediments when 1-μmol/ml unlabeled methionine was added. When chloroform (an inhibitor of one-carbon metabolism) was added to the sediments, methane thiol, carbon disulfide, and n-propane thiol were produced, even when no methionine was added. When 35S-labeled methionine was added to the sediments in tracer quantities (1.75 nmol/ml), labeled hydrogen sulfide was produced, and a roughly equal amount of label was incorporated into insoluble material. Methane and carbon dioxide were produced from [methyl-14C]methionine. Evidence is given favoring methane thiol as an intermediate in the formation of methane, carbon dioxide, and hydrogen sulfide from the terminal methiol group of methionine. Methionine may be an important source of sulfide in lake sediments. PMID:16345275

  11. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Calandra, Matteo; Pickard, Chris J.; Nelson, Joseph R.; Needs, Richard J.; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2016-04-01

    The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals—the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H–S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.

  12. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system.

    PubMed

    Errea, Ion; Calandra, Matteo; Pickard, Chris J; Nelson, Joseph R; Needs, Richard J; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2016-04-01

    The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S. PMID:27018657

  13. Removal of hydrogen sulfide from hot fuel gas using an electrochemical membrane system

    NASA Astrophysics Data System (ADS)

    Burke, Adrian Alan

    Sulfur is a natural contaminant in nearly all fossil fuel supplies. When a fuel stream is gasified or reformed, the sulfur manifests itself in the form of hydrogen sulfide, H2S. Extraordinary effort is put forth to remove H2S to at least ppm levels before the fuel can be used for power generation. To compete with current methods, an electrochemical membrane system (EMS) is now being studied to remove H2S in one step at high temperature. This process offers continuous H2S removal at an estimated operating cost of $0.32/kg H2S removed and a capital cost that is roughly half that of a Claus plant with tail-gas clean-up. Other advantages are the considerable savings in energy and space compared to current methods. A bench scale set-up was constructed to test the cell performance at 600-700°C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO2, 35% H2, 8% H2O, and 450-2000 ppm H2S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H 2S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H2S removal. Also, membrane thickness was found to be a critical parameter in cell design. A thinner membrane decreases the distance that sulfide ions must travel to be oxidized at the anode. These results identify sulfide diffusion across the membrane as the rate-limiting step in H2S removal. The maximum H2S removal flux of 1.1 x 10-6 gmol H2S min-1 cm-2 (or 3.5 mA cm-2) was obtained at 650°C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e cobalt sulfides and Y0.9Ca 0.1FeO3) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd2TiMoO7 and La0.7Sr0.3VO 3 were the compounds that retained their structure best even when exposed to high H2S, CO2, and H2O concentrations. They also showed no sign of melting at operating temperatures. But Gd 2TiMoO7 was seen to have better stability with electrolyte present, whereas La0.7Sr0.3VO3 was seen to have better stability in the pure sour gas stream without electrolyte present. A layered electrode that could help preserve a stable environment for each of these compounds should be explored in future research.

  14. Effective Hydrogen Generation from the Hydrogen Sulfide Solution by using Stratified Type Photocatalyst

    SciTech Connect

    Takahashi, H.; Yokoyama, S.; Baba, Y.; Hayashi, T.; Tohji, K.

    2008-02-25

    Stratified type photocatalyst with the extremely higher photocatalytic activities can be synthesized by using the chemical reaction between the Na{sub 2}S solution and Cd(OH){sub 2} precursors. This type of photocatalyst has the specific morphology which constructed by the nano-sized and capsule like formed structure, and the metal concentration was gradually changed in its wall. The 'charge gradient' was formed at the metal sulfide and oxide/hydroxide junction in the wall, which favored for the separation of the photo excited electron-hole pair. Consequently, stratified type photocatalyst shows the high catalytic activity than the usual nano CdS particles. By the addition of sulfur compound into the bio reactor contained the sulfur reducing bacteria, the H{sub 2}S gas concentration can increased to about 1000 times enlarge than the usual condition. Therefore, we can conclude that the enhancement of the H{sub 2}S gas evolved from the bio reactor was successfully achievement, and we don't need to afraid the shortage risk of H{sub 2}S supply. These H{sub 2}S gas concentration can enlarged to 80% by using A type zeorite. Especially, Ca-A type zeorite is considered as the suitable material.

  15. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi

    SciTech Connect

    Powell, M.A.; Somero, G.N.

    1986-08-01

    Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation (adenosine triphosphate (ATP) synthesis). The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.

  16. Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: Ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Wang, Liancheng; Tian, Fubo; Feng, Wanxiang; Chen, Changbo; He, Zhi; Ma, Yanming; Cui, Tian; Liu, Bingbing; Zou, Guangtian

    2010-04-01

    The structural and dynamical properties of phase IV and V of hydrogen sulfide were investigated by means of extensive ab initio molecular dynamics simulations. Starting from an experimental proposal for the structure of phase IV, an Ibca symmetry with a stable hydrogen bonding network is found at 15 GPa and 100 K. Molecular dynamics simulations at increasing temperature and at the pressure of 15 GPa suggest that phase IV will transform to a proton disordered structure at 15 GPa and 350 K. The newfound structure has a hexagonal lattice of P63/mmc symmetry, which is believed to be the remaining crystalline structure of phase V. The high mobility of protons in phase V is believed to be the key point to the dissociation and decomposition of hydrogen sulfide.

  17. Kinetics and mechanisms of iron sulfide reductions in hydrogen and in carbon monoxide

    USGS Publications Warehouse

    Wiltowski, T.; Hinckley, C.C.; Smith, Gerard V.; Nishizawa, T.; Saporoschenko, Mykola; Shiley, R.H.; Webster, J.R.

    1987-01-01

    The reduction of iron sulfides by hydrogen and by carbon monoxide has been studied using plug flow and thermogravimetric methods. The reactions were studied in the 523-723??K temperature range and were found to be first-order processes. Plug flow studies were used to correlate reaction rates between pyrite and the gases as a function of the surface area of the pyrite. The rate of H2S formation increases with the surface area of the pyrite sample. The results of thermogravimetric experiments indicate that the reactions consist of several steps. Rate constants for the pyrite reduction by H2 and by CO were obtained. The activation energies increased with degree of reduction. Values of Ea were 113.2 (step I) and 122.5 kJ/mole (step II) for pyrite reduction with CO and 99.4 (step I), 122.4 (step II), 125.2 (step III), and 142.6 kJ/mole (step IV) for pyrite reduction with hydrogen. ?? 1987.

  18. Factors affecting activated carbon-based catalysts for selective hydrogen sulfide oxidation

    SciTech Connect

    Li, Huixing; Monnell, J.D.; Alvin, M.A.; Vidic, R.D.

    2008-09-01

    The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show that for low-temperature gas clean-up (~1408C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.

  19. Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide.

    PubMed

    Shah, Mansi S; Tsapatsis, Michael; Siepmann, J Ilja

    2015-06-11

    The transferable potentials for phase equilibria force field is extended to hydrogen sulfide. The pure-component and binary vapor-liquid equilibria with methane and carbon dioxide and the liquid-phase relative permittivity are used for the parametrization of the Lennard-Jones (LJ) and Coulomb interactions, and models with three and four interaction sites are considered. For the three-site models, partial point charges are placed on the sites representing the three atoms, while the negative partial charge is moved to an off-atom site for the four-site models. The effect of molecular shape is probed using either only a single LJ interaction site on the sulfur atom or adding sites also on the hydrogen atoms. This procedure results in four distinct models, but only those with three LJ sites can accurately reproduce all properties considered for the parametrization. These two are further assessed for predictions of the liquid-phase structure, the lattice parameters and relative permittivity for the face-centered-cubic solid, and the triple point. An effective balance between LJ interactions and the dipolar and quadrupolar terms of the first-order electrostatic interactions is struck in order to obtain a four-site model that describes the condensed-phase properties and the phase equilibria with high accuracy. PMID:25981731

  20. Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Davis, Douglas D.; Gregory, Gerald L.; Mcneal, Robert J.; Bendura, Richard J.; Drewry, Joseph W.; Barrick, John D.; Kirchhoff, Volker W. J. H.; Motta, Adauto G.; Navarro, Roger L.

    1993-01-01

    This paper reports the overall experimental design and gives a brief overview of results from the third airborne Chemical Instrumentation Test and Evaluation (CITE 3) mission conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment. The primary objective of CITE 3 was to evaluate the capability of instrumentation for airborne measurements of ambient concentrations of SO2, H2S, CS, dimethyl sulfide, and carbonyl sulfide. Ancillary measurements augmented the intercomparison data in order to address the secondary objective of CITE 3 which was to address specific issues related to the budget and photochemistry of tropospheric sulfur species. The CITE 3 mission was conducted on NASA's Wallops Flight Center Electra aircraft and included a ground-based intercomparison of sulfur standards and intercomparison/sulfur science flights conducted from the NASA Wallops Flight Facility, Wallops Island, Virginia, followed by flights from Natal, Brazil. Including the transit flights, CITE 3 included 16 flights encompassing approximately 96 flight hours.

  1. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  2. Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale.

    PubMed

    Eapi, Gautam R; Sabnis, Madhu S; Sattler, Melanie L

    2014-08-01

    Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations > 3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations > 4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications: Information regarding air emissions from shale gas production is important given the recent increase in number of wells in various regions in the United States. Methane, the primary natural gas constituent, is a greenhouse gas; hydrogen sulfide, which can be present in gas condensate, is an odor-causing compound. This study surveyed wells representing one-third of the natural gas production volume in the Texas Barnett Shale and identified the percent of sites that warrant further study due to their fence line methane and hydrogen sulfide concentrations. PMID:25185395

  3. Physiological role of hydrogen sulfide and polysulfide in the central nervous system.

    PubMed

    Kimura, Hideo

    2013-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas that has the smell of rotten eggs. This pungent gas was considered as a physiological mediator, after the identification of endogenous sulfides in the mammalian brain. H2S is produced from L-cysteine by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT). We recently identified a fourth pathway, where H2S is produced from D-cysteine by the enzyme D-amino acid oxidase (DAO) along with 3MST. We demonstrated that H2S is a neuromodulator that facilitates hippocampal long-term potentiation (LTP) by enhancing the activity of N-methyl-D-aspartate (NMDA) receptors. It also induces Ca(2+) influx in the astrocytes by activating the transient receptor potential ankyrin-1 (TRPA1) channels. In addition to being a signaling molecule, it also functions as a neuroprotective agent by enhancing the production of glutathione, a major intracellular antioxidant that scavenges the reactive oxygen species (ROS) in the mitochondria. H2S regulates the activity of the enzymes by incorporating the bound sulfane sulfur to cysteine residues. This modification is known as sulfhydration or sulfuration. The neuroprotective ubiquitin E3 ligase, parkin, enhances its neuroprotective activity by this modification. This review is focused on the functional role of H2S as a signaling molecule and as a cytoprotectant in the nervous system. In addition, this review shows the recent findings that indicate that the H2S-derived polysulfides found in the brain activate TRPA1 channels more potently than parental H2S. PMID:24036365

  4. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms

    PubMed Central

    Szabo, Csaba; Ransy, Céline; Módis, Katalin; Andriamihaja, Mireille; Murghes, Baptiste; Coletta, Ciro; Olah, Gabor; Yanagi, Kazunori; Bouillaud, Frédéric

    2014-01-01

    Until recently, hydrogen sulfide (H2S) was exclusively viewed a toxic gas and an environmental hazard, with its toxicity primarily attributed to the inhibition of mitochondrial Complex IV, resulting in a shutdown of mitochondrial electron transport and cellular ATP generation. Work over the last decade established multiple biological regulatory roles of H2S, as an endogenous gaseous transmitter. H2S is produced by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). In striking contrast to its inhibitory effect on Complex IV, recent studies showed that at lower concentrations, H2S serves as a stimulator of electron transport in mammalian cells, by acting as a mitochondrial electron donor. Endogenous H2S, produced by mitochondrially localized 3-MST, supports basal, physiological cellular bioenergetic functions; the activity of this metabolic support declines with physiological aging. In specialized conditions (calcium overload in vascular smooth muscle, colon cancer cells), CSE and CBS can also associate with the mitochondria; H2S produced by these enzymes, serves as an endogenous stimulator of cellular bioenergetics. The current article overviews the biochemical mechanisms underlying the stimulatory and inhibitory effects of H2S on mitochondrial function and cellular bioenergetics and discusses the implication of these processes for normal cellular physiology. The relevance of H2S biology is also discussed in the context of colonic epithelial cell physiology: colonocytes are exposed to high levels of sulfide produced by enteric bacteria, and serve as a metabolic barrier to limit their entry into the mammalian host, while, at the same time, utilizing it as a metabolic ‘fuel’. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991830

  5. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Pan, Yuan; Liu, Yunqi; Liu, Chenguang

    2015-12-01

    Colalt sulfide nanocrystals (NCs), including dandelion-like Co9S8 and sphere-like Co3S4, have been synthesized via a thermal decomposition approach using cobalt acetylacetonate as the cobalt source, 1-dodecanethiol as the sulfur source and oleic acid or oleylamine as the high boiling organic solvent. It is found that the molar ratio of the Co:S precursor and the species of solvent play an important role in the control of phase and morphology of cobalt sulfide nanostructures. The phase structure and morphology of the as-synthesized nickel sulfide NCs are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption. Then we further compare the electrocatalytic activity and stability of as-synthesized cobalt sulfide NCs for hydrogen evolution reaction (HER). The results show that sphere-like Co3S4 exhibits better electrocatalytic activity than the dandelion-like Co9S8 NCs for HER, which can be attributed to the difference of phase structure and morphology. The sphere-like Co3S4 NCs have large surface area and high electrical conductivity, both are beneficial to enhance the catalytic activity. This study indicates that the crystalline phase structure and morphology of cobalt sulfide NCs are important for designing HER electrocatalysts with high efficiency and good stability.

  6. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K.C. Kwon

    2009-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is maintained approximately at 2 for all the reaction experiment runs.

  7. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2007-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is maintained approximately at 2 for all the reaction experiment runs.

  8. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is maintained approximately at 2 for all the reaction experiment runs.

  9. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability has not been observed. A new test cell specially designed to test the membranes has been constructed to provide basic science data on superpermeability.

  10. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a residence time of 18.8 s with a flow rate of 39.4 x 10{sup -6} m{sup 3}/s (5 ft{sup 3}/h) and a specific energy of 13,000 J/l using niobium and platinum coated stainless steel tubes as cathodes. Under these conditions, the First Law efficiency for the system was 8%. Under similar reaction conditions, methane conversions were {approx}50% higher with niobium and platinum coated stainless steel cathodes than with a stainless steel cathode.

  11. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg.

    PubMed

    Shyla, B; Nagendrappa, G

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λ(max) 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λ(max) 570 the system 3/barium diphenylamine sulphonate λ(max) 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml(-1)/0.14-1.40 μg ml(-1). PMID:22889607

  12. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Nagendrappa, G.

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λmax 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λmax 570 the system 3/barium diphenylamine sulphonate λmax 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml-1/0.14-1.40 μg ml-1.

  13. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    NASA Astrophysics Data System (ADS)

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However, further research are needed to understand the reduction mechanism and to transfer the technology in a real life application.

  14. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-01

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase.Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase. Electronic supplementary information (ESI) available: Nyquist plots, cyclic voltammograms, STEM-EDS images, Raman spectra of MoSx/CFP catalysts. See DOI: 10.1039/c5nr09065b

  15. Suicide Fads: Frequency and Characteristics of Hydrogen Sulfide Suicides in the United States

    PubMed Central

    Reedy, Sarah Jane D.; Schwartz, Michael D.; Morgan, Brent W.

    2011-01-01

    Objective: To assess the frequency of hydrogen sulfide (H2S) suicides and describe the characteristics of victims in the United States (U.S.) since the technique became common in Japan in 2007. Methods: To ascertain the frequency of intentional H2S related deaths in the U.S. prior to the start of the Japanese trend in 2007, we searched the multiple-cause-of-death data from the National Vital Statistics System. To collect as much information about the victims as possible, we sent an email to the National Association of Medical Examiners (NAME) listserv asking for their cooperation in identifying cases of H2S suicide. To identify cases that were not voluntarily reported by medical examiners but were reported by the media, we conducted Google searches using the search terms: “hydrogen sulfide suicide,” “H2S suicide,” “detergent suicide,” “chemical suicide,” and “suicide fad.” We obtained all available autopsy reports and abstracted information, including the site of the incident, the presence of a note warning others about the toxic gas and the demographic characteristics of the victims. We contacted medical examiners who potentially had custody of the cases that were identified through media reports and requested autopsies of these victims. When unable to obtain the autopsies, we gathered information from the media reports. Results: Forty-five deaths from H2S exposure occurred in the U.S. from 1999 to 2007, all unintentional. Responses from the NAME listserv yielded autopsy reports for 11 victims, and Google searches revealed an additional 19 H2S suicides in the U.S. since 2008. Overall (n=30), two cases were identified during 2008, 10 in 2009, and 18 in 2010. The majority of victims were white males, less than 30-years-old, left a warning note, and were found in cars. There were five reports of injuries to first responders, but no secondary fatalities. Conclusion: H2S suicides are increasing in the U.S., and their incidence is probably underestimated by public health officials and physicians. First responders are at risk when assessing these victims due to the severe toxicity of the gas. Emergency providers must be aware of H2S suicides to educate others and care for the rare survivor. PMID:21731786

  16. Hydrogen sulfide increases excitability through suppression of sustained potassium channel currents of rat trigeminal ganglion neurons

    PubMed Central

    2013-01-01

    Background Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role and mechanism for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study is to investigate distribution of endogenous H2S synthesizing enzyme cystathionine-β-synthetase (CBS) expression and role of H2S on excitability and voltage-gated potassium channels of TG neurons. Methods Immunofluorescence studies were carried out to determine whether CBS was co-expressed in Kv1.1 or Kv1.4-positive TG neurons. Whole cell patch clamp recordings were employed on acutely isolated TG neurons from adult male Sprague Dawley rats (6–8 week old). von Frey filaments were used to examine the pain behavioral responses in rats following injection of sodium hydrosulfide. Results In rat TG, 77.3±6.6% neurons were immunoreactive for CBS, 85.1±3.8% for Kv1.1 and 97.8±1.1% for Kv1.4. Double staining showed that all CBS labeled cells were Kv1.1 and Kv1.4 positive, but only 92.2±6.1% of Kv1.1 and 78.2±9.9% of Kv1.4 positive cells contained CBS. Application of H2S donor NaHS (250 μM) led to a significant depolarization of resting membrane potential recorded from TG neurons. NaHS application also resulted in a dramatic reduction in rheobase, hyperpolarization of action potential threshold, and a significant increase in the number of action potentials evoked at 2X and 3X rheobase stimulation. Under voltage-clamp conditions, TG neurons exhibited transient A-type (IA) and sustained outward rectifier K+ currents (IK). Application of NaHS did suppress IK density while did not change IA density of TG neurons (n=6). Furthermore, NaHS, a donor of hydrogen sulfide, produced a significant reduction in escape threshold in a dose dependent manner. Conclusion These data suggest that endogenous H2S generating enzyme CBS was co-localized well with Kv1.1 and Kv1.4 in TG neurons and that H2S produces the mechanic pain and increases neuronal excitability, which might be largely mediated by suppressing IK density, thus identifying for the first time a specific molecular mechanism underlying pain and sensitization in TG. PMID:23413915

  17. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S)

    PubMed Central

    Sitdikova, Guzel F.; Fuchs, Roman; Kainz, Verena; Weiger, Thomas M.; Hermann, Anton

    2014-01-01

    Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11–13%, i.e., 34–41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S. PMID:25429270

  18. Design and development of a system to measure ambient levels of hydrogen sulfide and lower mercaptans from a mobile platform

    NASA Astrophysics Data System (ADS)

    Tarver, Gary A.; Dasgupta, Purnendu K.

    Hydrogen sulfide and other reduced sulfur gases are released into the atmosphere during oil recovery operations. Little is quantitatively known concerning total sulfur flux due to these fugitive emissions. A mobile atmospheric research laboratory (MARL) was constructed to furnish facile, self contained access to oil field operations. An automated instrument that can continuously measure low levels of hydrogen sulfide with good time resolution (limit of detection 0.2 ppbv for a sampling time of 2.5 min) was developed and deployed on the MARL. Meteorological instrumentation and chemical instrumentation to monitor other gas and aerosol species along with information on meteorological conditions were also installed. Initial field data show a strong diurnal pattern of H 2S concentrations.

  19. Effect of hydrogen sulfide partial pressure, pH, and chloride content on the SSC resistance of martensitic stainless steels and martensitic precipitation hardening stainless steels

    SciTech Connect

    Vitale, D.D.

    1999-11-01

    Centrifugal compressor applications require the use of martensitic stainless and martensitic precipitation hardening stainless steels at high hydrogen sulfide partial pressures. These materials do not perform well when tested with standard TM0177 test solutions. This paper describes the effect of hydrogen sulfide partial pressure, pH, and chloride content on their SSC resistance and explains their successful field operational experience. Environmental limits are determined for several materials and heat treat conditions.

  20. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  1. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  2. Source Of Hydrogen Sulfide To Sulfidic Spring And Watershed Ecosystems In Northern Sierra De Chiapas, Mexico Based On Sulfur And Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Rosales Lagarde, L.; Boston, P. J.; Campbell, A.

    2013-12-01

    At least four watersheds in northern Sierra de Chiapas, Mexico are fed by conspicuous karst sulfide-rich springs. The toxic hydrogen sulfide (H2S) in these springs nurtures rich ecosystems including especially adapted microorganisms, invertebrates and fish. Sulfur and carbon isotopic analysis of various chemical species in the spring water are integrated within their hydrogeologic context to evaluate the hydrogen sulfide source. Constraining the H2S origin can also increase the understanding of this compound effect in the quality of the nearby hydrocarbon reservoirs, and the extent to which its oxidation to sulfuric acid increases carbonate dissolution and steel corrosion in surface structures. The SO42-/H2S ratio in the spring water varies from 70,000 to 2 meq/L thus sulfate is the dominant species in the groundwater system. This sulfate is mainly produced from anhydrite dissolution based on its isotopic signature. The Δ SO42--H2S range of 16 spring water samples (30-50 ‰) is similar to the values determined by Goldhaber & Kaplan (1975) and Canfield (2001) for low rates of bacterial sulfate reduction suggesting that this is the most important mechanism producing H2S. Although the carbon isotopes do not constrain the nature of the organic matter participating in this reaction, this material likely comes from depth, perhaps as hydrocarbons, due to the apparent stability of the system. The organic matter availability and reactivity probably control the progress of sulfate reduction. The subsurface environments identified in the area also have different sulfur isotopic values. The heavier residual sulfate isotopic value in the Northern brackish springs (δ34S SO42- ≥ 18 ‰) compared to the Southern springs (δ34S SO42- ~18 ‰) suggests sulfate reduction is particularly enhanced in the former, probably by contribution of organic matter associated with oil produced water. In comparison, the composition of the Southern aquifer is mainly influenced by halite dissolution. Fresh water from the Local environment percolates into the Northern and the Southern environments. Mixing between these three aquifers may enhance bacterial sulfate reduction, thus increasing the H2S concentration in the sulfidic springs. The integration of the geochemical attributes and the aquatic communities at each watershed will produce a more comprehensive view of these spring ecosystems and their temporal and spatial evolution.

  3. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    PubMed Central

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the mitochondria with hydrogen sulfide preserved the enzyme activity in the in vitro conditions. PMID:27168694

  4. Concentrations of Bioaerosols, Odors and Hydrogen Sulfide Inside and Downwind from Two Types of Swine Livestock Operations

    PubMed Central

    Thorne, Peter S.; Ansley, Anne; Perry, Sarah Spencer

    2016-01-01

    Few data on in-barn and downwind concentrations of endotoxin, bioaerosols and odors from livestock facilities are available and no studies have compared conventional confinement operations to the more animal-friendly hoop operations. Hoops are open to the environment and use a composted bedding system rather than housing pigs on slatted floors over pits holding manure slurry as in conventional confinements. We assessed airborne toxicants upwind, in-barns and downwind and evaluated determinants of exposure. Inhalable particulate matter, endotoxin, odor threshold, hydrogen sulfide, culturable mesophilic bacteria, culturable fungi, and total airborne microbes along with wind speed, temperature, and humidity were measured at separate midsized livestock facilities (1 hoop, 1 confinement) in Central Iowa on ten occasions over two years. Significant differences in contaminants were observed between hoops and confinement buildings and across seasons for endotoxin, odors, airborne microorganisms, and hydrogen sulfide. For hoops and confinements, respectively, geometric mean in-barn concentrations were 3250 and 3100 EU/m3 for endotoxin; 1400 and 1910 μg/m3 for particulates; 19.6 and 146 ppb for hydrogen sulfide; 137 and 428 dilutions for odor threshold; and 3.0×106 and 1.5×106 organisms/m3 for total microbes. Endotoxin, odor, and culturable microorganisms exceeded recommended exposure limits. Reduced analysis of variance models for these contaminants demonstrated differences by barn type, season, number of pigs, and, in some cases, temperature and humidity. Both types of swine operations produced high airborne concentrations of endotoxin, odor, hydrogen sulfide, bacteria and fungi. Endotoxin and odors were found downwind at concentrations previously associated with adverse health effects. PMID:19177273

  5. Concentrations of bioaerosols, odors, and hydrogen sulfide inside and downwind from two types of swine livestock operations.

    PubMed

    Thorne, Peter S; Ansley, Anne C; Perry, Sarah Spencer

    2009-04-01

    Few data on in-barn and downwind concentrations of endotoxin, bioaerosols, and odors from livestock facilities are available, and no studies have compared conventional confinement operations with the more animal-friendly hoop operations. Hoops are open to the environment and use a composted bedding system rather than housing pigs on slatted floors over pits holding manure slurry as in conventional confinements. We assessed airborne toxicants upwind, in barns, and downwind and evaluated determinants of exposure. Inhalable particulate matter, endotoxin, odor threshold, hydrogen sulfide, culturable mesophilic bacteria, culturable fungi, and total airborne microbes, along with wind speed, temperature, and humidity were measured at separate midsized livestock facilities (one hoop, one confinement) in Central Iowa on 10 occasions over 2 years. Significant differences in contaminants were observed between hoops and confinement buildings and across seasons for endotoxin, odors, airborne microorganisms, and hydrogen sulfide. For hoops and confinements, respectively, geometric mean in-barn concentrations were 3250 and 3100 EU/m(3) for endotoxin; 1400 and 1910 microg/m(3) for particulates; 19.6 and 146 ppb for hydrogen sulfide; 137 and 428 dilutions for odor threshold; and 3.0 x 10(6) and 1.5 x 10(6) organisms/m(3) for total microbes. Endotoxin, odor, and culturable microorganisms exceeded recommended exposure limits. Reduced analysis of variance models for these contaminants demonstrated differences by barn type, season, number of pigs, and, in some cases, temperature and humidity. Both types of swine operations produced high airborne concentrations of endotoxin, odor, hydrogen sulfide, bacteria, and fungi. Endotoxin and odors were found downwind at concentrations previously associated with adverse health effects. PMID:19177273

  6. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    PubMed Central

    Vaitheeswari, S.; Sriram, R.; Brindha, P.; Kurian, Gino A.

    2015-01-01

    ABSTRACT Purpose: Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model. Materials and Methods: The antilithiatic activity of sodium hydrogen sulfide (NaSH), sodium thiosulfate (Na2S2O3) and sodium sulfate (Na2SO4) on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques. Results: The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4. Conclusion: Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O3 2-and SO4 2- moiety produced by the test compounds. PMID:26200543

  7. Chemiluminescent Detection of Enzymatically-Produced Hydrogen Sulfide: Substrate Hydrogen Bonding Influences Selectivity for H2S over Biological Thiols

    PubMed Central

    Bailey, T. Spencer; Pluth, Michael D.

    2013-01-01

    Hydrogen sulfide (H2S) is now recognized as an important biological regulator and signaling agent that is active in many physiological processes and diseases. Understanding the important roles of this emerging signaling molecule has remained challenging, in part due to the limited methods available for detecting endogenous H2S. Here we report two reaction-based ChemiLuminescent Sulfide Sensors, CLSS-1 and CLSS-2, with strong luminescence responses toward H2S (128-, 48-fold, respectively) and H2S detection limits (0.7 ± 0.3, 4.6 ± 2.0 μM, respectively) compatible with biological H2S levels. CLSS-2 is highly selective for H2S over other reactive sulfur, nitrogen, and oxygen species (RSONs) including GSH, Cys, Hcy, S2O32−, NO2−, HNO, ONOO−, and NO. Despite its similar chemical structure, CLSS-1 displays lower selectivity toward amino acid-derived thiols than CLSS-2. The origin of this differential selectivity was investigated using both computational DFT studies and NMR experiments. Our results suggest a model in which amino acid binding to the hydrazide moiety of the luminol-derived probes provides differential access to the reactive azide in CLSS-1 and CLSS-2, thus eroding the selectivity of CLSS-1 for H2S over Cys and GSH. Based on its high selectivity for H2S, we used CLSS-2 to detect enzymatically-produced H2S from isolated cystathionine γ-lyase (CSE) enzymes (p < 0.001) and also from C6 cells expressing CSE (p < 0.001). CLSS-2 can readily differentiate between H2S production in active CSE and CSE inhibited with β-cyano alanine (BCA) in both isolated CSE enzymes (p < 0.005) and in C6 cells (p < 0.005). In addition to providing a highly sensitive and selective reaction-based tool for chemiluminescent H2S detection and quantification, the insights into substrate-probe interactions controlling the selectivity for H2S over biologically-relevant thiols may guide the design of other selective H2S detection scaffolds. PMID:24093945

  8. Microbial control of the production of hydrogen sulfide by sulfate-reducing bacteria.

    PubMed

    Montgomery, A D; McLnerney, M J; Sublette, K L

    1990-03-01

    A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments. PMID:18592547

  9. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor.

    PubMed

    Errea, Ion; Calandra, Matteo; Pickard, Chris J; Nelson, Joseph; Needs, Richard J; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2015-04-17

    We use first-principles calculations to study structural, vibrational, and superconducting properties of H_{2}S at pressures P≥200  GPa. The inclusion of zero-point energy leads to two different possible dissociations of H2S, namely 3H2S→2H3S+S and 5H2S→3H3S+HS2, where both H3S and HS2 are metallic. For H3S, we perform nonperturbative calculations of anharmonic effects within the self-consistent harmonic approximation and show that the harmonic approximation strongly overestimates the electron-phonon interaction (λ≈2.64 at 200 GPa) and Tc. Anharmonicity hardens H─S bond-stretching modes and softens H─S bond-bending modes. As a result, the electron-phonon coupling is suppressed by 30% (λ≈1.84 at 200 GPa). Moreover, while at the harmonic level Tc decreases with increasing pressure, the inclusion of anharmonicity leads to a Tc that is almost independent of pressure. High-pressure hydrogen sulfide is a strongly anharmonic superconductor. PMID:25933334

  10. Hydrogen sulfide prevents Abeta-induced neuronal apoptosis by attenuating mitochondrial translocation of PTEN.

    PubMed

    Cui, Weigang; Zhang, Yinghua; Yang, Chenxi; Sun, Yiyuan; Zhang, Min; Wang, Songtao

    2016-06-14

    Neuronal cell apoptosis is an important pathological change in Alzheimer's disease (AD). Hydrogen sulfide (H(2)S) is known to be a novel gaseous signaling molecule and a cytoprotectant in many diseases including AD. However, the molecular mechanism of the antiapoptosis activity of H(2)S in AD is not yet fully understood. The aim of the present study is to evaluate the inhibitory effects of H(2)S on Abeta (Aβ)-induced apoptosis and the molecular mechanisms underlying primary neuron cells. Our results showed that sodium hydrosulfide (NaHS), a donor of H(2)S, significantly ameliorated Aβ-induced cell apoptosis. NaHS also reversed the Aβ-induced translocation of the phosphatase and tensin homologs deleted on chromosome 10 (PTEN) from the cytosol to the mitochondria. Furthermore, H(2)S increased the level of p-AKT/AKT significantly. Interestingly, the antiapoptosis effects of H(2)S were blocked down by specific PI3K/AKT inhibitor wortmannin. In conclusion, these data indicate that H(2)S inhibits Aβ-induced neuronal apoptosis by attenuating mitochondrial translocation of PTEN and that activation of PI3K/AKT signaling pathway plays a critical role in H(2)S-mediated neuronal protection. Our findings provide a novel route into the molecular mechanisms of neuronal apoptosis in AD. PMID:27026591

  11. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.

    PubMed

    Chen, Yang; Tran, Phong D; Boix, Pablo; Ren, Yi; Chiam, Sing Yang; Li, Zhen; Fu, Kunwu; Wong, Lydia H; Barber, James

    2015-04-28

    The construction of viable photoelectrochemical (PEC) devices for solar-driven water splitting can be achieved by first identifying an efficient independent photoanode for water oxidation and a photocathode for hydrogen generation. These two photoelectrodes then must be assembled with a proton exchange membrane within a complete coupled system. Here we report the preparation of a Si/a-CoMoSx hybrid photocathode which shows impressive performance (onset potential of 0.25 V vs RHE and photocurrent jsc of 17.5 mA cm(-2) at 0 V vs RHE) in pH 4.25 phosphate solution and under simulated AM 1.5 solar illumination. This performance is among the best reported for Si photocathodes decorated with noble-metal-free catalysts. The electrode preparation is scalable because it relies on a photoassisted electrodeposition process employing an available p-type Si electrode and [Co(MoS4)2](2-) precursor. Investigation of the mechanism of the Si/a-CoMoSx electrode revealed that under conditions of H2 photogeneration this bimetallic sulfide catalyst is highly efficient in extracting electrons from illuminated Si and subsequently in reducing protons into H2. The Si/a-CoMoSx photocathode is functional over a wide range of pH values, thus making it a promising candidate for the construction of a complete solar-driven water splitting PEC device. PMID:25801437

  12. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants.

    PubMed

    Li, Zhong-Guang

    2015-01-01

    Hydrogen sulfide (H2S) which is considered as a novel gasotransmitter after reactive oxygen species and nitric oxide in plants has dual character, that is, toxicity that inhibits cytochrome oxidase at high concentration and as signal molecule which is involved in plant growth, development, and the acquisition of tolerance to adverse environments such as extreme temperature, drought, salt, and heavy metal stress at low concentration. Therefore, H2S homeostasis is very important in plant cells. The level of H2S in plant cells is regulated by its synthetic and degradative enzymes, L-/D-cysteine desulfhydrase (L-/D-DES), sulfite reductase (SiR), and cyanoalanine synthase (CAS), which are responsible for H2S synthesis, while cysteine synthase (CS) takes charge of the degradation of H2S, but its reverse reaction also can produce H2S. Here, after crude enzyme is extracted from plant tissues, the activities of L-/D-DES, SiR, CAS, and CS are measured by spectrophotometry, the aim is to further understand homeostasis of H2S in plant cells and its potential mechanisms. PMID:25747484

  13. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate

    SciTech Connect

    Betterton, E.A. ); Hoffmann, M.R. )

    1990-12-01

    The stoichiometry and mechanism of the oxidation of aqueous S({minus}II) by HSO{sub 5}{sup {minus}} is similar to the oxidation of S({minus}II) by H{sub 2}O{sub 2}, but the rate of oxidation of HSO{sub 5}{sup {minus}} is 3-4 orders of magnitude faster than the corresponding reaction with H{sub 2}O{sub 2}. At high pH and high (HSO{sub 5}{sup {minus}})/(S({minus}II)) ratios SO{sub 4}{sup 2{minus}} and H{sup +} formation are favored, whereas at low pH and low (HSO{sub 5}{sup {minus}})/(S({minus}II)) ratios elemental sulfur (S{sub 8}) is favored as the principal reaction product. Peroxymonosulfate is a monosubstituted derivative of hydrogen peroxide that is thermodynamically more powerful as an oxidant than H{sub 2}O{sub 2} and kinetically more reactive. These properties make HSO{sub 5}{sup {minus}} a potentially important oxidant in natural systems such as remote tropospheric clouds and also a viable alternative to H{sub 2}O{sub 2} for the control of malodorous sulfur compounds and for the control of sulfide-induced corrosion in concrete sewers.

  14. Superoxide Mediates Depressive Effects Induced by Hydrogen Sulfide in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats

    PubMed Central

    Yu, Haiyun; Xu, Haiyan; Liu, Xiaoni; Zhang, Nana; He, Anqi; Yu, Jerry; Lu, Ning

    2015-01-01

    Hydrogen sulfide (H2S) plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM). We examined cell distributions of cystathionine-β-synthase (CBS) and effects of H2S on reactive oxygen species (ROS) and mean arterial blood pressure (MAP) in spontaneously hypertensive rats (SHRs). We found that CBS was expressed in neurons of the RVLM, and the expression was lower in SHRs than in Wistar-Kyoto rats. Microinjection of NaHS (H2S donor), S-adenosyl-l-methionine (SAM, a CBS agonist), or Apocynin (NADPH oxidase inhibitor) into the RVLM reduced the ROS level, NADPH oxidase activity, and MAP, whereas microinjection of hydroxylamine hydrochloride (HA, a CBS inhibitor) increased MAP. Furthermore, intracerebroventricular infusion of NaHS inhibited phosphorylation of p47phox, a key step of NADPH oxidase activation. Since decreasing ROS level in the RVLM reduces MAP and heart rate and increasing H2S reduces ROS production, we conclude that H2S exerts an antihypertensive effect via suppressing ROS production. H2S, as an antioxidant, may be a potential target for cardiovascular diseases. PMID:26078823

  15. Detection of hydrogen sulfide through photoluminescence quenching of penicillamine-copper nanocluster aggregates.

    PubMed

    Ma, Jia-Ying; Chen, Po-Cheng; Chang, Huan-Tsung

    2014-05-16

    We have developed a one-pot, inexpensive, simple and rapid method to synthesize photoluminescent copper nanocluster (Cu NC) aggregates from Cu(2+) ions in 65% (v v(-1)) dimethylformamide aqueous solution containing penicillamine (PA) as a capping and reducing agent. As-prepared PA-Cu NC aggregates emit at 580 nm when excited at 326 nm, with a quantum yield of 2.0%. The photoluminescence of PA-Cu NC aggregates originate from ligand-to-metal charge transfer, which is supported by a long lifetime (126.5 ns) and a large Stokes shift (254 nm). As-prepared PA-Cu NC aggregates have different emission wavelengths with the same excitation wavelength in various organic-aqueous solutions. The PA-Cu NC aggregates are highly selective and sensitive to the detection of hydrogen sulfide (H₂S), based on analyte-induced photoluminescence quenching through the formation of CuS nanoparticles. The probe allows the detection of H₂S, with a linear range of 1-100 μM and a limit of detection (signal-to-noise ratio = 3) of 500 nM. The practicality of this probe has been validated through the analysis of hot spring water samples. PMID:24762432

  16. A fatal work-related poisoning by hydrogen sulfide: report on a case.

    PubMed

    Lancia, Massimo; Panata, Laura; Tondi, Verdiana; Carlini, Luigi; Bacci, Mauro; Rossi, Riccardo

    2013-12-01

    Hydrogen sulfide (H2S) is a colorless and potentially deadly gas that may cause rapid loss of consciousness and respiratory depression without warning. Although occupational exposure to H2S and the medical management of H2S-associated toxicity are widely established, it remains a problem in the sour gas industry and in other industrial settings, predominantly in new workers. In this article, the authors report a fatal case of a factory worker who died after breathing in H2S while undertaking a task that he was not trained to perform. Toxicological assessment supported by autopsy findings and circumstantial data was essential to clarify the cause of death, determined as H2S poisoning. This case emphasizes the need to develop work safety initiatives, improve on-the-job training, and introduce more consciousness to put on protective equipment for workers; indeed, correct training and education for workers regarding safety in the workplace may help to reduce worker fatalities. PMID:24196727

  17. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism.

    PubMed

    Sun, Ying; Zhang, Wei; Zeng, Tao; Nie, Qixing; Zhang, Fengying; Zhu, Liqin

    2015-06-15

    The effect of fumigation with hydrogen sulfide (H2S) gas on inhibiting enzymatic browning of fresh-cut lotus root slices was investigated. Browning degree, changes in color, total phenol content, superoxide anion production rate (O2(-)), H2O2 content, antioxidant capacities (DPPH radical scavenging ability, ABTS radical scavenging activity and the reducing power) and activities of the phenol metabolism-associated enzymes including phenylalanine ammonialyase (PAL), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) were evaluated. The results showed that treatment with 15 μl L(-1) H2S significantly inhibited the browning of fresh-cut lotus root slices (P<0.05), reduced significantly O2(-) production rate and H2O2 content, and enhanced antioxidant capacities (P<0.05). PPO and POD activities in the fresh-cut lotus root slices were also significantly inhibited by treatment with H2S (P<0.05). This study suggested that treatment with exogenous H2S could inhibit the browning of fresh-cut lotus root slices by enhancing antioxidant capacities to alleviate the oxidative damage. PMID:25660900

  18. Carbon Monoxide, Hydrogen Sulfide, and Nitric Oxide as Signaling Molecules in the Gastrointestinal Tract

    PubMed Central

    Farrugia, Gianrico; Szurszewski, Joseph H.

    2014-01-01

    Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves and can regulate the immune system. The pathways that produce nitric oxide (NO) H2S and CO interact—each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas NO and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiologic functions of CO and H2S and how they might be used as therapeutic agents. PMID:24798417

  19. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  20. Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents.

    PubMed

    Florent, Marc; Wallace, Rajiv; Bandosz, Teresa J

    2015-06-15

    Cadmium-based materials with various hydroxide to carbonate ratios and their composites with graphite oxide were synthesized by a fast and simple precipitation procedure and then used as H2S adsorbents at ambient conditions in the dark or upon a visible light exposure. The structural properties and chemical features of the adsorbents were analyzed before and after hydrogen sulfide adsorption. The results showed that the high ratio of hydroxide to carbonate led to an improved H2S adsorption capacity. In moist conditions cadmium hydroxide was the best adsorbent. Moreover, it showed photoactive properties. While the incorporation of a graphene-based phase slightly decreased the extent of the improvement in the H2S adsorption capacity in moist conditions caused by photoactivity, its presence in the composites enhanced the performance in dry conditions. This was linked to photoactivity of CdS that can split H2S resulting in the formation of water in the system. The graphene-based phase enhanced the electron transfer and delayed the recombination of photoinduced charges. Carbonate-based materials showed a very good adsorption capacity in dark conditions in the presence of moisture. Upon the light exposure, CdS likely photocatalyzes the reduction of carbonate ions to formates/formaldehydes. Their deposition on the surface limits the number of sites available to H2S adsorption. PMID:25792480

  1. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation.

    PubMed

    Ugliano, Maurizio; Henschke, Paul A

    2010-02-15

    Two analytical approaches for the rapid measurement of hydrogen sulfide (H(2)S) have been compared to a reference method for their potential application as a rapid procedure for the quantification of H(2)S formed during alcoholic fermentations. In one case, silver nitrate, lead acetate, and mercuric chloride selective detector tubes for the analysis of H(2)S in air were investigated. In the other case, a commercially available kit for the diagnosis of nitrogen starvation in wine fermentations, which is based on the detection of H(2)S, was investigated. Both methods exhibited excellent linearity of response, but the mercuric chloride tube was found to suffer from interferences due to the concomitant presence of mercaptans, which resulted in erroneous H(2)S quantification. A comparative study between the two methods studied and the cadmium hydroxide/methylene blue reference method commonly used to monitor H(2)S indicate that the two new methods displayed better recoveries at low H(2)S concentrations, besides being more rapid and economical. The two new methods were successfully used to quantify production of H(2)S in different grape juice fermentations. The suitability of each method for the study of specific aspects of H(2)S production during fermentation is discussed. PMID:20103148

  2. Hydrogen sulfide protects against cognitive impairment induced by hepatic ischemia and reperfusion via attenuating neuroinflammation.

    PubMed

    Tu, Faping; Li, Jingdong; Wang, Ji; Li, Qiang; Chu, Weihua

    2016-03-01

    Previously, hepatic ischemia followed by reperfusion (hepatic I/R) has been found to cause cognitive impairment. Hydrogen sulfide (H2S) attenuates hepatectomy induced cognitive deficits and also protects against cognitive dysfunction induced by neurodegenerative diseases. In this study, we aim to determine whether sodium hydrosulfide (NaHS), a H2S donor, could alleviate hepatic I/R-induced cognitive impairment and the underlying mechanisms. Rats were injected intraperitoneally with NaHS (5 mg/kg/d) for 11 days. A segmental hepatic I/R model was established on the fourth day. Cognitive function, proinflammatory cytokines levels, and hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) expression was analyzed. We found hepatic I/R increased proinflammatory cytokines levels in serum and hippocampus, up-regulated Iba1 expression, leading to cognitive impairment in rats. However, treatment with NaHS alleviated hepatic I/R induced these neuroinflammatory changes and effectively improved cognitive function. Thus, NaHS appears to protect against cognitive impairment in rats undergoing hepatic I/R by attenuating neuroinflammation in the hippocampus. PMID:26811101

  3. [THE INFLUENCE OF HYDROGEN SULFIDE ON COLLAGEN-INDUCED AGGREGATION OF HUMAN PLATELETS].

    PubMed

    Petrova, I V; Trubacheva, O A; Mangataeva, O S; Suslova, T E; Kovalev, I V; Gusakova, S V

    2015-10-01

    Study the impact of hydrogen sulfide on collagen-induced platelet aggregation from healthy donors and patients with type 2 diabetes. In healthy individuals, in contrast to patients with type 2 diabetes, NaHS significantly inhibited platelet aggregation. Activators of cAMP signaling (forskolin and phosphodiesterase inhibitor) significantly reduced platelet aggregation in both groups of examinees. NO-synthase inhibitors increased platelet aggregation in healthy volunteers, but not in patients with type 2 diabetes. The presence of H2S donor did not alter the extent of platelet aggregation at high concentrations of cAMP or decreased production of nitric oxide. It is assumed that the antiplatelet effect of H2S is not associated with the effect on the signal system, mediated cAMP or nitric oxide. Change H2S-dependent regulation of platelet aggregation in patients with type 2 diabetes is caused by disorders have been reported with this disease: the increase of intracellular calcium ion concentration, oxidative damage to proteins, hyperhomocysteinemia, glycosylation of key proteins involved in this process. PMID:26827498

  4. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes.

    PubMed

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-04-01

    The effects and the underlying mechanisms of hydrogen sulfide (H2S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H2S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H2S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H2S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. PMID:26780726

  5. Hydrogen sulfide ameliorates cardiovascular dysfunction induced by cecal ligation and puncture in rats.

    PubMed

    Abdelrahman, R S; El-Awady, M S; Nader, M A; Ammar, E M

    2015-10-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous messenger that participates in regulation of cardiovascular functions. This study evaluates the possible protective effect of H2S in cardiovascular dysfunction induced by cecal ligation and puncture (CLP) in rats. After 24 h of induction of CLP, heart rate (HR), mortality, cardiac and inflammation biomarkers (creatine kinase-MB (CK-MB) isozyme, cardiac troponin I (cTnI), C-reactive protein (CRP), and lactate dehydrogenase (LDH)), in vitro vascular reactivity, histopathological examination, and oxidative biomarkers (malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD)) were determined. CLP induced elevations in HR, mortality, serum CK-MB, cTnI, CRP, and LDH, in addition to impaired aortic contraction to potassium chloride and phenylephrine and relaxation to acetylcholine without affecting sodium nitroprusside responses. Moreover, CLP increased cardiac and aortic MDA and decreased SOD, without affecting GSH and caused a marked subserosal and interstitial inflammation in endocardium. Sodium hydrosulfide, but not the irreversible inhibitor of H2S synthesis dl-propargyl glycine, protected against CLP-induced changes in HR, mortality, cardiac and inflammatory biomarkers, oxidative stress, and myocardium histopathological changes without affecting vascular dysfunction. Our results confirm that H2S can attenuate CLP-induced cardiac, but not vascular, dysfunction possibly through its anti-inflammatory and antioxidant effects. PMID:25791320

  6. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution.

    PubMed

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-24

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase. PMID:26973254

  7. Roles of Hydrogen Sulfide in the Pathogenesis of Diabetes Mellitus and Its Complications

    PubMed Central

    2012-01-01

    Abstract Significance Diabetes and its complications represent a major socioeconomic problem. Recent Advances Changes in the balance of hydrogen sulfide (H2S) play an important role in the pathogenesis of β-cell dysfunction that occurs in response to type 1 and type 2 diabetes. In addition, changes in H2S homeostasis also play a role in the pathogenesis of endothelial injury, which develop on the basis of chronically or intermittently elevated circulating glucose levels in diabetes. Critical Issues In the first part of this review, experimental evidence is summarized implicating H2S overproduction as a causative factor in the pathogenesis of β-cell death in diabetes. In the second part of our review, experimental evidence is presented supporting the role of H2S deficiency (as a result of increased H2S consumption by hyperglycemic cells) in the pathogenesis of diabetic endothelial dysfunction, diabetic nephropathy, and cardiomyopathy. Future Directions In the final section of the review, future research directions and potential experimental therapeutic approaches around the pharmacological modulation of H2S homeostasis in diabetes are discussed. PMID:22149162

  8. High sensitivity near-infrared diode laser spectroscopy of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Tate, Duncan A.; Wang, Liang-Guo; Gallagher, Thomas F.

    1993-10-01

    We have used high-sensitivity diode laser spectroscopy to measure the positions of some 130 rotation-vibration transitions in hydrogen sulfide (H2S). The absorption lines lie in the range 12,100-12,230 cm-1 (818-826 nm), corresponding to transitions from the ground vibrational state to upper levels with ν1, ν2, ν3=4,2,0; 3,2,1; 5,0,0; 4,0,1; 1,4,2; and 0,4,3. We believe that this is the first time these spectral features have been observed. Approximately 5 mW of light from a GaAlAs diode laser was frequency modulated at 1 GHz±10 MHz (two-tone FM) and double passed through a 2 m long cell containing approximately 100 Torr of H2S. The transmitted light was detected with a fast photodiode and the signal demodulated using heterodyne techniques. The frequencies of the spectral features were measured with an estimated uncertainty of 0.03 cm-1.

  9. Hydrogen sulfide induces apoptosis in epithelial cells derived from human gingiva.

    PubMed

    Murata, T; Yaegaki, K; Qian, W; Herai, M; Calenic, B; Imai, T; Sato, T; Tanaka, T; Kamoda, T; Ii, H

    2008-03-01

    Hydrogen sulfide (H(2)S) is not only one of the main causes of halitosis but is also an agent of toxicity against periodontal cells and tissues in biofilm-related periodontal diseases. Also, apoptosis of gingival epithelial cells may play an important role in the onset and progress of periodontitis. We examined the effect of H(2)S on the induction of apoptosis, using human gingival fibroblasts (HGF) and keratinocyte-like Ca9-22 cells derived from human gingiva. The cells were incubated with H(2)S (100 ng ml(-1)) for 24, 48 or 72 h by adding H(2)S to air containing 5% CO(2), supplied constantly to the culture environment during incubation. The incidence of apoptosis caused by H(2)S was determined with Annexin V staining by flow cytometry. The proportion of apoptotic cells was significantly increased by exposure to H(2)S for 48 h in comparison with the control in both Ca9-22 cells and HGF. A concentration of 100 ng ml(-1) H(2)S in air is possible in the gingival sulcus. This study indicates that apoptosis in gingival epithelial cells and HGF by H(2)S may occur in the oral cavity, which may cause a periodontal condition. PMID:21386151

  10. Pharmacological Actions of Hydrogen Sulfide Donors on Sympathetic Neurotransmission in the Bovine Anterior Uvea, In Vitro.

    PubMed

    Salvi, Ankita; Bankhele, Pratik; Jamil, Jamal M; Kulkarni-Chitnis, Madhura; Njie-Mbye, Ya Fatou; Ohia, Sunny E; Opere, Catherine A

    2016-05-01

    In the present study, we investigated the effect of three different sources of hydrogen sulfide (H2S) on sympathetic neurotransmission from isolated superfused bovine iris-ciliary bodies. The three agents under consideration were: ACS67, a hybrid of latanoprost and a H2S-donating moiety; L-cysteine, a substrate for endogenous production of H2S and GYY 4137, a slow donor of H2S. We also examined the contribution of prostaglandins to the pharmacological actions of the H2S donors on release of [(3)H]-norepinephrine ([(3)H]NE) triggered by electrical field stimulation. ACS67, L-cysteine and GYY 4137 caused a concentration-dependent inhibition of electrically-evoked [(3)H]NE release from isolated bovine iris-ciliary bodies without affecting basal [(3)H]NE efflux. The cyclooxygenase inhibitor, flurbiprofen enhanced the inhibitory action of ACS67 and L-cysteine on stimulated [(3)H]NE release. Both aminooxyacetic acid, an inhibitor of cystathionine-β-synthase and glibenclamide, a KATP channel blocker reversed the inhibition of evoked NE release induced by the H2S donors. We conclude that H2S donors can inhibit sympathetic neurotransmission from isolated bovine iris-ciliary bodies, an effect partially dependent on the in situ production of H2S and prostanoids, and is mediated by an action on KATP channels. PMID:26700431

  11. Response of a ZnO single crystal rod-based chemical sensor for hydrogen sulfide.

    PubMed

    Park, N-K; Park, J Y; Lee, T J

    2014-08-01

    A zinc oxide single crystal rod was grown by a thermal evaporation method for application as a chemical gas-sensing material in this study. Zinc acetate (20 wt%) impregnated over activated carbon was used as the precursor for the epitaxial growth of ZnO single crystal rods. The response tests were carried out across a range of sensing temperatures (100, 150 and 200 C) and the hydrogen sulfide content (10.2-51.0 ppmv) was balanced with nitrogen gas. The response of the ZnO single crystal rods grown on the gas sensors varied with the H2S content and the sensing temperature. A high response for H2S was obtained at 150 and 200 C due to the high reactivity between H2S and ZnO at high temperature. Since H2S absorption rate and ZnS oxidation rate over ZnO single crystal rods at 100 C lower than that at 150 and 200 C, the changing rate of electric resistance decreased with the decrease of temperature. Meanwhile, a different response, which is the changing rate of electric resistance for H2S absorption and ZnS oxidation over ZnO single crystal rods at 100 C, was observed with changing amount of H2S in feed gas. Therefore, it was concluded that the ZnO single crystal rods based gas sensor is operated above 200 C for the shortly response time. PMID:25936113

  12. Highly sensitive hydrogen sulfide (H?S) gas sensors from viral-templated nanocrystalline gold nanowires.

    PubMed

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V; Haberer, Elaine D

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppm(v), theoretical lowest detection limit of 2 ppb(v), and 70% recovery within 9 min for 0.025 ppm(v). The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O? plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppm(v), the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors. PMID:24598078

  13. A Practical Look at the Chemistry and Biology of Hydrogen Sulfide

    PubMed Central

    2012-01-01

    Abstract Significance: Hydrogen sulfide (H2S) is garnering increasing interest as a biologically relevant signaling molecule. The effects of H2S have now been observed in virtually every organ system and numerous physiological processes. Recent Advances: These studies have not only opened a new field of “gasotransmitter” biology, they have also led to the development of synthetic H2S “donating” compounds with the potential to be parlayed into a variety of therapeutic applications. Critical Issues: Often lost in the exuberance of this new field is a critical examination or understanding of practical aspects of H2S chemistry and biology. This is especially notable in the areas of handling and measuring H2S, evaluating biosynthetic and metabolic pathways, and separating physiological from pharmacological responses. Future Directions: This brief review describes some of the pitfalls in H2S chemistry and biology that can lead or have already led to misleading or erroneous conclusions. The intent is to allow individuals entering or already in this burgeoning field to critically analyze the literature and to assist them in the design of future experiments. Antioxid. Redox Signal. 17, 32–44. PMID:22074253

  14. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.

    PubMed

    Fang, Huihui; Jing, Tao; Liu, Zhiqiang; Zhang, Liping; Jin, Zhuping; Pei, Yanxi

    2014-12-01

    The oscillation of intracellular calcium (Ca(2+)) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr(6+)) stress through interacting with Ca(2+) signaling. While Ca(2+) resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca(2+) signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr(6+) tolerance in foxtail millet (Setaria italica). Results indicate that Cr(6+) stress activated endogenous H2S synthesis as well as Ca(2+) signaling. Moreover, toxic symptoms caused by Cr(6+) stress were strongly moderated by 50μM H2S and 20mM Ca(2+). Conversely, treatments with H2S synthesis inhibitor and Ca(2+) chelators prior to Cr(6+)-exposure aggravated these toxic symptoms. Interestingly, Ca(2+) upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr(6+) stress. These findings also suggest that the H2S dependent pathway is a component of the Ca(2+) activating antioxidant system and H2S partially contributes Ca(2+)-activating antioxidant system. PMID:25459298

  15. 8-Mercapto-Cyclic GMP Mediates Hydrogen Sulfide-Induced Stomatal Closure in Arabidopsis.

    PubMed

    Honda, Kenji; Yamada, Naotake; Yoshida, Riichiro; Ihara, Hideshi; Sawa, Tomohiro; Akaike, Takaaki; Iwai, Sumio

    2015-08-01

    Plants are exposed to hydrogen sulfide (H2S) both exogenously, as it exists as a pollutant gas in the environment, and endogenously, as it is synthesized in cells. H2S has recently been found to function as a gaseous signaling molecule, but its signaling cascade remains unknown. Here, we examined H2S-mediated guard cell signaling in Arabidopsis. The H2S donor GYY4137 (morpholin-4-ium-4-methoxyphenyl [morpholino] phosphinodithioate) induced stomatal closure, which peaked after 150 min at 1 µM or after 90 min at 10 and 100 µM. After reaching maximal closure, stomatal apertures gradually increased in size in response to further exposure to GYY4137. GYY4137 induced nitric oxide (NO) generation in guard cells, and GYY4137-induced stomatal closure was reduced by an NO scavenger and inhibitors of NO-producing enzymes. Mass spectrometry analyses showed that GYY4137 induces the synthesis of 8-nitro-cGMP and 8-mercapto-cGMP and that this synthesis is mediated by NO. In addition, 8-mercapto-cGMP triggered stomatal closure. Moreover, inhibitor and genetic studies showed that calcium, cADP ribose and slow anion channel 1 act downstream of 8-mercapto-cGMP. This study therefore demonstrates that 8-mercapto-cGMP mediates the H2S signaling cascade in guard cells. PMID:25975264

  16. Performance of biotrickling filters for hydrogen sulfide removal under starvation and shock loads conditions*

    PubMed Central

    Zhang, Lan-he; Meng, Xiu-li; Wang, Ying; Liu, Li-dan

    2009-01-01

    In the industrial operation of biotrickling filters for hydrogen sulfide (H2S) removal, shock loads or starvation was common due to process variations or equipment malfunctions. In this study, effects of starvation and shock loads on the performance of biotrickling filters for H2S removal were investigated. Four experiments were conducted to evaluate the changes of biomass and viable bacteria numbers in the biotrickling filters during a 24-d starvation. Compared to biomass, viable bacteria numbers decreased significantly during the starvation, especially when airflow was maintained in the absence of spray liquid. During the subsequent re-acclimation, all the bioreactors could resume high removal efficiencies within 4 d regardless of the previous starvation conditions. The results show that the re-acclimation time, in the case of biotrickling filters for H2S removal, is mainly controlled by viable H2S oxidizing bacteria numbers. On the other hand, the biotrickling filters can protect against shock loads in inlet fluctuating H2S concentration after resuming normal operation. When the biotrickling filters were supplied with H2S at an input of lower than 1700 mg/m3, their removal efficiencies were nearly 98% regardless of previous H2S input. PMID:19650198

  17. Hydrogen Sulfide Deactivates Common Nitrobenzofurazan-Based Fluorescent Thiol Labeling Reagents

    PubMed Central

    2015-01-01

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses. PMID:24852143

  18. Anti-Cancer Activity of New Designer Hydrogen Sulfide-Donating Hybrids

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) is likely to join nitric oxide (NO) and carbon monoxide (CO) as the third gaseous transmitter, influencing an array of intracellular signaling cascades. Thus, H2S is implicated in numerous physiological processes and in the pathology of various diseases. Recent Advances: H2S-donating agents that liberate H2S slowly either alone or in combination with NO, the so-called NOSH compounds, are being synthesized, and these have been shown to have great potential against cancer. Critical Issues: An accurate determination of H2S levels is challenging. H2S and NO share many similar actions; do these similarities act to potentiate each other? Since many actions of H2S appear to be mediated through inhibition of inflammation and Nuclear factor kappa-light-chain-enhancer of activated B cells is a central player in this scenario, does S-nitrosylation of this transcription factor by NO affect its S-sulfhydration by H2S and vice versa? Future Directions: Deciphering the molecular targets of these novel hybrid agents and having genetically engineered animals should help us move toward targeted therapeutic applications. Human safety data with these new hybrids is essential. Antioxid. Redox Signal. 20, 831–846. PMID:23581880

  19. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression.

    PubMed

    Panza, Elisabetta; De Cicco, Paola; Armogida, Chiara; Scognamiglio, Giosuè; Gigantino, Vincenzo; Botti, Gerardo; Germano, Domenico; Napolitano, Maria; Papapetropoulos, Andreas; Bucci, Mariarosaria; Cirino, Giuseppe; Ianaro, Angela

    2015-01-01

    In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2 S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), synthesizes H2 S in the presence of the substrate 3-mercaptopyruvate (3-MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non-lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2 S donors, the most active of which was diallyl trisulfide (DATS). The main pro-apoptotic mechanisms involved were suppression of nuclear factor-κB activity and inhibition of AKT and extracellular signal-regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l-cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l-cysteine/CSE/H2 S pathway is involved in melanoma progression. PMID:25205294

  20. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst.

    PubMed

    Kornienko, Nikolay; Resasco, Joaquin; Becknell, Nigel; Jiang, Chang-Ming; Liu, Yi-Sheng; Nie, Kaiqi; Sun, Xuhui; Guo, Jinghua; Leone, Stephen R; Yang, Peidong

    2015-06-17

    The generation of chemical fuel in the form of molecular H2 via the electrolysis of water is regarded to be a promising approach to convert incident solar power into an energy storage medium. Highly efficient and cost-effective catalysts are required to make such an approach practical on a large scale. Recently, a number of amorphous hydrogen evolution reaction (HER) catalysts have emerged that show promise in terms of scalability and reactivity, yet remain poorly understood. In this work, we utilize Raman spectroscopy and X-ray absorption spectroscopy (XAS) as a tool to elucidate the structure and function of an amorphous cobalt sulfide (CoSx) catalyst. Ex situ measurements reveal that the as-deposited CoSx catalyst is composed of small clusters in which the cobalt is surrounded by both sulfur and oxygen. Operando experiments, performed while the CoSx is catalyzing the HER, yield a molecular model in which cobalt is in an octahedral CoS2-like state where the cobalt center is predominantly surrounded by a first shell of sulfur atoms, which, in turn, are preferentially exposed to electrolyte relative to bulk CoS2. We surmise that these CoS2-like clusters form under cathodic polarization and expose a high density of catalytically active sulfur sites for the HER. PMID:26051104

  1. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential

    PubMed Central

    Shen, Yaqi; Shen, Zhuqing; Luo, Shanshan; Guo, Wei; Zhu, Yi Zhun

    2015-01-01

    Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production. PMID:26078822

  2. Ferric Iron and Cobalt (III) compounds to safely decrease hydrogen sulfide in the body?

    PubMed

    Van de Louw, Andry; Haouzi, Philippe

    2013-08-10

    To sort out the putative roles of endogenous hydrogen sulfide (H2S) in clinical conditions wherein systemic inflammation or hypoxia is present, it becomes crucial to develop approaches capable of affecting H2S concentration that can be safely applied in humans. We have investigated a paradigm, which could achieve such a goal, using vitamin B12 (vit.B12), at the dose recommended in cyanide poisoning, and very low levels of methemoglobin (MetHb). Hydroxocobalamin in the plasma, supernatant of kidney, and heart tissue homogenates of rats that had received vit.B12 (140 mg.kg(-1) intravenous) was found in the μM range. Exogenous H2S (100 μM) added to the plasma or supernatants of these rats decreased at a significantly higher rate than in control rats. In the latter however a spontaneous oxidation of exogenous H2S occurred. In vitro, hydroxocobalamin solution (100 μM) decreased, within <2 min, an equimolar concentration of H2S by 80%. Three to five percent MetHb prevented H2S induced hyperventilation in vivo and decreased exogenous H2S in vitro by 25-40 μM within 30 s. Our observations lead to the hypothesis that innocuous levels of MetHb and vit.B12 could be a used as an effective and safe way to test the role of endogenous H2S in vivo. PMID:22233239

  3. Superoxide Mediates Depressive Effects Induced by Hydrogen Sulfide in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats.

    PubMed

    Yu, Haiyun; Xu, Haiyan; Liu, Xiaoni; Zhang, Nana; He, Anqi; Yu, Jerry; Lu, Ning

    2015-01-01

    Hydrogen sulfide (H2S) plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM). We examined cell distributions of cystathionine-?-synthase (CBS) and effects of H2S on reactive oxygen species (ROS) and mean arterial blood pressure (MAP) in spontaneously hypertensive rats (SHRs). We found that CBS was expressed in neurons of the RVLM, and the expression was lower in SHRs than in Wistar-Kyoto rats. Microinjection of NaHS (H2S donor), S-adenosyl-l-methionine (SAM, a CBS agonist), or Apocynin (NADPH oxidase inhibitor) into the RVLM reduced the ROS level, NADPH oxidase activity, and MAP, whereas microinjection of hydroxylamine hydrochloride (HA, a CBS inhibitor) increased MAP. Furthermore, intracerebroventricular infusion of NaHS inhibited phosphorylation of p47(phox), a key step of NADPH oxidase activation. Since decreasing ROS level in the RVLM reduces MAP and heart rate and increasing H2S reduces ROS production, we conclude that H2S exerts an antihypertensive effect via suppressing ROS production. H2S, as an antioxidant, may be a potential target for cardiovascular diseases. PMID:26078823

  4. Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice.

    PubMed

    Liu, Ye; Zhao, Huichen; Qiang, Ye; Qian, Guanfang; Lu, Shengxia; Chen, Jicui; Wang, Xiangdong; Guan, Qingbo; Liu, Yuantao; Fu, Yuqin

    2015-01-01

    The aim of this study was to assess the effects of hydrogen sulfide on high glucose-induced mouse podocyte (MPC) injury and the underlying mechanisms. Mouse podocytes were randomly divided into 4 groups, including high glucose (HG), normal glucose (NG), normal glucose + DL-propargylglycine (PPG), and high glucose + NaHS (HG + NaHS) groups for treatment. Then, ZO-2, nephrin, ?-catenin, and cystathionine ?-lyase (CSE) protein expression levels were determined by western blot. We found that high glucose significantly reduced nephrin, ZO-2, and CSE expression levels (P<0.05), and overtly elevated ?-catenin amounts (P<0.05), in a time-dependent manner. Likewise, PPG at different concentrations in normal glucose resulted in significantly lower CSE, ZO-2, and nephrin levels (P<0.05), and increased ?-catenin amounts (P<0.05). Interestingly, significantly increased ZO-2 and nephrin levels, and overtly reduced ?-catenin amounts were observed in the HG + NaHS group compared with HG treated cells (P<0.01). Compared with NG treated cells, decreased ZO-2 and nephrin levels and higher ?-catenin amounts were obtained in the HG + NaHS group. In conclusion,CSE downregulation contributes to hyperglycemia induced podocyte injury, which is alleviated by exogenous H2S possibly through ZO-2 upregulation and the subsequent suppression of Wnt/?-catenin pathway. PMID:26261567

  5. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  6. Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape.

    PubMed

    Ali, B; Song, W J; Hu, W Z; Luo, X N; Gill, R A; Wang, J; Zhou, W J

    2014-04-01

    The role of hydrogen sulfide (H2S) in alleviating lead (Pb) induced stress in oilseed rape (Brassica napus L.) was studied under laboratory conditions. Plants were grown hydroponically in greenhouse conditions under three levels (0, 100, and 400 µM) of Pb and three levels (0, 100 and 200 µM) of H2S donor, sodium hydrosulfide (NaHS). Application of H2S significantly improved the plant growth, root morphology, chlorophyll contents and photosynthetic activity in leaves of B. napus under Pb stress. Moreover, exogenously applied H2S significantly lowered the Pb concentration in shoots and roots of plants under Pb stress. The microscopic examination indicated that application of exogenous H2S enabled a clean mesophyll cell having a well developed chloroplast with thylakoid membranes and starch grains. A number of modifications could be observed in root tip cell i.e. mature mitochondria, long endoplasmic reticulum and golgibodies under combined application of H2S and Pb. On the basis of these findings, it can be concluded that application of exogenous H2S has a protective role on plant growth, net photosynthesis rate and ultrastructural changes in B. napus plants under high Pb exposures. PMID:24580818

  7. Measurement and modeling of hydrogen sulfide lagoon emissions from a swine concentrated animal feeding operation.

    PubMed

    Rumsey, Ian C; Aneja, Viney P

    2014-01-01

    Hydrogen sulfide (H2S) emissions were determined from an anaerobic lagoon at a swine concentrated animal feeding operation (CAFO) in North Carolina. Measurements of H2S were made continuously from an anaerobic lagoon using a dynamic flow-through chamber for ∼ 1 week during each of the four seasonal periods from June 2007 through April 2008. H2S lagoon fluxes were highest in the summer with a flux of 3.81 ± 3.24 μg m(-2) min(-1) and lowest in the winter with a flux of 0.08 ± 0.09 μg m(-2) min(-1). An air-manure interface (A-MI) mass transfer model was developed to predict H2S manure emissions. The accuracy of the A-MI mass transfer model in predicting H2S manure emissions was comprehensively evaluated by comparing the model predicted emissions to the continuously measured lagoon emissions using data from all four seasonal periods. In comparison to this measurement data, the A-MI mass transfer model performed well in predicting H2S fluxes with a slope of 1.13 and an r(2) value of 0.60, and a mean bias value of 0.655 μg m(-2) min(-1). The A-MI mass transfer model also performed fairly well in predicting diurnal H2S lagoon flux trends. PMID:24387076

  8. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its anti-apoptotic actions

    PubMed Central

    Sen, Nilkantha; Paul, Bindu D.; Gadalla, Moataz M.; Mustafa, Asif K.; Sen, Tanusree; Xu, Risheng; Kim, Seyun; Snyder, Solomon H.

    2011-01-01

    Summary Nuclear factor κB (NF-κB) is an anti-apoptotic transcription factor. We show that the anti-apoptotic actions of NF-κB are mediated by hydrogen sulfide (H2S) synthesized by cystathionine gamma-lyase (CSE). TNFα treatment triples H2S generation by stimulating binding of SP1 to the CSE promoter. H2S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H2S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the co-activator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early following TNFα treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. Anti-apoptotic influences of NF-κB, which are markedly diminished in CSE mutant mice. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its anti-apoptotic transcriptional activity. PMID:22244329

  9. High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Calandra, Matteo; Pickard, Chris J.; Nelson, Joseph; Needs, Richard J.; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2015-04-01

    We use first-principles calculations to study structural, vibrational, and superconducting properties of H2S at pressures P ≥200 GPa . The inclusion of zero-point energy leads to two different possible dissociations of H2S , namely 3 H2S →2 H3S +S and 5 H2S →3 H3S +HS2 , where both H3S and HS2 are metallic. For H3S , we perform nonperturbative calculations of anharmonic effects within the self-consistent harmonic approximation and show that the harmonic approximation strongly overestimates the electron-phonon interaction (λ ≈2.64 at 200 GPa) and Tc. Anharmonicity hardens H-S bond-stretching modes and softens H-S bond-bending modes. As a result, the electron-phonon coupling is suppressed by 30% (λ ≈1.84 at 200 GPa). Moreover, while at the harmonic level Tc decreases with increasing pressure, the inclusion of anharmonicity leads to a Tc that is almost independent of pressure. High-pressure hydrogen sulfide is a strongly anharmonic superconductor.

  10. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species.

    PubMed

    Hancock, John T; Whiteman, Matthew

    2016-02-01

    Signaling in cells involving reactive compounds is well established. Reactive oxygen species (ROS) and nitric oxide (NO) are known to be extremely influential in the control of a range of physiological responses in many organisms, from animals to plants. Often, their generation is triggered in reaction to stress, and it is common for ROS and NO metabolism to interact to give a coordinated response. Recently, hydrogen sulfide (H2 S) has also been found to be an important signaling molecule, being shown to be involved in vascular tone in animals. Of relevance to respiration, in plants, H2 S has been shown to affect stomatal apertures and the transpiration stream, while, in animals, H2 S has been shown to be a source of electrons for ATP synthesis in mitochondria. However, in signaling, H2 S does not work in isolation, and it is likely that it will interact with both ROS and NO. This may occur at a variety of levels, from influencing the generation of such molecules, interacting directly, or competing for control of downstream signaling events. A full understanding of the impact of this toxic molecule in the control of cells requires all these factors to be taken into account. PMID:25782612

  11. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis.

    PubMed

    Wu, Genfu; Li, Ning; Mao, Yinting; Zhou, Guangqi; Gao, Haichun

    2015-01-01

    Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive. PMID:25972854

  12. Hydrogen sulfide, a toxic gas with cardiovascular properties in uremia: how harmful is it?

    PubMed

    Perna, Alessandra F; Lanza, Diana; Sepe, Immacolata; Raiola, Ilaria; Capasso, Rosanna; De Santo, Natale G; Ingrosso, Diego

    2011-01-01

    Hydrogen sulfide (H(2)S) is a poisonous gas which can be lethal. However, it is also produced endogenously, thus belonging to the family of gasotransmitters along with nitric oxide and carbon monoxide. H(2)S is in fact involved in mediating several signaling and cytoprotective functions, for example in the nervous, cardiovascular, and gastrointestinal systems, such as neuronal transmission, blood pressure regulation and insulin release, among others. When increased, it can mediate inflammation and apoptosis, with a role in shock. When decreased, it can be involved in atherosclerosis, hypertension, myocardial infarction, diabetes, sexual dysfunction, and gastric ulcer; it notably interacts with the other gaseous mediators. Cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase are the principal enzymes involved in H(2)S production. We have recently studied H(2)S metabolism in the plasma of chronic hemodialysis patients and reported that its levels are significantly decreased. The plausible mechanism lies in the transcription inhibition of the cystathionine γ-lyase gene. The finding could be of importance considering that hypertension and high cardiovascular mortality are characteristic in these patients. PMID:21228576

  13. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    PubMed

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases. PMID:18200931

  14. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    PubMed Central

    Nagpure, B. V.; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616

  15. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  16. Emerging Roles of Hydrogen Sulfide in Inflammatory and Neoplastic Colonic Diseases

    PubMed Central

    Guo, Fang-Fang; Yu, Ta-Chung; Hong, Jie; Fang, Jing-Yuan

    2016-01-01

    Hydrogen sulfide (H2S) is a toxic gas that has been recognized as an important mediator of many physiological processes, such as neurodegeneration, regulation of inflammation, blood pressure, and metabolism. In the human colon, H2S is produced by both endogenous enzymes and sulfate-reducing bacteria (SRB). H2S is involved in the physiological and pathophysiological conditions of the colon, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), which makes the pharmacological modulation of H2S production and metabolism a potential chemical target for the treatment of colonic diseases. However, the exact mechanisms and pathways by which H2S-mediates normal physiological function and disease in the colon are not fully understood. Besides, the production and release of H2S are modulated by both endogenous and exogenous factors. This review will discuss the production and storage of H2S, its biological roles and the emerging importance in physiology and pathology of IBD and CRC. PMID:27199771

  17. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution.

    PubMed

    Montoya, Leticia A; Pearce, Taylor F; Hansen, Ryan J; Zakharov, Lev N; Pluth, Michael D

    2013-07-01

    Hydrogen sulfide is an important biological signaling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated submicromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications. PMID:23735055

  18. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  19. Genetic targets of hydrogen sulfide in ventilator-induced lung injury--a microarray study.

    PubMed

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  20. Role of Cystathionine γ-Lyase/Hydrogen Sulfide Pathway in Cardiovascular Disease: A Novel Therapeutic Strategy?

    PubMed Central

    Pan, Li Long; Liu, Xin Hua; Gong, Qi Hai; Yang, He Bei

    2012-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has traditionally been considered a toxic environmental pollutant. In the late 1990s, the presumed solely harmful role of H2S has been challenged because H2S may also be involved in the maintenance and preservation of cardiovascular homeostasis. Recent Advances: The production of endogenous H2S has been attributed to three key enzymes, cystathionine γ-lyase (CSE), cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase. The recognition of H2S as the third gaseous signaling molecule has stimulated research on a multitude of pathophysiologic events in the cardiovascular system. In particular, important roles in cardiovascular disorder processes are ascribed to the CSE/H2S pathway, such as atherosclerosis, myocardial infarction, hypertension, and shock. Critical Issues: Many biological activities and molecular mechanisms of H2S in the cardiovascular system have been demonstrated in studies using different tools, such as the genetic overexpression of CSE, the direct administration of H2S donors, or the use of H2S-releasing pro-drugs. Unfortunately, the role of the CSE/H2S pathway in cardiovascular disease remains controversial in numerous areas, and many questions regarding the gaseous molecule still remain unanswered. Future Directions: Advances in basic research indicate that the CSE/H2S pathway may provide potential therapeutic targets for treating cardiovascular disorders. But the molecular targets of H2S still need to be identified. Antioxid. Redox Signal. 17, 106–118. PMID:22017202

  1. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.

    PubMed

    Bizaj, Etjen; Cordente, Antonio G; Bellon, Jennifer R; Raspor, Peter; Curtin, Chris D; Pretorius, Isak S

    2012-06-01

    Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection. PMID:22385988

  2. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Li, Ning; Mao, Yinting; Zhou, Guangqi; Gao, Haichun

    2015-01-01

    Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive. PMID:25972854

  3. Domino effect: An unusual case of six fatal hydrogen sulfide poisonings in quick succession.

    PubMed

    Barbera, Nunziata; Montana, Angelo; Indorato, Francesca; Arbouche, Nadia; Romano, Guido

    2016-03-01

    Hydrogen sulfide (H2S) is one of the most serious toxic gases encountered in forensic practice. Aside from being a by-product of many industrial processes, this gas is naturally produced during the putrefaction of organic substances. We report six autopsy cases of fatal H2S poisonings from inhalation of H2S gas after an occupational accident. These six men died during the unblocking of a wastewater cistern. The first worker died shortly after clearing the obstruction, the other five died, one by one, as they attempted to help their colleagues. The macroscopic and histological findings are discussed here to provide useful information for future cases. Greenish discoloration of the skin and of internal organs (liver, trachea, esophagus, stomach) was observed, and one case showed signs typical of drowning. We present a very unusual incident, complete with rare photographs and toxicological analysis. In these cases, based on both macroscopic and microscopic findings, the cause of death was most likely an inhibitory effect on cellular cytochrome oxidase causing respiratory failure. PMID:26869537

  4. Comparative Proteomic Analysis of Differentially Expressed Proteins Induced by Hydrogen Sulfide in Spinacia oleracea Leaves

    PubMed Central

    Chen, Juan; Liu, Ting-Wu; Hu, Wen-Jun; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2014-01-01

    Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S. PMID:25181351

  5. Case report: Profound neurobehavioral deficits in an oil field worker overcome by hydrogen sulfide

    SciTech Connect

    Kilburn, K.H. )

    1993-11-01

    A 24-year-old oil well tester was rendered semiconscious by hydrogen sulfide (H2S). He received oxygen and was hospitalized but released in 30 minutes. The next day, nausea, vomiting, diarrhea, and incontinence of urine and stool led to rehospitalization. These problems and leg shaking, dizziness, sweating, trouble sleeping, and nightmares prevented his return to work. A physical examination, chest x-ray, and pulmonary function tests were normal 39 months after the episode but vibration sense was diminished. Two choice visual reaction times were delayed. Balance was highly abnormal (5 to 6 cm/sec) with eyes closed. Blink reflex latency was slow (R-1 17.5 msec versus normal 14.3 msec). Numbers written on finger tips were not recognized. Verbal and visual recall were impaired but overlearned memory was intact. Cognitive functions measured by Culture Fair, block design, and digit symbol were impaired. Perceptual motor was slow. Scores for confusion, tension-anxiety, depression, and fatigue were elevated and vigor was reduced. Forty-nine months after exposure his reaction time, sway speed, and color vision had not improved. His recall and his cognitive, constructional, and psychomotor speeds had improved but remained abnormal. These deficits are most likely due to H2S. Similar testing of other survivors is recommended.

  6. Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis.

    PubMed

    Andruski, Benjamin; McCafferty, Donna-Marie; Ignacy, Teegan; Millen, Brandie; McDougall, Jason J

    2008-09-01

    Hydrogen sulfide (H(2)S) is an endogenous gaseous mediator with the ability to modulate tissue inflammation and pain. The aim of this study was to determine the effect of an H(2)S donor (Na(2)S) on leukocyte-endothelium interactions, blood flow, and pain sensation in acutely inflamed knee joints. Acute arthritis was induced in urethane anesthetized C57bl/6 mice by intra-articular injection of kaolin/carrageenan (24-h recovery), and the effect of local administration of Na(2)S on leukocyte trafficking was measured by intravital microscopy. Synovial blood flow was measured in inflamed knees by laser Doppler perfusion imaging. Finally, the effect of an intra-articular injection of Na(2)S on joint pain in control and inflamed rats was determined by hindlimb incapacitance and von Frey hair algesiometry. Local administration of an H(2)S donor to inflamed knees caused a dose-dependent reduction in leukocyte adherence and an increase in leukocyte velocity. These effects could be inhibited by coadministration of the ATP-sensitive K(+) channel blocker glibenclamide. Local administration of Na(2)S to inflamed joints caused a pronounced vasoconstrictor response; however, there was no observable effect of Na(2)S on joint pain. These findings establish H(2)S as a novel signaling molecule in rodent knee joints. H(2)S exhibits potent anti-inflammatory properties, but with no detectable effect on joint pain. PMID:18667709

  7. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Chaung, Lung-Kai

    2005-01-01

    Six 5 wt.% metal sorbents including Mn, Fe, Cu, Co, Ce and Zn supported on gamma-Al2O3, prepared by the incipient wetness impregnation method with calcination at 700 degrees C for 2 h, have been investigated for sorption of hydrogen sulfide in the temperature range of 500-700 degrees C. The sorption experiments were conducted in a fixed-bed reactor in terms of breakthrough curves and characterized by X-ray powder diffraction. The results reveal that the copper and manganese sorbents exhibit the best performance because they provide nearly 100% utilization, but the copper sorbent has a lower sulfur sorption capacity compared with the manganese sorbent. The zinc and cerium sorbents are not good candidates attributed to the vaporization of zinc and unexpected product for cerium. Effects of support materials on 5 wt.% manganese were also investigated by using gamma-Al2O3, SiO2 and TiO2 in this study. Five weight percent Mn/gamma-Al2O3 shows the best performance among support candidates. On the basis of XRPD and BET surface area analysis, TiO2 appears a huge loss in BET surface area associated with a significant formation of rutile form. PMID:15620738

  8. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway. PMID:22679478

  9. Emersion in the mangrove forest fish Rivulus marmoratus: A unique response to hydrogen sulfide

    SciTech Connect

    Abel, D.C.; Koenig, C.C.; Davis, W.P.

    1987-01-01

    The mangrove forest fish Rivulus marmoratus (Cyprinodontidae) has frequently been observed out of water, a phenomenon generally attributed to habitat drying. The hypothesis that hydrogen sulfide, a substance characteristically found in their environment, can serve as a stimulus for emersion, is tested in this study. In the field R. marmoratus was found in water with low to moderate level of H{sub 2}S. In the laboratory, R marmora leaped from water contaminated with H{sub 2}S at ecologically relevant concentrations. Aquatic hypoxia did not induce emersion, but prey capture did. Oxygen consumption by both juveniles and adults decreased significantly in air. These results suggest that avoidance of H{sub 2}S and the ability to survive terrestrial conditions enable this species to permanently occupy an area of the forest unavailable to other fishes. Furthermore, because a variety of stimuli lead to emersion in R. marmoratus, terrestriality in this species is likely a generalized response to environmental stress as well as a means of exploiting terrestrial resources. 16 refs., 1 fig., 2 tabs.

  10. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.

    PubMed

    Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. PMID:21592650

  11. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    PubMed

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested. PMID:16933645

  12. Prediction on the seasonal behavior of hydrogen sulfide using a neural network model.

    PubMed

    Kim, Byungwhan; Lee, Joogong; Jang, Jungyoung; Han, Dongil; Kim, Ki-Hyun

    2011-01-01

    Models to predict seasonal hydrogen sulfide (H2S) concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H2S were collected from August 2005 to Fall 2006 from a huge industrial complex located in Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized model is built for each dataset. These optimized models were then used for the analysis of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to rainfall during the spring and summer. In the autumn, its sensitivity showed a strong dependency on wind speed and pressure. Pressure was identified as the most influential parameter during the spring and summer. In the autumn, relative humidity overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship with a number of parameters (e.g., radiation, wind speed, or dew-point temperature). In contrast, it exhibited a declining trend with a decrease in pressure. An increase in radiation was likely to decrease during spring and summer, but the opposite trend was predicted for the autumn. The overall results of this study thus suggest that the behavior of H2S can be accounted for by a diverse combination of meteorological parameters across seasons. PMID:21552763

  13. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability?

    PubMed Central

    Whiteman, Matthew; Moore, Philip K

    2009-01-01

    Abstract Hydrogen sulfide (H2S) is a well known and pungent toxic gas that has recently been shown to be synthesised in man from the amino acids cystathionine, homocysteine and cysteine by at least two distinct enzymes; cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important mediator in the cardiovascular system but delineating the precise physiology and pathophysiology of H2S is proving to be complex and difficult to unravel with disparate findings reported with cell types, tissue types and animal species reported. Therefore, in this review we summarize the mechanisms by which H2S has been proposed to regulate blood pressure and cardiac function, discuss the mechanistic discrepancies reported in the literature as well as the therapeutic potential of H2S. We also examine the methods of H2S detection in biological fluids, processes for H2S removal and discuss the reported blood levels of H2S in man and animal models of cardiovascular pathology. We also highlight the complex interaction of H2S with nitric oxide in regulating cardiovascular function in health and disease. PMID:19374684

  14. Hydrogen Sulfide Detection Using a Gold Nanoparticle/Metalloprotein Based Probe

    NASA Astrophysics Data System (ADS)

    Meisam, Omidi; Gh., Amoabediny; Yazdian, F.; Habibi-Rezaei, M.

    2014-08-01

    We present a simple method for direct detection of hydrogen sulfide (H2S) in an aqueous solution. This method represents a novel biosensor based on metalloprotein cytochrome c (cyt c) with the localized surface plasmon resonance of gold nanoparticles (AuNPs). For this purpose, we develop a new approach based on attaching chemically-modified cyt c onto AuNPs. Here, by reacting H2S with protein heme center, its conformation changes in the locality of the heme moiety. The conformational changes occurring in the protein alter the spectral characteristics by changing the dielectric properties of AuNPs. The conformational changes of cyt c induced by the H2S interaction are characterized by the UV-visible absorption spectroscopy and the circular dichroism technique. The limit of the detection and sensitivity of the AuNPs/cyt c biosensor are evaluated by using UV-visible spectroscopy. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μM (1.3 ppb) by the fabricated AuNPs/cyt c biosensor. In addition, the sensor retains activity and gives reproducible results after storage in 4°C for 60 d. This simple and cost-effective sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  15. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats.

    PubMed

    Qin, Yi-Ren; You, Shou-Jiang; Zhang, Yan; Li, Qian; Wang, Xian-Hui; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2016-06-01

    Hydrogen sulfide (H2S) is a novel gaseous transmitter, regulating a multitude of biological processes in the cardiovascular and other systems. However, it remains unclear whether it exerts any effect on arterial thrombosis. In this study, we examined the effect of H2S on ferric chloride (FeCl3)-induced thrombosis in the rat common carotid artery (CCA). The results revealed a decrease of the H2S-producing enzyme cystathionine γ-lyase (CSE) expression and H2S production that persisted until 48 h after FeCl3 application. Intriguingly, administration with NaHS at appropriate regimen reduced the thrombus formation and enhanced the blood flow, accompanied with the alleviation of CSE and CD31 downregulation, and endothelial cell apoptosis in the rat CCA following FeCl3 application. Moreover, the antithrombotic effect of H2S was also observed in Rose Bengal photochemical model in which the development of thrombosis is contributed by oxidative injury to the endothelium. The in vitro study demonstrated that the mRNA and protein expression of CSE, as well as H2S production, was decreased in hydrogen peroxide (H2O2)-treated endothelial cells. Exogenous supplement of NaHS and CSE overexpression consistently alleviated the increase of cleaved caspase-3 and endothelial cell damage caused by H2O2. Taken together, our findings suggest that endogenous H2S generation in the endothelium may be impaired during arterial thrombosis and that modulation of H2S, either exogenous supplement or boost of endogenous production, may become a potential venue for arterial thrombosis therapy. PMID:26982248

  16. A highly selective on-off-on responsive lanthanide(iii) based probe for recognition of copper and hydrogen sulfide.

    PubMed

    Yip, Yuk-Wang; Law, Ga-Lai; Wong, Wing-Tak

    2016-01-01

    The development of a europium(iii) based probe () for the detection of Cu(ii) ions and hydrogen sulphide is presented. With the addition of Cu(ii) ions, displayed the greatest quenching among the other cations examined. The binding constant was 74 026 ± 2899 M(-1). Once combined with Cu(ii) ions, demonstrated high specificity for hydrogen sulfide compared to other organic and inorganic sulfur compounds. exhibited an on-off-on type luminescence change with the alternate addition of Cu(ii) ions and H2S along with reversible forming-separating of the complex. PMID:26584271

  17. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  18. Chemical properties of Zn/S/Mo(110) and Co/S/Mo(110) surfaces: Reaction with hydrogen and formation of hydrogen sulfide

    SciTech Connect

    Rodriguez, J.A.; Li, S.Y.; Hrbek, J.; Huang, H.H.; Xu, G.Q.

    1996-08-22

    The chemical and electronic properties of a series of Zn/S/Mo(110) and Co/S/Mo(l10) systems have been investigated using photoemission, thermal desorption mass spectroscopy, and hydrogen (H{sub 2}, D{sub 2}, or D) chemisorption. Sulfur multilayers supported on Mo(110) are very reactive toward admetals like Zn and Co. The behavior of the Zn/S/Mo(110) and Co/S/Mo(110) systems indicates that Zn and Co promote Mo S interactions, inducing the formation of molybdenum sulfide films. The ZnMoS and CoMoS films were unreactive toward H{sub 2} or D{sub 2} under ultrahigh vacuum conditions. As gas-phase hydrogen atoms (D) impinged on the surfaces, gaseous hydrogen sulfide was formed. Thus, the slow step in the D{sub 2,gas} + S{sub solid} {yields} D{sub 2}S{sub gas} reaction is the dissociation of molecular hydrogen. A good correlation exists between trends seen in the hydrodesulfurization (HDS) activity of ZnMoS and CoMoS catalysts and trends found for the sulfidation of Mo and hydrogenation of S in ZnMoS and CoMoS films. The systems that contain Co show the larger HDS activity, the stronger metal metal interactions with a subsequent increase in the reactivity of Mo toward S-containing molecules, and the bigger tendency to create unsaturated Mo sites through the hydrogenation of Mo-bonded S atoms. 55 refs., 12 figs.

  19. (Sulfide-oxide-silicate phase equilibria and associated fluid inclusion properties in the Salton Sea geothermal system, California)

    SciTech Connect

    McKibben, M.A.

    1988-06-01

    Our studies involved petrographic, fluid inclusion, geochemical and stable isotopic studies of drillcores and fluids from the Salton Sea geothermal system. Our initial studies revealed the presence of previously-unrecognized evaporitic anhydrite at depth throughout the geothermal system. The high salinity of the Salton Sea geothermal brines previously had been attributed to low-temperature dissolution of surficial evaporitic deposits by meteoric waters. Our microthermometric studies of halite--containing fluid inclusions in the meta-evaporites indicated that the high salinity of the geothermal brines is derived in part from the hydrothermal metamorphism of relatively deeply-buried salt and evaporites. In addition, our research concentrated on mineralized fractures in drillcores.

  20. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  1. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  2. The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; Gennari, Francesca; Campanella, Luigi; Casentini, Barbara; Marani, Dario

    2012-04-01

    The rates for the reduction of Se(IV) by sulfides were measured in NaCl solutions as a function of pH (2-10), temperature (10-40 °C) and ionic strength (I = 0.01-1 M). The pseudo first-order rate constant (log k1) showed a complex dependence on pH with values decreasing from pH 2 to a minimum at pH 4.5, then increasing from pH 5.5 to a maximum near pH 8 and decreasing again at pH higher than 8. The values of the overall kinetic constant (k) calculated from the values of k1/[H2S]T can be determined from equations: logk=-0.15pH-1355.5/T+0.44I0.5+7.74 for the pH range 2-4.5 (σ = ±0.16), logk=0.28pH-1090.9/T+0.60I0.5+4.68 for the pH range 5.5-7.6 (σ = ±0.10) and logk=-0.50pH-1572.1/T+0.45I0.5+12.67 for the pH range 7.7-10 (σ = ±0.05), from 10 to 40 °C and from 0.01 to 1 M ionic strength. The effect of pH and ionic strength on the reaction suggests that the reactions in natural waters are due to the following interactions: H2SeO3+H2S ↔ products HSeO3-+H2S ↔ products HSeO3-+HS ↔ products while under strong alkaline conditions (pH > 9) a fourth contribution by SeO32-+HS ↔ products is also possible. The overall rate expression over the entire pH range investigated can be determined from (H2A = H2SeO3; HA = HSeO3-; A = SeO32-) k=(kH2S-H2A[H]3+kH2S-HAKHA[H]2+kHS-HAKHAK1s[H]+kHS-AKHAKAK1s)/{([H]2+KHA[H]+KAKHA)([H]+K1s)} where kH2S-H2A=2409±566 M min, kH2S-HA=464±233 M min, kHS-HA = 4190 ± 573 M-1 min-1 and kHS-A = 650 ± 382 M-1 min-1 and KHA, KA and K1s are the dissociation constants of selenous acid and hydrogen sulfide. Kinetic runs in natural freshwater samples and natural seawater have confirmed results obtained in simple NaCl solutions suggesting that this reaction may play an important role under anoxic and hypoxic conditions. Sulfide concentrations under these conditions may range from micromolar to millimolar level and Se(IV) half times are in the order of a few hours to minutes, respectively.

  3. Production of hydrogen in non oxygen-evolving systems: co-produced hydrogen as a bonus in the photodegradation of organic pollutants and hydrogen sulfide

    SciTech Connect

    Sartoretti, C. Jorand; Ulmann, M.; Augustynski, J. ); Linkous, C.A. )

    2000-01-01

    This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an order of magnitude) less energy is required and that sunlight can be used directly. In the case of photoproduction of hydrogen, as compared to water splitting, feeding the anodic compartment of the PEC with an organic pollutant, instead of the usual supporting electrolyte, will bring about a substantial increase of the photocurrent at a given illumination. Thus, the replacement of the photo-oxidation of water by the photodegradation of organic waste will be accompanied by a gain in solar-to-chemical conversion efficiency and hence by a decrease in the cost of the photoproduced hydrogen. Taking into account the benefits and possible revenues obtainable by the waste degradation, this would seem to be a promising approach to the photoproduction of hydrogen. Hydrogen sulfide (H{sub 2}S) is another waste effluent requiring extensive treatment, especially in petroleum refineries. The so-called Claus process is normally used to convert the H{sub 2}S to elemental sulfur. A sulfur recovery process developed at the Florida Solar Energy Center is described briefly in Chapter 4 by Dr. C. Linkous as a typical example of the photoproduction of hydrogen in a non oxygen-evolving system. The encouraging results obtained in these investigations of photoelectrochemical hydrogen production combined with organic waste degradation, have prompted a decision to continue the work under the new IEA Hydrogen Agreement Annex 14, Photoelectrolytic Hydrogen Production.

  4. A critical review of pharmacological significance of Hydrogen Sulfide in hypertension.

    PubMed

    Ahmad, Ashfaq; Sattar, Munavvar A; Rathore, Hassaan A; Khan, Safia Akhtar; Lazhari, M I; Afzal, Sheryar; Hashmi, F; Abdullah, Nor A; Johns, Edward J

    2015-01-01

    In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects. PMID:26069359

  5. Importance of hydrophilic pretreatment in the hydrothermal growth of amorphous molybdenum sulfide for hydrogen evolution catalysis.

    PubMed

    Bose, Ranjith; Balasingam, Suresh Kannan; Shin, Seokhee; Jin, Zhenyu; Kwon, Do Hyun; Jun, Yongseok; Min, Yo-Sep

    2015-05-12

    Amorphous molybdenum sulfide (MoSx) has been identified as an excellent catalyst for the hydrogen evolution reaction (HER). It is still a challenge to prepare amorphous MoSx as a more active and stable catalyst for the HER. Here the amorphous MoSx catalysts are prepared on carbon fiber paper (CFP) substrates at 200 °C by a simple hydrothermal method using molybdic acid and thioacetamide. Because the CFP is intrinsically hydrophobic due to its graphene-like carbon structure, two kinds of hydrophilic pretreatment methods [plasma pretreatment (PP) and electrochemical pretreatment (EP)] are investigated to convert the hydrophobic surface of the CFP to be hydrophilic prior to the hydrothermal growth of MoSx. In the HER catalysis, the MoSx catalysts grown on the pretreated CFPs reach a cathodic current density of 10 mA/cm(2) at a much lower overpotential of 231 mV on the MoSx/EP-CFP and 205 mV on the MoSx/PP-CFP, compared to a high overpotential of 290 mV on the MoSx of the nonpretreated CFP. Turnover frequency per site is also significantly improved when the MoSx are grown on the pretreated CFPs. However, the Tafel slopes of all amorphous MoSx catalysts are in the range of 46-50 mV/dec, suggesting the Volmer-Heyrovsky mechanism as a major pathway for the HER. In addition, regardless of the presence or absence of the pretreatment, the hydrothermally grown MoSx catalyst on CFP exhibits such excellent stability that the degradation of the cathodic current density is negligible after 1000 cycles in a stability test, possibly due to the relatively high growth temperature. PMID:25879493

  6. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex.

    PubMed

    Kang, Minho; Hashimoto, Atsushi; Gade, Aravind; Akbarali, Hamid I

    2015-03-15

    Hydrogen sulfide (H₂S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H₂S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K(+) (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H₂S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H₂S in inflammation. PMID:25552582

  7. Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons.

    PubMed

    Kuksis, Markus; Smith, Pauline M; Ferguson, Alastair V

    2014-01-01

    Hydrogen sulfide (H2S), a gasotransmitter endogenously found in the central nervous system, has recently been suggested to act as a signalling molecule in the brain having beneficial effects on cardiovascular function. This study was thus undertaken to investigate the effect of NaHS (an H2S donor) in the subfornical organ (SFO), a central nervous system site important to blood pressure regulation. We used male Sprague-Dawley rats for both in vivo and in vitro experiments. We first used RT-PCR to confirm our previous microarray analyses showing that mRNAs for the enzymes required to produce H2S are expressed in the SFO. We then used microinjection techniques to investigate the physiological effects of NaHS in SFO, and found that NaHS microinjection (5 nmol) significantly increased blood pressure (mean AUC = 853.5±105.7 mmHg*s, n = 5). Further, we used patch-clamp electrophysiology and found that 97.8% (88 of 90) of neurons depolarized in response to NaHS. This response was found to be concentration dependent with an EC50 of 35.6 µM. Coupled with the depolarized membrane potential, we observed an overall increase in neuronal excitability using an analysis of rheobase and action potential firing patterns. This study has provided the first evidence of NaHS and thus H2S actions and their cellular correlates in SFO, implicating this brain area as a site where H2S may act to control blood pressure. PMID:25144759

  8. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Wang, Bao-Lan; Shi, Lei; Li, Yin-Xing; Zhang, Wen-Hao

    2010-05-01

    Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H(2)S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H(2)S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H(2)S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H(2)S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H(2)S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins. PMID:20224946

  9. Hydrogen sulfide-based therapies: focus on H2S releasing NSAIDs.

    PubMed

    Fiorucci, Stefano; Santucci, Luca

    2011-04-01

    Nonsteroidal anti-inflammatory pain medications, commonly referred to as NSAIDs, are effective treatment for pain, fever and inflammation. However their use associates with a 4-6 fold increase in the risk of gastrointestinal bleeding. The basic mode of action of NSAIDs lies in the inhibition of cyclooxygenases (COXs), a family of enzymes involved in the generation of prostaglandins (PGs). The COX exists at least in two isoforms, COX-1 and COX-2, with PGs mediating inflammation at site of injury generated by the COX-2, while COX-1 produces PGs that are essential in maintaining integrity in the gastrointestinal tract. Selective inhibitors of COX-2, the coxibs, spare the gastrointestinal tract while exerting anti-inflammatory and analgesic effects. However, their use has been linked to an increased risk of thrombo-embolic events. Nitric oxide (NO) and hydrogen sulfide (H(2)S), are potent vasodilatory agents that maintain mucosal integrity in the gastrointestinal tract. In the last decade hybrid molecules that release NO or H(2)S have been coupled with non-selective NSAIDs to generate new classes of anti-inflammatory and analgesic agents with the potential to spare the gastrointestinal and cardiovascular system. These agents, the NO-releasing NSAIDs, or CINOD, and the H(2)S-releasing NSAIDs are currently investigated as a potential alternative to NSAIDs and coxibs. Naproxcinod has been the first, and so far the only, CINOD extensively investigated in clinical trials. Despite its promising profile, the approval of this drug was recently rejected by the Food and Drug Administration because the lack of long-term controlled studies. NSAIDs that release H(2)S as a mechanism to support an enhanced gastrointestinal and cardiovascular safety are being investigated in preclinical studies. Either naproxen or diclofenac coupled to an H(2)S releasing moiety has been reported to cause less gastrointestinal and cardiovascular injury than parent NSAIDs in preclinical models. PMID:21275896

  10. Selenium Inhibits Root Elongation by Repressing the Generation of Endogenous Hydrogen Sulfide in Brassica rapa

    PubMed Central

    Zheng, Mei-Yu; Xian, Ming; Qi, Zhong-Qiang; Li, You-Qin; Hu, Liang-Bin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots. PMID:25333279

  11. Hydrogen Sulfide Attenuates Neurodegeneration and Neurovascular Dysfunction Induced by Intracerebral Administered Homocysteine in Mice

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Givvimani, Srikanth; Sathnur, PB; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) are associated with neurovascular diseases. H2S, a metabolite of Hcy, has a potent anti-oxidant and anti-inflammatory activity; however, the effect of H2S has not been explored in Hcy (IC) induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild type (WT) males ages 8–10 weeks, WT+ artificial cerebrospinal fluid (aCSF), WT+ Hcy (0.5μmol/μl) intracerebral injection (I.C., one time only prior to NaHS treatment), WT+Hcy +NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected intra-peritoneally (I.P.) once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased MDA, nitrite level, acetylcholinestrase activity, TNFα, IL1β, GFAP, iNOS, eNOS and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF treated groups. Further, increased expression of NSE, S100B and decreased expression of (PSD95, SAP97) synaptic protein indicated neurodegeneration. Brain sections of Hcy treated mice showed damage in the cortical area and periventricular cells. TUNEL positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of MMP9, MMP2 and decreased expression of TIMP-1, TIMP-2, tight junction proteins (ZO1, Occuldin) in Hcy treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction. PMID:23912038

  12. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis. PMID:25010831

  13. A Fast Hydrogen Sulfide-Releasing Donor Increases the Tumor Response to Radiotherapy.

    PubMed

    De Preter, Géraldine; Deriemaeker, Caroline; Danhier, Pierre; Brisson, Lucie; Cao Pham, Thanh Trang; Grégoire, Vincent; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard

    2016-01-01

    Hydrogen sulfide (H2S) is the last gaseous transmitter identified in mammals, and previous studies have reported disparate conclusions regarding the implication of H2S in cancer progression. In the present study, we hypothesized that sodium hydrosulfide (NaHS), a fast H2S-releasing donor, might interfere with the mitochondrial respiratory chain of tumor cells, increase tumor oxygenation, and potentiate the response to irradiation. Using electron paramagnetic resonance (EPR) oximetry, we found a rapid increase in tumor pO2 after NaHS administration (0.1 mmol/kg) in two human tumor models (breast MDA-MB-231 and cervix SiHa), an effect that was due to a decreased oxygen consumption and an increased tumor perfusion. Tumors irradiated 15 minutes after a single NaHS administration were more sensitive to irradiation compared with those that received irradiation alone (increase in growth delay by 50%). This radiosensitization was due to the oxygen effect, as the increased growth delay was abolished when temporarily clamped tumors were irradiated. In contrast, daily NaHS injection (0.1 mmol/kg/day for 14 days) did not provide any effect on tumor growth in vivo. To understand these paradoxical data, we analyzed the impact of external factors on the cellular response to NaHS. We found that extracellular pH had a dramatic effect on the cell response to NaHS, as the proliferation rate (measured in vitro by BrdU incorporation) was increased at pH = 7.4, but decreased at pH = 6.5. Overall, our study highlights the complex role of environmental components in the response of cancer cells to H2S and suggests a new approach for the use of H2S donors in combination with radiotherapy. Mol Cancer Ther; 15(1); 154-61. ©2015 AACR. PMID:26682572

  14. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.

    PubMed

    Guo, Lin; Peng, Wen; Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  15. The Therapeutic Potential of Cystathionine β-Synthetase/Hydrogen Sulfide Inhibition in Cancer

    PubMed Central

    Hellmich, Mark R.; Coletta, Ciro; Chao, Celia

    2015-01-01

    Abstract Significance: Cancer represents a major socioeconomic problem; there is a significant need for novel therapeutic approaches targeting tumor-specific pathways. Recent Advances: In colorectal and ovarian cancers, an increase in the intratumor production of hydrogen sulfide (H2S) from cystathionine β-synthase (CBS) plays an important role in promoting the cellular bioenergetics, proliferation, and migration of cancer cells. It also stimulates peritumor angiogenesis inhibition or genetic silencing of CBS exerts antitumor effects both in vitro and in vivo, and potentiates the antitumor efficacy of anticancer therapeutics. Critical Issues: Recently published studies are reviewed, implicating CBS overexpression and H2S overproduction in tumor cells as a tumor-growth promoting “bioenergetic fuel” and “survival factor,” followed by an overview of the experimental evidence demonstrating the anticancer effect of CBS inhibition. Next, the current state of the art of pharmacological CBS inhibitors is reviewed, with special reference to the complex pharmacological actions of aminooxyacetic acid. Finally, new experimental evidence is presented to reconcile a controversy in the literature regarding the effects of H2S donor on cancer cell proliferation and survival. Future Directions: From a basic science standpoint, future directions in the field include the delineation of the molecular mechanism of CBS up-regulation of cancer cells and the delineation of the interactions of H2S with other intracellular pathways of cancer cell metabolism and proliferation. From the translational science standpoint, future directions include the translation of the recently emerging roles of H2S in cancer into human diagnostic and therapeutic approaches. Antioxid. Redox Signal. 22, 424–448. PMID:24730679

  16. Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases.

    PubMed

    Hackfort, Bryan T; Mishra, Paras K

    2016-04-01

    Despite an obnoxious smell and toxicity at a high dose, hydrogen sulfide (H2S) is emerging as a cardioprotective gasotransmitter. H2S mitigates pathological cardiac remodeling by regulating several cellular processes including fibrosis, hypertrophy, apoptosis, and inflammation. These encouraging findings in rodents led to initiation of a clinical trial using a H2S donor in heart failure patients. However, the underlying molecular mechanisms by which H2S mitigates cardiac remodeling are not completely understood. Empirical evidence suggest that H2S may regulate signaling pathways either by directly influencing a gene in the cascade or interacting with nitric oxide (another cardioprotective gasotransmitter) or both. Recent studies revealed that H2S may ameliorate cardiac dysfunction by up- or downregulating specific microRNAs. MicroRNAs are noncoding, conserved, regulatory RNAs that modulate gene expression mostly by translational inhibition and are emerging as a therapeutic target for cardiovascular disease (CVD). Few microRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new avenue for exploring the H2S-microRNA crosstalk in CVD. This review embodies regulatory mechanisms that maintain the physiological level of H2S, exogenous H2S donors used for increasing the tissue levels of H2S, H2S-mediated regulation of CVD, H2S-microRNAs crosstalk in relation to the pathophysiology of heart disease, clinical trials on H2S, and future perspectives for H2S as a therapeutic agent for heart failure. PMID:26801305

  17. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition

    PubMed Central

    Kiss, Levente; Deitch, Edwin A; Szab, Csaba

    2014-01-01

    Aims Hydrogen sulfide (H2S) at low concentrations serves as a physiological endogenous vasodilator molecule, while at higher concentrations it can trigger cytotoxic effects. The aim of our study was to elucidate the potential mechanisms responsible for the effects of H2S on vascular tone. Main methods We measured the vascular tone in vitro in precontracted rat thoracic aortic rings and we have tested the effect of different oxygen levels and a variety of inhibitors affecting known vasodilatory pathways. We have also compared the vascular effect of high concentrations of H2S to those of pharmacological inhibitors of oxidative phosphorylation. Furthermore, we measured adenosine triphosphate (ATP)-levels in the same vascular tissues. Key findings We have found that in rat aortic rings: (1) H2S decreases ATP levels; (2) relaxations to H2S depend on the ambient oxygen concentration; (3) prostaglandins do not take part in the H2S induced relaxations; (4) the 3':5'-cyclic guanosine monophosphate (cGMP) nitric oxide (NO) pathway does not have a role in the relaxations (5) the role of KATP channels is limited, while Cl?/HCO3? channels have a role in the relaxations. (6): We have observed that high concentrations of H2S relax the aortic rings in a fashion similar to sodium cyanide, and both agents reduce cellular ATP levels to a comparable degree. Significance H2S, a new gasotransmitter of emerging importance, leads to relaxation via Cl?/HCO3? channels and metabolic inhibition and the interactions of these two factors depend on the oxygen levels of the tissue. PMID:18790700

  18. The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction

    PubMed Central

    Predmore, Benjamin L.; Alendy, Maikel J.; Ahmed, Khadija I.; Leeuwenburgh, Christiaan

    2010-01-01

    Hydrogen sulfide gas (H2S) is a putative signaling molecule that causes diverse effects in mammalian tissues including relaxation of blood vessels and regulation of perfusion in the liver, but the effects of aging on H2S signaling are unknown. Aging has negative impacts on the cardiovascular system. However, the liver is more resilient with age. Caloric restriction (CR) attenuates affects of age in many tissues. We hypothesized that the H2S signaling system is negatively affected by age in the vasculature but not in the liver, which is typically more resilient to age, and that a CR diet minimizes the age affect in the vasculature. To investigate this, we determined protein and mRNA expression of the H2S-producing enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), H2S production rates in the aorta and liver, and the contractile response of aortic rings to exogenous H2S. Tissue was collected from Fisher 344 × Brown Norway rats from 8–38 months of age, which had been maintained on an ad libitum (AL) or CR diet. The results demonstrate that age and diet have differential effects on the H2S signaling system in aorta and liver. The aorta showed a sizeable effect of both age and diet, whereas the liver only showed a sizeable effect of diet. Aortic rings showed increased contractile sensitivity to H2S and increased protein expression of CSE and CBS with age, consistent with a decrease in H2S concentration with age. CR appears to benefit CSE and CBS protein in both aorta and liver, potentially by reducing oxidative stress and ameliorating the negative effect of age on H2S concentration. Therefore, CR may help maintain the H2S signaling system during aging. PMID:20502969

  19. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    PubMed Central

    Njie-Mbye, Ya F.; Opere, Catherine A.; Chitnis, Madhura; Ohia, Sunny E.

    2012-01-01

    Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type, and intracellular stores), potassium (KATP and small conductance channels) and chloride channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed. PMID:22934046

  20. Relation between malodor, ambient hydrogen sulfide, and health in a community bordering a landfill

    PubMed Central

    Heaney, Christopher D.; Wing, Steve; Campbell, Robert L.; Caldwell, David; Hopkins, Barbara; Richardson, David; Yeatts, Karin

    2011-01-01

    Background Municipal solid waste landfills are sources of air pollution that may affect the health and quality of life of neighboring communities. Objectives To investigate health and quality of life concerns of neighbors related to landfill air pollution. Methods Landfill neighbors were enrolled and kept twice-daily diaries for 14 d about odor intensity, alteration of daily activities, mood states, and irritant and other physical symptoms between Jan–Nov, 2009. Concurrently, hydrogen sulfide (H2S) air measurements were recorded every 15-min. Relationships between H2S, odor, and health outcomes were evaluated using conditional fixed effects regression models. Results Twenty-three participants enrolled and completed 878 twice-daily diary entries. H2S measurements were recorded over a period of 80 d and 1-hr average H2S = 0.22 ppb (SD = 0.27; range: 0–2.30 ppb). Landfill odor increased 0.63 points (on 5-point Likert-type scale) for every 1 ppb increase in hourly average H2S when the wind was blowing from the landfill towards the community (95% confidence interval (CI): 0.29, 0.91). Odor was strongly associated with reports of alteration of daily activities (odds ratio (OR) = 9.0; 95% CI: 3.5, 23.5), negative mood states (OR = 5.2; 95% CI: 2.8, 9.6), mucosal irritation (OR = 3.7; 95% CI = 2.0, 7.1) and upper respiratory symptoms (OR = 3.9; 95% CI: 2.2, 7.0), but not positive mood states (OR = 0.6; 95% CI: 0.2, 1.5) and gastrointestinal (GI) symptoms (OR = 1.0; 95% CI: 0.4, 2.6). Conclusions Results suggest air pollutants from a regional landfill negatively impact the health and quality of life of neighbors. PMID:21679938

  1. Inhibition of hydrogen sulfide restores normal breathing stability and improves autonomic control during experimental heart failure

    PubMed Central

    Del Rio, Rodrigo; Marcus, Noah J.

    2013-01-01

    Cardiovascular autonomic imbalance and breathing instability are major contributors to the progression of heart failure (CHF). Potentiation of the carotid body (CB) chemoreflex has been shown to contribute to these effects. Hydrogen sulfide (H2S) recently has been proposed to mediate CB hypoxic chemoreception. We hypothesized that H2S synthesis inhibition should decrease CB chemoreflex activation and improve breathing stability and autonomic function in CHF rats. Using the irreversible inhibitor of cystathione γ-lyase dl-propargylglycine (PAG), we tested the effects of H2S inhibition on resting breathing patterns, the hypoxic and hypercapnic ventilatory responses, and the hypoxic sensitivity of CB chemoreceptor afferents in rats with CHF. In addition, heart rate variability (HRV) and systolic blood pressure variability (SBPV) were calculated as an index of autonomic function. CHF rats, compared with sham rats, exhibited increased breath interval variability and number of apneas, enhanced CB afferent discharge and ventilatory responses to hypoxia, decreased HRV, and increased low-frequency SBPV. Remarkably, PAG treatment reduced the apnea index by 90%, reduced breath interval variability by 40–60%, and reversed the enhanced hypoxic CB afferent and chemoreflex responses observed in CHF rats. Furthermore, PAG treatment partially reversed the alterations in HRV and SBPV in CHF rats. Our results show that PAG treatment restores breathing stability and cardiac autonomic function and reduces the enhanced ventilatory and CB chemosensory responses to hypoxia in CHF rats. These results support the idea that PAG treatment could potentially represent a novel pathway to control sympathetic outflow and breathing instability in CHF. PMID:23449938

  2. High Turnover Rates for Hydrogen Sulfide Allow for Rapid Regulation of Its Tissue Concentrations

    PubMed Central

    Vitvitsky, Victor; Kabil, Omer

    2012-01-01

    Abstract Aims: Hydrogen sulfide (H2S) is a signaling molecule, which influences many physiological processes. While H2S is produced and degraded in many cell types, the kinetics of its turnover in different tissues has not been reported. In this study, we have assessed the rates of H2S production in murine liver, kidney, and brain homogenates at pH 7.4, 37°C, and at physiologically relevant cysteine concentrations. We have also studied the kinetics of H2S clearance by liver, kidney, and brain homogenates under aerobic and anaerobic conditions. Results: We find that the rate of H2S production by these tissue homogenates is considerably higher than background rates observed in the absence of exogenous substrates. An exponential decay of H2S with time is observed and, as expected, is significantly faster under aerobic conditions. The half-life for H2S under aerobic conditions is 2.0, 2.8, and 10.0 min with liver, kidney, and brain homogenate, respectively. Western-blot analysis of the sulfur dioxygenase, ETHE1, involved in H2S catabolism, demonstrates higher steady-state protein levels in liver and kidney versus brain. Innovation: By combining experimental and simulation approaches, we demonstrate high rates of tissue H2S turnover and provide estimates of steady-state H2S levels. Conclusion: Our study reveals that tissues maintain a high metabolic flux of sulfur through H2S, providing a rationale for how H2S levels can be rapidly regulated. Antioxid. Redox Signal. 17, 22–31. PMID:22229551

  3. Reactive Nitrogen Species and Hydrogen Sulfide as Regulators of Protein Tyrosine Phosphatase Activity

    PubMed Central

    2014-01-01

    Abstract Significance: Redox modifications of thiols serve as a molecular code enabling precise and complex regulation of protein tyrosine phosphatases (PTPs) and other proteins. Particular gasotransmitters and even the redox modifications themselves affect each other, of which a typical example is S-nitrosylation-mediated protection against the further oxidation of protein thiols. Recent Advances: For a long time, PTPs were considered constitutively active housekeeping enzymes. This view has changed substantially over the last two decades, and the PTP family is now recognized as a group of tightly and flexibly regulated fundamental enzymes. In addition to the conventional ways in which they are regulated, including noncovalent interactions, phosphorylation, and oxidation, the evidence that has accumulated during the past two decades suggests that many of these enzymes are also modulated by gasotransmitters, namely by nitric oxide (NO) and hydrogen sulfide (H2S). Critical Issues: The specificity and selectivity of the methods used to detect nitrosylation and sulfhydration remains to be corroborated, because several researchers raised the issue of false-positive results, particularly when using the most widespread biotin switch method. Further development of robust and straightforward proteomic methods is needed to further improve our knowledge of the full extent of the gasotransmitters-mediated changes in PTP activity, selectivity, and specificity. Further Directions: Results of the hitherto performed studies on gasotransmitter-mediated PTP signaling await translation into clinical medicine and pharmacotherapeutics. In addition to directly affecting the activity of particular PTPs, the use of reversible S-nitrosylation as a protective mechanism against oxidative stress should be of high interest. Antioxid. Redox Signal. 20, 2191–2209. PMID:24328688

  4. Interaction of Hydrogen Sulfide and Estrogen on the Proliferation of Vascular Smooth Muscle Cells

    PubMed Central

    Li, Hongzhu; Mani, Sarathi; Cao, Wei; Yang, Guangdong; Lai, Christopher; Wu, Lingyun; Wang, Rui

    2012-01-01

    Hydrogen sulfide (H2S) can be endogenously generated from cystathionine gamma-lyase (CSE) in cardiovascular system, offering a cardiovascular protection. It is also known that the lower risk of cardiovascular diseases in female is partially attributed to the protective effect of estrogen. The current study explores the interaction of H2S and estrogen on smooth muscle cell (SMC) growth. In the present study, we found that the proliferation of cultured vascular SMCs isolated from wild-type mice (WT-SMCs) was inhibited, but that from CSE gene knockout mice (CSE-KO-SMCs) increased, by estrogen treatments. The expression of estrogen receptor α (ERα), but not ERβ, was significantly decreased in CSE-KO-SMCs compared with that in WT-SMCs. Exogenously applied H2S markedly increased ERα but not ERβ expression. In addition, the inhibition of ER activation and knockdown of ERα expression in WT-SMCs or the overexpression of ERα in CSE-KO-SMCs reversed the respective effects of estrogen on cell proliferation. The expression of cyclin D1 was reduced in WT-SMCs but increased in CSE-KO-SMCs after estrogen treatments, which was reversed by knockdown of ERα in WT-SMCs or overexpression of ERα in CSE-KO-SMCs, respectively. The overexpression of cyclin D1 in WT-SMCs or knockdown of cyclin D1 expression in CSE-KO-SMCs reversed the effects of estrogen on cell proliferation. These results suggest that H2S mediates estrogen-inhibited proliferation of SMCs via selective activation of ERα/cyclin D1 pathways. PMID:22870237

  5. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production

    PubMed Central

    Fu, Ming; Zhang, Weihua; Wu, Lingyun; Yang, Guangdong; Wang, Rui

    2012-01-01

    Although many types of ancient bacteria and archea rely on hydrogen sulfide (H2S) for their energy production, eukaryotes generate ATP in an oxygen-dependent fashion. We hypothesize that endogenous H2S remains a regulator of energy production in mammalian cells under stress conditions, which enables the body to cope with energy demand when oxygen supply is insufficient. Cystathionine γ-lyase (CSE) is a major H2S-producing enzyme in the cardiovascular system that uses cysteine as the main substrate. Here we show that CSE is localized only in the cytosol, not in mitochondria, of vascular smooth-muscle cells (SMCs) under resting conditions, revealed by Western blot analysis and confocal microscopy of SMCs transfected with GFP-tagged CSE plasmid. After SMCs were exposed to A23187, thapsigargin, or tunicamycin, intracellular calcium level was increased, and CSE translocated from the cytosol to mitochondria. CSE was coimmunoprecipitated with translocase of the outer membrane 20 (Tom20) in mitochondrial membrane. Tom20 siRNA significantly inhibited mitochondrial translocation of CSE and mitochondrial H2S production. The cysteine level inside mitochondria is approximately three times that in the cytosol. Translocation of CSE to mitochondria metabolized cysteine, produced H2S inside mitochondria, and increased ATP production. Inhibition of CSE activity reversed A23187-stimulated mitochondrial ATP production. H2S improved mitochondrial ATP production in SMCs with hypoxia, which alone decreased ATP production. These results suggest that translocation of CSE to mitochondria on specific stress stimulations is a unique mechanism to promote H2S production inside mitochondria, which subsequently sustains mitochondrial ATP production under hypoxic conditions. PMID:22323590

  6. Protective effect of hydrogen sulfide against cold restraint stress-induced gastric mucosal injury in rats.

    PubMed

    Aboubakr, Esam M; Taye, Ashraf; El-Moselhy, Mohamed A; Hassan, Magdy K

    2013-12-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator plays a potential role in modulating gastric inflammatory responses. However, its putative protective role remains to be defined. The present study aimed to evaluate role of the exogenously released and endogenously synthesized H2S in cold restraint stress (CRS)-induced oxidative gastric damage in rats. Rats were restrained, and maintained at 4 °C for 3 h. The H2S donor, sodium hydrosulfide (NaHS) (60 μmol/kg) was injected intraperitoneally (i.p.) before CRS. Our results revealed that NaHS pretreatment significantly attenuated ulcer index, free and total acid output, and pepsin activity in gastric juice along with decreased gastric mucosal carbonyl content and reactive oxygen species production. This was accompanied by increased gastric juice pH and mucin concentration in addition to restoring the deficits in the gastric reduced glutathione, catalase as well as superoxide dismutase enzyme activities. NaHS pretreatment markedly reduced the serum level of tumor necrosis factor (TNF-α) and myeloperoxidase activity compared to CRS-non-treated. Moreover, NaHS preadministration significantly abrogated the inflammatory and the deleterious responses of gastric mucosa in CRS. The protective effects of H2S were confirmed by gastric histopathological examination. However, pretreatment with the H2S-synthesizing enzyme, cystathionine-gamma-lyase inhibitor, beta-cyano-L-alanine (50 mg/kg, i.p.) reversed the gastroprotection afforded by the endogenous H2S. Collectively, our results suggest that H2S can protect rat gastric mucosa against CRS-induced gastric ulceration possibly through mechanisms that involve anti-oxidant and anti-inflammatory actions alongside enhancement of gastric mucosal barrier and reduction in acid secretory parameters. PMID:23812778

  7. Asphyxiation Incidents by Hydrogen Sulfide at Manure Storage Facilities of Swine Livestock Farms in Korea.

    PubMed

    Park, Jihoon; Kang, Taesun; Jin, Suhyun; Heo, Yong; Kim, Kyungran; Lee, Kyungsuk; Tsai, Perngjy; Yoon, Chungsik

    2016-01-01

    Livestock workers are involved in a variety of tasks, such as caring for animals, maintaining the breeding facilities, cleaning, and manure handling, and are exposed to health and safety risks. Hydrogen sulfide is considered the most toxic by-product of the manure handling process at livestock facilities. Except for several reports in developed countries, the statistics and cause of asphyxiation incidents in farms have not been collected and reported systematically, although the number of these incidents is expected to increase in developing and underdeveloped countries. In this study, the authors compiled the cases of work-related asphyxiation incidents at livestock manure storage facilities and analyzed the main causes. In this survey, a total of 17 incidents were identified through newspapers or online searches and public reports. Thirty workers died and eight were injured due to work-related tasks and rescue attempts from 1998 to 2013 in Korea. Of the 30 fatalities, 18 occurred during manure handling/maintenance tasks and 12 during rescue attempts. All incidents except for one case occurred during the warm season from the late spring (April) to early autumn (September) when manure is likely to decompose rapidly. It is important to train employees involved in the operation of the facilities (i.e., owners, managers, employees) regarding the appropriate prevention strategies for confined space management, such as hazard identification before entry, periodical facility inspection, restriction of unnecessary access, proper ventilation, and health and safety. Sharing information or case reports on previous incidents could also help prevent similar cases from occurring and reduce the number of fatalities and injuries. PMID:26765950

  8. A liquid crystal-based passive badge for personal monitoring of exposure to hydrogen sulfide.

    PubMed

    Robinson, Sheila E; Grinwald, Bart A; Bremer, Laura L; Kupcho, Kurt A; Acharya, Bharat R; Owens, Patrick D

    2014-01-01

    A new liquid crystal (LC)-based passive dosimeter badge for personal monitoring of exposure to hydrogen sulfide (H2S) gas is reported. When a thin film of LC supported on a surface functionalized with lead perchlorate Pb(ClO4)2 (the LC sensor) is exposed to H2S, the orientation of LC molecules in the film changes from perpendicular to parallel. This reorientation induces a change in the appearance of the LC film when viewed between crossed polarizers. A H2S dosimeter was fabricated by pairing a LC sensor with a glass substrate forming a headspace between the two surfaces, to control diffusion of H2S across the LC film. When the dosimeter is exposed to H2S, a bright front appears as a function of exposure time. An algorithm has been developed to correlate this response length and exposure dose. The dosimeters are functionally stable when subjected to extreme temperature and humidity fluctuations, and are immune to a number of potentially interfering chemicals, except mercaptans. These dosimeters detect H2S at 0.2 ppm TWA (8 hr) with ±20% overall accuracy. The dosimeters were used to monitor the personal exposure of personnel working in an oil refinery. The TWA concentrations measured by the LC-based dosimeters correlate strongly with the NIOSH 1063 method that uses a sorbent tube and a pump followed by laboratory analysis. Thus, the LC-based dosimeters can provide a sensitive tool for on-site assessment of personal exposure to H2S in different environments. PMID:24766440

  9. Regulation of cardiovascular cell function by hydrogen sulfide (H(2)S).

    PubMed

    Elsey, David J; Fowkes, Robert C; Baxter, Gary F

    2010-03-01

    Since the discovery of endogenously-produced hydrogen sulfide (H(2)S) in various tissues, there has been an explosion of interest in H(2)S as a biological mediator alongside other gaseous mediators, nitric oxide and carbon monoxide. The identification of enzyme-regulated H(2)S synthetic pathways in the cardiovascular system has led to a number of studies examining specific regulatory actions of H(2)S. We review evidence showing that endogenously-generated and exogenously-administered H(2)S exerts a wide range of actions in vascular and myocardial cells including vasodilator/vasoconstrictor effects via modification of the smooth muscle tone, induction of apoptosis and anti-proliferative responses in the smooth muscle cells, angiogenic actions, effects relevant to inflammation and shock, and cytoprotection in models of myocardial ischemia-reperfusion injury. Several molecular mechanisms of action of H(2)S have been described. These include interactions of H(2)S with NO, redox regulation of multiple signaling proteins and regulation of K(ATP) channel opening. The gaps in our current understanding of precise mechanisms, the absence of selective pharmacological tools and the limited availability of H(2)S measurement techniques for living tissues, leave many questions about physiological and pathophysiological roles of H(2)S unanswered at present. Nevertheless, this area of investigation is advancing rapidly. We believe H(2)S holds promise as an endogenous mediator controlling a wide range of cardiovascular cell functions and integrated responses under both physiological and pathological conditions and may be amenable to therapeutic manipulation. PMID:20104507

  10. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function. PMID:21808008

  11. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects

    PubMed Central

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-01-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2S on complex IV is enhanced, which may shift the balance of H2S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2S (e.g. sepsis), while in other disease states H2S levels and H2S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2S-induced therapeutic ‘suspended animation’, a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991749

  12. Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat.

    PubMed

    Malik, Rishi; Ferguson, Alastair V

    2016-02-15

    Hydrogen sulfide (H2S) is a gasotransmitter that has been described to affect the membrane potential of neurons in a number of brain areas. Using whole cell patch-clamp electrophysiological techniques, we investigated the effects of H2S on the membrane potential of neurons in the nucleus of the solitary tract (NTS). Whole cell patch clamp recordings were obtained from 300µm coronal NTS brain slices and bath application of the H2S donor, sodium hydrosulfide (NaHS)(1mM, 5mM and 10mM) was shown to have clear concentration-dependent, reversible, depolarizing effects on the membrane potential of 95% of neurons tested (72/76), an effect which in 64% (46/72) of these responding neurons was followed by a hyperpolarization. In the presence of the voltage-gated sodium channel blocker tetrodotoxin (TTX) and the glutamate receptor antagonist kynurenic acid (KA), these depolarizing effects of 5 mM NaHS (5.0±2.2mV (n=7)) were still observed, although they were significantly reduced compared to regular aCSF (7.7±2.0mV (n=7), p*<0.05, paired t-test). We also demonstrated that hyperpolarizations in response to 5mM NaHS resulted from modulation of the KATP channel with recordings showing that following KATP channel block with glibenclamide these hyperpolarizing effects were abolished (Control -7.9±1.2mV, Glibenclamide -1.9±0.9mV (n=8) p<0.05, paired t-test). This study has for the first time described post-synaptic effects of this gasotransmitter on the membrane potential of NTS neurons and thus implicates this transmitter in regulating the diverse autonomic systems controlled by the NTS. PMID:26721687

  13. Bench-to-bedside review: Hydrogen sulfide – the third gaseous transmitter: applications for critical care

    PubMed Central

    Wagner, Florian; Asfar, Pierre; Calzia, Enrico; Radermacher, Peter; Szabó, Csaba

    2009-01-01

    Hydrogen sulfide (H2S), a gas with the characteristic odor of rotten eggs, is known for its toxicity and as an environmental hazard, inhibition of mitochondrial respiration resulting from blockade of cytochrome c oxidase being the main toxic mechanism. Recently, however, H2S has been recognized as a signaling molecule of the cardiovascular, inflammatory and nervous systems, and therefore, alongside nitric oxide and carbon monoxide, is referred to as the third endogenous gaseous transmitter. Inhalation of gaseous H2S as well as administration of inhibitors of its endogenous production and compounds that donate H2S have been studied in various models of shock. Based on the concept that multiorgan failure secondary to shock, inflammation and sepsis may represent an adaptive hypometabolic reponse to preserve ATP homoeostasis, particular interest has focused on the induction of a hibernation-like suspended animation with H2S. It must be underscored that currently only a limited number of data are available from clinically relevant large animal models. Moreover, several crucial issues warrant further investigation before the clinical application of this concept. First, the impact of hypothermia for any H2S-related organ protection remains a matter of debate. Second, similar to the friend and foe character of nitric oxide, no definitive conclusions can be made as to whether H2S exerts proinflammatory or anti-inflammatory properties. Finally, in addition to the question of dosing and timing (for example, bolus administration versus continuous intravenous infusion), the preferred route of H2S administration remains to be settled – that is, inhaling gaseous H2S versus intra-venous administration of injectable H2S preparations or H2S donors. To date, therefore, while H2S-induced suspended animation in humans may still be referred to as science fiction, there is ample promising preclinical data that this approach is a fascinating new therapeutic perspective for the management of shock states that merits further investigation. PMID:19519960

  14. A computational fluid dynamics approach to assess interhuman variability in hydrogen sulfide nasal dosimetry.

    PubMed

    Schroeter, Jeffry D; Garcia, Guilherme J M; Kimbell, Julia S

    2010-03-01

    Human exposure to hydrogen sulfide (H(2)S) gas occurs from natural and industrial sources and can result in dose-related neurological, respiratory, and cardiovascular effects. Olfactory neuronal loss in H(2)S-exposed rats has been used to develop occupational and environmental exposure limits. Using nasal computational fluid dynamics (CFD) models, a correlation was found between wall mass flux and olfactory neuronal loss in rodents, suggesting an influence of airflow patterns on lesion locations that may affect interspecies extrapolation of inhaled dose. Human nasal anatomy varies considerably within a population, potentially affecting airflow patterns and dosimetry of inhaled gases. This study investigates interhuman variability of H(2)S nasal dosimetry using anatomically accurate CFD models of the nasal passages of five adults and two children generated from magnetic resonance imaging (MRI) or computed tomography (CT) scan data. Using allometrically equivalent breathing rates, steady-state inspiratory airflow and H(2)S uptake were simulated. Approximate locations of olfactory epithelium were mapped in each model to compare air:tissue flux in the olfactory region among individuals. The fraction of total airflow to the olfactory region ranged from 2% to 16%. Despite this wide range in olfactory airflow, H(2)S dosimetry in the olfactory region was predicted to be similar among individuals. Differences in the 99 th percentile and average flux values were <1.2-fold at inhaled concentrations of 1, 5, and 10 ppm. These preliminary results suggest that differences in nasal anatomy and ventilation among adults and children do not have a significant effect on H(2)S dosimetry in the olfactory region. PMID:20064104

  15. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway

    PubMed Central

    Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  16. Effects of pH and Lactate on Hydrogen Sulfide Production by Oral Veillonella spp.

    PubMed Central

    Washio, Jumpei; Shimada, Yuko; Yamada, Masakazu; Sakamaki, Ryouichi

    2014-01-01

    Indigenous oral bacteria in the tongue coating such as Veillonella have been identified as the main producers of hydrogen sulfide (H2S), one of the major components of oral malodor. However, there is little information on the physiological properties of H2S production by oral Veillonella such as metabolic activity and oral environmental factors which may affect H2S production. Thus, in the present study, the H2S-producing activity of growing cells, resting cells, and cell extracts of oral Veillonella species and the effects of oral environmental factors, including pH and lactate, were investigated. Type strains of Veillonella atypica, Veillonella dispar, and Veillonella parvula were used. These Veillonella species produced H2S during growth in the presence of l-cysteine. Resting cells of these bacteria produced H2S from l-cysteine, and the cell extracts showed enzymatic activity to convert l-cysteine to H2S. H2S production by resting cells was higher at pH 6 to 7 and lower at pH 5. The presence of lactate markedly increased H2S production by resting cells (4.5- to 23.7-fold), while lactate had no effect on enzymatic activity in cell extracts. In addition to H2S, ammonia was produced in cell extracts of all the strains, indicating that H2S was produced by the catalysis of cystathionine ?-lyase (EC 4.4.1.1). Serine was also produced in cell extracts of V. atypica and V. parvula, suggesting the involvement of cystathionine ?-synthase lyase (EC 4.2.1.22) in these strains. This study indicates that Veillonella produce H2S from l-cysteine and that their H2S production can be regulated by oral environmental factors, namely, pH and lactate. PMID:24795374

  17. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus.

    PubMed

    Ali, Basharat; Gill, Rafaqat A; Yang, Su; Gill, Muhammad B; Ali, Shafaqat; Rafiq, Muhammad T; Zhou, Weijun

    2014-12-01

    In the present study, role of hydrogen sulfide (H2S) in alleviating cadmium (Cd) induced stress in oilseed rape (Brassica napus L.) was studied under greenhouse conditions. Plants were grown hydroponically under three levels (0, 100, and 500µM) of Cd and three levels (0, 100 and 200µM) of H2S donor, sodium hydrosulfide (NaHS). Results showed that application of H2S significantly improved the plant growth, root morphology, chlorophyll contents, elements uptake and photosynthetic activity in B. napus plants under Cd stress. Moreover, addition of H2S reduced the Cd concentration in the leaves and roots of B. napus plants under Cd-toxicity. Exogenously applied H2S decreased the production of malondialdehyde and reactive oxygen species in the leaves and roots by improving the enzymatic antioxidant activities under Cd stress conditions. The microscopic examination indicated that application of exogenous H2S improved the cell structures and enabled a clean mesophyll cell having a well developed chloroplast with thylakoid membranes, and a number of mitochondria could be observed in the micrographs. A number of modifications could be found in root tip cell i.e. mature mitochondria, long endoplasmic reticulum and golgibodies under combined application of H2S and Cd. On the basis of these findings, it can be concluded that application of exogenous H2S has a protective role on plant growth, photosynthetic parameters, elements uptake, antioxidants enzyme activities and ultrastructural changes in B. napus under high Cd stress conditions. PMID:25255479

  18. Passive monitors to measure hydrogen sulfide near concentrated animal feeding operations.

    PubMed

    Pavilonis, Brian T; O'Shaughnessy, Patrick T; Altmaier, Ralph; Metwali, Nervana; Thorne, Peter S

    2013-06-01

    Hydrogen sulfide (H2S) is one of many airborne pollutants emitted by concentrated animal feeding operations (CAFOs). However, few studies have characterized ambient H2S levels near these facilities, largely due to the lack of low-cost, reliable, and easily transportable instrumentation available to researchers. We determined intermediate environmental H2S exposure near CAFOs using Radiello passive monitors. First, a laboratory study was performed to determine the accuracy of the device. Next, a total of eight passive H2S monitors were deployed bi-weekly in close proximity (<40 m) to a medium-sized swine confinement for seven months in order to determine the temporal and spatial variability of H2S. Finally, we measured H2S concentrations across two rural Iowa counties to characterize ambient exposure near thirteen CAFOs and two schools. The value of the temperature-adjusted H2S passive diffusion rate provided by the supplier was 29% larger than the 24 h rate determined experimentally. Concentrations of H2S measured near the medium-sized confinement were varied and ranged from 0.2 to 48.6 ppb depending on the sampling period and proximity to a lagoon on the property. Two-week concentrations near the schools were low (<1 ppb), while concentrations near the thirteen CAFOs ranged from 0.1 to 42.9 ppb. The passive monitors were effective in measuring H2S concentrations near a swine CAFO as long as they were exposed for a sufficient period of time (two weeks). Radiello passive monitors are a promising new device in measuring intermediate H2S exposure in rural populations. Measured values in excess of an Iowa state limit of 30 ppb (24 h average) suggest that enforcement actions are needed to mitigate H2S migration from swine CAFOs. PMID:23681048

  19. Passive monitors to measure hydrogen sulfide near concentrated animal feeding operations

    PubMed Central

    Pavilonis, Brian T.; O'Shaughnessy, Patrick T.; Altmaier, Ralph; Metwali, Nervana; Thorne, Peter S.

    2014-01-01

    Hydrogen sulfide (H2S) is one of many airborne pollutants emitted by concentrated animal feeding operations (CAFOs). However, few studies have characterized ambient H2S levels near these facilities, largely due to the lack of low-cost, reliable, and easily transportable instrumentation available to researchers. We determined intermediate environmental H2S exposure near CAFOs using Radiello passive monitors. First, a laboratory study was performed to determine the accuracy of the device. Next, a total of eight passive H2S monitors were deployed bi-weekly in close proximity (<40 m) to a medium-sized swine confinement for seven months in order to determine the temporal and spatial variability of H2S. Finally, we measured H2S concentrations across two rural Iowa counties to characterize ambient exposure near thirteen CAFOs and two schools. The value of the temperature-adjusted H2S passive diffusion rate provided by the supplier was 29% larger than the 24-hr rate determined experimentally. Concentrations of H2S measured near the medium-sized confinement were varied and ranged from 0.2 to 48.6 ppb depending on the sampling period and proximity to a lagoon on the property. Two-week concentrations near the schools were low (<1 ppb), while concentrations near the thirteen CAFOs ranged from 0.1 to 42.9 ppb. The passive monitors were effective in measuring H2S concentrations near a swine CAFO as long as they were exposed for a sufficient period of time (two weeks). Radiello passive monitors are a promising new device in measuring intermediate H2S exposure in rural populations. Measured values in excess of an Iowa state limit of 30 ppb (24-hr average) suggest that enforcement actions are needed to mitigate H2S migration from swine CAFOs. PMID:23681048

  20. Hydrogen Sulfide Represses Androgen Receptor Transactivation by Targeting at the Second Zinc Finger Module*

    PubMed Central

    Zhao, Kexin; Li, Shuangshuang; Wu, Lingyun; Lai, Christopher; Yang, Guangdong

    2014-01-01

    Androgen receptor (AR) signaling is indispensable for the development of prostate cancer from the initial androgen-dependent state to a later aggressive androgen-resistant state. This study examined the role of hydrogen sulfide (H2S), a novel gasotransmitter, in the regulation of AR signaling as well as its mediation in androgen-independent cell growth in prostate cancer cells. Here we found that H2S inhibits cell proliferation of both androgen-dependent (LNCaP) and antiandrogen-resistant prostate cancer cells (LNCaP-B), with more significance on the latter, which was established by long term treatment of parental LNCaP cells with bicalutamide. The expression of cystathionine γ-lyase (CSE), a major H2S-producing enzyme in prostate tissue, was reduced in both human prostate cancer tissues and LNCaP-B cells. LNCaP-B cells were resistant to bicalutamide-induced cell growth inhibition, and CSE overexpression could rebuild the sensitivity of LNCaP-B cells to bicalutamide. H2S significantly repressed the expression of prostate-specific antigen (PSA) and TMPRSS2, two AR-targeted genes. In addition, H2S inhibited AR binding with PSA promoter and androgen-responsive element (ARE) luciferase activity. We further found that AR is post-translationally modified by H2S through S-sulfhydration. Mutation of cysteine 611 and cysteine 614 in the second zinc finger module of AR-DNA binding domain diminished the effects of H2S on AR S-sulfhydration and AR dimerization. These data suggest that reduced CSE/H2S signaling contributes to antiandrogen-resistant status, and sufficient level of H2S is able to inhibit AR transactivation and treat castration-resistant prostate cancer. PMID:24942741