Science.gov

Sample records for geothermal project proposed

  1. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    SciTech Connect

    Matsuoka, J.K; Minerbi, L.; Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury; Trettin, L.D.

    1996-05-01

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

  2. Surveys of forest bird populations found in the vicinity of proposed geothermal project subzones in the district of Puna, Hawaii

    SciTech Connect

    Jacobi, J.D.; Reynolds, M.; Ritchotte, G.; Nielsen, B.; Viggiano, A.; Dwyer, J.

    1994-10-01

    This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.

  3. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  4. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  5. Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  6. A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report

    SciTech Connect

    Evans, K.; Woodside, D.; Bruegmann, M.

    1994-08-01

    A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds, resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.

  7. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing

  8. Middlesex Community College Geothermal Project

    SciTech Connect

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  9. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  10. Geothermal energy projects - Planning and management

    SciTech Connect

    Goodman, L.J.; Love, R.N.

    1980-01-01

    A presentation is made of management requirements for the development of geothermal resources by citing three major, and successful, projects: the Wairakei geothermal power project of New Zealand, the Hawaii geothermal project of the United States, and the Tiwi geothermal project of the Philippines. The three case studies are presented according to a format in which the history of each project falls into four phases: (1) planning, appraisal and design (2) section, approval and activation (3) operation, control and handover and (4) evaluation and refinement. Each case study furnishes extensive performance and economic figures, along with consideration of such related issues as geothermal effluent chemical content, infrastructural requirements, and environmental impact.

  11. Pagosa Springs geothermal project. Final technical report

    SciTech Connect

    Not Available

    1984-10-19

    This booklet discusses some ideas and methods for using Colorado geothermal energy. A project installed in Pagosa Springs, which consists of a pipeline laid down 8th street with service to residences retrofitted to geothermal space heating, is described. (ACR)

  12. Geothermal Project. Final report

    SciTech Connect

    Not Available

    1983-03-31

    The project was designed to take 95/sup 0/F water from an existing well and process it through a heat exchanger carrying supply water for our boiler make up and domestic hot water systems. The temperature of this water runs from 55/sup 0/F to 65/sup 0/F. In operation it was possible to raise the temperature of this water an average of approximately 12/sup 0/F. The amount of energy captured was recorded and it was found that one can capture approximately 199 x 10/sup 6/ Btu/Mo. Using current energy costs and a boiler efficiency factor of .8 a potential annual savings of approximately $11,104/year was calculated. The total cost of the project was $31,893.68. Using these figures a simple pay back period of 2.9 years was calculated.

  13. Screening of three proposed DOE geopressured-geothermal aquifer natural gas project areas for potential conflicting commercial production: Freshwater Bayou, Lake Theriot, and Kaplan, Louisiana

    SciTech Connect

    Knutson, C.F.; Rogers, L.A.

    1982-02-01

    Three proposed DOE geopressured geothermal prospects defined by the Louisiana State University resource assessment group were screened for possible conflict with existing gas production. The analysis used the public records available at the Louisiana Department of Conservation offices in Baton Rouge and structural and statigraphic interpretations made by the L.S.U. resource assessment group. (MHR)

  14. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or

  15. Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    SciTech Connect

    Reynolds, M.; Ritchotte, G.; Viggiano, A.; Dwyer, J.; Nielsen, B.; Jacobi, J.D.

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediately adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.

  16. Geothermal Project Data and Personnel Resumes

    SciTech Connect

    1980-01-01

    Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

  17. Surveys of distribution and abundance of the Hawaiian hawk within the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    SciTech Connect

    Reynolds, M.; Ritchotte, G.; Viggiano, A.; Dwyer, J.; Nielsen, B.; Jacobi, J.D.

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of proposed geothermal development on the biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the distribution, habitat use, and density of the Hawaiian hawk or `Io (Buteo solitarius). Data were collected by the USFWS to assess the potential impacts of geothermal development on `Io populations on the island of Hawaii. These impacts include degradation of potential nesting habitat and increased disturbance due to construction and operation activities. Data from these surveys were analyzed as part of an island wide population assessment conducted by the Western Foundation of Vertebrate Zoology at the request of the USFWS.

  18. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  19. The Proposal Project

    ERIC Educational Resources Information Center

    Pierce, Elizabeth

    2007-01-01

    The proposal project stretches over a significant portion of the semester-long sophomore course Professional Communication (ENG 250) at Monroe Community College. While developing their proposal project, students need to use time management skills to successfully complete a quality project on time. In addition, excellent oral and written…

  20. Mushroom growing project at the Los Humeros, Mexico geothermal field

    SciTech Connect

    Rangel, M.E.R.

    1998-12-01

    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. The mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.

  1. Overview of Proposed Geothermal Development in Hawaii

    SciTech Connect

    1990-02-15

    During the four hours of the public meeting held by the State Department of Business and Economic Development (DBED) in Maui in November 1989, not one of the 200 persons present spoke in favor of geothermal development on the Big Island to supply power to Oahu. However, we were all sure after the meeting that the State would proceed on its course to develop the project in spite of any public concerns. This situation we find incredible considering there are many unanswered questions on a subject of paramount importance to the economic and environmental well being of all of us. Our concerns are well expressed in the editorial of The Maui News, December 10, 1989 . We wish to set the record straight with some facts from an economic, financial and utility planning viewpoint, recognizing also the potentially serious social, health and other environmental impacts.

  2. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  3. Proposal of a consistent framework to integrate geothermal potential classification with energy extraction

    NASA Astrophysics Data System (ADS)

    Falcone, G.

    2015-03-01

    The classification of geothermal resources is dependent on the estimate of their corresponding geothermal potential, so adopting a common assessment methodology would greatly benefit operators, investors, government regulators and consumers. Several geothermal classification schemes have been proposed, but, to date, no universally recognised standard exists. This is due to the difficulty in standardising fundamentally different geothermal source and product types. The situation is not helped by the accepted use of inconsistent jargon among the geothermal community. In fact, the term "geothermal potential" is often interpreted differently by different geothermal practitioners. This paper highlights the importance of integrating the classification of geothermal potential with that of geothermal energy extraction from well-defined development projects. A structured progression, from estimates of in situ quantities for a given prospect to actual production, is needed. Employing a unique, unambiguous framework would ensure that the same resource cannot exist simultaneously under different levels of maturity of the estimate (as in double bookings of resources), which would let stakeholders better assess the level of risk involved and the steps needed for a geothermal potential to achieve commercial extraction.

  4. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  5. Report on Hawaii geothermal power plant project

    SciTech Connect

    Not Available

    1983-06-01

    The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

  6. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  7. Project Proposals Evaluation

    NASA Astrophysics Data System (ADS)

    Encheva, Sylvia; Tumin, Sharil

    2009-08-01

    Collaboration among various firms has been traditionally used trough single project joint ventures for bonding purposes. Eventhough the performed work is usually beneficial to some extend to all participants, the type of collaboration option to be adapted is strongly influenced by overall purposes and goals that can be achieved. In order to facilitate a choice of collaboration option best suited to a firm's need a computer based model is proposed.

  8. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  9. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  10. Geothermal Mill Redevelopment Project in Massachusetts

    SciTech Connect

    Vale, A.Q.

    2009-03-17

    Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (“DOE”) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

  11. Time frames for geothermal project development

    SciTech Connect

    McClain, David W.

    2001-04-17

    Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

  12. Ornithological Survey of the Proposed Geothermal Well Site No. 2

    SciTech Connect

    Jeffrey, Jack

    1990-08-16

    The U.S. Fish and Wildlife Service (USFWS 1983) and the State of Hawaii (DLNR 1986) have listed as endangered six forest bird species for the Island of Hawaii. Two of these birds, the O'u (Psittirostra psittacea) and the Hawaiian hawk (Buteo solitarius) may be present within the Geothermal resource sub-zone (Scott et al. 1986). Thus, their presence could impact future development within the resource area. This report presents the results of a bird survey conducted August 11 and 12, 1990 in the sub-zone in and around the proposed well site and pad for True/Mid Pacific Geothermal Well No.2.

  13. Forrest County, MS Geothermal Project--Final Report

    SciTech Connect

    Proctor, Corey

    2014-03-13

    The Forrest County Geothermal Energy Project consists of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi-Purpose Center. The project will also replace DX/gas rooftop and DX split system heat pump equipment with geothermal units for the Forrest County Jail. Each of the aforementioned projects consists of approximately 400 tons of cooling. The project also includes between 600 and 800 geothermal closed-loop wells. Building controls will be updated as well on both sites.

  14. Honey Lake Geothermal Project, Lassen County, California. Final technical report

    SciTech Connect

    Not Available

    1984-11-01

    This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

  15. Surveys on the distribution and abundance of the Hawaiian hoary bat (Lasiurus cinereus semotus) in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    SciTech Connect

    Reynolds, M.; Ritchotte, G.; Dwyer, J.; Viggiano, A.; Nielsen, B.; Jacobi, J.D.

    1994-08-01

    In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of bats throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.

  16. Draft Executive Summary Hawaii Geothermal Project - EIS Scoping Meetings

    SciTech Connect

    1992-03-01

    After introductions by the facilitator and the program director from DOE, process questions were entertained. It was also sometimes necessary to make clarifications as to process throughout the meetings. Topics covered federal involvement in the HGP-EIS; NEPA compliance; public awareness, review, and access to information; Native Hawaiian concerns; the record of decision, responsibility with respect to international issues; the impacts of prior and on-going geothermal development activities; project definition; alternatives to the proposed action; necessary studies; Section 7 consultations; socioeconomic impacts; and risk analysis. Presentations followed, in ten meetings, 163 people presented issues and concerns, 1 additional person raised process questions only.

  17. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  18. Geothermal policy project. Quarterly report, March 1-May 30, 1980

    SciTech Connect

    Connor, T.D.

    1980-06-01

    Efforts continued to initiate geothermal and groundwater heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Minnesota and South Carolina have agreed to a groundwater heat pump study, and Maryland and Virginia have agreed to a follow-up geothermal study in 1980. Follow-up contacts were made with several other existing project states and state meetings and workshops were held in eleven project states. Two generic documents were prepared, the Geothermal Guidebook and the Guidebook to Groundwater Heat Pumps, in addition to several state-specific documents.

  19. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  20. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect

    1981-06-01

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  1. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  2. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  3. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures

  4. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  5. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  6. National Conference of State Legislatures Geothermal Project. Final report, February 1978--September 1982

    SciTech Connect

    1983-01-31

    The principal objectives of the NCSL Geothermal Project was to stimulate and assist state legislative action to encourage the efficient development of geothermal resources, including the use of groundwater heat pumps. The project had the following work tasks: (1) initiate state geothermal policy reviews; (2) provide technical assistance to state geothermal policy reviews; (3) serve as liaison with geothermal community; and (4) perform project evaluation.

  7. Newberry Geothermal Pilot Project : Final Environmental Impact Statement.

    SciTech Connect

    US Forest Service; US Bureau of Land Management; US Bonneville Power Administration

    1994-09-01

    BPA has decided to acquire 20 average megawatts (aMW) of electrical power from a privately-owned geothermal power plant on the west flank of Newberry Volcano in Deschutes County, Oregon. The Newberry Project will generate 30 aMW and will be developed, owned, and operated by CE Newberry, Inc. of Portland, Oregon. In addition, BPA has decided to grant billing credits to EWEB for 10 aMW of electrical power and to provide wheeling services to EWEB for the transmission of this power to their system. BPA expects the Newberry Project to be in commercial operation by November 1997. BPA has statutory responsibilities to supply electrical power to its utility industrial and other customers in the Pacific Northwest. The Newberry Project will be used to meet the electrical power supply obligations of these customers. The Newberry Project will also demonstrate the availability of geothermal power to meet power supply needs in the Pacific Northwest and is expected to be the first commercial geothermal plant in the region. The Newberry Project was selected under the BPA Geothermal Pilot Project Program. The goal of the Program is to initiate development of the Pacific Northwest`s large, but essentially untapped, geothermal resources, and to confirm the availability of this resource to meet the energy needs of the region. The primary underlying objective of this Program is to assure the supply of alternative sources of electrical power to help meet growing regional power demands and needs.

  8. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  9. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    SciTech Connect

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support

  10. The Pawsey Supercomputer geothermal cooling project

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  11. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect

    Reed, M.J.

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  12. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  13. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    SciTech Connect

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  14. An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project

    SciTech Connect

    1990-03-01

    A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an

  15. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    SciTech Connect

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  16. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    SciTech Connect

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  17. Environmental Report Utah State Prison Geothermal Project

    SciTech Connect

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  18. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    SciTech Connect

    Shervais, John W.; Evans, James P.; Liberty, Lee M.; Schmitt, Douglas R.; Blackwell, David D.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  19. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  20. Honey Lake hybrid geothermal wood residue power project

    SciTech Connect

    Toland, J.

    1981-05-01

    The Honey Lake Hybrid Geothermal Wood Residue Power Project with a planned output of 50 MW is undergoing feasibility studies funded by GeoProducts Corporation, Department of Water Resources, State of California, US Department of Energy and the Forest Service, USDA. The outlook is optimistic. It is reliably estimated that the required volume of woody biomass can be made available without environmental degradation.

  1. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  2. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  3. Feasibility study of geothermal heating, Modoc Lassen housing project

    SciTech Connect

    Not Available

    1981-11-01

    This study evaluates the feasibility of using geothermal water for space and domestic water heating systems at the elderly housing project now ready for construction at the Modoc Lassen Indian Reservation. For the six units considered, the space heating load is four times the domestic water heating load. Since the geothermal water temperature is uncertain, two scenarios were evaluated. In the first, which assumes 160/sup 0/F supply temperature, the geothermal system is assumed to satisfy the entire space and domestic water heating loads. In the second, which assumes the supply temperature to be less than 120/sup 0/F at the wellhead only space heating is provided. The economics of the first scenario are quite favorable. The additional expenditure of $15,630 is projected to save $3522 annually at current energy costs, and the life cycle cost study projects a discounted rate of return on the investment of 44.4%. Surprisingly, the investment is even more favorable for the second scenario, due to the higher cost and lower resultant savings for the domestic water components. Forced air space heating from geothermal is recommended. Domestic water heating is recommended pending additional information on supply water temperature.

  4. National Conference of State Legislators Geothermal Project. Final report, February 1978-September 1982

    SciTech Connect

    Not Available

    1982-01-01

    The activities of the National Conference of State Legislatures Geothermal Project in stimulating and assessing state legislative action to encourage the efficient development of geothermal resources, including the use of ground water heat pumps, are reviewed by state. (MHR)

  5. Southwest Alaska Regional Geothermal Energy Project

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  6. Parcperdue Geopressure -- Geothermal Project: Appendix E

    SciTech Connect

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

  7. New Mexico State University Campus geothermal demonstration project

    SciTech Connect

    Cuniff, R.A.; Fisher, K.P.; Chintawongvanich, P.

    1984-04-01

    This report presents the design, construction highlights, and performance of the New Mexico State University Campus Geothermal Demonstration Project at Las Cruces, New Mexico. Construction started in July 1981, first system use was January 1982, and the system was dedicated on April 21, 1982. Included herein are summary observations after two years of use. The geothermal hot water from New Mexico State University wells is used to heat potable water, which in turn provides 83 percent of the domestic hot water on the New Mexico State University campus, as well as space heat to two buildings, and for two heated swimming pools. The original system is providing service to 30 total buildings, with two additional buildings (150,000 square feet) in process of geothermal conversion.) The system overall performance has been excellent, except for geothermal well pump problems. In terms of operating efficiency, the system has exceeded the design parameters. In spite of abnormally high costs for well and pump repairs, the system has shown a positive cost avoidance of more than $118,000 for the first year of operation. For the first two full years of operation, the system has produced a net positive cost avoidance of more than $200,000. Payback on the total investment of $1,670,000 is projected to be 6 to 10 years, depending on the future prices of natural gas and electricity.

  8. Geothermal Electric Projects from a User's Viewpoint

    SciTech Connect

    Nugent, James M.

    1980-12-01

    The financing of a geothermal power plant has a unique characteristic which is not present with conventional oil, coal, or nuclear power plants and which has slowed development of geothermal resources. That unique characteristic is the increased risk as perceived by utilities, banks and lessors and the unpredictability of those risks as perceived by insurance companies. From a utility company perspective, the increased risk is the potential financial loss to the stockholders in the event the power plant is unable to economically produce electricity due to depletion, scaling or other problems. Such an eventuality could result in the utility having to ''write-off'' the value of the asset and pass the loss onto the stockholders. Banks, lessors and others share these same concerns for their stockholders; thus, are willing to finance power plants only if most of the financial risk is borne by the utility. Retention of financial risk by the utility can take the form of a ''hell or high water'' power purchase contract wherein the utility makes payments even when no power is being produced, or an indemnity agreement with a plant lessor wherein the utility agrees to indemnify the lessor in the event he loses any of the tax or income benefits contemplated, or a credit agreement with a bank or other source of funds wherein the utility company's general credit backs up the obligation. As a result of their perception of increased risk, utilities have been searching for ways to reduce the risk to their stockholders by shifting it either to the taxpayer in the form of a DOE grant or DOE loan guarantee, or the rate-payer in the form of Public Utility Commission (PUC) approvals or other sharing. Other potential methods for reducing risk may entail finding a plant lessor or other entity willing to accept some of the risk in exchange for a higher rate of return obtaining insurance; or some combination of DOE loan guarantee, lease and insurance. No attempt has been made to include the

  9. Forecasting Induced Seismicity In Deep Geothermal Energy Projects

    NASA Astrophysics Data System (ADS)

    Király, Eszter; Gischig, Valentin; Karvounis, Dimitrios; Heiniger, Lukas; Wiemer, Stefan

    2014-05-01

    The decision to phase out nuclear power in Switzerland by 2034 accelerated research on deep geothermal energy, which has the ability to contribute to long-term energy resources. Induced seismicity occurring during early stimulation periods in deep geothermal projects of past years in Switzerland, however, clearly document our limited understanding of the processes at depth that lead to significant seismic hazard and that may influence public acceptance of future projects. Controlling induced seismicity related to deep geothermal projects with adaptive warning systems require models that are forward looking, dynamically updated on the fly as new data arrive and probabilistic in the sense that the inherent uncertainties in our understanding of the processes and in the required model parameters. We currently develop a fully coupled non-linear hydraulic-seismic 3D model joint with a hazard assessment procedure. The goal is to improve the forecasting skill owing to validated physical constraints. As a first step, we seek to answer the question: is it possible to forecast the seismic response of the geothermal site during and after stimulation based on observed seismicity and hydraulic data? Our goal is to find the most suitable model to date for forecasting induced micro-seismicity and unexpected large events in geothermal systems. In order to do so, available stochastic and hybrid models are tested and ranked such as Epidemic Type Aftershock Sequence models, models developed by Shapiro and his research group and two types of geomechanical seed models incorporating linear and non-linear fluid flow. The aim is to balance model prediction performance and model complexity: which parameters are necessary to forecast seismicity well, and which are eventually those that increase model complexity but do not give better results. All tests are performed on the Basel 2006 dataset. Testing is carried out along the guidelines of the Collaboratory for the Study of Earthquake

  10. Geothermal aquaculture project: Real Property Systems Inc. , Harney Basin, Oregon

    SciTech Connect

    Not Available

    1981-08-14

    Real Property Systems Inc., (RPS) owns two parcels in the vicinity of Harney Lake, Oregon. One parcel is 120 acres in size, the other is 200 acres. A study concludes that the 200 acre parcel has the greater potential for geothermal development. RPS is interested in an aquaculture operation that produces fresh water prawns, (Macrobrachium rosenbergii) for the market. To supply the heat necessary to maintain the ideal temperature of 82/sup 0/F desired for these prawns, a geothermal resource having a 150/sup 0/F temperature or higher, is needed. The best estimate is that 150/sup 0/F water can be found from a minimum 1090 feet depth to 2625 feet, with no absolute assurances that sufficient quantities of geothermal waters exist without drilling for the same. This study undertakes the preliminary determination of project economics so that a decision can be made whether or not to proceed with exploratory drilling. The study is based on 10 acres of ponds, with a peak requirement of 2500 gpm of 150/sup 0/F geothermal water.

  11. Geothermal policy project. Quarterly report, September 1, 1980-November 30, 1980

    SciTech Connect

    Not Available

    1981-01-01

    Efforts continued to carry forward policy development in existing project states. Follow-up contacts were made with most project states, and state visits and meetings occurred in eight project states. Several state-specific documents and one background document, geothermal Policies in Selected States, were prepared during this reporting period. In Yakima, Washington, the project cosponsored a geothermal symposium with the Washington State Energy Office, in addition to attending several other geothermal meetings and conferences.

  12. National projects on direct utilization of geothermal resources in Japan

    SciTech Connect

    Sekioka, M.; Fujitomi, M.

    1981-10-01

    The two national projects on direct utilization of geothermal resources are mentioned. The merit of the projects is to utilize geothermal water which discharges, with team, from existing production wells of the geothermal power plants before injection underground. The two power plants, Kakkonda (50 MW), Iwate, and Onuma (10 MW), Akita, supply 1000 t/h of 150/sup 0/C and 400 t/h of 94/sup 0/C of thermal water to heat-exchange with fresh water and send 800 t/h of 115/sup 0/C and 150 t/h of 70/sup 0/C of fresh-heated water to Shizukuishi, Iwate, and Kazuno, Akita, respectively. Financial supports of 4.5 billion and 1.6 billion yen are offered to the Iwate and the Kazuno projects, respectively, by the Agency of Natural Resources and Energy, the Ministry of International Trade and Industry, for drilling of injection wells, constructing of heat exchangers and laying of transportation pipelines.

  13. The helical screw expander evaluation project. [for geothermal wells

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.

    1977-01-01

    A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.

  14. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  15. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  16. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  17. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo

    2015-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of

  18. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  19. Research and Development of Information on Geothermal Direct Heat Application Projects

    SciTech Connect

    Hederman, William F., Jr.; Cohen, Laura A.

    1981-10-01

    This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

  20. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    SciTech Connect

    N /A

    1999-02-22

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  1. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    NASA Astrophysics Data System (ADS)

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    planners, developers and politicians when developing a new geothermal project. Each of the analyzed countries is facing a distinct bundle of non-technical barriers. Globally, deep geothermal projects are characterized by high up-front costs and are facing the geological risk of the non discovery of the resources in adequacy to the initial expectations. Moreover, investors are facing directly the competitiveness of fossils energy. The very long pay back period makes it also difficult for them to face the geological risk. GEOFAR will propose new targeting financing and funding schemes, in order to remove the financial barriers hindering the initial stages of geothermal energy projects. GEOFAR also considers a lack of awareness as important barrier hindering the future development of geothermal energy projects. Public opinion is globally positive to geothermal energy, but deep geothermal projects are often suffering from a lack of information leading sometimes to non public acceptance. By underlining the range of possibilities offered by the geothermal energy and the potential and emerging technologies, GEOFAR tends to increase the awareness of geothermal energy in order to boost the development and the investment in new geothermal energy projects. Geothermal energy is expected to contribute significantly to the future European energy sources and the GEOFAR project aims to facilitate it.

  2. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    SciTech Connect

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  3. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  4. Environmental Assessment: geothermal direct heat project, Marlin, Texas

    SciTech Connect

    Not Available

    1980-08-01

    The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

  5. Geothermal policy project. Quarterly report, November 1, 1979-January 31, 1980

    SciTech Connect

    Sacarto, D.M.

    1980-02-01

    Solicitation letters for geothermal and ground water heat-pump energy were sent to ten new states, and initial contact was made in two other states, Arizona and Nevada, concerning 1980 project activities. Follow-up contacts were made with several existing project states, and state meetings and workshops were held in five project states. The Preliminary Geothermal Profile for the state of Nevada as well as other project materials were prepared.

  6. State-government workshop on barriers and incentives of geothermal energy resources (geothermal project). Annual report, March 1, 1979-February 29, 1980

    SciTech Connect

    Not Available

    1980-05-01

    The activities of the National Conference of State Legislatures' Geothermal Project are summarized. The following are covered: project objective and method of operation, state selection and development of state work plans, program elements, summary of state actions affecting geothermal development, and evaluation of project activities. (MHR)

  7. Economic assessment of geothermal direct heat technology: A review of five DOE demonstration projects

    SciTech Connect

    Hederman, William F. Jr.; Cohen, Laura A.

    1981-06-01

    In this report the cost of using low temperature geothermal energy resources for direct heating applications is compared to the costs associated with conventional heating fuels. The projects compared all involved replacing conventional fuels (e.g., natural gas and fuel oils) with geothermal energy in existing heating systems. The cost of using geothermal energy in existing systems was also compared with the cost of new coal-fired equipment.

  8. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  9. Geothermal pipeline - progress and development update, geothermal progress monitor

    SciTech Connect

    1996-08-01

    This document is a progress and development update and geothermal progress monitor prepared by the Geo-Heat Center at the Oregon Institute of Technology in Klamath Falls, Oregon. Several upcoming meetings in the field of geothermal energy and resource development are announced. Proposed and past geothermal activities within the Glass Mountain Known Geothermal Resource Area are also discussed. As of this date, there has been limited geothermal exploration in this area, however, two projects located in the near vicinity have been proposed within the last two years.

  10. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect

    Not Available

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  11. Proposed scientific activities for the Salton Sea Scientific Drilling Project

    SciTech Connect

    Not Available

    1984-05-01

    The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

  12. The Idea of an Innovated Concept of the Košice Geothermal Project

    NASA Astrophysics Data System (ADS)

    Bujanská, Alena; Böszörményi, László

    2015-11-01

    Slovakia has very limited amounts of fossil resources. However, it has a relatively high potential of geothermal energy which use is far below its possibilities. The most abundant geothermal resource, not only in Slovakia but throughout the central Europe, is Košice basin. Since the publication of the first ideas about the ambitious goal to exploit the geothermal potential of this site, 20 years has passed and three geothermal wells has been made but without any progress. In the article the authors present the idea of a fundamental change in the approach to improve the energy and economic efficiency of the project.

  13. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  14. Environmental assessment for a geothermal direct utilization project in Reno, Nevada

    SciTech Connect

    Perino, J.V.; McCloskey, M.H.; Wolterink, T.J.; Wallace, R.C.; Baker, D.W.; Harper, D.L.; Anderson, D.T.; Siteman, J.V.; Sherrill, K.T.

    1980-08-20

    The proposed action involves the development of geothermal wells to provide hot water and heat for five users in Reno, Nevada. Data from nearby wells indicate the sufficient hot water is available from the Moana Known Geothermal Resource Area for this action. Construction activities have been planned to minimize or eliminate problems with noise, runoff, and disturbance of biota as well as other potential environmental effects. Disposal of the geothermal fluids via surface water or injection will be determined based on water quality of the geothermal fluids and geologic effects of injection. The affected environment is described by this document and needed mitigation procedures discussed.

  15. United States Gulf Coast geopressured geothermal program. Special projects research and coordination assistance. Final report, 1 December 1978-30 October 1980

    SciTech Connect

    Dorfman, M.H.; Morton, R.A.

    1981-06-01

    Work for the period, December 1, 1978 through October 31, 1980, is documented. The following activities are covered: project technical coordination assistance and liaison; technical assistance for review and evaluation of proposals and contract results; technical assistance for geopressured-geothermal test wells; technical assistance, coordination, and planning of surface utilization program; legal research; and special projects. (MHR)

  16. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  17. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  18. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  19. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  20. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  1. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  2. Heber geothermal binary demonstration project: Unavailability distributions for principal pumps

    SciTech Connect

    Mulvihill, Robert J.; Cleveland, Edward B.

    1982-04-01

    The purpose of this study has been to review data sources relevant to the failure rate and mean time to repair for the principal pumps of the Heber geothermal project. Based upon that review the distributions of failure rates, repair times and pump unavailability were established. A total of 16 pumps are represented in this study. The method used to develop data distributions has been to first review as many sources of pump data as are currently available. This review was followed by a study of the features of the pumps specified for the Heber installation and the effects of operation and the environment on those features as they relate to anticipated failure rates and repair times. From this, determinations were made for mean failure rate and repair time values appropriate to specific Heber pumps. Range factors are then selected and used to establish the expected variability of the data. Failure rates and repair times were then combined to obtain the unavailability distribution of each type of pump.

  3. Proposed solar two project Barstow, California

    SciTech Connect

    Not Available

    1994-01-01

    This Environmental Assessment (EA) evaluates the environmental consequences of the proposed conversion and operation of the existing Solar One Facility in Daggett, Ca, near the city of Barstow, to a nitrate salt based heat transfer system, Solar Two. The EA also addresses the alternatives of different solar conversion technologies and alternative sites and discusses a no action alternative. A primary objective of the Solar Two Project is to demonstrate the technical and economic feasibility of a solar central receiver power plant using molten salt as the thermal storage and transport fluid medium. If successful, the information gathered from the Solar Two Project could be used to design larger commercial solar power plants.

  4. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    SciTech Connect

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Geothermal Project Database Supporting Barriers and Viability Analysis for Development by 2020 Timeline

    DOE Data Explorer

    Anna Wall

    2014-10-21

    This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.

  6. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  7. NEDO'S project on geothermal reservoir engineering -- a reservoir engineering study of the Kirishima field, Japan

    SciTech Connect

    Kitamura, H.; Ishido, T.; Miyazaki, S.; Abe, I.; Nobumoto, R.

    1988-01-01

    In order to promote the development of geothermal energy resources, it is important to understand and (to the extent possible) to alleviate potential risks associated with each proposed development project. Further, it is essential to estimate the generation capacity of the reservoir prior to full-scale commitment so that the power plant design may be intelligently formulated. Starting in 1984, the New Energy Development Organization (NEDO) in Japan undertook a four-year program to develop technical methods for the evaluation of potential geothermal resources and for the prediction of production capacity and the appropriate level of electrical generation to be anticipated. NEDO’s general approach to theoretical reservoir evaluation is described, as is the schedule and progress along the four-year program toward its four main goals: development of reservoir simulators, drilling of observation wells in two model fields (the Sumikawa field in northern Honshu and the Kirishima field in southern Kyushu), well tests in the model fields, and reservoir simulation with natural-state and production calculation for both fields. The remainder of the paper describes some results obtained from the well testing program in the Kirishima field and ongoing studies of it.

  8. Campi Flegrei Deep Drilling Project and geothermal activities in Campania Region (Southern Italy)

    NASA Astrophysics Data System (ADS)

    De Natale, Giuseppe; Troise, Claudia; Troiano, Antonio; Giulia Di Giuseppe, Maria; Mormone, Angela; Carlino, Stefano; Somma, Renato; Tramelli, Anna; Vertechi, Enrico; Sangianantoni, Agata; Piochi, Monica

    2013-04-01

    The Campanian volcanic area has a huge geothermal potential (Carlino et al., 2012), similar to the Larderello-Radicondoli-Amiata region, in Tuscany (Italy), which has been the first site in the World exploited for electric production. Recently, the Campi Flegrei Deep Drilling Project (CFDDP), sponsored by ICDP and devoted to understand and mitigate the extreme volcanic risk in the area, has also risen new interest for geothermal exploration in several areas of Italy. Following the new Italian regulations which favour and incentivise innovative pilot power plants with zero emission, several geothermal projects have started in the Campania Region, characterized by strict cooperation among large to small industries, Universities and public Research Centers. INGV department of Naples (Osservatorio Vesuviano) has the technical/scientific leadership of such initiatives. Most of such projects are coordinated in the framework of the Regional District for Energy, in which a large part is represented by geothermal resource. Leading geothermal projects in the area include 'FORIO' pilot plant project, aimed to build two small (5 MWe each one) power plants in the Ischia island and two projects aimed to build pilot power plants in the Agnano-Fuorigrotta area in the city of Naples, at the easternmost part of Campi Flegrei caldera. One of the Campi Flegrei projects, 'SCARFOGLIO', is aimed to build a 5 MWe geothermal power plant in the Agnano area, whereas the 'START' project has the goal to build a tri-generation power plant in the Fuorigrotta area, fed mainly by geothermal source improved by solar termodynamic and bio-mass. Meanwhile such projects enter the field work operational phase, the pilot hole drilling of the CFDDP project, recently completed, represents an important experience for several operational aspects, which should contitute an example to be followed by the next geothermal activities in the area. It has been furthermore a source of valuable data for geothermal

  9. Northern California Power Agency's Notice of Intention to seek certification for Geothermal Project No. 1 (79-NOI-1). Final report

    SciTech Connect

    Not Available

    1980-03-01

    The Findings of Fact and Conclusions of Law are presented on issues considered and adopted by the Committee assigned to conduct proceedings on the Notice of Intention. The proposed geothermal project is described and the hearing record is summarized. Findings on the following are included: air quality, hydrology and water resources, water quality, waste disposal, geology and seismicity, soils, biological resources, noise, cultural resources, need for the project, socio-economic factors, financial and economic impacts, public health, safety and reliability, transmission lines, and civil and structural engineering. (MHR)

  10. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  11. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  12. Geothermal Direct Use Program Opportunity Notice Projects Lessons Learned Final Report

    SciTech Connect

    Lunis, B.C.

    1986-01-01

    The use of geothermal energy for direct-use applications was aided through the development of a number of successful field experiment projects funded on a cost-shared basis by the US Department of Energy, Division of Geothermal Technology. This document provides a summary of the projects administered by the US Department of Energy's Idaho Operations Office and technically monitored through the Idaho National Engineering Laboratory (EG and G Idaho, Inc.). An overview of significant findings and conclusions is provided, as are project descriptions and activities, resource development, design, construction, and operational features. Legal and institutional considerations are also discussed.

  13. Proposed rate increase -- Jim Woodruff Project

    SciTech Connect

    Not Available

    1990-12-01

    The Jim Woodruff Project consists of three 10,000 kw hydroelectric power units located on the Apalachicola River 0.2 miles below the confluence of the Chattahoochee and Flint rivers where the reservoir crosses the Georgia-Florida state line. Overload capability allows the Government to sell 36,000 kw of capacity and associated energy to six Preference Customers in the Florida Power Corporation service area. A Preference Customer is defined as an electric cooperative or a public body having its own distribution system and marketing power at retail to its constituents. Any surplus energy in excess of Preference Customer commitments is marketed to Florida Power Corporation. In accordance with the Flood Control Act of 1944, the Southeastern Power Administration (Southeastern) is required to charge rates sufficient to recover costs expended by the US Treasury in the construction, maintenance and operation of hydroelectric power projects, together with applicable interest charges. Rate studies indicate that the current rates charged for electricity produced at the Jim Woodruff Project and sold to the Preference Customers and/or the Florida Power Corporation is not meeting this requirement. The proposed rate increase would increase the cost of electricity to the Preference Customers and Ultimate Consumers. However, the increase would still be significantly less expensive than electricity purchased from alternate sources and, therefore, there is no economic inducement for purchasers to seek other sources of power that could result in environmental impacts. Finally, in implementing the proposed rate increase, no generation or transmission facility changes at the Jim Woodruff Project are required which could affect the environment.

  14. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    SciTech Connect

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  15. Current status EGS Soultz project during geothermal exploitation

    NASA Astrophysics Data System (ADS)

    Genter, A.; Cuenot, N.; Scheiber, J.; Melchert, B.

    2012-04-01

    A three-year research program (2010-2012) associated with the geothermal exploitation of the Soultz-sous-Forêts power plant is on-going with a scientific and technical monitoring. Several hydraulic circulation tests have been running that take into account one production well, GPK-2 and two reinjection wells, GPK-1 and GPK-3: a long term circulation for about 11 months in 2010, and two short term circulation tests in 2011. During the 2010 exploitation, geothermal fluid discharge from GPK-2 reached about 500 000 m3 by producing 18L/s and 164°C. In 2010, more than 400 induced micro-seismicity events occurred with low magnitude. Geochemical monitoring of the fluid discharged from GPK-2 indicates that the chemical composition of this fluid becomes closer to that of the native geothermal brine because it only remains 5% of injected freshwater. Corrosion study done on-site on several kinds of materials indicates a corrosion rate of about 0.2mm/year for re-injection conditions. During 2011, geothermal fluid discharge from GPK-2 reached about 300 000 m3 by producing 24L/s and 159°C. The strategy was to increase the reinjection flow rate in GPK-1 and simultaneously minimize it in GPK-3 in order to decrease reinjection pressure. Induced seismicity activity was very low with only 5 micro-earthquakes in 2011. In parallel, many research works have been carried out for characterizing scaling and the natural radioactivity derived from natural brines circulating within a deep fractured granite reservoir. Because Soultz is the first geothermal power plant in France, many challenges have been outlined, new scientific and technical expertise is raising and will benefit to the French-German consortium for transferring the results to some new geothermal applications through the Upper Rhine Valley.

  16. Community Geothermal Technology Program: Hawaii glass project. Final report

    SciTech Connect

    Miller, N.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  17. Community Geothermal Technology Program: Silica bronze project. Final report

    SciTech Connect

    Bianchini, H.

    1989-10-01

    Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

  18. Baca Geothermal Demonstration project legal and regulatory challenges. First semi-annual report for period through June 30, 1980

    SciTech Connect

    Province, S.G.; Walter, K.M.; Miller, J.

    1980-12-01

    The Legal and Regulatory Constraints Reports identify and describe the major legal and institutional constraints associated with the Baca Geothermal Demonstration Project. The impacts of these constraints on the Project in terms of cost, schedule, and technical design are also analyzed. The purpose of these reports is to provide a guide for future geothermal development.

  19. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  20. Federal Assistance Program Quarterly Project Progress Report. Geothermal Energy Program: Information Dissemination, Public Outreach, and Technical Analysis Activities. Reporting Period: January 1 - March 31, 2001 [Final report

    SciTech Connect

    Lund, John W.

    2002-03-22

    The final report of the accomplishments of the geothermal energy program: information dissemination, public outreach and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association and the Washington State University Energy Program.

  1. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  2. 7 CFR 3406.9 - Complementary project proposals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Complementary project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3406.2. Such complementary project proposals may be submitted by the same or by different... 7 Agriculture 15 2012-01-01 2012-01-01 false Complementary project proposals. 3406.9 Section...

  3. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3405.2(g). Such complementary project proposals may be submitted by the same or by different eligible... 7 Agriculture 15 2012-01-01 2012-01-01 false Complementary project proposals. 3405.8 Section...

  4. 7 CFR 3406.9 - Complementary project proposals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Complementary project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3406.2. Such complementary project proposals may be submitted by the same or by different... 7 Agriculture 15 2014-01-01 2014-01-01 false Complementary project proposals. 3406.9 Section...

  5. 7 CFR 3406.9 - Complementary project proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Complementary project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3406.2. Such complementary project proposals may be submitted by the same or by different... 7 Agriculture 15 2013-01-01 2013-01-01 false Complementary project proposals. 3406.9 Section...

  6. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3405.2(g). Such complementary project proposals may be submitted by the same or by different eligible... 7 Agriculture 15 2013-01-01 2013-01-01 false Complementary project proposals. 3405.8 Section...

  7. 7 CFR 3406.9 - Complementary project proposals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROGRAM Program Description § 3406.9 Complementary project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3406.2. Such complementary project proposals may be... 7 Agriculture 15 2010-01-01 2010-01-01 false Complementary project proposals. 3406.9 Section...

  8. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Program Description § 3405.8 Complementary project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3405.2(g). Such complementary project proposals may be submitted by the... 7 Agriculture 15 2010-01-01 2010-01-01 false Complementary project proposals. 3405.8 Section...

  9. 7 CFR 3406.9 - Complementary project proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Complementary project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3406.2. Such complementary project proposals may be submitted by the same or by different... 7 Agriculture 15 2011-01-01 2011-01-01 false Complementary project proposals. 3406.9 Section...

  10. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3405.2(g). Such complementary project proposals may be submitted by the same or by different eligible... 7 Agriculture 15 2011-01-01 2011-01-01 false Complementary project proposals. 3405.8 Section...

  11. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... project proposals. Institutions may submit proposals that are complementary in nature as defined in § 3405.2(g). Such complementary project proposals may be submitted by the same or by different eligible... 7 Agriculture 15 2014-01-01 2014-01-01 false Complementary project proposals. 3405.8 Section...

  12. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  13. Heber Geothermal Binary Demonstration Project. Quarterly technical progress report, September 15, 1980-March 31, 1981

    SciTech Connect

    Hanenburg, W.H.; Lacy, R.G.; Van De Mark, G.D.

    1981-06-01

    Work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of September 15, 1980, through March 31, 1981 is documented. Topics covered in this quarterly report include progress made in the areas of Wells and Fluids Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  14. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  15. Investigation of deep permeable strata in the permian basin for future geothermal energy reserves

    SciTech Connect

    Erdlac, Richard J., Jr.; Swift, Douglas B.

    1999-09-23

    This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

  16. Status and trends of geothermal direct use projects in the United States

    SciTech Connect

    Lunis, B.C.; Lienau, P.J.

    1988-01-01

    The United States is continuing to experience a significant growth rate in the use of low- and moderate-temperature geothermal resources for direct use applications, which is making an increasing contribution to the United States energy demands. This paper provides an overview of how and where geothermal energy is being used, the extent of that use, and what the development trends and concerns appear to be. The applications discussed include industrial processes, heat pumps (heating and cooling), pools and spas, aquaculture and agriculture applications, and space and district heating projects. 3 tabs.

  17. Status and trends of geothermal direct use projects in the United States

    NASA Astrophysics Data System (ADS)

    Lunis, Ben C.; Lienau, Paul J.

    The United States is continuing to experience a significant growth rate in the use of low- and moderate-temperature geothermal resources for direct use applications, which is making an increasing contribution to the United States energy demands. This paper provides an overview of how and where geothermal energy is being used, the extent of that use, and what the development trends and concerns appear to be. The applications discussed include industrial processes, heat pumps (heating and cooling), pools and spas, aquaculture and agriculture applications, and space and district heating projects.

  18. 75 FR 45122 - Periodic Summaries of Proposed Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... HUMAN SERVICES Centers for Disease Control and Prevention Periodic Summaries of Proposed Projects In... opportunity for public comment on proposed data collection projects, the Centers for Disease Control and Prevention (CDC) will publish periodic summaries of proposed projects. To request more information on...

  19. 7 CFR 3405.7 - Joint project proposals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Joint project proposals. 3405.7 Section 3405.7... AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.7 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3405.2(m), which address...

  20. 7 CFR 3405.7 - Joint project proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Joint project proposals. 3405.7 Section 3405.7... AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.7 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3405.2(m), which address...

  1. 7 CFR 3405.7 - Joint project proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Joint project proposals. 3405.7 Section 3405.7... AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.7 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3405.2(m), which address...

  2. 7 CFR 3406.8 - Joint project proposals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Joint project proposals. 3406.8 Section 3406.8... AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Program Description § 3406.8 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3406.2, which...

  3. 7 CFR 3406.8 - Joint project proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Joint project proposals. 3406.8 Section 3406.8... AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Program Description § 3406.8 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3406.2, which...

  4. 7 CFR 3406.8 - Joint project proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Joint project proposals. 3406.8 Section 3406.8... AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Program Description § 3406.8 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3406.2, which...

  5. 7 CFR 3405.7 - Joint project proposals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Joint project proposals. 3405.7 Section 3405.7... AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.7 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3405.2(m), which address...

  6. The drama of Puna: For and against the Hawai'i geothermal project

    NASA Astrophysics Data System (ADS)

    Keyser, William Henry

    The geothermal project was conceived in the context of the international oil business and the economic growth of Hawai'i. From the point of view of the State, the geothermal project is necessary because imported petroleum provides Hawai'i with 911/2 percent of its total energy. That petroleum consists of 140,000 b/d of crude (1990) and it comes from Alaska, Indonesia and a few other suppliers. However, the Alaskan North Slope is beginning to run dry and the Southeast Asian suppliers of crude will be exporting less petroleum as time goes on. Increasingly, Hawai'i will become dependent on "unstable Middle Eastern" suppliers of crude. From this worry about the Middle East, the State seeks indigenous energy to reduce its dependence on petroleum and to support economic growth. Hence, the geothermal project was born after the 1973 oil embargo. The major source of geothermal energy is the Kilauea Volcano on the Big Island. Kilauea is characterized by the Kilauea caldera and a crack in the Island which extends easterly from the caldera to Cape Kumukahi in Puna and southwest to Pahala in Ka'u. The eastern part of the crack is approximately 55 kilometers long and 5 kilometers wide. The geothermal plants will sit on this crack. While the State has promoted the geothermal project with the argument of reducing "dependence" on imported petroleum, it hardly mentions its goal of economic growth. The opponents have resisted the project on the grounds of protecting Pele and Hawaiian gathering rights, protecting the rain forest, and stopping the pollution in the geothermal steam. What the opponents do not mention is their support for economic growth. The opposition to the project suggests a new environmental politics is forming in Hawai'i. Is this true? The dissertation will show that the participants in this drama are involved in a strange dance where each side avoids any recognition of their fundamental agreement on economic growth. Hence the creation of a new environmental

  7. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  8. Geothermal in transition

    SciTech Connect

    Anderson, J.L.

    1991-10-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii.

  9. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  10. Geothermal materials project input for conversion technology task

    SciTech Connect

    Kukacka, L.E.

    1991-04-01

    This ongoing laboratory-based high risk/high payoff R D program has already yielded several durable cost-effective materials of construction which are being used by the geothermal energy industry. In FY 1992, R D in the following areas will be performed: (1) advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive composites for heat exchange applications, (4) corrosion mitigation at the Geysers, and (5) high-temperature chemical coupling materials to bond elastomers to steel substrates. Work to address other materials problems will commence in FY 1993, as their needs are verified. All of the activities will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. 3 figs., 2 tabs.

  11. Environmental assessment for Kelley Hot Spring geothermal project: Kelley Hot Spring Agricultural Center

    SciTech Connect

    Neilson, J.A.

    1981-04-01

    The environmental impacts of an integrated swine production unit are analyzed together with necessary ancillary operations deriving its primary energy from a known geothermal reservoir in accordance with policies established by the National Energy Conservation Act. This environmental assessment covers 6 areas designated as potentially feasible project sites, using as the basic criteria for selection ground, surface and geothermal water supplies. The six areas, comprising +- 150 acres each, are within a 2 mile radius of Kelley Hot Springs, a known geothermal resource of many centuries standing, located 16 miles west of Alturas, the county seat of Modoc County, California. The project consists of the construction and operation of a 1360 sow confined pork production complex expandable to 5440 sows. The farrow to finish system for 1360 sows consists of 2 breeding barns, 2 gestation barns, 1 farrowing and 1 nursery barn, 3 growing and 3 finishing barns, a feed mill, a methane generator for waste disposal and water storage ponds. Supporting this are one geothermal well and 1 or 2 cold water wells, all occupying approximately 12 acres. Environmental reconnaissance involving geology, hydrology, soils, vegetation, fauna, air and water quality, socioeconomic, archaelogical and historical, and land use aspects were carefully carried out, impacts assessed and mitigations evaluated.

  12. 7 CFR 1450.201 - Project area proposal submission requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... determined by CCC. (d) Project area proposals may limit the nature and types of eligible crops to be... 7 Agriculture 10 2011-01-01 2011-01-01 false Project area proposal submission requirements. 1450... ASSISTANCE PROGRAM (BCAP) Establishment Payments and Annual Payments § 1450.201 Project area...

  13. 7 CFR 1450.201 - Project area proposal submission requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... determined by CCC. (d) Project area proposals may limit the nature and types of eligible crops to be... 7 Agriculture 10 2013-01-01 2013-01-01 false Project area proposal submission requirements. 1450... ASSISTANCE PROGRAM (BCAP) Establishment Payments and Annual Payments § 1450.201 Project area...

  14. 7 CFR 1450.201 - Project area proposal submission requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... determined by CCC. (d) Project area proposals may limit the nature and types of eligible crops to be... 7 Agriculture 10 2012-01-01 2012-01-01 false Project area proposal submission requirements. 1450... ASSISTANCE PROGRAM (BCAP) Establishment Payments and Annual Payments § 1450.201 Project area...

  15. 7 CFR 1450.201 - Project area proposal submission requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... determined by CCC. (d) Project area proposals may limit the nature and types of eligible crops to be... 7 Agriculture 10 2014-01-01 2014-01-01 false Project area proposal submission requirements. 1450... ASSISTANCE PROGRAM (BCAP) Establishment Payments and Annual Payments § 1450.201 Project area...

  16. Geothermal direct use projects in the United States: Status and trends

    SciTech Connect

    Lunis, B.C.; Lienau, P.J.; Oregon Inst. of Tech., Klamath Falls, OR . Geo-Heat Center)

    1988-01-01

    Prior to about 1973, geothermal most direct use projects in the United States involved pool/spa applications and limited district and space heating systems. The oil price shocks of the 1970's revived interest in the use of geothermal energy as an alternative energy source. Accordingly, the US Department of Energy initiated numerous programs that caused significant growth of this industry. These programs involved technical assistance to developers, the preparation of project feasibility studies for potential users, cost sharing of demonstration projects (space and district heating, industrial, agriculture, and aquaculture), resource assessments, loan guarantees, support of state resource and commercialization activities, and others. Also adding to the growth were various federal and state tax credits. The use of groundwater-source heat pumps contributed to the growth, starting in 1980. The growth of direct use project development was quite closely monitored during the late 1970's and early 1980's when the USDOE program activities were extensive. Periodic updating of the status of the projects has been occasional but limited since that time. In order to obtain a better understanding of the current geothermal direct use market, the Oregon Institute of Technology Geo-Heat Center (OIT), under contract to the US Department of Energy, launched an extensive data-gathering effort in the spring of 1988. The results of that effort are incorporated into this paper. The Idaho National Engineering Laboratory (INEL) (also funded by the Department of Energy) and OIT, through their continuing contacts with the geothermal industry, including state energy offices, are familiar with development trends and concerns; this information is also presented. 3 tabs.

  17. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  18. Progress of the LASL dry hot rock geothermal energy project

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  19. 76 FR 21429 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Number: 1545-1100. Regulation Project Number: REG-209106-89. Abstract: This regulation...

  20. 78 FR 38807 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Number: 1545-2180. Regulation Project Number: TD 9491. Abstract: This document contains interim...

  1. 78 FR 60021 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ...)] Proposed Collection: Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS...: Entry of Taxable Fuel. OMB Number: 1545-1897. Regulation Project Number: REG-120616-03 (T.D. 9346...

  2. 78 FR 50142 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: TD 8586. Abstract: This regulation prescribes rules for determining the...

  3. 78 FR 47054 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Project Number: REG-143797-06. Abstract: This document contains final regulations providing guidance...

  4. 78 FR 40549 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Estates--7701. OMB Number: 1545-1600. Regulation Project Number: TD 8813. Abstract: This...

  5. 78 FR 25358 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... OMB Number: 1545-0800. ] Regulation Project Number: Regulation section 601.601. Abstract:...

  6. 75 FR 2930 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: REG-106446-98. Abstract: The regulation under section 6015 provides...

  7. 78 FR 50141 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... OMB Number: 1545-1905. Regulation Project Number: TD 9289. Abstract: Generally, the...

  8. 78 FR 54515 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal...: EIC Eligibility Requirements. OMB Number: 1545-1575. Regulation Project Number:...

  9. 78 FR 35660 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal....gov . SUPPLEMENTARY INFORMATION: Title: Roth IRAs. OMB Number: 1545-1616. Regulation Project...

  10. The Clearlake Hot Dry Rock geothermal project: Institutional policies, administrative issues, and technical tasks

    SciTech Connect

    Burns, K.L.

    1991-01-01

    The Clearlake Project is a three-party collaboration between the California Energy Commission, City of Clearlake, and Los Alamos National Laboratory. It aims to develop a deep hot, dry geothermal resource under the city. The project is funded by the Commission, and administered by the City. Technical operations are conducted by Laboratory staff and resources seconded from the Hot Dry Rock program. In addition to the normal geothermal exploration problems of predicting geological and geophysical properties of the subsurface, there are uncertainties as to what further material and environmental parameters are relevant, and how they might be measured. In addition to technical factors, policy objectives are an influence in choosing the most appropriate development scenario. 11 refs., 4 figs.

  11. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  12. Geothermal probabilistic cost study

    SciTech Connect

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  13. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  14. Geothermal probabilistic cost study

    NASA Astrophysics Data System (ADS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  15. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    SciTech Connect

    Goff, S.J.

    2000-05-28

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  16. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  17. Gradio: Project proposal for satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Balmino, G.; Barilier, F.; Bernard, A.; Bouzat, C.; Riviera, G.; Runavot, J.

    1981-01-01

    A gradiometric approach, rather than the more complicated satellite to satellite tracking, is proposed for studying anomalies in the gravitational fields of the Earth and, possibly, other telluric bodies. The first analyses of a gradiometer based on four of ONERA's CACTUS or SUPERCACTUS accelerometers are summarized. it is shown that the obstacles to achieving the required accuracy are not insuperable. The device will be carried in a 1000 kg lens shaped satellite in a heliosynchronous orbit 200 to 300 km in altitude. The first launching is planned for the end of 1987.

  18. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  19. 76 FR 36623 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Proposed Rules section in the issue of the Federal Register dated January 5, 2009, (74 FR 340). Current... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... a Cost Sharing Arrangement. OMB Number: 1545-1364. Regulation Project Number: REG-144615-02...

  20. "Assistance to States on Geothermal Energy"

    SciTech Connect

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC

  1. Guidebook to Geothermal Finance

    SciTech Connect

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  2. Future perspectives - proposal for Oxford Physiome Project.

    PubMed

    Oku, Yoshitaka

    2010-01-01

    The Physiome Project is an effort to understand living creatures using "analysis by synthesis" strategy, i.e., by reproducing their behaviors. In order to achieve its goal, sharing developed models between different computer languages and application programs to incorporate into integrated models is critical. To date, several XML-based markup languages has been developed for this purpose. However, source codes written with XML-based languages are very difficult to read and edit using text editors. An alternative way is to use an object-oriented meta-language, which can be translated to different computer languages and transplanted to different application programs. Object-oriented languages are suitable for describing structural organization by hierarchical classes and taking advantage of statistical properties to reduce the number of parameter while keeping the complexity of behaviors. Using object-oriented languages to describe each element and posting it to a public domain should be the next step to build up integrated models of the respiratory control system. PMID:20217321

  3. 78 FR 38806 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal...: 1545-1292. Regulation Project Number: PS-97-91 and PS-101-90 (TD 8448). Abstract: This regulation... ] project meets the requirements of section 43(c) of the Internal Revenue Code. Current Actions: There...

  4. 78 FR 21501 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... description of the method used to determine the projected amount of a contingent payment, the projected... method of accounting described in Sec. 1.446-3(g)(6). This information will be used to determine...

  5. Crustal Rock Fracture Mechanics for Design and Control of Artificial Subsurface Cracks in Geothermal Energy Extraction Engineering ({Gamma}-Project)

    SciTech Connect

    Abe, Hiroyuki; Takahashi, Hideaki

    1983-12-15

    Recently a significant role of artificial and/or natural cracks in the geothermal reservoir has been demonstrated in the literatures (Abe, H., et al., 1983, Nielson, D.L. and Hullen, J.B., 1983), where the cracks behave as fluid paths and/or heat exchanging surfaces. Until now, however, there are several problems such as a design procedure of hydraulic fracturing, and a quantitative estimate of fluid and heat transfer for reservoir design. In order to develop a design methodology of geothermal reservoir cracks, a special distinguished research project, named as ''{Lambda}-Project'', started at Tohoku University (5 years project, 1983-1988). In this project a basic fracture mechanics model of geothermal reservoir cracks is being demonstrated and its validation is being discussed both theoretically and experimentally. This paper descibes an outline of ''{Lambda}-Project''.

  6. Evaluation and improvement of methods to quantify the exploration risk of geothermal projects

    NASA Astrophysics Data System (ADS)

    Ganz, Britta; Schellschmidt, Rüdiger; Schulz, Rüdiger; Thomas, Rüdiger

    2015-04-01

    The quantification of exploration risks is of major importance for geothermal project planning. The exploration risk is defined as the risk of not successfully achieving a geothermal reservoir with minimum levels of thermal water production and reservoir temperatures (UNEP 2004). A simple method to quantify the probability of success (POS) for geothermal wells is to determine the single risks for temperature and flow rate and calculate the overall probability by multiplying the individual probabilities (SCHULZ et al. 2010). Since 2002, over 50 expert studies to evaluate the exploration risk of geothermal projects in Germany were carried out based on this method. The studies are requested as a basis for insurance contracts covering the risk of not achieving the necessary parameters. The estimated probabilities for temperature and flow rate in the expert reports were now compared with the parameters actually reached in meanwhile realised projects. The results are used for an improvement of the method. The probability of success for a given temperature was calculated using local temperature information in the vicinity of the planned well location. The greater significance of nearby temperature data was considered by inverse distance weighting. In highly productive deep aquifers, which are of major interest for geothermal projects, temperature gradients often strongly decrease due to an intense vertical mixing of the thermal water. Thus, the top of the considered aquifer was used as the reference point of the temperature assessment. As still some positive gradient can be expected within the aquifer, this is a conservative estimation. The evaluation of the reports should therefore especially answer the question, whether this approach has led to a systematic underestimation of the temperature. To calculate the probability of success for hydraulic parameters, the theoretical drawdown at a given flow rate was calculated for existing wells from hydraulic test data. The

  7. Lunar scout: A Project Artemis proposal

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The results of a student project to design a lunar lander in the context of a specifically defined mission are presented. The Lunar Scout will be launched from Cape Canaveral, Florida onboard a Delta II launch vehicle. The Delta II will carry the lander and its payload to a 1367 km orbit. Once it reaches that altitude, a STAR 48A solid rocket motor will kick the spacecraft into a lunar trajectory. After burnout of the lunar insertion motor, it will be jettisoned from the spacecraft. The flight from the earth to the moon will take approximately 106.4 hours. During this time the battery, which was fully charged prior to launch, will provide all power to the spacecraft. Every hour, the spacecraft will use its sun sensors and star trackers to update its position, maintain some stabilization and relay it back to earth using the dipole antennas. At the start of its lunar trajectory, the spacecraft will fire one of its 1.5 N thrusters to spin in at a very small rate. The main reason for this is to prevent one side of the spacecraft from overheating in the sun. When the spacecraft nears the moon, it will orient itself for the main retro burn. At an altitude of 200 km, a 4400 N bipropellant liquid thruster will ignite to slow the spacecraft. During the burn, the radar altimeter will be turned on to guide the spacecraft. The main retro rocket will slow the lander to 10 m/s at an approximate altitude of 40 km above the moon. From there, the space craft will use four 4.5 N hydrazine vertical thrusters and 1.5 N horizontal thrusters to guide the spacecraft to a soft landing. Once on the ground, the lander will shutoff the radar and attitude control systems. After the debris from the impact has settled, the six solar panels will be deployed to begin recharging the batteries and to power up the payload. The feedhorn antenna will then rotate to fix itself on the earth. Once it moves, it will stay in that position for the spacecraft's lifetime. The payload will then be activated to

  8. 75 FR 29361 - Notice of Intent To Prepare an Environmental Assessment for the Proposed Competitive Geothermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... Competitive Geothermal Lease Sale, Gunnison County, CO and Land Use Plan Amendment AGENCY: Bureau of Land...-grouse, and lynx, and other resources, which may involve some minor resource- specific land use plan... process for amending the land use plan to adopt new stipulations and other conservation measures, and...

  9. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    SciTech Connect

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

  10. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator

  11. Geothermal Power Generation

    SciTech Connect

    2007-11-15

    The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

  12. Analysis of production and reservoir performance at the CASA Diablo geothermal project

    SciTech Connect

    Miller, Richard J.; Vasquez, Rosalinda

    1988-01-01

    The Mammoth-Pacific geothermal project at Casa Diablo has been in production since January, 1985. The plant generates 7-8 MW of electric power using a binary system supplied by geothermal fluid production from four wells that produce about 3500 GPM of 340º F, low salinity geothermal fluid. The wells produce from a fault/fracture system that is apparently continually recharged from a deep "reservoir" with no significant drawdown in pressure or decline in flow rate over the 2 year period. Prior to the start of production a series of well tests were conducted to determine the pumped flow capacity of the original four wells and to determine reservoir properties from pressured drawdown and build-up analysis. Since the start of operations a continuous record of production rate, flowing bottom-hole pressure, and temperature has been maintained. The well tests and production records have been evaluated to determine the nature of the reservoir and reservoir permeability and other properties. This paper presents the results of that evaluation.

  13. 78 FR 42591 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal...: Regulations Governing Practice Before the Internal Revenue Service. OMB Number: 1545-1726. Regulation...

  14. 78 FR 40831 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of...

  15. 78 FR 19578 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the...(c)(2)(A)). Currently, the IRS is soliciting comments concerning, Disclosure Requirements...

  16. 76 FR 69329 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the... assured of consideration. ADDRESSES: Direct all written comments to Yvette B. Lawrence, Internal...

  17. 75 FR 63542 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the...-94 (TD 8690), Deductibility, Substantiation, and Disclosure of Certain Charitable Contributions...

  18. 78 FR 66423 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the...-94 (TD 8690), Deductibility, Substantiation, and Disclosure of Certain Charitable Contributions...

  19. 76 FR 31014 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Dollar-Value LIFO Regulations; Inventory Price Index Computation Method. DATES: Written comments should... . SUPPLEMENTARY INFORMATION: Title: Dollar-Value LIFO Regulations; Inventory Price Index Computation Method....

  20. 75 FR 5864 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Durbala, Internal Revenue Service, room 6129, 1111 Constitution Avenue, NW., Washington, DC 20224. FOR... directed to Dawn Bidne at Internal Revenue Service, room 6129, 1111 Constitution Avenue, NW.,...

  1. 75 FR 56659 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the... consideration. ADDRESSES: Direct all written comments to Gerald Shields, Internal Revenue Service, room...

  2. 77 FR 12371 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the... assured of consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal...

  3. 76 FR 62500 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the... consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal Revenue Service, Room...

  4. 78 FR 66423 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the... consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal Revenue Service, room...

  5. 76 FR 27751 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments. SUMMARY: The Department of the... assured of consideration. ADDRESSES: Direct all written comments to Yvette B. Lawrence, Internal...

  6. 75 FR 51881 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ..., a collection of information unless the collection of information displays a valid OMB control number... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... comments to Gerald Shields, Internal Revenue Service, room 6129, 1111 Constitution Avenue, NW.,...

  7. 78 FR 22036 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... of consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal Revenue Service... Internal Revenue Service, Room 6242, 1111 Constitution Avenue NW., Washington, DC 20224, or at (202)...

  8. 78 FR 22039 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal..., Internal Revenue Service, Room 6129, 1111 Constitution Avenue NW., Washington, DC 20224. FOR FURTHER... Katherine Dean, at Internal Revenue Service, Room 6242, 1111 Constitution Avenue NW., Washington, DC...

  9. 78 FR 28704 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... ] ADDRESSES: Direct all written comments to Yvette Lawrence, Internal Revenue Service, Room 6129, 1111... Internal Revenue Service, Room 6129, 1111 Constitution Avenue NW., Washington DC 20224, or through...

  10. 78 FR 28703 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... be assured of consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal.... Brinson at Internal Revenue Service, Room 6129, 1111 Constitution Avenue NW., Washington, DC 20224, or...

  11. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  12. 78 FR 48771 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Taxes on Excess Benefit Transactions. OMB Number: 1545-1623. Regulation Project Number: TD 8978...

  13. 77 FR 31912 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal...-Exempt Bonds. OMB Number: 1545-1347. Regulation Project Numbers: FI-36-92; FI-7-94. Abstract: Section...

  14. 75 FR 61839 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal...: Title: Adequate Disclosure of Gifts. OMB Number: 1545-1637. Regulation Project Number: REG-106177-98...

  15. 75 FR 2932 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service RIN 1545-BC15 Proposed Collection; Comment Request for Regulation Project AGENCY... Facilitate Business Electronic Filing. OMB Number: 1545-1868. Regulation Project Number: REG-116664-01...

  16. 76 FR 21428 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: T.D. 8043. Abstract: Chapters 31 and 32 of the Internal Revenue Code impose...

  17. 78 FR 40831 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Taxpayers Engaged in a Global Dealing Operation. OMB Number: 1545-1599. Regulation Project Number:...

  18. 78 FR 47055 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... . SUPPLEMENTARY INFORMATION: Title: Tax-Exempt Entity Leasing. OMB Number: 1545-0923. Regulation Project...

  19. 76 FR 77325 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... of 1996. OMB Number: 1545-1356. Regulation Project Number: REG-248770-96. Abstract: Under...

  20. 77 FR 31914 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Carryforwards. OMB Number: 1545-1120. Regulation Project Number: CO-68-87; CO-69-87; CO-18-90. Abstract:...

  1. 77 FR 31913 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Project Number: PS-105-75. Abstract: Section 1.613A-3(1) of the regulation requires each partner...

  2. 76 FR 74119 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Number: 1545-1514. Regulation Project Number: REG-209040-88. Abstract: This regulation permits...

  3. 78 FR 36639 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... OMB Number: 1545-2068. Regulation Project Number: TD 9340. Abstract: The collection of information...

  4. 78 FR 43002 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Number: 1545-1902. Regulation Project Number: REG-26-2642.6, T.D.9348. Abstract: This information...

  5. 76 FR 40449 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: REG-106010-98, (TD 8901). Abstract: The regulations provide guidance with...

  6. 78 FR 36639 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Treated As Timely Filing. OMB Number: 1545-1899. Regulation Project Number: TD 9543. Abstract:...

  7. 78 FR 40549 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: IA-12-120-86 (TD 8584). Abstract: Internal Revenue Code section 263A(f)...

  8. 75 FR 2932 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service RIN 1545-BF71 Proposed Collection; Comment Request for Regulation Project AGENCY... Foreign Corporation. (TD 9465). OMB Number: 1545-2030. RIN: 1545-BF71. Regulation Project Number:...

  9. 76 FR 21427 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... by S Corporations and Their Shareholders. OMB Number: 1545-1493. Regulation Project Number: T.D....

  10. 77 FR 12646 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Project Number: IA-38-90 (Final). Abstract: These regulations set forth rules under section 6694 of...

  11. 78 FR 47054 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Number: 1545-1357. Regulation Project Numbers: PS-78-91; PS-50-92; and REG-114664-97. Abstract:...

  12. 77 FR 6864 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Section 402A. OMB Number: 1545-1992. Regulation Project Number: REG-146459-05 (TD 9324). Abstract:...

  13. 77 FR 17123 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal...: 1545-1191. Regulation Project Number: T.D. 8353. Abstract: This document contains final Income...

  14. 78 FR 59768 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... ] Regulation Project Number: CO-88-90 (TD 8530). Abstract: This regulation provides guidance on determining...

  15. 78 FR 46413 - Proposed Collection; Comment Request for Regulations Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulations Project AGENCY: Internal... Compensation for Labor or Personal Services. OMB Number: 1545-1900. Regulation Project Number: TD...

  16. 78 FR 47057 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: IA-96-88. Abstract: Regulation section 301.9100-8 provides final income,...

  17. 76 FR 21427 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal...-0723. Regulation Project Number: T.D. 8043. Abstract: Chapters 31 and 32 of the Internal Revenue...

  18. 78 FR 36640 - Proposed Collection; Comment Request for Regulations Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulations Project AGENCY: Internal... of a Spouse (Sec. 1.1041-2). OMB Number: 1545-1751. Regulation Project Number: TD 9035. Abstract:...

  19. 76 FR 74118 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Under Section 4980B, 4980D, 4980E & 4980G. OMB Number: 1545-2146. ] Regulation Project Number:...

  20. 78 FR 40827 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Withholding by the Tax Reform Act of 1984. OMB Number: 1545-1132. Regulation Project Number:...

  1. 75 FR 28331 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Qualified Carribean Basin Countries. OMB Number: 1545-1138. Regulation Project Number: INTL-955-86. Abstract: This regulation relates to the requirements that must be met for an investment to qualify...

  2. 78 FR 26425 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal... Credit. DATES: Written comments should be received on or before July 5, 2013 to be assured of... Credit. OMB Number: 1545-1155. Regulation Project Number: TD 8282. Abstract: This regulation relates...

  3. 78 FR 22621 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... contributions (Sec. 1.170A-13). DATES: Written comments should be received on or before June 17, 2013 to be...: Substantiation of Charitable Contributions. OMB Number: 1545-0754. Regulation Project Number: TD 8002....

  4. 78 FR 27298 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... 8, 2013 to be assured of consideration. ADDRESSES: Direct all written comments to Yvette B. Lawrence... Number: 1545-1056. Regulation Project Number: REG-209020-86 (formerly INTL-61-86). Abstract:...

  5. 78 FR 46692 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... acquisition expenses. DATES: Written comments should be received on or before September 30, 2013 to be assured... Acquisition Expenses. OMB Number: 1545-1287. Regulation Project Number: FI-3-91 (TD 8456). Abstract:...

  6. 78 FR 14421 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... Expenditures. DATES: Written comments should be received on or before May 6, 2013 to be assured of... Reforestation Expenditures. OMB Number: 1545-0735. Regulation Project Number: TD 7927. Abstract:...

  7. 78 FR 39832 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... DATES: Written comments should be received on or before September 3, 2013 to be assured of consideration... Transfer Tax. OMB Number: 1545-0985 (TD 8644). Regulation Project Number: PS-127-86; PS-128-86;...

  8. 78 FR 76892 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal.... Regulation Project Number: REG-139236-07 (TD 9467). Abstract: (These final regulations were issued in two...: November 22, 2013. Yvette Lawrence, OMB Reports Clearance Officer. BILLING CODE 4830-01-P...

  9. 78 FR 48230 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... Internal Revenue Service Proposed Collection; Comment Request for Regulation Project AGENCY: Internal... 7, 2013 to be assured of consideration. ADDRESSES: Direct all written comments to Yvette Lawrence... INFORMATION: Title: Section 1045 Application to Partnerships. OMB Number: 1545-1893. Regulation Project...

  10. 78 FR 38809 - Proposed Collection: Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Internal Revenue Service Proposed Collection: Comment Request for Regulation Project AGENCY: Internal... certain tax preferences. DATES: Written comments should be received on or before August 26, 2013 to be...: Optional 10-Year Write-off of Certain Tax Preferences. OMB Number: 1545-1903. Regulation Project Number:...