Science.gov

Sample records for geothermal waste heat

  1. Geothermal District Heating Economics

    Energy Science and Technology Software Center (ESTSC)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  2. Geothermal direct-heat utilization assistance

    NASA Astrophysics Data System (ADS)

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  3. Philip, South Dakota geothermal district heating systems

    SciTech Connect

    Lund, J.W.

    1997-12-01

    The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

  4. Energy 101: Geothermal Heat Pumps

    SciTech Connect

    2011-01-01

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  5. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2013-05-29

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  6. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.

    PubMed

    Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A

    2015-01-01

    In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. PMID:24825605

  7. Guide to Geothermal Heat Pumps

    SciTech Connect

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  8. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  9. Geothermal heating for Caliente, Nevada

    SciTech Connect

    Wallis, F.; Schaper, J.

    1981-02-01

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  10. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  11. Geothermal heat pumps in Pierre

    SciTech Connect

    Wegman, S.

    1997-12-01

    There are two municipal connected heat pumps in Pierre, South Dakota: the South Dakota Discovery Center and Pierre City Hall.Both systems now utilize plate heat exchanger between the city water loop and the building loop. This article describes the geothermal system used in Pierre for both space heating and cooling of municipal buildings.

  12. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  13. Geothermal district heating systems

    NASA Astrophysics Data System (ADS)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  14. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  15. Geothermal Heat Pumps for Federal Buildings

    SciTech Connect

    1999-08-01

    OFFICE OF GEOTHERMAL TECHNOLOGIES Geothermal Heat Pumps for Federal Buildings The U.S. Government spends approximately $8 billion annually on its energy needs. To reduce energy use in Federal buildings, President Bill Clinton issued Executive Order 13123 in June 1999, which calls for a 35% reduction in Federal energy use from 1985 levels by 2010. Geothermal heat pumps--when installed in virtually any type of building--can help accomplish this goal with energy savings of up to 40%. Geothermal he.

  16. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect

    Not Available

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  17. Geothermal Heat Transfer

    SciTech Connect

    Basmajian, V.V.

    1986-01-28

    This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.

  18. Hawaiian direct-heat grants encourage geothermal creativity

    SciTech Connect

    Beck, A.G. )

    1988-12-01

    The Hawaiian Community Geothermal Technology Program is unique. Under its auspices, heat and other by-products of Hawaii's high-temperature HGP-A geothermal well and power plant are not wasted. Instead, they form the backbone of a direct-heat grant program that reaches into the local community and encourages community members to develop creative uses for geothermal energy. A by-product of this approach is a broadened local base of support for geothermal energy development. With the experimental and precommercial work completed, most of the original grantees are looking for ways to continue their projects on a commercial scale by studying the economics of using geothermal heat in a full-scale business and researching potential markets. A geothermal mini-park may be built near the research center. In 1988, a second round of projects was funded under the program. The five new projects are: Geothermal Aquaculture Project - an experiment with low-cost propagation of catfish species in geothermally heated tanks with a biofilter; Media Steam Sterilization and Drying - an application of raw geothermal steam to shredded, locally-available materials such as coconut husks, which would be used as certified nursery growing media; Bottom-Heating System Using Geothermal Power for Propagation - a continuation of Leilani Foliage's project from the first round of grants, focusing on new species of ornamental palms; Silica Bronze - the use of geothermal silica as a refractory material in casting bronze artwork; and Electro-deposition of Minerals in Geothermal Brine - the nature and possible utility of minerals deposited from the hot fluid.

  19. Geothermal Heat Pump Benchmarking Report

    SciTech Connect

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  1. Groundwater and geothermal: urban district heating applications

    SciTech Connect

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  2. Midland, South Dakota geothermal district heating

    SciTech Connect

    Lund, J.W.

    1997-12-01

    This article describes historical aspects and present usage of geothermal district heating systems in the town of Midland, South Dakota. The use of geothermal resources exists due to a joint venture between the school district and the city back in the early 1960`s. A total of approximately 30,000 square feet (2800 square meters) of floor space is heated using geothermal energy in Midland. This provides an estimated annual saving in propane cost of $15,000 to the community.

  3. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  4. GEOTHERMAL HEAT PUMP GROUTING MATERIALS

    SciTech Connect

    ALLAN,M.

    1998-04-01

    The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.

  5. Geothermal heat pump grouting materials

    SciTech Connect

    Allan, M.

    1998-08-01

    The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.

  6. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  7. Hot Topics! Heat Pumps and Geothermal Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  8. Geothermal district heating: basics to success

    SciTech Connect

    Lunis, B.C.

    1985-01-01

    A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

  9. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  10. Town of Pagosa Springs geothermal heating system

    SciTech Connect

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  11. A geothermal heat pump for every home?

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    Witnesses representing government, industry, and education requested increased federal funding to explore and utilize geothermal resources at a House Subcommittee on Environment hearing July 30. Citing the minimal environmental impact, low cost, and abundance of geothermal energy, and the chance to cut dependence on fossil fuels, the witnesses discussed the geothermal heat pump (GHP)—one of the energy source's most promising applications, according to testimony. The GHP has the capacity to help utility companies manage increased demand for electricity, and its small scale—one to a home—makes it highly accessible.

  12. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  13. Geothermal direct heat applications program summary

    SciTech Connect

    1980-04-01

    The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

  14. Geothermal heat pump system assisted by geothermal hot spring

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  15. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    SciTech Connect

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  16. Convective heat transport in geothermal systems

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  17. Blueprint for financing geothermal district heating in California

    SciTech Connect

    Grattan, J.P.; Hansen, D.P.

    1981-03-01

    The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed. (MHR)

  18. Geothermal Direct Heat Applications Program Summary

    SciTech Connect

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for district

  19. Reclaiming Waste Heat

    NASA Technical Reports Server (NTRS)

    1976-01-01

    'Air-O-Space' heater, based on spacecraft heat, requires no fuel other than electricity to run fan. Installed in chimney flue, heat pipes transfer heat from waste hot gases (but not the gases themselves) to fresh air blown across the other end of the pipes. It can transport roughly 500 times the heat flux of the best solid conductors with a temperature drop of less than 3 degrees per foot. This instrument has also been used by Kin-Tek Laboratories Inc. to produce an instrument to calibrate gas analyzers for air-pollution monitoring.

  20. Geothermal direct heat applications program summary

    SciTech Connect

    1982-08-01

    In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of

  1. Waste heat recovery system

    SciTech Connect

    Smith, E.M.; Cornelison, R.C.

    1989-10-24

    This patent describes a waste heat recovery system. It comprises a conduit for conveying an exhaust gas stream; a boiler assembly connected to the conduit including a heat recovery steam generator through which the exhaust gas if flowed, and characterized by a high temperature stream tube heat exchanger and, at a downstream location relative thereto, a water-tube boiler; an ammonia gas injector for injecting ammonia gas into the exhaust gas stream and located upstream of the water-tube boiler in juxtaposition to the exhaust gas source; and a low temperature selective catalytic reduction unit located downstream of the water-tube boiler.

  2. Developments in geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Jin, J.Z.

    1992-09-01

    Disposal of toxic solid waste in an environmentally and economically acceptable way may be in some cases a major impediment to large geothermal development. The major thrust of the R&D effort in this laboratory is to develop low-cost processes for the concentration and removal of toxic materials and metals from geothermal residues. In order to accomplish this, biochemical processes elaborated by certain microorganisms which live in extreme environments have served as models for a biotechnology. It has been shown that 80% or better removal of toxic metals can be achieved at fast rates (e.g., 25 hours or less) at acidic pH and temperatures of about 60{degrees}C. There are several process variables which have to be taken into consideration in the development of such biotechnology. These include reactor size and type, strain of microorganisms, biomass growth, temperature, loading concentrations of residual geothermal sludge, and chemical nature of metal salts present. Recent data generated by the research and development effort associated with the emerging biotechnology will be presented and discussed.

  3. Minnesota Heat Flow and Geothermal Potential

    NASA Astrophysics Data System (ADS)

    Gosnold, W. D.; Crowell, J.; Bubach, B.; Wahl, P.; Crowell, A. M.; Mcdonald, M. R.

    2011-12-01

    Radiogenic heat production, bedrock geology, gravity, magnetics, and heat flow were combined to study heat flow and geothermal energy potential in Minnesota. Heat production was determined from one-hundred 800 kg samples collected at outcrops and from drill cores by gamma ray spectrometry. Small splits of the samples were also analyzed by chemical methods for K, U, and Th. Heat production averaged 2.6 W m-1 K-1 ± 2.0 for 42 felsic samples and 0.9 W m-1 K-1 ± 0.6 for 58 mafic samples. Areal variation in heat production measured with a portable gamma ray spectrometer was compared to bedrock geology and gravity and magnetic anomaly patterns. Gravity lows and magnetic highs correlate with higher heat production and vice versa. Prior to this study heat flow was reported for only four borehole sites in Minnesota. Those sites were located in Keweenawan mafic rocks of the mid-continent rift and heat flow values averaged 39 ± 6 mW m-2. These low heat flows are consistent with a heat flow study conducted in Lake Superior that showed a trough of low heat flow (19.2 - 41.0 mW m-2) along the northern edge of the lake. Thirty-one new heat flow determinations in the mafic rocks obtained from borehole temperature measurements in mining holes average (34.1 mW m-2 ± 1.9 mW m-2). However, paleoclimate signals evident in the temperature vs. depth profiles indicate that the temperature gradients are at least 27 percent low and heat flow is likely 46.7 mW m-2. Based on a reduced heat flow of 32 mW m-2 and a depth parameter of 10 km, the heat flow heat production relation yields a heat flow value of 58 mW m-2 in the felsic regions in Minnesota. These heat flow values suggest that EGS with a binary power plant would be achievable in the felsic regions.

  4. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  5. Electricity from waste heat

    NASA Astrophysics Data System (ADS)

    Larjola, Jaakko; Lindgren, Olli; Vakkilainen, Esa

    In industry and in ships, large amounts of waste heat with quite a high release temperature are produced: examples are combustion gases and the exhaust gases of ceramic kilns. Very often they cannot be used for heating purposes because of long transport distances or because there is no local district heating network. Thus, a practical solution would be to convert this waste heat into electric power. This conversion may be carried out using an ORC-plant (Organic Rankine Cycle). There are probably some twenty ORC-plants in commercial use in the world. They are, however, usually based on conventional power plant technology, and are rather expensive, complicated and may have significant maintenance expenses. In order to obviate these problems, a project was started at Lappeenranta University of Technology at the beginning of 1981 to develop a high-speed, hermetic turbogenerator as the prime mover of the ORC. With this new technology the whole ORC-plant is quite simple, with only one moving part in the power system. It is expected to require very little maintenance, and the calculations made give for it significantly lower specific price than for the conventional technology ORC-plant. Two complete prototypes of the new technology ORC-plant have been built, one to the laboratory, other to industrial use. The nominal output of both is 100 kW electricity. Calculated amortization times for the new ORC-plant range from 2.1 to 6.

  6. Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery.

    PubMed

    Sohel, M Imroz; Jack, Michael

    2010-12-01

    In an integrated geothermal biorefinery, low-grade geothermal heat is used as process heat to allow the co-products of biofuel production to become available for higher-value uses. In this paper we consider integrating geothermal heat into a biochemical lignocellulosic biorefinery so that the lignin-enriched residue can be used either as a feedstock for chemicals and materials or for on-site electricity generation. Depending on the relative economic value of these two uses, we can maximize revenue of a biorefinery by judicious distribution of the lignin-enriched residue between these two options. We quantify the performance improvement from integrating geothermal energy for an optimized system. We then use a thermodynamic argument to show that integrating geothermal heat into a biorefinery represents an improvement in overall resource utilization efficiency in all cases considered. Finally, possible future technologies for electricity generation are considered which could improve this efficiency further. PMID:20659793

  7. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  8. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    SciTech Connect

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  9. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  10. Combined Geothermal Potential of Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2016-04-01

    The subsurface urban heat island (SUHI) can be seen as a geothermal potential in form of elevated groundwater temperatures caused by anthropogenic heat fluxes into the subsurface. In this study, these fluxes are quantified for an annual timeframe in two German cities, Karlsruhe and Cologne. Our two-dimensional (2D) statistical analytical model determines the renewable and sustainable geothermal potential caused by six vertical anthropogenic heat fluxes into the subsurface: from (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that at present 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of heat are annually transported into the shallow groundwater of Karlsruhe and Cologne, respectively, due to anthropogenic heat fluxes into the subsurface. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. However, most of the discussed anthropogenic fluxes into the subsurface are conductive heat fluxes and therefore dependent on the groundwater temperature itself. Accordingly, a decrease in groundwater temperature back to its natural (rural) state, achieved through the use of geothermal heat pumps, will increase these fluxes and with them the sustainable potential. Hence, we propose the introduction of a combined geothermal potential that maximizes the sustainability of urban shallow geothermal energy use and the efficiency of shallow geothermal systems by balancing groundwater temperature with anthropogenic heat fluxes into the subsurface. This will be a key element in the development of a demand-oriented, cost-efficient geothermal management tool with an additional focus on the sustainability of the urban heat sources.

  11. Geothermal energy: The heat is on for New Mexico greenhouses

    SciTech Connect

    Berghage, R.; Shoenmackers, R.; Witcher, J.C. )

    1994-11-01

    Greenhouse operators are sensitive to energy costs related to heating, so operators are looking to alternative sources of energy like geothermal resources. The Rincon/Radium Springs and the Las Cruces-East Mesa geothermal areas of New Mexico offer a proven, environmentally benign, energy source that give substantial energy cost savings compared to traditional fossil fuels. A number of commercial greenhouses, both large and small, are already taking advantage of geothermal heat in the southwest to reduce their energy costs and increase their profitability.

  12. Geothermal heating system for the Children's Museum of Utah

    SciTech Connect

    Karlsson, T.

    1984-07-01

    The results of a study to determine the engineering and economic feasibility of using the Wasatch Hot Spring resource for space heating of the Children's Library building are presented. The Wasatch Hot Spring with a reported flow of about 63 gpm (240 l/min) at an average temperature of 104/sup 0/F is not capable of furnishing the needed heat for the Children's Museum building. The underground paths along which the thermal waters flow to their outlets at the Warm Springs Fault are not presently known. It is possible if the thermal water ascends from the deep layers of the earth along the Warm Springs Fault that increased geothermal flow at a higher temperature can be produced by drilling into the fault. Assuming that sufficient geothermal fluid quantity is produced by drilling in the area, an analysis is made of a geothermal heating system for the building based on different fluid temperatures. It is assumed that the present and planned heating systems be left intact with the gas fired boilers taking over during cold periods when the geothermal system fails to provide sufficient heat. Economic analysis shows that the geothermal system is very attractive, even for the lowest geothermal fluid temperature considered (110/sup 0/F).

  13. Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases

    SciTech Connect

    Kenkeremath, D.

    1985-05-01

    Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

  14. Thermoelectric harvesting of low temperature natural/waste heat

    NASA Astrophysics Data System (ADS)

    Rowe, David Michael

    2012-06-01

    Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.

  15. Geothermal energy market study on the Atlantic Coastal Plain: geothermal community heating for Cape Charles, Virginia

    SciTech Connect

    Leffel, C.S. Jr.

    1981-10-01

    An economic feasibility study for a geothermal community heating system has been made for the residential heat load of Cape Charles, Virginia using the JHU/APL GRITS Computer Program. The effects of inflation, interest rates, wellhead temperatures, and the addition of reinjection wells are investigated.

  16. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  17. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  18. Geothermal Heat Pump Profitability in Energy Services

    SciTech Connect

    1997-11-01

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  19. Geothermal Direct-Heat Utilization Assistance - Final Report

    SciTech Connect

    J. W. Lund

    1999-07-14

    The Geo-Heat Center provided (1) direct-use technical assistance, (2) research, and (3) information dissemination on geothermal energy over an 8 1/2 year period. The center published a quarterly bulletin, developed a web site and maintained a technical library. Staff members made 145 oral presentations, published 170 technical papers, completed 28 applied research projects, and gave 108 tours of local geothermal installations to 500 persons.

  20. Description and operation of Haakon School geothermal-heating system

    SciTech Connect

    Childs, F.W.; Kirol, L.D.; Sanders, R.D.; McLatchy, M.J.

    1983-10-01

    To encourage the development of hydrothermal energy, twenty-three demonstration projects were funded. The Haakon School project is one of twelve such projects. The geothermal direct-use heating system at the Haakon School complex in Philip, South Dakota is described and information gained during approximately three heating seasons of operation is presented.

  1. Geothermal heat, BAS controls: a capitol investment for Idaho

    SciTech Connect

    Not Available

    1985-11-01

    At the Capitol Mall in Boise, the old old problem of space heating has been solved by a marriage of old and new technologies: a geothermal heating system and a high-tech building automation system (BAS). The result is savings of more than $200,000 a year in natural gas costs.

  2. Utilization of geothermal heat in tropical fruit-drying process

    SciTech Connect

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  3. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOEpatents

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  4. Feasibility study of geothermal heating, Modoc Lassen housing project

    SciTech Connect

    Not Available

    1981-11-01

    This study evaluates the feasibility of using geothermal water for space and domestic water heating systems at the elderly housing project now ready for construction at the Modoc Lassen Indian Reservation. For the six units considered, the space heating load is four times the domestic water heating load. Since the geothermal water temperature is uncertain, two scenarios were evaluated. In the first, which assumes 160/sup 0/F supply temperature, the geothermal system is assumed to satisfy the entire space and domestic water heating loads. In the second, which assumes the supply temperature to be less than 120/sup 0/F at the wellhead only space heating is provided. The economics of the first scenario are quite favorable. The additional expenditure of $15,630 is projected to save $3522 annually at current energy costs, and the life cycle cost study projects a discounted rate of return on the investment of 44.4%. Surprisingly, the investment is even more favorable for the second scenario, due to the higher cost and lower resultant savings for the domestic water components. Forced air space heating from geothermal is recommended. Domestic water heating is recommended pending additional information on supply water temperature.

  5. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  6. Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)

    DOE Data Explorer

    Blackwell, D.D. and others

    Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

  7. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  8. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    SciTech Connect

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  9. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    SciTech Connect

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  10. CO2 emission mitigation by geothermal development - especially with geothermal heat pumps

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2009-04-01

    Geothermal technologies for power generation or direct use operate with little or no greenhouse gas emissions. Since no burning processes are involved they are low in CO2 emissions. Geothermal energy development has thus great CO2 emission reduction potential when substituting fossil sources of energy. Geothermal heat pumps (GHP) represent the fastest growing branch of geothermal technology; they use the ubiquitous shallow geothermal resource. GHPs are electricity consumers, nevertheless they can contribute to the fight against climatic warming. Such systems are now increasingly used for space heating, cooling, and to provide domestic hot water. With heat pump systems the use of fossil primary energy sources can be avoided, thus GHPs contribute to energy security: many countries must rely in their space heating systems on imported fossil fuels. The degree of dependence on these can be reduced. Since heat pumps are usually driven by electric components the origin of the electricity and the corresponding CO2 emission must be considered. A compilation shows that there are great differences in this respect from country to country. The same (=electricity need with CO2 emission consequences) applies to GHPs too. This means that by new geothermal heat pumps only additional CO2 emission can be avoided ("saving"), not a reduction of actual emissions. When GHPs are installed in refurbishment (to replace fossil-fueled systems) actual emission reduction can be achieved. Emission reduction is also evident when electric heater/cooler installations, driven by fossil-based electricity, are replaced by GHP systems. Numerical examples are presented about saving and reduction.

  11. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  12. Heat Production as a Tool in Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Koteas, C.; Mabee, S. B.; Thomas, M.; Gagnon, T.

    2012-12-01

    Heat flow data (together with knowledge, or assumptions, of stratigraphy, thermal conductivity and heat production) provide the prime parameter for estimating the potential of geothermal resources. Unfortunately this information is expensive to obtain as it requires deep boreholes. Consequently it is sparse or lacking in areas not traditionally considered as having geothermal potential. New England (and most of the northeastern U.S.A.) is one such area. However, in the absence of volcano-derived hydrothermal activity with its attendant high heat flow, granitic plutons provide an alternative geothermal resource. Compared with other crustal rocks, granites contain higher concentrations of heat-producing elements (K, U, Th). Additionally, they are relatively homogeneous, compared to surrounding country rock, allowing for stimulation through hydro-fracking of large (>1 km3) geothermal reservoirs. Consequently we have adopted a different approach, obtaining heat production data rather then relying on the very sparse heat flow data. Birch and colleagues long since recognized the relationship between heat flow and heat production as an integral part of their concept of Heat Flow Provinces. Heat production is readily determined in the laboratory by measuring the density of a sample and the concentrations of its heat-producing elements potassium, uranium and thorium. We have determined the heat production for 570 samples from most of the major granitic and gneissic bodies in Massachusetts and Connecticut. We have also measured these parameters for 70 sedimentary rocks that cover granites and gneiss in the Connecticut and Narragansett Basins. This data is being used to calculate inferred heat flow data for these localities. Comparison of these inferred heat flow values with the sparse number of those measured directly in boreholes in the two States is encouraging, indicating that this approach has merit. We have also measured thermal conductivity on all of these samples

  13. Market penetration analysis for direct heat geothermal energy applications

    SciTech Connect

    Thomas, R.J.; Nelson, R.A.

    1981-06-01

    This study is concerned with the estimation of the National geothermal market potential and penetration in direct heat applications for residences and certain industry segments. An important aspect of this study is that the analysis considers both known and anticipated goethermal resources. This allows for an estimation of the longer-range potential for geothermal applications. Thus the approach and results of this study provide new insights and valuable information not obtained from more limited, site-specific types of analyses. Estimates made in this study track geothermal market potential and projected penetration from the present to the year 2020. Private sector commercialization of geothermal energy over this period requires assistance in the identification of markets and market sizes, potential users, and appropriate technical applications.

  14. Municipal geothermal heat utilization plan for Glenwood Springs, Colorado

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The results show that the use of geothermal heat is indeed feasible when compared to the cost of natural gas. The proposed system is composed of a wellhead plate heat exchanger which feeds a closed distribution loop of treated water circulated to the buildings which form the load. The base case system was designed to supply twice the demand created by the seven public buildings in order to take advantage of some economies of scale. To increase the utilization factor of the available geothermal energy, a peaking boiler which burns natural gas is recommended. Disposal of the cooled brine would be via underground injection.

  15. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  16. Recovering waste industrial heat efficiently

    SciTech Connect

    Hnat, J.G.; Bartone, L.M.; Cutting, J.C.; Patten, J.S.

    1983-03-01

    Organic Rankine Cycles (ORC's) are being used in the generation of electrical or mechanical power in situations where little demand exists for process steam. Using organic fluids in Rankine cycles improves the potential for economic recovery of waste heat. The right organic fluid can enhance the conversion efficiency by tailoring the ORC heat recovery cycle to the thermodynamic characteristics of the waste heat stream. The selection of the working fluid is affected by its flammability, toxicity, environmental impact, materials compatibility, and cost. Water, ethanol, 2-methyl Pyridine/H2O, Flourinol, Toluene, Freon R-11, and Freon R-113 are compared. An organic cycle using toluene as the working fluid is schematicized.

  17. Economics of geothermal, solar, and conventional space heating

    SciTech Connect

    Fassbender, L.L.; Bloomster, C.H.; Price, B.A.

    1980-01-01

    The competitive outlook for geothermal and solar heating changed dramatically during the past year. With the recent sharp price increases in imported oil and natural gas and the planned decontrol of domestic prices, geothermal and solar energy will become competitive for space heating throughout most of the country. Under these new conditions, geothermal energy could competitively provide about 40% of the national demand for space heat and domestic hot water (about 7 quads based on 1980 demands). Nearly all of the geothermal energy demand would be in high-population-density areas. Solar energy could competitively provide about 50% (about 9 quads) of the annual demand. Most of the solar energy demand would be concentrated in suburban and rural areas. Conventional energy should remain competitive for about 30% (about 5 quads) of the annual demand. Conventional energy demand would be concentrated in the South and as supplemental energy for solar/conventional systems. Geothermal, solar, and conventional energy would be equally competitive for about 20% of the annual demand, which is why the individual market shares add to 120%.

  18. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    SciTech Connect

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  19. Maryvale Terrace: Geothermal residential district space heating and cooling

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 qpm each of 2200 F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145.

  20. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  1. Geothermal Heat Pumps Score High Marks in Schools.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab (DOE).

    Geothermal heat pumps (GHPs) are showing their value in providing lower operating and maintenance costs, energy efficiency, and superior classroom comfort. This document describes what GHPs are and the benefits a school can garner after installing a GHP system. Three case studies are provided that illustrate these benefits. Finally, the Department…

  2. Heat pumps for geothermal applications: availability and performance. Final report

    SciTech Connect

    Reistad, G.M.; Means, P.

    1980-05-01

    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  3. Heat-flow mapping at the Geysers Geothermal Field

    SciTech Connect

    Thomas, R.P.

    1986-10-31

    Pertinent data were compiled for 187 temperature-gradient holes in the vicinity of The Geysers Geothermal field. Terrain-correction techniques were applied to most of the temperature-gradient data, and a temperature-gradient map was constructed. Cutting samples from 16, deep, production wells were analyzed for thermal conductivity. From these samples, the mean thermal conductivities were determined for serpentinized ultramafic rock, greenstone, and graywacke. Then, a heat flow map was made. The temperature-gradient and heat-flow maps show that The Geysers Geothermal field is part of a very large, northwesterly-trending, thermal anomaly; the commercially productive portion of the field may be 100 km/sup 2/ in area. The rate that heat energy flows through the surface by thermal conduction is estimated at 1.79 x 10/sup 9/MJ per year. The net heat energy loss from commercial production for 1983 is estimated at 180.14 x 10/sup 9/MJ.

  4. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: AN APPROACH TO GROUNDWATER IMPACTS FROM DEVELOPMENT, CONVERSION, AND WASTE DISPOSAL

    EPA Science Inventory

    Groundwater monitoring for the impacts of geothermal energy development, conversion and waste disposal is similar to groundwater monitoring for other purposes except that additional information is needed concerning the geothermal reservoir. The research described here developed a...

  5. Municipal geothermal heat utilization plan for Glenwood Springs, Colorado

    SciTech Connect

    Not Available

    1980-12-31

    A study has been made of the engineering and economic feasibility of utilizing the geothermal resource underlying Glenwood Springs Colorado, to heat a group of public buildings. The results have shown that the use of geothermal heat is indeed feasible when compared to the cost of natural gas. The proposed system is composed of a wellhead plate heat exchanger which feeds a closed distribution loop of treated water circulated to the buildings which form the load. The base case system was designed to supply twice the demand created by the seven public buildings in order to take advantage of some economies of scale. To increase the utilization factor of the available geothermal energy, a peaking boiler which burns natural gas is recommended. Disposal of the cooled brine would be via underground injection. Considerable study was done to examine the impact of reduced operating temperature on the existing heating systems. Several options to minimize this problem were identified. Economic analyses were completed to determine the present values of heat from the geothermal system and from the present natural gas over a 30 year projected system life. For the base case savings of over $1 million were shown. Sensitivities of the economics to capital cost, operating cost, system size and other parameters were calculated. For all reasonable assumptions, the geothermal system was cheaper. Financing alternatives were also examined. An extensive survey of all existing data on the geology of the study has led to the prediction of resource parameters. The wellhead temperature of produced fluid is suspected to lie between 140 and 180/sup 0/F (60 and 82/sup 0/C). Flowrates may be as high as 1000 gpm (3800 liters per minute) from a reservoir formation that is 300 ft (90 m) thick beginning about 500 ft (150 m) below the suggested drill site in the proposed Two Rivers Park.

  6. Method of extracting heat from dry geothermal reservoirs

    DOEpatents

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  7. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    SciTech Connect

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  8. Progress in geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S. ); Kang, Sun Ki . Dept. of Chemical Engineering)

    1991-05-01

    Studies directed at the development of an environmentally acceptable technology for the treatment and disposal of geothermal sludges have shown that a biotechnology based on microbial biochemical processes is technically and economically feasible. Process designs for the emerging biotechnology have to take several variables into consideration. In the present paper some of these variables will be discussed in terms of their effect on the cost and efficiency of potential processes. 7 refs., 4 figs., 4 tabs.

  9. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  10. Direct heat geothermal opportunities at Pahoa, Hawaii

    SciTech Connect

    Moreau, J.; Jones, W.L.

    1980-09-01

    A geothermal commercial park located near Pahoa, Hawaii, has been found to be technically feasible. However, community acceptance varies from optimistic support for the job opportunities to only lukewarm acceptance by most residents of the nearby planned residential community. Interviews, team evaluations, and calculations of energy and transportation savings were used to reduce a list of candidate processes to four. These four include an ethanol plant, a cattle feed mill, a protein recovery plant, and a papaya processing facility. In addition, a research laboratory is planned for the evaluation of other processes identified as very promising.

  11. Fractured Geothermal Growth Induced by Heat Extraction

    SciTech Connect

    Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Potter, R.M.; Robinson, B.A.

    1989-02-01

    Field testing of a hydraulically stimulated, hot dry rock (HDR) geothermal system at the Fenton Hill site in northern New Mexico indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations that caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir hear-production capacity in an HDR system may be possible. [DJE 2005

  12. Imperial County geothermal development. Quarterly report, April 1-June 30, 1982

    SciTech Connect

    Not Available

    1982-06-30

    The activities of the Geothermal Office during the quarter are discussed, including: important geothermal events, geothermal waste disposal, a grant award by the California Energy Commission, the geothermal development meeting, and the current status of geothermal development in Imperial County. Activities of the Geothermal Planner are addressed, including permits, processing of EIR's, and other planning activities. Progress on the direct heat study is reported.

  13. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  14. Geothermal direct-heat study: Imperial County, California

    SciTech Connect

    Not Available

    1983-05-01

    Potential applications of geothermal energy which would be compatible with the agricultural activities in the county were identified and a plan to attract potential users to the area was developed. The intent of the first effort was to identify general classifications of industries which could utilize geothermal heat in production processes. Two levels of analyses were utilized for this effort. Initially, activities relying on previously developed engineering and industrial concepts were investigated to determine capital costs, employment, and potential energy savings. Second, innovative concepts not yet fully developed were investigated to determine their potential applicability to the agricultural base of the county. These investigations indicated that the major potential applications of geothermal heat would involve industries related to food processing or other direct agriculture-related uses of raw materials produced or imported to the county. An implementation plan which can be utilized by the county to market direct heat applications was developed. A socioeconomics analysis examined the potential effects on the county from development of direct heat projects. The county's planning and permitting requirements for dirct heat projects were also examined.

  15. Electronic waste disassembly with industrial waste heat.

    PubMed

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization. PMID:24073987

  16. Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

  17. GROUND WATER PROTECTION ISSUES WITH GEOTHERMAL HEAT PUMPS

    SciTech Connect

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1999-10-01

    Closed loop vertical boreholes used with geothermal heat pumps are grouted to facilitate heat transfer and prevent ground water contamination. The grout must exhibit suitable thermal conductivity as well as adequate hydraulic sealing characteristics. Permeability and infiltration tests were performed to assess the ability of cementitious grout to control vertical seepage in boreholes. It was determined that a superplasticized cement-sand grout is a more effective borehole sealant than neat cement over a range of likely operational temperatures. The feasibility of using non-destructive methods to verify bonding in heat exchangers is reviewed.

  18. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  19. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  20. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  1. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  2. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    SciTech Connect

    Not Available

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  3. Modeling of fluid and heat flow in fractured geothermal reservoirs

    SciTech Connect

    Pruess, K.

    1988-08-01

    In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.

  4. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  5. Geothermal energy development in the eastern United States geothermal space heating - Naval Air Rework Facility, Norfolk, Virginia

    NASA Astrophysics Data System (ADS)

    Hill, F. K.; Henderson, R. W.

    1980-06-01

    The technical and economic feasibility of using geothermal energy for space heating the Naval Air Rework Facility (NARF) electronic integration hangar was evaluated. The warm water output from a single well was used in several modes: to heat via a floor radiation system or via heat pumps, with and without a ground water reservoir to store heat in off hours.

  6. Heat flow and geothermal potential of Kansas

    SciTech Connect

    Blackwell, D.D.; Steele, J.L.

    1981-01-01

    The plan of the US Geological Survey and Kansas Geological Survey to drill four deep hydrologic tests in Kansas prompted a geothermal study in these wells. These wells were drilled through the Arbuckle Group to within a few feet of basement and two of the holes were deepened on into the basement and core samples collected of the basement rock. Because of the depth of the four holes and because of the fact that they have been cased through most of their depth and left undisturbed to reach temperature equilibrium, it is possible to get highly accurate, stable temperature measurements through the complete sedimentary section. In addition an extensive suite of geophysical logs were obtained for each of the holes (gamma-ray, travel time, density, neutron porosity, electric, etc.) and cuttings were collected at frequent intervals. In addition 5 other holes were logged as part of this study. For these holes cutting samples and geophysical logs are not available, but the additional holes offer useful supplementary information on the temperature regime in other parts of Kansas.

  7. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  8. Imperial County geothermal development. Quarterly report, January 1-March 31, 1982

    SciTech Connect

    Not Available

    1982-03-31

    The activities of the Geothermal Office are reported including: important geothermal events, geothermal waste disposal, grant applications to the California Energy Commission, the planned geothermal development meeting, and other geothermal planning activities. The activities of the Geothermal Planner include processing of applications for geothermal permits, processing of environmental impact reports, and other geothermal planning activities. The progress on the VTN Corporation direct heat study is discussed.

  9. Motorcycle waste heat energy harvesting

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.

  10. Long-term predictions of minewater geothermal systems heat resources

    NASA Astrophysics Data System (ADS)

    Harcout-Menou, Virginie; de ridder, fjo; laenen, ben; ferket, helga

    2014-05-01

    Abandoned underground mines usually flood due to the natural rise of the water table. In most cases the process is relatively slow giving the mine water time to equilibrate thermally with the the surrounding rock massif. Typical mine water temperature is too low to be used for direct heating, but is well suited to be combined with heat pumps. For example, heat extracted from the mine can be used during winter for space heating, while the process could be reversed during summer to provide space cooling. Altough not yet widely spread, the use of low temperature geothermal energy from abandoned mines has already been implemented in the Netherlands, Spain, USA, Germany and the UK. Reliable reservoir modelling is crucial to predict how geothermal minewater systems will react to predefined exploitation schemes and to define the energy potential and development strategy of a large-scale geothermal - cold/heat storage mine water systems. However, most numerical reservoir modelling software are developed for typical environments, such as porous media (a.o. many codes developed for petroleum reservoirs or groundwater formations) and cannot be applied to mine systems. Indeed, mines are atypical environments that encompass different types of flow, namely porous media flow, fracture flow and open pipe flow usually described with different modelling codes. Ideally, 3D models accounting for the subsurface geometry, geology, hydrogeology, thermal aspects and flooding history of the mine as well as long-term effects of heat extraction should be used. A new modelling approach is proposed here to predict the long-term behaviour of Minewater geothermal systems in a reactive and reliable manner. The simulation method integrates concepts for heat and mass transport through various media (e.g., back-filled areas, fractured rock, fault zones). As a base, the standard software EPANET2 (Rossman 1999; 2000) was used. Additional equations for describing heat flow through the mine (both

  11. Heat flow and geothermal studies in the state of Washington

    SciTech Connect

    Blackwell, D.D.; Steele, J.L.; Kelley, S.A.

    1985-08-01

    Existing geothermal gradient and heat flow data for the state of Washington are summarized. In addition, information on mean-annual ground surface temperatures is included. The data consist of accurate, detailed temperature-depth measurements in selected available holes throughout the state of Washington made between 1979 and 1982. Measurements of thermal conductivity on selected rock samples from these drill holes and ancillary information required to assess the significance of the data and calculate heat flow values were obtained as well. Information is presented on the mean-annual ground-surface temperatures throughout the state of Washington. 32 refs., 15 figs., 4 tabs.

  12. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  13. Multicomponent CO2-Brine Simulations of Fluid and Heat Transfer in Sedimentary-Basin Geothermal Systems: Expanding Geothermal Energy Opportunities

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Randolph, J. B.

    2011-12-01

    In a carbon dioxide plume geothermal (CPG) system, carbon dioxide (CO2) is pumped into existing high-permeability geologic formations that are overlain by a low-permeability caprock. The resulting CO2 plume largely displaces native formation fluid and is heated by the natural in-situ heat and background geothermal heat flux. A portion of the heated CO2 is piped to the surface to produce power and/or to provide heat for direct use before being returned to the geologic reservoir. Non-recoverable CO2 in the subsurface is geologically sequestered, serving as a CO2 sink. As such, this approach results in a geothermal power plant with a negative carbon footprint. We present results of calculations concerning geothermal power plant efficiencies and energy production rates in both traditional reservoir-based systems and engineered geothermal systems (EGS) when CO2, rather than water, is used as the subsurface working fluid. While our previous studies have examined geologic systems with established CO2 plumes, we focus here on multicomponent (CO2 + brine) systems. Numerical simulations (e.g., Randolph and Saar, Geophysical Research Letters, 2011) indicate that CPG systems provide several times the heat energy recovery of similar water-based systems. Furthermore, the CPG method results in higher geothermal heat extraction efficiencies than both water- and CO2-based EGS. Therefore, CPG should further extend the applicability of geothermal energy utilization to regions with subsurface temperatures and heat flow rates that are even lower than those that may be added due to switching from water- to CO2-based EGS. Finally, simulations at present suggest that multicomponent effects - e.g., buoyant flow as CO2 rises over denser brine - may enhance heat extraction in CPG systems compared to traditional water-based geothermal approaches.

  14. Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems

    SciTech Connect

    Watzlaf, G.R.; Ackman, T.E.

    2006-03-01

    In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

  15. Waste Heat to Power Market Assessment

    SciTech Connect

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  16. Economic assessment of geothermal direct heat technology: A review of five DOE demonstration projects

    SciTech Connect

    Hederman, William F. Jr.; Cohen, Laura A.

    1981-06-01

    In this report the cost of using low temperature geothermal energy resources for direct heating applications is compared to the costs associated with conventional heating fuels. The projects compared all involved replacing conventional fuels (e.g., natural gas and fuel oils) with geothermal energy in existing heating systems. The cost of using geothermal energy in existing systems was also compared with the cost of new coal-fired equipment.

  17. Natural analogs for enhanced heat recovery from geothermal systems

    SciTech Connect

    Nielson, Dennis L.

    1996-01-24

    High-temperature hydrothermal systems are physically and chemically zoned with depth. The energy input is from a magmatic zone, intruded by igneous bodies, that may also contribute variable amounts of magmatic fluid to the system. The heat source is directly overlain by a section of rocks, that due to their elevated temperature, respond to stress in a ductile fashion. The ductile zone is, in turn, overlain by a section of rocks that respond to stress in a brittle fashion, where water is able to circulate through fractures (the geothermal reservoir) and will be termed the hydrothermal circulation zone. Ancient and modern high-temperature geothermal systems show a predictable sequence of evolutionary events affecting these stratified zones. Metamorphic core complexes are uplifts, formed in highly extended terrains, that expose fossil brittle-ductile transition zones. Formerly ductile rocks have had brittle fractures superimposed on them, and meteoric hydrothermal systems are associated with the brittle fracturing. Porphyry copper deposits typically evolve from magmatic to meteoric hydrothermal systems. At the Larderello geothermal system, the brittle- ductile transition has been mapped using reflection seismology, and the zone has been penetrated by the San Pompeo 2 well where temperatures >420°C were encountered. Although neo-granitic dikes have been penetrated by drilling in the Larderello area, the brittle- ductile transition is largely above the inferred plutonic heat source. In the Geysers system, in contrast, the present steam system has been superimposed on young plutonic rocks and the inferred brittle-ductile transition is present at a depth of about 4.7 km within the plutonic rocks. As hydrothermal reservoirs are depleted, or surface facilities are restricted by environmental considerations, interest will turn to the deeper portions of known systems. Japan already has an aggressive program to develop Deep-seated and Magma-Ambient resources. This program, as

  18. Turning geothermal waste into glasses and glass ceramics

    SciTech Connect

    Diaz, C. ); Torres-Martinez, L.M.; Garza, L. ); Avalos-Borja, M. ); Rincon, J.M. )

    1993-10-01

    Researchers investigating the waste on the pipes at the Cerro Prieto geothermal plant in Mexico found that it contained high amounts of silica. Initial tests showed that this waste silica had a high specific surface area, contained salts that could easily be eliminated, and resisted high temperatures effectively. Further research was done to see if this waste material could be used as silica sand in the production of glass. Testing of the waste material included the following: X-ray diffraction with nickel filters; EDX spectroscopy with ultrathin window; Differential thermal analysis; IR spectroscopy analysis; Electron microscope analysis. The tests were done on the raw material itself and on four sets of glass formulated from the raw material. Two sets of glass were formulated from untreated waste material, and two sets were formulated from treated waste material. The raw material was tested for purity, and the glass was tested for hardness, toughness, and transparency. As the tests show, the silica material from the Cerro Prieto plant steam pipes is not merely useless industrial waste. It is a reproducible source of silica sand that producers can use in ceramic and glass production. The initial tests show that the properties of the raw material, and those of the glass formulated from the raw material, will meet industry requirements.

  19. Waste heat generation: A comprehensive review.

    PubMed

    Yeşiller, Nazli; Hanson, James L; Yee, Emma H

    2015-08-01

    A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions. PMID:25962825

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  1. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    SciTech Connect

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  2. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  3. Utah State Prison Space Heating with Geothermal Heat Third Semi-Annual Report for the Period January 1981 - July 1981

    SciTech Connect

    1981-11-01

    Facing certain cost overruns and lacking information about the long term productivity of the Crystal Hot Springs geothermal resource, costs of construction for the geothermal retrofit, and the method of disposal of geothermal waste water, the Energy Office embarked on a strategy that would enable the project participants to develop accurate cost information on the State Prison Space Heating Program through the completion of Task 5-Construction. The strategy called for: (1) Completion of the resource assessment to determine whether test well USP/TH-1 could be used as a production well. If well USP/TH-1 was found to have sufficient production capacity, money would not have to be expended on drilling another production well. (2) Evaluation of disposal alternatives and estimation of the cost of each alternative. There was no contingency in the original budget to provide for a reinjection disposal system. Cooperative agreement DE EC07-ET27027 indicated that if a disposal system requiring reinjection was selected for funding that task would be negotiated with DOE and the budget amended accordingly. (3) Completion of the preliminary engineering and design work. Included in this task was a thorough net present value cash flow analysis and an assessment of the technical feasibility of a system retrofit given the production characteristics of well USP/TH-1 . In addition, completion of the preliminary design would provide cost estimates for the construction and commissioning of the minimum security geothermal space heating system. With this information accurate costs for each task would be available, allowing the Energy Office to develop strategies to optimize the use of money in the existing budget to ensure completion of the program. Reported herein is a summary of the work towards the completion of these three objectives conducted during the period of January 1981 through June 1981.

  4. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  5. Geothermal energy: clean power from the Earth's heat

    USGS Publications Warehouse

    Duffield, Wendell A.; Sass, John H.

    2003-01-01

    Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks

  6. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  7. Biodegradability and ecotoxicity of commercially available geothermal heat transfer fluids

    NASA Astrophysics Data System (ADS)

    Schmidt, Kathrin R.; Körner, Birgit; Sacher, Frank; Conrad, Rachel; Hollert, Henner; Tiehm, Andreas

    2016-03-01

    Commercially available heat transfer fluids used in borehole heat exchangers were investigated for their composition, their biodegradability as well as their ecotoxicity. The main components of the fluids are organic compounds (often glycols) for freezing protection. Biodegradation of the fluids in laboratory studies caused high oxygen depletion as well as nitrate/iron(III) reduction under anaerobic conditions. Additives such as benzotriazoles for corrosion protection were persistent. Ecotoxicity data show that the commercially available fluids caused much higher ecotoxicity than their main organic constituents. Consequently, with regard to groundwater protection pure water as heat transfer medium is recommended. The second best choice is the usage of glycols without any additives. Effects on groundwater quality should be considered during ecological-economical cost-benefit-analyses of further geothermal energy strategies. The protection of groundwater as the most important drinking water resource must take priority over the energy gain from aquifers.

  8. Disperse generation; use waste heat

    SciTech Connect

    Not Available

    1981-09-01

    Utility manager and American Public Power Association (APPA) president William H. Corkran, Jr. answers questions about the Easton (Maryland) Utilities Commission, which currently has a capacity nearly double its peak load. Power sales through interconnections are made by day, and low-cost purchases are made by night from a variety of widespread sources using different fuels. Easton's fuel mix and conservation strategy is aimed at oil substitution and efficiency measures, such as waste-heat recovery from diesel engines. Wind, photovoltaics, solar water heating, cogeneration, and small nuclear units are also under study. Although he anticipates an OPEC move to discourage new technologies, dispersed technologies will still offer more potential for efficient and secure power generation and transmission. Utilities, he feels, should lead the decentralization more rather than resist it in order to expand their service capability into cable television. The APPA can help by motivating young people to pursue these opportunities. (DCK)

  9. Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar

    2015-01-01

    Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.

  10. Mining earth's heat: Development of hot dry rock geothermal reservoirs

    SciTech Connect

    Pettitt, R.A.; Becker, N.A.

    1983-07-01

    Geothermal energy is commonly considered to be available only in areas characterized by hot springs and geysers. However, the rock of the earth is hot at accessible depths everywhere, and this energy source is present beneath the surface in almost any location. The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program as initially developed by the Los Alamos National Laboratory, is to ''mine'' this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large diameter, vertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kw of electricity.

  11. Fractured geothermal reservoir growth induced by heat extraction

    SciTech Connect

    Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

    1986-01-01

    Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

  12. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  13. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  14. Direct use geothermal applications for brazed plate heat exchangers

    SciTech Connect

    Rafferty, K.

    1993-02-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degree} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

  15. Natural analogs for enhanced heat recovery from geothermal systems

    SciTech Connect

    Nielson, D.L.

    1996-12-31

    High-temperature hydrothermal systems are physically and chemically zoned with depth. The energy input is from a magmatic zone, intruded by igneous bodies, that may also contribute variable amounts of magmatic fluid to the system. The heat source is directly overlain by a section of rocks, that due to their elevated temperature, respond to stress in a ductile fashion. The ductile zone is, in turn, overlain by a section of rocks that respond to stress in a brittle fashion, where water is able to circulate through fractures (the geothermal reservoir) and will be termed the hydrothermal circulation zone. Ancient and modern high-temperature geothermal systems show a predictable sequence of evolutionary events affecting these stratified zones. Metamorphic core complexes are uplifts, formed in highly extended terrains, that expose fossil brittle-ductile transition zones. Formerly ductile rocks have had brittle fractures superimposed on them, and meteoric hydrothermal systems are associated with the brittle fracturing. Porphyry copper deposits typically evolve from magmatic to meteoric hydrothermal systems. At the Larderello geothermal system, the brittle-ductile transition has been mapped using reflection seismology, and the zone has been penetrated by the San Pompeo 2 well where temperatures >420{degrees}C were encountered. Although neo-granitic dikes have been penetrated by drilling in the Larderello area, the brittle-ductile transition is largely above the inferred plutonic heat source. In the Geysers system, in contrast, the present steam system has been superimposed on young plutonic rocks and the inferred brittle-ductile transition is present at a depth of about 4.7 km within the plutonic rocks. As hydrothermal reservoirs are depleted, or surface facilities are restricted by environmental considerations, interest will turn to the deeper portions of known systems. Japan already has an aggressive program to develop Deep-Seated and Magma-Ambient resources.

  16. Geothermal pipeline: Progress and development update from the geothermal progress monitor

    SciTech Connect

    1995-10-01

    This document is a Progress and Development Update from the Geothermal Progress Monitor. It contains brief descriptions of progress made on varying projects involving the use of geothermal resources or research about geothermal systems. This article describes the following projects: Conversion of waste water to geothermal energy in Northern California, Hydrogen sulfide study in Hawaii, a new program at the Cerro Prieto geothermal resource in Mexico, geothermal heating of a Nevadan school, development of a geothermal fluid standard, and the broadcasting of geothermal teleconferences.

  17. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  18. Auxiliary Heating of Geothermally Preheated Water or CO2 - A Potential Solution for Low- to Moderate-Temperature Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Kong, X.; Garapati, N.; Adams, B. M.; Randolph, J.; Kuehn, T. H.; Saar, M. O.

    2015-12-01

    Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems have higher thermal efficiencies than the brine based systems at low turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  19. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  20. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

    NASA Astrophysics Data System (ADS)

    Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea

    2013-04-01

    The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC

  1. Research and Development of Information on Geothermal Direct Heat Application Projects

    SciTech Connect

    Hederman, William F., Jr.; Cohen, Laura A.

    1981-10-01

    This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

  2. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  3. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  4. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    SciTech Connect

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Environmental Assessment: geothermal direct heat project, Marlin, Texas

    SciTech Connect

    Not Available

    1980-08-01

    The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

  6. Hot dry rock heat mining: An advanced geothermal energy technology

    SciTech Connect

    Duchane, D.V.

    1991-01-01

    The conventional geothermal industry relies on naturally occurring fluids, either liquids or gases to transport the internal heat of the earth to the surface where it is applied to useful purposes, but there are only a relatively few places where these hydrothermal resources exist at temperatures high enough to generate electric power. Over most of the world, the hot rock beneath the surface is relatively dry. Geothermal energy in the form of hot dry rock (HDR) is abundant, widely distributed, and accessible. Energy extraction from HDR promises to be economically competitive and can be accomplished with essentially no adverse environmental effects. The purpose of this paper is to describe the technology which is being developed to gain access to, mine, and utilize the thermal energy existing in HDR. For the last two decades, the Los Alamos National Laboratory has been working to develop techniques for mining HDR energy. Early worked proved that it is feasible to extract thermal energy using drilling and fracturing techniques adapted from the petroleum and geothermal industries. Recently, results have demonstrated that it should be possible to operate HDR plants in a closed-loop mode with minimal water use. Long-term testing is about to begin at the HDR facility operated by Los Alamos at Fenton Hill in the Mountains of northern New Mexico. The goal of this test will be to demonstrate that useful amounts of energy can be produced from HDR on a sustainable basis. Results of this work will form the basis for design, construction, and operation of economic HDR plants in the future. Significant HDR programs are now underway in a number of countries. As the technology matures, HDR should take its place as a clean, economically competitive energy source for the world. 11 refs., 7 figs., 2 tabs.

  7. Geothermal waste treatment biotechnology: Progress and advantages to the utilities

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Jin, J.

    1992-03-01

    Development of biotechnology for treatment of geothermal residual waste is aimed at the application of low-cost biochemical processes for the surface treatment and disposal of residual geothermal sludges. These processes, in addition to the lowering of disposal cost, are designed to be environmentally acceptable. Recent studies at Brookhaven National Laboratory (BNL) have shown that optimization of several process variables results in fast rates (<24h) of metal removal from residual sludges at acidic pH ({minus}1--2). Optimization of the process variables also enables the removal of radioactive isotopes. In addition, the aqueous phase produced during the bioprocessing which contains solubilized metals can be further treated in a manner which precipitates out the metals and renders the aqueous effluent toxic metal free. In this paper, the various process options will be discussed in terms of biotreatment variables. Chemical composition before and after biotreatment will also be discussed in terms of long-range effects, quality assurance and potential disposal costs.

  8. Wind energy/geothermic/solar heating system. Final report

    SciTech Connect

    Not Available

    1981-01-01

    I've observed three distinct ''camps'' of renewable energy resources; WIND, Geothermic, and Solar. None of the three are completely adequate for the NE by themselves. I observe little effort to combine them to date. My objective has been to demonstrate that the three can be combined in a practical system. To mitagate the high cost and poor payback for individual residences, I believe neighborhoods of 4 to 5 homes, apartment complexes or condominiums could form an Energy Association alloting a piece of ground (could be a greenbelt) which would contain the well or wells, solar boosted underground water storage and the Solar banks. These are the high cost items which could be prorated and ammortized by the Association. Easements would permit each residence underground insulated water lines for individual heat pump conversions to existing forced air furnaces. Where regulations permit, an individual home could erect his own windmill to belt drive his freon compressor. With or without the optional windmill the water to freon heat pump with its solar boosts on the well water, will enjoy COP's (coefficient of Performances or times better than electric resistance heat) beyond anything on the market today. In a neighborhood energy association, all trenching could be done together all plumbing could be one contract and they could qualify for quantity discounts on heat pump units, chillers and components and installation.

  9. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    SciTech Connect

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  10. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. PMID:24438345

  11. Heat pipe radiator. [for spacecraft waste heat rejection

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  12. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  13. Geothermal hydrothermal direct heat use: US market size and market penetration estimates

    SciTech Connect

    El Sawy, A.H.; Entingh, D.J.

    1980-09-01

    This study estimates the future regional and national market penetration path of hydrothermal geothermal direct heat applications in the United States. A Technology Substitution Model (MARPEN) is developed and used to estimate the energy market shares captured by low-temperature (50 to 150/sup 0/C) hydrothermal geothermal energy systems over the period 1985 to 2020. The sensitivity of hydrothermal direct heat market shares to various government hydrothermal commercialization policies is examined. Several substantive recommendations to help accelerate commercialization of geothermal direct heat utilization in the United States are indicated and possible additional analyses are discussed.

  14. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N

  15. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  16. Heat pipes for industrial waste heat recovery

    NASA Astrophysics Data System (ADS)

    Merrigan, M. A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes are investigated. Economic studies of the use of heat pipe based recuperators in industrial furnaces are conducted and payback periods determined as a function of material, fabrication, and installation cost.

  17. Geothermally heated Chamber of Commerce offices at Marlin, Texas. Final report

    SciTech Connect

    Not Available

    1981-07-31

    The use of an existing, low temperature, geothermal resource to heat the Chamber of Commerce offices in Marlin, Texas is described. A secondary purpose of the project is to attract new industries and businesses to Marlin via this alternate energy show-piece demonstration of a simple and practical application of Texas' low temperature geothermal resource.

  18. New Heat Flow Models in Fractured Geothermal Reservoirs - Final Report

    SciTech Connect

    Reis, John

    2001-03-31

    This study developed new analytical models for predicting the temperature distribution within a geothermal reservoir following reinjection of water having a temperature different from that of the reservoir. The study consisted of two parts: developing new analytical models for the heat conduction rate into multi-dimensional, parallelepiped matrix blocks and developing new analytical models for the advance of the thermal front through the geothermal reservoir. In the first part of the study, a number of semi-empirical models for the multi-dimensional heat conduction were developed to overcome the limitations to the exact solutions. The exact solution based on a similarity solution to the heat diffusion equation is the best model for the early-time period, but fails when thermal conduction fronts from opposing sides of the matrix block merge. The exact solution based on an infinite series solution was found not to be useful because it required tens of thousands of terms to be include d for accuracy. The best overall model for the entire conduction time was a semi-empirical model based on an exponential conduction rate. In the second part of the study, the early-time period exact solution based on similarity methods and the semi-empirical exponential model were used to develop new analytical models for the location of the thermal front within the reservoir during injection. These equations were based on an energy balance on the water in the fractured network. These convective models allowed for both dual and triple porosity reservoirs, i.e., one or two independent matrix domains. A method for incorporating measured fracture spacing distributions into these convective models was developed. It was found that there were only minor differences in the predicted areal extent of the heated zone between the dual and triple porosity models. Because of its simplicity, the dual porosity model is recommended. These new models can be used for preliminary reservoir studies

  19. Heating and cooling of municipal buildings with waste heat from ground water

    SciTech Connect

    Morgan, D.S.; Hochgraf, J.

    1980-10-01

    The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

  20. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  1. Accumulation and subsequent utilization of waste heat

    NASA Astrophysics Data System (ADS)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  2. Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system

    SciTech Connect

    McKay, F.; McKay, G.; McKay, S.; Flynn, T.

    1995-12-31

    Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

  3. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  4. Geothermal district-heating potential for casinos/hotels in Reno, Nevada

    SciTech Connect

    Not Available

    1981-11-30

    Results from the pre-feasibility study of a geothermal district heating system for greater Reno and the pre-feasibility study of providing geothermal heat to casinos/hotels located in downtown Reno by connection to the proposed district heating system (DHS) are combined. Geothermal sources were selected from published data. Potential users were selected from aerial and city planning maps, and published building and demographic information. Energy consumption data from the electric and gas utility was matched with consumption information from surveys of representative buildings by category and climatic data. As an example, a written survey was mailed to the casino/hotels and two on-site visits were made. Retrofit methodology and cost were examined for the casino/hotels and representative buildings. Based on the pre-feasibility studies, a geothermal district heating system for Reno appears technically and economically feasible. Furthermore, additional economic savings are achieved when the Reno casinos/hotels are connected to the DHS. Steamboat Hot Springs and a geothermal area east of downtown are the most promising geothermal sources for the DHS. The City of Reno has a large yearly heat load with an average heating degree days per year of 6022/sup 0/F days and a heating season greater than eight months.

  5. Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina

    2014-05-01

    New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins

  6. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    SciTech Connect

    Not Available

    2006-03-01

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  7. Cycle of waste heat energy transformation

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  8. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  9. Urban heat islands in the subsurface as sustainable source for geothermal energy

    NASA Astrophysics Data System (ADS)

    Menberg, Kathrin; Bayer, Peter; Blum, Philipp

    2014-05-01

    The urban heat island (UHI) is not a phenomenon that solely occurs in the atmosphere with increased air temperatures. We also observe it in the subsurface, and groundwater temperatures in shallow aquifers are strongly influenced by anthropogenic land surface alterations. Widespread thermal anomalies, which are triggered by various processes, such as increased ground surface temperatures (GST) and heat loss from buildings, can be found under many urban areas. With groundwater temperatures elevated by several degrees these aquifers represent large amounts of stored thermal energy. However, to exploit these attractive geothermal reservoirs efficiently and sustainably, the processes, which lead to the profound subsurface urban warming, need to be identified and quantified. In the current study, the spatial extension of the heat anomalies beneath several German cities, such as Berlin, Munich, Karlsruhe and Cologne, is scrutinized by mapping groundwater temperatures in a dense network of observation wells. With the high-resolved spatial distribution of groundwater temperatures, the dominant heat sources and important driving factors can be identified and incorporated into an analytical heat flux model. The annual anthropogenic heat input into the aquifer originating from several heat sources, such as increased GST, basements, sewage networks, district heating networks and reinjections of thermal waste water, is estimated by a Monte Carlo simulation for the cities of Cologne and Karlsruhe. All studied cities exhibit aquifers with significantly elevated temperatures, with the highest temperatures of up to 18°C prevailing in the densely built-up city centers. But also in suburban and industrial areas groundwater temperatures are several degrees above the rural background. The accumulated heat content in the urban aquifers can be estimated based on the thermal ground properties. This content is compared to the annual space heating demand in order to analyze the space

  10. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    USGS Publications Warehouse

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  11. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain)

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Rodriguez, J.; Franco, D.

    2012-10-01

    In November 2009 was signed an agreement between Galicia's Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP) technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps) by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW). These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP's, EER's, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands), etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production. Note to the reader: The article number has been corrected on web pages on November 22, 2013.

  12. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  13. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  14. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  15. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  16. Sonoma State Hospital, Eldridge, California, geothermal-heating system: conceptual design and economic feasibility report

    SciTech Connect

    Not Available

    1982-02-01

    The Sonoma State Mental Hospital, located in Eldridge, California, is presently equipped with a central gas-fired steam system that meets the space heating, domestic hot water, and other heating needs of the hospital. This system is a major consumer of natural gas - estimated at 259,994,000 cubic feet per year under average conditions. At the 1981 unit gas rate of $0.4608 per therm, an average of $1,258,000 per year is required to operate the steam heating system. The hospital is located in an area with considerable geothermal resources as evidenced by a number of nearby hot springs resorts. A private developer is currently investigating the feasibility of utilizing geothermally heated steam to generate electricity for sale to the Pacific Gas and Electric Company. The developer has proposed to sell the byproduct condensed steam to the hospital, which would use the heat energy remaining in the condensate for its own heating needs and thereby reduce the fossil fuel energy demand of the existing steam heating system. The geothermal heating system developed is capable of displacing an estimated 70 percent of the existing natural gas consumption of the steam heating system. Construction of the geothermal fluid distribution and collection system and the retrofits required within the buildings are estimated to cost $1,777,000. Annual expenses (operation and maintenance, insurance, and geothermal fluid purchase) have been estimated to be $40,380 per year in 1981 dollars. The proposed geothermal heating system could then be completely paid for in 32 months by the savings in natural gas purchases that would result.

  17. Recovery Act: Hybrid Geothermal Heat Pump Systems Research

    SciTech Connect

    Scott Paul Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or “geothermal”) systems is the hybrid GSHP (HyGSHP) system. A HyGSHP system can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. We monitored and analyzed three buildings employing HyGSHP systems (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. The buildings were monitored for a year and the measured data was used to validate models of each system. Additionally, we used the models to analyze further improvements to the hybrid approach and established that it has positive impacts, both economically and environmentally. We also documented the lessons learned by those who design and operate the three systems, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, we described the measured data sets and models from this work and have made them freely available for further study of hybrid systems.

  18. Harvesting Electricity From Wasted Heat

    ScienceCinema

    Schwede, Jared

    2014-07-16

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  19. Harvesting Electricity From Wasted Heat

    SciTech Connect

    Schwede, Jared

    2014-06-30

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  20. Position paper -- Waste storage tank heat removal

    SciTech Connect

    Stine, M.D.

    1995-01-03

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made.

  1. Residential heating costs: a comparison of geothermal, solar and conventional resources

    SciTech Connect

    Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  2. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    SciTech Connect

    Sarolkar, P.B.; Pitale, U.L.

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  3. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE PAGESBeta

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  4. Geothermal greenhouse heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    NASA Astrophysics Data System (ADS)

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the nursing home, the present site was selected primarily on the basis of its geothermal resource. This resource currently provides space and domestic hot water heating for the nursing home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the nursing home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the nursing home.

  5. Simulated heat-exchanger tubes: DOE Geothermal Test Facility, East Mesa, California

    NASA Astrophysics Data System (ADS)

    Ellis, P. F., II; Anliker, D. M.

    1982-11-01

    A 103 hr corrosion test was performed of two geothermal heat exchanger materials, Allegheny-Ludlum Alloy 29-4 and Alloy 29-4C. Coupons of the two metals were exposed under conditions simulating flow in a geothermal heat exchanger tube. Continuous flow and cyclic exposure tests were made. No signs of localized corrosion were observed in either the base metal, tube weld seam, or heat affected zone. Most coupons show statistically insignificant weight change. A corrosion rate of less than 0.5 mil/yr is indicated. No significant difference in the performance of the two alloys is reported.

  6. U.S. Heat Demand by Sector for Potential Application of Direct Use Geothermal

    DOE Data Explorer

    Katherine Young

    2016-06-23

    This dataset includes heat demand for potential application of direct use geothermal broken down into 4 sectors: agricultural, commercial, manufacturing and residential. The data for each sector are organized by county, were disaggregated specifically to assess the market demand for geothermal direct use, and were derived using methodologies customized for each sector based on the availability of data and other sector-specific factors. This dataset also includes a paper containing a full explanation of the methodologies used.

  7. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  8. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  9. Geothermal direct-heat utilization assistance. Quarterly progress report, January--March 1993

    SciTech Connect

    Lienau, P.

    1993-03-30

    CHC (Geo-Heated Center) staff provided assistance to 103 requests from 26 states, and from Canada, Egypt, Mexico, China, Poland and Greece. A breakdown of the requests according to application include: space and district heating (19), geothermal heat pumps (24), greenhouses (10), aquaculture (4), industrial (4), equipment (3), resources (27), electric power (2) and other (20). Progress is reported on: (1) evaluation of lineshaft turbine pump problems, (2) pilot fruit drier and (3) geothermal district heating marketing tools and equipment investigation. Four presentations and two tours were conducted during the quarter, GHC Quarterly Bulletin Vol. 14, No. 4 was prepared, 14 volumes were added to the library and information was disseminated to 45 requests. Progress reports are on: (1) GHP Teleconference 93, (2) California Energy Buys Glass Mountain Prospect from Unocal and Makes Deal for Newberry Caldera, (3) New Power Plant Planned, (4) Vale to Get Power Plant, (5) BPA Approves Geothermal Project, (6) Update: San Bernardino Reservoir Study, (7) Twenty-nine Palms Geothermal Resources, (8) Geo-Ag Heat Center, Lake County, and (9) Update: Geothermal Wells at Alturas.

  10. Rankine cycle waste heat recovery system

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  11. Enhancement of heat transfer in waste-heat heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1980-07-01

    The Fluidfire shallow fluidized bed heat transfer facility was modified to give increased air flow capacity and to allow testing with different distributor plates and with two stage heat exchangers. The effect of reduced distributor plate pressure loss and amount and type of bed material on the heat transfer performance of a single stage fluidized bed heat exchanger is explored. Elutriation from the bed was measured for different bed materials and distributor plates; alternate heat exchanger surfaces having different fin spacings were also tested. Two types of two stage fluidized bed heat exchangers were tested: one having a baffle (having almost no pressure loss) located between the stages and which allowed bed material to recirculate between upper and lower beds; the second having two distributor plates in series with no recirculation of the bed material.

  12. Tapping the earth's geothermal resources: Hydrothermal today, magma tomorrow

    SciTech Connect

    Kukacka, L.E.

    1986-12-17

    The paper discusses geothermal resources, what it is, where it is, and how to extract energy from it. The materials research activities at Brookhaven National Laboratory related to geothermal energy extraction are discussed. These include high-temperature, light-weight polymer cements, elastomers, biochemical waste processing techniques, and non-metallic heat exchanger tubing. The economics of geothermal energy is also discussed. (ACR)

  13. WASTE HEAT RECOVERY POTENTIAL IN SELECTED INDUSTRIES

    EPA Science Inventory

    The research project was initiated with the overall objective of identifying the points, qualities, and quantities, of waste heat discharged to the environment by energy intensive industries and emerging technologies for energy development. These data may then be utilized to eval...

  14. Rankine cycle waste heat recovery system

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  15. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  16. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  17. Geothermal space heating for the Senior Citizens Center at Truth or Consequences, New Mexico. Final report

    SciTech Connect

    Mancini, T.R.; Chaturvedi, L.N.; Gebhard, T.G.

    1982-03-01

    A demonstration project to heat the Senior Citizens Center at Truth or Consequences, New Mexico with geothermal waters is described. There were three phases to the project: Phase I - design and permitting; Phase II - installation of the heating system and well drilling; and Phase III - operation of the system. All three phases went well and there was only one major problem encountered. This was that the well which was drilled to serve as the geothermal source was dry. This could not have been anticipated and there was, as a contingency plan, the option of using an existing sump in the Teen Center adjacent to the Senior Citizens Center as the geothermal source. The system was made operational in August of 1981 and has virtually supplied all of the heat to the Senior Citizens Center during this winter.

  18. Heat Flow and Geothermal Potential in the South-Central United States

    SciTech Connect

    Negraru, Petru T. Blackwell, David D.; Erkan, Kamil

    2008-12-15

    Geothermal exploration is typically limited to high-grade hydrothermal reservoirs that are usually found in the western United States, yet large areas with subsurface temperatures above 150 deg. C at economic drilling depths can be found east of the Rocky Mountains. The object of this paper is to present new heat flow data and to evaluate the geothermal potential of Texas and adjacent areas. The new data show that, west of the Ouachita Thrust Belt, the heat flow values are lower than east of the fault zone. Basement heat flow values for the Palo Duro and Fort Worth Basins are below 50 mW/m{sup 2} while, in the frontal zone of the belt, they can exceed 60 mW/m{sup 2}. Further east, along the Balcones fault system the heat flow is in general higher than 55 mW/m{sup 2}. The eastern most heat flow sites are in Louisiana and they show very high heat flow (over 80 mW/m{sup 2}), which is associated with the apparently highly radioactive basement of the Sabine uplift. The geothermal resource in this area is large and diverse, and can be divided in high grade (temperature above 150 deg. C) convective systems, conductive based enhanced geothermal systems and geothermal/geopressured systems. One of the most attractive areas east of the cordillera extends from eastern Texas across Louisiana and Arkansas to western Mississippi. Here temperatures reach exploitation range at depths below 4 km, and tapping such a resource from shut in hydrocarbon fields is relatively easy. The initial costs of the development can be greatly reduced if existing hydrocarbon infrastructure is used, and therefore using shut-in hydrocarbon fields for geothermal purposes should not be neglected.

  19. Generic Guide Specification for Geothermal Heat Pump Systems

    SciTech Connect

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required during the

  20. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    SciTech Connect

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  1. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    NASA Astrophysics Data System (ADS)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m‑2, so individual geothermal resources within the arc will be irregularly located.

  2. Heat flow and hot dry rock geothermal resources of the Clearlake Region, northern California

    SciTech Connect

    Burns, K.L.

    1996-08-01

    The Geysers-Clear Lake geothermal anomaly is an area of high heat flow in northern California. The anomaly is caused by abnormally high heat flows generated by asthenospheric uplift and basaltic magmatic underplating at a slabless window created by passage of the Mendocino Triple Junction. The Clear Lake volcanic field is underlain by magmatic igneous bodies in the form of a stack of sill-form intrusions with silicic bodies generally at the top and basic magmas at the bottom. The tabular shape and wide areal extent of the heat sources results in linear temperature gradients and near-horizontal isotherms in a broad region at the center of the geothermal anomaly. The Hot Dry Rock (HDR) portion of The Geysers-Clear Lake geothermal field is that part of the geothermal anomaly that is external to the steamfield, bounded by geothermal gradients of 167 mW/m2 (4 heat flow units-hfu) and 335 mW/m2 (8 hfu). The HDR resources, to a depth of 5 km, were estimated by piece-wise linear summation based on a sketch map of the heat flow. Approximately, the geothermal {open_quotes}accessible resource base{close_quotes} (Qa) is 1.68E+21 J; the {open_quotes}HDR resource base{close_quotes} (Qha) is 1.39E+21 J; and the {open_quotes}HDR power production resource{close_quotes} (Qhp) is 1.01E+21 J. The HDR power production resource (Qhp) is equivalent to 2.78E+ 11 Mwht (megawatt hours thermal), or 1.72E+11 bbls of oil.

  3. A survey of geothermal process heat applications in Guatemala: An engineering survey

    SciTech Connect

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  4. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Applications of fractured continuum model to enhanced geothermal system heat extraction problems.

    PubMed

    Kalinina, Elena A; Klise, Katherine A; McKenna, Sean A; Hadgu, Teklu; Lowry, Thomas S

    2014-01-01

    This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environments are demonstrated for single and multiple sets of fractures. Fracture characteristics are defined by fracture strike, dip, spacing, and aperture. The paper demonstrates how the fractured continuum model can be extended to represent continuous fractured features, such as long fractures, and the conditions in which the fracture density varies within the different depth intervals. Simulations of heat transport using different fracture settings were compared with regard to their heat extraction effectiveness. The best heat extraction was obtained in the case when fractures were horizontal. A conventional heat extraction scheme with vertical wells was compared to an alternative scheme with horizontal wells. The heat extraction with the horizontal wells was significantly better than with the vertical wells when the injector was at the bottom. PMID:24600552

  6. Supercritical heat exchanger field test (SHEFT), I. Field performance data on shell-and-tube heat exchangers in geothermal service

    SciTech Connect

    Silvester, L.F.; Beaulaurier, L.O.; Mirk, K.F.; Fulton, R.L.

    1981-06-01

    Field performance data on shell-and-tube heat exchangers in geothermal service are presented. The test data were taken for geothermal brine on the tube side and hydrocarbon on the shell side in counterflow for six primary heat exchangers, and for hydrocarbon on the shell side and cooling water on the tube side for the condenser. Test data were for heating isobutane, 1 90/10 isobutane/isopentane mixture, and a 80/20 isobutane/isopentane mixture at supercritical conditions in the vicinity of their critical pressure and temperature, and for condensing the same fluids. The test data were used in a preliminary data analysis to determine the reported heat exchanger performance parameters.

  7. Preliminary direct heat geothermal resource assessment of the Tennessee Valley region

    SciTech Connect

    Staub, W.P.

    1980-01-01

    A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

  8. Indirect solar loading of waste heat radiators

    SciTech Connect

    Kirkpatrick, R.C.; Tabor, J.E.; Lindman, E.L.; Cooper, A.J.

    1988-01-01

    Waste heat from space based power systems must ultimately be radiated away into space. The local topology around the radiators must be considered from two stand-points: the scattering of sunlight onto the surfaces of the radiator and the heat load that the radiator may put on near-by components of the system. A view factor code (SNAP) developed at Los Alamos allows the computation of the steady-state radiation environment for complex 3-D geometries. An example of the code's utility is given. 4 refs., 2 figs., 1 tab.

  9. Thermoelectric Technology for Automotive Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory

    2011-03-01

    Essential to the long term success of advanced thermoelectric (TE) technology for practical waste heat recovery is fundamental physics and materials research aimed at discovering and understanding new high performance TE materials. Applications of such new materials require their development into efficient and robust TE modules for incorporation into real devices such as a TE generator (TEG) for automotive exhaust gas waste heat recovery. Our work at GM Global R&D includes a continuing investigation of Skutterudite-based material systems and new classes of compounds that have potential for TE applications. To assess and demonstrate the viability of a TEG using state-of-the-art materials and modules, we have designed, fabricated, installed, and integrated a working prototype TEG to recover exhaust gas waste heat from a production test vehicle. Preliminary results provide important data for the operation and validation of the mechanical, thermal, and electrical systems of the TEG in combination with the various vehicle systems (e.g., exhaust bypass valve and controls, thermocouples, gas and coolant flow and pressure sensors, TE voltage and output power). Recent results from our materials research work and our functioning automotive TEG will be presented. This work is supported by US DOE Grant # DE-FC26-04NT 42278.

  10. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

    SciTech Connect

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

  11. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    SciTech Connect

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-10-01

    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  12. Evaluation of geothermal energy as a heat source for the oilsands industry in Northern Alberta (Canada)

    NASA Astrophysics Data System (ADS)

    Majorowicz, J. A.; Unsworth, M.; Gray, A.; Nieuwenhuis, G.; Babadagli, T.; Walsh, N.; Weides, S.; Verveda, R.

    2012-12-01

    The extraction and processing of bitumen from the oilsands of Northern Alberta requires very large amounts of heat that is obtained by burning natural gas. At current levels, the gas used represents 6% of Canada's natural gas production. Geothermal energy could potentially provide this heat, thereby reducing both the financial costs and environmental impact of the oilsands industry. The Helmholtz Alberta Initiative is evaluating this application of geothermal energy through an integrated program of geology, geophysics, reservoir simulation and calculations of the cost benefit. A first stage in this evaluation is refining estimates of subsurface temperature beneath Northern Alberta. This has involved three stages: (1) Corrected industrial thermal data have been used to revise estimates of the upper crustal temperatures beneath the oilsands regions in Alberta. The geothermal gradient map produced using heat flow and thermal conductivity for the entire Phanerozoic column suggests that the overall gradient of the entire column is less than the gradients calculated directly from industry measurements. (2) Paleoclimatic corrections must be applied , since this region has experienced a significant increase in surface temperatures since the end of the last ice age causing a perturbation of shallow heat flow. For this reason, estimates of geothermal gradient based on shallow data are not necessarily characteristic of the whole sedimentary column and can lead to errors in temperature prediction at depth. (3) Improved measurements have been made of the thermal conductivity of the crystalline basement rocks (average = 2.9±0.8 W/m K). Thermal conductivity exhibits significant spatial variability and to a large degree controls the temperature conditions in the Precambrian crystalline basement rocks and its heat content at given heat flow-heat generation. When these steps are used to calculate subsurface temperatures, it can be shown that the temperatures required for geothermal

  13. Failure analysis report: Heat exchanger tubes geothermal binary power plant, Magma Electric Company, East Mesa, California

    SciTech Connect

    Anliker, Dennis M.; Ellis, Peter F. II

    1982-05-01

    Radian received twelve sections of heat exchanger tubing from the Magma Electric Company's 10MW(e) East Mesa binary geothermal power plant. Three tube sections were received from each of four shell and tube heat exchangers (HX1, Hx6, HX8, and Hx10) of the isobutane vaporizer train. All samples were taken from the upper few rows of tubes. Two months later, four more tube sections were received. These four sections were taken from the lower rows of heat exchangers 1, 6 (two sections), and 10. Radian was requested to investigate the cause of severe pitting failure of these heat exchanger tubes. This report is part of a continuing DOE effort to gain insight into the service life of component materials employed in geothermal energy utilization.

  14. Geothermal district heating and cooling system for the city of Calistoga, California

    SciTech Connect

    Frederick, J.

    1982-01-01

    Calistoga has long been known for having moderate (270/sup 0/F maximum) hydrothermal deposits. The economic feasibility of a geothermal heating and cooling district for a portion of the downtown commercial area and city-owned building was studied. Descriptions of existing and proposed systems for each building in the block are presented. Heating and cooling loads for each building, retrofit costs, detailed cost estimates, system schematics, and energy consumption data for each building are included. (MHR)

  15. Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant

    SciTech Connect

    Faletti, D.W.

    1981-03-01

    Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

  16. Use of photovoltaics for waste heat recovery

    SciTech Connect

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  17. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  18. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  19. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  20. Geochemical properties of groundwater used to geothermal cooling and heating system

    NASA Astrophysics Data System (ADS)

    Kim, Namju; Park, Youngyun; Lee, Jin-Yong

    2013-04-01

    Recently, geothermal cooling and heating system has been used in many countries to reduce emission of greenhouse gases such as water vapour and carbon dioxide (CO2). Especially, CO2 is emitted from combustion of fossil fuel used for cooling and heating of buildings. Therefore, many countries make an effort to reduce amount of CO2 emitted from use of fossil fuel. The geothermal cooling and heating system is good to reduce amount of CO2. Especially, open loop geothermal system shows good thermal efficiency. However, groundwater contaminations will be considered because groundwater is directly used in open loop geothermal system. This study was performed to examine chemical and isotope compositions of groundwater used in open loop geothermal system and to evaluate influence of the system on groundwater using hydrochemical modeling program (preequc). Water temperature of well used in the system (GH) and well around the system (GB) ranged from 8.4 to 17.0 ° and from 15.1 to 18.0 °, respectively. The water temperature in GH was lower than that in GB because of heating mode of the system. Also, EC in GH and GB showed significant difference. The variation trend of EC was different at each site where the system was installed. These results mean that main factors controlling EC in GH was not the system. Generally, EC of groundwater was influenced by water-rock interaction. However, DO and Eh hardly showed significant difference. The operation period of the system observed in this study was short than 5 years. Therefore, influence of the open loop geothermal system on groundwater did not shown significantly. However, while Fe2+ and Mn2+ were not observed in GB, these components were measured in GH. The concentrations of Fe2+ and Mn2+ in GH ranged from 0.02 to 0.14 mg/L and from 0.03 to 0.18 mg/L, respectively. These results mean that redox conditions of GH were changed by the system little by little. In this study, influence of the open loop geothermal system on groundwater

  1. Technical-assistance report on a geothermal heating utility for Lemmon, South Dakota

    SciTech Connect

    Not Available

    1982-02-01

    The purpose of this effort was to review work already done toward establishing a geothermal heating utility in Lemmon, South Dakota; to redefine the goals for such a project; and to recommend how the project might proceeed to completion. The minimum size Phase I suggested would provide heat for up to 62 buildings in a 9-block area. Total cost is estimated at $1,800,000 to 1,950,000. The geothermal source is expected to be 100 to 400 gpm of 160/sup 0/F water pumped from 500 feet deep. Proposed energy savings and energy cost savings are presented. Analysis indicates that the major geothermal development effort in Lemmon should be directed toward the Madison aquifer. The minimum project dictates simple reinjection of the water after primary thermal extraction, although other uses are attractive and may be promoted if this resource is developed. A wide range of funding sources was investigated. Most promising avenues appear to be some form of local bond financing, and loans from the Farmer's Home Administration or the HUD Urban Development action grant program. The report suggests that a municipally-owned geothermal district heating utility be established, and a bond issue approved to pay for the initial well drilling, which is the major risk in the whole venture. A UDAG grant for 25% of the well cost may be obtainable. If the well proves successful, then the rest of the project can go forward.

  2. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  3. Magnesium-silicate scaling in mixture of geothermal water and deaerated fresh water in a district heating system

    SciTech Connect

    Gunnlaugsson, E. ); Einarsson, A. )

    1989-01-01

    The low-temperature geothermal fields in Reykjavik utilized by the Reykjavik Municipal District Heating Service are now fully exploited. Additional hot water will be obtained by heating and deaerating fresh water using high temperature geothermal fluid. The heated fresh water will mix with low-temperature geothermal water in the distribution system in Reykjavik. A pilot plant has been set up to investigate magnesium silicate scale formation when mixing of these waters occurs. Tests show that the scale formation is dependent on the severity of deaeration of the fresh water the proportion of geothermal water in the mixture. Increased deaeration and thermal water proportion increase the pH of the mixture, and this promotes scaling. The scale formed is poorly crystalline, near amorphous trioctahedral smectite close to saponite in composition. By using minimum deaeration and traces of geothermal steam to remove the last remaining dissolved oxygen, scaling in the distribution system can be avoided.

  4. Guide to a geothermal heat plan: a geothermal energy application. Serial No. 3

    SciTech Connect

    Not Available

    1982-03-01

    The concept of a heat plan is introduced so that local officials may become familiar with thermal considerations and determine which options deserve further study and action. The approach for formulating a heat plan is a two-part process where heat resources and end-uses are first characterized in a heat atlas and then acted upon according to goals and strategies embodied in the plan. The purpose of the atlas is to systematically monitor a community's thermal supplies and demands, and to catalog them in the same manner as other community development sectors. The heat plan contains thermal goals and implementation measures based on conditions and opportunities revealed in the atlas. The heat demands considered in the atlas include space, water, and industrial process heat demands. Thermal resources considered include those conventional fuels already in use, as well as those alternate energy resources which have potential for utilization. (LEW)

  5. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    SciTech Connect

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  6. A novel heat flux study of a geothermally active lake - Lake Rotomahana, New Zealand

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; de Ronde, Cornel E. J.; Tontini, Fabio Caratori; Walker, Sharon L.; Fornari, Daniel J.

    2016-03-01

    A new technique for measuring conductive heat flux in a lake was adapted from the marine environment to allow for multiple measurements to be made in areas where bottom sediment cover is sparse, or even absent. This thermal blanket technique, pioneered in the deep ocean for use in volcanic mid-ocean rift environments, was recently used in the geothermally active Lake Rotomahana, New Zealand. Heat flow from the lake floor propagates into the 0.5 m diameter blanket and establishes a thermal gradient across the known blanket thickness and thereby provides an estimate of the conductive heat flux of the underlying terrain. This approach allows conductive heat flux to be measured over a spatially dense set of stations in a relatively short period of time. We used 10 blankets and deployed them for 1 day each to complete 110 stations over an 11-day program in the 6 × 3 km lake. Results show that Lake Rotomahana has a total conductive heat flux of about 47 MW averaging 6 W/m2 over the geothermally active lake. The western half of the lake has two main areas of high heat flux; 1) a high heat flux area averaging 21.3 W/m2 along the western shoreline, which is likely the location of the pre-existing geothermal system that fed the famous Pink Terraces, mostly destroyed during the 1886 eruption 2) a region southwest of Patiti Island with a heat flux averaging 13.1 W/m2 that appears to be related to the explosive rift that formed the lake in the 1886 Tarawera eruption. A small rise in bottom water temperature over the survey period of 0.01 °C/day suggests the total thermal output of the lake is ~ 112-132 MW and when compared to the conductive heat output suggests that 18-42% of the total thermal energy is by conductive heat transfer.

  7. Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    SciTech Connect

    Not Available

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

  8. The Oregon Institute of Technology geothermal heating system -- Then and now

    SciTech Connect

    Boyd, T.L.

    1999-03-01

    Oregon Institute of Technology (OIT) is located on a hill, which gently slops from the east to the west, in the northeast part of Klamath Falls. The campus has been using geothermal water for its heating and domestic hot water needs since it was relocated to this location in 1964. It has been in continuous operation for 35 years and now heats 11 buildings ({approximately}600,000 ft{sup 2}/55,700 m{sup 2}). It is the oldest of the modern geothermal district-heating systems, and due to the lack of experience with the design of large systems in the early-1960s, it has experienced some difficulties through the years. These difficulties have been resolved and the experience has provided a substantial body of information concerning the applicability of various materials and designs for low-temperature use. The paper describes the original system and the redesigned system.

  9. Heat-tolerant flowering plants of active geothermal areas in Yellowstone National Park.

    PubMed

    Stout, Richard G; Al-Niemi, Thamir S

    2002-08-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (> or = 40 degrees C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 degrees C at 2-5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long-term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 degrees C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti-sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 degrees C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  10. Heat and mass transfer in the Klamath Falls, Oregon, geothermal system

    SciTech Connect

    Prucha, R.H.

    1987-05-01

    Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has perplexed researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Based on reevaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. A comprehensive 3-dimensional numerical model, based on the proposed conceptual model is also presented. This numerical model incorporates all of the main reservoir characteristics. Hot water recharge flows from depth, along a large normal fault, and flows into near surface permeable strata where it loses heat to surrounding beds and to mixing with cold regional groundwaters introduced from the north. By matching calculated and measured temperatures and pressures, hot and cold water recharge rates and the permeability distribution for the geothermal system are estimated. A semi-analytic solution and simple lumped parameter methods are also compared to the numerical analysis. Results suggest that the flow patterns within the geothermal system at Klamath Falls are complex and intimately associated with the permeability distribution and the pressures and temperatures at depth, within the faults.

  11. Organic rankine cycle waste heat applications

    DOEpatents

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  12. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  13. Conversion of geothermal waste to commercial products including silica

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    2003-01-01

    A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

  14. Marketing the Klamath Falls Geothermal District Heating system

    SciTech Connect

    Rafferty, K.

    1993-06-01

    The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

  15. Particle-based simulation of hydraulic fracture and fluid/heat flow in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wang, Yucang; Alonso-Marroquin, Fernando

    2013-06-01

    Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet's future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle - the coupling of the Lattice Solid Model (LSM) to simulate the nonlinear dynamics of complex solids with the Lattice Boltzmann Method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

  16. Decision Document for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-07-31

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein.

  17. Bio-leaching of toxic metals from geothermal waste. A preliminary engineering analysis

    SciTech Connect

    Dobryn, D.G.; Brisson, A.L.; Lee, C.M.; Roll, S.M.

    1986-02-01

    The feasibility of a biological facility to treat geothermal sludge from a base case 50-MW double-flash geothermal power plant in the Imperial Valley, California was evaluated. The effect of sludge and nutrient concentration, agitation air bubbling and sterility on the rate of metal solubilization by the bacteria Thiobacillus thiooxidans and ferrooxidans was examined. All experiments were performed in batch flasks and monitored daily for bacterial growth. T. Thiooxidans leached 36% of the zinc in the sludge after 288 hr but leached little chromium. T. ferrooxidans removed 60% of the chromium in the sludge after 250 hr but did not leach zinc. Sludge to medium ratios of greater than 10% were toxic to the microorganisms studied. the experimental results were used to design a biological solid-waste treatment plant. The design basis used was 5 wt % sludge in the leaching vessel with a residence time of 10 days. The non-regulated waste resulting from the treatment plant could be used for land fill or construction materials. The total capital cost for the bio-leaching plant is $3.3 million with an annual operating cost of $690,000. The total cost of this plant is about 0.2 cents/kWh of electricity produced, which is essentially the same cost as hauling the solid waste to a hazardous disposal site. This cost accounts for about 5% of the cost of producing electricity from geothermal power (4 cent/kWh).

  18. Geothermal Heat Flux Assessment Using Remote Sensing Land Surface Temperature and Simulated Data. Case Studies at the Kenyan Rift and Yellowstone Geothermal Areas

    NASA Astrophysics Data System (ADS)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C.; van der Meer, F. D.

    2015-12-01

    In this work we propose an innovative approach to assess the geothermal heat flux anomalies in the regions of the Kenyan Rift and the Yellowstone geothermal areas. The method is based on the land surface temperature (LST) differences obtained between remote sensing data and land surface model simulations. The hypothesis is that the model simulations do not account for the subsurface geothermal heat source in the formulation. Remote sensing of surface emitted radiances is able to detect at least the radiative portion of the geothermal signal that is not in the models. Two methods were proposed to assess the geothermal component of LST (LSTgt) based on the aforementioned hypothesis: a physical model and a data mining approach. The LST datasets were taken from the Land Surface Analysis Satellite Application Facilities products over Africa and the Copernicus Programme for North America, at a spatial resolution of 3-5 km. These correspond to Meteosat Second Generation and Geostationary Operational Environmental Satellite system satellites data respectively. The Weather Research and Forecasting model was used to simulate LST based on atmospheric and surface characteristics using the Noah land surface model. The analysis was carried out for a period of two months by using nighttime acquisitions. Higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer data were also used on the Kenyan area to produce similar outputs employing existing methods. The comparison of the results from both methods and areas illustrated the potential of the data and methodologies for geothermal applications.

  19. Geothermal energy development in the Eastern United States. Technical assistance report No. 4. Geothermal space heating: Pittsville Middle/Elementary School, Pittsville, Maryland

    SciTech Connect

    Briesen, R.V.; Yu, K.

    1980-06-01

    A technical evaluation was made to determine whether geothermal energy obtained from a well could be used to space heat the new school building being constructed as well as the existing elementary wing of the Pittsville School. The first part deals with space heating the new school building only; the second part pertains to space heating the new school building together with the new existing wing. An addendum was added for new well and production pump costs. (MHR)

  20. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  1. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  2. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  3. Geothermal-district-heating assessment model for decision making

    SciTech Connect

    Reisman, A.

    1981-11-01

    A methodology developed to assess the economic feasibility of district heating for any community in the United States is described. The overall philosophy which has guided its development is the conviction that district heating must be examined on a site-by-site basis. To support this approach, a set of extensive, in-house supporting data bases has been created and useful external data bases with national coverage have been identified. These data bases provide information at a sufficient level of detail to permit a first-cut examination of the district heating potential of a community without requiring outside data collection (allowing a substantial cost and time savings). The results of this blind look at a community permit a rapid, yet adequate estimate of district heating potential, costs, and energy savings. The data utilized in the initial examination can be supplemented or replaced by more detailed information obtained from on-site data collection, if the first results are promising. The fact that the data and methodology are computerized allows many locations within the community, alternate heat sources, ownership options, pipe technologies, etc. to be examined in a short period of time. The structure of the District Heating Model (DHM) (the methodology in computerized form) is described followed by a discussion of the application of the model to Provo, UT.

  4. Geothermal Heat Pumps as a Cost Saving and Capital Renewal Too!

    SciTech Connect

    Hughes, P.J.

    1998-11-06

    An independent evaluation of the Fort Polk, Louisiana energy savings performance contract (ESPC) has verified the financial value of geothermal heat pump (GHP)-centered ESPCS to the federal government. The Department of Energy (DOE) Federal Energy Management Program (FEMP) has responded by issuing an RFP for the "National GHP-Technology-Specific Super ESPC Procurement." Federal agency sites anywhere in the nation will be able to implement GHP-centered ESPC projects as delivery orders against the awarded contracts.

  5. Floral-greenhouse geothermal-heating demonstration. Final report, January 24, 1979-September 30, 1982

    SciTech Connect

    Not Available

    1982-10-01

    The planning and execution of a commercial geothermal development program for heating floral greenhouses are summarized. The program site was the Utah Roses property located about four miles from the Wasatch Mountains Faultline at Sandy in Salt Lake County, Utah. The report is concerned with four primary project features: a) resource exploration; b) well drilling and testing; c) production and distribution; and d) economics of resource development and use.

  6. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  7. Icebase: A suborbital survey to map geothermal heat flux under an ice sheet

    NASA Astrophysics Data System (ADS)

    Purucker, Michael E.; Connerney, John E. P.; Blakely, Richard J.; Bracken, Robert E.; Nowicki, Sophie; Le, Guan; Sabaka, Terence J.; Bonalsky, Todd M.; Kuang, Weijia; Ravat, Dhananjay; Ritz, Catherine; Vaughan, Alan P. M.; Gaina, Carmen; McEnroe, Suzanne; Lesur, Vincent

    2013-04-01

    NASA will solicit suborbital missions as part of its Earth Venture program element in the coming year. These missions are designed as complete PI-led investigations to conduct innovative hypothesis or scientific question-driven approaches to pressing questions in Earth System science. We propose to carry out a suborbital magnetic survey of Greenland using NASA's Global Hawk unmanned aerial vehicle to produce the first-ever map of the geothermal heat flux under an ice sheet. Better constraints on geothermal heat flux will reduce the uncertainty in future sea level rise, in turn allowing a more informed assessment of its impact on society. The geothermal heat flux depends on conditions such as mantle heat flux, and the tectonic history and heat production of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Therefore heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. The technique has applications to understanding the response of Greenland ice sheet to climate forcing because the basal heat flux provides one of the boundary conditions. The technique also helps to locate the oldest ice. The oldest ice in Greenland should be found in areas of very low heat flux, and the identification of those areas is provided by this technique. Ice cores from the areas of oldest ice help to decipher past temperatures and CO2 contents. Our latest model of the geothermal heat flux under the Greenland ice sheet (http://websrv.cs.umt.edu/isis/index.php/Greenland_Basal_Heat_Flux) is based on low- resolution satellite observations collected by the CHAMP satellite between 2000 and 2010. Those observations will be enhanced by the upcoming Swarm gradient satellite mission, but the resolution will improve by less than a factor of two, from 400 km

  8. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  9. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  10. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.