Science.gov

Sample records for germinant receptor diversity

  1. Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors.

    PubMed

    Abee, Tjakko; Groot, Masja Nierop; Tempelaars, Marcel; Zwietering, Marcel; Moezelaar, Roy; van der Voort, Menno

    2011-04-01

    Bacillus cereus is a gram-positive, facultative anaerobic, endospore-forming toxicogenic human pathogen. Endospores are highly specialized, metabolically dormant cell types that are resistant to extreme environmental conditions, including heat, dehydration and other physical stresses. B. cereus can enter a range of environments, and can in its spore form, survive harsh conditions. If these conditions become favorable, spores can germinate and grow out and reach considerable numbers in a range of environments including processed foods. Certainly the last decade, when consumer preferences have shifted to mildly processed food, new opportunities arose for spore-forming spoilage and pathogenic organisms. Only rigorous methods have been shown to be capable of destroying all spores present in food, thus a shift toward e.g., milder heat preservation strategies, may result in low but significant amounts of viable spores in food products. Hence, the need for a mild spore destruction strategy is eminent including control of spore outgrowth. Consequently, there is a large interest in triggering spore germination in foodstuffs, since germinated spores have lost the extreme resistance of dormant spores and are relatively easy to kill. Another option could be to prevent germination so that no dangerous levels can be reached. This contribution will focus on germination and outgrowth characteristics of B. cereus and other members of the B. cereus group, providing an overview of the niches these spore-formers can occupy, the signals that trigger germination, and how B. cereus copes with these wake-up calls in different environments including foods, during food processing and upon interaction with the human host. PMID:21315974

  2. Standardizing germination protocols for diverse raspberry and blackberry species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most Rubus species exhibit delayed or poor germination because of a deep double dormancy. The objective of this study was to improve Rubus seed germination protocols by defining the seed characteristics of diverse Rubus species and determining scarification and germination requirements. Seeds of fie...

  3. Germination rate is the significant characteristic determining coconut palm diversity

    PubMed Central

    Harries, Hugh C.

    2012-01-01

    Rationale This review comes at a time when in vitro embryo culture techniques are being adopted for the safe exchange and cryo-conservation of coconut germplasm. In due course, laboratory procedures may replace the options that exist among standard commercial nursery germination techniques. These, in their turn, have supplanted traditional methods that are now forgotten or misunderstood. Knowledge of all germination options should help to ensure the safe regeneration of conserved material. Scope This review outlines the many options for commercial propagation, recognizes the full significance of one particular traditional method and suggests that the diversity of modern cultivated coconut varieties has arisen because natural selection and domestic selection were associated with different rates of germination and other morphologically recognizable phenotypic characteristics. The review takes into account both the recalcitrant and the viviparous nature of the coconut. The ripe fruits that fall but do not germinate immediately and lose viability if dried for storage are contrasted with the bunches of fruit retained in the crown of the palm that may, in certain circumstances, germinate to produce seedlings high above ground level. Significance Slow-germinating and quick-germinating coconuts have different patterns of distribution. The former predominate on tropical islands and coastlines that could be reached by floating when natural dispersal originally spread coconuts widely—but only where tides and currents were favourable—and then only to sea-level locations. Human settlers disseminated the domestic types even more widely—to otherwise inaccessible coastal sites not reached by floating—and particularly to inland and upland locations on large islands and continental land masses. This review suggests four regions where diversity has been determined by germination rates. Although recent DNA studies support these distinctions, further analyses of genetic markers

  4. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems.

    PubMed

    Brunt, Jason; Plowman, June; Gaskin, Duncan J H; Itchner, Manoa; Carter, Andrew T; Peck, Michael W

    2014-09-01

    Clostridium botulinum is a dangerous pathogen that forms the highly potent botulinum toxin, which when ingested causes a deadly neuroparalytic disease. The closely related Clostridium sporogenes is occasionally pathogenic, frequently associated with food spoilage and regarded as the non-toxigenic equivalent of Group I C. botulinum. Both species form highly resistant spores that are ubiquitous in the environment and which, under favourable growth conditions germinate to produce vegetative cells. To improve the control of botulinum neurotoxin-forming clostridia, it is imperative to comprehend the mechanisms by which spores germinate. Germination is initiated following the recognition of small molecules (germinants) by a specific germinant receptor (GR) located in the spore inner membrane. The present study precisely defines clostridial GRs, germinants and co-germinants. Group I C. botulinum ATCC3502 contains two tricistronic and one pentacistronic GR operons, while C. sporogenes ATCC15579 has three tricistronic and one tetracistronic GR operons. Insertional knockout mutants, allied with characterisation of recombinant GRs shows for the first time that amino acid stimulated germination in C. botulinum requires two tri-cistronic encoded GRs which act in synergy and cannot function individually. Spore germination in C. sporogenes requires one tri-cistronic GR. Two other GRs form part of a complex involved in controlling the rate of amino-acid stimulated germination. The suitability of using C. sporogenes as a substitute for C. botulinum in germination studies and food challenge tests is discussed. PMID:25210747

  5. Germins: A Diverse Protein Family Important For Crop Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germin protein family is comprised of two main subgroups in plants, oxalate oxidases (OXOs) and germin-like proteins (GLPs). These proteins are implicated in a variety of plant processes including germination, development, pollen formation, and response to abiotic and biotic stress. Here, we exa...

  6. Optimized scarification protocols improve germination of diverse Rubus germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed collections of the wild relatives of cultivated blackberry and raspberry (Rubus species) are maintained at the National Clonal Germplasm Repository, Corvallis, OR. Seeds of Rubus species are orthodox and can be stored dry and remain viable for many years; however germination is often poor or er...

  7. Impact of water activity of diverse media on spore germination of Aspergillus and Penicillium species.

    PubMed

    Nanguy, Sidjè Paule-Marina; Perrier-Cornet, Jean-Marie; Bensoussan, Maurice; Dantigny, Philippe

    2010-08-15

    The effects of water activity (a(w)) of diverse media i/ culture medium for sporogenesis, a(w sp) ii/ liquid spore suspension medium, a(w su) and iii/ medium for germination, a(w ge), on the germination time t(G) of Aspergillus carbonarius, Aspergillus flavus, Penicillium chrysogenum and Penicillium expansum were assessed according to a screening matrix at 0.95 and 0.99 a(w). It was shown that i/ reduced t(G)s were obtained at 0.95 a(w sp) except for P. expansum ii/ a significant effect of a(w su) on t(G) was demonstrated for A. carbonarius, P. chrysogenum and P. expansum iii/ the most important factor for controlling the germination time was the medium for germination except for A. carbonarius (a(w su)). In accordance with the fact that fungal spores can swell as soon as they are suspended in an aqueous solution it is recommended to re-suspend fungal spores in a solution at the same water activity as that of subsequent germination studies. PMID:20673593

  8. Nuclear receptors: the evolution of diversity.

    PubMed

    Schwabe, John W R; Teichmann, Sarah A

    2004-01-27

    Nuclear receptors are an ancient family of transcription factors. Some receptors are regulated by small lipophilic ligands, whereas others are constitutive transcriptional activators or repressors. The evolution of this diversity is poorly understood, and it remains an open question as to whether or not the ancestral receptor was ligand-regulated. The recent cloning, from a snail, of an estrogen receptor that does not bind estrogen not only suggests that the steroid receptors are much more ancient than previous thought, but also points toward a mechanism through which nuclear receptors can lose the ability to be ligand regulated. PMID:14747695

  9. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation

    PubMed Central

    Donius, Luke R.; Weis, Janis J.; Weis, John H.

    2014-01-01

    Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC. PMID:24636730

  10. Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth.

    PubMed

    Porras-Alfaro, Andrea; Bayman, Paul

    2007-01-01

    Mycorrhizal fungi are essential for the germination of orchid seeds. However, the specificity of orchids for their mycorrhizal fungi and the effects of the fungi on orchid growth are controversial. Mycorrhizal fungi have been studied in some temperate and tropical, epiphytic orchids, but the symbionts of tropical, terrestrial orchids are still unknown. Here we study diversity, specificity and function of mycorrhizal fungi in Vanilla, a pantropical genus that is both terrestrial and epiphytic. Mycorrhizal roots were collected from four Vanilla species in Puerto Rico, Costa Rica and Cuba. Cultured and uncultured mycorrhizal fungi were identified by sequencing the internal transcribed spacer region of nuclear rDNA (nrITS) and part of the mitochondrial ribosomal large subunit (mtLSU), and by counting number of nuclei in hyphae. Vanilla spp. were associated with a wide range of mycorrhizal fungi: Ceratobasidium, Thanatephorus and Tulasnella. Related fungi were found in different species of Vanilla, although at different relative frequencies. Ceratobasidium was more common in roots in soil and Tulasnella was more common in roots on tree bark, but several clades of fungi included strains from both substrates. Relative frequencies of genera of mycorrhizal fungi differed significantly between cultured fungi and those detected by direct amplification. Ceratobasidium and Tulasnella were tested for effects on seed germination of Vanilla and effects on growth of Vanilla and Dendrobium plants. We found significant differences among fungi in effects on seed germination and plant growth. Effects of mycorrhizal fungi on Vanilla and Dendrobium were similar: a clade of Ceratobasidium had a consistently positive effect on plant growth and seed germination. This clade has potential use in germination and propagation of orchids. Results confirmed that a single orchid species can be associated with several mycorrhizal fungi with different functional consequences for the plant. PMID

  11. Alternative Mechanisms of Immune Receptor Diversity

    PubMed Central

    Litman, Gary W.; Dishaw, Larry J.; Cannon, John P.; Haire, Robert N.; Rast, Jonathan P.

    2007-01-01

    Our views of both innate and adaptive immunity have been significantly modified by recent studies of immune receptors and immunity in protostomes, invertebrate deuterostomes and jawless vertebrates. Extraordinary variation in the means whereby organisms recognize pathogens has been revealed by a series of recent findings, including: novel forms of familiar immune receptors, high genetic polymorphism for new receptor types, germline rearrangement for non-Ig domain receptors, somatic variation of germline-encoded receptors and unusually complex alternative splicing of genes with both immune and non-immune roles. Collectively, these observations underscore pathways in the evolution of immune recognition and suggest universal processes by which immune systems co-opt and integrate existing cellular mechanisms to effect diverse recognition functions. PMID:17703932

  12. Crystal Structure of the GerBC Component of a Bacillus Subtilis Spore Germinant Receptor

    SciTech Connect

    Li, Y.; Setlow, B; Setlow, P; Hao, B

    2010-01-01

    The nutrient germinant receptors (nGRs) of spores of Bacillus species are clusters of three proteins that play a critical role in triggering the germination of dormant spores in response to specific nutrient molecules. Here, we report the crystal structure of the C protein of the GerB germinant receptor, so-called GerBC, of Bacillus subtilis spores at 2.3 {angstrom} resolution. The GerBC protein adopts a previously uncharacterized type of protein fold consisting of three distinct domains, each of which is centered by a beta sheet surrounded by multiple alpha helices. Secondary-structure prediction and structure-based sequence alignment suggest that the GerBC structure represents the prototype for C subunits of nGRs from spores of all Bacillales and Clostridiales species and defines two highly conserved structural regions in this family of proteins. GerBC forms an interlocked dimer in the crystalline state but is predominantly monomeric in solution, pointing to the possibility that GerBC oligomerizes as a result of either high local protein concentrations or interaction with other nGR proteins in spores. Our findings provide the first structural view of the nGR subunits and a molecular framework for understanding the architecture, conservation, and function of nGRs.

  13. Switched-memory B cells remodel B cell receptors within secondary germinal centers

    PubMed Central

    Okitsu, Shinji L.; McHeyzer-Williams, Michael G.

    2015-01-01

    Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive B cell receptor (BCR) re-diversification, but underlying mechanisms remain unresolved. Here integrated specificity and function of individual memory B cell progeny reveal ongoing evolution of polyclonal antibody specificities through germinal center (GC) specific transcriptional activity. At the clonal and sub-clonal levels, single cell expression of Cd83 and Pol□ segregates the secondary GC transcriptional program into 4 stages that regulate divergent mechanisms of memory BCR evolution. These studies demonstrate that vaccine boosts re-activate a cyclic program of GC function in switched-memory B cells to remodel existing antibody specificities and enhance durable immune protection. PMID:25642821

  14. Cutting edge: An in vivo reporter reveals active B cell receptor signaling in the germinal center.

    PubMed

    Mueller, James; Matloubian, Mehrdad; Zikherman, Julie

    2015-04-01

    Long-lasting Ab responses rely on the germinal center (GC), where B cells bearing high-affinity Ag receptors are selected from a randomly mutated pool to populate the memory and plasma cell compartments. Signaling downstream of the BCR is dampened in GC B cells, raising the possibility that Ag presentation and competition for T cell help, rather than Ag-dependent signaling per se, drive these critical selection events. In this study we use an in vivo reporter of BCR signaling, Nur77-eGFP, to demonstrate that although BCR signaling is reduced among GC B cells, a small population of cells exhibiting GC light zone phenotype (site of Ag and follicular helper T cell encounter) express much higher levels of GFP. We show that these cells exhibit somatic hypermutation, gene expression characteristic of signaling and selection, and undergo BCR signaling in vivo. PMID:25725108

  15. How oligoclonal are germinal centers? A new method for estimating clonal diversity from immunohistological sections

    PubMed Central

    2013-01-01

    Background The germinal center (GC) reaction leads to antibody affinity maturation and generation of memory B cells, but its underlying mechanisms are poorly understood. To assemble this puzzle, several key pieces of information are needed, one in particular being the number of participating B cell clones. Since this clonal diversity cannot be observed directly, earlier studies resorted to interpreting two types of available experimental data: Immunohistology of GCs containing two phenotypically distinct B-cell populations, and antibody gene sequences of small B-cell samples from GCs. Based on a simple model, investigators concluded that a typical GC was seeded by 2-8 B cells, endorsing the current notion that GCs are oligoclonal from the onset. Results A re-evaluation of these data showed that the used simple model is not statistically consistent with the original data. From an analysis of the experimental system, we propose a new model for estimating GC clonal diversity, including the initially neglected sampling and measurement errors, and making more general assumptions. Consistency analysis with the new model yielded an estimation of sampling and measurement errors in the experimental data of 10-11% for one B-cell population and 62-64% for the other population, and an average number of 19-23 seeder B cells. An independent analysis of antibody gene sequences of small B-cell samples from GCs, using an adapted Yule estimator of diversity, yielded a minimum estimation of 20-30 GC founder B cells, confirming the previous results. Conclusions Our new experimental-based model provides a highly improved method to estimate the clonal diversity of GCs from inmunohistochemistry data of chimeric animals. Calculations based on this model, and validated by an independent approach, indicate that GCs most likely contain broadly varying numbers of different B cell clones, averaging 5- to 10-fold more clones than previously estimated. These findings, in line with recent results

  16. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    PubMed Central

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  17. The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates Pollen Germination and Tube Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato, LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here w...

  18. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana.

    PubMed

    Wilson, Rebecca L; Bakshi, Arkadipta; Binder, Brad M

    2014-01-01

    When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development. PMID:25221561

  19. T cell receptor diversity in the human thymus.

    PubMed

    Vanhanen, Reetta; Heikkilä, Nelli; Aggarwal, Kunal; Hamm, David; Tarkkila, Heikki; Pätilä, Tommi; Jokiranta, T Sakari; Saramäki, Jari; Arstila, T Petteri

    2016-08-01

    A diverse T cell receptor (TCR) repertoire is essential for adaptive immune responses and is generated by somatic recombination of TCRα and TCRβ gene segments in the thymus. Previous estimates of the total TCR diversity have studied the circulating mature repertoire, identifying 1 to 3×10(6) unique TCRβ and 0.5×10(6) TCRα sequences. Here we provide the first estimate of the total TCR diversity generated in the human thymus, an organ which in principle can be sampled in its entirety. High-throughput sequencing of samples from four pediatric donors detected up to 10.3×10(6) unique TCRβ sequences and 3.7×10(6) TCRα sequences, the highest directly observed diversity so far for either chain. To obtain an estimate of the total diversity we then used three different estimators, preseq and DivE, which measure the saturation of rarefaction curves, and Chao2, which measures the size of the overlap between samples. Our results provide an estimate of a thymic repertoire consisting of 40 to 70×10(6) unique TCRβ sequences and 60 to 100×10(6) TCRα sequences. The thymic repertoire is thus extremely diverse. Moreover, extrapolation of the data and comparison with earlier estimates of peripheral diversity also suggest that the thymic repertoire is transient, with different clones produced at different times. PMID:27442982

  20. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    PubMed

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  1. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  2. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore. PMID:21378181

  3. Structural and Functional Diversity of Estrogen Receptor Ligands

    PubMed Central

    Farooq, Amjad

    2015-01-01

    Estrogen receptors, comprised of ERα and ERβ isoforms in mammals, act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions from sexual development and reproduction to metabolic homeostasis. Herein, I revisit the structural basis of the binding of ERα to DNA and estradiol in light of the recent discoveries and emerging trends in the field of nuclear receptors. A particular emphasis of this review is on the chemical and structural diversity of an ever-increasing repertoire of physiological, environmental and synthetic ligands of estrogen receptors that ultimately modulate their interactions with cognate DNA located within the promoters of estrogen-responsive genes. In particular, modulation of estrogen receptors by small molecule ligands represents an important therapeutic goal toward the treatment of a wide variety of human pathologies including breast cancer, cardiovascular disease, osteoporosis and obesity. Collectively, this article provides an overview of a wide array of small organic and inorganic molecules that can fine-tune the physiological function of estrogen receptors, thereby bearing a direct impact on human health and disease. PMID:25866274

  4. Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata.

    PubMed

    Jacquemyn, Hans; Waud, Michael; Merckx, Vincent S F T; Lievens, Bart; Brys, Rein

    2015-07-01

    In plant species that rely on mycorrhizal symbioses for germination and seedling establishment, seedling recruitment and temporal changes in abundance can be expected to depend on fungal community composition and local environmental conditions. However, disentangling the precise factors that determine recruitment success in species that critically rely on mycorrhizal fungi represents a major challenge. In this study, we used seed germination experiments, 454 amplicon pyrosequencing and assessment of soil conditions to investigate the factors driving changes in local abundance in 28 populations of the orchid Neottia ovata. Comparison of population sizes measured in 2003 and 2013 showed that nearly 60% of the studied populations had declined in size (average growth rate across all populations: -0.01). Investigation of the mycorrhizal fungi in both the roots and soil revealed a total of 68 species of putatively mycorrhizal fungi, 21 of which occurred exclusively in roots, 25 that occurred solely in soil and 22 that were observed in both the soil and roots. Seed germination was limited and significantly and positively related to soil moisture content and soil pH, but not to fungal community composition. Large populations or populations with high population growth rates showed significantly higher germination than small populations or populations declining in size, but no significant relationships were found between population size or growth and mycorrhizal diversity. Overall, these results indicate that temporal changes in abundance were related to the ability of seeds to germinate, but at the same time they provided limited evidence that variation in fungal communities played an important role in determining population dynamics. PMID:25963669

  5. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  6. Viral receptor-binding site antibodies with diverse germline origins

    PubMed Central

    Schmidt, Aaron G.; Therkelsen, Matthew D.; Stewart, Shaun; Kepler, Thomas B.; Liao, Hua-Xin; Moody, M. Anthony; Haynes, Barton F.; Harrison, Stephen C.

    2015-01-01

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by eleven different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B-cell targets. PMID:25959776

  7. Viral receptor-binding site antibodies with diverse germline origins.

    PubMed

    Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun; Kepler, Thomas B; Liao, Hua-Xin; Moody, M Anthony; Haynes, Barton F; Harrison, Stephen C

    2015-05-21

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets. PMID:25959776

  8. Diversity and Variability of NOD-Like Receptors in Fungi

    PubMed Central

    Dyrka, Witold; Lamacchia, Marina; Durrens, Pascal; Kobe, Bostjan; Daskalov, Asen; Paoletti, Matthieu; Sherman, David J.; Saupe, Sven J.

    2014-01-01

    Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular receptors that control innate immunity and other biotic interactions in animals and plants. NLRs have been characterized in plant and animal lineages, but in fungi, this gene family has not been systematically described. There is however previous indications of the involvement of NLR-like genes in nonself recognition and programmed cell death in fungi. We have analyzed 198 fungal genomes for the presence of NLRs and have annotated a total of 5,616 NLR candidates. We describe their phylogenetic distribution, domain organization, and evolution. Fungal NLRs are characterized by a great diversity of domain organizations, suggesting frequently occurring combinatorial assortments of different effector, NOD and repeat domains. The repeat domains are of the WD, ANK, and TPR type; no LRR motifs were found. As previously documented for WD-repeat domains of fungal NLRs, TPR, and ANK repeats evolve under positive selection and show highly conserved repeats and repeat length polymorphism, suggesting the possibility of concerted evolution of these repeats. We identify novel effector domains not previously found associated with NLRs, whereas others are related to effector domains of plant or animals NLRs. In particular, we show that the HET domain found in fungal NLRs may be related to Toll/interleukin-1 receptor domains found in animal and plant immune receptors. This description of fungal NLR repertoires reveals both similarities and differences with plant and animals NLR collections, highlights the importance of domain reassortment and repeat evolution and provides a novel entry point to explore the evolution of NLRs in eukaryotes. PMID:25398782

  9. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  10. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  11. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products.

    PubMed

    Lien, E; Sellati, T J; Yoshimura, A; Flo, T H; Rawadi, G; Finberg, R W; Carroll, J D; Espevik, T; Ingalls, R R; Radolf, J D; Golenbock, D T

    1999-11-19

    Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4. These TLR2-expressing cells were also stimulated by living motile B. burgdorferi, suggesting that TLR2 recognition of lipoproteins is relevant to natural Borrelia infection. Importantly, a TLR2 antibody inhibited bacterial lipoprotein/lipopeptide-induced tumor necrosis factor release from human peripheral blood mononuclear cells, and TLR2-null Chinese hamster macrophages were insensitive to lipoprotein/lipopeptide challenge. The data suggest a role for the native protein in cellular activation by these ligands. In addition, TLR2-dependent responses were seen using whole Mycobacterium avium and Staphylococcus aureus, demonstrating that this receptor can function as a signal transducer for a wide spectrum of bacterial products. We conclude that diverse pathogens activate cells through TLR2 and propose that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion. PMID:10559223

  12. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function

    PubMed Central

    Birnbaum, Michael E.; Dong, Shen; Garcia, K. Christopher

    2012-01-01

    Summary Molecular diversity lies at the heart of adaptive immunity. T-cell receptors and peptide-major histocompatibility complex molecules utilize and rely upon an enormous degree of diversity at the levels of genetics, chemistry, and structure to engage one another and carry out their functions. This high level of diversity complicates the systematic study of important aspects of T-cell biology, but recent technical advances have allowed for the ability to study diversity in a comprehensive manner. In this review, we assess insights gained into T-cell receptor function and biology from our increasingly precise ability to assess the T-cell repertoire as a whole or to perturb individual receptors with engineered reagents. We conclude with a perspective on a new class of high-affinity, non-stimulatory peptide ligands we have recently discovered using diversity-oriented techniques that challenges notions for how we think about T-cell receptor signaling. PMID:23046124

  13. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  14. Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin MetabolismW⃞

    PubMed Central

    Riefler, Michael; Novak, Ondrej; Strnad, Miroslav; Schmülling, Thomas

    2006-01-01

    We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots. PMID:16361392

  15. The germinal center antibody response in health and disease

    PubMed Central

    DeFranco, Anthony L.

    2016-01-01

    The germinal center response is the delayed but sustained phase of the antibody response that is responsible for producing high-affinity antibodies of the IgG, IgA and/or IgE isotypes. B cells in the germinal center undergo re-iterative cycles of somatic hypermutation of immunoglobulin gene variable regions, clonal expansion, and Darwinian selection for cells expressing higher-affinity antibody variants. Alternatively, selected B cells can terminally differentiate into long-lived plasma cells or into a broad diversity of mutated memory B cells; the former secrete the improved antibodies to fight an infection and to provide continuing protection from re-infection, whereas the latter may jumpstart immune responses to subsequent infections with related but distinct infecting agents. Our understanding of the molecules involved in the germinal center reaction has been informed by studies of human immunodeficiency patients with selective defects in the production of antibodies. Recent studies have begun to reveal how innate immune recognition via Toll-like receptors can enhance the magnitude and selective properties of the germinal center, leading to more effective control of infection by a subset of viruses. Just as early insights into the nature of the germinal center found application in the development of the highly successful conjugate vaccines, more recent insights may find application in the current efforts to develop new generations of vaccines, including vaccines that can induce broadly protective neutralizing antibodies against influenza virus or HIV-1. PMID:27303636

  16. Diversity and Bias through Receptor-Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization.

    PubMed

    Fuxe, Kjell; Tarakanov, Alexander; Romero Fernandez, Wilber; Ferraro, Luca; Tanganelli, Sergio; Filip, Malgorzata; Agnati, Luigi F; Garriga, Pere; Diaz-Cabiale, Zaida; Borroto-Escuela, Dasiel O

    2014-01-01

    Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR-D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R-D1R-D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R-5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A-D2R receptor-receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A-D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor-receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms. PMID:24860548

  17. The diverse clinical uses of opioid receptor drugs.

    PubMed

    Howland, Robert H

    2010-05-01

    Opioid receptors are widely distributed throughout the nervous system. In addition to their central role in brain pathways mediating pain, endogenous opioid peptides function as neuromodulators and opioid systems are involved in many physiological functions. Opioid receptor drugs, including methadone (Dolophine), buprenorphine (Buprenex, Subutex), naltrexone (Revia), naloxone (Narcan), and buprenorphine/naloxone (Suboxone), are the focus of this article. This class of drugs is likely to be further developed for the treatment of addictions and mood disorders. PMID:20415289

  18. Diverse voltage-sensitive dyes modulate GABAA receptor function

    PubMed Central

    Mennerick, Steven; Chisari, Mariangela; Shu, Hong-Jin; Taylor, Amanda; Vasek, Michael; Eisenman, Lawrence N.; Zorumski, Charles F.

    2010-01-01

    Voltage-sensitive dyes (VSDs) are important tools for assessing network and single-cell excitability, but an untested premise in most cases is that the dyes do not interfere with the parameters (membrane potential, excitability) that they are designed to measure. We found that popular members of several different families of voltage-sensitive dyes modulate GABAA receptor with maximum efficacy and potency similar to clinically used GABAA receptor modulators. Di-4-ANEPPS and DiBAC4(3) potentiated GABA function with micromolar and high nanomolar potency respectively and yielded strong maximum effects similar to barbiturates and neurosteroids. Newer blue oxonols had biphasic effects on GABAA receptor function at nanomolar and micromolar concentrations, with maximum potentiation comparable to that of saturating benzodiazepine effects. ANNINE 6 and ANNINE 6plus had no detectable effect on GABAA receptor function. Even dyes with no activity on GABAA receptors at baseline induced photodynamic enhancement of GABAA receptors. The basal effects of dyes were sufficient to prolong IPSCs and to dampen network activity in multielectrode array recordings. Therefore, the dual effects of voltage-sensitive dyes on GABAergic inhibition require caution in dye use for studies of excitability and network activity. PMID:20181584

  19. Engineering of bacterial exotoxins for highly efficient and receptor-specific intracellular delivery of diverse cargos.

    PubMed

    Ryou, Jeong-Hyun; Sohn, Yoo-Kyoung; Hwang, Da-Eun; Park, Woo-Yong; Kim, Nury; Heo, Won-Do; Kim, Mi-Young; Kim, Hak-Sung

    2016-08-01

    The intracellular delivery of proteins with high efficiency in a receptor-specific manner is of great significance in molecular medicine and biotechnology, but remains a challenge. Herein, we present the development of a highly efficient and receptor-specific delivery platform for protein cargos by combining the receptor binding domain of Escherichia coli Shiga-like toxin and the translocation domain of Pseudomonas aeruginosa exotoxin A. We demonstrated the utility and efficiency of the delivery platform by showing a cytosolic delivery of diverse proteins both in vitro and in vivo in a receptor-specific manner. In particular, the delivery system was shown to be effective for targeting an intracellular protein and consequently suppressing the tumor growth in xenograft mice. The present platform can be widely used for intracellular delivery of diverse functional macromolecules with high efficiency in a receptor-specific manner. Biotechnol. Bioeng. 2016;113: 1639-1646. © 2016 Wiley Periodicals, Inc. PMID:26773973

  20. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the anti-viral germinal center response

    PubMed Central

    Hou, Baidong; Saudan, Philippe; Ott, Gary; Wheeler, Matthew L.; Ji, Ming; Kuzmich, Lili; Lee, Linda M.; Coffman, Robert L.; Bachmann, Martin F.; DeFranco, Anthony L.

    2011-01-01

    Summary The contribution of Toll-like receptor (TLR) signaling to T cell-dependent (TD) antibody responses was assessed by using mice lacking the TLR signaling adaptor MyD88 in individual cell types. When a soluble TLR9 ligand was used as adjuvant for a protein antigen, MyD88 was required in dendritic cells but not in B cells to enhance the TD antibody response, regardless of the inherent immunogenicity of the antigen. In contrast, a TLR9 ligand contained within a virus-like particle substantially augmented the TD germinal center IgG antibody response, and this augmentation required B cell MyD88. The ability of B cells to discriminate between antigens based the physical form of a TLR ligand likely reflects an adaptation to facilitate strong anti-viral antibody responses. PMID:21353603

  1. Fas Receptor Expression in Germinal-Center B Cells Is Essential for T and B Lymphocyte Homeostasis

    PubMed Central

    Hao, Zhenyue; Duncan, Gordon S.; Seagal, Jane; Su, Yu-Wen; Hong, Claire; Haight, Jillian; Chen, Nien-Jung; Elia, Andrew; Wakeham, Andrew; Li, Wanda Y.; Liepa, Jennifer; Wood, Geoffrey A.; Casola, Stefano; Rajewsky, Klaus; Mak, Tak W.

    2012-01-01

    SUMMARY Fas is highly expressed in activated and germinal center (GC) B cells but can potentially be inactivated by misguided somatic hypermutation. We employed conditional Fas-deficient mice to investigate the physiological functions of Fas in various B cell subsets. B cell-specific Fas-deficient mice developed fatal lymphoproliferation due to activation of B cells and T cells. Ablation of Fas specifically in GC B cells reproduced the phenotype, indicating that the lymphoproliferation initiates in the GC environment. B cell-specific Fas-deficient mice also showed an accumulation of IgG1+ memory B cells expressing high amounts of CD80 and the expansion of CD28-expressing CD4+ Th cells. Blocking T cell-B cell interaction and GC formation completely prevented the fatal lymphoproliferation. Thus, Fas-mediated selection of GC B cells and the resulting memory B cell compartment is essential for maintaining the homeostasis of both T and B lymphocytes. PMID:18835195

  2. Diversity of native nicotinic receptor subtypes in mammalian brain.

    PubMed

    Zoli, Michele; Pistillo, Francesco; Gotti, Cecilia

    2015-09-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are a heterogeneous family of pentameric ligand-gated cation channels that are expressed throughout the brain and involved in a wide range of physiological and pathophysiological processes. The nAChR subtypes share a common basic structure, but their biophysical and pharmacological properties depend on their subunit composition, which is therefore central to understanding their function in the nervous system and discovering new subtype selective drugs. The development of new technologies and the generation of mice carrying deletions or the expression of gain-of-function nAChR subunits, or GFP-tagged receptor genes has allowed the in vivo identification of complex subtypes and to study the role of individual subtypes in specific cells and complex neurobiological systems but much less is known about which native nAChR subtypes are involved in specific physiological functions and pathophysiological conditions in human brain. We briefly review some recent findings concerning the structure and function of native nAChRs, focussing on the subtypes identified in the rodent habenulo-interpeduncular pathway, a pathway involved in nicotine reinforcement and withdrawal. We also discuss recent findings concerning the expression of native subtypes in primate brain. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25460185

  3. DRD4 dopamine receptor allelic diversity in various primate species

    SciTech Connect

    Adamson, M.; Higley, D.; O`Brien, S.

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  4. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    SciTech Connect

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  5. Bitter taste receptors confer diverse functions to neurons

    PubMed Central

    Delventhal, Rebecca; Carlson, John R

    2016-01-01

    Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers. DOI: http://dx.doi.org/10.7554/eLife.11181.001 PMID:26880560

  6. Memory of Germinant Stimuli in Bacterial Spores

    PubMed Central

    Wang, Shiwei; Faeder, James R.; Setlow, Peter

    2015-01-01

    ABSTRACT Bacterial spores, despite being metabolically dormant, possess the remarkable capacity to detect nutrients and other molecules in their environment through a biochemical sensory apparatus that can trigger spore germination, allowing the return to vegetative growth within minutes of exposure of germinants. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. The magnitude and decay of these memory effects depend on the pulse duration as well as on the separation time, incubation temperature, and pH values between the pulses. Spores of Bacillus species germinate in response to nutrients that interact with germinant receptors (GRs) in the spore’s inner membrane, with different nutrient types acting on different receptors. In our experiments, B. subtilis spores display memory when the first and second germinant pulses target different receptors, suggesting that some components of spore memory are downstream of GRs. Furthermore, nonnutrient germinants, which do not require GRs, exhibit memory either alone or in combination with nutrient germinants, and memory of nonnutrient stimulation is found to be more persistent than that induced by GR-dependent stimuli. Spores of B. cereus and Clostridium difficile also exhibit germination memory, suggesting that memory may be a general property of bacterial spores. These observations along with experiments involving strains with mutations in various germination proteins suggest a model in which memory is stored primarily in the metastable states of SpoVA proteins, which comprise a channel for release of dipicolinic acid, a major early event in spore germination. PMID:26604257

  7. The Hypocholesterolemic Effect of Germinated Brown Rice Involves the Upregulation of the Apolipoprotein A1 and Low-Density Lipoprotein Receptor Genes

    PubMed Central

    Ismail, Maznah; Omar, Abdul Rahman; Ithnin, Hairuszah

    2013-01-01

    Germinated brown rice (GBR) is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR) on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies. PMID:23671850

  8. Clusterin Is a Potential Lymphotoxin Beta Receptor Target That Is Upregulated and Accumulates in Germinal Centers of Mouse Spleen during Immune Response

    PubMed Central

    Afanasyeva, Marina A.; Britanova, Liudmila V.; Korneev, Kirill V.; Mitkin, Nikita A.; Kuchmiy, Anna A.; Kuprash, Dmitry V.

    2014-01-01

    Clusterin is a multifunctional protein that participates in tissue remodeling, apoptosis, lipid transport, complement-mediated cell lysis and serves as an extracellular chaperone. The role of clusterin in cancer and neurodegeneration has been extensively studied, however little is known about its functions in the immune system. Using expression profiling we found that clusterin mRNA is considerably down-regulated in mouse spleen stroma upon knock-out of lymphotoxin β receptor which plays pivotal role in secondary lymphoid organ development, maintenance and function. Using immunohistochemistry and western blot we studied clusterin protein level and distribution in mouse spleen and mesenteric lymph nodes in steady state and upon immunization with sheep red blood cells. We showed that clusterin protein, represented mainly by the secreted heterodimeric form, is present in all stromal compartments of secondary lymphoid organs except for marginal reticular cells. Clusterin protein level rose after immunization and accumulated in light zones of germinal centers in spleen - the effect that was not observed in lymph nodes. Regulation of clusterin expression by the lymphotoxin beta signaling pathway and its protein dynamics during immune response suggest a specific role of this enigmatic protein in the immune system that needs further study. PMID:24865838

  9. Evidence of balanced diversity at the chicken interleukin 4 receptor alpha chain locus

    PubMed Central

    2009-01-01

    Background The comparative analysis of genome sequences emerging for several avian species with the fully sequenced chicken genome enables the genome-wide investigation of selective processes in functionally important chicken genes. In particular, because of pathogenic challenges it is expected that genes involved in the chicken immune system are subject to particularly strong adaptive pressure. Signatures of selection detected by inter-species comparison may then be investigated at the population level in global chicken populations to highlight potentially relevant functional polymorphisms. Results Comparative evolutionary analysis of chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genes identified interleukin 4 receptor alpha-chain (IL-4Rα), a key cytokine receptor as a candidate with a significant excess of substitutions at nonsynonymous sites, suggestive of adaptive evolution. Resequencing and detailed population genetic analysis of this gene in diverse village chickens from Asia and Africa, commercial broilers, and in outgroup species red jungle fowl (JF), grey JF, Ceylon JF, green JF, grey francolin and bamboo partridge, suggested elevated and balanced diversity across all populations at this gene, acting to preserve different high-frequency alleles at two nonsynonymous sites. Conclusion Haplotype networks indicate that red JF is the primary contributor of diversity at chicken IL-4Rα: the signature of variation observed here may be due to the effects of domestication, admixture and introgression, which produce high diversity. However, this gene is a key cytokine-binding receptor in the immune system, so balancing selection related to the host response to pathogens cannot be excluded. PMID:19527513

  10. Role of recombination activating genes in the generation of antigen receptor diversity and beyond.

    PubMed

    Nishana, Mayilaadumveettil; Raghavan, Sathees C

    2012-12-01

    V(D)J recombination is the process by which antibody and T-cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non-homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence-specific nuclease and its pathological role as a structure-specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence-specific and structure-specific nuclease. It also deals with the off-target cleavage of RAGs and its implications in genomic instability. PMID:23039142

  11. Mouse model recapitulating human Fcγ receptor structural and functional diversity

    PubMed Central

    Smith, Patrick; DiLillo, David J.; Bournazos, Stylianos; Li, Fubin; Ravetch, Jeffrey V.

    2012-01-01

    The in vivo biological activities of IgG antibodies result from their bifunctional nature, in which antigen recognition by the Fab is coupled to the effector and immunomodulatory diversity found in the Fc domain. This diversity, resulting from both amino acid and glycan heterogeneity, is translated into cellular responses through Fcγ receptors (FcγRs), a structurally and functionally diverse family of cell surface receptors found throughout the immune system. Although many of the overall features of this system are maintained throughout mammalian evolution, species diversity has precluded direct analysis of human antibodies in animal species, and, thus, detailed investigations into the unique features of the human IgG antibodies and their FcγRs have been limited. We now report the development of a mouse model in which all murine FcγRs have been deleted and human FcγRs, encoded as transgenes, have been inserted into the mouse genome resulting in recapitulation of the unique profile of human FcγR expression. These human FcγRs are shown to function to mediate the immunomodulatory, inflammatory, and cytotoxic activities of human IgG antibodies and Fc engineered variants and provide a platform for the detailed mechanistic analysis of therapeutic and pathogenic IgG antibodies. PMID:22474370

  12. Estrogen receptor modulatory effects of germinated brown rice bioactives in the uterus of rats through the regulation of estrogen-induced genes

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Bint; Saeed, Mohammed Ibrahim; Imam, Mustapha Umar; Ishaka, Aminu

    2013-01-01

    Purpose The expression of genes regulated by estrogen in the uterus was studied in ovariectomized (OVX) rats treated with germinated brown rice (GBR) bioactives, and compared to Remifemin or estrogen at different doses to identify the regulation of these genes in the uterus and their molecular mechanisms. Methods Rats were treated orally with GBR bioactives (phenolics), acylated steryl glucosides (ASG), γ-amino butyric acid (GABA), and γ-oryzanol (ORZ) at 100 and 200 mg/kg, Remifemin (REM) at 10 mg/kg and 20 mg/kg, or estrogen (EST) at 0.2 mg/kg. Ribonucleic acid (RNA) was extracted from the uterus, and messenger (m)RNA expression of selected genes encoding estrogen receptor-beta (ER-β), calcium-binding protein (CaBP9k), complement protein (C3), heat shock protein 70 kDa (HSP70), and interleukin (IL)-4 receptor were quantified. Similarly, serum steroid hormone concentration was monitored at 2, 4, and 8 weeks after treatments. ER-β antibody binding to the uterus sections was also studied using immunohistochemistry. Results The group treated with EST (0.2 mg/kg) upregulated ER-β, C3, and IL-4 receptor genes compared to other groups (P<0.001). GBR phenolics (200 mg/kg) treatment upregulated the ER-β gene almost to the level of the sham non-treated group. The CaBP9k gene showed upregulation in groups treated with ASG (200 mg/kg), EST (0.2 mg/kg), and ORZ (200 mg/kg) (P<0.05). Estrogen levels increased in groups treated with EST, ASG, and ORZ (200 mg/kg) compared to the OVX untreated group (P<0.05), and there was a slight non-significant decrease (P>0.05) in the progesterone levels in the OVX untreated group compared to the sham and other treated groups. There was a significant increase at 8 weeks in the level of FSH (P<0.05) in the treated groups compared to the OVX untreated group. There was no significant difference (P>0.05) in serum luteinizing hormone (LH) between the OVX untreated group and other groups. The sham and GBR phenolics treated group showed ER

  13. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species. PMID:25563844

  14. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.

    PubMed

    Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan

    2015-12-01

    Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of

  15. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes.

    PubMed

    Norman, Paul J; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A; Moesta, Achim K; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L; Guethlein, Lisbeth A; Carrington, Christine V F; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M; Ramdath, D Dan; Shiau, Ming-Yuh; Stephens, Henry A F; Struik, Siske; Tyan, Dolly; Verity, David H; Vaughan, Robert W; Davis, Ronald W; Fraser, Patricia A; Riley, Eleanor M; Ronaghi, Mostafa; Parham, Peter

    2009-05-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric "half" was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  16. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  17. The WAVE Regulatory Complex Links Diverse Receptors to the Actin Cytoskeleton

    PubMed Central

    Chen, Baoyu; Chen, Zhucheng; Brinkmann, Klaus; Pak, Chi W.; Liao, Yuxing; Shi, Shuoyong; Henry, Lisa; Grishin, Nick V.; Bogdan, Sven; Rosen, Michael K.

    2014-01-01

    SUMMARY The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here we have identified a large family of potential WRC ligands, consisting of ~120 diverse membrane proteins including protocadherins, ROBOs, netrin receptors, Neuroligins, GPCRs and channels. Structural, biochemical and cellular studies reveal that a novel sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton, and have broad physiological and pathological ramifications in metazoans. PMID:24439376

  18. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man.

    PubMed

    Macauley, Matthew S; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C

    2015-12-11

    CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2-6Galβ1-4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. PMID:26507663

  19. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway.

    PubMed

    Ferrati, Giovanni; Martini, Francisco J; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In "driver" thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  20. The Diversity and Molecular Evolution of B-Cell Receptors during Infection

    PubMed Central

    Hoehn, Kenneth B.; Fowler, Anna; Lunter, Gerton; Pybus, Oliver G.

    2016-01-01

    B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish. PMID:26802217

  1. The Diversity and Molecular Evolution of B-Cell Receptors during Infection.

    PubMed

    Hoehn, Kenneth B; Fowler, Anna; Lunter, Gerton; Pybus, Oliver G

    2016-05-01

    B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish. PMID:26802217

  2. A Germination Simulation.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1995-01-01

    Presents an activity that involves using sponge seedlings to demonstrate the germination process without the usual waiting period. Discusses epigeous versus hypogeous germination, and cotyledon number and biodiversity. (JRH)

  3. Sequence and diversity of the rat delta T-cell receptor.

    PubMed

    Watson, D; Ando, T; Knight, J F

    2000-07-01

    The cDNA sequence of the delta T-cell receptor (TCRD) in the adult Lewis rat thymus was determined using the technique of rapid amplification of cDNA ends. Sixteen variable region genes (TCRDV), two diversity regions (TCRDD), two joining regions (TCRDJ), and a single constant region gene (TCRDC) were identified. The sixteen unique TCRDV genes identified represented eight different subfamilies in the rat and were highly conserved (>80% nucleotide identity) to corresponding mouse sequences. Extensive junctional diversity was observed in the rat, with both TCRDD regions (TCRDD1 and TCRDD2) utilized in the majority of cDNA clones identified. The two TCRDJ genes were highly conserved and corresponded to TCRDJ1 and TCRDJ2 in the mouse; the majority of clones utilized TCRDJ1. The TCRDC region in the rat was 91.1% identical to the mouse TCRDC gene and was highly conserved to other species. Although extensive sequence information about mouse gamma-delta T-cell receptor genes is available, current knowledge of rat gamma-delta T-cells is limited. The sequence analysis presented in this study adds to our understanding of gamma-delta T-cells in general, and it may be utilized to study the role of gamma-delta T-cells in immune-mediated disease and transplantation models previously established in the rat. PMID:10941843

  4. Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design.

    PubMed

    Tian, Xiao-Jun; Zhang, Hang; Sannerud, Jens; Xing, Jianhua

    2016-05-24

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology. PMID:27162367

  5. Standardized analysis for the quantification of Vbeta CDR3 T-cell receptor diversity.

    PubMed

    Long, S Alice; Khalili, Jahan; Ashe, Jimiane; Berenson, Ron; Ferrand, Christophe; Bonyhadi, Mark

    2006-12-20

    Assessment of the diversity of the T-cell receptor (TCR) repertoire is often determined by measuring the frequency and distribution of individually rearranged TCRs in a population of T cells. Spectratyping is a common method used to measure TCR repertoire diversity, which examines genetic variation in the third complementarity-determining region (CDR3) region of the TCR Vbeta chain using RT-PCR length-distribution analysis. A variety of methods are currently used to analyze spectratype data including subjective visual measures, qualitative counting measures, and semi-quantitative measures that compare the original data to a standard, control data set. Two major limitations exist for most of these approaches: data files become very wieldy and difficult to manage, and current analytic methods generate data which are difficult to compare between laboratories and across different platforms. Here, we introduce a highly efficient method of analysis that is based upon a normal theoretical Gaussian distribution observed in cord blood and recent thymic emigrants. Using this analysis method, we demonstrate that PBMC obtained from patients with various diseases have skewed TCR repertoire profiles. Upon in vitro activation with anti-CD3 and anti-CD28 coated beads (Xcyte Dynabeads) TCR diversity was restored. Moreover, changes in the TCR repertoire were dynamic in vivo. We demonstrate that use of this streamlined method of analysis in concert with a flexible software package makes quantitative assessment of TCR repertoire diversity straightforward and reproducible, enabling reliable comparisons of diversity values between laboratories and over-time to further collaborative efforts. Analysis of TCR repertoire by such an approach may be valuable in the clinical setting, both for prognostic potential and measuring clinical responses to therapy. PMID:17081557

  6. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    PubMed Central

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J.

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure. PMID:26136746

  7. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire.

    PubMed

    Sims, Jennifer S; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H; Neira, Justin A; Samanamud, Jorge L; Canoll, Peter; Shen, Yufeng; Sims, Peter A; Bruce, Jeffrey N

    2016-06-21

    Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a "signature" set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081

  8. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  9. Diversity and Bias through Receptor–Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization

    PubMed Central

    Fuxe, Kjell; Tarakanov, Alexander; Romero Fernandez, Wilber; Ferraro, Luca; Tanganelli, Sergio; Filip, Malgorzata; Agnati, Luigi F.; Garriga, Pere; Diaz-Cabiale, Zaida; Borroto-Escuela, Dasiel O.

    2014-01-01

    Allosteric receptor–receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR–D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R–D1R–D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R–5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A–D2R receptor–receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A–D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor–receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms. PMID:24860548

  10. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations

    PubMed Central

    Deniger, Drew C.; Yu, Jianqiang; Huls, M. Helen; Figliola, Matthew J.; Mi, Tiejuan; Maiti, Sourindra N.; Widhopf, George F.; Hurton, Lenka V.; Thokala, Radhika; Singh, Harjeet; Olivares, Simon; Champlin, Richard E.; Wierda, William G.; Kipps, Thomas J.; Cooper, Laurence J. N.

    2015-01-01

    T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire. PMID:26030772

  11. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations.

    PubMed

    Deniger, Drew C; Yu, Jianqiang; Huls, M Helen; Figliola, Matthew J; Mi, Tiejuan; Maiti, Sourindra N; Widhopf, George F; Hurton, Lenka V; Thokala, Radhika; Singh, Harjeet; Olivares, Simon; Champlin, Richard E; Wierda, William G; Kipps, Thomas J; Cooper, Laurence J N

    2015-01-01

    T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire. PMID:26030772

  12. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology.

    PubMed

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-07-27

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  13. Retinoic Acid Receptors Recognize the Mouse Genome through Binding Elements with Diverse Spacing and Topology*

    PubMed Central

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-01-01

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  14. Analysis of the vomeronasal receptor repertoire, expression and allelic diversity in swine.

    PubMed

    Dinka, Hunduma; Le, Minh Thong; Ha, Heekyun; Cho, Hyesun; Choi, Min-Kyeung; Choi, Hojun; Kim, Jin-Hoi; Soundarajan, Nagasundarapandian; Park, Jin-Ki; Park, Chankyu

    2016-05-01

    Here we report a comprehensive analysis of the vomeronasal receptor repertoire in pigs. We identified a total of 25 V1R sequences consisting of 10 functional genes, 3 pseudogenes, and 12 partial genes, while functional V2R and FPR genes were not present in the pig genome. Pig V1Rs were classified into three subfamilies, D, F, and J. Using direct high resolution sequencing-based typing of all functional V1Rs from 10 individuals of 5 different breeds, a total of 24 SNPs were identified, indicating that the allelic diversity of V1Rs is much lower than that of the olfactory receptors. A high expression level of V1Rs was detected in the vomeronasal organ (VNO) and testes, while a low expression level of V1Rs was observed in all other tissues examined. Our results showed that pigs could serve as an interesting large animal model system to study pheromone-related neurobiology because of their genetic simplicity. PMID:26482471

  15. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives

    PubMed Central

    Pawig, Lukas; Klasen, Christina; Weber, Christian; Bernhagen, Jürgen; Noels, Heidi

    2015-01-01

    CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific

  16. Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System

    PubMed Central

    Kellner, Ronny; Vollmeister, Evelyn; Feldbrügge, Michael; Begerow, Dominik

    2011-01-01

    The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities. PMID:22242007

  17. Germination and seedling development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed germination and seedling development are highly sensitive to the environment at planting and for several weeks after that. Major factors that affect germination and development are temperature, water availability, soil conditions such as compaction, rhizosphere gases, and seed and seedlin...

  18. Evolution and survival of marine carnivores did not require a diversity of KIR or Ly49 NK cell receptors1

    PubMed Central

    Hammond, John A.; Guethlein, Lisbeth A.; Abi-Rached, Laurent; Moesta, Achim K; Parham, Peter

    2009-01-01

    Ly49 lectin-like receptors and killer cell immunoglobulin-like receptors (KIR) are structurally unrelated cell-surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell-surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and likely led to the sea lion’s loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the > 33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK-cell receptors. PMID:19265140

  19. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway

    PubMed Central

    Ferrati, Giovanni; Martini, Francisco J.; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  20. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9.

    PubMed

    Esain, Virginie; Postlethwait, John H; Charnay, Patrick; Ghislain, Julien

    2010-01-01

    The mechanisms underlying the generation of neural cell diversity are the subject of intense investigation, which has highlighted the involvement of different signalling molecules including Shh, BMP and Wnt. By contrast, relatively little is known about FGF in this process. In this report we identify an FGF-receptor-dependent pathway in zebrafish hindbrain neural progenitors that give rise to somatic motoneurons, oligodendrocyte progenitors and differentiating astroglia. Using a combination of chemical and genetic approaches to conditionally inactivate FGF-receptor signalling, we investigate the role of this pathway. We show that FGF-receptor signalling is not essential for the survival or maintenance of hindbrain neural progenitors but controls their fate by coordinately regulating key transcription factors. First, by cooperating with Shh, FGF-receptor signalling controls the expression of olig2, a patterning gene essential for the specification of somatic motoneurons and oligodendrocytes. Second, FGF-receptor signalling controls the development of both oligodendrocyte progenitors and astroglia through the regulation of sox9, a gliogenic transcription factor the function of which we show to be conserved in the zebrafish hindbrain. Overall, for the first time in vivo, our results reveal a mechanism of FGF in the control of neural cell diversity. PMID:20023158

  1. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal

    PubMed Central

    Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-01-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342

  2. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal.

    PubMed

    Risso, Davide S; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-01-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342

  3. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal

    NASA Astrophysics Data System (ADS)

    Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-05-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes.

  4. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  5. Solid-State Examination of Conformationally Diverse Sulfonamide Receptors Based on Bis(2-anilinoethynyl)pyridine, -Bipyridine, and -Thiophene

    PubMed Central

    Berryman, Orion B.; Johnson, Charles A.; Vonnegut, Chris L.; Fajardo, Kevin A.; Zakharov, Lev N.; Johnson, Darren W.; Haley, Michael M.

    2015-01-01

    Utilizing an induced-fit model and taking advantage of rotatable acetylenic C(sp)–C(sp2) bonds, we disclose the synthesis and solid-state structures of a series of conformationally diverse bis-sulfonamide arylethynyl receptors using either pyridine, 2,2′-bipyridine, or thiophene as the core aryl group. Whereas the bipyridine and thiophene structures do not appear to bind guests in the solid state, the pyridine receptors form 2 + 2 dimers with water molecules, two halides, or one of each, depending on the protonation state of the pyridine nitrogen atom. Isolation of a related bis-sulfonimide derivative demonstrates the importance of the sulfonamide N–H hydrogen bonds in dimer formation. The pyridine receptors form monomeric structures with larger guests such as BF4− or HSO4−, where the sulfonamide arms rotate to the side opposite the pyridine N atom. PMID:26405435

  6. Characterization of a Single Genomic Locus Encoding the Clustered Protocadherin Receptor Diversity in Xenopus tropicalis

    PubMed Central

    Etlioglu, Hakki E.; Sun, Wei; Huang, Zengjin; Chen, Wei; Schmucker, Dietmar

    2016-01-01

    Clustered protocadherins (cPcdhs) constitute the largest subgroup of the cadherin superfamily, and in mammals are grouped into clusters of α-, β-, and γ-types. Tens of tandemly arranged paralogous Pcdh genes of the Pcdh clusters generate a substantial diversity of receptor isoforms. cPcdhs are known to have important roles in neuronal development, and genetic alterations of cPcdhs have been found to be associated with several neurological diseases. Here, we present a first characterization of cPcdhs in Xenopus tropicalis. We determined and annotated all cPcdh isoforms, revealing that they are present in a single chromosomal locus. We validated a total of 96 isoforms, which we show are organized in three distinct clusters. The X. tropicalis cPcdh locus is composed of one α- and two distinct γ-Pcdh clusters (pcdh-γ1 and pcdh-γ2). Bioinformatics analyses assisted by genomic BAC clone sequencing showed that the X. tropicalis α- and γ-Pcdhs are conserved at the cluster level, but, unlike mammals, X. tropicalis does not contain a β-Pcdh cluster. In contrast, the number of γ-Pcdh isoforms has expanded, possibly due to lineage-specific gene duplications. Interestingly, the number of X. tropicalis α-Pcdhs is identical between X. tropicalis and mouse. Moreover, we find highly conserved as well as novel promoter elements potentially involved in regulating the cluster-specific expression of cPcdh isoforms. This study provides important information for the understanding of the evolutionary history of cPcdh genes and future mechanistic studies. It provides an annotated X. tropicalis cPcdh genomic map and a first molecular characterization essential for functional and comparative studies. PMID:27261006

  7. Characterization of a Single Genomic Locus Encoding the Clustered Protocadherin Receptor Diversity in Xenopus tropicalis.

    PubMed

    Etlioglu, Hakki E; Sun, Wei; Huang, Zengjin; Chen, Wei; Schmucker, Dietmar

    2016-01-01

    Clustered protocadherins (cPcdhs) constitute the largest subgroup of the cadherin superfamily, and in mammals are grouped into clusters of α-, β-, and γ-types. Tens of tandemly arranged paralogous Pcdh genes of the Pcdh clusters generate a substantial diversity of receptor isoforms. cPcdhs are known to have important roles in neuronal development, and genetic alterations of cPcdhs have been found to be associated with several neurological diseases. Here, we present a first characterization of cPcdhs in Xenopus tropicalis We determined and annotated all cPcdh isoforms, revealing that they are present in a single chromosomal locus. We validated a total of 96 isoforms, which we show are organized in three distinct clusters. The X. tropicalis cPcdh locus is composed of one α- and two distinct γ-Pcdh clusters (pcdh-γ1 and pcdh-γ2). Bioinformatics analyses assisted by genomic BAC clone sequencing showed that the X. tropicalis α- and γ-Pcdhs are conserved at the cluster level, but, unlike mammals, X. tropicalis does not contain a β-Pcdh cluster. In contrast, the number of γ-Pcdh isoforms has expanded, possibly due to lineage-specific gene duplications. Interestingly, the number of X. tropicalis α-Pcdhs is identical between X. tropicalis and mouse. Moreover, we find highly conserved as well as novel promoter elements potentially involved in regulating the cluster-specific expression of cPcdh isoforms. This study provides important information for the understanding of the evolutionary history of cPcdh genes and future mechanistic studies. It provides an annotated X. tropicalis cPcdh genomic map and a first molecular characterization essential for functional and comparative studies. PMID:27261006

  8. Left-Handed Dimer of EphA2 Transmembrane Domain: Helix Packing Diversity among Receptor Tyrosine Kinases

    PubMed Central

    Bocharov, Eduard V.; Mayzel, Maxim L.; Volynsky, Pavel E.; Mineev, Konstantin S.; Tkach, Elena N.; Ermolyuk, Yaroslav S.; Schulga, Alexey A.; Efremov, Roman G.; Arseniev, Alexander S.

    2010-01-01

    Abstract The Eph receptor tyrosine kinases and their membrane-bound ephrin ligands control a diverse array of cell-cell interactions in the developing and adult organisms. During signal transduction across plasma membrane, Eph receptors, like other receptor tyrosine kinases, are involved in lateral dimerization and subsequent oligomerization presumably with proper assembly of their single-span transmembrane domains. Spatial structure of dimeric transmembrane domain of EphA2 receptor embedded into lipid bicelle was obtained by solution NMR, showing a left-handed parallel packing of the transmembrane helices (535–559)2. The helices interact through the extended heptad repeat motif L535X3G539X2A542X3V546X2L549 assisted by intermolecular stacking interactions of aromatic rings of (FF557)2, whereas the characteristic tandem GG4-like motif A536X3G540X3G544 is not used, enabling another mode of helix-helix association. Importantly, a similar motif AX3GX3G as was found is responsible for right-handed dimerization of transmembrane domain of the EphA1 receptor. These findings serve as an instructive example of the diversity of transmembrane domain formation within the same family of protein kinases and seem to favor the assumption that the so-called rotation-coupled activation mechanism may take place during the Eph receptor signaling. A possible role of membrane lipid rafts in relation to Eph transmembrane domain oligomerization and Eph signal transduction was also discussed. PMID:20197042

  9. The vanilloid receptor as a putative target of diverse chemicals in multiple chemical sensitivity.

    PubMed

    Pall, Martin L; Anderson, Julius H

    2004-07-01

    The vanilloid receptor (TRPV1 or VR1), widely distributed in the central and peripheral nervous system, is activated by a broad range of chemicals similar to those implicated in Multiple Chemical Sensitivity (MCS) Syndrome. The vanilloid receptor is reportedly hyperresponsive in MCS and can increase nitric oxide levels and stimulate N-methyl-D-aspartate (NMDA) receptor activity, both of which are important features in the previously proposed central role of nitric oxide and NMDA receptors in MCS. Vanilloid receptor activity is markedly altered by multiple mechanisms, possibly providing an explanation for the increased activity in MCS and symptom masking by previous chemical exposure. Activation of this receptor by certain mycotoxins may account for some cases of sick building syndrome, a frequent precursor of MCS. Twelve types of evidence implicate the vanilloid receptor as the major target of chemicals, including volatile organic solvents (but not pesticides) in MCS. PMID:16241041

  10. A Stochastic Model of the Germinal Center Integrating Local Antigen Competition, Individualistic T-B Interactions, and B Cell Receptor Signaling.

    PubMed

    Wang, Peng; Shih, Chang-Ming; Qi, Hai; Lan, Yue-Heng

    2016-08-15

    The germinal center (GC) reaction underlies productive humoral immunity by orchestrating competition-based affinity maturation to produce plasma cells and memory B cells. T cells are limiting in this process. How B cells integrate signals from T cells and BCRs to make fate decisions while subjected to a cyclic selection process is not clear. In this article, we present a spatiotemporally resolved stochastic model that describes cell behaviors as rate-limited stochastic reactions. We hypothesize a signal integrator protein integrates follicular helper T (Tfh)- and Ag-derived signals to drive different B cell fates in a probabilistic manner and a dedicated module of Tfh interaction promoting factors control the efficiency of contact-dependent Tfh help delivery to B cells. Without assuming deterministic affinity-based decisions or temporal event sequence, this model recapitulates GC characteristics, highlights the importance of efficient T cell help delivery during individual contacts with B cells and intercellular positive feedback for affinity maturation, reveals the possibility that antagonism between BCR signaling and T cell help accelerates affinity maturation, and suggests that the dichotomy between affinity and magnitude of GC reaction can be avoided by tuning the efficiency of contact-dependent help delivery during reiterative T-B interactions. PMID:27421481

  11. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    PubMed

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes. PMID:26187959

  12. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    PubMed Central

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes. PMID:26187959

  13. Structure of macrophage colony stimulating factor bound to FMS: Diverse signaling assemblies of class III receptor tyrosine kinases

    SciTech Connect

    Chen, Xiaoyan; Liu, Heli; Focia, Pamela J.; Shim, Ann Hye-Ryong; He, Xiaolin

    2009-06-12

    Macrophage colony stimulating factor (M-CSF), through binding to its receptor FMS, a class III receptor tyrosine kinase (RTK), regulates the development and function of mononuclear phagocytes, and plays important roles in innate immunity, cancer and inflammation. We report a 2.4 {angstrom} crystal structure of M-CSF bound to the first 3 domains (D1-D3) of FMS. The ligand binding mode of FMS is surprisingly different from KIT, another class III RTK, in which the major ligand-binding domain of FMS, D2, uses the CD and EF loops, but not the {beta}-sheet on the opposite side of the Ig domain as in KIT, to bind ligand. Calorimetric data indicate that M-CSF cannot dimerize FMS without receptor-receptor interactions mediated by FMS domains D4 and D5. Consistently, the structure contains only 1 FMS-D1-D3 molecule bound to a M-CSF dimer, due to a weak, hydrophilic M-CSF:FMS interface, and probably a conformational change of the M-CSF dimer in which binding to the second site is rendered unfavorable by FMS binding at the first site. The partial, intermediate complex suggests that FMS may be activated in two steps, with the initial engagement step distinct from the subsequent dimerization/activation step. Hence, the formation of signaling class III RTK complexes can be diverse, engaging various modes of ligand recognition and various mechanistic steps for dimerizing and activating receptors.

  14. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    PubMed Central

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  15. Killer cell immunoglobulin-like receptor gene diversity in the Tibetan ethnic minority group of China.

    PubMed

    Zhu, Bo-feng; Wang, Hong-dan; Shen, Chun-mei; Deng, Ya-jun; Yang, Guang; Wu, Qing-ju; Xu, Peng; Qin, Hai-xia; Fan, Shuan-liang; Huang, Ping; Deng, Li-bin; Lucas, Rudolf; Wang, Zhen-Yuan

    2010-11-01

    The aim of this study was to analyze killer immunoglobulin-like receptor (KIR) gene polymorphisms in the Tibetan ethnic minority of China. To that purpose, we have studied KIR gene frequencies and genotype diversities of 16 KIR genes and three pseudogenes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5A, 2DL5B, 2DS1, 2DS2, 2DS3, 2DS4*001/002, 2DS4*003-007, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1, 2DP1, 3DP1*001/002/004, and 3DP1*003) in a population sample of 102 unrelated healthy individuals of the Tibetan population living in Lhasa city, Tibet Autonomous Region of China. Tibetans mainly live in "the roof of the world," the Qinghai-Tibet Plateau of China and surrounding areas stretching from central Asia in the North and West to Myanmar and mainland China in the East, and India, Nepal, and Bhutan to the south. KIR gene frequencies and statistical parameters of Tibetan ethnic minority were calculated. Fifteen KIR genes were observed in the 102 tested Tibetan individuals with different frequencies. The allelic frequencies of the 15 KIR genes ranged from 0.06 to 0.86. In addition, KIR 2DL1, 2DL4, 3DL2, and 3DL3 were found to be present in every individual. Variable gene content, together with allelic polymorphisms, can result in individualized human KIR genotypes and haplotypes, with the A haplotypes being predominantly observed. The results of tested linkage disequilibrium (LD) among KIR genes demonstrated that KIR genes present a wide range of linkage disequilibrium. Moreover, a comparison of the population data of our study with previously published population data of other ethnic groups or areas was performed. The differences of allelic frequency distribution in KIR2DL2, 2DL3, 2DL5, 3DL1, 2DS1, 2DS2, 2DS3, 3DS1, and 2DP1 were statistically significant among different populations using the statistical method of the standard χ(2) test. In conclusion, the results of the present study can be valuable for enriching the Chinese ethnical gene information resources of the KIR gene pool and for

  16. Studies of the Commitment Step in the Germination of Spores of Bacillus Species ▿

    PubMed Central

    Yi, Xuan; Setlow, Peter

    2010-01-01

    Spores of Bacillus species are said to be committed when they continue through nutrient germination even when germinants are removed or their binding to spores' nutrient germinant receptors (GRs) is both reversed and inhibited. Measurement of commitment and the subsequent release of dipicolinic acid (DPA) during nutrient germination of spores of Bacillus cereus and Bacillus subtilis showed that heat activation, increased nutrient germinant concentrations, and higher average levels of GRs/spore significantly decreased the times needed for commitment, as well as lag times between commitment and DPA release. These lag times were also decreased dramatically by the action of one of the spores' two redundant cortex lytic enzymes (CLEs), CwlJ, but not by the other CLE, SleB, and CwlJ action did not affect the timing of commitment. The timing of commitment and the lag time between commitment and DPA release were also dependent on the specific GR activated to cause spore germination. For spore populations, the lag times between commitment and DPA release were increased significantly in spores that germinated late compared to those that germinated early, and individual spores that germinated late may have had lower appropriate GR levels/spore than spores that germinated early. These findings together provide new insight into the commitment step in spore germination and suggest several factors that may contribute to the large heterogeneity among the timings of various events in the germination of individual spores in spore populations. PMID:20435722

  17. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling.

    PubMed

    Li, Shuo; Lefranc, Marie-Paule; Miles, John J; Alamyar, Eltaf; Giudicelli, Véronique; Duroux, Patrice; Freeman, J Douglas; Corbin, Vincent D A; Scheerlinck, Jean-Pierre; Frohman, Michael A; Cameron, Paul U; Plebanski, Magdalena; Loveland, Bruce; Burrows, Scott R; Papenfuss, Anthony T; Gowans, Eric J

    2013-01-01

    T cell repertoire diversity and clonotype follow-up in vaccination, cancer, infectious and immune diseases represent a major challenge owing to the enormous complexity of the data generated. Here we describe a next generation methodology, which combines 5'RACE PCR, 454 sequencing and, for analysis, IMGT, the international ImMunoGeneTics information system (IMGT), IMGT/HighV-QUEST web portal and IMGT-ONTOLOGY concepts. The approach is validated in a human case study of T cell receptor beta (TRB) repertoire, by chronologically tracking the effects of influenza vaccination on conventional and regulatory T cell subpopulations. The IMGT/HighV-QUEST paradigm defines standards for genotype/haplotype analysis and characterization of IMGT clonotypes for clonal diversity and expression and achieves a degree of resolution for next generation sequencing verifiable by the user at the sequence level, while providing a normalized reference immunoprofile for human TRB. PMID:23995877

  18. The contribution of germination functional traits to population dynamics of a desert plant community.

    PubMed

    Huang, Zhenying; Liu, Shuangshuang; Bradford, Kent J; Huxman, Travis E; Venable, D Lawrence

    2016-01-01

    Early life-cycle events play critical roles in determining the population and community dynamics of plants. The ecology of seeds and their germination patterns can determine range limits, adaptation to environmental variation, species diversity, and community responses to climate change. Understanding the adaptive consequences and environmental filtering of such functional traits will allow us to explain and predict ecological dynamics. Here we quantify key functional aspects of germination physiology and relate them to an existing functional ecology framework to explain long-term population dynamics for 13 species of desert annuals near Tucson, Arizona, USA. Our goal was to assess the extent to which germination functional biology contributes to long-term population processes in nature. Some of the species differences in base, optimum, and maximum temperatures for germination, thermal times to germination, and base water potentials for germination were strongly related to 20-yr mean germination fractions, 25-yr average germination dates, seed size, and long-term demographic variation. Comparisons of germination fraction, survival, and fecundity vs. yearly changes in population size found significant roles for all three factors, although in varying proportions for different species. Relationships between species' germination physiologies and relative germination fractions varied across years, with fast-germinating species being favored in years with warm temperatures during rainfall events in the germination season. Species with low germination fractions and high demographic variance have low integrated water-use efficiency, higher vegetative growth rates, and smaller, slower-germinating seeds. We have identified and quantified a number of functional traits associated with germination biology that play critical roles in ecological population dynamics. PMID:27008793

  19. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Background Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. Methods In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). Results The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non

  20. Differential effects of in vitro peroxidation on peripheral- and central-type benzodiazepine receptors. Protection by diverse antioxidants.

    PubMed

    Courtiere, A; Molard, F; Reybaud, J

    1995-11-27

    The influence of various concentrations of ferrous iron and ascorbate on in vitro peroxidation and drug binding of diverse membrane preparations (cerebral cortex and liver) was studied. Peroxidation was not simply dose-related to ascorbate and ferrous iron, but a complex relationship between iron and ascorbate when added in association was established. Under our conditions 0.01 mM Fe2+ and 0.5 mM ascorbate was the most peroxidative combination for cerebral and liver membranes. Under the same conditions, cerebral membranes were more peroxidated than liver membranes. Considering the consequences of drug binding, peripheral-type benzodiazepine receptors (PBRs) of liver were more affected by peroxidative events than central-type benzodiazepine receptors (CBRs) of the cerebral cortex. The degree of binding disturbance was generally inversely correlated to the degree of peroxidation and this was more significant for liver PBRs than for cerebral CBRs. The liver membrane model was retained for testing in vitro protection by diverse putative antioxidants. Under our conditions desferrioxamine, ethylene diamine tetra acetate (EDTA), trolox, and rutin were good protective antioxidants, whereas phenyl-butyl-nitrone (PBN) and tocopherol were not effective. PMID:8615860

  1. Proteomic insights into seed germination in response to environmental factors.

    PubMed

    Tan, Longyan; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2013-06-01

    Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors.However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zeamays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α-amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor-responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor-responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination. PMID:23986916

  2. Germination of Rhizopus oligosporus Sporangiospores

    PubMed Central

    Medwid, Richard D.; Grant, Dale W.

    1984-01-01

    The morphology of Rhizopus oligosporus (NRRL 2710) sporangiospores and their physiological requirements for germination were studied. Germination proceeded in two separable phases: phase I (swelling) and phase II (germ tube protrusion). The optimal conditions for germination were 42°C and pH 4.0. Sporangiospores contained insufficient endogenous carbon for swelling or germination to occur in distilled water. Initial swelling during phase I occurred only in the presence of a suitable carbohydrate. Subsequent production of germ tubes during phase II required exogenous sources of both carbon and nitrogen. Spores germinated most rapidly in mixtures of amino acids; l-proline and l-alanine were the most effective. These amino acids, at concentrations as low as 10−6 M, supported germination when combined with glucose and McIlvaine (citric acid-phosphate) buffer. d-Glucose, d-xylose, and d-mannose were the most effective carbohydrates tested for promotion of germination. Images PMID:16346671

  3. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition

    PubMed Central

    Wibowo, Ardian S.; Singh, Mirage; Reeder, Kristen M.; Carter, Joshua J.; Kovach, Alexander R.; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E.

    2013-01-01

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  4. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  5. Germination and seedling establishment in orchids: a complex of requirements

    PubMed Central

    Rasmussen, Hanne N.; Dixon, Kingsley W.; Jersáková, Jana; Těšitelová, Tamara

    2015-01-01

    Background Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. Key Considerations The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. Conclusions A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult

  6. Glycine receptors: recent insights into their structural organization and functional diversity.

    PubMed

    Betz, Heinrich; Laube, Bodo

    2006-06-01

    Strychnine-sensitive glycine receptors (GlyRs) are known to mediate synaptic inhibition in spinal cord, brainstem and other regions of the CNS. During the past 5 years, considerable progress has been made in delineating structural determinants of ligand binding and channel activation in recombinant GlyRs. Furthermore, immunohistochemical and gene inactivation studies have disclosed distinct distributions and functions of differentially expressed GlyR subtypes in retina, hippocampus and the dorsal horn of the spinal cord. Accordingly, GlyRs regulate not only the excitability of motor and sensory neurones, but are also essential for the processing of photoreceptor signals, neuronal development and inflammatory pain sensitization. Hence, these receptors constitute promising targets for the development of clinically useful compounds. PMID:16805771

  7. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  8. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.; Mumford, Andrew D.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF≥1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  9. Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component.

    PubMed

    Thompson, Emily A L; Feavers, Ian M; Maiden, Martin C J

    2003-07-01

    Meningococcal FetA (FrpB), an iron-regulated outer-membrane protein and vaccine component, was shown to be highly diverse: a total of 60 fetA alleles, encoding 56 protein sequences, were identified from 107 representative Neisseria meningitidis isolates. Phylogenetic analysis established that the allelic variants had been generated by both point mutation and horizontal genetic exchange. Nucleotide substitution was unevenly distributed in the gene, which contained both conserved and variable sequence regions. The most conserved region of the translated peptide sequence corresponded to an amino-terminal domain of the protein and the most diverse region to a previously identified variable region (VR). A nomenclature system for the peptides encoded by the VR was devised which classified 24 variants into 5 FetA variant families. On the basis of these data, murine polyclonal sera specific for four FetA variants were generated. The reactivities of these sera in whole-cell ELISA experiments were consistent with the hypothesis that the VR encoded an immunodominant epitope and indicated that the sera reacted mainly with variants against which they were raised. The diversity of this protein is likely to limit its effectiveness as a vaccine component. PMID:12855736

  10. Ability of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species.

    PubMed

    Matthews, J B; Fertuck, K C; Celius, T; Huang, Y-W; Fong, C J; Zacharewski, T R

    2002-10-01

    The ability of 14 structurally diverse estrogenic compounds to induce reporter gene expression mediated by estrogen receptors (ERs) from different species was examined. MCF-7 cells were transiently transfected with a Gal4-regulated luciferase reporter gene (17m5-G-Luc) and Gal4-ER chimeric receptors containing the D, E and F domains of the human alpha (Gal4-hERalphadef), mouse alpha (Gal4-mERalphadef), mouse beta (Gal4-mERbetadef), chicken (Gal4-cERalphadef), green anole (Gal4-aERalphadef), Xenopus (Gal4-xERdef) or rainbow trout alpha ERs (Gal4-rtERalphadef). The efficacy of 17beta-estradiol (E2) in inducing reporter gene expression was similar among the different constructs overall, with EC(50) values ranging from 0.05 to 0.7nM. However, Gal4-rtERalphadef had an EC(50) value at 37 degrees C of 28nM, though at 20 degrees C an EC(50) value of 1nM was observed. Despite a similar response to E2 treatment among the ERs, many differences were observed in the magnitude of the response to other structurally diverse chemicals. For example, coumestrol induced Gal4-mERbetadef- and Gal4-aERdef-mediated reporter gene expression 164- and 8-fold greater, respectively, than mediated with the other Gal4-ERs. As well, in contrast to results with other Gal4-ERs, alpha-zearalenol consistently induced Gal4-rtERalphadef-mediated reporter gene activity at lower concentrations than did E2. Overall, the results demonstrate that selected estrogenic compounds exhibit a differential ability to induce reporter gene activity mediated by ERs from different vertebrate species. These data also highlight the importance of incubation temperature when examining rtERalpha-mediated activity. PMID:12477484

  11. The Effects of Heat Activation on Bacillus Spore Germination, with Nutrients or under High Pressure, with or without Various Germination Proteins

    PubMed Central

    Luu, Stephanie; Cruz-Mora, Jose; Setlow, Barbara; Feeherry, Florence E.; Doona, Christopher J.

    2015-01-01

    Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75°C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the l-asparagine–glucose–fructose–K+ mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation. PMID:25681191

  12. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells.

    PubMed

    Ohtsu, Yoshiaki; Nakagawa, Yuko; Nagasawa, Masahiro; Takeda, Shigeki; Arakawa, Hirokazu; Kojima, Itaru

    2014-08-25

    Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals. PMID:25017733

  13. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions.

    PubMed

    Ilangumaran, Subburaj; Villalobos-Hernandez, Alberto; Bobbala, Diwakar; Ramanathan, Sheela

    2016-06-01

    Hepatocyte growth factor (HGF) signaling via the MET receptor is essential for embryonic development and tissue repair. On the other hand, deregulated MET signaling promotes tumor progression in diverse types of cancers. Even though oncogenic MET signaling remains the major research focus, the HGF-MET axis has also been implicated in diverse aspects of immune cell development and functions. In the presence of other hematopoietic growth factors, HGF promotes the development of erythroid, myeloid and lymphoid lineage cells and thrombocytes. In monocytes and macrophages responding to inflammatory stimuli, induction of autocrine HGF-MET signaling can contribute to tissue repair via stimulating anti-inflammatory cytokine production. HGF-MET signaling can also modulate adaptive immune response by facilitating the migration of Langerhans cells and dendritic cells to draining lymph nodes. However, MET signaling has also been shown to induce tolerogenic dendritic cells in mouse models of graft-versus-host disease and experimental autoimmune encephalomyelitis. HGF-MET axis is also implicated in promoting thymopoiesis and the survival and migration of B lymphocytes. Recent studies have shown that MET signaling induces cardiotropism in activated T lymphocytes. Further understanding of the HGF-MET axis in the immune system would allow its therapeutic manipulation to improve immune cell reconstitution, restore immune homeostasis and to treat immuno-inflammatory diseases. PMID:26822708

  14. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles.

    PubMed

    Bueno, Ana B; Showalter, Aaron D; Wainscott, David B; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over; Willard, Francis S; Sloop, Kyle W

    2016-05-13

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5'-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9-36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [(3)H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  15. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles*

    PubMed Central

    Showalter, Aaron D.; Wainscott, David B.; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over

    2016-01-01

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  16. Diverse functions for the semaphorin receptor PlexinD1 in development and disease

    PubMed Central

    Gay, Carl M.; Zygmunt, Tomasz; Torres-Vázquez, Jesús

    2010-01-01

    SUMMARY Plexins are a family of single pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1’s roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity. PMID:20880496

  17. Bacillus amyloliquefaciens AG1 biosurfactant: Putative receptor diversity and histopathological effects on Tuta absoluta midgut.

    PubMed

    Ben Khedher, Saoussen; Boukedi, Hanen; Kilani-Feki, Olfa; Chaib, Ikbel; Laarif, Asma; Abdelkefi-Mesrati, Lobna; Tounsi, Slim

    2015-11-01

    The use of biosurfactant in pest management has received much attention for the control of plant pathogens, but few studies reported their insecticidal activity. The present study describes the insecticidal activity of biosurfactant extracted from Bacillus amyloliquefaciens strain AG1. This strain produces a lipopeptide biosurfactant exhibiting an LC50 of about 180ng/cm(2) against Tuta absoluta larvae. Accordingly, the histopathologic effect of this biosurfactant on T. absoluta larvae showed serious damages of the midgut tissues including rupture and disintegration of epithelial layer and cellular vacuolization. By PCR, we showed that this biosurfactant could be formed by several lipopeptides and polyketides including iturin, fengycin, surfactin, bacyllomicin, bacillaene, macrolactin and difficidin. Binding experiment revealed that it recognized five putative receptors located in the BBMV of T. absoluta with sizes of 68, 63, 44, 30 and 19kDa. Therefore, biosurfactant AG1 hold potential for use as an environmentally friendly agent to control the tomato leaf miner. PMID:26299754

  18. Structure and diversity of the T-cell receptor alpha chain in the Mexican axolotl.

    PubMed

    Fellah, J S; Kerfourn, F; Dumay, A M; Aubet, G; Charlemagne, J

    1997-01-01

    Polymerase chain reaction was used to isolate cDNA clones encoding putative T-cell receptor (TCR) alpha chains in an amphibian, the Mexican axolotl (Ambystoma mexicanum). Five TCRalpha-V chain-encoding segments were identified, each belonging to a separate family. The best identity scores for these axolotl TCRalpha-V segments were all provided by sequences belonging to the human TCRalpha-V1 family and the mouse TCRalpha-V3 and TCRalpha-V8 families. A total of 14 different TCRA-J segments were identified from 44 TCRA-V/TCRA-J regions sequenced, suggesting that a large repertoire of TCRA-J segments is a characteristic of most vertebrates. The structure of the axolotl CDR3 alpha chain loop is in good agreement with that of mammals, including a majority of small hydrophobic residues at position 92 and of charged, hydrophilic, or polar residues at positions 93 and 94, which are highly variable and correspond to the TCRA-V/J junction. This suggests that some positions of the axolotl CDR3 alpha chain loop are positively selected during T-cell differentiation, particularly around residue 93 that could be selected for its ability to makes contacts with major histocompatibility complex-associated antigenic peptides, as in mammals. The axolotl Calpha domain had the typical structure of mammalian and avian Calpha domains, including the charged residues in the TM segment that are thought to interact with other proteins in the membrane, as well as most of the residues forming the conserved antigen receptor transmembrane motif. PMID:9002443

  19. Heterogeneous estrogen receptor expression in circulating tumor cells suggests diverse mechanisms of fulvestrant resistance.

    PubMed

    Paoletti, Costanza; Larios, Jose M; Muñiz, Maria C; Aung, Kimberly; Cannell, Emily M; Darga, Elizabeth P; Kidwell, Kelley M; Thomas, Dafydd G; Tokudome, Nahomi; Brown, Martha E; Connelly, Mark C; Chianese, David A; Schott, Anne F; Henry, N Lynn; Rae, James M; Hayes, Daniel F

    2016-08-01

    Fulvestrant is a dose dependent selective estrogen receptor (ER) down-regulator (SERD) used in ER-positive metastatic breast cancer (MBC). Nearly all patients develop resistance. We performed molecular analysis of circulating tumor cells (CTC) to gain insight into fulvestrant resistance. Preclinical studies were performed with cultured breast cancer cells spiked into human blood and analyzed on the CellSearch(®) system. Clinical data are limited to a subset of patients with ER-positive MBC from a previously reported pilot trial whose disease was progressing on fulvestrant (N = 7) or aromatase inhibitors (AIs) (N = 10). CTCs were enumerated and phenotyped for ER and B-cell lymphoma (BCL2) using the CellSearch(®) CXC kit. In preclinical modeling, tamoxifen and AIs resulted in stabilized ER expression, whereas fulvestrant eliminated it. Five of seven patients progressing on fulvestrant had ≥5CTC/7.5 ml WB. Two of these five, treated with 500 mg/month fulvestrant, had no detectable CTC-expression of ER and BCL2 (an ER regulated gene). Three patients had heterogeneous CTC-ER and BCL2 expression indicating incomplete degradation of the ER target by fulvestrant. Two of these patients received 250 mg/month whereas the third patient received 500 mg/month fulvestrant. Her cancer harbored a mutation (Y537S) in the estrogen receptor alpha gene (ESR1). All seven ER positive patients progressing on AIs had heterogeneous CTC-ER expression. These results suggest heterogeneous mechanisms of resistance to fulvestrant, including insufficient dosage, ESR1 mutation, or conversion to dependence on non-ER pathways. CTC enumeration, phenotyping, and genotyping might identify patients who would benefit from fulvestrant dose escalation versus switching to alternative therapies. PMID:27178224

  20. Sequence and diversity of rabbit T-cell receptor gamma chain genes

    SciTech Connect

    Isono, T.; Kim, C.J.; Seto, A.

    1995-03-01

    The nucleotide sequences of one constant (C), six variable (V), and two joining (J) gene segments coding for the rabbit T-cell receptor gamma chain (Tcrg) were determined by directly sequencing fragments amplified by the cassette-ligation mediated polymerase chain reaction. The Tcrg-C gene segment did not encode a cysteine residue for connection to the Tcr delta chain in the connecting region, and two variant forms of the Tcrg-C gene segment were generated by alternative splicing, like the human Tcrg-C2 gene. Five of six rabbit Tcrg-V gene segments belonged to the same family and displayed similarity to five productive human Tcrg-V1 family genes as well as the mouse Tcrg-V5 gene. The remaining rabbit Tcrg-V gene segment displayed similarity to the human Tcrg-V3 gene. Both rabbit Tcrg-J gene segments displayed similarity to the human Tcrg-J2.1 and 2.3, respectively. These findings suggested that the genomic organization of rabbit Tcrg genes is more similar to that of human than of mouse Tcrg genes. 18 refs., 4 figs., 1 tab.

  1. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    DOE PAGESBeta

    Ye, Hao; Ng, Hui; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-03-26

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoidsmore » that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. We find diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.« less

  2. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    PubMed Central

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-01-01

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process. PMID:27023590

  3. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis.

    PubMed

    Guleria, Praveen; Masand, Shikha; Yadav, Sudesh Kumar

    2015-07-01

    This paper documents the engineering of Arabidopsis thaliana for the ectopic over-expression of SrKA13H (ent-kaurenoic acid-13 hydroxylase) cDNA from Stevia rebaudiana. HPLC analysis revealed the significant accumulation of steviol (1-3 μg g(-1) DW) in two independent transgenic Arabidopsis lines over-expressing SrKA13H compared with the control. Independent of the steviol concentrations detected, both transgenic lines showed similar reductions in endogenous bioactive gibberellins (GA1 and GA4). They possessed phenotypic similarity to gibberellin-deficient mutants. The reduction in endogenous gibberellin content was found to be responsible for dwarfism in the transgenics. The exogenous application of GA3 could rescue the transgenics from dwarfism. The hypocotyl, rosette area, and stem length were all considerably reduced in the transgenics. A noteworthy decrease in pollen viability was noticed and, similarly, a retardation of 60-80% in pollen germination rate was observed. The exogenous application of steviol (0.2, 0.5, and 1.0 μg ml(-1)) did not influence pollen germination efficiency. This has suggested that in planta formation of steviol was not responsible for the observed changes in transgenic Arabidopsis. Further, the seed yield of the transgenics was reduced by 24-48%. Hence, this study reports for the first time that over-expression of SrKA13H cDNA in Arabidopsis has diverted the gibberellin biosynthetic route towards steviol biosynthesis. The Arabidopsis transgenics showed a significant reduction in endogenous gibberellins that might be responsible for the dwarfism, and the abnormal behaviour of pollen germination and seed set. PMID:25954046

  4. Evolution of T cell receptor genes. Extensive diversity of V beta families in the Mexican axolotl.

    PubMed

    Fellah, J S; Kerfourn, F; Charlemagne, J

    1994-11-15

    We have cloned 36 different rearranged variable regions (V beta) genes encoding the beta-chain of the T cell receptor in an amphibian species, Ambystoma mexicanum (the Mexican axolotl). Eleven different V beta segments were identified, which can be classified into 9 families on the basis of a minimum of 75% nucleotide identity. All the cloned V beta segments have the canonical features of known mammalian and avian V beta, including conserved residues Cys23, Trp34, Arg69, Tyr90, and Cys92. There seems to be a greater genetic distance between the axolotl V beta families than between the different V beta families of any mammalian species examined to date: most of the axolotl V beta s have fewer than 35% identical nucleotides and the less related families (V beta 4 and V beta 8) have no more than 23.2% identity (13.5% at the amino acid level). Despite their great mutual divergence, several axolotl V beta are sequence-related to some mammalian V beta genes, like the human V beta 13 and V beta 20 segments and their murine V beta 8 and V beta 14 homologues. However, the axolotl V beta 8 and V beta 9 families are not significantly related to any other V beta sequence at the nucleotide level and show limited amino acid similarity to mammalian V alpha, V kappa III, or VH sequences. The detection of nine V beta families among 35 randomly cloned V beta segments suggests that the V beta gene repertoire in the axolotl is probably larger than presently estimated. PMID:7963525

  5. Diversity of killer cell immunoglobulin-like receptor genes in the Bengali population of northern West Bengal, India.

    PubMed

    Guha, P; Bhattacharjee, S; Chaudhuri, T K

    2014-12-01

    The Indian Subcontinent exhibits extensive diversity in its culture, religion, ethnicity and linguistic heritage, which symbolizes extensive genetic variations within the populations. The highly polymorphic Killer cell Immunoglobulin-like Receptor (KIR) family plays an important role in tracing genetic differentiation in human population. In this study, we aimed to analyse the KIR gene polymorphism in the Bengali population of northern West Bengal, India. To our knowledge, this is the first report on the KIR gene polymorphism in the Bengalis of West Bengal, India. Herein, we have studied the distribution of 14 KIR genes (KIR3DL1-3DL3, KIR2DL1-2DL5, KIR2DS1-2DS5 AND KIR3DS1) and two pseudogenes (KIR3DP1 and 2DP1) in the Bengalis. Apart from the framework genes (KIR2DL4, 3DL2, 3DL3 and 3DP1), which are present in all the individuals, the gene frequencies of other KIR genes varied between 0.34 and 0.88. Moreover, upon comparing the KIR polymorphism of the Bengalis with the available published data of other world populations, it has been found that the Indo-European-speaking Bengalis from the region share both Dravidian and Indo-Aryan gene pool with considerable influences of mongoloid and European descents. Furthermore, evidences from previously published data on human leucocyte antigen and Y-chromosome haplogroup diversity support the view. Our results will help to understand the genetic background of the Bengali population, in illustrating the population migration events in the eastern and north-eastern part of India, in explaining the extensive genetic admixture amongst the different linguistic groups of the region and also in KIR-related disease researches. PMID:25205074

  6. Molecular and Functional Diversity of GABA-A Receptors in the Enteric Nervous System of the Mouse Colon

    PubMed Central

    Seifi, Mohsen; Brown, James F.; Mills, Jeremy; Bhandari, Pradeep; Belelli, Delia; Lambert, Jeremy J.; Rudolph, Uwe

    2014-01-01

    The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4–5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders. PMID:25080596

  7. Structure and diversity of the T cell antigen receptor beta-chain in a teleost fish.

    PubMed

    Partula, S; de Guerra, A; Fellah, J S; Charlemagne, J

    1995-07-15

    Cell-mediated immunity (e.g., allograft rejection) is found in all vertebrates, and these reactions are known to depend on thymus-derived cells in amphibian, avian, and mammalian species. The participation of peripheral T cell-like lymphocytes subpopulations to fish immunity is now well documented, but the developmental origin, migration, and peripheral tissue distribution of these cells remain practically unknown. This is mainly due to the difficulty of efficiently thymectomizing fish at an early stage of development and to the lack of Ab strictly specific for thymocytes and T cell surface Ag. One strategy for analyzing T cell biology in fish would be to characterize the genes encoding polypeptides homologous to the TCR molecules. This report describes cDNA clones from the rainbow trout (Oncorhynchus mykiss) that have sequences very similar to amphibian, avian, and mammalian TCR beta-chains. Three complete trout V beta segments belonging to different families were analyzed; one of them had limited amino acid sequence similarity to the human V beta 20 family. The 10 trout beta-chain-joining segments all retain the invariant mammalian J beta residues, and comparison of 66 V beta-J beta junctions led to the identification of a D beta-like sequence (GGACAGGG) that is shorter than but very similar to the chicken D beta and mammalian D beta 1 sequences. There is considerable diversity at the V beta-D beta and D beta-J beta junctions, suggesting the presence of N-nucleotides. The trout C beta extracellular domain is shorter than mammalian C beta, and the hinge region has no cysteine residue. The transmembrane C beta domain contains a lysine residue that in mammals is thought to be involved in charged interactions with members of the CD3 complex. PMID:7608547

  8. Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors.

    PubMed

    Bolaños, Jessica; De León, Luis Fernando; Ochoa, Edgardo; Darias, José; Raja, Huzefa A; Shearer, Carol A; Miller, Andrew N; Vanderheyden, Patrick; Porras-Alfaro, Andrea; Caballero-George, Catherina

    2015-10-01

    Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and determines their potential to produce secondary metabolites capable of interacting with mammalian G-protein-coupled receptors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58% represented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6%) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found during phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cultures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50% of the control and seven others inhibited between 30 and 45%. Our results indicate that marine sponges from Panama are a "hot spot" of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances present in previously undiscovered fungi associated with marine sponges. PMID:26026948

  9. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    PubMed Central

    Butzin, Xuan Yi; Troiano, Anthony J.; Coleman, William H.; Griffiths, Keren K.; Doona, Christopher J.; Feeherry, Florence E.; Wang, Guiwen; Li, Yong-qing

    2012-01-01

    As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca2+ divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP+ spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores' inner membrane. PMID:22904285

  10. Germination of Spores of Bacillus Species: What We Know and Do Not Know

    PubMed Central

    2014-01-01

    Spores of Bacillus species can remain in their dormant and resistant states for years, but exposure to agents such as specific nutrients can cause spores' return to life within minutes in the process of germination. This process requires a number of spore-specific proteins, most of which are in or associated with the inner spore membrane (IM). These proteins include the (i) germinant receptors (GRs) that respond to nutrient germinants, (ii) GerD protein, which is essential for GR-dependent germination, (iii) SpoVA proteins that form a channel in spores' IM through which the spore core's huge depot of dipicolinic acid is released during germination, and (iv) cortex-lytic enzymes (CLEs) that degrade the large peptidoglycan cortex layer, allowing the spore core to take up much water and swell, thus completing spore germination. While much has been learned about nutrient germination, major questions remain unanswered, including the following. (i) How do nutrient germinants penetrate through spores' outer layers to access GRs in the IM? (ii) What happens during the highly variable and often long lag period between the exposure of spores to nutrient germinants and the commitment of spores to germinate? (iii) What do GRs and GerD do, and how do these proteins interact? (iv) What is the structure of the SpoVA channel in spores' IM, and how is this channel gated? (v) What is the precise state of the spore IM, which has a number of novel properties even though its lipid composition is very similar to that of growing cells? (vi) How is CLE activity regulated such that these enzymes act only when germination has been initiated? (vii) And finally, how does the germination of spores of clostridia compare with that of spores of bacilli? PMID:24488313

  11. Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination.

    PubMed

    Barkal, Layla J; Walsh, Naomi M; Botts, Michael R; Beebe, David J; Hull, Christina M

    2016-05-16

    Germination of spores into actively growing cells is a process essential for survival and pathogenesis of many microbes. Molecular mechanisms governing germination, however, are poorly understood in part because few tools exist for evaluating and interrogating the process. Here, we introduce an assay that leverages developments in microfluidic technology and image processing to quantitatively measure germination with unprecedented resolution, assessing both individual cells and the population as a whole. Using spores from Cryptococcus neoformans, a leading cause of fatal fungal disease in humans, we developed a platform to evaluate spores as they undergo morphological changes during differentiation into vegetatively growing yeast. The assay uses pipet-accessible microdevices that can be arrayed for efficient testing of diverse microenvironmental variables, including temperature and nutrients. We discovered that temperature influences germination rate, a carbon source alone is sufficient to induce germination, and the addition of a nitrogen source sustains it. Using this information, we optimized the assay for use with fungal growth inhibitors to pinpoint stages of germination inhibition. Unexpectedly, the clinical antifungal drugs amphotericin B and fluconazole did not significantly alter the process or timing of the transition from spore to yeast, indicating that vegetative growth and germination are distinct processes in C. neoformans. Finally, we used the high temporal resolution of the assay to determine the precise defect in a slow-germination mutant. Combining advances in microfluidics with a robust fungal molecular genetic system allowed us to identify and alter key temporal, morphological, and molecular events that occur during fungal germination. PMID:27026574

  12. Visualizing antibody affinity maturation in germinal centers.

    PubMed

    Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; Meyer-Hermann, Michael; Victora, Gabriel D

    2016-03-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  13. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. PMID:26095078

  14. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists.

    PubMed

    Nakagawa, Yuko; Nagasawa, Masahiro; Mogami, Hideo; Lohse, Martin; Ninomiya, Yuzo; Kojima, Itaru

    2013-01-01

    The sweet taste receptor is expressed in the taste bud and is activated by numerous sweet molecules with diverse chemical structures. It is, however, not known whether these sweet agonists induce a similar cellular response in target cells. Using MIN6 cells, a pancreatic β-cell line expressing endogenous sweet taste receptor, we addressed this question by monitoring changes in cytoplasmic Ca2+ ([Ca2+]i) and cAMP ([cAMP]i) induced by four sweet taste receptor agonists. Glycyrrhizin evoked sustained elevation of [Ca2+]i but [cAMP]i was not affected. Conversely, an artificial sweetener saccharin induced sustained elevation of [cAMP]i but did not increase [Ca2+]i. In contrast, sucralose and acesulfame K induced rapid and sustained increases in both [Ca2+]i and [cAMP]i. Although the latter two sweeteners increased [Ca2+]i and [cAMP]i, their actions were not identical: [Ca2+]i response to sucralose but not acesulfame K was inhibited by gurmarin, an antagonist of the sweet taste receptor which blocks the gustducin-dependent pathway. In addition, [Ca2+]i response to acesulfame K but not to sucralose was resistant to a Gq inhibitor. These results indicate that four types of sweeteners activate the sweet taste receptor differently and generate distinct patterns of intracellular signals. The sweet taste receptor has amazing multimodal functions producing multiple patterns of intracellular signals. PMID:23933592

  15. IMGT/HighV-QUEST Statistical Significance of IMGT Clonotype (AA) Diversity per Gene for Standardized Comparisons of Next Generation Sequencing Immunoprofiles of Immunoglobulins and T Cell Receptors.

    PubMed

    Aouinti, Safa; Malouche, Dhafer; Giudicelli, Véronique; Kossida, Sofia; Lefranc, Marie-Paule

    2015-01-01

    The adaptive immune responses of humans and of other jawed vertebrate species (gnasthostomata) are characterized by the B and T cells and their specific antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR) (up to 2.1012 different IG and TR per individual). IMGT, the international ImMunoGeneTics information system (http://www.imgt.org), was created in 1989 by Marie-Paule Lefranc (Montpellier University and CNRS) to manage the huge and complex diversity of these antigen receptors. IMGT built on IMGT-ONTOLOGY concepts of identification (keywords), description (labels), classification (gene and allele nomenclature) and numerotation (IMGT unique numbering), is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. IMGT/HighV-QUEST, the first web portal, and so far the only one, for the next generation sequencing (NGS) analysis of IG and TR, is the paradigm for immune repertoire standardized outputs and immunoprofiles of the adaptive immune responses. It provides the identification of the variable (V), diversity (D) and joining (J) genes and alleles, analysis of the V-(D)-J junction and complementarity determining region 3 (CDR3) and the characterization of the 'IMGT clonotype (AA)' (AA for amino acid) diversity and expression. IMGT/HighV-QUEST compares outputs of different batches, up to one million nucleotide sequencesfor the statistical module. These high throughput IG and TR repertoire immunoprofiles are of prime importance in vaccination, cancer, infectious diseases, autoimmunity and lymphoproliferative disorders, however their comparative statistical analysis still remains a challenge. We present a standardized statistical procedure to analyze IMGT/HighV-QUEST outputs for the evaluation of the significance of the IMGT clonotype (AA) diversity differences in proportions, per gene of a given group, between NGS IG and TR repertoire immunoprofiles. The procedure is generic and

  16. Whole Genome Wide Expression Profiles on Germination of Verticillium dahliae Microsclerotia

    PubMed Central

    Tao, Fei; Cui, Qian; Xu, Xiangming; Shang, Wenjing; Hu, Xiaoping

    2014-01-01

    Verticillium dahliae is a fungal pathogen causing Verticillium wilt on a range of economically important crops. Microsclerotia are its main survival and dormancy structures and serve as the primary inoculum on many hosts. Studies were conducted to determine the effect of temperature (5 to 50°C), pH (2 to 12) and nutrient regimes on microsclerotia germination. The optimal condition for microsclerotium germination was 20°C with pH 8.0 whereas nutrient regimes had no significant effect on its germination. The whole genome wide expression profiles during microsclerotium germination were characterized using the Illumina sequencing technology. Approximately 7.4 million of 21-nt cDNA tags were sequenced in the cDNA libraries derived from germinated and non-germinated microsclerotia. About 3.9% and 2.3% of the unique tags were up-regulated and down-regulated at least five-fold, respectively, in the germinated microsclerotia compared with the non-germinated microsclerotia. A total of 1654 genes showing differential expression were identified. Genes that are likely to have played important roles in microsclerotium germination include those encoding G-protein coupled receptor, lipase/esterase, cyclopentanone 1,2-monooxygenase, H(+)/hexose cotransporter 1, fungal Zn(2)-Cys(6) binuclear cluster domain, thymus-specific serine protease, glucan 1,3-beta-glucosidase, and alcohol dehydrogenase. These genes were mainly up-regulated or down-regulated only in germinated microsclerotia, compared with non-germinated microsclerotia. The differential expression of genes was confirmed by qRT-PCR analysis of 20 randomly selected genes from the 40 most differentially expressed genes. PMID:24927478

  17. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity.

    PubMed

    Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T

    2016-04-01

    Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960

  18. Genetic Requirements for Induction of Germination of Spores of Bacillus subtilis by Ca2+-Dipicolinate

    PubMed Central

    Paidhungat, Madan; Ragkousi, Katerina; Setlow, Peter

    2001-01-01

    Dormant Bacillus subtilis spores can be induced to germinate by nutrients, as well as by nonmetabolizable chemicals, such as a 1:1 chelate of Ca2+ and dipicolinic acid (DPA). Nutrients bind receptors in the spore, and this binding triggers events in the spore core, including DPA excretion and rehydration, and also activates hydrolysis of the surrounding cortex through mechanisms that are largely unknown. As Ca2+-DPA does not require receptors to induce spore germination, we asked if this process utilizes other proteins, such as the putative cortex-lytic enzymes SleB and CwlJ, that are involved in nutrient-induced germination. We found that Ca2+-DPA triggers germination by first activating CwlJ-dependent cortex hydrolysis; this mechanism is different from nutrient-induced germination where cortex hydrolysis is not required for the early germination events in the spore core. Nevertheless, since nutrients can induce release of the spore's DPA before cortex hydrolysis, we examined if the DPA excreted from the core acts as a signal to activate CwlJ in the cortex. Indeed, endogenous DPA is required for nutrient-induced CwlJ activation and this requirement was partially remedied by exogenous Ca2+-DPA. Our findings thus define a mechanism for Ca2+-DPA-induced germination and also provide the first definitive evidence for a signaling pathway that activates cortex hydrolysis in response to nutrients. PMID:11466292

  19. Seed Development and Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  20. A joining-diversity-joining complex generated by inversion mechanism and a variable-diversity complex in the beta-chain gene of the human T-cell receptor.

    PubMed Central

    Ikuta, K; Ogura, T; Shimizu, A; Honjo, T

    1986-01-01

    We have analysed an inactive allele of the beta-chain gene of the T-cell receptor in a human T-cell line HPB-ALL. Comparison with germline sequences showed that HPB-ALL has a joining (J)-diversity (D)-J complex recombined in head-to-head configuration and a variable (V)-D complex in tail-to-tail configuration. These results demonstrate that the inversion mechanism functions in the beta-chain gene of the T-cell receptor. The presence of the V-D complex suggests that V-D recombination could occur prior to D-J recombination although there is no definite proof that the V-D complex is an intermediate to form the V-D-J complex. Images PMID:3487774

  1. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis

    PubMed Central

    Jones, C.A.; Padula, N.L.; Setlow, P.

    2005-01-01

    Aims To elucidate the factors influencing the sensitivity of Bacillus subtilis spores to killing and disruption by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. Methods and Results Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. Conclusions Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore’s cortex-lytic enzymes. Significance and Importance This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion. PMID:16313421

  2. Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils.

    PubMed

    Qin, Yuan; Wysocki, Ronald J; Somogyi, Arpad; Feinstein, Yelena; Franco, Jessica Y; Tsukamoto, Tatsuya; Dunatunga, Damayanthi; Levy, Clara; Smith, Steven; Simpson, Robert; Gang, David; Johnson, Mark A; Palanivelu, Ravishankar

    2011-12-01

    Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultra-high resolution electrospray ionization (ESI), Fourier-transform ion cyclotron resonance (FT-ICR) and MS/MS techniques to accurately determine the mass (202.126 Da) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 μm stimulated approximately 50% germination) and elicit accession-specific response. Although N-methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen. PMID:21801250

  3. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  4. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E

    PubMed Central

    Kapeller, Johannes; Möller, Dorothee; Lasitschka, Felix; Autschbach, Frank; Hovius, Ruud; Rappold, Gudrun; Brüss, Michael; Gershon, Michael D.

    2011-01-01

    Since the first description of 5-HT3 receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed immunocytochemistry to locate the 5-HT3A as well as the 5-HT3C, 5-HT3D, and 5-HT3E subunits within the human colon. Western blot analysis was used to confirm subunit expression, and RT-PCR was employed to detect transcripts encoding 5-HT3 receptor subunits in microdissected tissue samples. This investigation revealed, for the first time, that 5-HT3C, 5-HT3D, and 5-HT3E subunits are coexpressed with 5-HT3A in cell bodies of myenteric neurons. Furthermore, 5-HT3A and 5-HT3D were found to be expressed in submucosal plexus of the human large intestine. These data provide a strong basis for future studies of the roles that specific 5-HT3 receptor subtypes play in the function of the enteric and central nervous systems and the contribution that specific 5-HT3 receptors make to the pathophysiology of gastrointestinal disorders such as irritable bowel syndrome and dyspepsia. PMID:21192076

  5. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions. PMID:27103455

  6. Single Molecule Analysis of Functionally Asymmetric G Protein-coupled Receptor (GPCR) Oligomers Reveals Diverse Spatial and Structural Assemblies*♦

    PubMed Central

    Jonas, Kim C.; Fanelli, Francesca; Huhtaniemi, Ilpo T.; Hanyaloglu, Aylin C.

    2015-01-01

    Formation of G protein-coupled receptors (GPCRs) into dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. We present a super-resolution imaging approach, resolving single GPCR molecules to ∼8 nm resolution in functional asymmetric dimers and oligomers using dual-color photoactivatable dyes and localization microscopy (PD-PALM). PD-PALM of two functionally defined mutant luteinizing hormone receptors (LHRs), a ligand-binding deficient receptor (LHRB−) and a signaling-deficient (LHRS−) receptor, which only function via intermolecular cooperation, favored oligomeric over dimeric formation. PD-PALM imaging of trimers and tetramers revealed specific spatial organizations of individual protomers in complexes where the ratiometric composition of LHRB− to LHRS− modulated ligand-induced signal sensitivity. Structural modeling of asymmetric LHR oligomers strongly aligned with PD-PALM-imaged spatial arrangements, identifying multiple possible helix interfaces mediating inter-protomer associations. Our findings reveal that diverse spatial and structural assemblies mediating GPCR oligomerization may acutely fine-tune the cellular signaling profile. PMID:25516594

  7. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested. Mean... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination. 201.63 Section 201.63 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  8. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested. Mean... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination. 201.63 Section 201.63 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  9. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested. Mean... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination. 201.63 Section 201.63 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  10. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested. Mean... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination. 201.63 Section 201.63 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  11. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested. Mean... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination. 201.63 Section 201.63 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  12. Structural and functional analysis of the GerD spore germination protein of Bacillus species.

    PubMed

    Li, Yunfeng; Jin, Kai; Ghosh, Sonali; Devarakonda, Parvathimadhavi; Carlson, Kristina; Davis, Andrew; Stewart, Kerry-Ann V; Cammett, Elizabeth; Pelczar Rossi, Patricia; Setlow, Barbara; Lu, Min; Setlow, Peter; Hao, Bing

    2014-05-01

    Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activation of downstream germination events. The 121-residue core polypeptide of GerD (GerD⁶⁰⁻¹⁸⁰) from Geobacillus stearothermophilus forms a stable α-helical trimer in aqueous solution. The 2.3-Å-resolution crystal structure of the trimer reveals a neatly twisted superhelical rope, with unusual supercoiling induced by parallel triple-helix interactions. The overall geometry comprises three interleaved hydrophobic screws of interacting helices linked by short turns that have not been seen before. Using complementation analysis in a series of Bacillus subtilis gerD mutants, we demonstrated that alterations in the GerD trimer structure have profound effects on nutrient germination. This important structure-function relationship of trimeric GerD is supported by our identification of a dominant negative gerD mutation in B. subtilis. These results and those of others lead us to propose that GerD mediates clustering of germination proteins in the inner membrane of dormant spores and thus promotes the rapid and cooperative germination response to nutrients. PMID:24530795

  13. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    PubMed Central

    Kong, Lingbo; Doona, Christopher J.; Setlow, Peter

    2014-01-01

    Germination of Bacillus spores with a high pressure (HP) of ∼150 MPa is via activation of spores' germinant receptors (GRs). The HP germination of multiple individual Bacillus subtilis spores in a diamond anvil cell (DAC) was monitored with phase-contrast microscopy. Major conclusions were that (i) >95% of wild-type spores germinated in 40 min in a DAC at ∼150 MPa and 37°C but individual spores' germination kinetics were heterogeneous; (ii) individual spores' HP germination kinetic parameters were similar to those of nutrient-triggered germination with a variable lag time (Tlag) prior to a period of the rapid release (ΔTrelease) of the spores' dipicolinic acid in a 1:1 chelate with Ca2+ (CaDPA); (iii) spore germination at 50 MPa had longer average Tlag values than that at ∼150 MPa, but the ΔTrelease values at the two pressures were identical and HPs of <10 MPa did not induce germination; (iv) B. subtilis spores that lacked the cortex-lytic enzyme CwlJ and that were germinated with an HP of 150 MPa exhibited average ΔTrelease values ∼15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and (v) the germination of wild-type spores given a ≥30-s 140-MPa HP pulse followed by a constant pressure of 1 MPa was the same as that of spores exposed to a constant pressure of 140 MPa that was continued for ≥35 min; (vi) however, after short 150-MPa HP pulses and incubation at 0.1 MPa (ambient pressure), spore germination stopped 5 to 10 min after the HP was released. These results suggest that an HP of ∼150 MPa for ≤30 s is sufficient to fully activate spores' GRs, which remain activated at 1 MPa but can deactivate at ambient pressure. PMID:24162576

  14. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicargo sativa L.) using Genotyping by Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : In this study, we used a diverse panel of alfalfa accessions to identify molecular markers associated with salt tolerance during germination by genome-wide association (GWA) mapping and genotyping-by-sequencing (GBS). Three levels of salt treatments were applied during seed germination. Phenotypic...

  15. Defining the Biological Domain of Applicability of Adverse Outcome Pathways Across Diverse Species: The Estrogen Receptor/Aromatase Case Study

    EPA Science Inventory

    Aromatase inhibitors (e.g. fadrozole, prochloraz) and estrogen receptor antagonists (e.g. tamoxifen) reduce the circulating concentration of 17β-estradiol, leading to reproductive dysfunction in affected organisms. While these toxic effects are well-characterized in fish and...

  16. Engrafted maternal T cells in a severe combined immunodeficiency patient express T-cell receptor variable beta segments characterized by a restricted V-D-J junctional diversity.

    PubMed

    Sottini, A; Quiròs-Roldan, E; Notarangelo, L D; Malagoli, A; Primi, D; Imberti, L

    1995-04-15

    To better understand the peculiar functional behavior of engrafted maternal T cells in a severe combined immunodeficiency (SCID) patient, we characterized, at the molecular level, the T-cell repertoire of a SCID child with a high number of engrafted, mature, activated lymphocytes. We found that, although these transplacentally acquired T cells express a random set of T-cell receptor variable beta (TCRBV) segments, the TCRBV transcripts are characterized by an extremely restricted V-D-J junctional diversity. Only a few cDNA clones were dominant among the TCRBV4+, TCRBV6+, and TCRBV20+ populations in engrafted cells, whereas the same TCRBV chains expressed by the mother's lymphocytes had the expected junctional hetero-geneity. Highly diverse and polyclonal junctions were also expressed by maternal cells activated in mixed lymphocyte reaction by Epstein-Barr virus (EBV)-transformed B lymphocytes from the patient, indicating that the strong clonal selection that characterizes the engrafted cells repertoire is probably not due to allorecognition. Furthermore, we report that the repertoire of the transplacentally acquired lymphocytes is dynamic over time and is characterized by waves of expression and contraction of selected clones, expressing different TCRBV segments. These results help to explain some of the abnormal functional behaviors of engrafted maternal cells and raise new questions regarding the mechanisms responsible for the restricted clonal diversity. PMID:7718881

  17. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    PubMed Central

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  18. In vitro study on effect of germinated wheat on human breast cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigated the possible anti-cancer effects of germinated wheat flours (GWF) on cell growth and apoptosis of human breast cancer cells. In a series of in vitro experiments, estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) cells were cultured and treated with GWF that wer...

  19. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DELLA repression of Arabidopsis seed germination can be lifted through the ubiquitin-proteasome pathway and proteolysis-independent GA signaling. GA-binding to the GID1 (GIBBERELLIN-INSENSITIVE DWARF1) GA receptors stimulates GID1-GA-DELLA complex formation which in turn triggers DELLA protein ubiq...

  20. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds

    PubMed Central

    2013-01-01

    Background Toll-like receptors (TLRs) belong to the innate immune system and are a major class of pattern recognition receptors representing the first line of the innate immune response. The TLR molecule is structurally composed by an ectodomain that contains leucine rich repeats (LRRs) that interact with pathogen associated molecular patterns (PAMPs), a transmembrane domain and a conserved cytoplasmic domain designated TIR (Toll-IL1 receptor) that is responsible for the intracellular signaling. TLR3 has been associated with the direct recognition of double-stranded viral RNA resulting from viral replication, while TLR7 and TLR8 target single-stranded viral RNA. In the European rabbit (Oryctolagus cuniculus), TLR7 and TLR8 were reported to be absent and pseudogenised, respectively, making TLR3 the only available TLR for the recognition of viral RNA. Thus, the levels of diversity of TLR3 were evaluated in the European rabbit by analysing different genetic backgrounds and exposure to pathogen pressures. Results We detected 41 single nucleotide polymorphisms (SNPs) in the coding sequence of TLR3. The highest diversity was observed in the wild populations of Iberian Peninsula, between 22–33 polymorphic positions. In the French population, 18 SNPs were observed and only 4 polymorphic positions were detected in the domestic breeds. 14 non-synonymous substitutions were observed, most of them in the LRR molecules. The remaining were scattered across the transmembrane and TIR domains. Conclusion The study of TLR3 in European rabbit populations might be relevant to understand the interplay between RNA viruses and innate immunity. Wild rabbit populations presented more diversity than domestic breeds and other mammals previously studied. This might be linked to the absence of population bottlenecks during their evolution and to the almost inexistence of man-mediated selection. The observed variability might have also been potentiated by the contact of the wild populations

  1. LDL Receptor-related Protein 1 Regulates the Abundance of Diverse Cell-signaling Proteins in the Plasma Membrane Proteome

    PubMed Central

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F.; Gonias, Steven L.

    2010-01-01

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, which are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 co-immunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not co-immunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome. PMID:20919742

  2. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. PMID:27085178

  3. Presynaptic Inhibition of Diverse Afferents to the Locus Coeruleus by Kappa Opiate Receptors: a Novel Mechanism for Regulating the Central Norepinephrine System

    PubMed Central

    Kreibich, Arati S.; Reyes, Beverly A. S.; Curtis, Andre L.; Ecke, Laurel; Chavkin, Charles; Van Bockstaele, Elisabeth J.; Valentino, Rita J.

    2008-01-01

    The norepinephrine nucleus, locus coeruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAA), corticotropin-releasing factor (CRF) and endogenous opioids acting at μ-opiate receptors. As the LC is also innervated by the endogenous κ-opiate receptor (κ-OR) ligand, dynorphin, and expresses κ-ORs, this study investigated κ-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of κ-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the κ-OR agonist, U50488, into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the κ-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that κ-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-NE system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate κ-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders or disorders characterized by abnormal sensory responses, such as autism. PMID:18562623

  4. Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin's lymphomas dampening natural killer cell functions

    PubMed Central

    Germain, Claire; Guillaudeux, Thierry; Galsgaard, Elisabeth D; Hervouet, Catherine; Tekaya, Nedra; Gallouet, Anne-Sophie; Fassy, Julien; Bihl, Franck; Poupon, Gwenola; Lazzari, Anne; Spee, Pieter; Anjuère, Fabienne; Pangault, Céline; Tarte, Karin; Tas, Patrick; Xerri, Luc; Braud, Veronique M

    2015-01-01

    Non-Hodgkin's lymphomas (NHLs) are malignant neoplasms which are clinically and biologically diverse. Their incidence is constantly increasing and despite treatment advances, there is a need for novel targeted therapies. Here, we identified Lectin-like transcript 1 (LLT1) as a biomarker of germinal center (GC)-derived B-cell NHLs. LLT1 identifies GC B cells in reactive tonsils and lymph nodes and its expression is maintained in B-cell NHLs which derive from GC, including Burkitt lymphoma (BL), follicular lymphoma (FL), and GC-derived diffuse large B-cell lymphoma (DLBCL). We further show that LLT1 expression by tumors dampens natural killer (NK) cell functions following interaction with its receptor CD161, uncovering a potential immune escape mechanism. Our results pinpoint LLT1 as a novel biomarker of GC-derived B-cell NHLs and as a candidate target for innovative immunotherapies. PMID:26405582

  5. Detection of genetic diversity and selection at the coding region of the melanocortin receptor 1 (MC1R) gene in Tibetan pigs and Landrace pigs.

    PubMed

    Liu, Rui; Jin, Long; Long, Keren; Chai, Jie; Ma, Jideng; Tang, Qianzi; Tian, Shilin; Hu, Yaodong; Lin, Ling; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2016-01-10

    Domestication and subsequent selective pressures have produced a large variety of pig coat colors in different regions and breeds. The melanocortin 1 receptor (MC1R) gene plays a crucial role in determining coat color of mammals. Here, we investigated genetic diversity and selection at the coding region of the porcine melanocortin receptor 1 (MC1R) in Tibetan pigs and Landrace pigs. By contrast, genetic variability was much lower in Landrace pigs than in Tibetan pigs. Meanwhile, haplotype analysis showed that Tibetan pigs possessed shared haplotypes, suggesting a possibility of recent introgression event by way of crossbreeding with neighboring domestic pigs or shared ancestral polymorphism. Additionally, we detected positive selection at the MC1R in both Tibetan pigs and Landrace pigs through the dN/dS analysis. These findings suggested that novel phenotypic change (dark coat color) caused by novel mutations may help Tibetan pigs against intensive solar ultraviolet (UV) radiation and camouflage in wild environment, whereas white coat color in Landrace were intentionally selected by human after domestication. Furthermore, both the phylogenetic analysis and the network analysis provided clues that MC1R in Asian and European wild boars may have initially experienced different selective pressures, and MC1R alleles diversified in modern domesticated pigs. PMID:26431999

  6. T Cell Receptor Sequencing Reveals the Clonal Diversity and Overlap of Colonic Effector and FOXP3+ T Cells in Ulcerative Colitis

    PubMed Central

    Lord, James; Chen, Janice; Thirlby, Richard C.; Sherwood, Anna M.; Carlson, Christopher S.

    2015-01-01

    Background & Aims FOXP3+ regulatory T cell (Tregs) prevent inflammation, but are paradoxically increased in ulcerative colitis (UC). Local T cell activation has been hypothesized to account for increased FOXP3 expression in colon lamina propria (LP) T cells. Methods To see if human FOXP3+ LP T cells are an activated fraction of otherwise FOXP3− effector T cells (Teff) and explore their clonal diversity in health and disease, we deep sequenced clonally unique T cell receptor (TCR) hypervariable regions of FOXP3+ and FOXP3− CD4+ T cell subpopulations from inflamed versus non-inflamed colon LP or mesenteric lymph nodes (MLN) of patients with or without UC. Results The clonal diversity of each LP T cell population was no different between patients with versus without UC. Repertoire overlap was only seen between a minority of FOXP3+ and FOXP3− cells, including recently activated CD38+ cells and Th17-like CD161+ Teff, but this repertoire overlap was no different between patients with versus without UC, and was no larger than the overlap between Helios− and Helios+ FOXP3+ cells. Conclusions Thus, at steady state, only a minority of FOXP3+, and particularly Helios+, T cells share a TCR sequence with FOXP3− effector populations in the colon LP, even in UC, revealing distinct clonal origins for LP Tregs and effector T cells in humans. PMID:25437819

  7. Photocontrol of the Germination of Onoclea Spores

    PubMed Central

    Towill, Leslie R.; Ikuma, Hiroshi

    1973-01-01

    Light stimulates the germination of spores of the fern Onoclea sensibilis L. At high dosages, broad band red, far red, and blue light promote maximal germination. Maximal sensitivity to these spectral regions is attained from 6 to 48 hours of dark presoaking, and all induced rapid germination after a lag of 30 to 36 hours. Maximal germination is attained approximately 70 hours after irradiation. Dose response curves suggest log linearity. The action spectrum to cause 50% germination shows that spores are most sensitive to irradiation in the red region (620-680 nm) with an incident energy less than 1000 ergs cm−2; sensitivity decreases towards both shorter and longer wavelengths. Although the action spectrum is suggestive of phytochrome involvement, photoreversibility of germination between red and far red light has not been demonstrated with Onoclea spores. An absorption spectrum of the intact spores reveals the presence of chlorophylls and carotenoids. Since the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea does not inhibit germination, it is concluded that photosynthesis does not play a role in the germination process. PMID:16658448

  8. 7 CFR 201.6 - Germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... include the records of all laboratory tests for germination and hard seed for each lot of seed offered for... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination. 201.6 Section 201.6 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  9. 7 CFR 201.20 - Germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... germination for each kind or kind and variety or kind and type of kind and hybrid of agricultural seed present... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination. 201.20 Section 201.20 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  10. 7 CFR 201.20 - Germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... germination for each kind or kind and variety or kind and type of kind and hybrid of agricultural seed present... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination. 201.20 Section 201.20 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  11. 7 CFR 201.6 - Germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... include the records of all laboratory tests for germination and hard seed for each lot of seed offered for... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination. 201.6 Section 201.6 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  12. 7 CFR 201.20 - Germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... germination for each kind or kind and variety or kind and type of kind and hybrid of agricultural seed present... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination. 201.20 Section 201.20 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  13. 7 CFR 201.6 - Germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... include the records of all laboratory tests for germination and hard seed for each lot of seed offered for... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination. 201.6 Section 201.6 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  14. 7 CFR 201.20 - Germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... germination each kind, or kind and variety, or kind and type, or kind and hybrid of agricultural seed present... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination. 201.20 Section 201.20 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  15. 7 CFR 201.6 - Germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... include the records of all laboratory tests for germination and hard seed for each lot of seed offered for... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination. 201.6 Section 201.6 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  16. 7 CFR 201.20 - Germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... germination each kind, or kind and variety, or kind and type, or kind and hybrid of agricultural seed present... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination. 201.20 Section 201.20 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  17. 7 CFR 201.6 - Germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... include the records of all laboratory tests for germination and hard seed for each lot of seed offered for... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination. 201.6 Section 201.6 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED...

  18. Oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  19. A Study of Germination Inhibition in Fruits.

    ERIC Educational Resources Information Center

    Gill, John

    1982-01-01

    Describes a method for the extraction and bioassay of natural germination inhibitors, requiring only inexpensive equipment and minimal experimental skill. The method has been used to demonstrate qualitative/quantitative differences in germination inhibitor levels in a variety of different fruits or in different tissues within a single fruit.…

  20. Germinated wheat: Phytochemical composition and mixing characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germinated grain recently attracts interest due to its beneficial effect on human health. In this research, whole wheat flour samples obtained after three days and five days of germination were analyzed for biochemical components, mixing quality, and effects on human breast cancer cells. Germinati...

  1. Oxygen requirement of germinating flax seeds

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  2. Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation

    PubMed Central

    Romero-Camarero, Isabel; Jiang, Xiaoyu; Natkunam, Yasodha; Lu, Xiaoqing; Vicente-Dueñas, Carolina; Gonzalez-Herrero, Ines; Flores, Teresa; Garcia, Juan Luis; McNamara, George; Kunder, Christian; Zhao, Shuchun; Segura, Victor; Fontan, Lorena; Martínez-Climent, Jose A.; García-Criado, Francisco Javier; Theis, Jason D.; Dogan, Ahmet; Campos-Sánchez, Elena; Green, Michael R.; Alizadeh, Ash A.; Cobaleda, Cesar; Sánchez-García, Isidro; Lossos, Izidore S.

    2012-01-01

    The human germinal centre associated lymphoma (HGAL) gene is specifically expressed in germinal centre B-lymphocytes and germinal centre-derived B-cell lymphomas, but its function is largely unknown. Here we demonstrate that HGAL directly binds Syk in B-cells, increases its kinase activity upon B-cell receptor stimulation and leads to enhanced activation of Syk downstream effectors. To further investigate these findings in vivo, HGAL transgenic mice were generated. Starting from 12 months of age these mice developed polyclonal B-cell lymphoid hyperplasia, hypergammaglobulinemia and systemic reactive AA amyloidosis, leading to shortened survival. The lymphoid hyperplasia in the HGAL transgenic mice are likely attributable to enhanced B-cell receptor signalling as shown by increased Syk phosphorylation, ex vivo B-cell proliferation and increased RhoA activation. Overall, our study shows for the first time that the germinal centre protein HGAL regulates B-cell receptor signalling in B-lymphocytes which, without appropriate control, may lead to B-cell lymphoproliferation. PMID:23299888

  3. Evolutionarily conserved paired immunoglobulin-like receptor α (PILRα) domain mediates its interaction with diverse sialylated ligands.

    PubMed

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B; Gonzalez, Lino C; Hass, Philip E; Zarrin, Ali A

    2012-05-01

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed. PMID:22396535

  4. Evolutionarily Conserved Paired Immunoglobulin-like Receptor α (PILRα) Domain Mediates Its Interaction with Diverse Sialylated Ligands

    PubMed Central

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K.; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B.; Gonzalez, Lino C.; Hass, Philip E.; Zarrin, Ali A.

    2012-01-01

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed. PMID:22396535

  5. Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family.

    PubMed

    Stoffel, R H; Randall, R R; Premont, R T; Lefkowitz, R J; Inglese, J

    1994-11-11

    GRK6, a 66-kDa serine/threonine protein kinase, is a recently identified member of the G protein-coupled receptor kinase (GRK) family. GRKs are involved in the phosphorylation of seven-transmembrane receptors, a process mediating desensitization of signal transduction. An important feature of these enzymes is their membrane-associated nature, which for some members is stimulus-dependent. The structural basis for this membrane association previously has been shown in different members of the GRK family to include isoprenylation, G protein beta gamma-binding domains, and basic regions to provide electrostatic interactions with phospholipids. We provide evidence that another mechanism includes fatty acid acylation. GRK6, but not other GRKs tested, incorporated tritium after incubation with [3H]palmitate in Sf9 and in COS-7 cells overexpressing the kinase. The incorporated radioactivity was released from the protein by neutral hydroxylamine, indicating the presence of a thioester bond, and was confirmed as palmitic acid by high performance liquid chromatography analysis. Site-directed mutagenesis defined the region of palmitate attachment as a cluster of 3 cysteines (Cys561, Cys562, and Cys565) in the carboxyl-terminal domain of the kinase, consistent with the location of the membrane targeting domains of GRKs 1, 2, 3, and 5. Palmitoylation of GRK6 appears essential for membrane association, since palmitoylated kinase was found only in the membrane fraction. This lipid modification provides a structural basis for potential regulation of the subcellular distribution of GRK6 through acylation/deacylation cycles. PMID:7961702

  6. Small RNA mediated regulation of seed germination

    PubMed Central

    Das, Shabari Sarkar; Karmakar, Prakash; Nandi, Asis Kumar; Sanan-Mishra, Neeti

    2015-01-01

    Mature seeds of most of the higher plants harbor dormant embryos and go through the complex process of germination under favorable environmental conditions. The germination process involves dynamic physiological, cellular and metabolic events that are controlled by the interplay of several gene products and different phytohormones. The small non-coding RNAs comprise key regulatory modules in the process of seed dormancy and germination. Recent studies have implicated the small RNAs in plant growth in correlation with various plant physiological processes including hormone signaling and stress response. In this review we provide a brief overview of the regulation of seed germination or dormancy while emphasizing on the current understanding of the role of small RNAs in this regard. We have also highlighted specific examples of stress responsive small RNAs in seed germination and discussed their future potential. PMID:26528301

  7. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus

    PubMed Central

    Hatzig, Sarah V.; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J.

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana. PMID:25914704

  8. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.

    PubMed

    Hatzig, Sarah V; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana. PMID:25914704

  9. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth

    PubMed Central

    Weingarden, Alexa R.; Dosa, Peter I.; DeWinter, Erin; Steer, Clifford J.; Shaughnessy, Megan K.; Johnson, James R.; Khoruts, Alexander; Sadowsky, Michael J.

    2016-01-01

    Fecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI), but its mechanisms remain poorly understood. Emerging evidence suggests that gut bile acids have significant influence on the physiology of C. difficile, and therefore on patient susceptibility to recurrent infection. We analyzed spore germination of 10 clinical C. difficile isolates exposed to combinations of bile acids present in patient feces before and after FMT. Bile acids at concentrations found in patients’ feces prior to FMT induced germination of C. difficile, although with variable potency across different strains. However, bile acids at concentrations found in patients after FMT did not induce germination and inhibited vegetative growth of all C. difficile strains. Sequencing of the newly identified germinant receptor in C. difficile, CspC, revealed a possible correspondence of variation in germination responses across isolates with mutations in this receptor. This may be related to interstrain variability in spore germination and vegetative growth in response to bile acids seen in this and other studies. These results support the idea that intra-colonic bile acids play a key mechanistic role in the success of FMT, and suggests that novel therapeutic alternatives for treatment of R-CDI may be developed by targeted manipulation of bile acid composition in the colon. PMID:26789728

  10. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth.

    PubMed

    Weingarden, Alexa R; Dosa, Peter I; DeWinter, Erin; Steer, Clifford J; Shaughnessy, Megan K; Johnson, James R; Khoruts, Alexander; Sadowsky, Michael J

    2016-01-01

    Fecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI), but its mechanisms remain poorly understood. Emerging evidence suggests that gut bile acids have significant influence on the physiology of C. difficile, and therefore on patient susceptibility to recurrent infection. We analyzed spore germination of 10 clinical C. difficile isolates exposed to combinations of bile acids present in patient feces before and after FMT. Bile acids at concentrations found in patients' feces prior to FMT induced germination of C. difficile, although with variable potency across different strains. However, bile acids at concentrations found in patients after FMT did not induce germination and inhibited vegetative growth of all C. difficile strains. Sequencing of the newly identified germinant receptor in C. difficile, CspC, revealed a possible correspondence of variation in germination responses across isolates with mutations in this receptor. This may be related to interstrain variability in spore germination and vegetative growth in response to bile acids seen in this and other studies. These results support the idea that intra-colonic bile acids play a key mechanistic role in the success of FMT, and suggests that novel therapeutic alternatives for treatment of R-CDI may be developed by targeted manipulation of bile acid composition in the colon. PMID:26789728

  11. Dose-Response Analysis of Factors Involved in Germination and Secondary Dormancy of Seeds of Sisymbrium officinale

    PubMed Central

    Hilhorst, Henk W. M.

    1990-01-01

    The germination of seeds of Sisymbrium officinale is light- and nitrate dependent. A close interaction between the effects of light and nitrate on germination has been reported previously (HWM Hilhorst, CM Karssen [1988] Plant Physiol 86: 591-597). In this study, a detailed dose-response analysis of the light-induced germination during induction of secondary dormancy is presented. Germination in water dropped from 90 to 0% after a dark incubation of 15°C of approximately 160 hours. In the presence of 25 millimolar KNO3, the decrease in germination level was delayed. At 24-hour intervals fluence-response curves were obtained in the presence of 25 millimolar KNO3. With increasing length of the preincubation period, fluence-response curves shifted along the abscissa to the right. After 120 hours the maximal germination level started to decline. The fluence-response curves were simulated by using formulations from receptor occupancy theory for a simple bimolecular reaction in which the reaction partners were Pfr and its tentative receptor X. A good simulation was obtained when cooperativity of the binding of Pfr to X was assumed. The experimental curve parameters could then be interpreted as binding parameters. PMID:16667801

  12. Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling.

    PubMed

    Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun

    2016-09-13

    Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa. PMID:27560203

  13. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.

    PubMed

    Sparks, Jackson T; Dickens, Joseph C

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents. PMID:27108454

  14. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    NASA Astrophysics Data System (ADS)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  15. Identification and characterization of T-cell antigen receptor-related genes in phylogenetically diverse vertebrate species.

    PubMed

    Rast, J P; Haire, R N; Litman, R T; Pross, S; Litman, G W

    1995-01-01

    Characterization of the structure, multiplicity, organization, and cell lineage-specific expression of T-cell receptor (TCR) genes of nonmammalian vertebrate species is central to the understanding of the evolutionary origins of rearranging genes of the vertebrate immune system. We recently described a polymerase chain reaction (PCR) strategy that relies on short sequence similarities shared by nearly all vertebrate TCR and immunoglobulin (Ig) variable (V) regions and have used this approach to isolate a TCR beta (TCRB) homolog from a cartilaginous fish. Using these short PCR products as probes in spleen cDNA and genomic libraries, we were able to isolate a variety of unique TCR and TCR-like genes. Here we report the identification and characterization of a chicken TCR gamma (TCRG) homolog, apparent Xenopus and pufferfish TCR alpha (TCRA) homologs, and two horned shark TCR delta (TCRD)-like genes. In addition, we have identified what could be a novel representative of the Ig gene superfamily in the pufferfish. This method of using short, minimally degenerate PCR primers should speed progress in the phylogenetic investigations of the TCR and related genes and lend important insights into both the origins and functions of these unique gene systems. PMID:7642232

  16. Photoinduced Seed Germination of Oenothera biennis L

    PubMed Central

    Ensminger, Peter A.; Ikuma, Hiroshi

    1987-01-01

    The photoinduction period of Oenothera biennis L. seed germination was analyzed by varying the photoinduction temperature and by substituting red light pulses for continuous red light. At 24°C, seeds require 36 hours of continuous red light for maximal percent germination. The optimal photoinduction temperature is 32°C, with higher and lower temperatures being strongly inhibitory. A 30 minute exposure to far-red light, given immediately after a red light period of 1 to 36 hours, reduces germination by about 25%. Seeds escape from far-red inhibition with a half-time of 5 to 10 hours, depending on the length of the red exposure that precedes the far-red light. Periodic 15 minute pulses of red light can substitute for continuous red light in stimulating germination. Ted red light pulses, with 6 hours of darkness between successive pulses, cause maximal germination. The response to periodic red light is fully reversible by far-red light. Probit analysis of the periodic light response shows that as the length of the dark periods between successive pulses increases, less incident light is needed to induce germination but the population variance in light sensitivity remains constant. Probit analysis of the temperature response shows that as the photoinduction temperature increases from 16 to 32°C, less incident light is needed to induce germination and the population variance in light sensitivity also increases. PMID:16665825

  17. Complex Antigens Drive Permissive Clonal Selection in Germinal Centers.

    PubMed

    Kuraoka, Masayuki; Schmidt, Aaron G; Nojima, Takuya; Feng, Feng; Watanabe, Akiko; Kitamura, Daisuke; Harrison, Stephen C; Kepler, Thomas B; Kelsoe, Garnett

    2016-03-15

    Germinal center (GC) B cells evolve toward increased affinity by a Darwinian process that has been studied primarily in genetically restricted, hapten-specific responses. We explored the population dynamics of genetically diverse GC responses to two complex antigens-Bacillus anthracis protective antigen and influenza hemagglutinin-in which B cells competed both intra- and interclonally for distinct epitopes. Preferred VH rearrangements among antigen-binding, naive B cells were similarly abundant in early GCs but, unlike responses to haptens, clonal diversity increased in GC B cells as early "winners" were replaced by rarer, high-affinity clones. Despite affinity maturation, inter- and intraclonal avidities varied greatly, and half of GC B cells did not bind the immunogen but nonetheless exhibited biased VH use, V(D)J mutation, and clonal expansion comparable to antigen-binding cells. GC reactions to complex antigens permit a range of specificities and affinities, with potential advantages for broad protection. PMID:26948373

  18. Role of Dipicolinic Acid in the Germination, Stability, and Viability of Spores of Bacillus subtilis▿

    PubMed Central

    Magge, Anil; Granger, Amanda C.; Wahome, Paul G.; Setlow, Barbara; Vepachedu, Venkata R.; Loshon, Charles A.; Peng, Lixin; Chen, De; Li, Yong-qing; Setlow, Peter

    2008-01-01

    Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE, CwlJ, was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most α/β-type small, acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores, in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination. PMID:18469099

  19. Complexity of the T cell receptor Cbeta isotypes in the Mexican axolotl: structure and diversity of the VDJCbeta3 and VDJCbeta4 chains.

    PubMed

    Fellah, J S; Durand, C; Kerfourn, F; Charlemagne, J

    2001-02-01

    We have reported previously the presence of two T cell receptor beta-chain constant region (Cbeta) isotypes in the Mexican axolotl. Specific Dbeta and Jbeta segments were present at the Vbeta-Cbeta1 and Vbeta-Cbeta2 junctions and nine Vbeta families which associate with both isotypes were characterized. This report describes two new Cbeta isotypes, Cbeta3 and Cbeta4. About 70 % of the amino acids in Cbeta3 are identical to Cbeta1 and Cbeta2. A Dbeta3 and a single Jbeta3 were found at the Vbeta-Cbeta3 junctions. The Dbeta3 consensus core sequence (TACGTGGCTACGTGGG) differs to all the presently known Dbeta and the CDR3beta loops of the Vbeta-Cbeta3 junctions (mean: 11.1 amino acids) contain a majority of aromatic, small hydrophobic and basic residues. The CDR3beta loops of the other isotypes are shorter (mean: 8.5 amino acids), contain a majority of acidic residues and very few aromatic residues. The axolotl Cbeta4 sequence has about 46 % similarity to Cbeta1, Cbeta2 and Cbeta3. Dbeta4 is identical to Dbeta2 and six new Jbeta segments are used at the Vbeta-Cbeta4 junctions. Four new families of Vbeta segments (Vbeta10-Vbeta13) are preferentially associated to Cbeta4. A strong selective pressure must operate in most vertebrates to preserve the structural stability of the extracellular part of the Cbeta chain. The four axolotl Cbeta seem to have evolved more freely, perhaps to favor the early emergence of a large diversity of T cell receptors in an amphibian species which is not fully immunocompetent before the 5th month of development. PMID:11180104

  20. Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer.

    PubMed

    Rangel, Leticia B A; Taraba, Jodi L; Frei, Christopher R; Smith, Lon; Rodriguez, Gladys; Kuhn, John G

    2014-12-01

    Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S. PMID:25395315

  1. Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer

    PubMed Central

    Rangel, Leticia B. A.; Taraba, Jodi L.; Frei, Christopher R.; Smith, Lon; Rodriguez, Gladys

    2015-01-01

    Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman® Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S. PMID:25395315

  2. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species.

    PubMed

    Reinišová, Markéta; Plachý, Jiří; Kučerová, Dana; Šenigl, Filip; Vinkler, Michal; Hejnar, Jiří

    2016-01-01

    J subgroup avian leukosis virus (ALV-J) infects domestic chicken, jungle fowl, and turkey and enters the host cell through a receptor encoded by tvj locus and identified as Na+/H+ exchanger 1 (NHE1). The resistance to ALV-J in a great majority of examined galliform species was explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of NHE1, and genetic polymorphisms around this site predict the susceptibility or resistance of a given species or individual. In this study, we examined the NHE1 polymorphism in domestic chicken breeds and documented quantitative differences in their susceptibility to ALV-J in vitro. In a panel of chicken breeds assembled with the aim to cover the maximum variability encountered in domestic chickens, we found a completely uniform sequence of NHE1 extracellular loop 1 (ECL1) without any source of genetic variation for the selection of ALV-J-resistant poultry. In parallel, we studied the natural polymorphisms of NHE1 in wild ducks and geese because of recent reports on ALV-J positivity in feral Asian species. In anseriform species, we demonstrate a specific and highly conserved critical ECL1 sequence without any homologue of tryptophan 38 in accordance with the resistance of duck cells to prototype ALV-J. Last, we demonstrated that the new Asian strains of ALV-J have not evolved their envelope glycoprotein to the entry the duck cells. Our results contribute substantially to the current discussion of possible heterotransmission of ALV-J and its spill-over into the wild ducks and geese. PMID:26978658

  3. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species

    PubMed Central

    Šenigl, Filip; Vinkler, Michal; Hejnar, Jiří

    2016-01-01

    J subgroup avian leukosis virus (ALV-J) infects domestic chicken, jungle fowl, and turkey and enters the host cell through a receptor encoded by tvj locus and identified as Na+/H+ exchanger 1 (NHE1). The resistance to ALV-J in a great majority of examined galliform species was explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of NHE1, and genetic polymorphisms around this site predict the susceptibility or resistance of a given species or individual. In this study, we examined the NHE1 polymorphism in domestic chicken breeds and documented quantitative differences in their susceptibility to ALV-J in vitro. In a panel of chicken breeds assembled with the aim to cover the maximum variability encountered in domestic chickens, we found a completely uniform sequence of NHE1 extracellular loop 1 (ECL1) without any source of genetic variation for the selection of ALV-J-resistant poultry. In parallel, we studied the natural polymorphisms of NHE1 in wild ducks and geese because of recent reports on ALV-J positivity in feral Asian species. In anseriform species, we demonstrate a specific and highly conserved critical ECL1 sequence without any homologue of tryptophan 38 in accordance with the resistance of duck cells to prototype ALV-J. Last, we demonstrated that the new Asian strains of ALV-J have not evolved their envelope glycoprotein to the entry the duck cells. Our results contribute substantially to the current discussion of possible heterotransmission of ALV-J and its spill-over into the wild ducks and geese. PMID:26978658

  4. The oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  5. Germination and elongation of flax in microgravity

    NASA Astrophysics Data System (ADS)

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-05-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax ( Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 μL) outperforming the 400 μL, and 320 μL volumes for percent germination (90.6%) and root growth (mean = 4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean = 2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.

  6. Germination and elongation of flax in microgravity

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-01-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Germination under Extreme Hypobaric and Hypoxic Environment

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hirofumi

    Is the agriculture on Mars without a pressured greenhouse dome possible? In order to inves-tigate a possibility of plant cultivation for the space agriculture on Mars, germination rate for six species of plant, Jute, Chrysanthemum, Komatsuna, Cucumber, Okra, and Eggplant under extreme hypobaric and hypoxic condition was measured. Oxygen partial pressure was 1kPa which was equal to 1/100 of normal earth atmosphere. Seeds of Jute and Cucumber were able to germinate in six species. In the case of Jute, germination rate under the oxygen partial pressure of 1kPa was very high, 70

  8. Heat shock effects on seed germination of five Brazilian savanna species.

    PubMed

    Ribeiro, L C; Pedrosa, M; Borghetti, F

    2013-01-01

    Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T(50) ) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds. PMID:22672775

  9. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination.

    PubMed

    Zhao, Qi; Gao, Jing; Suo, Jinwei; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2015-01-01

    Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern

  10. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination

    PubMed Central

    Zhao, Qi; Gao, Jing; Suo, Jinwei; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2015-01-01

    Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern

  11. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    PubMed Central

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed. PMID:26479260

  12. Antioxidative responses during germination in quinoa grown in vitamin B-rich medium.

    PubMed

    Pitzschke, Andrea; Fraundorfer, Anna; Guggemos, Michael; Fuchs, Norbert

    2015-05-01

    Synthetic vitamin preparations have grown in popularity to combat health risks associated with an imbalanced diet, poor exercise and stress. In terms of bioavailability and diversity, they lack behind vitamins naturally occurring in plants. Solutions to obtain plant-derived vitamins at a larger scale are highly desirable. B vitamins act as precursors of enzymatic cofactors, thereby regulating important metabolic processes both in animals and plants. Because during plant germination, the vitamin content and micronutrient availability increase, sprouts are generally considered a healthier food as compared to dry grains. Germination only occurs if a plant's antioxidant machinery is sufficiently activated to cope with oxidative stress. Seeds of quinoa, an edible gluten-free plant naturally rich in minerals, germinate readily in a solution containing the eight B vitamins. We studied biochemical changes during quinoa germination, with a focus on nutritionally relevant characteristics. The results are considered from a nutritional and plant physiological perspective. Germination of quinoa in vitamin-rich medium is a promising strategy to enhance the nutritional value of this matrix. Additional health-beneficial effects indirectly resulting from the vitamin treatment include elevated levels of the multi-functional amino acid proline and a higher antioxidant capacity. Plant biomolecules can be better protected from oxidative damage in vivo. PMID:25987999

  13. Antioxidative responses during germination in quinoa grown in vitamin B-rich medium

    PubMed Central

    Pitzschke, Andrea; Fraundorfer, Anna; Guggemos, Michael; Fuchs, Norbert

    2015-01-01

    Synthetic vitamin preparations have grown in popularity to combat health risks associated with an imbalanced diet, poor exercise and stress. In terms of bioavailability and diversity, they lack behind vitamins naturally occurring in plants. Solutions to obtain plant-derived vitamins at a larger scale are highly desirable. B vitamins act as precursors of enzymatic cofactors, thereby regulating important metabolic processes both in animals and plants. Because during plant germination, the vitamin content and micronutrient availability increase, sprouts are generally considered a healthier food as compared to dry grains. Germination only occurs if a plant′s antioxidant machinery is sufficiently activated to cope with oxidative stress. Seeds of quinoa, an edible gluten-free plant naturally rich in minerals, germinate readily in a solution containing the eight B vitamins. We studied biochemical changes during quinoa germination, with a focus on nutritionally relevant characteristics. The results are considered from a nutritional and plant physiological perspective. Germination of quinoa in vitamin-rich medium is a promising strategy to enhance the nutritional value of this matrix. Additional health-beneficial effects indirectly resulting from the vitamin treatment include elevated levels of the multi-functional amino acid proline and a higher antioxidant capacity. Plant biomolecules can be better protected from oxidative damage in vivo. PMID:25987999

  14. Genotypic diversity of the Killer Cell Immunoglobulin-like Receptors (KIR) and their HLA class I Ligands in a Saudi population

    PubMed Central

    Omar, Suliman Y. Al; Alkuriji, Afrah; Alwasel, Saleh; Dar, javid Ahmed; Alhammad, Alwaleed; Christmas, Stephen; Mansour, Lamjed

    2016-01-01

    Abstract Killer Cell Immunoglobulin-like Receptors (KIR) have been used as good markers for the study of genetic predisposition in many diseases and in human genetic population dynamics. In this context, we have investigated the genetic diversity of KIR genes and their main HLA class I ligands in Saudi population and compared the data with other studies of neighboring populations. One hundred and fourteen randomly selected healthy Saudi subjects were genotyped for the presence or absence of 16 KIR genes and their HLA-C1, -C2, -Bw4Thr80 and Bw4Ile80 groups, using a PCR-SSP technique. The results show the occurrence of the framework genes (3DL2, 3DL3 and 2DL4) and the pseudogenes (2DP1 and 3DP1) at highest frequencies. All inhibitory KIR (iKIR) genes appeared at higher frequencies than activating genes (aKIR), except for 2DS4 with a frequency of 90.35%. A total of 55 different genotypes were observed appearing at different frequencies, where 12 are considered novel. Two haplotypes were characterized, AA and Bx (BB and AB), which were observed in 24.5% and 75.5% respectively of the studied group. The frequencies of iKIR + HLA associations were found to be much higher than aKIR + HLA. KIR genes frequencies in the Saudi population are comparable with other Middle Eastern and North African populations. PMID:27007893

  15. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation

    PubMed Central

    Wu, Qiong; Pesenacker, Anne M; Stansfield, Alka; King, Douglas; Barge, Dawn; Foster, Helen E; Abinun, Mario; Wedderburn, Lucy R

    2014-01-01

    Children with systemic Juvenile Idiopathic Arthritis (sJIA), the most severe subtype of JIA, are at risk from destructive polyarthritis and growth failure, and corticosteroids as part of conventional treatment can result in osteoporosis and growth delay. In children where there is failure or toxicity from drug therapies, disease has been successfully controlled by T-cell-depleted autologous stem cell transplantation (ASCT). At present, the immunological basis underlying remission after ASCT is unknown. Immune reconstitution of T cells, B cells, natural killer cells, natural killer T cells and monocytes, in parallel with T-cell receptor (TCR) diversity by analysis of the β variable region (TCRVb) complementarity determining region-3 (CDR3) using spectratyping and sequencing, were studied in five children with sJIA before and after ASCT. At time of follow up (mean 11·5 years), four patients remain in complete remission, while one child relapsed within 1 month of transplant. The CD8+ TCRVb repertoire was highly oligoclonal early in immune reconstitution and re-emergence of pre-transplant TCRVb CDR3 dominant peaks was observed after transplant in certain TCRVb families. Further, re-emergence of pre-ASCT clonal sequences in addition to new sequences was identified after transplant. These results suggest that a chimeric TCR repertoire, comprising T-cell clones developed before and after transplant, can be associated with clinical remission from severe arthritis. PMID:24405357

  16. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation.

    PubMed

    Wu, Qiong; Pesenacker, Anne M; Stansfield, Alka; King, Douglas; Barge, Dawn; Foster, Helen E; Abinun, Mario; Wedderburn, Lucy R

    2014-06-01

    Children with systemic Juvenile Idiopathic Arthritis (sJIA), the most severe subtype of JIA, are at risk from destructive polyarthritis and growth failure, and corticosteroids as part of conventional treatment can result in osteoporosis and growth delay. In children where there is failure or toxicity from drug therapies, disease has been successfully controlled by T-cell-depleted autologous stem cell transplantation (ASCT). At present, the immunological basis underlying remission after ASCT is unknown. Immune reconstitution of T cells, B cells, natural killer cells, natural killer T cells and monocytes, in parallel with T-cell receptor (TCR) diversity by analysis of the β variable region (TCRVb) complementarity determining region-3 (CDR3) using spectratyping and sequencing, were studied in five children with sJIA before and after ASCT. At time of follow up (mean 11.5 years), four patients remain in complete remission, while one child relapsed within 1 month of transplant. The CD8(+) TCRVb repertoire was highly oligoclonal early in immune reconstitution and re-emergence of pre-transplant TCRVb CDR3 dominant peaks was observed after transplant in certain TCRVb families. Further, re-emergence of pre-ASCT clonal sequences in addition to new sequences was identified after transplant. These results suggest that a chimeric TCR repertoire, comprising T-cell clones developed before and after transplant, can be associated with clinical remission from severe arthritis. PMID:24405357

  17. The Role of Water in Germination.

    ERIC Educational Resources Information Center

    Bicak, Charles J.

    1986-01-01

    Describes a laboratory experiment which focuses on the importance of water in germination and seedling emergence. Discusses the activity's design, expected results, and possible application. Offers suggestions for extending the experiment. (ML)

  18. Germination and elongation of flax in microgravity

    NASA Astrophysics Data System (ADS)

    Levine, H.; Anderson, K.; Boody, A.; Cox, D.; Kuznetsov, O.; Hasenstein, K.

    This experiment was conducted as part of a risk mitigation BIOTUBE Precursor hardware demonstration payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to provide a demonstration and test of the newly developed BIOTUBE water delivery subsystem, and to determine the optimal water volume and germination paper combination for the automated imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different substrate treatments of standard laboratory germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. The first consisted of one layer of thick germination paper (designated "heavy"), and the second consisted of one layer of standard germination paper (designated "normal") under one layer of heavy germination paper. The germination paper strips were cut (4 X 1.6 cm) to fit snugly into seed cassettes. The seeds were attached to them by applying guar glue (1.25% w/v) drops to 8 premarked spots and the seeds orientated with the micropyle ends pointing outward. Water was delivered in 50 μL boluses which slowly traveled down the paper via capillary action (eliminating the complications caused by excess water pooling around the seed's surface). The data indicated that the 480 μL water delivery volume provided the best wetness level treatment for both percent germination (90.6%) and overall root growth (mean = 4.1 mm) during the 34 hour spaceflight experiment. The ground control experiment experienced similar results, but with slightly lower rates of germination (84.4%) and significantly shorter root lengths (2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of "Heavy" germination paper generally exhibited better overall growth than the two layered option. This in conjunction with the simplicity of using a single strip per seed cassette argues in favor of its selection. Significant seed position

  19. Oxygen dependency of germinating Brassica seeds.

    PubMed

    Park, Myoung Ryoul; Hasenstein, Karl H

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions. PMID:26948011

  20. Oxygen dependency of germinating Brassica seeds

    NASA Astrophysics Data System (ADS)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  1. Co-evolution of Human Leukocyte Antigen (HLA) Class I Ligands with Killer-Cell Immunoglobulin-Like Receptors (KIR) in a Genetically Diverse Population of Sub-Saharan Africans

    PubMed Central

    Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter

    2013-01-01

    Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous

  2. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    PubMed Central

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  3. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    PubMed

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  4. Asymbiotic Germination Response to Photoperiod and Nutritional Media in Six Populations of Calopogon tuberosus var. tuberosus (Orchidaceae): Evidence for Ecotypic Differentiation

    PubMed Central

    Kauth, Philip J.; Kane, Michael E.; Vendrame, Wagner A.; Reinhardt-Adams, Carrie

    2008-01-01

    Background and Aims Ecotypic differentiation has been explored in numerous plant species, but has been largely ignored in the Orchidaceae. Applying a specific germination protocol for widespread seed sources may be unreliable due to inherent physiological or genetic differences in localized populations. It is crucial to determine whether ecotypic differentiation exists for restoration and conservation programmes. Calopogon tuberosus var. tuberosus, a widespread terrestrial orchid of eastern North America, is a model species to explore ecotypic differences in germination requirements, as this species occupies diverse habitats spanning a wide geographical range. Methods Mature seeds were collected from south Florida, north central Florida, three locations in South Carolina, and the upper Michigan peninsula. Effects of three photoperiods (8/16, 12/12, 16/8 h L/D) were examined on asymbiotic in vitro seed germination and seedling development of C. tuberosus. Germination and early development was monitored for 8 weeks, while advanced development was monitored for an additional 8 weeks. In an additional experiment, asymbiotic seed germination and development was monitored for 8 weeks on six culture media (BM-1 terrestrial orchid medium, Knudson C, Malmgrem, half-strength MS, P723, and Vacin and Went). A tetrazolium test for embryo viability was performed. Key Results Short days promoted the highest germination among Florida populations, but few differences among photoperiods in other seed sources existed. Different media had little effect on the germination of Michigan and Florida populations, but germination of South Carolina seeds was higher on media with higher calcium and magnesium. Tetrazolium testing confirmed that South Carolina seeds exhibited low viability while viability was higher in Florida seeds. Seed germination and corm formation was rapid in Michigan seeds across all treatments. Michigan seedlings allocated more biomass to corms compared with other seed

  5. Characterization of a new V gene replacement in the absence of activation-induced cytidine deaminase and its contribution to human B-cell receptor diversity

    PubMed Central

    Ouled-Haddou, Hakim; Ghamlouch, Hussein; Regnier, Aline; Trudel, Stephanie; Herent, Didier; Lefranc, Marie-Paule; Marolleau, Jean Pierre; Gubler, Brigitte

    2014-01-01

    In B cells, B-cell receptor (BCR) immunoglobulin revision is a common route for modifying unwanted antibody specificities via a mechanism called VH replacement. This in vivo process, mostly affecting heavy-chain rearrangement, involves the replacement of all or part of a previously rearranged IGHV gene with another germline IGHV gene located upstream. Two different mechanisms of IGHV replacement have been reported: type 1, involving the recombination activating genes complex and requiring a framework region 3 internal recombination signal; and type 2, involving an unidentified mechanism different from that of type 1. In the case of light-chain loci, BCR immunoglobulin editing ensures that a second V-J rearrangement occurs. This helps to maintain tolerance, by generating a novel BCR with a new antigenic specificity. We report that human B cells can, surprisingly, undergo type 2 replacement associated with κ light-chain rearrangements. The de novo IGKV-IGKJ products result from the partial replacement of a previously rearranged IGKV gene by a new germline IGKV gene, in-frame and without deletion or addition of nucleotides. There are wrcy/rgyw motifs at the ‘IGKV donor–IGKV recipient chimera junction’ as described for type 2 IGHV replacement, but activation-induced cytidine deaminase (AID) expression was not detected. This unusual mechanism of homologous recombination seems to be a variant of gene conversion-like recombination, which does not require AID. The recombination phenomenon described here provides new insight into immunoglobulin locus recombination and BCR immunoglobulin repertoire diversity. PMID:24134819

  6. An analysis of B cell selection mechanisms in germinal centers.

    PubMed

    Meyer-Hermann, Michael E; Maini, Philip K; Iber, Dagmar

    2006-09-01

    Affinity maturation of antibodies during immune responses is achieved by multiple rounds of somatic hypermutation and subsequent preferential selection of those B cells that express B cell receptors with improved binding characteristics for the antigen. The mechanism underlying B cell selection has not yet been defined. By employing an agent-based model, we show that for physiologically reasonable parameter values affinity maturation can be driven by competition for neither binding sites nor antigen--even in the presence of competing secreted antibodies. Within the tested mechanisms, only clonal competition for T cell help or a refractory time for the interaction of centrocytes with follicular dendritic cells is found to enable affinity maturation while generating the experimentally observed germinal centre characteristics and tolerating large variations in the initial antigen density. PMID:16707510

  7. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination

    PubMed Central

    Shi, Hui; Wang, Xin; Mo, Xiaorong; Tang, Chao; Zhong, Shangwei; Deng, Xing Wang

    2015-01-01

    Seed is an essential propagation organ and a critical strategy adopted by terrestrial flowering plants to colonize the land. The ability of seeds to accurately respond to light is vital for plant survival. However, the underlying mechanism is largely unknown. In this study, we reveal a circuit of triple feed-forward loops adopted by Arabidopsis seeds to exclusively repress germination in dark conditions and precisely initiate germination under diverse light conditions. We identify that de-etiolated 1 (DET1), an evolutionarily conserved protein, is a central repressor of light-induced seed germination. Genetic analysis demonstrates that DET1 functions upstream of long hypocotyl in far-red 1 (HFR1) and phytochrome interacting factor 1 (PIF1), the key positive and negative transcription regulators in seed germination. We further find that DET1 and constitutive photomorphogenic 10 (COP10) target HFR1 for protein degradation by assembling a COP10–DET1–damaged DNA binding protein 1–cullin4 E3 ligase complex. Moreover, DET1 and COP10 directly interact with and promote the protein stability of PIF1. Computational modeling reveals that phytochrome B (phyB)–DET1–HFR1–PIF1 and phyB–DET1–Protease–PIF1 are new signaling pathways, independent of the previously identified phyB-PIF1 pathway, respectively mediating the rapid and time-lapse responses to light irradiation. The model-simulated results are highly consistent with their experimental validations, suggesting that our mathematical model captures the essence of Arabidopsis seed germination networks. Taken together, this study provides a comprehensive molecular framework for light-regulated seed germination, improving our understanding of how plants respond to changeable environments. PMID:25775589

  8. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways

    PubMed Central

    Berkowska, Magdalena A.; Driessen, Gertjan J. A.; Bikos, Vasilis; Grosserichter-Wagener, Christina; Stamatopoulos, Kostas; Cerutti, Andrea; He, Bing; Biermann, Katharina; Lange, Johan F.; van der Burg, Mirjam; van Dongen, Jacques J. M.

    2011-01-01

    Multiple distinct memory B-cell subsets have been identified in humans, but it remains unclear how their phenotypic diversity corresponds to the type of responses from which they originate. Especially, the contribution of germinal center-independent responses in humans remains controversial. We defined 6 memory B-cell subsets based on their antigen-experienced phenotype and differential expression of CD27 and IgH isotypes. Molecular characterization of their replication history, Ig somatic hypermutation, and class-switch profiles demonstrated their origin from 3 different pathways. CD27−IgG+ and CD27+IgM+ B cells are derived from primary germinal center reactions, and CD27+IgA+ and CD27+IgG+ B cells are from consecutive germinal center responses (pathway 1). In contrast, natural effector and CD27−IgA+ memory B cells have limited proliferation and are also present in CD40L-deficient patients, reflecting a germinal center-independent origin. Natural effector cells at least in part originate from systemic responses in the splenic marginal zone (pathway 2). CD27−IgA+ cells share low replication history and dominant Igλ and IgA2 use with gut lamina propria IgA+ B cells, suggesting their common origin from local germinal center-independent responses (pathway 3). Our findings shed light on human germinal center-dependent and -independent B-cell memory formation and provide new opportunities to study these processes in immunologic diseases. PMID:21690558

  9. CXCL13 is a plasma biomarker of germinal center activity.

    PubMed

    Havenar-Daughton, Colin; Lindqvist, Madelene; Heit, Antje; Wu, Jennifer E; Reiss, Samantha M; Kendric, Kayla; Bélanger, Simon; Kasturi, Sudhir Pai; Landais, Elise; Akondy, Rama S; McGuire, Helen M; Bothwell, Marcella; Vagefi, Parsia A; Scully, Eileen; Tomaras, Georgia D; Davis, Mark M; Poignard, Pascal; Ahmed, Rafi; Walker, Bruce D; Pulendran, Bali; McElrath, M Juliana; Kaufmann, Daniel E; Crotty, Shane

    2016-03-01

    Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4(+) T follicular helper (GC Tfh) cells problematic. The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS(+) (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings. PMID:26908875

  10. Germination characteristics of Andropogon virginicus L

    SciTech Connect

    Farmer, R.E. Jr.; Cunningham, M.; Brown, J.E.

    1980-12-01

    The natural occurrence of broomsedge (Andropogon virginicus L.) as a pioneer species on orphan strip mines with acid soils (pH 3.0-4.0) and other areas of low fertility suggests that it may have value in revegetation systems for disturbed sites. This study was conducted to delineate seed dormancy and germination characteristics important to developing seeding procedures. Freshly collected seed from east Tennessee germinated to about 50 percent under light at 20-30/sup 0/C, but did not germinate at lower temperatures. If stored in a low-humidity, low-temperature environment, seed developed a deeper dormancy, which was broken by moist chilling. This chilling first enabled germination at high temperatures and in light; as chilling time increased, seed developed a capability for germination in the dark and at low temperatures. In a preliminary seeding trial on an acid (pH 4.0) minesoil, broomsedge survived and grew better than commonly used species such as Festuca arundinacea and Eragrostis curvula.

  11. Combining ability for germination traits in Jatropha curcas L.

    PubMed

    Islam, A K M Aminul; Anuar, Nurina; Yaakob, Zahira; Ghani, Jaharah A; Osman, Mohamad

    2013-01-01

    Six parents of Jatropha curcas were crossed in half diallel fashion, and the F 1s were evaluated to determine the combining ability for nine germination parameters. The ratio between general combining ability (GCA) and specific combining ability (SCA) variances indicated preponderance of additive gene action for all the characters except germination percentage, time of 50% germination, seedling length, and seedling vigor index. The parents P 1 and P 2 were the best general combiner for most of the characters studied. The cross P 1 × P 5 was the best specific combiner for speed of emergence, germination percentage, germination energy, germination index, and seedling vigor index, the cross P 2 × P 5 for mean germination time, time of 50% germination, and seedling length, and the cross P 4 × P 5 for number of days to first germination. The germination percentage varied from 58.06 to 92.76% among the parents and 53.43 to 98.96% among the hybrids. The highest germination (98.96%) was observed in hybrid P 2 × P 4, and none of the hybrids or parents showed 100% germination. The highest germination index (GI) and seedling vigor index (SVI) were found in hybrid P 1 × P 5 and P 2 × P 5, respectively. The results of this study provide clue for the improvement of Jatropha variety through breeding program. PMID:24222756

  12. Germination of Candida albicans induced by proline.

    PubMed Central

    Dabrowa, N; Taxer, S S; Howard, D H

    1976-01-01

    Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts. PMID:5375

  13. Germination of stress-tolerant Eucalyptus pollen.

    PubMed

    Heslop-Harrison, J; Heslop-Harrison, Y

    1985-02-01

    Earlier reports have indicated that the pollen of Eucalyptus is mechanically robust and unusually resistant to the osmotic stress imposed by immersion in water. We have investigated some of the features of the germination mechanism in the pollen of E. rhodantha with a view to clarifying the role of pollen-wall specializations in determining this resistance. Cultured in vitro, the pollen showed erratic germination, with a scatter of germination times up to 24 h. This was associated with variation between individual grains in the rate of hydration and dispersal of the pectins of the oncus, the thickened outer component of the intine present at each aperture. The oncus is itself differentiated, with a refractive outer layer lying within a sporopollenin operculum and itself overlying the protein-bearing layer of the intine. The outer layer, interpreted as a compacted pectin, undergoes only slow dissolution in aqueous media after the lifting of the operculum, and it is this that apparently protects the grain from the effects of short-term osmotic stress. The rate of dissolution varies between grains, possibly as a consequence of minor differences in developmental rate in the final stages of differentiation in the anther, and this contributes to the wider scatter of germination times. The dehydrated pollen gave one-third of the potential germination after 24 h exposure to 60 degrees C, and a small proportion survived 24 h at 70 degrees C. This degree of heat tolerance must primarily reflect properties of the protoplast of the vegetative cell, not examined in the present study; but the wall specializations may well provide a guard against extreme desiccation, and it is noteworthy that the function of the germination mechanism is not prejudiced by exposure to high temperatures. PMID:4019590

  14. Interaction of microwaves and germinating seeds

    SciTech Connect

    Shafer, F.L.

    1987-01-01

    The preliminary investigation measured the internal metabolic process by ATP production. Leakage of ions and organic material from germinating seeds indicated that membranes are a target of microwaves and heat. Electron photo-micrographs showed an increase in damage to membranes as heat and microwave treatments were increased. The second phase of this investigation was concerned with determining some of the biological activity at the initiation of germination of wheat seed, Triticum aestivum L., using a resonating microwave cavity oscillating at 9.3 GHz as a probe. Direct current conductivity measurements were also made on the seeds as a means of confirming the observations made with the microwave cavity.

  15. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  16. Measuring Total and Germinable Spore Populations

    NASA Astrophysics Data System (ADS)

    Noell, A. C.; Yung, P. T.; Yang, W.; Ponce, A.; Lee, C.

    2011-10-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  17. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2014-01-01 2014-01-01 false Source of seeds for germination. 201.53 Section...

  18. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2010-01-01 2010-01-01 false Source of seeds for germination. 201.53 Section...

  19. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  20. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  1. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  2. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  3. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2012-01-01 2012-01-01 false Source of seeds for germination. 201.53 Section...

  4. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  5. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2013-01-01 2013-01-01 false Source of seeds for germination. 201.53 Section...

  6. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2011-01-01 2011-01-01 false Source of seeds for germination. 201.53 Section...

  7. Effect of fungicide on Wyoming big sagebrush seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because fungal infection may complicate both the logistics and the interpretation of germination tests, seeds are sometimes treated with chemical fungicides. Fungicides may reduce the germination rate and/or germination percentage, and should be avoided unless fungal contamination is severe enough ...

  8. Effect of germination on bioactive compounds of soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germination is the practice of soaking, draining, and keeping seeds until they produce sprouts. The increasing interest in functional and healthy food products has promoted the use of germinated soybean flour in the manufacture of foods for human consumption. It is well known that germination induce...

  9. Effects of Cortex Peptidoglycan Structure and Cortex Hydrolysis on the Kinetics of Ca2+-Dipicolinic Acid Release during Bacillus subtilis Spore Germination

    PubMed Central

    Zhang, Pengfei; Thomas, Stacy; Li, Yong-qing

    2012-01-01

    The kinetic parameters of the release of Ca2+-dipicolinic acid (CaDPA) during germination of spore populations and multiple individual spores of Bacillus subtilis strains with major alterations in the structure of the spore peptidoglycan (PG) cortex or lacking one or both of the two redundant enzymes involved in cortex hydrolysis (cortex-lytic enzymes [CLEs]) were determined. The lack of the CLE CwlJ greatly slowed CaDPA release with a germinant receptor (GR)-dependent germinant, l-valine, or a non-GR-dependent germinant, dodecylamine. The absence of the cortex-specific PG modification muramic acid–δ-lactam also increased the time needed for full CaDPA release during germination with both types of germinants. In contrast, increased cortex PG cross-linking was associated with faster times for initiation of CaDPA release with both l-valine and dodecylamine but not with faster CaDPA release once this release had been initiated. These data suggest that the precise structure of the spore cortex plays a significant role in determining the timing and the rate of CaDPA release during B. subtilis spore germination and, further, that this effect is independent of effects of GRs. PMID:22123250

  10. Diverse Thinking about Diversity

    ERIC Educational Resources Information Center

    Kaplan, Sandra N.

    2013-01-01

    This article focuses on the concept of diversity in educational decision making. It is noted that the differences that distinguish the needs, interests and abilities are identified by educators. It lists misconceptions resulting from not attending to within-group diversity, and states that a "loss of self" for individual members of…

  11. Software Tools for Weed Seed Germination Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The next generation of weed seed germination models will need to account for variable soil microclimate conditions. In order to predict this microclimate environment we have developed a suite of individual tools (models) that can be used in conjunction with the next generation of weed seed germinati...

  12. Interspecific Variations in Seed Germination of Corylopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was initiated to investigate the difference in germination pattern between C. coreana Uyeki and C. sinensis var. calvescens Rehder & E. H. Wilson responding to a warm (WS) and cold stratification (CS), and to study the effect of different WS temperatures interacting with different duratio...

  13. Fire Effects on Invasive Weed Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoring historic fire regimes is often beneficial to rangeland structure and function. However, understanding of interactions between fire and invasive weeds is limited. We designed an experiment to determine fire effects on germination of soil surface-deposited seeds of the invasive weeds Bromu...

  14. Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation.

    PubMed

    Aisyah, Siti; Vincken, Jean-Paul; Andini, Silvia; Mardiah, Zahara; Gruppen, Harry

    2016-02-01

    The effects of germination and elicitation on (iso)flavonoid composition of extracts from three edible lupine species (Lupinus luteus, Lupinus albus, Lupinus angustifolius) were determined by RP-UHPLC-MS(n). The total (iso)flavonoid content of lupine increased over 10-fold upon germination, with the total content and composition of isoflavonoids more affected than those of flavonoids. Glycosylated isoflavones were the most predominant compounds found in lupine seedlings. Lesser amounts of isoflavone aglycones, including prenylated ones, were also accumulated. Elicitation with Rhizopus oryzae, in addition to germination, raised the content of isoflavonoids further: the total content of 2'-hydroxygenistein derivatives was increased considerably, without increasing that of genistein derivatives. Elicitation by fungus triggered prenylation of isoflavonoids, especially of the 2'-hydroxygenistein derivatives. The preferred positions of prenylation differed among the three lupine species. The change in isoflavone composition increased the agonistic activity of the extracts towards the human estrogen receptors, whereas no antagonistic activity was observed. PMID:26749476

  15. Smoke-induced seed germination in California chaparral

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.

    1998-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hydrophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum (Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 families, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass > 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by

  16. Chemical inhibitors of viviparous germination in the fruit of watermelon.

    PubMed

    Kobayashi, Yoshiki; Nabeta, Kensuke; Matsuura, Hideyuki

    2010-09-01

    It is well known that the seeds of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai] have a high potential to germinate when the fruit has ripened. When removed from the mature fruit, the seeds can germinate under appropriate conditions. However, it is unclear why they cannot germinate in the flesh of the fruit. Here, we show that cis-ABA and its β-D-glucopyranosyl ester (ABA-β-GE) accumulate in the flesh of the fruit at levels high enough to inhibit seed germination. This result indicates the existence of chemical factors that inhibit viviparous seed germination of watermelon. PMID:20630986

  17. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination

    PubMed Central

    Fimlaid, Kelly A.; Jensen, Owen; Donnelly, M. Lauren; Francis, Michael B.; Sorg, Joseph A.; Shen, Aimee

    2015-01-01

    Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nosocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in the gastrointestinal tract and transform into vegetative cells. Germination begins when the germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseudoprotease that activates the related CspB serine protease through an unknown mechanism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC cortex hydrolase to degrade the protective cortex layer. While these regulators are essential for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms controlling their function have only been partially characterized. In this study, we identify the lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted mutagenesis. A gerS mutant has a severe germination defect and fails to degrade cortex even though it processes SleC at wildtype levels. Using complementation analyses, we demonstrate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Importantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection. Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family members, our results contribute to a growing body of work indicating that C. difficile has evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and other spore-forming organisms. PMID:26496694

  18. Requirements for in vitro germination of Paenibacillus larvae spores.

    PubMed

    Alvarado, Israel; Phui, Andy; Elekonich, Michelle M; Abel-Santos, Ernesto

    2013-03-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a disease affecting honey bee larvae. First- and second-instar larvae become infected when they ingest food contaminated with P. larvae spores. The spores then germinate into vegetative cells that proliferate in the midgut of the honey bee. Although AFB affects honey bees only in the larval stage, P. larvae spores can be distributed throughout the hive. Because spore germination is critical for AFB establishment, we analyzed the requirements for P. larvae spore germination in vitro. We found that P. larvae spores germinated only in response to l-tyrosine plus uric acid under physiologic pH and temperature conditions. This suggests that the simultaneous presence of these signals is necessary for spore germination in vivo. Furthermore, the germination profiles of environmentally derived spores were identical to those of spores from a biochemically typed strain. Because l-tyrosine and uric acid are the only required germinants in vitro, we screened amino acid and purine analogs for their ability to act as antagonists of P. larvae spore germination. Indole and phenol, the side chains of tyrosine and tryptophan, strongly inhibited P. larvae spore germination. Methylation of the N-1 (but not the C-3) position of indole eliminated its ability to inhibit germination. Identification of the activators and inhibitors of P. larvae spore germination provides a basis for developing new tools to control AFB. PMID:23264573

  19. [Germination strategy and ecological adaptability of Eragrostis pilosa].

    PubMed

    Li, Xuehua; Li, Xiaola; Jiang, Deming; Liu, Zhimin

    2006-04-01

    The study on the germination strategy of Eragrostis pilosa under different storage and environmental conditions showed that freshly collected E. pilosa seeds had a stronger innate dormancy. Chilling and dry storage for 4 months had no obvious effect on releasing from dormancy, while longer time storage could facilitate seed maturation. The seeds could germinate either in light or in darkness, and stronger light was in favor of germination. The optimal temperature for germination was 28 degrees C, while higher or lower temperature could result in the decrease of germination. The germination percentage of seeds under changed temperature (16 to 28 degrees C) was higher than that under constant temperature (28 degrees C), but with no significant difference. The critical amount of rain for seed germination was about 10 mm, and the germination percentage and duration all increased with increasing rainfall. E. pilosa had two germination strategies, i. e., quick germination and dormancy for more than one year. Based on the seed morphological characters and germination strategies, it could be concluded that E. pilosa had a persistent soil seed bank. PMID:16836087

  20. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica.

    PubMed

    Holbrook-Smith, Duncan; Toh, Shigeo; Tsuchiya, Yuichiro; McCourt, Peter

    2016-09-01

    Striga spp. (witchweed) is an obligate parasitic plant that attaches to host roots to deplete them of nutrients. In Sub-Saharan Africa, the most destructive Striga species, Striga hermonthica, parasitizes major food crops affecting two-thirds of the arable land and over 100 million people. One potential weakness in the Striga infection process is the way it senses the presence of a host crop. Striga only germinates in the presence of the plant hormone strigolactone, which exudes from a host root. Hence small molecules that perturb strigolactone signaling may be useful tools for disrupting the Striga lifecycle. Here we developed a chemical screen to suppress strigolactone signaling in the model plant Arabidopsis. One compound, soporidine, specifically inhibited a S. hermonthica strigolactone receptor and inhibited the parasite's germination. This indicates that strigolactone-based screens using Arabidopsis are useful in identifying lead compounds to combat Striga infestations. PMID:27428512

  1. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.

    PubMed

    Dicko, Mamoudou H; Gruppen, Harry; Traore, Alfred S; van Berkel, Willem J H; Voragen, Alphons G J

    2005-04-01

    The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties. PMID:15796598

  2. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  3. Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon.

    PubMed

    Aud, Fabiana F; Ferraz, Isolde D K

    2012-09-01

    In Amazon secondary forests are dominated by pioneer species that typically produce large amounts of small and dormant seeds that are able to form a persistent soil seed bank. Seed dormancy in this group of species is overcome by environmental conditions found in open areas, such as high irradiation or alternating temperatures. Nevertheless, a variety of germination responses to environmental factors is known among pioneers; some of them may germinate in diffuse light or in darkness condition at constant temperature. Seed mass can be considered as one of the factors that promotes this variety. Regarding species with very small seeds, it seems that the trigger for germination is light and for larger seeds temperature alternation may be a more important stimulus. In this study we established a relationship between seed mass and germination response to light and alternating temperature for a group of seven woody pioneer species from the Amazon forest. We found that an increase in seed mass was followed by a decrease in the need for light and an increase in the tolerance to alternating temperatures. Understanding germination strategies may contribute with the knowledge of species coexistence in high diverse environments and also may assist those involved in forest management and restoration. PMID:22886162

  4. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-10-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy.

  5. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds.

    PubMed

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-01-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy. PMID:23077725

  6. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds

    PubMed Central

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-01-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy. PMID:23077725

  7. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis

    PubMed Central

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  8. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis.

    PubMed

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  9. Oxidative signaling in seed germination and dormancy

    PubMed Central

    El-Maarouf-Bouteau, Hayat

    2008-01-01

    Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumulation can therefore be also beneficial for seed germination and seedling growth by regulating cellular growth, ensuring a protection against pathogens or controlling the cell redox status. ROS probably also act as a positive signal in seed dormancy release. They interact with abscisic acid and gibberellins transduction pathway and are likely to control numerous transcription factors and properties of specific protein through their carbonylation. PMID:19513212

  10. Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus.

    PubMed

    Stanghellini, M E; Kim, D H; Waugh, M

    2000-03-01

    ABSTRACT Ascospores of Monosporascus cannonballus germinated readily in the rhizosphere of cantaloupe plants growing in field soil. However, little or no germination occurred in the rhizosphere of melon plants growing in field soil that was autoclaved prior to infestation with ascospores. The latter data suggested that root exudates alone do not stimulate ascospore germination and that the soil microflora may be involved in the induction of ascospore germination. Amending field soil with streptomycin (which inhibits gram-negative microorganisms) did not suppress ascospore germination in the rhizosphere of cantaloupe plants. However, amending the soil with penicillin (which inhibits gram-positive microorganisms) did suppress ascospore germination. Pentachloronitrobenzene (PCNB), which inhibits the gram-positive actinomycetes but does not inhibit gram-positive or gram-negative bacteria, also suppressed ascospore germination. These results suggest that actinomycetes, either directly or indirectly, are involved in the induction of ascospore germination in field soil in the presence of exudates from cantaloupe roots. Optimum germination occurred at temperatures ranging from 25 to 35 degrees C, and data indicate that a high percentage (>/=72%) of the ascospore population within 500 mum of a root are capable of germination and subsequent penetration of cantaloupe roots. PMID:18944615

  11. Germination and seedling vigor in Beta vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One former commercial variety, EL-A012206 (ACH185), and the pollen parent for the commercial variety USH20, EL-A015030 (SP7622) were germinated in H2O and 0.3% H2O2. Samples were collected at 0, 3, 6, 12, 18 and 24 hours of treatment for both varieties. RNA was extracted from the tissue and RT-PCR w...

  12. Asymmetric synthesis and in vitro and in vivo activity of tetrahydroquinolines featuring a diverse set of polar substitutions at the 6 position as mixed-efficacy μ opioid receptor/δ opioid receptor ligands.

    PubMed

    Bender, Aaron M; Griggs, Nicholas W; Anand, Jessica P; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2015-08-19

    We previously reported a small series of mixed-efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist peptidomimetics featuring a tetrahydroquinoline scaffold and showed the promise of this series as effective analgesics after intraperitoneal administration in mice. We report here an expanded structure-activity relationship study of the pendant region of these compounds and focus in particular on the incorporation of heteroatoms into this side chain. These analogues provide new insight into the binding requirements for this scaffold at MOR, DOR, and the κ opioid receptor (KOR), and several of them (10j, 10k, 10m, and 10n) significantly improve upon the overall MOR agonist/DOR antagonist profile of our previous compounds. In vivo data for 10j, 10k, 10m, and 10n are also reported and show the antinociceptive potency and duration of action of compounds 10j and 10m to be comparable to those of morphine. PMID:25938166

  13. Seed Germination of Gastrodia elata Using Symbiotic Fungi, Mycena osmundicola

    PubMed Central

    Kim, Yong-Il; Chang, Kwang-Joon; Ka, Kang-Hyeon; Hur, Hyeon; Hong, In-Pyo; Shim, Jae-Ouk; Lee, Tae-Soo; Lee, Ji-Yul

    2006-01-01

    The germination rate and longevity of seeds of Gastrodia elata Blume have been observed for 48 weeks using Mycena osmundicola strain H-21, one of fungi stimulating seed germination. Storage condition of post-harvest seeds was observed in the different temperature ranges of -30℃, -5℃, 5℃ and 30℃ for 48 weeks. After storage period of 48 weeks, the germination rate of G. elata was 65.7% at 5℃ and 71.6% at -5℃, respectively. Although the germination rate of G. elata was 77.3% for 11 weeks at 25℃, the germination rate had been decreased gradually to 49.3% at 13 weeks, 0.3% at 23 weeks and then 0% at 25 weeks. The germination rate was reached to the level of 10% for 2 weeks at -30℃ and then decreased to 0%. PMID:24039475

  14. Alternative mRNA splicing of SMRT creates functional diversity by generating corepressor isoforms with different affinities for different nuclear receptors.

    PubMed

    Goodson, Michael L; Jonas, Brian A; Privalsky, Martin L

    2005-03-01

    Many eukaryotic transcription factors are bimodal in their regulatory properties and can both repress and activate expression of their target genes. These divergent transcriptional properties are conferred through recruitment of auxiliary proteins, denoted coactivators and corepressors. Repression plays a particularly critical role in the functions of the nuclear receptors, a large family of ligand-regulated transcription factors involved in metazoan development, differentiation, reproduction, and homeostasis. The SMRT corepressor interacts directly with nuclear receptors and serves, in turn, as a platform for the assembly of a larger corepressor complex. We report here that SMRT is expressed in cells by alternative mRNA splicing to yield two distinct variants or isoforms. We designate these isoforms SMRTalpha and SMRTtau and demonstrate that these isoforms have significantly different affinities for different nuclear receptors. These isoforms are evolutionarily conserved and are expressed in a tissue-specific manner. Our results suggest that differential mRNA splicing serves to customize corepressor function in different cells, allowing the transcriptional properties of nuclear receptors to be adapted to different contexts. PMID:15632172

  15. Seed germination characteristics of Chrysothamnus nauseosus ssp. viridulus (Astereae, Asteraceae)

    SciTech Connect

    Khan, M.A.; Sankhla, N.; Weber, D.J.; McArthur, E.D.

    1987-04-30

    Rubber rabbitbrush (Chrysothamnus nauseosus (Pallas) Britt. ssp. viridulus) may prove to be a source of high-quality cis-isoprene rubber, but its establishment is limited by a lack of information on seed germination. Consequently, seeds were germinated at alternating temperatures (5-15, 5-25, 15-25, and 20-30 C) in light and dark as well as constant temperatures (15-40 C with 5-C increments) to determine temperature response. Seeds were also germinated in solutions of polyethylene glycol 6000, salinity regimes at all the above-mentioned temperatures to determine salinity and temperature interaction. The hormones GA/sub 3/ and kinetin were used to study their effect on overcoming salt- and temperature-induced germination inhibition. Seeds of C. nauseosus ssp. viridulus were very sensitive to low temperature. Best germination was achieved at 25 and 30 C, but these seeds also germinated at a higher temperature (35 C). The seeds of rabbit brush germinated at both constant and alternating temperatures. Light appears to play little or no role in controlling germination of the seeds of rubber rabbitbrush. However, seeds of rabbitbrush were sensitive to salinity, and seed germination was progressively inhibited by increase in salt concentration, although a few seeds still germinated at the highest saline level. Progressively higher concentrations of polyethylene glycol also progressively inhibited germination. Suppression of seed germination induced by high salt concentrations and high temperatures can be partially alleviated by the application of either GA/sub 3/ or kinetin. 34 references, 5 figures, 3 tables.

  16. Protein turnover in Azotobacter vinelandii during encystment and germination.

    PubMed

    Ruppen, M E; Garner, G; Sadoff, H L

    1983-12-01

    Protein turnover occurs during differentiation of Azotobacter vinelandii 12837 to the extent of 50% during encystment and 7% during germination. The addition of rifampin at the initiation of encystment prevents encystment and inhibits turnover. In germinating cysts, protein turnover is essential owing to an apparent lack of certain amino acid biosynthetic enzymes. The capacity to synthesize sulfur-containing amino acids from inorganic precursors is regained about halfway through the germination process. PMID:6643391

  17. Strigolactam: New potent strigolactone analogues for the germination of Orobanche cumana.

    PubMed

    Lachia, Mathilde; Wolf, Hanno Christian; Jung, Pierre Joseph Marcel; Screpanti, Claudio; De Mesmaeker, Alain

    2015-01-01

    Very recently, strigolactones have been conclusively identified as phytohormones. The progresses achieved in this field are culminating in the identification of the molecular receptors involved in the signal transduction mechanism. The exact mechanism of the mode of action of strigolactones still remains to be fully elucidated and we were interested to gain some insight into the mechanism of action of strigolactones by selectively modifying the reactivity of the lactone C-ring. Therefore, we report here the synthesis of strigolactams 1 and 16 and their surprisingly good activity on the germination of Orobanche cumana parasitic weed seeds. PMID:25838142

  18. Effect of sonic stimulation on Bacillus endospore germination.

    PubMed

    Liu, Si Li; Wu, Wen Jie; Yung, Pun To

    2016-01-01

    This study investigates the effect of sonic stimulation on Bacillus endospore germination. Germinating endospores in a microtiter plate were exposed to audible sound wave generated by an array of piezoelectric transducers. In situ germination kinetics was measured by terbium-dipicolinate fluorescence assay, optical density measurement and phase contrast microscopy. Fluorescence results revealed that sonic stimulation (5 kHz at 90 dB) promoted the germination speed by 43.7% ± 11.3% and final germination level by 61.7% ± 11.9% of Bacillus atrophaeus. This acoustic energy absorbed by endospores is postulated to change membrane permeability and increase enzyme activities; thereby, expediting the germination process. This also raises the likelihood of dormant endospores undergoing germination because of a rapid release of unidentified chemical mediators for quorum sensing. On the other hand, acoustic effect was not observed in B. subtilis endospores. This may be attributed to the different spore aspect ratio, 1.43 ± 0.05 for B. atrophaeus and 2.02 ± 0.08 for B. subtilis, which results in a difference in specific absorption rates towards audible sound waves. Our results demonstrate the modulation of endospore germination by an external field to shed light on germination mechanism and cell-wave interaction. PMID:26607285

  19. Competition/colonization syndrome mediated by early germination in non-dispersing achenes in the heteromorphic species Crepis sancta

    PubMed Central

    Dubois, Jonathan; Cheptou, Pierre-Olivier

    2012-01-01

    Background and Aims The competition–colonization trade-off theory postulates that the competitive and colonizing abilities of organisms are negatively related; this trade-off has been proposed as a major force in the maintenance of diversity. In plants, the competition–colonization trade-off is often considered to result from variation in resource partitioning, thus generating heavy competitive (non-dispersing) seeds and light (dispersing) non-competitive seeds. Here, the possibility is explored that early germination provides a competitive advantage, thus mediating competitive interactions. Methods Using eight populations of the heterocarpic species Crepis sancta (Asteraceae), the possibility was tested that dispersing and non-dispersing achenes differ in germination timing, and the impact of early germination on individual fitness components was analysed in the context of intraspecific competition. To evaluate whether seed reserve varies among achene types, endosperm size was also measured by analysing photographs of cross-sections taken under a binocular microscope. Key Results and Conclusions The results show that non-dispersing achenes germinated 4 d earlier (on average) than dispersing achenes. It is also shown that early germination provides a positive advantage for the survival and final biomass of individuals, a pattern that was consistent over the eight populations and independent of achene type. Dispersing and non-dispersing achenes did not differ in terms of seed reserve (endosperm size). It is proposed that germination phenology may mediate the competition–colonization trade-off in Crepis sancta and the evolutionary significance of this phenomenon is discussed. PMID:23022677

  20. Successional distance between the source and recipient influence seed germination and seedling survival during surface soil replacement in SW China.

    PubMed

    Shen, You-Xin; Gao, Lei; Xia, Xue; Li, Yuhui; Guan, Huilin

    2013-01-01

    Adding propagules (source) to a degraded site (recipient) is a common way of manipulating secondary succession to restore diversity and services formerly provided by forests. However, heretofore no study has considered the effect of "successional distance" between source and recipient site. Four sites in the Shilin karst area of SW China were treated as different states along a secondary successional sere: grass, shrub, young secondary forest, and primary forest. Ten 1 m ×1m soil quadrats in the grass, shrub and young forest sites were replaced with 10 cm deep soil sources from corresponding later successional stage(s) in January 2009. Woody plant seed germination was monitored in the first year and seedling survival was monitored until the end of the second year. At the end of 2010, 2097 seeds of woody plants belonging to 45 taxa had germinated, and 3.9% of the seedlings and 7.8% of the species survived. Germination of most species was sensitive to ambient light (red, far-red, R:FR ratios, photosynthetically active radiation). Soil source and recipient site had a significant effect on the total number of seeds and number of species that germinated, and on the percentage of seedlings that survived through the end of the second year. Closer successional stages between recipient site and soil source had higher seed germination and seedling-survival percentages. However, a transition threshold exists in the young forest state, where seeds can germinate but not survive the second year. Our results, although based on an unreplicated chronosequence, suggest that successional distance between soil sources and recipient sites affect forest recruitment and restoration in degraded karst of SW China. PMID:24223891

  1. Successional Distance between the Source and Recipient Influence Seed Germination and Seedling Survival during Surface Soil Replacement in SW China

    PubMed Central

    Shen, You-xin; Gao, Lei; Xia, Xue; Li, Yuhui; Guan, Huilin

    2013-01-01

    Adding propagules (source) to a degraded site (recipient) is a common way of manipulating secondary succession to restore diversity and services formerly provided by forests. However, heretofore no study has considered the effect of “successional distance” between source and recipient site. Four sites in the Shilin karst area of SW China were treated as different states along a secondary successional sere: grass, shrub, young secondary forest, and primary forest. Ten 1 m ×1m soil quadrats in the grass, shrub and young forest sites were replaced with 10 cm deep soil sources from corresponding later successional stage(s) in January 2009. Woody plant seed germination was monitored in the first year and seedling survival was monitored until the end of the second year. At the end of 2010, 2097 seeds of woody plants belonging to 45 taxa had germinated, and 3.9% of the seedlings and 7.8% of the species survived. Germination of most species was sensitive to ambient light (red, far-red, R:FR ratios, photosynthetically active radiation). Soil source and recipient site had a significant effect on the total number of seeds and number of species that germinated, and on the percentage of seedlings that survived through the end of the second year. Closer successional stages between recipient site and soil source had higher seed germination and seedling-survival percentages. However, a transition threshold exists in the young forest state, where seeds can germinate but not survive the second year. Our results, although based on an unreplicated chronosequence, suggest that successional distance between soil sources and recipient sites affect forest recruitment and restoration in degraded karst of SW China. PMID:24223891

  2. Osmotic stress causes differential effects on germination indices, total soluble sugar, and proline content in different wheat (triticum aestivum L.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse crop cultivars differ inherently in their response to climatological drought, and those cultivars with the best seed germination and early seedling growth under arid and semiarid conditions form the most uniform and vigorous stands under water deficit conditions. To determine whether signifi...

  3. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  4. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans.

    PubMed

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-05-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  5. Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay

    DOE PAGESBeta

    Seepaul, Ramdeo; Macoon, Bisoondat; Reddy, K. Raja; Baldwin, Brian

    2011-06-01

    Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 °C to 45 °C under a constant light intensity of 35 μmol m-2s-1 for 12 hd-1. Germination wasmore » recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, Tmin, Topt, and Tmax, were 8.1, 26.6, and 45.1 °C for MSG and 11.1, 33.1, and 46.0 °C for GR, respectively. Cardinal temperatures for MSG and GR; however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg˜, Kanlow, ˜Sunburst, Trailblazer, and ˜Tusca™), intermediate (˜Alamo, Blackwell, Carthage, ˜Shawnee™, and Shelter™) and tolerant (˜Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly, genotypes were also classified as sensitive (Alamo, Blackwell, Carthage, Dacotah, Shawnee, Shelter and Summer), moderately sensitive (Cave-in-rock, Forestburg, Kanlow, Sunburst, and Tusca), moderately tolerant (Trailblazer), and tolerant (Expresso) to low temperatures. The cardinal

  6. Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay

    SciTech Connect

    Seepaul, Ramdeo; Macoon, Bisoondat; Reddy, K. Raja; Baldwin, Brian

    2011-06-01

    Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 °C to 45 °C under a constant light intensity of 35 μmol m-2s-1 for 12 hd-1. Germination was recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, Tmin, Topt, and Tmax, were 8.1, 26.6, and 45.1 °C for MSG and 11.1, 33.1, and 46.0 °C for GR, respectively. Cardinal temperatures for MSG and GR; however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg˜, Kanlow, ˜Sunburst, Trailblazer, and ˜Tusca™), intermediate (˜Alamo, Blackwell, Carthage, ˜Shawnee™, and Shelter™) and tolerant (˜Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly, genotypes were also classified as sensitive (Alamo, Blackwell, Carthage, Dacotah, Shawnee, Shelter and Summer), moderately sensitive (Cave-in-rock, Forestburg, Kanlow, Sunburst, and Tusca), moderately tolerant (Trailblazer), and

  7. Segregation for salt tolerant germination among progeny of Ames 3051 selected under salt germination conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved germination of seeds under abiotic stress appears to be one means by which improved stand establishment can be accomplished. Salinity is one such stress that may serve a dual purpose by allowing selection for improved stand establishment as well as obtaining a profitable stand in saline so...

  8. Spore germination based assay for monitoring antibiotic residues in milk at dairy farm.

    PubMed

    Kumar, Naresh; Raghu, Hirikyathanahalli Vishweswaraiah; Kumar, Abhishek; Haldar, Lopamudra; Khan, Alia; Rane, Sharmila; Malik, Ravinder Kumar

    2012-07-01

    Spore germination based assay involves the transformation of dormant spores of Bacillus stearothermophilus 953 into active vegetative cells. The inhibition of germination process specifically in presence of antibiotic residues was used as a novel approach for monitoring target contaminants in milk. The indicator organism i.e., B. stearothermophilus 953 was initially allowed to sporulate by seeding in sporulation medium and incubating at 55 °C for 18 ± 2 h. The spores exhibited a typical chain behavior as revealed through phase contrast microscopy. The minimal medium inoculated with activated spores was incubated at 64 °C for 2-3 h for germination and outgrowth in presence of specific germinant mixture containing dextrose, whey powder and skimmed milk powder added in specific ratio along with reconstituted milk as negative control and test milk samples. The change in color of the medium from purple to yellow was used as criteria for detection of antibiotic residues in milk. The efficiency of the developed assay was evaluated through a surveillance study on 228 samples of raw, pasteurized and dried milks and results were compared with AOAC approved microbial receptor assay. The presence of antibiotic level was 10.08 % at Codex maximum residual limit having false positive result only in 0.43 % of the samples. The results of the present investigation suggest that developed spore based assay can be a practical solution to dairy industry for its application at farm level, milk processing units, independent testing and R & D centres in order to comply with the legal requirements set by Codex. PMID:22806162

  9. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated. PMID:19826917

  10. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly required for seed germination. Recent evidence suggests tha...

  11. Managing diversity.

    PubMed

    Epting, L A; Glover, S H; Boyd, S D

    1994-06-01

    The U.S. work force is becoming increasingly diverse as the 20th century approaches. Statistics prove that most organizations are experiencing gender, culture, and age diversity within their labor forces. All managers and leaders must accept this diversity and work to handle it effectively. This article examines the current literature concerning management of diversity and its implications for the health care profession. Gender, culture, and age diversity and the potential problems that may arise with each are also addressed. Reasons to manage diversity are offered, as well as methods of managing diversity for both the manager and the chief executive officer. PMID:10134144

  12. Bacillus thermoamylovorans Spores with Very-High-Level Heat Resistance Germinate Poorly in Rich Medium despite the Presence of ger Clusters but Efficiently upon Exposure to Calcium-Dipicolinic Acid.

    PubMed

    Berendsen, Erwin M; Krawczyk, Antonina O; Klaus, Verena; de Jong, Anne; Boekhorst, Jos; Eijlander, Robyn T; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-11-01

    High-level heat resistance of spores of Bacillus thermoamylovorans poses challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%). Microscopic analysis revealed inefficient nutrient-induced germination of spores of all four isolates despite the presence of most known germination-related genes, including two operons encoding nutrient germinant receptors (GRs), in their genomes. In contrast, exposure to nonnutrient germinant calcium-dipicolinic acid (Ca-DPA) resulted in efficient (50 to 98%) spore germination. All four strains harbored cwlJ and gerQ genes, which are known to be essential for Ca-DPA-induced germination in Bacillus subtilis. When determining spore survival upon heating, low viable counts can be due to spore inactivation and an inability to germinate. To dissect these two phenomena, the recoveries of spores upon heat treatment were determined on plates with and without preexposure to Ca-DPA. The high-level heat resistance of spores as observed in this study (D120°C, 1.9 ± 0.2 and 1.3 ± 0.1 min; z value, 12.2 ± 1.8°C) is in line with survival of sterilization processes in the food industry. The recovery of B. thermoamylovorans spores can be improved via nonnutrient germination, thereby avoiding gross underestimation of their levels in food ingredients. PMID:26341201

  13. Bacillus thermoamylovorans Spores with Very-High-Level Heat Resistance Germinate Poorly in Rich Medium despite the Presence of ger Clusters but Efficiently upon Exposure to Calcium-Dipicolinic Acid

    PubMed Central

    Berendsen, Erwin M.; Krawczyk, Antonina O.; Klaus, Verena; de Jong, Anne; Boekhorst, Jos; Eijlander, Robyn T.

    2015-01-01

    High-level heat resistance of spores of Bacillus thermoamylovorans poses challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%). Microscopic analysis revealed inefficient nutrient-induced germination of spores of all four isolates despite the presence of most known germination-related genes, including two operons encoding nutrient germinant receptors (GRs), in their genomes. In contrast, exposure to nonnutrient germinant calcium-dipicolinic acid (Ca-DPA) resulted in efficient (50 to 98%) spore germination. All four strains harbored cwlJ and gerQ genes, which are known to be essential for Ca-DPA-induced germination in Bacillus subtilis. When determining spore survival upon heating, low viable counts can be due to spore inactivation and an inability to germinate. To dissect these two phenomena, the recoveries of spores upon heat treatment were determined on plates with and without preexposure to Ca-DPA. The high-level heat resistance of spores as observed in this study (D120°C, 1.9 ± 0.2 and 1.3 ± 0.1 min; z value, 12.2 ± 1.8°C) is in line with survival of sterilization processes in the food industry. The recovery of B. thermoamylovorans spores can be improved via nonnutrient germination, thereby avoiding gross underestimation of their levels in food ingredients. PMID:26341201

  14. Freezing stress influences emergence of germinated perennial grass seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sagebrush rangelands perennial bunchgrasses are typically seeded in fall and a high proportion of planted seeds germinate prior to winter onset but fail to emerge in spring. Our objectives were to evaluate freezing tolerance of germinated but non-emergent bluebunch wheatgrass seeds under laborat...

  15. The importance of seed germination in rangeland research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, Agricultural Research Service (ARS)/ Great Basin Rangelands Research Unit, Wildland Seed Laboratory, located in Reno, NV, has been studying seed germination for the past 40 years. The wildland seed laboratory has collected, processed, and quantified germination characteristics of hundreds...

  16. Seed germination of five Poa species at negative water potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under field conditions water is often inadequate for satisfactory seed germination. An experiment was conducted to determine the effects of simulated dry conditions on germination and seedling growth of five bluegrass (Poa) species including: Texas, P. arachnifera Torr.; annual, P. annua L.; mutto...

  17. Investigating the Influence of Karrikins on Seed Germination

    ERIC Educational Resources Information Center

    de Beer, Josef

    2012-01-01

    Recent research has identified a karrikin (a butenolide derative) known as 3-methyl-2H-furo[2,3-c]pyran-2-one, formed from burning cellulose, that stimulates seed germination. Here, I present ideas on how to investigate the influence of karrikins on seed germination in the laboratory.

  18. Effect of NaCl on Germination of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is a salt tolerant crop, but is most vulnerable to salinity during germination. The goal of this research is to examine the response to salinity on the germination of sugar beet, ultimately to provide germplasm that has an agronomic use in saline soils around the world. Expanding the char...

  19. Radish (Raphanus sativus) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. Studies reporting these results used a large number of plant species that varied in seed size, which might have introduced differences in germination characteristics or various parameter...

  20. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    PubMed Central

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  1. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  2. The pleiotropic effects of the seed germination inhibitor germostatin.

    PubMed

    Ye, Yajin; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination. PMID:26918467

  3. Gibberellin Signaling: a Wake-up Call for Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Making an appropriate decision to germinate is essential for the survival of plant species and is important for proper stand establishment in crop plants. Germination is regulated by the antagonistic effects to two plant hormones in Arabidopsis thaliana: abscisic acid (ABA) induces dormancy and repr...

  4. Lipids stimulate spore germination in the entomopathogenic ascomycete Ascosphaera aggregata.

    PubMed

    James, R R; Buckner, J S

    2004-10-01

    The alfalfa leafcutting bee (Megachile rotundata) is solitary and managed on a large scale for pollination of alfalfa seed crops. The bees nest in holes drilled in wood or polystyrene blocks, and their larvae are highly prone to a fungal disease called chalkbrood. The most prevalent form of chalkbrood is caused by Ascosphaera aggregata, but this ascomycete is difficult to culture. Hyphae will grow on standard fungal media, but spore germination is difficult to achieve and highly variable. We found that germination can be enhanced with oils. Lipids derived from plants and bee larvae increased germination from 50% (without oil) to 75-85% (with oil). Percent germination was significantly greater in the presence of lipids but germination was not significantly different when different oils, including mineral oil, were used. A. aggregata spores oriented along the oil-aqueous interface in the broth in a polar fashion, with swelling and germ tube formation always occurring into the aqueous portion of the broth. The other half of the spore tended to attach to a lipid droplet, where it remained, without swelling, during germ tube formation. The physical attachment of spores to the oil-aqueous interface is what most probably stimulates spore germination, as opposed to some nutritional stimulation. However, further research is needed to determine if and where the spores encounter such an interface when germinating in the host gut, where germination normally occurs. PMID:15645171

  5. The Importance of Seed Germination in Rangeland Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, Agricultural Research Service (ARS)/ Great Basin Rangelands Research Unit, Wildland Seed Laboratory, located in Reno, NV, has been studying seed germination for the past 40 years. The wildland seed laboratory has collected, processed, and quantified germination characteristics of hundreds...

  6. Seedling Vigor in Beta vulgaris: The Artistry of Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling vigor and stand establishment are two problems that growers have struggled with for decades. The initial conditions that a germinating seed encounters, and its ability to deal with them, affect the rate at which germination occurs, the rate of mobilization of stored energy reserves that the...

  7. Study for Germination Under Extreme Hypobaric and Hypoxic Condition

    NASA Astrophysics Data System (ADS)

    Hashimoto, H.

    2010-04-01

    In order to investigate a possibility of plant cultivation for the space agriculture on Mars, germination rate for six species of plant under extreme hypobaric and hypoxic condition was measured. As a result, seeds of Jute and Cucumber were able to germinate in six species.

  8. Proteins induced by salt stress in tomato germinating seeds

    SciTech Connect

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A. )

    1989-04-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 35}S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present.

  9. Trace gas emissions and smoke-induced seed germination

    SciTech Connect

    Keeley, J.E.; Fotheringham, C.J.

    1997-05-23

    Dormant seeds of a California chaparral annual were induced to germinate by smoke or paper. Nitrogen oxides induced 100 percent vapors emitted from smoke-treated sand or treated water samples inducing. Smoke germination in a manner similar to smoke germination were comparable in acidity and concentration of nitrate and nitrite to nitrogen dioxide (NO{sub 2})-treated samples. Vapors from smoke-treated and NO{sub 2}-treated filter paper had comparable NO{sub 2} flux rates. Chaparral wildfires generate sufficient nitrogen oxides from combustion of organic matter or from postfire biogenic nitrification to trigger germination of Emmerianthe penduliflora. Nitrogen oxide-triggered germination is not the result of changes in imbibition, as is the case with heat stimulated seeds.

  10. Coordination of seed dormancy and germination processes by MYB96.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination. PMID:26313409

  11. Coordination of seed dormancy and germination processes by MYB96

    PubMed Central

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination. PMID:26313409

  12. Pre-treating Seed to Enhance Germination of Desert Shrubs

    SciTech Connect

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  13. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    PubMed

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  14. Within-and among-year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment.

    PubMed

    Gremer, Jennifer R; Kimball, Sarah; Venable, D Lawrence

    2016-10-01

    In variable environments, organisms must have strategies to ensure fitness as conditions change. For plants, germination can time emergence with favourable conditions for later growth and reproduction (predictive germination), spread the risk of unfavourable conditions (bet hedging) or both (integrated strategies). Here we explored the adaptive value of within- and among-year germination timing for 12 species of Sonoran Desert winter annual plants. We parameterised models with long-term demographic data to predict optimal germination fractions and compared them to observed germination. At both temporal scales we found that bet hedging is beneficial and that predicted optimal strategies corresponded well with observed germination. We also found substantial fitness benefits to varying germination timing, suggesting some degree of predictive germination in nature. However, predictive germination was imperfect, calling for some degree of bet hedging. Together, our results suggest that desert winter annuals have integrated strategies combining both predictive plasticity and bet hedging. PMID:27515951

  15. Intranasal Osteopontin for Rodent Germinal Matrix Hemorrhage.

    PubMed

    Malaguit, Jay; Casel, Darlene; Dixon, Brandon; Doycheva, Desislava; Tang, Jiping; Zhang, John H; Lekic, Tim

    2016-01-01

    Germinal matrix hemorrhage (GMH) is the most common and devastating neurological problem of premature infants. Current treatment is largely ineffective and GMH has been nonpreventable. Osteopontin (OPN) is an endogenous protein that has been shown to be neuroprotective, however, it has not been tested in GMH. P7 neonatal rats were subjected to stereotactic ganglionic eminence collagenase infusion. Groups were as follows: (1) sham, (2) GMH + vehicle, (3) GMH + intranasal OPN. Seventy-two hours later, the animals were evaluated using righting reflex, blood-brain barrier (BBB) permeability by Evans blue dye leakage, brain water content, and hemoglobin assay. Intranasal OPN improved outcomes after GMH by attenuation of brain swelling, BBB function, re-bleeding, and neurological outcomes. OPN may play an important role in enhancing neuroprotective brain signaling following GMH. These observed effects may offer novel possibilities for therapy in this patient population. PMID:26463952

  16. Instructional Diversity.

    ERIC Educational Resources Information Center

    Samples, Bob

    2000-01-01

    Explains how learning occurs in the brain, specifically in the limbic system. Compares traditional teaching methods and diverse learning modes. Describes the characteristics of diverse instructional approaches. First published in 1994. (YDS)

  17. Standardizing Scavenger Receptor Nomenclature

    PubMed Central

    PrabhuDas, Mercy; Bowdish, Dawn; Drickamer, Kurt; Febbraio, Maria; Herz, Joachim; Kobzik, Lester; Krieger, Monty; Loike, John; Means, Terry K.; Moestrup, Soren K.; Post, Steven; Sawamura, Tatsuya; Silverstein, Samuel; Wang, Xiang-Yang; El Khoury, Joseph

    2014-01-01

    Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a variety of ligands, including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of Health to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of non-self or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. The discussion and nomenclature recommendations described in this report only refer to mammalian scavenger receptors. The purpose of this article is to describe the proposed mammalian nomenclature and classification developed at the workshop and to solicit additional feedback from the broader research community. PMID:24563502

  18. Involvement of Alternative Splicing in Barley Seed Germination.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3' splicing (34%-45%), intron retention (32%-34%) and alternative 5' splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  19. Studies on the molecular mechanisms of seed germination.

    PubMed

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination. PMID:25597791

  20. Evolution of nutrient ingredients in tartary buckwheat seeds during germination.

    PubMed

    Yiming, Zhou; Hong, Wang; Linlin, Cui; Xiaoli, Zhou; Wen, Tang; Xinli, Song

    2015-11-01

    Evolution of nutrient components and the antioxidative activity of seed sprouts of tartary buckwheat (Fagopyrum tataricum L. Gaertn) were investigated in the course of germination. Results showed that the contents of total flavonoids increased with germination time and leveled off after the third germination day with the changing trend of rutin and quercetin opposite to each other. The decrease of total protein and total sugar contents in the germinated seeds was accompanied respectively by an increase of amino acid and reducing sugar contents. The contents of vitamin C (Vc) and B1(V(B1)) exhibited a minimum with no appreciable changes found for vitamin B(2) (V(B2)) and B(6) (V(B6)). The contents of total chlorophyll, chlorophyll A and B all exhibited a maximum on the fifth germination day. The contents of fatty acids had no regular changing trend with germination time. The free radical-scavenging activities of the seeds increased with germination time and were caused by an increase in their antioxidative activity. PMID:25976817

  1. Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii

    NASA Technical Reports Server (NTRS)

    Edwards, E. S.; Roux, S. J.

    1994-01-01

    Rhizoids of the fern Ceratopteris richardii Brogn. usually emerge 40 h after germination is initiated by light, and more than 90% of them emerge growing in a downward direction. However, when the spores are germinated on a clinostat, the emerging rhizoids show no preferential orientation. This indicates that under normal 1 g conditions the initial growth direction of rhizoids can be oriented by gravity. If the orientation of the spores is changed 3 h or less after the start of germination, the growth direction of most emerging rhizoids becomes downward relative to the new orientation. However, if the orientation of the spores is changed by 180 degrees 8 h or more after germination is initiated by light, most rhizoids emerge growing upward; i.e., the same direction as if there had been no orientation change. Emerged rhizoids also do not change their direction of growth if their orientation is changed. These results indicate that the growth direction of emerging rhizoids is set by gravity prior to actual emergence, and that the time of full orientation responsiveness is limited to a period ranging from the initiation of germination to about 3-4 h after the start of germination. There is a gravity-oriented nuclear movement beginning at about 13 h after germination, and this movement appears to predict the initial growth direction of rhizoids.

  2. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen

    PubMed Central

    Ge, Weina; Song, Yun; Zhang, Cuijun; Zhang, Yafang; Burlingame, Alma L.; Guo, Yi

    2011-01-01

    Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value ≤ 0.01) in pollen germinated for 6h compare with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth. PMID:21798377

  3. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  4. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds.

    PubMed

    Lu, Tian-Cong; Meng, Ling-Bo; Yang, Chuan-Ping; Liu, Gui-Feng; Liu, Guan-Jun; Ma, Wei; Wang, Bai-Chen

    2008-11-01

    To better understand the role that reversible protein phosphorylation plays in seed germination, we initiated a phosphoproteomic investigation of embryos of germinated maize seeds. A total of 776 proteins including 39 kinases, 16 phosphatases, and 33 phosphoproteins containing 36 precise in vivo phosphorylation sites were identified. All the phosphorylation sites identified, with the exception of the phosphorylation site on HSP22, have not been reported previously (Lund et al. in J Biol Chem, 276, 29924-29929, 2001). Assayed with QRT-PCR, the transcripts of ten kinase genes were found to be dramatically up-regulated during seed germination and those of four phosphatase genes were up-regulated after germination, which indicated that reversible protein phosphorylation occurred and complex regulating networks were activated during this period. At least one-third of these phosphoproteins are key components involved in biological processes which relate to seed germination, such as DNA repair, gene transcription, RNA splicing and protein translation, suggesting that protein phosphorylation plays an important role in seed germination. As far as we know, this is the first phosphoproteomic study on a monocot and it will lay a solid foundation for further study of the molecular mechanisms of seed germination and seedling development. PMID:18726113

  5. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination.

    PubMed

    Toh, Shigeo; Kamiya, Yuji; Kawakami, Naoto; Nambara, Eiji; McCourt, Peter; Tsuchiya, Yuichiro

    2012-01-01

    Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes under limited growth condition. To understand the roles of strigolactones in seed germination, it is necessary to develop a tractable experimental system using model plants such as Arabidopsis. Here, we report that thermoinhibition, which involves exposing seeds to high temperatures, uncovers a clear role for strigolactones in promoting Arabidopsis seed germination. Both strigolactone biosynthetic and signaling mutants showed increased sensitivity to seed thermoinhibition. The synthetic strigolactone GR24 rescued germination of thermoinbibited biosynthetic mutant seeds but not a signaling mutant. Hormone analysis revealed that strigolactones alleviate thermoinhibition by modulating levels of the two plant hormones, GA and ABA. We also showed that GR24 was able to counteract secondary dormancy in Arabidopsis ecotype Columbia (Col) and Cape Verde island (Cvi). Systematic hormone analysis of germinating Striga helmonthica seeds suggested a common mechanism between the parasitic and non-parasitic seeds with respect to how hormones regulate germination. Thus, our simple assay system using Arabidopsis thermoinhibition allows comparisons to determine similarities and differences between parasitic plants and model experimental systems for the use of strigolactones. PMID:22173099

  6. Rethinking Diversity.

    ERIC Educational Resources Information Center

    Gordon, Jack

    1992-01-01

    Managing diversity is about coping with unassimilated differences, about building systems and a culture that unite different people in a common pursuit without undermining their diversity. The goal of diversity training is a high performance organization rather than a climate in which no one's feathers are ruffled. (SK)

  7. Germination and growth of wheat in simulated Martian atmospheres

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco L.

    1991-01-01

    One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat (Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the earth atmosphere controls.

  8. Effect of synthetic detergents on germination of fern spores

    SciTech Connect

    Devi, Y.; Devi, S.

    1986-12-01

    Synthetic detergents constitute one of the most important water pollutants by contaminating the lakes and rivers through domestic and industrial use. Considerable information is now available for the adverse effects of detergents an aquatic fauna including fish, algae, and higher aquatic plants. Marked inhibition of germination in orchids and brinjals and of seedlings growth in raddish suggest that rapidly growing systems could be sensitive to detergent polluted water. The present study of the effect of linear alkyl benzene sulphonate on germination of the spores of a fern, Diplazium esculentum aims at the understanding of the effects of water pollution on pteridophytes and the development of spore germination assay for phytoxicity evaluation.

  9. Germination and growth of wheat in simulated Martian atmospheres

    NASA Astrophysics Data System (ADS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco L.

    One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat ( Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the Earth atmosphere controls.

  10. Elemental variations in the germinating fungus Phytophthora palmivora

    NASA Astrophysics Data System (ADS)

    Mazzolini, A. P.; Grant, B. R.; Sealock, R. M.; Legge, G. J. F.

    1991-03-01

    We have measured the elemental variations between zoospores and germinating cystospores of the fungus Phytophthora palmivora, using a scanning proton microprobe. Averaged over a number of individual cells, our results indicate that the level of Ca is much lower in germinating cystospores than in zoospores. The levels of S, Cl, and Zn also appear to be lower, and the level of K appears to be higher. The spatial distribution of elements within the germinating cystospore is very similar for P, S, Cl, K, Mn, Fe, and Cu, but significantly different for Ca and Zn.

  11. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus.

    PubMed

    Puighermanal, Emma; Biever, Anne; Espallergues, Julie; Gangarossa, Giuseppe; De Bundel, Dimitri; Valjent, Emmanuel

    2015-07-01

    Increasing evidences suggest that dopamine facilitates the encoding of novel memories by the hippocampus. However, the role of dopamine D2 receptors (D2R) in such regulations remains elusive due to the lack of the precise identification of hippocampal D2R-expressing cells. To address this issue, mice expressing the ribosomal protein Rpl22 tagged with the hemagglutinin (HA) epitope were crossed with Drd2-Cre mice allowing the selective expression of HA in D2R-containing cells (Drd2-Cre:RiboTag mice). This new transgenic model revealed a more widespread pattern of D2R-expressing cells identified by HA immunoreactivity than the one initially reported in Drd2-EGFP mice, in which the hilar mossy cells were the main neuronal population detectable. In Drd2-Cre:RiboTag mice, scattered HA/GAD67-positive neurons were detected throughout the CA1/CA3 subfields, being preferentially localized in stratum oriens and stratum lacunosum-moleculare. At the cellular level, HA-labeled cells located in CA1/CA3 subfields co-localized with calcium-binding proteins (parvalbumin, calbindin, and calretinin), neuropeptides (neuropeptide Y, somatostatin), and other markers (neuronal nitric oxide synthase, mGluR1α, reelin, coupTFII, and potassium channel-interacting protein 1). These results suggest that in addition to the glutamatergic hilar mossy cells, D2R-expressing cells constitute a subpopulation of GABAergic hippocampal interneurons. PMID:25545461

  12. Determinants of Activity at Human Toll-like Receptors 7 and 8: Quantitative Structure–Activity Relationship (QSAR) of Diverse Heterocyclic Scaffolds

    PubMed Central

    2015-01-01

    Toll-like receptor (TLR) 7 and 8 agonists are potential vaccine adjuvants, since they directly activate APCs and enhance Th1-driven immune responses. Previous SAR investigations in several scaffolds of small molecule TLR7/8 activators pointed to the strict dependence of the selectivity for TLR7 vis-à-vis TLR8 on the electronic configurations of the heterocyclic systems, which we sought to examine quantitatively with the goal of developing “heuristics” to define structural requisites governing activity at TLR7 and/or TLR8. We undertook a scaffold-hopping approach, entailing the syntheses and biological evaluations of 13 different chemotypes. Crystal structures of TLR8 in complex with the two most active compounds confirmed important binding interactions playing a key role in ligand occupancy and biological activity. Density functional theory based quantum chemical calculations on these compounds followed by linear discriminant analyses permitted the classification of inactive, TLR8-active, and TLR7/8 dual-active compounds, confirming the critical role of partial charges in determining biological activity. PMID:25192394

  13. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder. PMID:22736441

  14. Trypsinlike enzymes from dormant and germinated spores of Bacillus cereus T and their possible involvement in germination.

    PubMed Central

    Boschwitz, H; Halvorson, H O; Keynan, A; Milner, Y

    1985-01-01

    Trypsin-like enzymes were studied in dormant, activated, and germinated spores of Bacillus cereus T. Dormant spores contained two heat-labile enzyme activities. One was extractable with 2 M KCl and hydrolyzed azo-albumin. The second, a trypsinlike activity, was not extractable with 2 M KCl and hydrolyzed benzoyl-L-arginine-p-nitroanilide. Because of their heat instability, these two enzyme activities are probably not involved in the germination of heat-activated spores. Upon germination of heat-treated spores, a trypsinlike protease which was not detected in intact dormant spores was activated or exposed. This enzyme, when measured in intact germinated spores, hydrolyzed benzoyl-DL-arginine-p-nitroanilide but not azo-albumin and was inhibited in situ by sulfhydryl-blocking reagents such as p-chloromercuribenzoic acid and Hg2+. There was a correlation between the inhibition of germination and enzymatic activity by sulfhydryl-blocking reagents. The enzyme was also inhibited by leupeptin, tosyl-L-lysine chromoethyl ketone, and tosyl-L-arginine methyl ester. Good correlation existed between the inhibition of germination and enzymatic activity by these agents. Electron micrographs showed that in the presence of trypsin inhibitors, the spores did not lose their cortex. The protein extracts of the inhibited spores formed a somewhat different electrophoretic pattern in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the protein extracts of dormant or germinated spores. Images PMID:3930468

  15. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum. PMID:23741804

  16. Involvement of RD20, a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana

    PubMed Central

    Cheval, Cécilia; Ranty, Benoit; Vavasseur, Alain; Aldon, Didier

    2011-01-01

    The RD20 gene encodes a member of the caleosin family, which is primarily known to function in the mobilization of seed storage lipids during germination. In contrast to other caleosins, RD20 expression is early-induced by water deficit conditions and we recently provided genetic evidence for its positive role in drought tolerance in Arabidopsis. RD20 is also responsive to pathogen infection and is constitutively expressed in diverse tissues and organs during development suggesting additional roles for this caleosin. This addendum describes further exploration of phenotypic alterations in T-DNA insertional rd20 mutant and knock-out complemented transgenic plants in the context of early development and susceptibility to a phytopathogenic bacteria. We show that the RD20 gene is involved in ABA-mediated inhibition of germination and does not play a significant role in plant defense against Pseudomonas syringae. PMID:21673513

  17. Killer cell immunoglobulin-like receptor (KIR) gene diversity in a population naturally exposed to malaria in Porto Velho, Northern Brazil.

    PubMed

    Perce-da-Silva, D S; Silva, L A; Lima-Junior, J C; Cardoso-Oliveira, J; Ribeiro-Alves, M; Santos, F; Porto, L C M S; Oliveira-Ferreira, J; Banic, D M

    2015-03-01

    Killer cell immunoglobulin-like receptors (KIR) are expressed mainly in natural killer cells and specifically recognize human leukocyte antigen (HLA) class I molecules. The repertoire of KIR genes and KIR-HLA pairs is known to play a key role in the susceptibilities to and the outcomes of several diseases, including malaria. The aim of this study was to investigate the distribution of KIR genes, KIR genotypes and KIR-HLA pair combinations in a population naturally exposed to malaria from Brazilian Amazon. All 16 KIR genes investigated were present in the studied population. Overall, 46 KIR genotypes were defined. The two most common genotypes in the Porto Velho communities, genotypes 1 and 2, were present at similar frequencies as in the Americas. Principal component analysis based on the frequencies of the KIR genes placed the Porto Velho population closer to the Venezuela Mestizos, USA California hispanic and Brazil Paraná Mixed in terms of KIR gene frequencies. This analysis highlights the multi-ethnic profile of the Porto Velho population. Most of the individuals were found to have at least one inhibitory KIR-HLA pair. Seventy-five KIR-HLA pair combinations were identified. The KIR-2DL2/3_HLA-C1, KIR3DL1_HLA-Bw4 and KIR2DL1_HLA-C2 pairs were the most common. There was no association between KIR genes, KIR genotypes or KIR-HLA pair combinations and malaria susceptibility in the studied population. This is the first report on the distribution of KIR and known HLA ligands in the Porto Velho population. Taken together, these results should provide baseline information that will be relevant to population evolutionary history, malaria and other diseases studies in populations of the Brazilian Amazon. PMID:25656387

  18. Diversity of killer cell immunoglobulin-like receptor (KIR) genotypes and KIR2DL2/3 variants in HCV treatment outcome.

    PubMed

    Vidal-Castiñeira, Jose Ramón; López-Vázquez, Antonio; Martínez-Borra, Jesús; Martínez-Camblor, Pablo; Prieto, Jesús; López-Rodríguez, Rosario; Sanz-Cameno, Paloma; de la Vega, Juan; Rodrigo, Luis; Pérez-López, Rosa; Pérez-Álvarez, Ramón; López-Larrea, Carlos

    2014-01-01

    The aim of this study was to analyse the distribution of KIR haplotypes and the KIR2DL2/3 alleles in chronic HCV-infected patients in order to establish the influence on the response to pegylated interferon plus ribavirin classical treatment. The alleles study of previously associated KIR2DL2/3 showed that KIR2DL2*001 was more frequent in non-SVR (NSVR) (42.2% vs. 27.5%, p<0.05) and KIR2DL3*001 was associated with sustained viral response (SVR) (41.6% vs. 61.2%, p<0.005). The KIR2DL3*001-HLA-C1 association was also significant (24.5% vs. 45.7%, p<0.001). From the frequencies of KIR obtained, 35 genotypes were assigned on the basis of previous studies. The centromeric A/A genotype was more frequent in SVR (44.1% vs. 34.5%, p<0.005) and the centromeric B/B genotype was found to be significantly more frequent in NSVR (20.9% vs. 11.2%, p<0.001). The logic regression model showed the importance of KIR genes in predicting the response to combined treatment, since the positive predictive value (PPV) was improved (from 55.9% to 75.3%) when the analysis of KIR was included in addition to the IFNL3 rs12979860 polymorphism. The study of KIR receptors may be a powerful tool for predicting the combined treatment response in patients with chronic HCV infection in association with the determination of IFNL3 polymorphism. PMID:24927414

  19. 5-HT3 Receptors

    PubMed Central

    Thompson, A. J.; Lummis, S. C. R.

    2009-01-01

    The 5-HT3 receptor is a member of the Cys-loop family of ligand-gated ion channels. These receptors are located in both the peripheral and central nervous systems, where functional receptors are constructed from five subunits. These subunits may be the same (homopentameric 5-HT3A receptors) or different (heteropentameric receptors, usually comprising of 5-HT3A and 5-HT3B receptor subunits), with the latter having a number of distinct properties. The 5-HT3 receptor binding site is comprised of six loops from two adjacent subunits, and critical ligand binding amino acids in these loops have been largely identified. There are a range of selective agonists and antagonists for these receptors and the pharmacophore is reasonably well understood. There are also a wide range of compounds that can modulate receptor activity. Studies have suggested many diverse potential disease targets that might be amenable to alleviation by 5-HT3 receptor selective compounds but to date only two applications have been fully realised in the clinic: the treatment of emesis and irritable-bowel syndrome. PMID:17073663

  20. Germination Characteristics Of Some Great Basin Native Annual Forb Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass (Bromus tectorum). Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present in many sites. Germ...

  1. Strigolactones as Germination Stimulants for Root Parasitic Plants

    PubMed Central

    Yoneyama, Koichi; Awad, Ayman A.; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo

    2010-01-01

    Witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are the two most devastating root parasitic plants belonging to the family Orobanchaceae and are causing enormous crop losses throughout the world. Seeds of these root parasites will not germinate unless they are exposed to chemical stimuli, ‘germination stimulants’ produced by and released from plant roots. Most of the germination stimulants identified so far are strigolactones (SLs), which also function as host recognition signals for arbuscular mycorrhizal fungi and a novel class of plant hormones inhibiting shoot branching. In this review, we focus on SLs as germination stimulants for root parasitic plants. In addition, we discuss how quantitative and qualitative differences in SL exudation among sorghum cultivars influence their susceptibility to Striga. PMID:20403809

  2. Greenhouse germination and characterization of Synchytrium solstitiale resting spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchytrium solstitiale was evaluated for suitability in biological control of yellow starthisle (YST). A protocol was developed for maintenance of S. solstitiale in galled tissue under greenhouse conditions. Recently, protocol has been developed for germination of resting spores. Resting spores ...

  3. Germinated brown rice and its bio-functional compounds.

    PubMed

    Cho, Dong-Hwa; Lim, Seung-Taik

    2016-04-01

    Brown rice (BR) contains bran layers and embryo, where a variety of nutritional and biofunctional components, such as dietary fibers, γ-oryzanol, vitamins, and minerals, exist. However, BR is consumed less than white rice because it has an inferior eating texture when cooked. Germination is one of the techniques used to improve the texture of the cooked BR. In addition, it induces numerous changes in the composition and chemical structure of the bioactive components. Moreover, many studies reported that the germination could induce the formation of new bioactive compounds, such as gamma-aminobutyric acid (GABA). The consumption of germinated brown rice (GBR) is increasing in many Asian countries because of its improved eating quality and potential health-promoting functions. However, there is still a lack of studies on the compositional and functional changes of the bioactive components during germination. This review contains recent research findings, especially on the bioactive components in GBR. PMID:26593491

  4. Localization of Carboxypeptidase I in Germinating Barley Grain 1

    PubMed Central

    Ranki, Harri; Sopanen, Tuomas; Voutilainen, Raimo

    1990-01-01

    Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain. Images Figure 3 PMID:16667638

  5. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  6. Alkaloid Changes in Tobacco Seeds during Germination 1

    PubMed Central

    Weeks, W. W.; Bush, L. P.

    1974-01-01

    Nicotine, nornicotine, anabasine, and anatabine, normally found in growing and mature tobacco (Nicotiana tabacum L.) plants, were extracted and quantified from mature tobacco seeds and young tobacco seedlings. The rate of net alkaloid disappearance and accumulation in tobacco seedlings was related to phases of germination. In general, the increased rate of germination associated with higher temperatures also increased the rate of initial loss of alkaloids and the subsequent rate of accumulation of alkaloids. Maximum alkaloid accumulation in 144-hour-old seedlings cultured with 10-hour day occurred at 27 C. Following an 8-hour photoinduction period, seeds germinated in darkness accumulated greater amounts of alkaloids than seeds exposed to light each day. Seeds germinated in darkness for 96 hours, following the 8-hour photoinduction period, and then exposed to light each day accumulated the greatest amounts of alkaloids. PMID:16658655

  7. Strigolactones as germination stimulants for root parasitic plants.

    PubMed

    Yoneyama, Koichi; Awad, Ayman A; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo

    2010-07-01

    Witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are the two most devastating root parasitic plants belonging to the family Orobanchaceae and are causing enormous crop losses throughout the world. Seeds of these root parasites will not germinate unless they are exposed to chemical stimuli, 'germination stimulants' produced by and released from plant roots. Most of the germination stimulants identified so far are strigolactones (SLs), which also function as host recognition signals for arbuscular mycorrhizal fungi and a novel class of plant hormones inhibiting shoot branching. In this review, we focus on SLs as germination stimulants for root parasitic plants. In addition, we discuss how quantitative and qualitative differences in SL exudation among sorghum cultivars influence their susceptibility to Striga. PMID:20403809

  8. Germination of Chenopodium Album in Response to Microwave Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Será, Bozena; Stranák, Vitezslav; Serý, Michal; Tichý, Milan; Spatenka, Petr

    2008-08-01

    The seeds of Lamb's Quarters (Chenopodium album agg.) were stimulated by low-pressure discharge. The tested seeds were exposed to plasma discharge for different time durations (from 6 minutes to 48 minutes). Germination tests were performed under specified laboratory conditions during seven days in five identical and completely independent experiments. Significant differences between the control and plasma-treated seeds were observed. The treated seeds showed structural changes on the surface of the seat coat. They germinated faster and their sprout accretion on the first day of seed germination was longer. Germination rate for the untreated seeds was 15% while it increased approximately three times (max 55%) for seeds treated by plasma from 12 minutes to 48 minutes.

  9. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  10. Seed and Germination Characteristics of 20 Amazonian Liana Species

    PubMed Central

    Roeder, Mareike; Ferraz, Isolde D. K.; Hölscher, Dirk

    2013-01-01

    Lianas are an important component of tropical forests, and may reach their highest densities in disturbed areas. However, information on seed and germination characteristics is scarce. Twenty Amazon liana species were screened for their germination characteristics, including light dependence, tolerance of desiccation and of alternating temperatures; these characteristics are considered important for the germination success in areas with relatively open canopies. Between 31–1,420 seeds per species were available, as 15 species seeds came from one mother plant. We studied seed biometry and conducted germination trials with fresh seeds (12 h light daily, or dark) and desiccated seeds at 25 °C. Germination at alternating temperatures (20/30 °C, 15/35 °C) was analyzed for nine species. Of the 20 species, eight species with the largest seeds had desiccation sensitive seeds; this is the first record for species of four genera and one family, where only desiccation tolerant seeds are otherwise recorded. Light-dependent germination was found in three species (0.01–0.015 g) and is the first record for two; however, results were based on seeds from one plant per species. Alternating temperatures of 15/35 °C decreased final germination of four out of nine species, and response to 20/30 °C cycles varied compared to constant 25 °C. Seed and germination characteristics of the species ranged from pioneer to climax traits indicating that establishment of lianas from seeds may be confined to species specific niches. PMID:27137363

  11. Enhanced germination and gravitropism of soybean in a hypogeomagnetic field

    NASA Astrophysics Data System (ADS)

    Mo, Weichuan

    For the future manned space exploration, the duration of the missions would significantly in-crease. Investigating plant growth and development under the space environmental conditions is of essential importance for the food supply projects for the astronauts. Hypogeomagnetic field (HGMF), namely, extremely low magnetic field, is one of the main characters of the space environment. Germination is the first vital step of plant growth and development, which determines the final yield of plants. The effect of HGMF on plant growth, especially early ger-mination, still remains open. In this study, we established a hypogeomagnetic field (HGMF) incubation system, the remnant magnetic field inside no more than 250 nT. Soybean seeds were incubated at 25 in HGMF, and the very beginning of soybean germination, from water ab-sorbance of cotyledon to radicle emergence, was examined within 24 h. Our results showed that the germination ratio and weight ratio of emerged soybean radicles were markedly increased during germination in HGMF. Furthermore, the tropism angle of emerged radicle with gravity in HGMF was statistically smaller than that in GMF when the radicle direction was placed opposite to gravity before germination. These results indicate that the germination and gravit-ropism of soybean is enhanced in a hypogeomagnetic environment, This is a new finding about the early seed germination in such a low environmental magnetic field which is comparable to the magnetic field of Lunar Swirls on the Moon (a few hundred nT), and it might provide new perspectives on the space science researches concerning plant growth and food supply.

  12. Effect of day length on germination of seeds collected in Alaska

    USGS Publications Warehouse

    Densmore, R.V.

    1997-01-01

    Day length control can effectively limit seed germination to favorable seasons, but this phenomenon has been studied in relatively few wild plants. I tested species from interior Alaska for day length control of germination under controlled conditions, and I also monitored germination phenology in natural habitats. Unstratified and cold-stratified seeds were germinated on short (13 h) and long (22 h) day length and in the dark at constant and alternating temperatures. On long day length, unstratified Ledum decumbens and Saxifraga tricuspidata seeds germinated from 5??C to 20??C, but on short day length few or no seeds germinated at 5??C and 10??C and germination was reduced at higher temperatures. Unstratified seeds of Diapensia lapponica and Chamaedaphne calyculata germinated only at 15??C and 20??C on long day length, and short day length completely inhibited germination. Cold stratification widened the temperature range for germination on both long and short day lengths, but germination was still lower on short than long day length. Germination phenology in natural habitats was consistent with germination in controlled conditions. In these species, short day length and low temperatures interact to inhibit germination in the fall. After overwintering, seeds germinate in the spring at low temperatures and on long day lengths. The inhibitory effect of short day length is not important in the spring because day length is already long at snowmelt.

  13. Anxiolytic-like and anxiogenic-like effects of nicotine are regulated via diverse action at β2*nicotinic acetylcholine receptors

    PubMed Central

    Anderson, S M; Brunzell, D H

    2015-01-01

    Background and Purpose Nicotine dose-dependently activates or preferentially desensitizes β2 subunit containing nicotinic ACh receptors (β2*nAChRs). Genetic and pharmacological manipulations assessed effects of stimulation versus inhibition of β2*nAChRs on nicotine-associated anxiety-like phenotype. Experimental Approach Using a range of doses of nicotine in β2*nAChR subunit null mutant mice (β2KO; backcrossed to C57BL/6J) and their wild-type (WT) littermates, administration of the selective β2*nAChR agonist, 5I-A85380, and the selective β2*nAChR antagonist dihydro-β-erythroidine (DHβE), we determined the behavioural effects of stimulation and inhibition of β2*nAChRs in the light–dark and elevated plus maze (EPM) assays. Key Results Low-dose i.p. nicotine (0.05 mg·kg−1) supported anxiolysis-like behaviour independent of genotype whereas the highest dose (0.5 mg·kg−1) promoted anxiogenic-like phenotype in WT mice, but was blunted in β2KO mice for the measure of latency. Administration of 5I-A85380 had similar dose-dependent effects in C57BL/6J WT mice; 0.001 mg·kg−1 5I-A85380 reduced anxiety on an EPM, whereas 0.032 mg·kg−1 5I-A85380 promoted anxiogenic-like behaviour in both the light–dark and EPM assays. DHβE pretreatment blocked anxiogenic-like effects of 0.5 mg·kg−1 nicotine. Similarly to DHβE, pretreatment with low-dose 0.05 mg·kg−1 nicotine did not accumulate with 0.5 mg·kg−1 nicotine, but rather blocked anxiogenic-like effects of high-dose nicotine in the light–dark and EPM assays. Conclusions and Implications These studies provide direct evidence that low-dose nicotine inhibits nAChRs and demonstrate that inhibition or stimulation of β2*nAChRs supports the corresponding anxiolytic-like or anxiogenic-like effects of nicotine. Inhibition of β2*nAChRs may relieve anxiety in smokers and non-smokers alike. PMID:25625469

  14. Aromatic A-ring analogues of orobanchol, new germination stimulants for seeds of parasitic weeds.

    PubMed

    Malik, Heetika; Kohlen, Wouter; Jamil, Muhammad; Rutjes, Floris P J T; Zwanenburg, Binne

    2011-04-01

    Strigolactones are signaling compounds in plants of increasing importance. In this paper the focus is on their activity as germinating agents for seeds of parasitic weeds. The syntheses of aromatic A-ring analogues of the germination stimulant orobanchol have been described. Starting substrate is the ABC unit of the stimulant GR24. Oxidation at the C-4 position gives a 4-oxo derivative which on subsequent reduction produces two C-4 epimeric alcohols, syn and anti in a ratio of 82 : 3. For practical access of the C-4 anti alcohol, the predominant syn epimer is inverted by a Mitsunobu procedure. The anti C-4 alcohol is then coupled with the D-ring in a one-pot two-step process involving a formylation and a reaction with bromobutenolide to give a mixture of the diastereomeric aromatic A-ring analogues of orobanchol. In contrast, the syn C-4 alcohol cannot be coupled directly with the D-ring. Protection of the C-4 syn OH is a prequisite. The best protecting function is the SEM group as deprotection after coupling with the D-ring can then readily be achieved. The structures of these new analogues have been ascertained by X-ray analyses. Both diastereomers of the C-4 syn as well as the C-4 anti orobanchol analogues have been tested as germination agents of seeds of Striga hermonthica and Orobanche ramosa. In addition, the acetates of both epimeric C-4 alcohols have been prepared and tested. Both diastereomers of the 4-oxo derivative have been prepared and bioassayed as well. The bioassays reveal that the diastereomers having the natural relative configuration are most active. The data also suggest that hydrogen bonding is not an important factor in the binding of the stimulant molecules in the receptor. PMID:21321762

  15. YY1 Is Required for Germinal Center B Cell Development

    PubMed Central

    Vuyyuru, Raja; Jha, Vibha; Hodewadekar, Suchita; Manser, Tim; Atchison, Michael L.

    2016-01-01

    YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction. PMID:27167731

  16. Conidial germination in the filamentous fungus Fusarium graminearum.

    PubMed

    Seong, Kye-Yong; Zhao, Xinhua; Xu, Jin-Rong; Güldener, Ulrich; Kistler, H Corby

    2008-04-01

    The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development. PMID:17950638

  17. Extensive analysis of D-J-C arrangements allows the identification of different mechanisms enhancing the diversity in sheep T cell receptor β-chain repertoire

    PubMed Central

    2010-01-01

    Background In most species of mammals, the TRB locus has the common feature of a library of TRBV genes positioned at the 5'- end of two in tandem aligned D-J-C gene clusters, each composed of a single TRBD gene, 6-7 TRBJ genes and one TRBC gene. An enhancer located at the 3'end of the last TRBC and a well-defined promoter situated at the 5'end of the TRBD gene and/or a undefined promoter situated at the 5'end of the TRBD2 are sufficient to generate the full recombinase accessibility at the locus. In ruminant species, the 3'end of the TRB locus is characterized by the presence of three D-J-C clusters, each constituted by a single TRBD, 5-7 TRBJ and one TRBC genes with the center cluster showing a structure combined with the clusters upstream and downstream, suggesting that a unequal crossover occurred in the duplication. An enhancer downstream the last TRBC, and a promoter at the 5'-end of each TRBD gene are also present. Results In this paper we focused our attention on the analysis of a large number of sheep TR β-chain transcripts derived from four different lymphoid tissues of three diverse sheep breed animals to certify the use and frequency of the three gene clusters in the β-chain repertoire. As the sheep TRB locus genomic organization is known, the exact interpretation of the V-D-J rearrangements was fully determined. Our results clearly demonstrate that sheep β-chain constitutes a level of variability that is substantially larger than that described in other mammalian species. This is due not only to the increase of the number of D and J genes available to the somatic recombination, but also to the presence of the trans-rearrangement process. Moreover, the functional complexity of β-chain repertoire is resolved by other mechanisms such as alternative cis- and trans-splicing and recombinational diversification that seems to affect the variety of the constant region. Conclusion All together our data demonstrate that a disparate set of molecular mechanisms

  18. Defects in Germinal Center Selection in SLE

    PubMed Central

    Woods, Megan; Zou, Yong-Rui; Davidson, Anne

    2015-01-01

    Germinal centers (GCs) are the primary site at which clonal expansion and affinity maturation of B cells occur. B cells encounter antigen and receive T cell help in the GC light zone (LZ) and then migrate to the dark zone where they proliferate and undergo somatic mutation before cycling back to the LZ for further rounds of selection. Tolerance to autoantigens is frequently lost de novo as GC B cells undergo class switching and somatic mutation. This loss of tolerance is regulated by a variety of mechanisms including cell death, failure to compete for T cell help, and failure to differentiate into effector cells. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nucleic acid antigens. While defects in tolerance occur in the naïve repertoire of SLE patients, pathogenic autoantibodies also arise in the GC by somatic mutation from non-autoreactive precursors. Several B cell defects contribute to the loss of GC tolerance in SLE, including polymorphisms of genes encoded by the Sle1 locus, excess TLR7 signaling, defects in FcRIIB expression, or defects of B cell apoptosis. Extrinsic soluble factors, such as Type-1 IFN and B cell-activating factor, or an increased number of T follicular helper cells in the GC also alter B cell-negative selection. Finally, defects in clearance of apoptotic debris within the GC result in BCR-mediated internalization of nucleic acid containing material and stimulation of autoantibody production by endosomal TLR-driven mechanisms. PMID:26322049

  19. Inhibition of urediniospore germination Puccinia hemerocallidis by Bacto Agar and changes in percent germination and germ-tube elongation on agarose over time.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of some gelling agents and pH on urediniospore germination and germ tube elongation of Puccinia hemerocallidis were investigated in vitro. Gelling agents significantly affected urediniospore germination. Very few urediniospores germinated on the substrates containing more than 0.5% Bacto...

  20. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus

    PubMed Central

    Huang, Mingwei; Hebert, Alexander S.; Coon, Joshua J.; Hull, Christina M.

    2015-01-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote. PMID:26313153

  1. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  2. Embracing Diversity

    ERIC Educational Resources Information Center

    Roeck, Kathryn T.

    2009-01-01

    The high school art unit "Embracing Diversity" was the author's principal work towards the completion of a Masters thesis. The objective was to learn whether or not teaching an art unit that focused on sexual diversity could have a positive impact on the current culture one finds in high schools. The unit was found to have a positive impact on…

  3. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. PMID:26812088

  4. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  5. Transcriptional Reprogramming of the Mycoparasitic Fungus Ampelomyces quisqualis During the Powdery Mildew Host-Induced Germination.

    PubMed

    Siozios, Stefanos; Tosi, Lorenzo; Ferrarini, Alberto; Ferrari, Alessandro; Tononi, Paola; Bellin, Diana; Maurhofer, Monika; Gessler, Cesare; Delledonne, Massimo; Pertot, Ilaria

    2015-02-01

    Ampelomyces quisqualis is a mycoparasite of a diverse range of phytopathogenic fungi associated with the powdery mildew disease. Among them are several Erysiphaceae species with great economic impact on high-value crops such as grape. Due to its ability to parasitize and prevent the spread of powdery mildews, A. quisqualis has received considerable attention for its biocontrol potential. However, and in sharp contrast to the extensively studied biocontrol species belonging to the genus Trichoderma, little is known about the biology of A. quisqualis at the molecular and genetic levels. We present the first genome-wide transcription profiling in A. quisqualis during host-induced germination. A total of 1,536 putative genes showed significant changes in transcription during the germination of A. quisqualis. This finding denotes an extensive transcriptional reprogramming of A. quisqualis induced by the presence of the host. Several upregulated genes were predicted to encode for putative mycoparasitism-related proteins such as secreted proteases, virulence factors, and proteins related to toxin biosynthesis. Our data provide the most comprehensive sequence resource currently available for A. quisqualis in addition to offering valuable insights into the biology of A. quisqualis and its mycoparasitic lifestyle. Eventually, this may improve the biocontrol capacity of this mycoparasite. PMID:25185010

  6. TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones

    PubMed Central

    Hwang, Il-Young; Park, Chung; Harrison, Kathleen

    2009-01-01

    B lymphocyte–intrinsic Toll-like receptor (TLR) signals amplify humoral immunity and can exacerbate autoimmune diseases. We identify a new mechanism by which TLR signals may contribute to autoimmunity and chronic inflammation. We show that TLR4 signaling enhances B lymphocyte trafficking into lymph nodes (LNs), induces B lymphocyte clustering and interactions within LN follicles, leads to sustained in vivo B cell proliferation, overcomes the restriction that limits the access of nonantigen-activated B cells to germinal center dark zones, and enhances the generation of memory and plasma cells. Intravital microscopy and in vivo tracking studies of B cells transferred to recipient mice revealed that TLR4-activated, but not nonstimulated, B cells accumulated within the dark zones of preexisting germinal centers even when transferred with antigen-specific B cells. The TLR4-activated cells persist much better than nonstimulated cells, expanding both within the memory and plasma cell compartments. TLR-mediated activation of B cells may help to feed and stabilize the spontaneous and ectopic germinal centers that are so commonly found in autoimmune individuals and that accompany chronic inflammation. PMID:19917774

  7. Cutting Edge: Redox signaling hypersensitivity distinguishes human germinal center B cells

    PubMed Central

    Polikowsky, Hannah G.; Wogsland, Cara E.; Diggins, Kirsten E.

    2015-01-01

    Differences in the quality of B-cell antigen receptor (BCR) signaling control key steps of B cell maturation and differentiation. Endogenously produced H2O2 is thought to fine tune the level of BCR signaling by reversibly inhibiting phosphatases. However, relatively little is known about how B cells at different stages sense and respond to such redox cues. Here, we used phospho-specific flow cytometry and high-dimensional mass cytometry (CyTOF) to compare BCR signaling responses in mature human tonsillar B cells undergoing germinal center (GC) reactions. GC B cells, in contrast to mature naïve B cells, memory B cells, and plasmablasts, were hypersensitive to a range of H2O2 concentrations and responded by phosphorylating SYK and other membrane proximal BCR effectors in the absence of BCR engagement. These findings reveal that stage specific redox responses distinguish human GC B cells. PMID:26157177

  8. Germinal center B cells recognize antigen through a specialized immune synapse architecture.

    PubMed

    Nowosad, Carla R; Spillane, Katelyn M; Tolar, Pavel

    2016-07-01

    B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we found that, in contrast with naive and memory B cells, which gathered antigen toward the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β-NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T cell-dependent selection of high-affinity B cells in GCs. PMID:27183103

  9. Regulated selection of germinal-center cells into the memory B cell compartment.

    PubMed

    Shinnakasu, Ryo; Inoue, Takeshi; Kometani, Kohei; Moriyama, Saya; Adachi, Yu; Nakayama, Manabu; Takahashi, Yoshimasa; Fukuyama, Hidehiro; Okada, Takaharu; Kurosaki, Tomohiro

    2016-07-01

    Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool. PMID:27158841

  10. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  11. Fast Sterility Assessment by Germinable-Endospore Biodosimetry▿ †

    PubMed Central

    Yung, Pun To; Ponce, Adrian

    2008-01-01

    The increased demand for sterile products has created the need for rapid technologies capable of validating the hygiene of industrial production processes. Bacillus endospores are in standard use as biological indicators for evaluating the effectiveness of sterilization processes. Currently, culture-based methods, requiring more than 2 days before results become available, are employed to verify endospore inactivation. We describe a rapid, microscopy-based endospore viability assay (μEVA) capable of enumerating germinable endospores in less than 15 min. μEVA employs time-gated luminescence microscopy to enumerate single germinable endospores via terbium-dipicolinate (Tb-DPA) luminescence, which is triggered under UV excitation as 108 DPA molecules are released during germination on agarose containing Tb3+ and a germinant (e.g., l-alanine). Inactivation of endospore populations to sterility was monitored with μEVA as a function of thermal and UV dosage. A comparison of culturing results yielded nearly identical decimal reduction values, thus validating μEVA as a rapid biodosimetry method for monitoring sterilization processes. The simple Tb-DPA chemical test for germinability is envisioned to enable fully automated instrumentation for in-line monitoring of hygiene in industrial production processes. PMID:18836020

  12. Experimental clipping of sagebrush inhibits seed germination of neighbours.

    PubMed

    Karban, Richard

    2007-09-01

    Current views of plant communities emphasize the importance of competition for resources and colonization ability in determining seedling establishment and plant distributions. Many desert shrubs are surrounded by bare zones that lack other plants or have different suites of species beneath them compared with the open desert surrounding them. Releases of biochemicals as volatiles from leaves, leachates from litter, or exudates from roots have been proposed as mechanisms for this pattern, but such phytotoxicity has been controversial. I tested the hypothesis that experimental clipping of sagebrush foliage enhances its effect as a germination inhibitor. Germination of native forbs and grasses was reduced in association with clipped, compared with unclipped, sagebrush foliage in lath house and field experiments. Sagebrush seeds were not significantly affected. Air contact was required for this inhibition of germination. Soil contact and leaf litter were not required and added little inhibition of germination. These results suggest a potentially large, indirect, and previously overlooked role for interactions between herbivory and germination that could affect plant community structure. PMID:17663712

  13. Fast sterility assessment by germinable-endospore biodosimetry.

    PubMed

    Yung, Pun To; Ponce, Adrian

    2008-12-01

    The increased demand for sterile products has created the need for rapid technologies capable of validating the hygiene of industrial production processes. Bacillus endospores are in standard use as biological indicators for evaluating the effectiveness of sterilization processes. Currently, culture-based methods, requiring more than 2 days before results become available, are employed to verify endospore inactivation. We describe a rapid, microscopy-based endospore viability assay (microEVA) capable of enumerating germinable endospores in less than 15 min. MicroEVA employs time-gated luminescence microscopy to enumerate single germinable endospores via terbium-dipicolinate (Tb-DPA) luminescence, which is triggered under UV excitation as 10(8) DPA molecules are released during germination on agarose containing Tb(3+) and a germinant (e.g., L-alanine). Inactivation of endospore populations to sterility was monitored with microEVA as a function of thermal and UV dosage. A comparison of culturing results yielded nearly identical decimal reduction values, thus validating microEVA as a rapid biodosimetry method for monitoring sterilization processes. The simple Tb-DPA chemical test for germinability is envisioned to enable fully automated instrumentation for in-line monitoring of hygiene in industrial production processes. PMID:18836020

  14. Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae)

    PubMed Central

    Huynh, Tien T.; Thomson, Richard; Mclean, Cassandra B.; Lawrie, Ann C.

    2009-01-01

    Background and Aims Mycorrhizal associations are essential to the plant kingdom. The largest flowering plant family, the Orchidaceae, relies on mycorrhizal fungi for germination, growth and survival. Evidence suggests varying degrees of fungal-host specificity based on a single fungal isolate from a single plant. This paper shows for the first time the diversity of endophytes colonizing in a single plant over consecutive years and the functional significance of this diversity. Methods Stem-collars of Caladenia formosa were collected in different seasons and years. Mycorrhizal fungi isolated were tested for their efficacy to induce leafing and genetically determined using ITS-RFLP and sequencing. Results Multiple mycorrhizal fungi were repeatedly isolated from a single collar that displayed varying effectiveness in germination percentages and adult leaf length. Additional factors contributed to the isolation of effective mycorrhizal fungi; fungal collection season, year of collection and individual isolates. Surface sterilization only improved the number of isolated mycorrhizal fungi. Dual inoculation did not increase germination. All 59 mycorrhizal fungi effective in germinating seed belonged to one clearly defined ITS (internal transcribed spacer) clade and clustered close to Sebacina vermifera (79–89 % homology). Isolates resulting in the greatest germination were not necessarily those resulting in the greatest survival and growth 1 year after germination. Conclusion Single orchid plants contained multiple mycorrhizal fungal strains of one species that had diverse functional differences. These results suggest that our current knowledge of fungal–host specificity may be incomplete due to experimental and analytical limitations. It also suggests that the long-term effectiveness of a mycorrhizal fungus or fungi could only be found by germination and longer-term growth tests rather than genetically. PMID:19561011

  15. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  16. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  17. Germinal centre proliferation in response to mitogenic lymphokines

    PubMed Central

    Kelly, R. H.; Wolstencroft, R. A.

    1974-01-01

    Lymphokines which were mitogenic for cultured lymphocytes caused germinal centre enlargement within the regional lymph node following their intralymphatic injection. It was found that 17 μg of a lymphokine preparation, produced by 2·5 × 104 peritoneal exudate lymphocytes, resulted in a 14-fold increase in germinal centre area and a 7-fold increase in the labelled cell content of these centres on the 3rd day after injection. Since the daily rate of lymphocyte recirculation through the regional node would supply sufficient numbers of antigen-sensitive lymphocytes to generate this amount of mitogenic lymphokine following antigenic stimulation, it is argued that lymphokine-induced germinal centre enlargement plays a physiological role in immunoregulation. ImagesFig. 4 PMID:4469486

  18. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination.

    PubMed

    Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude

    2015-02-01

    Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination. PMID:25524442

  19. Oxalate oxidases and differentiating surface structure in wheat: germins.

    PubMed Central

    Lane, B G

    2000-01-01

    Oxalate oxidases (OXOs) have been found to be concentrated in the surface tissues of wheat embryos and grains: germin is concentrated in root and leaf sheaths that surround germinated embryos; pseudogermin (OXO-psi) is concentrated in the epidermis and bracts that 'encircle' mature grains. Most strikingly, the epidermal accumulation of OXO-psi was found to presage the transition of a delicate 'skin', similar to the fragile epidermis of human skin, into the tough shell (the miller's 'beeswing') that is typical of mature wheat grains. A narrow range of oxalate concentration (1--2 mM) in the hydrated tissues of major crop cereals (barley, maize, oat, rice, rye and wheat) contrasted with wide variations in their OXO expression, e.g. cold-tolerant and cold-sensitive varieties of maize have similar oxalate contents but the former was found to contain approx. 20-fold more germin than did the latter. Well-known OXOs in sorghum, a minor cereal, and beet, a dicotyledon, were found to have little antigenic relatedness to the germins, but the beet enzyme did share some of the unique stability properties that are peculiar to the germin-like OXOs that are found only in the major crop cereals. Their concentration in surface structures of domesticated wheat suggests a biochemical role for germin-like OXOs: programmed cell death in surface tissues might be a constitutive as well as an adaptive form of differentiation that helps to produce refractory barriers against tissue invasion by predators. Incidental to the principal investigation, and using an OXO assay (oxalate-dependent release of CO(2)) that did not rely on detecting H(2)O(2), which is often fully degraded in cell extracts, it was found that OXO activity in soluble extracts of wheat was manifested only in standard solution assays if the extract was pretreated in a variety of ways, which included preincubation with pepsin or highly substituted glucuronogalactoarabinoxylans (cell-wall polysaccharides). PMID:10861243

  20. Essential oils from Mediterranean lamiaceae as weed germination inhibitors.

    PubMed

    Angelini, Luciana G; Carpanese, Giovanna; Cioni, Pier Luigi; Morelli, Ivano; Macchia, Mario; Flamini, Guido

    2003-10-01

    The essential oils obtained from rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and savory (Satureja montana L.) and the four monoterpenes that are their major constituents have been analyzed by GC and GC-MS and tested for their allelopathic properties on the seeds of three different annual weeds (Chenopodium album, Portulaca oleracea, and Echinochloa crus-galli) and three crops (Raphanus sativus, Capsicum annuum, and Lactuca sativa), with the aim to evaluate in vitro their potential as germination inhibitors. The essential oil composition varied with the species, thymol being the main constituent (44%) of thyme and carvacrol (57%) that of savory oil. Differences in essential oil composition were observed within two different rosemary ecotypes, type A, with alpha-pinene (37%) and 1,8-cineole (23%), and type B, characterized by a 2-fold content of 1,8-cineole (47%). This latest essential oil inhibited completely the germination of weeds while concurrently displaying little effect on pepper. The other two oils showed less selective action. S. montana essential oil, with 57% carvacrol, is the most active compound, completely inhibiting germination both of crops and weeds. Borneol, one of the main constituents of the oil of rosemary type B, showed an activity comparable to that of the whole oil. Crop and weed seeds treated with 1,8-cineole showed germination values that were not significantly different from controls, even if a slowing of the germination process expressed in terms of a significant increase in mean germination time was observed. Monoterpene compounds also present in the essential oils mainly represented the volatile fraction released from the crops and their residues into the soil. PMID:14518938

  1. The role of the GA signaling SLY1 in Arabidopsis seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy, afterripening, and germination are complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) is needed to set up seed dormancy during embryo maturation whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly ...

  2. Effects of frugivorous birds on seed retention time and germination in Xishuangbanna, southwest China

    PubMed Central

    SHI, Ting-Ting; WANG, Bo; QUAN, Rui-Chang

    2015-01-01

    The dispersal of many plants depends on transportation by birds as seed dispersers. The birds play an important role in long distance seed dispersal and may also affect seed germination. However, for plants who have many bird dispersers, the influence of dominant and non-dominant dispersers on retention time (dispersal distance) and germination remains poorly understood. In this study, we performed experiments with captive frugivorous birds and fruiting plant species to study the effects of dominant and non-dominant dispersers on seed retention time (SRT) and germination (seed germination percentage and germination speed). Our study showed a great interspecific variation in the effects of frugivorous birds on both SRT and germination. Some birds enhance the germination of a given plant species, but others do not. Generally, the dominant visitors improved the seed germination and performed longer seed retention time. PMID:26228475

  3. Seed biology and in vitro seed germination of Cypripedium.

    PubMed

    Zeng, Songjun; Zhang, Yu; Teixeira da Silva, Jaime A; Wu, Kunlin; Zhang, Jianxia; Duan, Jun

    2014-12-01

    Cypripedium orchids have high horticultural value. The populations of most species are very geographically restricted and they are becoming increasingly rare due to the destruction of native habitats and illegal collection. Reduction of the commercial value through large-scale propagation in vitro is a preferable option to reduce pressure from illegal collection. Cypripedium species are commercially propagated via seed germination in vitro. This review focuses on in vitro seed germination and provides an in-depth analysis of the seed biology of this genus. PMID:24191720

  4. [Evolution of pharmaceutical regulations from the origins to Germinal law].

    PubMed

    Lafont, Olivier

    2003-01-01

    The rising of pharmaceutical regulations took place in the civilisations located around the Mediterranean Sea. Egypt, Mesopotamia, Greco-Roman world, Byzantine Empire, were followed by Bagdad, where sayadila, inspections and grabadins appeared. The creation of Universities, during the XIIth and XIIIth centuries, plaid a role in the rising of apothecaries communities in Occident. Melfi Constitutions (Constititiones Melfiae, 1231) and new constitutions (1241) inspired most of the regulations of apothecaries communities in Europe. Declaration of the King of France in April 1777 announced the famous "Loi de Germinal", Germinal law, which organized the modern Pharmacy, in 1803. PMID:14763458

  5. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  6. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable. PMID:26934150

  7. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  8. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  9. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  10. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  11. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  12. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  13. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  14. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  15. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  16. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  17. Identification of Vigor Related Transcripts in Beta vulgaris When Germinated Under Abiotic Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germination is the first opportunity to evaluate vigor for beet breeders. The initial condition a germinating seed encounters affects the speed and success of germination, the amount of stored energy reserves to withstand future stress, and the overall ability of the seedling to flourish. However, s...

  18. Quantitative Analysis of Spatial-Temporal Correlations during Germination of Spores of Bacillus Species ▿

    PubMed Central

    Zhang, Jinqiao; Garner, Will; Setlow, Peter; Yu, Ji

    2011-01-01

    Bacteria of Bacillus species sporulate upon starvation, and the resultant dormant spores germinate when the environment appears likely to allow the resumption of vegetative growth. Normally, the rates of germination of individual spores in populations are very heterogeneous, and the current work has investigated whether spore-to-spore communication enhances the synchronicity of germination. In order to do this work, time-lapse optical images of thousands of individual spores were captured during germination, and an image analysis algorithm was developed to do the following: (i) measure the positions and germination rates of many thousands of individual spores and (ii) compute pairwise correlations of their germination. This analysis showed that an individual spore's germination rate was dependent on its distance from other spores, especially at short distances. Thus, spores that were within a few micrometers exhibited an increased synchronicity in germination, suggesting that there is a mechanism for short-range communication between such spores during germination. However, two molecules known to be germinants that are released during germination, l-alanine and the 1:1 chelate of Ca2+ and dipicolinic acid, did not mediate spore-to-spore communication during germination. PMID:21622756

  19. The fitness costs of delayed germination and diminutive growth response of cheatgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitive ability of cheatgrass is often attributed to rapid early season germination. Our previous research has observed germination occurring from October through June near the Reno, Nevada ARS research location. In a controlled experiment we allowed cheatgrass to germinate naturally (Octo...

  20. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  1. Drug diversion

    PubMed Central

    Wood, Danielle

    2015-01-01

    SUMMARY Prescription drug diversion has significant health, legal and social implications. Deaths from misuse of prescription drugs account for a significant proportion of overdose deaths. The drugs most commonly involved are analgesics, particularly opioids, and psychoactive drugs, particularly benzodiazepines. Diverted drugs are most often sourced from a family member or friend, but are also sourced from overseas pharmacies or laboratories, or bought from drug dealers. Drug diversion can be mitigated by good prescribing practices. Systems for monitoring the prescribing and dispensing of medicines are being instituted across Australia. PMID:26648654

  2. Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar.

    PubMed

    Rafter, M; Yokoya, K; Schofield, E J; Zettler, L W; Sarasan, V

    2016-08-01

    Orchids, particularly terrestrial taxa, rely mostly on basidiomycete fungi in the Cantharellales and Sebacinales that trigger the process of seed germination and/or initiate the full development of the seedling. During the course of development, orchids may associate with the same fungus, or they may enlist other types of fungi for their developmental needs leading to resilience in a natural setting. This study examined in vitro seed germination and seedling developmental behavior of Cynorkis purpurea, a terrestrial orchid from the Central Highlands of Madagascar. This species is mostly restricted to gallery forests in the Itremo Massif, in moist substrate between rocks bordering streams. The main objective was to understand the influence of diverse mycorrhizal fungi on seed germination and further development of C. purpurea. The study aims to compare symbiotic versus asymbiotic germination and seedling development with seeds and fungi collected from a 13-km(2) area in the Itremo region. Seeds collected from the wild were sown with diverse orchid mycorrhizal fungi (OMF) spanning 12 operational taxonomic units (OTUs) in three genera (Tulasnella, Ceratobasidium, and Sebacina) acquired from different habitats. Treatments were assessed in terms of the percentage of germinated seeds and fully developed seedlings against those in asymbiotic control media treatments. Overall, OMF significantly improved seedling development within the 12-week experiment period. Sebacina as a genus was the most effective at promoting seedling development of C. purpurea, as well as having the ability to enter into successful symbiotic relationships with orchids of different life forms; this new knowledge may be especially useful for orchid conservation practiced in tropical areas like Madagascar. A Sebacina isolate from an epiphytic seedling of Polystachya concreta was the most effective at inducing rapid seedling development and was among the five that outperformed fungi isolated from roots

  3. Sulfur dioxide effects on petunia pollen germination and seed set

    SciTech Connect

    Linskens, H.F.; van Megen, Y.; Pfahler, P.L.; Wilcox, M.

    1985-05-01

    Information pertaining to SO/sub 2/ effects on sexual reproduction is extremely limited even though this complex process is critical especially in annual species. This study reports the SO/sub 2/ effect on both in vitro and in vivo pollen germination characteristics and in vivo seed set in Petunia hybrida Vilm.

  4. Establishing Germination Testing as a Priority in a Genebank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, the Plant Genetic Resources Conservation Unit (PGRCU), Griffin, GA, established a program to test the germination of plant genetic resources maintained in the on-site collection. Prior to this date, regeneration priorities were based on seed age and quantity of seed available for distribut...

  5. Impact of seed germination data on genebank management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed viability data on plant genetic resource accessions in cold storage is critical information that impacts many areas of genebank management. Prior to 2002, little germination testing was conducted at the Plant Genetic Resources Conservation Unit (PGRCU), Griffin, GA. Seed was distributed from th...

  6. Chaparral & Fire Ecology: Role of Fire in Seed Germination.

    ERIC Educational Resources Information Center

    Steele, Nancy L. C.; Keeley, Jon E.

    1991-01-01

    An activity that incorporates the concepts of plant structure and function and ecology is described. Students investigate the reasons why some California chaparral seeds germinate only after a fire has burned the surrounding chaparral. The procedure, discussion and analysis questions, expected results, potential problems, and additional activities…

  7. Maize utilizes multiple resistance genes to defend itself during germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During seed germination, the plantlet faces an environment rich in predators. Presumably plants have developed a number of molecular mechanisms to ensure survival. Comparative transcription analysis using maize microarrays identified a number of potential defensive genes that were more highly expres...

  8. MATURITY AND TEMPERATURE AFFECTS THE GERMINATION OF STYRAX JAPONICUS SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of seed maturity, warm (18oC) or cold (5.5oC) temperature, and gibberellic acid (GA3) on seed germination of Styrax japonicus Sieb. et. Zucc was investigated. Seed maturity and morphological changes were observed using magnetic resonance (MR) imaging (MRI). Fruits harvested on July 22,...

  9. Early carbon mobilization and radicle protrusion in maize germination

    PubMed Central

    Sánchez-Linares, Luis; Gavilanes-Ruíz, Marina; Díaz-Pontones, David; Guzmán-Chávez, Fernando; Calzada-Alejo, Viridiana; Zurita-Villegas, Viridiana; Luna-Loaiza, Viridiana; Moreno-Sánchez, Rafael; Bernal-Lugo, Irma; Sánchez-Nieto, Sobeida

    2012-01-01

    Considerable amounts of information is available on the complex carbohydrates that are mobilized and utilized by the seed to support early seedling development. These events occur after radicle has protruded from the seed. However, scarce information is available on the role of the endogenous soluble carbohydrates from the embryo in the first hours of germination. The present work analysed how the soluble carbohydrate reserves in isolated maize embryos are mobilized during 6–24 h of water imbibition, an interval that exclusively embraces the first two phases of the germination process. It was found that sucrose constitutes a very significant reserve in the scutellum and that it is efficiently consumed during the time in which the adjacent embryo axis is engaged in an active metabolism. Sucrose transporter was immunolocalized in the scutellum and in vascular elements. In parallel, a cell-wall invertase activity, which hydrolyses sucrose, developed in the embryo axis, which favoured higher glucose uptake. Sucrose and hexose transporters were active in the embryo tissues, together with the plasma membrane H+-ATPase, which was localized in all embryo regions involved in both nutrient transport and active cell elongation to support radicle extension. It is proposed that, during the initial maize germination phases, a net flow of sucrose takes place from the scutellum towards the embryo axis and regions that undergo elongation. During radicle extension, sucrose and hexose transporters, as well as H+-ATPase, become the fundamental proteins that orchestrate the transport of nutrients required for successful germination. PMID:22611232

  10. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain. PMID:21479540

  11. Classification of temperature response in germination of Brassicas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since soil temperature affects germination and emergence of canola (Brassica napus L.), mustard [B. juncea (L.) Czerniak. and Sinapsis alba L.], and camelina [Camelina sativa (L.) Crantz.], planting dates have to be adjusted to prevent crop failures. These crops can be used as biofuel feedstocks, a...

  12. Factors influencing the field germination of forage kochia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage kochia is a drought and salt tolerant perennial, semi-shrub that has proven to be valuable forage in the western U.S., but also difficult to establish. This study evaluated the effects that age of seed, subspecies, and planting date have on forage kochia seed germination in the field. Seed ...

  13. Pollen Germination--A Challenging and Educational Experiment.

    ERIC Educational Resources Information Center

    Tse, H. L. H.; Chan, G. Y. S.

    2001-01-01

    Summarizes the recent research on pollen germination and introduces some basic studies on pollen tube growth that can be conducted in a secondary school laboratory. Discusses the use of a light microscope and refrigerator to study pollen. (Contains 13 references.) (Author/YDS)

  14. Genetic variation of germination cold tolerance in Japanese rice germplasm

    PubMed Central

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-01-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080

  15. Discovering Diversity.

    ERIC Educational Resources Information Center

    Manner, Barbara M.; Hattler, Jean Anne

    2000-01-01

    Introduces a preservice teacher field trip to the rain forests and coastal areas. This experience develops an awareness for different cultures among preservice teachers by experiencing biological and cultural diversity in Costa Rica. Presents students' own ideas on this experience. (YDS)

  16. PLANT DIVERSITY

    EPA Science Inventory

    Habitat change statistics and species-area curves were used to estimate the effects of alternative future scenarios for agriculture on plant diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future s...

  17. Generational diversity.

    PubMed

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions. PMID:20395729

  18. Diversity Trailblazer

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2012-01-01

    When Dr. Kumea Shorter-Gooden took on her newly created job this month at the University of Maryland's flagship College Park campus, she assumed a challenge at the school with a lot riding on her shoulders--helping the University of Maryland strengthen its diversity efforts and, thus, its relevance to the state in the future and standing among the…

  19. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    PubMed

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P<0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  20. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  1. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  2. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination

    PubMed Central

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  3. [Seeds germination of Caesalpinia paraguariensis (Fabaceae): scarificator agents and cattle effects].

    PubMed

    Ortega Baes, P; de Viana, M L; Larenas, G; Saravia, M

    2001-03-01

    The tree Caesalpinia paraguariensis grows in the Chaco region, Argentina. Fruits are indehiscent with many seeds. This species is an important source of wood and the fruits are consumed by cattle in Salta province. We studied seed germination under chemical, mechanical and biological scarification. Seeds from controls (without scarification) and those with biological scarification had a smaller (and similar) germination rate. The non-germinated seeds from biological treatments were mechanically scarified and their germination rate was similar to others under the mechanical treatment. Passage by digestive tracts would not enhance germination because viable seeds are still dormant due to their hard coats. PMID:11795158

  4. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus

    PubMed Central

    Mancao, Christoph; Altmann, Markus; Jungnickel, Berit; Hammerschmidt, Wolfgang

    2005-01-01

    Epstein-Barr virus (EBV) is associated with B-cell lymphomas such as Hodgkin lymphoma, Burkitt lymphoma, and post-transplantation lymphoma, which originate from clonal germinal center (GC) B cells. During the process of somatic hypermutation, GC B cells can acquire deleterious or nonsense mutations in the heavy and light immunoglobulin genes. Such mutations abrogate the cell surface expression of the B-cell receptor (BCR), which results in the elimination of these nonfunctional B cells by immediate apoptosis. EBV encodes several latent genes, among them latent membrane protein 1 (LMP1) and LMP2A, which are regularly expressed in EBV-positive Hodgkin lymphoma and posttransplantation lymphomas. Since LMP1 and LMP2A mimic the function of 2 key receptors on B cells, CD40 and BCR, respectively, we wanted to learn whether EBV infection can rescue proapoptotic GC B cells with crippling mutations in the heavy chain immunoglobulin locus from apoptosis. We show here that BCR-negative GC B cells readily enter the cell cycle upon infection with EBV in vitro and yield clonal lymphoblastoid cell lines that are incapable of expressing a functional BCR because the rearranged and formerly functional heavy chain immunoglobulin alleles carry deleterious mutations. Our findings imply an important role for EBV in the process of lymphomagenesis in certain cases of Hodgkin lymphoma and posttransplantation lymphomas. PMID:16076866

  5. Cyclooxygenase-2 Inhibition Provides Lasting Protection Following Germinal Matrix Hemorrhage in Premature Infant Rats.

    PubMed

    Lekic, Tim; Krafft, Paul R; Klebe, Damon; Rolland, William B; Flores, Jerry; Tang, Jiping; Zhang, John H

    2016-01-01

    Germinal matrix hemorrhage (GMH) is a major cause of brain damage in prematurity and has long-lasting neurological implications. The development of brain inflammation contributes to brain injury, leading to a lifetime of neurologic deficits. PAR-1 and 4 receptors are involved with inflammatory pathways after brain hemorrhage in adult models of stroke, of which cyclooxygenase-2 (COX-2) is a potential mediator. We therefore hypothesized a role for PAR-1, 4/ COX-2 signaling following GMH. Postnatal day 7 Sprague-Dawley rats were subjected to GMH induction, which entailed stereotactic collagenase infusion into the ganglionic eminence. Animals were euthanized at two time points: 72 h (short-term) or 4 weeks (long-term). Short-term COX-2 expression was evaluated in the context of PAR-1 (SCH-79797) and PAR-4 (P4pal10) inhibition. Pups in the long-term group were administered the selective COX-2 inhibitor (NS-398); and the neurobehavioral and pathological examinations were performed 4 weeks later. Pharmacological PAR-1, 4 antagonism normalized COX-2 expression following GMH and reduced hydrocephalus. Early inhibition of COX-2 by NS-398 improved long-term neurobehavioral outcomes. COX-2 signaling plays an important role in brain injury following neonatal GMH, possibly through upstream PAR-1, 4 receptor mechanisms. PMID:26463949

  6. Modulation of Igβ is essential for the B cell selection in germinal center

    PubMed Central

    Todo, Kagefumi; Koga, Orie; Nishikawa, Miwako; Hikida, Masaki

    2015-01-01

    The positive and negative selection of antigen-reactive B cells take place in the germinal center (GC) during an immune responses. However, the precise molecular mechanisms underlying these selection machineries, including the involvement of antigen receptor signaling molecules, remain to be elucidated. We found that expression levels of Igα and Igβ, which are the essential components of B cell antigen-receptor complex, were differentially regulated in GC B cells and that the expression of Igβ was more prominently down-regulated in a portion of GC B cells. The suppression of Igβ down-regulation reduced the number of GL7+GC B cells and the affinity maturation in T-dependent responses was markedly impaired. In addition, the disease phenotypes in autoimmune-prone mice were ameliorated by blocking of Igβ down-regulation. These results suggest that Igβ down-regulation is involved in the normal positive selection in GC and the accumulation of autoreactive B cells in autoimmune-prone mice. PMID:25980548

  7. Glycosylated chicken ZP2 accumulates in the egg coat of immature oocytes and remains localized to the germinal disc region of mature eggs.

    PubMed

    Nishio, Shunsuke; Kohno, Yoshinori; Iwata, Yuki; Arai, Mayumi; Okumura, Hiroki; Oshima, Kenzi; Nadano, Daita; Matsuda, Tsukasa

    2014-11-01

    Vertebrate eggs are surrounded by an egg coat, which is a specific extracellular egg matrix consisting of several glycoproteins with a conserved zona pellucida (ZP) domain. Two mammalian egg coat subunits, ZP2 and ZP3, have been suggested to act as sperm receptors. In bird eggs, however, ZP2 has never been identified in the egg coat of mature oocytes and ovulated eggs. Here we report that chicken ZP2 is expressed in immature small follicles and remains as an egg-coat component locally in the germinal disc region of mature eggs. RT-PCR analysis indicated marked expression of the ZP2 and ZP4 genes in the granulosa cells of immature white follicles, whereas the ZP3 and ZPD genes showed marked expression in the cells of maturing yellow follicles. ZP2 was identified in the egg coat isolated from immature follicles as a heavily N-glycosylated glycoprotein of ∼200 kDa, which was enzymatically converted to a 70-kDa deglycosylated form. Immunoblotting and immunohistological analyses showed that ZP2 was localized around the germinal disc region of mature follicles. ZP2 was accumulated in the egg coat of immature white follicles at the earlier stages of oocyte development and became a minor component in the egg coat of maturing yellow follicles, except for the germinal disc region. Localization of ZP2 in the germinal disc region of mature eggs, where sperm bind to the egg coat at high density, suggests some role for ZP2 in the preferential binding and penetration of sperm in the germinal disc region of bird eggs. PMID:25253730

  8. Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas.

    PubMed

    Paredes-Páliz, Karina I; Pajuelo, Eloísa; Doukkali, Bouchra; Caviedes, Miguel Ángel; Rodríguez-Llorente, Ignacio D; Mateos-Naranjo, Enrique

    2016-09-15

    The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees. Gram negative Pantoea agglomerans RSO6 and RSO7, and gram positive Bacillus aryabhattai RSO25, together with the consortium of the three strains, were used for independent inoculation experiments. The presence of metals (As, Cu, Pb and Zn) in sediments reduced seed germination by 80%. Inoculation with Bacillus aryabhattai RSO25 or Pantoea agglomerans RSO6 and RSO7 enhanced up to 2.5 fold the germination rate of S. densiflora in polluted sediments regarding non-inoculated controls. Moreover, the germination process was accelerated and the germination period was extended. The consortium did not achieve further improvements in seed germination. PMID:27315751

  9. Managing diversity.

    PubMed

    Wagner, M

    1991-09-30

    One look at projections for the U.S. work force through the year 2000 shows why healthcare administrators will be facing some new challenges. With the majority of new workers belonging to minority groups, "managing diversity" has become the newest catch phrase as executives work to reduce tensions resulting from race, gender or culture-based differences among workers, while also learning to understand and value those differences. PMID:10114151

  10. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits.

    PubMed

    Hoyle, Gemma L; Steadman, Kathryn J; Good, Roger B; McIntosh, Emma J; Galea, Lucy M E; Nicotra, Adrienne B

    2015-01-01

    Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species "staggered" germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294

  11. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Good, Roger B.; McIntosh, Emma J.; Galea, Lucy M. E.; Nicotra, Adrienne B.

    2015-01-01

    Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species “staggered” germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294

  12. Genetic diversity for cold tolerance at germination in the US rice collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice production practices are constantly being modified as a result of the availability of new technologies and the changing economic picture. Farmers are planting rice at least one month earlier than a decade ago. With increasing interest in alternative cropping systems, minimum tillage, and water ...

  13. Germinating the 2050 Cis-Lunar Econosphere

    NASA Technical Reports Server (NTRS)

    Scott, David W.; Tinker, Michael L.; Nall, Mark E.; Wright, Gregory M.

    2015-01-01

    In early 2013, the Marshall Space Flight Center (MSFC) Director and MSFC's Office of Strategic Analysis and Communications (OSAC) chartered a diverse team for a six-week "sprint" to speculate (in a disciplined manner) and paint (with broad brush strokes) a picture of how earth, space, and public/private entities might be operating and relating to each other...in the year 2100. Two 12-person groups of civil servants, one with members having 15 years or less of NASA experience and the other with more senior members, worked independently and then compared and integrated their conclusions. In 2014, the "Space 2100" team, with some new team members and different group boundaries, ran a longer sprint to a) develop more detailed estimates of the operations and economics of space activities in the vicinity of the Earth and Moon in the 2050 time frame, b) identify evolutionary steps and viable paths needed to make that a reality, and c) recommend actions to enable and invigorate those steps. This paper explores Space 2100's first two sprints and their projections of NASA's role in what will likely be a highly networked international space industry and cis-lunar infrastructure.

  14. Germinating the 2050 Cis-Lunar Econosphere

    NASA Technical Reports Server (NTRS)

    Scott, David W.; Curreri, Peter A.; Ferguson, Cynthia K.; Nall, Mark E.; Tinker, Michael L.; Wright, Gregory M.

    2015-01-01

    In early 2013, Marshall Space Flight Center's upper management chartered a diverse team for a six-week 'sprint' to speculate (in a disciplined manner) and paint (with broad brush strokes) a picture of how earth, space, and public/private entities might be operating and relating to each other... in the year 2100. Two 12-person groups of civil servants, one with members having 15 years or less of NASA experience and the other with more senior members, worked independently and then compared and integrated their conclusions. In 2014, the 'Space 2100' team, with some new team members and different group boundaries, ran a longer sprint to a) develop more detailed estimates of the operations and economics of space activities in the vicinity of the Earth and Moon in the 2050 time frame, b) identify evolutionary paths, barriers, and opportunities, and c) suggest actions and philosophies to enable and invigorate progress towards the vision. This paper explores Space 2100's first two sprints and their projections of NASA's role in what will likely be a highly networked, international space industry and cis-lunar infrastructure.

  15. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  16. [Diverse sustainability--sustainable diversity].

    PubMed

    Schmeling-Kludas, Christoph; Koch-Gromus, Uwe

    2011-08-01

    In spite of its plenitude, the scientific works of the important German psychologist Ernst August Dölle (1898-1972) are little adapted till today, mostly they are being reduced to his studies about dichotomy and duplicity. But based on his diaries of the year 1968, the authors can verify without doubt, that Dölle far ahead of his time, carried on research about sustainability and diversity. He was the first scientist worldwide to connect these two concepts. PMID:21837611

  17. Effects of a magnetic field on the germination of plants

    NASA Astrophysics Data System (ADS)

    Hirota, Noriyuki; Nakagawa, Jun; Kitazawa, Koichi

    1999-04-01

    The effects of a nonuniform magnetic field on the germination of plants were studied. When a 10 T magnetic field was applied at the center of a superconducting magnet, a cucumber shoot germinating in a horizontal bore leaned towards the field center. In contrast, the root grew in the direction opposite the shoot. The observed result seemed to have occurred as a result of the magnetic force influencing the geotaxis of the cucumber. This idea was supported qualitatively by analysis results of the experimental data. Knowledge obtained in this study will be helpful for the evaluation of the effect of the magnetic field on living bodies and suggests the possibility of applying magnetic fields in other areas of research.

  18. Interactions of Light and a Temperature Shift on Seed Germination

    PubMed Central

    Taylorson, R. B.; Hendricks, S. B.

    1972-01-01

    Germination of Rumex obtusifolius L. seeds is potentiated to an observable degree in 2 minutes by a single shift in temperature from 20 to 35 C. Half-maximal potentiation requires less than 32 minutes at the higher temperature. Similar sensitivities to shifts in temperature were observed for seeds of Barbarea vulgaris, R.Br. B. verna (Mill.) Asch., and Lepidium virginicum L. A shift in temperature interacts strongly with change in form of phytochrome induced by light on germination of the four kinds of seeds. The potentiated effects for R. obtusifolius are only moderately affected by 40 μm cycloheximide. Both the temperature shift and light actions are apparently independent of processes of synthesis necessary for growth. PMID:16657910

  19. Valuing Diversity

    PubMed Central

    Fryer, Roland G.; Loury, Glenn C.

    2014-01-01

    This paper explores the economics of diversity-enhancing policies. A model is proposed in which heterogeneous agents, distinguished by skill level and social identity, purchase productive opportunities in a competitive market. We analyze policies designed to raise the status of a disadvantaged identity group. When agent identity is contractible, efficient policy grants preferred access to slots but offers no direct assistance for acquiring skills. When identity is not contractible, efficient policy provides universal subsidies to skill development when the fraction of the disadvantaged group at the skill development margin is larger than their share at the slot assignment margin. PMID:25525280

  20. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. PMID:27239687

  1. Seed germination in response to chemicals: effect of nitrogen and pH in the media.

    PubMed

    Pérez-Fernández, M A; Calvo-Magro, E; Montanero-Fernández, J; Oyola-Velasco, J A

    2006-01-01

    Seed germination generally presents a peak in the next growing season after a fire. Among other factors associated with fire are the increase of soil nitrogen and changes in the pH of the soil. In this study, we addressed the question, whether or not the germination response of eight species is linked with the increase in pH and nitrogenous compounds in the germination media? We assessed the separate and combined effects of nitrogenous compounds and pH on the percentage and rate of germination of seeds of Medicago arabica (L.) Hudson, Epilobium hirsutum L., Foeniculum vulgare Miller, Daucus carota L., Thapsia villosa L., Cynosurus cristatus L., Dactylis glomerata L. and Rumex crispus L. All these species are well represented in the Mediterranean ecosystems of the central-west Spain. Water and CaCl2 were used as controls. Nitrogenous compounds increased percent germination (level) and rate in three of the species studied. High pH negatively affected the germination rate of seeds from most species, but had no effect on the per cent germination of any of the species. The higher concentration of the nutritious solutions affected negatively the germination level and rate. The different germination responses of seeds of the studied species could not be exclusively attributed to pH values in the media, whereas the amount and form of Nitrogen in the media has a greater effect on it. These differences in germination are species dependent. PMID:16850869

  2. Are cactus growth forms related to germination responses to light? A test using Echinopsis species

    NASA Astrophysics Data System (ADS)

    Ortega-Baes, Pablo; Aparicio-González, Mónica; Galíndez, Guadalupe; del Fueyo, Patricia; Sühring, Silvia; Rojas-Aréchiga, Mariana

    2010-05-01

    In this study, we investigated the effect of light regimen (white light vs. darkness) on the germination of 12 species of the Echinopsis genus (tribe Trichocereeae, Cactaceae). This genus presents a variety of growth forms and relatively small and uniform seed size. These traits allowed us to test, within the same linage and removing seed mass effect, the hypothesis that the germination response to light (indifferent to light or positive photoblastic) is related to growth form. Our results reject this hypothesis since no seeds germinated in darkness, so all of the species can be classified as being positively photoblastic. The proportion of seed germination with white light was significantly different among cactus growth forms. Columnar cacti (arborescent, creeping and short) showed a greater proportion of seed germination than barrel and globose cacti. The germination rate differed among growth forms and species. At constant temperatures, creeping columnar cacti presented a significantly higher germination rate than the other growth forms. With alternating temperatures, columnar cacti showed higher germination rates than the other growth forms. The low proportion of seeds that germinated for some species indicates that they show seed dormancy. Our results suggest that germination responses to light in the cactus family could be related to seed mass and phylogenetic constraints.

  3. [Characteristics of seed germination of rare plant species Reaumuria trigyna in west Ordos].

    PubMed

    Zhang, Ying-juan; Wang, Yu-shan; Li, Qing-feng

    2008-12-01

    Reaumuria trigyna is a relic species in the desert shrubbery vegetation in arid regions of northwestern China, and plays an important role in the maintenance of the stability of desert vegetation. In this paper, the seed traits and germination strategy of R. trigyna under different environmental conditions, e.g., light, temperature, soil moisture, and sand bury, were investigated. The results showed that R. trigyna seed had high vigor and high germination rate, and endured reserve. The seed could germinate either in light or in darkness, and the optimal temperature for germination was 20 degrees C - 25 degrees C or 15 degrees C/25 degrees C, with the germination rate being 93%. The seed could start to germinate when soil moisture content was 2%, and the germination rate was the highest (89%) when the moisture content was 12%. The optimal sand burial depth of R. trigyna seed was 1 cm, and no seed would germinate when the sand burial depth was >5 cm. Sand burial depth had significant effects on the seedling's emergence percentage and growth height, but lesser effects on seedling' s mass. Soil moisture and sand burial depth were the main environmental factors limiting the seed germination and seedling emergence of R. trigyna. The high seed germination rate of R. trigyna enhanced the survival risk of its seedlings, which was unfavorable to its handling with the extreme changes of desert environment. Such a character of R. trigyna seed was one of the factors causing the species endangered. PMID:19288705

  4. Photoinhibition of germination in grass seed--implications for prairie revegetation.

    PubMed

    Mollard, Federico P O; Naeth, M Anne

    2014-09-01

    Germination photoinhibition is not a recognized cause of revegetation failure; yet prolonged sunlight exposure can inhibit germination of several grass species. This research addressed susceptibility to photoinhibition of selected native grass species used to restore Canadian prairies, and reclamation treatments to alter environmental conditions in order to release seeds from photoinhibition. Under laboratory conditions effects of photoinhibition were tested on the ability of seeds to germinate at low water potential and effects of daily alternating temperatures and nitrates to break photoinhibition. Whether surficial mulch can release seeds from photoinhibition was assessed in a field experiment. Germination photoinhibition was evident in Festuca hallii and Koeleria macrantha seeds even under very low irradiances. The prolonged exposure to light decreased germination rates and ability of seeds to germinate at low water potentials. Daily fluctuating temperatures released a fraction of Bromus carinatus and Elymus trachycaulus seeds from photoinhibition yet did not improve F. hallii or K. macrantha germinability. Nitrates failed to break seed photoinhibition in all species tested. In the field experiment, mulched F. hallii seeds (covered with an erosion control blanket) showed a tenfold increase in germination percentages relative to seeds exposed to direct sunlight, indicating the facilitative effects of mulching on attenuation of the light environment. We conclude that germination photoinhibition as a cause of emergence failures in land reclamation where seed is broadcast or shallow seeded should be recognized and germination photoinhibition included in the decision making process to select revegetation seeding techniques. PMID:24794519

  5. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    PubMed

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA). PMID:25818098

  6. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae)

    PubMed Central

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-01-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  7. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae).

    PubMed

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-07-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  8. Germination and seedling frost tolerance differ between the native and invasive range in common ragweed.

    PubMed

    Leiblein-Wild, Marion Carmen; Kaviani, Rana; Tackenberg, Oliver

    2014-03-01

    Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species. PMID:24197990

  9. Slow Leakage of Ca-Dipicolinic Acid from Individual Bacillus Spores during Initiation of Spore Germination

    PubMed Central

    Wang, Shiwei; Setlow, Peter

    2015-01-01

    When exposed to nutrient or nonnutrient germinants, individual Bacillus spores can return to life through germination followed by outgrowth. Laser tweezers, Raman spectroscopy, and either differential interference contrast or phase-contrast microscopy were used to analyze the slow dipicolinic acid (DPA) leakage (normally ∼20% of spore DPA) from individual spores that takes place prior to the lag time, Tlag, when spores begin rapid release of remaining DPA. Major conclusions from this work with Bacillus subtilis spores were as follows: (i) slow DPA leakage from wild-type spores germinating with nutrients did not begin immediately after nutrient exposure but only at a later heterogeneous time T1; (ii) the period of slow DPA leakage (ΔTleakage = Tlag − T1) was heterogeneous among individual spores, although the amount of DPA released in this period was relatively constant; (iii) increases in germination temperature significantly decreased T1 times but increased values of ΔTleakage; (iv) upon germination with l-valine for 10 min followed by addition of d-alanine to block further germination, all germinated spores had T1 times of less than 10 min, suggesting that T1 is the time when spores become committed to germinate; (v) elevated levels of SpoVA proteins involved in DPA movement in spore germination decreased T1 and Tlag times but not the amount of DPA released in ΔTleakage; (vi) lack of the cortex-lytic enzyme CwlJ increased DPA leakage during germination due to longer ΔTleakage times in which more DPA was released; and (vii) there was slow DPA leakage early in germination of B. subtilis spores by the nonnutrients CaDPA and dodecylamine and in nutrient germination of Bacillus cereus and Bacillus megaterium spores. Overall, these findings have identified and characterized a new early event in Bacillus spore germination. PMID:25583976

  10. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins

    PubMed Central

    Hakuno, Fumihiko; Fukushima, Toshiaki; Yoneyama, Yosuke; Kamei, Hiroyasu; Ozoe, Atsufumi; Yoshihara, Hidehito; Yamanaka, Daisuke; Shibano, Takashi; Sone-Yonezawa, Meri; Yu, Bu-Chin; Chida, Kazuhiro; Takahashi, Shin-Ichiro

    2015-01-01

    Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases. PMID:26074875

  11. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities. PMID:27098435

  12. Germination of coffee seeds and its significance for coffee quality.

    PubMed

    Selmar, D; Bytof, G; Knopp, S-E; Breitenstein, B

    2006-03-01

    Besides genotypic characteristics, the crucial factor that determines coffee quality is the mode of post-harvest treatment, i.e., the wet and dry processing. Up to now, the resulting characteristic flavour differences between these differentially processed coffees were attributed exclusively to differences in starting material. However, as these quality differences are still evident, even when identical coffee samples were processed by the two methods in parallel, the differences must be created by metabolic processes in the coffee beans themselves. Based on expression studies of the germination-specific isocitrate lyase and the resumption of cell cycle activity, monitored by the abundance of beta-tubulin, we evidence that germination is initiated in coffee seeds during the course of standard coffee post-harvest treatments. The extent and nature of the germination processes depend on the processing method. The coherence of metabolic events, substantial differences in the chemical composition of the coffee beans, and the generation of specific coffee qualities establishes the basis for a quite novel approach in coffee research. PMID:16547871

  13. The role of glycosylation in flavonol-induced pollen germination.

    PubMed

    Taylor, L P; Strenge, D; Miller, K D

    1998-01-01

    Flavonols are small (C15) plant-specific molecules that are required for petunia and maize pollen to germinate. They exist in two chemical forms: the aglycone or glycosyl conjugates. Flavonol-deficient pollen is biochemically complemented by flavonol aglycones but not by the glycosylated forms that accumulate in wild type (WT) pollen. Coincident with the biochemical induction of germination, the added flavonol aglycone is rapidly converted to a galactoside and then to a glucosyl galactoside (diglycoside) that is identical to the compound present in WT pollen. A flavonol 3-O-galactosyltransferase (F3GalTase) activity has been identified that controls the formation of glycosylated flavonols in pollen. Importantly, this enzyme also catalyzes the reverse reaction, i.e. the production of the flavonol aglycone from the galactoside and UDP (Fig. 1). F3GalTase/RevGalTase therefore has the potential to control the level of the bioactive flavonol species and as a result, pollen germination. PMID:9781293

  14. The action spectrum for maximal photosensitivity of germination

    NASA Astrophysics Data System (ADS)

    Hartmann, K. M.; Mollwo, A.

    2000-10-01

    Fruits of Garden Lettuce, imbibed in 0.01 M KNO3, were depleted of maternal active phytochrome B by saturating deep-red exposure and photosensitized by chilling for 1 week at 4 °C. Twenty saturated fluence-response curves for photoinduced germination were elaborated between 300 and 800 nm, using exposure periods from 6 to 600 s at 22.5 °C; there is linear and closely parallel regression in the logarithmic probability net. The reciprocals of the half-response fluences obtained gave the apparent conversion spectrum of the controlling pigments and this was corrected for the transmittance of the seed-coat. It is a phytochrome spectrum of P r with photoconversion cross-sections of 1.2·109 and 4.5·103 m2 mol-1 at 666 and 800 nm, respectively. This means that for half-saturated germination of sensitized seed, fewer than 1 out of 200,000 phytochrome A molecules have to be photoconverted to P fr, and no photo-reversibility by deep-red was found. Therefore, all spectral colours of nightly moon- or skylight should stimulate the germination of sensitized weed seeds if they are exposed at the soil surface between sequential tillage operations.

  15. The action spectrum for maximal photosensitivity of germination.

    PubMed

    Hartmann, K M; Mollwo, A

    2000-09-01

    Fruits of Garden Lettuce, imbibed in 0.01 M KNO3, were depleted of maternal active phytochrome B by saturating deep-red exposure and photosensitized by chilling for 1 week at 4 degrees C. Twenty saturated fluence-response curves for photoinduced germination were elaborated between 300 and 800 nm, using exposure periods from 6 to 600 s at 22.5 degrees C; there is linear and closely parallel regression in the logarithmic probability net. The reciprocals of the half-response fluences obtained gave the apparent conversion spectrum of the controlling pigments and this was corrected for the transmittance of the seed-coat. It is a phytochrome spectrum of Pr with photoconversion cross-sections of 1.2 x 10(9) and 4.5 x 10(3) m2 mol-1 at 666 and 800 nm, respectively. This means that for half-saturated germination of sensitized seed, fewer than 1 out of 200,000 phytochrome A molecules have to be photoconverted to Pfr, and no photo-reversibility by deep-red was found. Therefore, all spectral colours of nightly moon- or skylight should stimulate the germination of sensitized weed seeds if they are exposed at the soil surface between sequential tillage operations. PMID:11091963

  16. Respiration and Mitochondrial Biogenesis in Germinating Embryos of Maize 1

    PubMed Central

    Ehrenshaft, Marilyn; Brambl, Robert

    1990-01-01

    Function of the cyanide-sensitive mitochondrial electron transport system was required for germination of the Zea mays embryo. Respiration of the standard electron transport system (rather than the alternate oxidase) began immediately upon initiation of imbibition. This respiration depended upon cytochrome c oxidase and ATPase that were conserved in an active form in the quiescent embryo rather than upon newly synthesized or assembled enzyme complexes. Immunoprecipitation of radiolabeled subunits of these enzymes showed that the initiation of mitochondrial biogenetic activities, including de novo synthesis of nuclear- and mitochondrial-encoded enzyme subunit peptides, was strongly induced after 6 hours of embryo germination. Undetectable or very low levels of transcripts for subunits 1 and 2 of the F1-ATPase and subunit 2 of cytochrome c oxidase were present in the quiescent embryo; these transcripts accumulated rapidly between 6 and 12 hours of germination and their translation products were rapidly synthesized between 6 and 24 hours. An exception was the gene for subunit 9 of the ATPase; transcripts of this mitochondrial gene were abundant in the dry embryo and rapidly accumulated further upon initiation of imbibition; they were translated actively during the first 6 hours. We isolated and sequenced a near full-length cDNA for subunit 2 (beta) of the F1-ATPase, and we compared the deduced protein sequence with related sequences of other organisms. Images Figure 2 Figure 3 Figure 5 PMID:16667450

  17. Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches.

    PubMed

    Ilyas, Muhammad; Rasheed, Awais; Mahmood, Tariq

    2016-09-01

    The important role of germins (GER) and genes coding for germin-like proteins (GLP) in responses against various stresses in both homologous and heterologous systems is well validated. This review summarizes the work on their functional validation using various biotechnological approaches. The genes are widely expressed during a specific period of plant growth and development, and exhibit a pattern of evolutionary subfunctionalization at both the intracellular and whole plant level. Their applications against various biotic and abiotic stresses, especially against fungal pathogens, are enormous. Although the validation of these proteins against various stresses has led to the development of commercially and agronomically important transgenic plants, much work is still needed to exploit this ever-expanding repertoire of genes and deploy them for commercial use. Historical progress of genetic engineering in GERs and GLPs is reviewed, and future prospects for their potential role in crop improvement are highlighted. PMID:27230937

  18. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.).

    PubMed

    Miro, Berta; Ismail, Abdelbagi M

    2013-01-01

    Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops

  19. Seed bank of Cu-contaminated topsoils at a wood preservation site: impacts of copper and compost on seed germination.

    PubMed

    Bes, Clémence M; Jaunatre, R; Mench, M

    2013-02-01

    Is identification of seed bank (SB) species useful for sustainable management of vegetation restoration on Cu-contaminated soils? How does Cu contamination of the soil affect the SB and can incorporating compost into Cu-contaminated soils counter the effects of Cu? The topsoil SB was investigated at seven contaminated sub-sites of a wood preservation site. The germination parameters of the seeds were recorded using three substrates: a washed river sand (Sand), the same sand spiked with CuSO(4) to reach the same Cu concentrations as in the soil pore water (0.3 to 3.2 mg Cu/L) (Cu), and the same Cu-spiked sand amended with compost (CPM). The total number of germinated seeds (NGS) was 1,081. The whole seedling dataset enabled 12 plant species and eight families to be identified in the SB. Species richness and Shannon indexes were low. The addition of Cu in the germination substrate enhanced total NGS at one sub-site and the addition of CPM increased plant diversity at three sub-sites. SB composition varied with the sub-site but did not correlate with total soil Cu or with the Cu concentration in the soil pore water. Three species belonging to the Poaceae family dominated. In terms of total NGS, the dominant species were Portulaca oleracea and Agrostis capillaris. Similarities between SB and established vegetation were low but increased when the soil bulk density was reduced. The Cu-tolerant species P. oleracea and A. capillaris dominated in both the SB and the established vegetation. However, the pattern of SB and established vegetation differed and consequently SB was not a sufficient indicator to predict the future vegetation. PMID:22648020

  20. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.)

    PubMed Central

    Miro, Berta; Ismail, Abdelbagi M.

    2013-01-01

    Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops

  1. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways.

    PubMed

    Huo, Heqiang; Wei, Shouhui; Bradford, Kent J

    2016-04-12

    Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1 Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1-miR156-miR172 interaction. PMID:27035986

  2. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis.

    PubMed

    Zhao, Shujuan; Wu, Yuxuan; He, Yuqing; Wang, Yarui; Xiao, Jun; Li, Lin; Wang, Yanping; Chen, Xi; Xiong, Wei; Wu, Yan

    2015-12-01

    The involvement of Rho of Plants (ROP) GTPases in abscisic acid (ABA) signalling in Arabidopsis has been demonstrated in many studies. However, the roles of RopGEFs (Rop guanine nucleotide exchange factors), which modulate ROP activities in ABA signalling, are poorly understood. Here, we demonstrate that RopGEF2 may play a negative role in ABA-suppressed seed germination and post-germination growth. We show that disruption of RopGEF2 enhances sensitivity to exogenous ABA in seed germination assays and that RopGEF2pro-GUS is mainly expressed in developing embryos and germinating seeds. Interestingly, YFP-RopGEF2 is located in both the cytoplasmic region and in mitochondria. Notably, the PRONE2 (plant-specific ROP nucleotide exchanger 2) domain of RopGEF2 is detected in mitochondria, whereas the N-terminus of RopGEF2 is shown to be in the cytosol. After ABA treatment, degradation of RopGEF2 is triggered in the cytosol through the ubiquitin-26S proteasome system. The binding of RopGEF2 to ROP2, ROP6 or ROP10, which has been demonstrated to be involved in ABA signalling, not only alters the localization of RopGEF2 but also enables RopGEF2 to escape degradation in the cell. Thus, in this study, we deduce a sophisticated mechanism of ABA-mediated RopGEF2-ROP signalling, which potentially implicates the inactivation of ROPs in responsiveness to ABA. PMID:26461226

  3. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  4. conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans.

    PubMed

    Suzuki, Satoshi; Sarikaya Bayram, Özlem; Bayram, Özgür; Braus, Gerhard H

    2013-07-01

    Light induces various responses in fungi including formation of asexual and sexual reproductive structures. The formation of conidia in the filamentous fungus Aspergillus nidulans is regulated by red and blue light receptors. Expression of conidia associated con genes, which are widely spread in the fungal kingdom, increases upon exposure to light. We have characterized the light-inducible conF and conJ genes of A. nidulans which are homologs of con-6 and con-10 of Neurospora crassa. con genes are expressed during conidia formation in asexual development. Five minutes light exposure are sufficient to induce conF or conJ expression in vegetative mycelia. Similar to N. crassa there were no significant phenotypes of single con mutations. A double conF and conJ deletion resulted in significantly increased cellular amounts of glycerol or erythritol. This leads to a delayed germination phenotype combined with increased resistance against desiccation. These defects were rescued by complementation of the double mutant strain with either conF or conJ. This suggests that fungal con genes exhibit redundant functions in controlling conidia germination and adjusting cellular levels of substances which protect conidia against dryness. PMID:23644150

  5. Effect of marble industry effluent on seed germination, post germinative growth and productivity of Zea mays L.

    PubMed

    Akbar, Fazal; Hadi, Fazal; Ullah, Zakir; Zia, Muhammad Amir

    2007-11-15

    A green house study was conducted at the University of Malakand, NWFP, Pakistan to evaluate the effect of marble industry effluent on soil pH, germination, post germinative growth and productivity of maize. The experiment was conducted in triplicate form for each treatment and tape water was used as control (T0). Effluents were diluted with tap water at concentration of 20% (T1), 40% (T2), 60% (T3), 80% (T4) and also used 100% (T5) concentration in 4 kg soil pot(-1) and plants were grown for 90 days. Results showed that there was a linear increase in pH of soil with increase in effluent concentration while germination, root length and stem girth was enhanced and found maximum at 40% concentration of effluent applied. The shoot length and root dry biomass was depressed as compared to control. It is concluded from the present study that marble industry effluent can be used as a fertilizer in low concentration especially for highly acidic soil but there is still need to carry out series of greenhouse and field trials to ascertain the fertilizer potentials of this effluent for maize crop. PMID:19090297

  6. Enzymatic characterization of germination-specific cysteine protease-1 expressed transiently in cotyledons during the early phase of germination.

    PubMed

    Tsuji, Akihiko; Tsukamoto, Kana; Iwamoto, Keiko; Ito, Yuka; Yuasa, Keizo

    2013-01-01

    Papain-like cysteine protease activity that shows a unique transient expression profile in cotyledons of daikon radish during germination was detected. The enzyme showed a distinct elution pattern on DEAE-cellulose compared with cathepsin B-like and Responsive to dessication-21 cysteine protease. Although this activity was not detected in seed prior to imbibition, the activity increased markedly and reached a maximum at 2 days after imbibition and then decreased rapidly and completely disappeared after 5 days. Using cystatin-Sepharose, the 26 kDa cysteine protease (DRCP26) was isolated from cotyledons at 2 days after imbibition. The deduced amino acid sequence from the cDNA nucleotide sequence indicated that DRCP26 is an orthologue of Arabidopsis unidentified protein, germination-specific cysteine protease-1, belonging to the C1 family of cysteine protease predicted from genetic information. In an effort to characterize the enzymatic properties of DRCP26, the enzyme was purified to homogeneity from cotyledons at 48 h after imbibition. The best synthetic substrate for the enzyme was carbobenzoxy-Phe-Arg-4-methylcoumaryl-7-amide. All model peptides were digested to small peptides by the enzyme, suggesting that DRCP26 possesses broad cleavage specificity. These results indicated that DRCP26 plays a role in the mobilization of storage proteins in the early phase of seed germination. PMID:23112094

  7. Glutamate Receptor Dynamics in Dendritic Microdomains

    PubMed Central

    Newpher, Thomas M.; Ehlers, Michael D.

    2008-01-01

    Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity. PMID:18498731

  8. Simulation of germination of pioneer species along an experimental drought gradient.

    PubMed

    Pérez-Fernández, María A; Calvo-Magro, E; Ferrer-Castán, D

    2006-10-01

    The germination of ten plant species from the Iberian Peninsula was assessed along a water deficit gradient between -0. 1652 (moist) and -0.4988 MPa (dry) of osmotic potential, created by addition of increasing concentrations of polyethylene glycol (PEG 6000) to distilled water in which plants were grown hydroponically. The level and rate of germination of Daucus carota and Thapsia villosa significantly decreased with decreasing psi. Seeds of Dactylis glomerata and Dittrichia viscosa had positive germination responses to low osmotic potentials; germination of Epilobium hirsutum was not affected by osmotic potential. Germination of Medicago arabica, Cynosurus cristatus, Cistus ladanifer and Cistus albidus, was no favored by the addition of polyethylene glycol (PEG). Germination of Foeniculum vulgare and Thapsia villosa was inhibited by PEG. PMID:17405330

  9. Ethylene-, light-, and prechill-enhanced germination of Echinacea angustifolia seeds

    SciTech Connect

    Feghahati, S.M.J.; Reese, R.N. . Dept. of Biology and Microbiology)

    1994-07-01

    Echinacea angustifolia DC., the common coneflower of the western Great Plains, is difficult to propagate by achenes due to inherent seed dormancy. The effects of light and prechilling on seed germination were examined, alone and combined with scarification (mechanical, acid) and ethylene (ethephon) treatments. The results showed that a 2-week prechill treatment combined with ethephon and continuous light, followed by a 2-week germination period in light (16 hours per day) at 25 C, could induce >95% seed germination in E. angustifolia. This was a significantly higher percentage of germination over a shorter period of time than any other method examined or previously described. This treatment also synchronized germination, with most viable seeds germinating in <1 week after being placed at 25 C in the light. Chemical name used: 2-chloroethylphosphonic acid (ethephon).

  10. Influence of germination time of brown rice in relation to flour and gluten free bread quality.

    PubMed

    Cornejo, Fabiola; Rosell, Cristina M

    2015-10-01

    The effect of germination time on physicochemical characteristics of brown rice flour and its effect on gluten free bread qualities have been investigated. Germination was carried out at 28 °C and 100 % RH for 12, 24 and 48 h; brown rice and soaked brown rice was also analyzed. Significant changes on hydration and pasting properties of brown rice flour were found during germination. The starch degradation by enzyme activity could be evidenced with the decrease in viscosity and water binding capacity (WBC). No significant effect in specific volume, humidity and water activity of the gluten free bread was found as germination time increase, but a significant softness of the crumb was obtained. However, at 48 h of germination, the intense action of α amylase could result in excessive liquefaction and dextrinisation, causing inferior bread quality. Overall, germinated rice flour showed appropriate functionality for being used as raw ingredient in gluten free breadmaking. PMID:26396405

  11. Loss of interleukin-21 leads to atrophic germinal centers in multicentric Castleman's disease.

    PubMed

    Yajima, Hidetaka; Yamamoto, Motohisa; Shimizu, Yui; Sakurai, Nodoka; Suzuki, Chisako; Naishiro, Yasuyoshi; Imai, Kohzoh; Shinomura, Yasuhisa; Takahashi, Hiroki

    2016-01-01

    Both multicentric Castleman's disease (MCD) and immunoglobulin (Ig)G4-related disease (IgG4-RD) are systemic diseases, presenting with hypergammaglobulinemia and elevated serum levels of IgG4. However, with regard to histopathological findings, MCD shows atrophic germinal centers. On the other hand, expanded germinal centers are detected in IgG4-RD. We extracted germinal centers from specimens of each disorder by microdissection and analyzed the expression of mRNAs by real-time polymerase chain reaction to clarify the mechanisms underlying atrophied germinal centers in MCD. This analysis disclosed loss of interleukin (IL)-21 and B cell lymphoma (Bcl)-6 in the germinal centers of MCD. Loss of IL-21 is considered to be involved in the disappearance of Bcl-6 and leads to atrophied germinal centers in MCD. PMID:26377996

  12. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    NASA Astrophysics Data System (ADS)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this

  13. Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds.

    PubMed

    Ueno, Kotomi; Fujiwara, Mami; Nomura, Saki; Mizutani, Masaharu; Sasaki, Mitsuru; Takikawa, Hirosato; Sugimoto, Yukihiro

    2011-09-14

    Strigolactones are highly potent germination stimulants for seeds of the parasitic weeds Striga and Orobanche spp. 4-Hydroxy-GR24 and 4-acetoxy-GR24 were prepared and their abilities to induce seed germination of Striga gesnerioides evaluated. Optically active (8bR,2'R)-isomers induced germination, although the racemic diastereomers were inactive. In contrast, the stereoisomer of GR24 with the same configuration induced negligible germination. Some stereoisomers of GR24 and its analogues acted as effective antagonists for induction of seed germination by cowpea root exudates. These results suggest that both an oxygenated substituent at C-4 and the configuration of the tricyclic lactone and the D-ring are essential structural requirements for induction of germination in S. gesnerioides seeds. PMID:21819156

  14. Effects of germination on the nutritive value and bioactive compounds of brown rice breads.

    PubMed

    Cornejo, Fabiola; Caceres, Patricio J; Martínez-Villaluenga, Cristina; Rosell, Cristina M; Frias, Juana

    2015-04-15

    The effect of germination conditions on the nutritional benefits of germinated brown rice flour (GBR) bread has been determined. The proximate composition, phytic acid, in vitro protein digestibility and in vitro enzymatic hydrolysis of starch, glucose and starch content, as well as the most relevant bioactive compounds (GABA, γ-oryzanol and total phenolic compounds) and antioxidant activity of breads prepared with GBR at different germination conditions was determined. When comparing different germination times (0 h, 12 h, 24 h and 48 h), germination for 48 h provides GBR bread with nutritionally superior quality on the basis of its higher content of protein, lipids and bioactive compounds (GABA and polyphenols), increased antioxidant activity and reduced phytic acid content and glycaemic index, although a slight decrease in in vitro protein digestibility was detected. Overall, germination seems to be a natural and sustainable way to improving the nutritional quality of gluten-free rice breads. PMID:25466026

  15. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa. PMID:26688970

  16. The human olfactory receptor repertoire

    PubMed Central

    Zozulya, Sergey; Echeverri, Fernando; Nguyen, Trieu

    2001-01-01

    Background The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. Results The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. Conclusions The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction. PMID:11423007

  17. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  18. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Carol C; Baskin, Jerry M

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  19. Effects of a warmer climate on seed germination in the subarctic

    PubMed Central

    Milbau, Ann; Graae, Bente Jessen; Shevtsova, Anna; Nijs, Ivan

    2009-01-01

    Background and Aims In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined. Methods Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year. Key Results Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate. Conclusions Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration

  20. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism.

    PubMed

    Kovačec, Eva; Likar, Matevž; Regvar, Marjana

    2016-05-01

    Seed-associated fungal communities affect multiple parameters of seed quality at all stages of production, from seed development to post-harvest storage and germination. We therefore investigated the diversity and dynamics of fungal communities in the seeds of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) from harvest to 1 y of storage. Fungal populations in seeds were relatively stable, comprised mainly of field fungi. Incidence of fungi was most likely determined by fungal interspecies direct interactions, as well as by their synthesis of volatile organic compounds. Most prominent antagonistic interactions were seen for two plant pathogens, Alternaria alternata on Botrytis cinerea. Detrimental effects of the fungi on seed germination and seedling development were related to fungal extracellular enzyme activity, and in particular to amylase, cellulase and, polyphenol oxidase. Polyphenol and tannin concentrations in buckwheat seedlings were related to fungal growth rate and intensity of fungal cellulase activity, respectively, which suggests that physical penetration of the fungi through the host tissues is probably the stimulus for the activation of plant defence reactions in these seedlings. PMID:27109364

  1. Effect of inhibitors of trypsin-like proteolytic enzymes Bacillus cereus T spore germination.

    PubMed Central

    Boschwitz, H; Milner, Y; Keynan, A; Halvorson, H O; Troll, W

    1983-01-01

    The germination of Bacillus cereus T spore suspensions is partially prevented by several inhibitors of trypsin-like enzymes. Leupeptin, antipain, and tosyl-lysine-chloromethyl ketone are effective inhibitors, whereas chymostatin, elastatinal, and pepstatin are inactive. A synthetic substrate of trypsin, tosyl-arginine-methyl ester, also inhibits germination. Its inhibitory effect decreases as a function of incubation time in the presence of spores and is abolished by previous hydrolysis with trypsin. Germinating, but not dormant, spore suspensions hydrolyze tosyl-arginine-methyl ester; its hydrolysis is insensitive to chloramphenicol, sulfhydryl reagents, and EDTA. A crude extract of germinated B. cereus spores contains a trypsin-like enzyme whose activity, as measured by hydrolysis of benzoyl-arginine p-nitroanilide, is sensitive to germination-inhibitory compounds such as leupeptin, tosyl-arginine-methyl ester, and tosyl-lysine-chloromethyl ketone. Spore suspensions exposed to the above inhibitors under germination conditions lose only part of their heat resistance and some 10 to 30% of their dipicolinic acid content. Part of the germinating spore population becomes "phase grey" under phase optics. Based on a study of the inhibition of germination by protease inhibitors and the activity of a protease in germination spores and spore extracts, it is suggested that the activity of a trypsin-like enzyme may be involved in the mechanism of the breaking of dormancy in spores of B. cereus T. PMID:6401704

  2. Temperature requirements for seed germination of Pereskia aculeata and Pereskia grandifolia.

    PubMed

    Souza, Lucéia F; Gasparetto, Bruno F; Lopes, Rodrigo R; Barros, Ingrid B I

    2016-04-01

    Pereskia aculeata and Pereskia grandifolia have been studied widely due to their high nutritional and therapeutic values. However, little is known about the biological requirements of their seeds for the various germination factors. Thus, this experiment aimed to evaluate the thermal effects on the germination of these species at the temperatures of 24°C, 27°C, 30°C, 33°C and 36°C. After verification of the existence of differences in the performance of germination, a non-linear regression was carried out, relating the germination to temperature and identifying its point of maximum efficiency. We found that the lowest synchronization indexes of germination were observed close to 30°C. The best germination response of the P. aculeata and P. grandifolia was observed at 30°C and 33°C, respectively, with greater germination strength and fewer days to attain 63.21% of germinations. The results obtained from the germination of P. aculeata and P. grandifolia can be described by the Weindull distribution model with three parameters, as proposed by Carneiro and Guedes (1992). PMID:27033034

  3. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation

    SciTech Connect

    Flint, S.D.; Caldwell, M.M.

    1984-01-01

    Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B portion of the spectrum. Levels similar to maximum solar UV-B found in temperate-latitude areas failed to inhibit pollen germination significantly, while levels similar to maximum solar UV-B found in equatorial alpine locations caused partial inhibition of germination in three of the four taxa examined.

  4. Germination characteristics of six plant species growing on the Hanford Site. [Disturbed land revegetation feasibility studies

    SciTech Connect

    Cox, G.R.; Kirkham, R.R.; Cline, J.F.

    1980-03-01

    Six plant species (Siberian and thickspike wheatgrass, cheatgrass, sand dropseed, Indian ricegrass, and Russian thistle) found on the Hanford Site were studied as part of an investigation into the revegetation of disturbed areas. Germination response to three environmental parameters (soil moisture, soil temperature, and planting depth) were measured. Results indicated that when a polyethylene glycol solution was used to control the osmotic potential of the imbibition media, no significant decrease in germination rate occurred down to -3.0 bars. However, below -7.0 bars all species experienced a decrease in germination. When germinated in soil, all species except Russian thistle exhibited a significant decrease in germination rate at -0.3 bars. Russian thistle was the only species tested that exhibited germination at a soil temperature of 1/sup 0/C. All species gave optimum germination at temperatures between 10 and 15/sup 0/C. Thickspike wheatgrass was the only species tested which was able to germinate and emerge from a planting depth of greater than 2 inches. If supplemental moisture is provided, a shallow planting would be advisable for those species tested. If not overcome by pretreatment prior to planting, seed dormancy may be a significant factor which will reduce the germination potential of some species tested.

  5. [Effects of Pb2+ stress on seed germination & seedling growth of Rabdosia rubescens].

    PubMed

    Kong, Si-Xin; Su, He; Zhan, Yan-Ting; Li, Hai-Kui; Cui, Xu-Sheng; Guo, Yu-Hai

    2014-11-01

    The seeds of Rabdosia rubescens were as the materials to research the impacts of different lead (Pb2+) concentrations(0, 135, 270, 540, 1 080 mg x L(-1)) on seed germination and seedling growth. The results show that: Low concentration of lead had no obvious effect on early germination of the seed, the germination vigor and germination speed were lightly higher but not significantly differed at the level of Pb concentration 135 mg x L(-1) with control group; Mid-high concentration of Pb solution (270-1 080 mg x L(-1)) significantly inhibited the seed germination and seedling growth, which reduced the seed germination rate, germination vigor, germination index, embryo root length and shoot length, growth index with increasing of Pb concentrations. There was a inhibitory effect on embryo shoot length and root length at mid-high lead concentrations stress, and stronger inhibitory effect on root , which was more sensitive than shoot to Pb stress(P < 0.05). Pb bioaccumulation coefficient (BC) was 0.76-2.59, increased with concentration of Pb; Pb enrichment in seedling mainly caused the growth inhibition. The fitting model predictive analyses show, the critical concentration of Pb, which causes the germination rate and biomass fresh weight reducing 10%, is 195.18, 101.65 mg x L(-1). PMID:25775796

  6. Global gene expression analysis during germination in the chytridiomycete Blastocladiella emersonii.

    PubMed

    Salem-Izacc, Silvia M; Koide, Tie; Vêncio, Ricardo Z N; Gomes, Suely L

    2009-02-01

    Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class. During germination, the zoospore, a motile nongrowing cell, goes through a cascade of morphological changes that culminates with its differentiation into the germling cell, capable of coenocytic vegetative growth. Transcriptome analyses of B. emersonii cells were carried out during germination induced under various environmental conditions. Microarray data analyzing 3,563 distinct B. emersonii genes revealed that 26% of them are differentially expressed during germination in nutrient medium at at least one of the time points investigated. Over 500 genes are upregulated during the time course of germination under those conditions, most being related to cell growth, including genes involved in protein biosynthesis, DNA transcription, energetic metabolism, carbohydrate and oligopeptide transport, and cell cycle control. On the other hand, several transcripts stored in the zoospores are downregulated during germination in nutrient medium, such as genes involved in signal transduction, amino acid transport, and chromosome organization. In addition, germination induced in the presence of nutrients was compared with that triggered either by adenine or potassium ions in inorganic salt solution. Several genes involved in cell growth, induced during germination in nutrient medium, do not show increased expression when B. emersonii zoospores germinate in inorganic solution, suggesting that nutrients exert a positive effect on gene transcription. The transcriptome data also revealed that most genes involved in cell signaling show the same expression pattern irrespective of the initial germination stimulus. PMID:19098129

  7. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    PubMed Central

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-01-01

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251

  8. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence.

    PubMed

    Giebel, Jonathan D; Carr, Katherine A; Anderson, Erica C; Hanna, Philip C

    2009-09-01

    The bacterial spore cortex is critical for spore stability and dormancy and must be hydrolyzed by germination-specific lytic enzymes (GSLEs), which allows complete germination and vegetative cell outgrowth. We created in-frame deletions of three genes that encode GSLEs that have been shown to be active in Bacillus anthracis germination: sleB, cwlJ1, and cwlJ2. Phenotypic analysis of individual null mutations showed that the removal of any one of these genes was not sufficient to disrupt spore germination in nutrient-rich media. This finding indicates that these genes have partially redundant functions. Double and triple deletions of these genes resulted in more significant defects. Although a small subset of DeltasleB DeltacwlJ1 spores germinate with wild-type kinetics, for the overall population there is a 3-order-of-magnitude decrease in the colony-forming efficiency compared with wild-type spores. DeltasleB DeltacwlJ1 DeltacwlJ2 spores are unable to complete germination in nutrient-rich conditions in vitro. Both DeltasleB DeltacwlJ1 and DeltasleB DeltacwlJ1 DeltacwlJ2 spores are significantly attenuated, but are not completely devoid of virulence, in a mouse model of inhalation anthrax. Although unable to germinate in standard nutrient-rich media, spores lacking SleB, CwlJ1, and CwlJ2 are able to germinate in whole blood and serum in vitro, which may explain the persistent low levels of virulence observed in mouse infections. This work contributes to our understanding of GSLE activation and function during germination. This information may result in identification of useful therapeutic targets for the disease anthrax, as well as provide insights into ways to induce the breakdown of the protective cortex layer, facilitating easier decontamination of resistant spores. PMID:19581364

  9. Oligopyrrole Macrocycles: Receptors and Chemosensors for Potentially Hazardous Materials

    PubMed Central

    2011-01-01

    Oligopyrroles represent a diverse class of molecular receptors that have been utilized in a growing number of applications. Recently, these systems have attracted interest as receptors and chemosensors for hazardous materials, including harmful anionic species, high-valent actinide cations, and nitroaromatic explosives. These versatile molecular receptors have been used to develop rudimentary colorimetric and fluorimetric assays for hazardous materials. PMID:21465591

  10. The BCL6 RD2 domain governs commitment of activated B cells to form germinal centers.

    PubMed

    Huang, Chuanxin; Gonzalez, David G; Cote, Christine M; Jiang, Yanwen; Hatzi, Katerina; Teater, Matt; Dai, Kezhi; Hla, Timothy; Haberman, Ann M; Melnick, Ari

    2014-09-11

    To understand how the Bcl6 transcriptional repressor functions in the immune system, we disrupted its RD2 repression domain in mice. Bcl6RD2(MUT) mice exhibit a complete loss of germinal center (GC) formation but retain normal extrafollicular responses. Bcl6RD2(MUT) antigen-engaged B cells migrate to the interfollicular zone and interact with cognate T helper cells. However, these cells fail to complete early GC-commitment differentiation and coalesce as nascent GC aggregates. Bcl6 directly binds and represses trafficking receptors S1pr1 and Gpr183 by recruiting Hdac2 through the RD2 domain. Deregulation of these genes impairs B cell migration and may contribute to GC failure in Bcl6RD2(MUT) mice. The development of functional GC-TFH cells was partially impaired in Bcl6RD2(MUT) mice. In contrast to Bcl6(-/-) mice, Bcl6RD2(MUT) animals experience no inflammatory disease or macrophage deregulation. These results reveal an essential role for RD2 repression in early GC commitment and striking biochemical specificity in Bcl6 control of humoral and innate immune-cell phenotypes. PMID:25176650

  11. PAR-1, -4, and the mTOR Pathway Following Germinal Matrix Hemorrhage.

    PubMed

    Lekic, Tim; Krafft, Paul R; Klebe, Damon; Flores, Jerry; Rolland, William B; Tang, Jiping; Zhang, John H

    2016-01-01

    Germinal matrix hemorrhage (GMH) is the most common cause of neurological complications of prematurity and has lasting implications. PAR-1 and PAR-4 receptors are involved with upstream signaling pathways following brain hemorrhage in adult models of stroke, of which the mammalian target of rapamycin (mTOR) is a potential downstream mediator. Therefore, we hypothesized a role for PAR-1, -4/ mTOR signaling following GMH brain injury. Postnatal day 7 Sprague-Dawley rats were subjected to GMH through stereotactic infusion of collagenase into the right ganglionic eminence. Rodents were euthanized at 72 h (short term), or 4 weeks (long term). Short-term mTOR expression was evaluated by Western blot in the context of PAR-1 (SCH-79797) and PAR-4 (P4pal10) inhibition. Pups in the long-term group were administered the selective mTOR inhibitor (rapamycin) with neurobehavioral and brain pathological examinations performed at 4 weeks. Pharmacological PAR-1, -4 antagonism normalized the increased mTOR expression following GMH. Early inhibition of mTOR by rapamycin improved long-term outcomes in rats. Mammalian-TOR signaling plays an important role in brain injury following neonatal GMH, possibly involving upstream PAR-1, -4 mechanisms. PMID:26463951

  12. Germinated Waxy Black Rice Suppresses Weight Gain in High-Fat Diet-Induced Obese Mice.

    PubMed

    Lim, Won-Chul; Ho, Jin-Nyoung; Lee, Hee-Seop; Cho, Hong-Yon

    2016-04-01

    This study was performed to investigate the antiobesity effect of germinated waxy black rice (GWBR) in high-fat diet (HFD)-induced obese mice. The mice were divided into a normal diet (ND) group, HFD group, and 2 test groups for 8 weeks: 2.5% GWBR-supplemented (GWBR-2.5) group and 5% GWBR-supplemented (GWBR-5) group. Supplementing with GWBR significantly reduced body weight gain and lipid accumulation in the liver and adipose tissue compared to the HFD control group. Triglyceride (TG), total cholesterol, and low-density lipoprotein-cholesterol levels in serum were decreased by GWBR supplementation, whereas high-density lipoprotein-cholesterol level significantly increased. In addition, mRNA levels of transcriptional factors, such as peroxisome proliferator-activated receptor-γ, CCAAT enhancer-binding protein (C/EBP)-α, C/EBP-β, sterol regulatory element-binding protein-1c, and related genes, including adipocyte fatty acid-binding protein, fatty acid synthase, and lipoprotein lipase, were significantly lower in the GWBR groups. However, lipolytic enzymes, such as hormone-sensitive lipase, adipose TG lipase, and carnitine palmitoyltransferase-1, and uncoupling protein 2 mRNA levels were significantly higher in GWBR-supplemented mice. These results suggest that GWBR exerts antiobesity effects by decreasing lipid accumulation and promoting lipolysis in HFD-induced obese mice. PMID:27022689

  13. Diverse Classrooms, Diverse Curriculum, Diverse Complications: Three Teacher Perspectives

    ERIC Educational Resources Information Center

    Ungemah, Lori D.

    2015-01-01

    Racial, ethnic, linguistic, and religious diversity continues to increase in classrooms. Many call for a more diverse curriculum, but curricular diversity brings its own challenges to both teachers and students. These three vignettes are drawn from my ethnographic data at Atlantic High School in Brooklyn, New York, where I worked for ten years as…

  14. A subpopulation of high IL-21-producing CD4(+) T cells in Peyer's Patches is induced by the microbiota and regulates germinal centers.

    PubMed

    Jones, Leigh; Ho, Wen Qi; Ying, Sze; Ramakrishna, Lakshmi; Srinivasan, Kandhadayar G; Yurieva, Marina; Ng, Wan Pei; Subramaniam, Sharrada; Hamadee, Nur H; Joseph, Sabrina; Dolpady, Jayashree; Atarashi, Koji; Honda, Kenya; Zolezzi, Francesca; Poidinger, Michael; Lafaille, Juan J; Curotto de Lafaille, Maria A

    2016-01-01

    The production of IL-21 by T follicular helper (Tfh) cells is vital in driving the germinal centre reaction and high affinity antibody formation. However, the degree of Tfh cell heterogeneity and function is not fully understood. We used a novel IL-21eGFP reporter mouse strain to analyze the diversity and role of Tfh cells. Through the analysis of GFP expression in lymphoid organs of IL-21eGFP mice, we identified a subpopulation of GFP(+), high IL-21 producing Tfh cells present only in Peyer's Patches. GFP(+)Tfh cells were found to be polyclonal and related to GFP(-)Tfh cells of Peyer's Patches in TCR repertoire composition and overall gene expression. Studies on the mechanisms of induction of GFP(+)Tfh cells demonstrated that they required the intestinal microbiota and a diverse repertoire of CD4(+) T cells and B cells. Importantly, ablation of GFP(+) cells resulted in a reduced frequency of Peyer's Patches IgG1 and germinal center B cells in addition to small but significant shifts in gut microbiome composition. Our work highlights the diversity among IL-21 producing CD4(+) Tfh cells, and the interrelationship between the intestinal bacteria and Tfh cell responses in the gut. PMID:27499025

  15. A subpopulation of high IL-21-producing CD4+ T cells in Peyer’s Patches is induced by the microbiota and regulates germinal centers

    PubMed Central

    Jones, Leigh; Ho, Wen Qi; Ying, Sze; Ramakrishna, Lakshmi; Srinivasan, Kandhadayar G.; Yurieva, Marina; Ng, Wan Pei; Subramaniam, Sharrada; Hamadee, Nur H.; Joseph, Sabrina; Dolpady, Jayashree; Atarashi, Koji; Honda, Kenya; Zolezzi, Francesca; Poidinger, Michael; Lafaille, Juan J.; Curotto de Lafaille, Maria A.

    2016-01-01

    The production of IL-21 by T follicular helper (Tfh) cells is vital in driving the germinal centre reaction and high affinity antibody formation. However, the degree of Tfh cell heterogeneity and function is not fully understood. We used a novel IL-21eGFP reporter mouse strain to analyze the diversity and role of Tfh cells. Through the analysis of GFP expression in lymphoid organs of IL-21eGFP mice, we identified a subpopulation of GFP+, high IL-21 producing Tfh cells present only in Peyer’s Patches. GFP+Tfh cells were found to be polyclonal and related to GFP−Tfh cells of Peyer’s Patches in TCR repertoire composition and overall gene expression. Studies on the mechanisms of induction of GFP+Tfh cells demonstrated that they required the intestinal microbiota and a diverse repertoire of CD4+ T cells and B cells. Importantly, ablation of GFP+ cells resulted in a reduced frequency of Peyer’s Patches IgG1 and germinal center B cells in addition to small but significant shifts in gut microbiome composition. Our work highlights the diversity among IL-21 producing CD4+ Tfh cells, and the interrelationship between the intestinal bacteria and Tfh cell responses in the gut. PMID:27499025

  16. T regulatory cells participate in the control of germinal centre reactions

    PubMed Central

    Alexander, Carla-Maria; Tygrett, Lorraine T; Boyden, Alexander W; Wolniak, Kristy L; Legge, Kevin L; Waldschmidt, Thomas J

    2011-01-01

    Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5+ and CCR7− Treg cells were documented by flow cytometry and Foxp3+ cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs. PMID:21635248

  17. Regulation of Seed Germination in the Close Arabidopsis Relative Lepidium sativum: A Global Tissue-Specific Transcript Analysis1[C][W][OA

    PubMed Central

    Morris, Karl; Linkies, Ada; Müller, Kerstin; Oracz, Krystyna; Wang, Xiaofeng; Lynn, James R.; Leubner-Metzger, Gerhard; Finch-Savage, William E.

    2011-01-01

    The completion of germination in Lepidium sativum and other endospermic seeds (e.g. Arabidopsis [Arabidopsis thaliana]) is regulated by two opposing forces, the growth potential of the radicle (RAD) and the resistance to this growth from the micropylar endosperm cap (CAP) surrounding it. We show by puncture force measurement that the CAP progressively weakens during germination, and we have conducted a time-course transcript analysis of RAD and CAP tissues throughout this process. We have also used specific inhibitors to investigate the importance of transcription, translation, and posttranslation levels of regulation of endosperm weakening in isolated CAPs. Although the impact of inhibiting translation is greater, both transcription and translation are required for the completion of endosperm weakening in the whole seed population. The majority of genes expressed during this process occur in both tissues, but where they are uniquely expressed, or significantly differentially expressed between tissues, this relates to the functions of the RAD as growing tissue and the CAP as a regulator of germination through weakening. More detailed analysis showed that putative orthologs of cell wall-remodeling genes are expressed in a complex manner during CAP weakening, suggesting distinct roles in the RAD and CAP. Expression patterns are also consistent with the CAP being a receptor for environmental signals influencing germination. Inhibitors of the aspartic, serine, and cysteine proteases reduced the number of isolated CAPs in which weakening developed, and inhibition of the 26S proteasome resulted in its complete cessation. This indicates that targeted protein degradation is a major control point for endosperm weakening. PMID:21321254

  18. Examining the Contents of Isolated Xenopus Germinal Vesicles

    PubMed Central

    Gall, Joseph G.; Wu, Zheng’an

    2010-01-01

    One can manually isolate the giant oocyte nucleus or germinal vesicle (GV) of Xenopus from a living oocyte with nothing more complicated than jewelers’ forceps and a dissecting microscope. Similarly, one can remove the nuclear envelope by hand and allow the lampbrush chromosomes and other nuclear organelles to spread on a microscope slide. After centrifugation, the nuclear contents adhere tightly to the slide, where they can be subjected to immunostaining or fluorescent in situ hybridization for visualization by conventional or confocal microscopy. Preparations of isolated GV contents reveal details of nuclear structure that are almost impossible to attain by more conventional techniques. PMID:20060047

  19. Autolysis of protein bodies in germinating lentil seeds.

    PubMed

    Alvarez-Fernández, J

    1989-09-01

    Protein bodies isolated from lentil (Lens culinaris, Medik) cotyledons exhibit autolytic activity which increases during seed germination. Such autolytic capacity is active across a broad pH range and shows a maximum at pH 6.5. Excision of the embryonic axis reduces autolytic capacity and application during incubation of the seeds without axis of both 6-benzylaminopurine and kinetin is able to replace it. On the other hand, the proteolytic activity in the protein body membrane, is located towards the proteinaceous matrix and is obviously partially responsible for this autolytic activity. PMID:2616873

  20. Isolation of bacterial endophytes from germinated maize kernels.

    PubMed

    Rijavec, Tomaz; Lapanje, Ales; Dermastia, Marina; Rupnik, Maja

    2007-06-01

    The germination of surface-sterilized maize kernels under aseptic conditions proved to be a suitable method for isolation of kernel-associated bacterial endophytes. Bacterial strains identified by partial 16S rRNA gene sequencing as Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., and Sphingomonas sp. were isolated from kernels of 4 different maize cultivars. Genus Pantoea was associated with a specific maize cultivar. The kernels of this cultivar were often overgrown with the fungus Lecanicillium aphanocladii; however, those exhibiting Pantoea growth were never colonized with it. Furthermore, the isolated bacterium strain inhibited fungal growth in vitro. PMID:17668041