Science.gov

Sample records for germinating radish seeds

  1. Radish (Raphanus sativus) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. Studies reporting these results used a large number of plant species that varied in seed size, which might have introduced differences in germination characteristics or various parameter...

  2. THE EFFECTS OF COUMARIN ON RADISH SEED GERMINATION AND RADICLE ELONGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coumarin is a compound that inhibits seed germination and seedling growth. This inhibitory effect may confer a competitive advantage for the plants that secrete coumarin into the environment. This study was conducted to evaluate the effect of hydration-dehydration of radish seed in the presence of...

  3. Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard, red radish, white radish, and rapeseed.

    PubMed

    Ciska, Ewa; Honke, Joanna; Kozłowska, Halina

    2008-10-01

    The study was aimed at determining the effect of light conditions on contents of glucosinolates (GLS) in germinating seeds of white mustard, red radish, white radish, and rapeseed. The seeds were germinated in light and dark, at 25 degrees C, for up to 7 days. As compared to the nongerminated seeds, in seeds exposed to light and germinated for 4, 5, 6, and 7 days the content of total GLS was observed to decrease by 30 to 70% depending on the species. Germination in conducted the dark for the respective periods of time resulted in decreases of total GLS not exceeding 25%. The changes in the concentration of total GLS were attributed to aliphatic GLS predominating in seeds, yet in the case of white mustard to sinalbin belonging to aralkyl glucosinolates. Although seeds germinated in the dark, as compared to those exposed to light, were characterized by a higher total content of indole GLS, the percentage contribution of that group of compounds in white mustard, red radish, and white radish remained at a similar level, irrespective of germination time. Only in the case of rapeseed was the percentage of the sum of indole GLS observed to increase from 17 to up to 45% once the seeds were exposed to light and to 50% once they were germinated in the dark. PMID:18771273

  4. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  5. Optimization of heat and relative humidity conditions to reduce Escherichia coli O157:H7 contamination and maximize the germination of radish seeds.

    PubMed

    Song, M K; Kim, H W; Rhee, M S

    2016-06-01

    We previously reported that a combination of heat and relative humidity (RH) had a marked bactericidal effect on Escherichia coli O157:H7 on radish seeds. Here, response surface methodology with a Box-Behnken design was used to build a model to predict reductions in E. coli O157:H7 populations based on three independent variables: heating temperature (55 °C, 60 °C, or 65 °C), RH (40%, 60%, and 80%), and holding time (8, 15, or 22 h). Optimum treatment conditions were selected using a desirability function. The predictive model for microbial reduction had a high regression coefficient (R(2) = 0.97), and the accuracy of the model was verified using validation data (R(2) = 0.95). Among the three variables examined, heating temperature (P < 0.0001) and RH (P = 0.004) were the most significant in terms of bacterial reduction and seed germination, respectively. The optimum conditions for microbial reduction (6.6 log reduction) determined by ridge analysis were as follows: 64.5 °C and 63.2% RH for 17.7 h. However, when both microbial reduction and germination rate were taken into consideration, the desirability function yielded optimal conditions of 65 °C and 40% RH for 8 h (6.6 log reduction in the bacterial population; 94.4% of seeds germinated). This study provides comprehensive data that improve our understanding of the effects of heating temperature, RH, and holding time on the E. coli O157:H7 population on radish seeds. Radish seeds can be exposed to these conditions before sprouting, which greatly increases the microbiological safety of the products. PMID:26919813

  6. Changes in the Levels of Calmodulin and of a Calmodulin Inhibitor in the Early Phases of Radish (Raphanus sativus L.) Seed Germination

    PubMed Central

    Cocucci, Maurizio; Negrini, Noemi

    1988-01-01

    An inhibitor of Ca2+-calmodulin (Cam)-dependent brain phosphodiesterase was present in the soluble fraction of embryo axes from ungerminated radish (Raphanus sativus L.) seeds. This inhibitor is a Ca2+-dependent, Cam-binding protein; in fact: (a) its effect was strongly reduced by treatment with proteases; (b) the inhibition was counteracted by Cam but not by Ca2+; (c) on gel filtration in the presence of Ca2+, Cam co-chromatographed with the inhibitor. The inhibitor is heat stable and positively charged at pH 7.5. During early phases of germination, the fresh weight and the levels of DNA and RNA of embryo axes increased, the level of the inhibitor decreased, and the level of Cam increased. Abscisic acid (ABA) inhibited germination, the decrease of inhibitor, and the increase of Cam. Fusicoccin (FC) stimulated the increase in fresh weight but not the increase in the RNA and DNA levels; in this condition, the inhibitor level decreased and the increase in Cam level was higher than in the control. In the presence of both ABA and FC, there was an increase in fresh weight not accompanied by an increase in DNA and RNA levels; Cam increased and, on a fresh weight basis, reached the value of the control. These results indicate that the Ca2+-Cam system was activated in early germination of radish seeds by an increase in Cam and a decrease in the inhibitor levels, that FC, probably through the activation of membrane functions, increased Cam level, and that the ABA inhibition on germination was not mediated by the Ca2+-Cam system. Images Fig. 2 PMID:16666403

  7. Nickel toxicity on seed germination and growth in radish (Raphanus sativus) and its recovery using copper and boron.

    PubMed

    Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K

    2009-05-01

    Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings. PMID:20120479

  8. Germination of white radish, buckwheat and qing-geng-cai under low pressure in closed environment.

    PubMed

    Hinokuchi, Tsutomu; Oshima, Satoshi; Hashimoto, Hirofumi

    2004-11-01

    In order to cultivate plants under low pressure in closed environment, the germination rate of seeds of white radish was investigated under low pressure, low oxygen partial pressure and condition of pure oxygen. The result of these experiments showed that the germination rate was affected by the oxygen partial pressure. From this fact, it is possible to lower the total pressure by using only the pure oxygen in germination. Furthermore, the germination rates of seeds of buckwheat and qing-geng-cai were also investigated in pure oxygen for the comparison. Consequently, though tendency in germination rate of white radish was similar to qing-geng-cai, it was different from buckwheat. PMID:15858367

  9. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus.

    PubMed

    Park, Byong-Jin; Liu, Zaochang; Kanno, Akira; Kameya, Toshiaki

    2005-10-01

    A protocol for producing transgenic radish (Raphanus sativus) was obtained by using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation. The Agrobacterium strain LBA4404 contained the binary vector pBI121-LEA (late embyogenesis abundant), which carried a Group 3 LEA gene, from Brassica napus. Among six combinations, Agrobacterium-mediated transformation assisted by a combination of 5-min sonication with 5-min vacuum infiltration resulted in the highest transformation frequency. The existence, integration and expression of transferred LEA gene in transgenic T(1) plants were confirmed by PCR, genomic Southern and Western blot analysis. Transgenic radish demonstrated better growth performance than non-transformed control plants under osmotic and salt stress conditions. Accumulation of Group 3 LEA protein in the vegetative tissue of transgenic radish conferred increased tolerance to water deficit and salt stress. PMID:15843933

  10. Estimation of scavenging capacity of melatonin and other antioxidants: contribution and evaluation in germinated seeds.

    PubMed

    Aguilera, Yolanda; Herrera, Teresa; Benítez, Vanesa; Arribas, Silvia M; López de Pablo, Angel L; Esteban, Rosa M; Martín-Cabrejas, María A

    2015-03-01

    Seven edible seeds for the levels of melatonin, phenolic compounds and their antioxidant capacity were evaluated during germination process. Radical scavenging parameters were also studied in standard antioxidants to understand their antiradical actions. Germination brought about significant increases of total phenol compounds in all edible seeds, showing red cabbage, radish and broccoli the highest contents (21.6, 20.4 and 16.4 mg GAE/g DW, respectively). The concentration of melatonin is greatly variable in edible seeds, exhibiting significant increases during germination. The highest levels were found in red cabbage (857 pg/g DW) radish (536 pg/g DW) and broccoli (439 pg/g DW). The germinated seeds which had the highest levels of polyphenols and melatonin were those that showed the most relevant antiradical activities (>97%). This information is valuable for the incorporation of red cabbage, radish and broccoli germinated seeds into the diet to promote potential health benefits. PMID:25306336

  11. Combination treatments for killing Escherichia coli O157:H7 on alfalfa, radish, broccoli, and mung bean seeds.

    PubMed

    Bari, M L; Nei, D; Enomoto, K; Todoriki, S; Kawamoto, S

    2009-03-01

    In this study, the effectiveness of prolonged dry-heat treatment (50 degrees C) alone or in combination with chemical treatments (1% oxalic acid, 0.03% phytic acid, 50% ethanol, electrolyzed acidic water, and electrolyzed alkaline water) in eliminating Escherichia coli O157:H7 on laboratory-inoculated alfalfa, radish, broccoli, and mung bean seeds was compared with that of dry-heat treatment in combination with irradiation treatment. Dry-heat treatment for 17 or 24 h alone could reduce E. coli O157:H7 numbers to below detectable levels in radish, broccoli, and alfalfa seeds, but was unable to reduce the pathogen numbers to below the detectable level in mung bean seeds. In addition, dry-heat treatment for 17 h plus sanitizer treatments were effective in greatly reducing pathogen populations on radish, broccoli, and alfalfa seeds, without compromising the quality of the sprouts, but these treatments did not eliminate the pathogen from radish and alfalfa seeds. Seventeen hours of dry heat followed by a 1.0-kGy dose of irradiation completely eliminated E. coli O157:H7 from radish and mung bean seeds, whereas only a minimum radiation dose of 0.25 kGy was required to completely eliminate the pathogen from broccoli and alfalfa seeds. Dry heat in combination with radiation doses of up to 1.0 kGy did not negatively impact the seed germination rate or length of alfalfa, broccoli, and radish seeds or the length of alfalfa, broccoli, and radish sprouts, but did decrease the length of mung bean sprouts. PMID:19343955

  12. Inactivation of Escherichia coli O157:H7 on radish seeds by sequential treatments with chlorine dioxide, drying, and dry heat without loss of seed viability.

    PubMed

    Bang, Jihyun; Kim, Haeyoung; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2011-09-01

    We developed and validated a treatment to inactivate Escherichia coli O157:H7 on radish seeds without decreasing seed viability. Treatments with aqueous ClO(2) followed by drying and dry-heat treatments were evaluated for efficacy to inactivate the pathogen. Conditions to dry radish seeds after treatment with water (control) or ClO(2) were established. When treated seeds with high water activity (a(w)) (>0.99) were stored at 45°C and 23% relative humidity (RH), the a(w) decreased to <0.30 within 24 h. Drying high-a(w) seeds before exposing them to dry-heat treatment (≥60°C) was essential to preserve seed viability. The germination rate of radish seeds which had been immersed in water for 5 min, dried at 45°C and 23% RH for 24 h, and heated at 70°C for 48 h or at 80°C for 24 h was not significantly decreased (P ≤ 0.05) compared to that of untreated radish seeds. Sequential treatments with ClO(2) (500 μg/ml, 5 min), drying (45°C, 23% RH, 24 h), and dry heating (70°C, 23% RH, 48 h) eliminated E. coli O157:H7 (5.9 log CFU/g) on radish seeds and, consequently, sprouts produced from them without decreasing the germination rate. These sequential treatments are recommended for application to radish seeds intended for sprout production. PMID:21803896

  13. Pre-soaking of seeds enhances pressure inactivation of E. coli O157:H7 and Salmonella spp. on crimson clover, red clover, radish and broccoli seeds.

    PubMed

    Neetoo, Hudaa; Chen, Haiqiang

    2010-02-28

    The application of high hydrostatic pressure (HHP) at a level of 600 MPa at 20 degrees C to decontaminate crimson clover, red clover, radish and broccoli seeds inoculated with E. coli O157:H7 and Salmonella were evaluated. Salmonella was generally more pressure-resistant than E. coli O157:H7 on clover and radish seeds except on broccoli seeds where the trend was reversed. In addition, the application of HHP differentially affected seeds' germinability and the order of pressure tolerance of the seeds was such that red clover>crimson clover approximately broccoli >radish seeds with final germination percentages ranging from 85-100% while their untreated counterparts had final germination percentages of 99-100%. Pre-soaking the different types of seeds in water for 30, 60 or 90 min at ambient temperature followed by HHP at 600 MPa for 2 or 5 min at 20 degrees C significantly (P<0.05) enhanced the pressure inactivation of the inoculated pathogens. Moreover, the ability of HHP-treated seeds to germinate also varied as a function of the pre-soaking duration and the seed type. Pre-soaking radish and broccoli seeds for 30 min prior to HHP (2 or 5 min) resulted in germination percentages of seeds displayed higher germination potential when pre-soaked for 60 min at 20 degrees C prior to HPP (5 min) with final germination percentages of 94%, although their yield was substantially lower than their untreated counterparts. Red clover seeds pre-soaked for 60 min at 4 degrees C followed by HPP at 600 MPa for 5 min at 20 degrees C produced germination percentages of 91 and 95% after 3 and 8 days of sprouting compared to 99 and 100% respectively for untreated seeds. In addition, this condition did not significantly (P>0.05) reduce the sprout yield. The treatment also resulted in a reduction of a 5 log initial load of E. coli O157:H7 and Salmonella to an undetectable level (neither pathogen was detected in 2-g seed

  14. Seed Development and Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  15. A β-Galactosidase from Radish (Raphanus sativus L.) Seeds

    PubMed Central

    Sekimata, Masayuki; Ogura, Kiyoshi; Tsumuraya, Yoichi; Hashimoto, Yohichi; Yamamoto, Shigeru

    1989-01-01

    A basic β-galactosidase (β-Galase) has been purified 281-fold from imbibed radish (Raphanus sativus L.) seeds by conventional purification procedures. The purified enzyme is an electrophoretically homogeneous protein consisting of a single polypeptide with an apparent molecular mass of 45 kilodaltons and pl values of 8.6 to 8.8. The enzyme was maximally active at pH 4.0 on p-nitrophenyl β-d-galactoside and β-1,3-linked galactobiose. The enzyme activity was inhibited strongly by Hg2+ and 4-chloromercuribenzoate. d-Galactono-(1→4)-lactone and d-galactal acted as potent competitive inhibitors. Using galactooligosaccharides differing in the types of linkage as the substrates, it was demonstrated that radish seed β-Galase specifically split off β-1,3- and β-1,6-linked d-galactosyl residues from the nonreducing ends, and their rates of hydrolysis increased with increasing chain lengths. Radish seed and leaf arabino-3,6-galactan-proteins were resistant to the β-galase alone but could be partially degraded by the enzyme after the treatment with a fungal α-l-arabinofuranosidase leaving some oligosaccharides consisting of d-galactose, uronic acid, l-arabinose, and other minor sugar components besides d-galactose as the main product. Images Figure 2 Figure 4 PMID:16666809

  16. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. PMID:17374428

  17. Species differences in the gut stimulatory effects of radish seeds.

    PubMed

    Ghayur, Muhammad Nabeel; Gilani, Anwarul Hassan; Houghton, Peter J

    2005-11-01

    This study describes the gastrointestinal (GI) prokinetic effects of the aqueous extract of radish seeds (Rs.Cr). Rs.Cr, which tested positive for terpenes, flavonoids, phenols, alkaloids and saponins, showed a spasmogenic effect in isolated rabbit jejunum and ileum, rat stomach fundus and ileum, and guinea-pig ileum and jejunum. Rs.Cr was around 10 times more potent in the guinea-pig tissues and this effect was resistant to atropine, pyrilamine or SB203186 while the spasmogenic effect in the rat and rabbit tissues was atropine sensitive. The extract exhibited atropine-sensitive GI prokinetic and laxative effects in vivo in mice. In the atropinized rabbit jejunum, Rs.Cr produced a spasmolytic effect independent of Ca(++) or K(+) channels, adrenergic or opioid receptor involvement. Activity-directed fractionation of Rs.Cr yielded four fractions, all showing effects similar to that of the parent extract. Rs.Cr and its fractions were found to be non-lethal up to 10 g kg(-1) in mice for 24 h, except for the petroleum fraction, which showed 50% mortality at high doses. Some known radish compounds (spermine, spermidine, putrescine and sinigrin) were also tested and found to be devoid of any activity. The study shows species-specific spasmogenic effects of radish in rabbit, rat and mouse via muscarinic receptors but through an uncharacterized pathway in guinea-pig tissues. Additionally, a dormant relaxant effect was also seen, while the three polyamines and one glucosinolate from radish were found to be inactive, indicating that the compound(s) responsible for the activities reported remains to be isolated. PMID:16259783

  18. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. PMID:26304382

  19. Oxygen requirement of germinating flax seeds

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  20. Oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  1. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. PMID:27085178

  2. Small RNA mediated regulation of seed germination

    PubMed Central

    Das, Shabari Sarkar; Karmakar, Prakash; Nandi, Asis Kumar; Sanan-Mishra, Neeti

    2015-01-01

    Mature seeds of most of the higher plants harbor dormant embryos and go through the complex process of germination under favorable environmental conditions. The germination process involves dynamic physiological, cellular and metabolic events that are controlled by the interplay of several gene products and different phytohormones. The small non-coding RNAs comprise key regulatory modules in the process of seed dormancy and germination. Recent studies have implicated the small RNAs in plant growth in correlation with various plant physiological processes including hormone signaling and stress response. In this review we provide a brief overview of the regulation of seed germination or dormancy while emphasizing on the current understanding of the role of small RNAs in this regard. We have also highlighted specific examples of stress responsive small RNAs in seed germination and discussed their future potential. PMID:26528301

  3. The oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  4. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. PMID:26812088

  5. Software Tools for Weed Seed Germination Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The next generation of weed seed germination models will need to account for variable soil microclimate conditions. In order to predict this microclimate environment we have developed a suite of individual tools (models) that can be used in conjunction with the next generation of weed seed germinati...

  6. Interaction of microwaves and germinating seeds

    SciTech Connect

    Shafer, F.L.

    1987-01-01

    The preliminary investigation measured the internal metabolic process by ATP production. Leakage of ions and organic material from germinating seeds indicated that membranes are a target of microwaves and heat. Electron photo-micrographs showed an increase in damage to membranes as heat and microwave treatments were increased. The second phase of this investigation was concerned with determining some of the biological activity at the initiation of germination of wheat seed, Triticum aestivum L., using a resonating microwave cavity oscillating at 9.3 GHz as a probe. Direct current conductivity measurements were also made on the seeds as a means of confirming the observations made with the microwave cavity.

  7. Photoinduced Seed Germination of Oenothera biennis L

    PubMed Central

    Ensminger, Peter A.; Ikuma, Hiroshi

    1987-01-01

    The photoinduction period of Oenothera biennis L. seed germination was analyzed by varying the photoinduction temperature and by substituting red light pulses for continuous red light. At 24°C, seeds require 36 hours of continuous red light for maximal percent germination. The optimal photoinduction temperature is 32°C, with higher and lower temperatures being strongly inhibitory. A 30 minute exposure to far-red light, given immediately after a red light period of 1 to 36 hours, reduces germination by about 25%. Seeds escape from far-red inhibition with a half-time of 5 to 10 hours, depending on the length of the red exposure that precedes the far-red light. Periodic 15 minute pulses of red light can substitute for continuous red light in stimulating germination. Ted red light pulses, with 6 hours of darkness between successive pulses, cause maximal germination. The response to periodic red light is fully reversible by far-red light. Probit analysis of the periodic light response shows that as the length of the dark periods between successive pulses increases, less incident light is needed to induce germination but the population variance in light sensitivity remains constant. Probit analysis of the temperature response shows that as the photoinduction temperature increases from 16 to 32°C, less incident light is needed to induce germination and the population variance in light sensitivity also increases. PMID:16665825

  8. Oxidative signaling in seed germination and dormancy

    PubMed Central

    El-Maarouf-Bouteau, Hayat

    2008-01-01

    Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumulation can therefore be also beneficial for seed germination and seedling growth by regulating cellular growth, ensuring a protection against pathogens or controlling the cell redox status. ROS probably also act as a positive signal in seed dormancy release. They interact with abscisic acid and gibberellins transduction pathway and are likely to control numerous transcription factors and properties of specific protein through their carbonylation. PMID:19513212

  9. Oxygen dependency of germinating Brassica seeds.

    PubMed

    Park, Myoung Ryoul; Hasenstein, Karl H

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions. PMID:26948011

  10. Oxygen dependency of germinating Brassica seeds

    NASA Astrophysics Data System (ADS)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  11. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  12. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  13. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  14. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  15. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  16. Disinfection of radish and alfalfa seeds inoculated with Escherichia coli O157:H7 and Salmonella by a gaseous acetic acid treatment.

    PubMed

    Nei, Daisuke; Latiful, Bari M; Enomoto, Katsuyoshi; Inatsu, Yasuhiro; Kawamoto, Shinnichi

    2011-10-01

    Abstract The majority of seed sprout-related outbreaks have been associated with Escherichia coli O157:H7 and Salmonella. Therefore, we aimed to find an effective method to inactivate these organisms on seeds before sprouting. Treatment with 8.7% (v/v) acetic acid at 55°C for 2-3 h reduced the population of E. coli O157:H7 and Salmonella inoculated on alfalfa (Medicago sativa L.) and radish seeds (Raphanus sativus L.) by more than 5.0 log CFU/g, and a longer treatment time completely eliminated the E. coli O157:H7 population. The E. coli O157:H7 populations were reduced to an undetectable level with a gaseous acetic acid treatment for 48 h. After enrichment, no E. coli O157:H7 were found in the alfalfa and radish seeds (25 g). However, these treatments were unable to eliminate Salmonella in both seed types. No significant difference between the germination rates of treated alfalfa seeds and control seeds was found, and germination rates greater than 95% were obtained for the radish seeds. Although chlorine washing is commonly used for seed decontamination, chlorine washing at 200 and 20,000 ppm resulted in a reduction of pathogens by less than or equal to 3 log CFU/g. Therefore, these results suggested that gaseous acetic acid is more effective than chlorine washing in controlling pathogenic bacteria on sprout seeds. PMID:21651341

  17. Seed biology and in vitro seed germination of Cypripedium.

    PubMed

    Zeng, Songjun; Zhang, Yu; Teixeira da Silva, Jaime A; Wu, Kunlin; Zhang, Jianxia; Duan, Jun

    2014-12-01

    Cypripedium orchids have high horticultural value. The populations of most species are very geographically restricted and they are becoming increasingly rare due to the destruction of native habitats and illegal collection. Reduction of the commercial value through large-scale propagation in vitro is a preferable option to reduce pressure from illegal collection. Cypripedium species are commercially propagated via seed germination in vitro. This review focuses on in vitro seed germination and provides an in-depth analysis of the seed biology of this genus. PMID:24191720

  18. Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: A student research project

    NASA Astrophysics Data System (ADS)

    Hageseth, Gaylord T.

    1982-02-01

    Students under the supervision of a faculty member can collect data and fit the data to the theoretical mathematical model that describes the rate of isothermal seed germination. The best-fit parameters are interpreted as an initial substrate concentration, product concentration, and the autocatalytic reaction rate. The thermodynamic model enables one to calculate the activation energy for the substrate and product, the activation energy for the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. Turnip, lettuce, soybean, and radish seeds have been investigated. All data fit the proposed model.

  19. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2014-01-01 2014-01-01 false Source of seeds for germination. 201.53 Section...

  20. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2010-01-01 2010-01-01 false Source of seeds for germination. 201.53 Section...

  1. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2012-01-01 2012-01-01 false Source of seeds for germination. 201.53 Section...

  2. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2013-01-01 2013-01-01 false Source of seeds for germination. 201.53 Section...

  3. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or determined to be at least 98 percent, the pure seed for the germination test may be taken indiscriminately... 7 Agriculture 3 2011-01-01 2011-01-01 false Source of seeds for germination. 201.53 Section...

  4. Fire Effects on Invasive Weed Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoring historic fire regimes is often beneficial to rangeland structure and function. However, understanding of interactions between fire and invasive weeds is limited. We designed an experiment to determine fire effects on germination of soil surface-deposited seeds of the invasive weeds Bromu...

  5. ATP Production by Respiration and Fermentation, and Energy Charge during Aerobiosis and Anaerobiosis in Twelve Fatty and Starchy Germinating Seeds

    PubMed Central

    Raymond, Philippe; Al-Ani, Ali; Pradet, Alain

    1985-01-01

    The respiration and fermentation rates were compared in germinating seeds of 12 different cultivated species from five families. In air, fermentation contributes significantly to the energy metabolism only in some species (pea, maize), but is generally negligible when compared to respiration. The fermentation rate under anoxia was related either to the metabolic activity under air or to the adenine nucleotide content of the seeds: it was generally higher in seeds which contain starchy reserves (rice, maize, sorghum, pea), than in seeds which do not contain starch (lettuce, sunflower, radish, turnip, cabbage, flax); however, it was similar in wheat, sorghum (starchy seeds), and soya (nonstarchy seeds). The value of the energy charge of all the seeds was lower under anoxia than in air: after 24 hours under anoxia, it was higher than 0.5 in the starchy seeds and in soya and it was around 0.25 in the other fatty seeds. PMID:16664509

  6. ATP Production by Respiration and Fermentation, and Energy Charge during Aerobiosis and Anaerobiosis in Twelve Fatty and Starchy Germinating Seeds.

    PubMed

    Raymond, P; Al-Ani, A; Pradet, A

    1985-11-01

    The respiration and fermentation rates were compared in germinating seeds of 12 different cultivated species from five families. In air, fermentation contributes significantly to the energy metabolism only in some species (pea, maize), but is generally negligible when compared to respiration. The fermentation rate under anoxia was related either to the metabolic activity under air or to the adenine nucleotide content of the seeds: it was generally higher in seeds which contain starchy reserves (rice, maize, sorghum, pea), than in seeds which do not contain starch (lettuce, sunflower, radish, turnip, cabbage, flax); however, it was similar in wheat, sorghum (starchy seeds), and soya (nonstarchy seeds). The value of the energy charge of all the seeds was lower under anoxia than in air: after 24 hours under anoxia, it was higher than 0.5 in the starchy seeds and in soya and it was around 0.25 in the other fatty seeds. PMID:16664509

  7. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    PubMed Central

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  8. Freezing stress influences emergence of germinated perennial grass seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sagebrush rangelands perennial bunchgrasses are typically seeded in fall and a high proportion of planted seeds germinate prior to winter onset but fail to emerge in spring. Our objectives were to evaluate freezing tolerance of germinated but non-emergent bluebunch wheatgrass seeds under laborat...

  9. The importance of seed germination in rangeland research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, Agricultural Research Service (ARS)/ Great Basin Rangelands Research Unit, Wildland Seed Laboratory, located in Reno, NV, has been studying seed germination for the past 40 years. The wildland seed laboratory has collected, processed, and quantified germination characteristics of hundreds...

  10. The Importance of Seed Germination in Rangeland Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, Agricultural Research Service (ARS)/ Great Basin Rangelands Research Unit, Wildland Seed Laboratory, located in Reno, NV, has been studying seed germination for the past 40 years. The wildland seed laboratory has collected, processed, and quantified germination characteristics of hundreds...

  11. The pleiotropic effects of the seed germination inhibitor germostatin.

    PubMed

    Ye, Yajin; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination. PMID:26918467

  12. Repeated quick hot-and-chilling treatments for the inactivation of Escherichia coli O157:H7 in mung bean and radish seeds.

    PubMed

    Bari, Md Latiful; Sugiyama, Jun; Kawamoto, Shinnichi

    2009-01-01

    The majority of the seed sprout-related outbreaks have been associated with Escherichia coli O157:H7. Therefore, it is necessary to find an effective method to inactivate these organisms on the seeds prior to sprouting. This study was conducted to assess the effectiveness of repeated quick hot-and-chilling treatments with various chemicals to inactivate E. coli O157:H7 populations inoculated onto mung bean and radish seeds intended for sprout production and to determine the effect of these treatments on seed germination. The treatment time was 20 sec for quick hot and 20 sec for quick chilling in one repeat. Likewise up to five repeats were done throughout the experiments. The chemicals used for this study were electrolyzed acidic (EO) water, phytic acid (0.05%), oxalic acid (3%), surfcera(R), and alpha-torino water(R), and distilled water was used as control. The quick hot treatment was done with 75 degrees C, 70 degrees C, and 60 degrees C, and the chilling temperature was 0 degrees C. The treated seeds were then assessed for the efficacy of this treatment in reducing populations of the pathogens and the effects of repeated quick hot-and-chilling treatments on germination yield. It was found that repeating treatment at 75 degrees C for two or three repeats with phytic acid and oxalic acid could reduce 4.38-log colony-forming unit (CFU)/g of E. coli O157:H7 in mung bean seeds. EO water and distilled water were found equally effective at 75 degrees C for four or five repeats to inactivate E. coli O157:H7 in mung bean seeds. However, alpha-torino water(R) and surfcera(R) were not found effective in comparison to other sanitizers used in this experiment. Irrespective of sanitizer used, the germination yield of the mung bean seed was not affected significantly. On the other hand, distilled water, EO water, and alpha-torino water(R) at 75 degrees C for five repeats were found effective in reducing 5.80-log CFU/g of E. coli O157:H7 in radish seeds; however, the

  13. Seed germination characteristics of Chrysothamnus nauseosus ssp. viridulus (Astereae, Asteraceae)

    SciTech Connect

    Khan, M.A.; Sankhla, N.; Weber, D.J.; McArthur, E.D.

    1987-04-30

    Rubber rabbitbrush (Chrysothamnus nauseosus (Pallas) Britt. ssp. viridulus) may prove to be a source of high-quality cis-isoprene rubber, but its establishment is limited by a lack of information on seed germination. Consequently, seeds were germinated at alternating temperatures (5-15, 5-25, 15-25, and 20-30 C) in light and dark as well as constant temperatures (15-40 C with 5-C increments) to determine temperature response. Seeds were also germinated in solutions of polyethylene glycol 6000, salinity regimes at all the above-mentioned temperatures to determine salinity and temperature interaction. The hormones GA/sub 3/ and kinetin were used to study their effect on overcoming salt- and temperature-induced germination inhibition. Seeds of C. nauseosus ssp. viridulus were very sensitive to low temperature. Best germination was achieved at 25 and 30 C, but these seeds also germinated at a higher temperature (35 C). The seeds of rabbit brush germinated at both constant and alternating temperatures. Light appears to play little or no role in controlling germination of the seeds of rubber rabbitbrush. However, seeds of rabbitbrush were sensitive to salinity, and seed germination was progressively inhibited by increase in salt concentration, although a few seeds still germinated at the highest saline level. Progressively higher concentrations of polyethylene glycol also progressively inhibited germination. Suppression of seed germination induced by high salt concentrations and high temperatures can be partially alleviated by the application of either GA/sub 3/ or kinetin. 34 references, 5 figures, 3 tables.

  14. Are Radishes Really Allelopathic to Lettuce?

    ERIC Educational Resources Information Center

    Santaniello, Catherine M.; Koning, Ross E.

    1996-01-01

    Presents an experiment that challenges the claim that sprouting radish seedlings release chemicals into the environment that inhibit germination of lettuce seeds. Reports that although no simple allelopathic demonstration was observed, the experiment provides fertile ground for further experimentation in inquiry-based laboratory experiences. (JRH)

  15. Effect of fungicide on Wyoming big sagebrush seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because fungal infection may complicate both the logistics and the interpretation of germination tests, seeds are sometimes treated with chemical fungicides. Fungicides may reduce the germination rate and/or germination percentage, and should be avoided unless fungal contamination is severe enough ...

  16. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly required for seed germination. Recent evidence suggests tha...

  17. Investigating the Influence of Karrikins on Seed Germination

    ERIC Educational Resources Information Center

    de Beer, Josef

    2012-01-01

    Recent research has identified a karrikin (a butenolide derative) known as 3-methyl-2H-furo[2,3-c]pyran-2-one, formed from burning cellulose, that stimulates seed germination. Here, I present ideas on how to investigate the influence of karrikins on seed germination in the laboratory.

  18. Smoke-induced seed germination in California chaparral

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.

    1998-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hydrophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum (Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 families, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass > 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by

  19. Coordination of seed dormancy and germination processes by MYB96.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination. PMID:26313409

  20. Coordination of seed dormancy and germination processes by MYB96

    PubMed Central

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination. PMID:26313409

  1. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination.

    PubMed

    Toh, Shigeo; Kamiya, Yuji; Kawakami, Naoto; Nambara, Eiji; McCourt, Peter; Tsuchiya, Yuichiro

    2012-01-01

    Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes under limited growth condition. To understand the roles of strigolactones in seed germination, it is necessary to develop a tractable experimental system using model plants such as Arabidopsis. Here, we report that thermoinhibition, which involves exposing seeds to high temperatures, uncovers a clear role for strigolactones in promoting Arabidopsis seed germination. Both strigolactone biosynthetic and signaling mutants showed increased sensitivity to seed thermoinhibition. The synthetic strigolactone GR24 rescued germination of thermoinbibited biosynthetic mutant seeds but not a signaling mutant. Hormone analysis revealed that strigolactones alleviate thermoinhibition by modulating levels of the two plant hormones, GA and ABA. We also showed that GR24 was able to counteract secondary dormancy in Arabidopsis ecotype Columbia (Col) and Cape Verde island (Cvi). Systematic hormone analysis of germinating Striga helmonthica seeds suggested a common mechanism between the parasitic and non-parasitic seeds with respect to how hormones regulate germination. Thus, our simple assay system using Arabidopsis thermoinhibition allows comparisons to determine similarities and differences between parasitic plants and model experimental systems for the use of strigolactones. PMID:22173099

  2. Pre-treating Seed to Enhance Germination of Desert Shrubs

    SciTech Connect

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  3. Seed Germination of Gastrodia elata Using Symbiotic Fungi, Mycena osmundicola

    PubMed Central

    Kim, Yong-Il; Chang, Kwang-Joon; Ka, Kang-Hyeon; Hur, Hyeon; Hong, In-Pyo; Shim, Jae-Ouk; Lee, Tae-Soo; Lee, Ji-Yul

    2006-01-01

    The germination rate and longevity of seeds of Gastrodia elata Blume have been observed for 48 weeks using Mycena osmundicola strain H-21, one of fungi stimulating seed germination. Storage condition of post-harvest seeds was observed in the different temperature ranges of -30℃, -5℃, 5℃ and 30℃ for 48 weeks. After storage period of 48 weeks, the germination rate of G. elata was 65.7% at 5℃ and 71.6% at -5℃, respectively. Although the germination rate of G. elata was 77.3% for 11 weeks at 25℃, the germination rate had been decreased gradually to 49.3% at 13 weeks, 0.3% at 23 weeks and then 0% at 25 weeks. The germination rate was reached to the level of 10% for 2 weeks at -30℃ and then decreased to 0%. PMID:24039475

  4. Decontamination method using heat and relative humidity for radish seeds achieves a 7-log reduction of Escherichia coli O157:H7 without affecting product quality.

    PubMed

    Kim, Y B; Kim, H W; Song, M K; Rhee, M S

    2015-05-18

    We developed a novel decontamination method to inactivate Escherichia coli O157:H7 on radish seeds without adversely affecting seed germination or product quality. The use of heat (55, 60, and 65 °C) combined with relative humidity (RH; 25, 45, 65, 85, and 100%) for 24h was evaluated for effective microbial reduction and preservation of seed germination rates. A significant two-way interaction of heat and RH was observed for both microbial reduction and germination rate (P<0.0001). Increases in heat and RH were associated with corresponding reductions in E. coli O157:H7 and in germination rate (P<0.05). The order of lethality for the different treatments was generally as follows: no treatment <55 °C/25-65% RH ≒60 °C/25-45% RH ≒65 °C/25% RH <55 °C/85% RH =60 °C/65% RH <55 °C/100% RH =60 °C/85-100% RH =65 °C/45-100% RH. The most effective condition, 65 °C/45% RH, completely inactivated E. coli O157:H7 on the seeds (7.0 log CFU/g reduction) and had no significant effect on the germination rate (85.4%; P>0.05) or product quality. The method uses only heat and relative humidity without chemicals, and is thus applicable as a general decontamination procedure in spout producing plants where the use of growth chambers is the norm. PMID:25732001

  5. Seed and Germination Characteristics of 20 Amazonian Liana Species

    PubMed Central

    Roeder, Mareike; Ferraz, Isolde D. K.; Hölscher, Dirk

    2013-01-01

    Lianas are an important component of tropical forests, and may reach their highest densities in disturbed areas. However, information on seed and germination characteristics is scarce. Twenty Amazon liana species were screened for their germination characteristics, including light dependence, tolerance of desiccation and of alternating temperatures; these characteristics are considered important for the germination success in areas with relatively open canopies. Between 31–1,420 seeds per species were available, as 15 species seeds came from one mother plant. We studied seed biometry and conducted germination trials with fresh seeds (12 h light daily, or dark) and desiccated seeds at 25 °C. Germination at alternating temperatures (20/30 °C, 15/35 °C) was analyzed for nine species. Of the 20 species, eight species with the largest seeds had desiccation sensitive seeds; this is the first record for species of four genera and one family, where only desiccation tolerant seeds are otherwise recorded. Light-dependent germination was found in three species (0.01–0.015 g) and is the first record for two; however, results were based on seeds from one plant per species. Alternating temperatures of 15/35 °C decreased final germination of four out of nine species, and response to 20/30 °C cycles varied compared to constant 25 °C. Seed and germination characteristics of the species ranged from pioneer to climax traits indicating that establishment of lianas from seeds may be confined to species specific niches. PMID:27137363

  6. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  7. Studies on the molecular mechanisms of seed germination.

    PubMed

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination. PMID:25597791

  8. Proteomic insights into seed germination in response to environmental factors.

    PubMed

    Tan, Longyan; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2013-06-01

    Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors.However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zeamays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α-amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor-responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor-responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination. PMID:23986916

  9. MATURITY AND TEMPERATURE AFFECTS THE GERMINATION OF STYRAX JAPONICUS SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of seed maturity, warm (18oC) or cold (5.5oC) temperature, and gibberellic acid (GA3) on seed germination of Styrax japonicus Sieb. et. Zucc was investigated. Seed maturity and morphological changes were observed using magnetic resonance (MR) imaging (MRI). Fruits harvested on July 22,...

  10. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds.

    PubMed

    Lu, Tian-Cong; Meng, Ling-Bo; Yang, Chuan-Ping; Liu, Gui-Feng; Liu, Guan-Jun; Ma, Wei; Wang, Bai-Chen

    2008-11-01

    To better understand the role that reversible protein phosphorylation plays in seed germination, we initiated a phosphoproteomic investigation of embryos of germinated maize seeds. A total of 776 proteins including 39 kinases, 16 phosphatases, and 33 phosphoproteins containing 36 precise in vivo phosphorylation sites were identified. All the phosphorylation sites identified, with the exception of the phosphorylation site on HSP22, have not been reported previously (Lund et al. in J Biol Chem, 276, 29924-29929, 2001). Assayed with QRT-PCR, the transcripts of ten kinase genes were found to be dramatically up-regulated during seed germination and those of four phosphatase genes were up-regulated after germination, which indicated that reversible protein phosphorylation occurred and complex regulating networks were activated during this period. At least one-third of these phosphoproteins are key components involved in biological processes which relate to seed germination, such as DNA repair, gene transcription, RNA splicing and protein translation, suggesting that protein phosphorylation plays an important role in seed germination. As far as we know, this is the first phosphoproteomic study on a monocot and it will lay a solid foundation for further study of the molecular mechanisms of seed germination and seedling development. PMID:18726113

  11. Seed germination of five Poa species at negative water potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under field conditions water is often inadequate for satisfactory seed germination. An experiment was conducted to determine the effects of simulated dry conditions on germination and seedling growth of five bluegrass (Poa) species including: Texas, P. arachnifera Torr.; annual, P. annua L.; mutto...

  12. Alkaloid Changes in Tobacco Seeds during Germination 1

    PubMed Central

    Weeks, W. W.; Bush, L. P.

    1974-01-01

    Nicotine, nornicotine, anabasine, and anatabine, normally found in growing and mature tobacco (Nicotiana tabacum L.) plants, were extracted and quantified from mature tobacco seeds and young tobacco seedlings. The rate of net alkaloid disappearance and accumulation in tobacco seedlings was related to phases of germination. In general, the increased rate of germination associated with higher temperatures also increased the rate of initial loss of alkaloids and the subsequent rate of accumulation of alkaloids. Maximum alkaloid accumulation in 144-hour-old seedlings cultured with 10-hour day occurred at 27 C. Following an 8-hour photoinduction period, seeds germinated in darkness accumulated greater amounts of alkaloids than seeds exposed to light each day. Seeds germinated in darkness for 96 hours, following the 8-hour photoinduction period, and then exposed to light each day accumulated the greatest amounts of alkaloids. PMID:16658655

  13. Involvement of Alternative Splicing in Barley Seed Germination.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3' splicing (34%-45%), intron retention (32%-34%) and alternative 5' splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  14. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  15. An investigation of the phototropic effect on seedling orientation in a microgravity environment: A student involvement project. [radish germination

    NASA Technical Reports Server (NTRS)

    Barainca, J. W.

    1984-01-01

    A microgravity growth chamber was designed to investigate the phototropic response of radish seedlings. Enclosed in a one fourth inch thick, hexagonal, fiberglass-foam spacepak nineteen inches across corners, the experiment consists of a growth chamber and germination tray, a water reservoir and solenoid valve, a fluorescent light for photo simulation, a Minolta X700 camera with programmable back, a 50 mm macro lens and flash, a battery pack, and a computer controller. Two temperature sensors and one light sensor located in the walls of the growth chamber provide temperature and illumination data. A computer provides 8 K command and 34 K data storage capability. The experiment was not activated during the STS flight because a malfunctioning latching relay stuck and reduced the battery power level.

  16. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  17. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  18. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  19. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  20. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  1. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  2. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination standards for vegetable seeds in... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.31 Germination standards for vegetable seeds in interstate commerce. The following germination standards...

  3. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  4. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  5. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... the percentage of germination and date of test. Each variety of vegetable seed which has a...

  6. The role of the GA signaling SLY1 in Arabidopsis seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy, afterripening, and germination are complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) is needed to set up seed dormancy during embryo maturation whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly ...

  7. Proteins induced by salt stress in tomato germinating seeds

    SciTech Connect

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A. )

    1989-04-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 35}S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present.

  8. Trace gas emissions and smoke-induced seed germination

    SciTech Connect

    Keeley, J.E.; Fotheringham, C.J.

    1997-05-23

    Dormant seeds of a California chaparral annual were induced to germinate by smoke or paper. Nitrogen oxides induced 100 percent vapors emitted from smoke-treated sand or treated water samples inducing. Smoke germination in a manner similar to smoke germination were comparable in acidity and concentration of nitrate and nitrite to nitrogen dioxide (NO{sub 2})-treated samples. Vapors from smoke-treated and NO{sub 2}-treated filter paper had comparable NO{sub 2} flux rates. Chaparral wildfires generate sufficient nitrogen oxides from combustion of organic matter or from postfire biogenic nitrification to trigger germination of Emmerianthe penduliflora. Nitrogen oxide-triggered germination is not the result of changes in imbibition, as is the case with heat stimulated seeds.

  9. Food safety evaluation of broccoli and radish sprouts.

    PubMed

    Martínez-Villaluenga, Cristina; Frías, Juana; Gulewicz, Piotr; Gulewicz, Krzysztof; Vidal-Valverde, Concepción

    2008-05-01

    Three cultivars of broccoli seeds (Brassica oleracea var. italica), cv. Tiburon, cv. Belstar and cv. Lucky, and two cultivars of radish seeds (Raphanus sativus), cv. Rebel and cv. Bolide, were germinated for three and five days and safety aspects such as microbiological counts and biogenic amines were investigated. Cytotoxicity evaluation was also carried out. Broccoli and radish sprouts contained numbers of mesophilic, psychrotrophic, total and faecal coliform bacteria which are the usual counts for minimally processed germinated seeds. Putrescine, cadaverine, histamine, tyramine, spermidine and spermine increased during sprout production although these levels were below those permitted by legislation (5 mg/100 g of edible food). Broccoli and radish sprouts demonstrated no toxic effects on proliferation and viability of HL-60 cells and should be included in our diets as healthy and safe fresh foods. PMID:18314243

  10. Impact of seed germination data on genebank management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed viability data on plant genetic resource accessions in cold storage is critical information that impacts many areas of genebank management. Prior to 2002, little germination testing was conducted at the Plant Genetic Resources Conservation Unit (PGRCU), Griffin, GA. Seed was distributed from th...

  11. Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates.

    PubMed

    Baenas, Nieves; Villaño, Debora; García-Viguera, Cristina; Moreno, Diego A

    2016-08-01

    Elicitation is a cheaper and socially acceptable tool for improving plant food functionality. Our objective was to optimize the treatment doses of the elicitors: methyl jasmonate (MeJA), jasmonic acid (JA) and DL-methionine (MET), in order to find a successful and feasible treatment to produce broccoli and radish sprouts with enhanced levels of health-promoting glucosinolates. Also a priming of seeds as a novel strategy to trigger the glucosinolates content was carried out with water (control), MeJA (250μM), JA (250μM) and MET (10mM) before the elicitor exogenous treatment. The results showed that almost all treatments could enhance effectively the total glucosinolates content in the sprouts, achieving the most significant increases from 34% to 100% of increase in broccoli and from 45% to 118% of increase in radish sprouts after MeJA priming and treatments. Consequently, our work demonstrates the feasibility of using elicitors, such as plant stress hormones, by priming and exogenously, as a way of increase the phytochemical profile of these sprouts to enhance their consumption in the diet. PMID:26988507

  12. Evolution of nutrient ingredients in tartary buckwheat seeds during germination.

    PubMed

    Yiming, Zhou; Hong, Wang; Linlin, Cui; Xiaoli, Zhou; Wen, Tang; Xinli, Song

    2015-11-01

    Evolution of nutrient components and the antioxidative activity of seed sprouts of tartary buckwheat (Fagopyrum tataricum L. Gaertn) were investigated in the course of germination. Results showed that the contents of total flavonoids increased with germination time and leveled off after the third germination day with the changing trend of rutin and quercetin opposite to each other. The decrease of total protein and total sugar contents in the germinated seeds was accompanied respectively by an increase of amino acid and reducing sugar contents. The contents of vitamin C (Vc) and B1(V(B1)) exhibited a minimum with no appreciable changes found for vitamin B(2) (V(B2)) and B(6) (V(B6)). The contents of total chlorophyll, chlorophyll A and B all exhibited a maximum on the fifth germination day. The contents of fatty acids had no regular changing trend with germination time. The free radical-scavenging activities of the seeds increased with germination time and were caused by an increase in their antioxidative activity. PMID:25976817

  13. Seed germination and root elongation as indicators of exposure of wetland seedlings to metals

    SciTech Connect

    Sutton, H.D.; Stokes, S.L.; Hook, D.D.; Klaine, S.J.

    1995-12-31

    Wetland ecosystems have often been impacted by the addition of hazardous waste materials. Methods are needed to evaluate the effect of these substances on wetland ecosystems and the organisms within them. This study evaluates the response of various wetland plant species to representative contaminants (cadmium, nickel, atrazine, anthracene, and tetrachloroethylene). Species tested include Caphalanthus occidentalis (buttonbush), Saururus cernuus (lizard`s tail), Liquidambar styraciflua (sweetgum), Sparganium americanum (bur-reed), and Fraxinus pennsylvanica (green ash). To the authors` knowledge these species have rarely if ever been used in toxicological assays. The endpoints used are germination and root elongation. Preliminary studies using a petri dish system have shown decreased germination at the highest metal concentration (50mg/L) and decreased root elongation in the higher metal concentrations (10, 25, and 50mg/L). Interference from the carrier was observed in the organic tests. Root elongation studies using the metals are being continued using tubes with various sand and vermiculite mixes into which freshly germinated seeds are placed. Species with the best responses will be tested in the field at the Savannah River Site, SC, and also with fuel oil. Lettuce (Lactuca saliva) and radish (Raphanus sativus) are being tested alongside the wetland species as reference organisms for which tests are well established.

  14. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  15. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination

    PubMed Central

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  16. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions. PMID:27103455

  17. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. PMID:26095078

  18. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    PubMed Central

    Polya, G M; Chandra, S; Condron, R

    1993-01-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage. PMID:8278508

  19. Rapid and high seed germination and large soil seed bank of Senecio aquaticus in managed grassland.

    PubMed

    Suter, Matthias; Lüscher, Andreas

    2012-01-01

    Senecio aquaticus, regionally a Red List species in Europe, has become increasingly abundant in agricultural grassland of medium to high management intensity in Switzerland, Southern Germany, and Austria in recent years, where it is a threat for animal and human health due to its toxicity. In this study, we investigated the seed ecology of S. aquaticus to help protection of the species in relic populations while improving its control when abundant in managed grassland. Germination percentages of fresh ripe seeds of S. aquaticus were on average 68% in 2008, but only 45% in 2010, indicating yearly variation. Germination was generally fast: ten days after the onset of the tests, often more than 45% of all seeds had germinated. When covered with a soil layer of 5 mm, germination was only 16% compared to 63% in full light. Seeds buried in the soil for one and two years showed a germination of 78%, significantly higher than that of fresh ripe seeds, thus suggesting a stimulating effect of cold-wet stratification on germination and long seed survival in the soil. In grasslands with established populations of S. aquaticus, the number of germinable seeds of the species ranged from 361 to 1875 m⁻² in topsoil (0-10 cm) with an average of 1139 m⁻². The large seed bank and the rapid and high germination of S. aquaticus suggest that allowing seed formation is important for its preservation in relic populations. With respect to agricultural grassland, strategies to control the species should initially target hindering seed production and dispersal. PMID:22272180

  20. Rapid and High Seed Germination and Large Soil Seed Bank of Senecio aquaticus in Managed Grassland

    PubMed Central

    Suter, Matthias; Lüscher, Andreas

    2012-01-01

    Senecio aquaticus, regionally a Red List species in Europe, has become increasingly abundant in agricultural grassland of medium to high management intensity in Switzerland, Southern Germany, and Austria in recent years, where it is a threat for animal and human health due to its toxicity. In this study, we investigated the seed ecology of S. aquaticus to help protection of the species in relic populations while improving its control when abundant in managed grassland. Germination percentages of fresh ripe seeds of S. aquaticus were on average 68% in 2008, but only 45% in 2010, indicating yearly variation. Germination was generally fast: ten days after the onset of the tests, often more than 45% of all seeds had germinated. When covered with a soil layer of 5 mm, germination was only 16% compared to 63% in full light. Seeds buried in the soil for one and two years showed a germination of 78%, significantly higher than that of fresh ripe seeds, thus suggesting a stimulating effect of cold-wet stratification on germination and long seed survival in the soil. In grasslands with established populations of S. aquaticus, the number of germinable seeds of the species ranged from 361 to 1875 m−2 in topsoil (0–10 cm) with an average of 1139 m−2. The large seed bank and the rapid and high germination of S. aquaticus suggest that allowing seed formation is important for its preservation in relic populations. With respect to agricultural grassland, strategies to control the species should initially target hindering seed production and dispersal. PMID:22272180

  1. Cold tolerance, seed production and seed germination of a forage bermudagrass core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage bermudagrass can be an important perennial warm-season forage for transitional zones of warm and cool season pastures. Cold-tolerant seeded varieties will be especially desirable. A forage bermudagrass core collection was assessed for seed production and seed germination. Also, a replicate...

  2. Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species.

    PubMed

    Kageyama, Koji; Nelson, Eric B

    2003-02-01

    This study was initiated to understand whether differential biological control efficacy of Enterobacter cloacae on various plant species is due to differences in the ability of E. cloacae to inactivate the stimulatory activity of seed exudates to Pythium ultimum sporangium germination. In biological control assays, E. cloacae was effective in controlling Pythium damping-off when placed on the seeds of carrot, cotton, cucumber, lettuce, radish, tomato, and wheat but failed to protect corn and pea from damping-off. Seeds from plants such as corn and pea had high rates of exudation, whereas cotton and cucumber seeds had much lower rates of exudation. Patterns of seed exudation and the release of P. ultimum sporangium germination stimulants varied among the plants tested. Seed exudates of plants such as carrot, corn, lettuce, pea, radish, and wheat were generally more stimulatory to P. ultimum than were the exudates of cotton, cucumber, sunflower, and tomato. However, this was not directly related to the ability of E. cloacae to inactivate the stimulatory activity of the exudate and reduce P. ultimum sporangium germination. In the spermosphere, E. cloacae readily reduced the stimulatory activity of seed exudates from all plant species except corn and pea. Our data have shown that the inability of E. cloacae to protect corn and pea seeds from Pythium damping-off is directly related to its ability to inactivate the stimulatory activity of seed exudates. On all other plants tested, E. cloacae was effective in suppressing damping-off and inactivating the stimulatory activity of seed exudates. PMID:12571037

  3. Interspecific Variations in Seed Germination of Corylopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was initiated to investigate the difference in germination pattern between C. coreana Uyeki and C. sinensis var. calvescens Rehder & E. H. Wilson responding to a warm (WS) and cold stratification (CS), and to study the effect of different WS temperatures interacting with different duratio...

  4. Effects of frugivorous birds on seed retention time and germination in Xishuangbanna, southwest China

    PubMed Central

    SHI, Ting-Ting; WANG, Bo; QUAN, Rui-Chang

    2015-01-01

    The dispersal of many plants depends on transportation by birds as seed dispersers. The birds play an important role in long distance seed dispersal and may also affect seed germination. However, for plants who have many bird dispersers, the influence of dominant and non-dominant dispersers on retention time (dispersal distance) and germination remains poorly understood. In this study, we performed experiments with captive frugivorous birds and fruiting plant species to study the effects of dominant and non-dominant dispersers on seed retention time (SRT) and germination (seed germination percentage and germination speed). Our study showed a great interspecific variation in the effects of frugivorous birds on both SRT and germination. Some birds enhance the germination of a given plant species, but others do not. Generally, the dominant visitors improved the seed germination and performed longer seed retention time. PMID:26228475

  5. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  6. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain. PMID:21479540

  7. Sulfur dioxide effects on petunia pollen germination and seed set

    SciTech Connect

    Linskens, H.F.; van Megen, Y.; Pfahler, P.L.; Wilcox, M.

    1985-05-01

    Information pertaining to SO/sub 2/ effects on sexual reproduction is extremely limited even though this complex process is critical especially in annual species. This study reports the SO/sub 2/ effect on both in vitro and in vivo pollen germination characteristics and in vivo seed set in Petunia hybrida Vilm.

  8. Chaparral & Fire Ecology: Role of Fire in Seed Germination.

    ERIC Educational Resources Information Center

    Steele, Nancy L. C.; Keeley, Jon E.

    1991-01-01

    An activity that incorporates the concepts of plant structure and function and ecology is described. Students investigate the reasons why some California chaparral seeds germinate only after a fire has burned the surrounding chaparral. The procedure, discussion and analysis questions, expected results, potential problems, and additional activities…

  9. Germination of vegetable seeds exposed to very high pressure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  10. Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography.

    PubMed

    Kuang, Pengqun; Song, Dan; Yuan, Qipeng; Yi, Rui; Lv, Xinhua; Liang, Hao

    2013-01-15

    This present study described a rapid and cost-effective method for the separation and purification of natural sulforaphene from radish seeds by SP-700 macroporous resin and preparative high-performance liquid chromatography (HPLC). Sulforaphene with high purity and recovery was obtained by preparative HPLC with a C18 column and 30% methanol in ultra-pure water as the mobile phase. 12.5 kg of radish seeds, which contained 87.5 g of sulforaphene, produced 117.5 g of sulforaphene-rich extract of 65.8% sulforaphene after primary separation by SP-700 macroporous resin. 5.9 g of 96.5% sulforaphene was obtained from 9.5 g of the sulforaphene-rich extract after purification by preparative HPLC. The purified compound was assessed by analytical HPLC and characterised by ESI/MS, (1)H NMR and (13)C NMR. Standard curve was developed using the purified sulforaphene to allow quantification of sulforaphene in the extracts of radish seeds by analytical HPLC. PMID:23122068

  11. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  12. Interactions of Light and a Temperature Shift on Seed Germination

    PubMed Central

    Taylorson, R. B.; Hendricks, S. B.

    1972-01-01

    Germination of Rumex obtusifolius L. seeds is potentiated to an observable degree in 2 minutes by a single shift in temperature from 20 to 35 C. Half-maximal potentiation requires less than 32 minutes at the higher temperature. Similar sensitivities to shifts in temperature were observed for seeds of Barbarea vulgaris, R.Br. B. verna (Mill.) Asch., and Lepidium virginicum L. A shift in temperature interacts strongly with change in form of phytochrome induced by light on germination of the four kinds of seeds. The potentiated effects for R. obtusifolius are only moderately affected by 40 μm cycloheximide. Both the temperature shift and light actions are apparently independent of processes of synthesis necessary for growth. PMID:16657910

  13. [Seeds germination of Caesalpinia paraguariensis (Fabaceae): scarificator agents and cattle effects].

    PubMed

    Ortega Baes, P; de Viana, M L; Larenas, G; Saravia, M

    2001-03-01

    The tree Caesalpinia paraguariensis grows in the Chaco region, Argentina. Fruits are indehiscent with many seeds. This species is an important source of wood and the fruits are consumed by cattle in Salta province. We studied seed germination under chemical, mechanical and biological scarification. Seeds from controls (without scarification) and those with biological scarification had a smaller (and similar) germination rate. The non-germinated seeds from biological treatments were mechanically scarified and their germination rate was similar to others under the mechanical treatment. Passage by digestive tracts would not enhance germination because viable seeds are still dormant due to their hard coats. PMID:11795158

  14. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  15. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    PubMed

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P<0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  16. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  17. Effect of day length on germination of seeds collected in Alaska

    USGS Publications Warehouse

    Densmore, R.V.

    1997-01-01

    Day length control can effectively limit seed germination to favorable seasons, but this phenomenon has been studied in relatively few wild plants. I tested species from interior Alaska for day length control of germination under controlled conditions, and I also monitored germination phenology in natural habitats. Unstratified and cold-stratified seeds were germinated on short (13 h) and long (22 h) day length and in the dark at constant and alternating temperatures. On long day length, unstratified Ledum decumbens and Saxifraga tricuspidata seeds germinated from 5??C to 20??C, but on short day length few or no seeds germinated at 5??C and 10??C and germination was reduced at higher temperatures. Unstratified seeds of Diapensia lapponica and Chamaedaphne calyculata germinated only at 15??C and 20??C on long day length, and short day length completely inhibited germination. Cold stratification widened the temperature range for germination on both long and short day lengths, but germination was still lower on short than long day length. Germination phenology in natural habitats was consistent with germination in controlled conditions. In these species, short day length and low temperatures interact to inhibit germination in the fall. After overwintering, seeds germinate in the spring at low temperatures and on long day lengths. The inhibitory effect of short day length is not important in the spring because day length is already long at snowmelt.

  18. Seed germination and life history syndromes in the California chaparral

    USGS Publications Warehouse

    Keeley, J.E.

    1991-01-01

    Syndromes are life history responses that are correlated to environmental regimes and are shared by a group of species (Stebbins, 1974). In the California chaparral there are two syndromes contrasted by the timing of seedling recruitment relative to wildfires. One syndrome, here called the fire-recruiter or refractory seed syndrome, includes species (both resprouting and non-resprouting) which share the feature that the timing of seedling establishment is specialized to the first rainy season after fire. Included are woody, suffrutescent and annual life forms but no geophytes have this syndrome. These species are linked by the characteristic that their seeds have a dormancy which is readily broken by environmental stimuli such as intense heat shock or chemicals leached from charred wood. Such seeds are referred to as “refractory” and dormancy, in some cases, is due to seed coat impermeability (such seeds are commonly called hardseeded), but in other cases the mechanism is unknown. Seeds of some may require cold stratification and/or light in addition to fire related stimuli. In the absence of fire related cues, a portion or all of a species’ seed pool remains dormant. Most have locally dispersed seeds that persist in the soil seed bank until the site burns. Dispersal of propagules is largely during spring and summer which facilitates the avoidance of flowering and fruiting during the summer and fall drought. Within a life form (e.g., shrub, suffrutescent, etc.), the seeds of these species have less mass than those of species with non-refractory seeds and this possibly reflects the environmental favorableness of the postfire environment for seedling establishment. Regardless of when fire occurs, germination is normally delayed until late winter or early spring. In the absence of fire, or other disturbance, opportunities for population expansion are largely lacking for species with this syndrome. The other syndrome, here called the fire-resister or non

  19. GERMINATION OF STYRAX JAPONICUS SEEDS AS INFLUENCED BY STORAGE AND SOWING CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effect of storage and sowing conditions on seed germination of Styrax japonicus Sieb. et. Zucc, an ornamental tree with seeds that exhibit double dormancy. The germination of freshly harvested seeds was compared with seeds that had been stored dry at 20C for a year before s...

  20. Carbonhydrate Content and Root Growth in Seeds Germinated Under Salt Stress: Implications for Seed Conditioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugars and sugar alcohols have well documented roles in salt tolerance in whole plants and maturing seeds. Less is known, however, about possible effects of these compounds during germination. Seeds from mannitol-accumulating salt-tolerant celery [Apium graveloens L. var. dulce (P. Mill.) DC], non...

  1. Photoinhibition of germination in grass seed--implications for prairie revegetation.

    PubMed

    Mollard, Federico P O; Naeth, M Anne

    2014-09-01

    Germination photoinhibition is not a recognized cause of revegetation failure; yet prolonged sunlight exposure can inhibit germination of several grass species. This research addressed susceptibility to photoinhibition of selected native grass species used to restore Canadian prairies, and reclamation treatments to alter environmental conditions in order to release seeds from photoinhibition. Under laboratory conditions effects of photoinhibition were tested on the ability of seeds to germinate at low water potential and effects of daily alternating temperatures and nitrates to break photoinhibition. Whether surficial mulch can release seeds from photoinhibition was assessed in a field experiment. Germination photoinhibition was evident in Festuca hallii and Koeleria macrantha seeds even under very low irradiances. The prolonged exposure to light decreased germination rates and ability of seeds to germinate at low water potentials. Daily fluctuating temperatures released a fraction of Bromus carinatus and Elymus trachycaulus seeds from photoinhibition yet did not improve F. hallii or K. macrantha germinability. Nitrates failed to break seed photoinhibition in all species tested. In the field experiment, mulched F. hallii seeds (covered with an erosion control blanket) showed a tenfold increase in germination percentages relative to seeds exposed to direct sunlight, indicating the facilitative effects of mulching on attenuation of the light environment. We conclude that germination photoinhibition as a cause of emergence failures in land reclamation where seed is broadcast or shallow seeded should be recognized and germination photoinhibition included in the decision making process to select revegetation seeding techniques. PMID:24794519

  2. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance

    PubMed Central

    Yang, Fan; Baskin, Jerry M.; Baskin, Carol C.; Yang, Xuejun; Cao, Dechang; Huang, Zhenying

    2015-01-01

    Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring. Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined. Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds. Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment. PMID:25395107

  3. Experimental clipping of sagebrush inhibits seed germination of neighbours.

    PubMed

    Karban, Richard

    2007-09-01

    Current views of plant communities emphasize the importance of competition for resources and colonization ability in determining seedling establishment and plant distributions. Many desert shrubs are surrounded by bare zones that lack other plants or have different suites of species beneath them compared with the open desert surrounding them. Releases of biochemicals as volatiles from leaves, leachates from litter, or exudates from roots have been proposed as mechanisms for this pattern, but such phytotoxicity has been controversial. I tested the hypothesis that experimental clipping of sagebrush foliage enhances its effect as a germination inhibitor. Germination of native forbs and grasses was reduced in association with clipped, compared with unclipped, sagebrush foliage in lath house and field experiments. Sagebrush seeds were not significantly affected. Air contact was required for this inhibition of germination. Soil contact and leaf litter were not required and added little inhibition of germination. These results suggest a potentially large, indirect, and previously overlooked role for interactions between herbivory and germination that could affect plant community structure. PMID:17663712

  4. Autolysis of protein bodies in germinating lentil seeds.

    PubMed

    Alvarez-Fernández, J

    1989-09-01

    Protein bodies isolated from lentil (Lens culinaris, Medik) cotyledons exhibit autolytic activity which increases during seed germination. Such autolytic capacity is active across a broad pH range and shows a maximum at pH 6.5. Excision of the embryonic axis reduces autolytic capacity and application during incubation of the seeds without axis of both 6-benzylaminopurine and kinetin is able to replace it. On the other hand, the proteolytic activity in the protein body membrane, is located towards the proteinaceous matrix and is obviously partially responsible for this autolytic activity. PMID:2616873

  5. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. PMID:27239687

  6. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    PubMed

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method. PMID:25093210

  7. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.)

    PubMed Central

    Tian, Yu; Guan, Bo; Zhou, Daowei; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method. PMID:25093210

  8. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    PubMed

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA). PMID:25818098

  9. THE ROLE OF THE SLEEPY1 (SLY1) F-BOX GENE IN GA REGULATION OF SEED GERMINATION IN ARABIDOPSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    17th International Conference on Arabidopsis Research, June 28-July 2, 2006, Madison, WI. Abstract #378. Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germinat...

  10. Radish seed extract mediates its cardiovascular inhibitory effects via muscarinic receptor activation.

    PubMed

    Ghayur, Muhammad Nabeel; Gilani, Anwarul Hassan

    2006-02-01

    In this study, we describe the hypotensive, cardio-modulatory and endothelium-dependent vasodilator actions of Raphanus sativus (radish) seed crude extract in an attempt to provide scientific basis for its traditional use in hypertension. The plant extract (Rs.Cr) was prepared in distilled water and was subjected to phytochemical screening using standard analytical procedures. In vivo blood pressure was monitored in anaesthetized normotensive rats. Isolated tissue preparations were suspended in tissue baths containing Kreb's solution while acute toxicity study was performed in mice for 24 h. Rs.Cr tested positive for the presence of saponins, flavonoids, tannins, phenols and alkaloids and caused a dose-dependent (0.1-3 mg/kg) fall in blood pressure and heart rate of rats that was mediated via an atropine-sensitive pathway. In isolated guinea-pig atria, Rs.Cr showed dose-dependent (0.03-3.0 mg/mL) inhibition of force and rate of contractions. In the atropine-treated tissues, the inhibitory effect was abolished and a cardiac stimulant effect was unmasked which was resistant to adrenergic and serotonergic receptor blockade. In the endothelium-intact rat aorta, Rs.Cr inhibited phenylephrine-induced contractions, which was blocked by atropine and Nomega-Nitro-L-arginine methyl ester hydrochloride while was also absent in the endothelium-denuded preparations. The extract was safe in mice up to the dose of 10 g/kg. The study shows that the cardiovascular inhibitory effects of the plant are mediated through activation of muscarinic receptors thus possibly justifying its use in hypertension. PMID:16448395

  11. [Characteristics of seed germination of rare plant species Reaumuria trigyna in west Ordos].

    PubMed

    Zhang, Ying-juan; Wang, Yu-shan; Li, Qing-feng

    2008-12-01

    Reaumuria trigyna is a relic species in the desert shrubbery vegetation in arid regions of northwestern China, and plays an important role in the maintenance of the stability of desert vegetation. In this paper, the seed traits and germination strategy of R. trigyna under different environmental conditions, e.g., light, temperature, soil moisture, and sand bury, were investigated. The results showed that R. trigyna seed had high vigor and high germination rate, and endured reserve. The seed could germinate either in light or in darkness, and the optimal temperature for germination was 20 degrees C - 25 degrees C or 15 degrees C/25 degrees C, with the germination rate being 93%. The seed could start to germinate when soil moisture content was 2%, and the germination rate was the highest (89%) when the moisture content was 12%. The optimal sand burial depth of R. trigyna seed was 1 cm, and no seed would germinate when the sand burial depth was >5 cm. Sand burial depth had significant effects on the seedling's emergence percentage and growth height, but lesser effects on seedling' s mass. Soil moisture and sand burial depth were the main environmental factors limiting the seed germination and seedling emergence of R. trigyna. The high seed germination rate of R. trigyna enhanced the survival risk of its seedlings, which was unfavorable to its handling with the extreme changes of desert environment. Such a character of R. trigyna seed was one of the factors causing the species endangered. PMID:19288705

  12. The effects of selected pre-treatments on germination of seeds of Oriental hornbeam (Carpinus orientalis).

    PubMed

    Ozel, Halil Bariş

    2016-07-01

    In the present study, the effect of some pre-treatments implemented on seeds of Oriental hornbeam (Carpinus orientalis), which has wide geographical variation along Turkey on germination percentage values were investigated. For this purpose, 13 different pre-treatments were implemented to seeds obtained from 17 different populations. According to the obtained results (except control seeds), pre-treatments leading to lowest germination percentage value (8.1%) in Oriental hornbeam seeds was PT10: Keeping seeds for 90 min in sulfuric acid, while highest germination percentage (86.58%) has been obtained with pre-treatment PT13: Implementation of 40% dose of Baikal EM1 + Biohoumous mixture to the seeds, while lowest germination percentage (40.50%) was observed on seeds collected from P7 (Bartin-Kozcağiz) population, highest germination percentage was observed in seeds obtained from P17 (Artvin-Hopa) population. PMID:27498493

  13. Temperature-dependent models of Zannichellia palustris seed germination for application in aquatic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germination characteristics of Zannichellia palustris seeds collected from the spring-fed Fall River of Northern California were investigated across a range of constant temperatures from 4.2 to 40.8 ºC. Germination experiments were conducted on freshly produced and collected seeds. Seeds germina...

  14. Interaction of accelerated aging and p-coumaric acid on crimson clover seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Accelerated seed aging (high temperature (41 C) and high humidity (100%)) reduces germination and seedling vigor, and provides some indication as to seed g...

  15. Biotransformation of constituents of essential oils by germinating wheat seed.

    PubMed

    Dudai, N; Larkov, O; Putievsky, E; Lerner, H R; Ravid, U; Lewinsohn, E; Mayer, A M

    2000-11-01

    Wheat seeds, when exposed to essential oils, are able to metabolise certain monoterpenes. The actual amounts of the compounds and their derivatives in the endosperm and embryo of wheat seeds, after exposure to the monoterpenes were determined. Neral and geranial, which are the constituents of citral, are reduced and oxidised to the corresponding alcohols and acids. Similarly citronellal, pulegone and carvacrol are converted partly to the corresponding reduction and oxidation products. The aromatic compound vanillin is partly reduced to vanillyl alcohol or oxidised to vanillic acid. In all cases it seems that part of the compounds applied are degraded, as indicated by the inability to account for all the compounds, which were supplied to the germinated seeds. In most cases the derivatives of the essential oil applied were less toxic than the parent compound. The possible role of non-specific enzymes by which the compounds are oxidised or reduced is discussed. PMID:11140596

  16. Genes related to high temperature tolerance during maize seed germination.

    PubMed

    Dutra, S M F; Von Pinho, E V R; Santos, H O; Lima, A C; Von Pinho, R G; Carvalho, M L M

    2015-01-01

    The identification of genes related to heat tolerance is fundamental for the development of high-quality seeds that are tolerant to heat stress condition. The objective of this study was to evaluate maize lineages and the gene expression involved in high temperature tolerance during germination using physiological tests, proteomics, and transcriptome analysis. Seeds from six maize lineages (30, 44, 54, 63, 64, and 91) with different levels of tolerance to high temperatures were used. Lineages 54 and 91 were observed to be more tolerant to high temperature conditions. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration; with the controlled deterioration, the highest level of gene expression did not occur in the most tolerant materials; the association of lower expression of genes involved in heat-resistant protein systems was observed in seeds from lineage 44, which were more susceptible to high temperatures, and the highest gene expression of LEA D-34, ZmAN13, and AOX-1 was observed in seeds from lineage 64 when submitted to controlled deterioration. PMID:26782452

  17. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    PubMed Central

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  18. Return to Our Roots: Raising Radishes to Teach Experimental Design. Methods and Techniques.

    ERIC Educational Resources Information Center

    Stallings, William M.

    1993-01-01

    Reviews research in teaching applied statistics. Concludes that students should analyze data from studies they have designed and conducted. Describes an activity in which students study germination and growth of radish seeds. Includes a table providing student instructions for both the experimental procedure and data analysis. (CFR)

  19. Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas.

    PubMed

    Paredes-Páliz, Karina I; Pajuelo, Eloísa; Doukkali, Bouchra; Caviedes, Miguel Ángel; Rodríguez-Llorente, Ignacio D; Mateos-Naranjo, Enrique

    2016-09-15

    The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees. Gram negative Pantoea agglomerans RSO6 and RSO7, and gram positive Bacillus aryabhattai RSO25, together with the consortium of the three strains, were used for independent inoculation experiments. The presence of metals (As, Cu, Pb and Zn) in sediments reduced seed germination by 80%. Inoculation with Bacillus aryabhattai RSO25 or Pantoea agglomerans RSO6 and RSO7 enhanced up to 2.5 fold the germination rate of S. densiflora in polluted sediments regarding non-inoculated controls. Moreover, the germination process was accelerated and the germination period was extended. The consortium did not achieve further improvements in seed germination. PMID:27315751

  20. Variation of hairy vetch seed weight alters germination and seedling growth response to an allelochemical

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. This response may have significant impact on weed control by allelopathic cover crops where the small-seeded weeds would be controlled more effectively than large-seeded species. In our...

  1. Hairy vetch (Vicia villosa) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. This response may have significant impact on weed control by allelopathic cover crops where the small-seeded weeds would be more effectively controlled than large-seeded species. The stu...

  2. Does Cold Plasma Affect Breaking Dormancy and Seed Germination? A Study on Seeds of Lamb's Quarters (Chenopodium album agg.)

    NASA Astrophysics Data System (ADS)

    Božena, Šerá; Michal, Šerý; Vitězslav, Štrañák; Petr, Špatenka; Milan, tichý

    2009-12-01

    Low-pressure discharge is applied for stimulation of germination of two seed lots of Lamb's Quarters (Chenopodium album agg.) with different starting germinations (17%, 8%) and in different stages of dormancy. Different exposition durations with cold plasma treatment were applied. The variable of the ratio cumulative germination was calculated. The Richards' equation was used for curve-fitting and simulation of the growth curves. Population parameters, namely Vi - viability, Me - time, Qu - dispersion, and Sk - skewness, counted from the curves described the germination rate well. Significant differences among Qu confirmed the erratic dormancy and gradual germination of Lamb's Quarters. No difference in the Me parameter was found between two tested seed lots, and no interspecies characteristics were changed using low-pressure discharge. The results suggested that plasma treatment changed seed germination in Lamb's Quarters seeds.

  3. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits.

    PubMed

    Hoyle, Gemma L; Steadman, Kathryn J; Good, Roger B; McIntosh, Emma J; Galea, Lucy M E; Nicotra, Adrienne B

    2015-01-01

    Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species "staggered" germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294

  4. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Good, Roger B.; McIntosh, Emma J.; Galea, Lucy M. E.; Nicotra, Adrienne B.

    2015-01-01

    Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species “staggered” germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294

  5. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates.

    PubMed

    Di Salvatore, M; Carafa, A M; Carratù, G

    2008-11-01

    Seed germination and root elongation test is used to evaluate hazardous waste sites and to assess toxicity of organic and inorganic compounds. Paper substrate, especially circular filter paper placed inside a Petri dish has long been used for this test. Same reports indicate that filter paper might interfere with the toxicity of inorganic substances, especially metal cations. This study evaluate toxicity of Cd, Pb, Ni, Cu on lettuce, broccoli, tomato and radish seed using two bed material: agar and filter paper. The results show that percent germination is not affected by substrates; vice versa, as for root elongation, the test in agar showed to be more sensible than that the one on filter paper. The radical growth inhibition depends on the metal, on the tested concentration and on the species; among the tested metals, cadmium was the one determining the highest toxic effects on different species and lettuce was the plant that suffered more. From the comparison, it is clearly evident the greater sensibility of the test in agar; on the other hand, the lower sensibility of the test on the filter paper might be caused by the partial and not homogeneous exposition of the root to metal cations. PMID:18768198

  6. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  7. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  8. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  9. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  10. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  11. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  12. Proteomics of seed development, desiccation tolerance, germination and vigor.

    PubMed

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species. PMID:25461695

  13. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress.

    PubMed

    Sneideris, Larissa C; Gavassi, Marina A; Campos, Marcelo L; D'Amico-Damião, Victor; Carvalho, Rogério F

    2015-09-01

    In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress. PMID:26221985

  14. [Allelopathic effects of Lycoris radiate on radish, cucumber, tomato and rape seedlings].

    PubMed

    Jiang, Hongyun; Zhang, Yanning; Feng, Pingzhang; Zhang, Heng

    2006-09-01

    The laboratory test showed that Lycoris radiate water extract had a stronger inhibitory effect on the seed germination and seedling growth of radish, cucumber, tomato and rape. After treated with 0.0125 g x ml(-1) of the extract, tomato seed could not germinate, but the seed germination inhibition rate of rape, radish and cucumber was only 17.73%, 14.97% and 2.65%, respectively. Under the same concentrations of the extract, sprout growth was inhibited more strongly than root growth. L. radiate methanol extract could inhibit the sprout and root growth of endosperm-removed wheat and sorghum, and the effect was stronger for sorghum than for wheat. All of these illustrated that L. radiate extracts mainly inhibited non-photosynthesis activity, but could also inhibit photosynthesis activity to some degree. PMID:17147176

  15. Frugivory and the effects of ingestion by bats on the seed germination of three pioneering plants

    NASA Astrophysics Data System (ADS)

    de Carvalho-Ricardo, Maria C.; Uieda, Wilson; Fonseca, Renata Cristina B.; Rossi, Marcelo N.

    2014-02-01

    The dispersion and seedling establishment of pioneering plants can be favoured by the presence of frugivorous bats because the bats usually improve seed germination after ingestion. Although seed germinability is known to vary greatly after ingestion by different bats, the relative contribution of each bat species to seed germination within plant communities is poorly understood. In this study, we first determined the fauna of frugivorous bats in a semideciduous seasonal forest remnant in southern Brazil and subsequently identified the plant species of the seeds passed through their guts. Second, the germination performance (i.e., germination percentage and speed) of the seeds of three pioneering plants (Piper aduncum, Piper hispidinervum and Solanum granuloso-leprosum) ingested by the most abundant bats was compared with that of the non-ingested seeds (seeds collected from fruits). Additionally, the effects on seed germination of different bat species were compared. During one year, five species of frugivorous bats were caught, and the seeds of eleven identifiable plant species (not counting those of undetermined species) were found in their faeces. We found that the germination performance of the seeds of Piper species was significantly enhanced after ingestion by bats, whereas S. granuloso-leprosum seeds had neutral or reduced germinability when seeds in faeces were compared with pulp-removed seeds. Our results revealed that the bat species that were captured exerted different effects upon seed germination; such a disparity is expected to result in different rates of early establishment of these pioneer plants in tropical forests, most likely affecting forest composition and structure, particularly during the initial stages of succession.

  16. Germination of coffee seeds and its significance for coffee quality.

    PubMed

    Selmar, D; Bytof, G; Knopp, S-E; Breitenstein, B

    2006-03-01

    Besides genotypic characteristics, the crucial factor that determines coffee quality is the mode of post-harvest treatment, i.e., the wet and dry processing. Up to now, the resulting characteristic flavour differences between these differentially processed coffees were attributed exclusively to differences in starting material. However, as these quality differences are still evident, even when identical coffee samples were processed by the two methods in parallel, the differences must be created by metabolic processes in the coffee beans themselves. Based on expression studies of the germination-specific isocitrate lyase and the resumption of cell cycle activity, monitored by the abundance of beta-tubulin, we evidence that germination is initiated in coffee seeds during the course of standard coffee post-harvest treatments. The extent and nature of the germination processes depend on the processing method. The coherence of metabolic events, substantial differences in the chemical composition of the coffee beans, and the generation of specific coffee qualities establishes the basis for a quite novel approach in coffee research. PMID:16547871

  17. [Effect of seed soaking with aluminum on seed germination and seedling physiology of Platycodon grandiflorum].

    PubMed

    Zhu, Lixiang; Wang, Jianhua; Fang, Xinsheng; Wang, Yong; Hao, Junkai; Weiwei, Ma; Jiao, Tianying

    2010-12-01

    In order to study the effect of seed soaking with different aluminum solution on seed germination and seedling physiological characteristics of Platycondon grandiflorum, two P. grandiflorum varieties'seed (the white flower and the purple flower) were soaked in Al3+ solution with different concentrations (0, 10, 100, 250, 500, 750 and 1000 mg x L) for 24 h, then germinated in illumination incubator. Results showed that the aluminum toxicity on the trends of the germination rate, germination index and vigor index was positive associated with its concentration, and the Al tolerance of the purple was slightly greater than that of the white. There were some relationships between the physiological indices, which were the leakage rate of electrolyte, the malonaldehyde (MDA) content, the activities of peroxidase (POD) and superoxide dismutase (SOD) , the free praline(Pro) and the soluble sugar contents, with the concentrations of Al. It was suggested that there was Al tolerance difference between the two P. grandiflorum varieties: the purple flower was greater than the white. PMID:21438384

  18. Survival and germination of Mediterranean grassland species after simulated sheep ingestion: ecological correlates with seed traits

    NASA Astrophysics Data System (ADS)

    Peco, B.; Lopez-Merino, L.; Alvir, M.

    2006-09-01

    Large amounts of viable seeds from Mediterranean grassland species have been found in herbivore dung; however which species produce seeds that can survive and germinate after ingestion by herbivores is still not well understood. This paper evaluates the importance of seed size, shape and coat impermeability in the endozoochorous dispersal process of 20 abundant species from central Iberian rangelands. Seed survival, germination percentages and germination speed were analysed in controlled experiments on the chewing and gut passage process by inserting seeds in the rumen of fistulated sheep, followed by simulated acid-pepsin digestion. Higher germination percentages in the control than the simulated sheep ingestion treatment were found in 75% of seeds. All species showed lower survival following the treatment, two species had a higher germination speed and five had a lower rate. Large-seeded species generally had higher survival percentages than small-seeded species. Species with impermeable seed coats had higher germination percentages following treatment although no significant differences were noted for either seed survival or germination speed.

  19. Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds.

    PubMed

    Ueno, Kotomi; Fujiwara, Mami; Nomura, Saki; Mizutani, Masaharu; Sasaki, Mitsuru; Takikawa, Hirosato; Sugimoto, Yukihiro

    2011-09-14

    Strigolactones are highly potent germination stimulants for seeds of the parasitic weeds Striga and Orobanche spp. 4-Hydroxy-GR24 and 4-acetoxy-GR24 were prepared and their abilities to induce seed germination of Striga gesnerioides evaluated. Optically active (8bR,2'R)-isomers induced germination, although the racemic diastereomers were inactive. In contrast, the stereoisomer of GR24 with the same configuration induced negligible germination. Some stereoisomers of GR24 and its analogues acted as effective antagonists for induction of seed germination by cowpea root exudates. These results suggest that both an oxygenated substituent at C-4 and the configuration of the tricyclic lactone and the D-ring are essential structural requirements for induction of germination in S. gesnerioides seeds. PMID:21819156

  20. Ethylene-, light-, and prechill-enhanced germination of Echinacea angustifolia seeds

    SciTech Connect

    Feghahati, S.M.J.; Reese, R.N. . Dept. of Biology and Microbiology)

    1994-07-01

    Echinacea angustifolia DC., the common coneflower of the western Great Plains, is difficult to propagate by achenes due to inherent seed dormancy. The effects of light and prechilling on seed germination were examined, alone and combined with scarification (mechanical, acid) and ethylene (ethephon) treatments. The results showed that a 2-week prechill treatment combined with ethephon and continuous light, followed by a 2-week germination period in light (16 hours per day) at 25 C, could induce >95% seed germination in E. angustifolia. This was a significantly higher percentage of germination over a shorter period of time than any other method examined or previously described. This treatment also synchronized germination, with most viable seeds germinating in <1 week after being placed at 25 C in the light. Chemical name used: 2-chloroethylphosphonic acid (ethephon).

  1. SEED GERMINATION AND ROOT ELONGATION TOXICITY TESTS IN HAZARDOUS WASTE SITE EVALUATION: METHODS DEVELOPMENT AND APPLICATIONS

    EPA Science Inventory

    Seed germination tests measure soil toxicity directly, while root elongation tests consider the indirect effects of water-soluble constituents which may be present in site-samples. n the seed germination toxicity test, site-soil is mixed with a reference soil to yield exposure co...

  2. Recurrent selection for increased seed germination in sand bluestem (Andropogon hallii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is essential for plant growth and under field conditions is often inadequate for satisfactory seed germination and seedling growth. The objective of this research was to improve the seed germination of sand bluestem (Andropogon hallii Hack.) lines ‘AB-medium Syn-0’ and ‘CD-tall Syn-0’ at low ...

  3. ABA, ROS and NO are key players during switchgrass seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy and germination are complex physiological processes usually under hormonal control. Germination of seeds from many plants including switchgrass, are inhibited by ABA and promoted by NO and by ROS. However, ABA apparently requires both ROS and NO as intermediates in its action, with R...

  4. RGL2 PROTEIN DOES NOT DISAPPEAR DURING SLY1 MUTANT SEED GERMINATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SLEEPY1 (SLY1) and RGA-like2 (RGL2) genes play an important role in the regulation of seed germination by GA in Arabidopsis. The control of seed dormancy and germination is critical for plant survival and important for proper stand establishment in crop species. The plant hormone gibberelli...

  5. Growth regulators and chemicals stimulate germination of leafy spurge seeds (Euphorbia esula)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to survey the effect of various growth regulator and chemical treatments on germination of leafy spurge seeds. Non-treated seeds in this population were nearly fully imbibed in 3 h and display approximately 35% germination in 21 d under the normal alternating temperature of ...

  6. Fluorescent Screening of Transgenic Arabidopsis Seeds without Germination1

    PubMed Central

    Wei, Shu; Bravdo, Ben-Ami; Shoseyov, Oded

    2004-01-01

    In this paper, we describe a reliable method for the screening and selection of Arabidopsis transgenic seeds within minutes without germination. Expression of the Aspergillus niger β-glucosidase gene BGL1 in the plant's endoplasmic reticulum was used as a visual marker, together with 4-methylumbelliferyl-β-d-glucopyranoside (MUGluc) as a substrate. Subsequent to incubation in a solution of MUGluc at room temperature for 2 to 15 min, transgenic seeds expressing BGL1 demonstrated a distinct fluorescent signal under UV light. Optimal screening conditions at room temperature were achieved between 75 and 450 μm MUGluc, at a pH of 2.5 to 5.0 and 2 to 5 min of incubation. No significant loss of viability was detected in transgenic seeds that were redried and stored for 45 d after incubation in MUGluc solution for 2 to 150 min. Transgenic plants expressing BGL1 displayed normal phenotypes relative to the wild type. Selection frequency was 3.1% ± 0.34% for the fluorescence selection method, while kanamycin resistant selection resulted in only 0.56% ± 0.13% using the same seed batch. This novel selection method is nondestructive, practical, and efficient, and eliminates the use of antibiotic genes. In addition, the procedure shortens the selection time from weeks to minutes. PMID:15208418

  7. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    NASA Astrophysics Data System (ADS)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this

  8. Seed size variation in the palm Euterpe edulis and the effects of seed predators on germination and seedling survival

    NASA Astrophysics Data System (ADS)

    Pizo, Marco A.; Von Allmen, Christiane; Morellato, L. Patricia C.

    2006-05-01

    Intraspecific variation in seed size is common in wild plant populations and has important consequences for the reproductive success of individual plants. Multiple, often conflicting evolutionary forces mediated by biotic as well as abiotic agents may maintain such a variation. In this paper we assessed seed size variation in a population of the threatened, commercially important palm Euterpe edulis in southeast Brazil. We investigated (i) how this variation affects the probability of attack by vertebrate and invertebrate post-dispersal seed predators, and (ii) if seed size influences the outcome of seeds damaged by beetles in terms of seed germination and early survival of seedlings. Euterpe edulis seeds varied in diameter from 8.3 to 14.1 mm. Neither insects nor rodents selected the seeds they preyed upon based on seed size. Seed germination and total, shoot and root biomasses of one-year seedlings were significantly and positively affected by seed size. Root biomass and seedling survival were negatively affected by seed damage caused by a scolytid beetle ( Coccotrypes palmarum) whose adults bore into seeds to consume part of the endosperm, but do not oviposit on them. Seed size had a marginally significant effect on seedling survival. Therefore, if any advantage is accrued by E. edulis individuals producing large seeds, this is because of greater seed germination success and seedling vigor. If this is so, even a relatively narrow range of variation in seed size as observed in the E. edulis population studied may translate into differential success of individual plants.

  9. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated broccoli and radish seeds.

    PubMed

    Landry, Kyle S; Micheli, Sean; McClements, David Julian; McLandsborough, Lynne

    2015-10-01

    The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds. PMID:26187822

  10. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    PubMed

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium. PMID:26867624

  11. Campanulaceae: a family with small seeds that require light for germination

    PubMed Central

    Koutsovoulou, Katerina; Daws, Matthew I.; Thanos, Costas A.

    2014-01-01

    Background and Aims The Campanulaceae is a large cosmopolitan family, but is understudied in terms of germination, and seed biology in general. Small seed mass (usually in the range 10–200 µg) is a noteworthy trait of the family, and having small seeds is commonly associated with a light requirement. Thus, the purpose of this study was to investigate the effect of light on germination in 131 taxa of the Campanulaceae family, from all five continents of its distribution. Methods For all taxa, seed germination was tested in light (8 or 12 h photoperiod) and continuous darkness under constant and alternating temperatures. For four taxa, the effect of light on germination was examined over a wide range of temperatures on a thermogradient plate, and the possible substitution of the light requirement by gibberellic acid and nitrate was examined in ten taxa. Key Results For all 131 taxa, seed germination was higher in light than in darkness for every temperature tested. Across species, the light requirement decreased significantly with increasing seed mass. For larger seeded species, germination in the dark reached higher levels under alternating than under constant temperatures. Gibberellic acid promoted germination in darkness whereas nitrates partially substituted for a light requirement only in species showing some dark germination. Conclusions A light requirement for germination, observed in virtually all taxa examined, constitutes a collective characteristic of the family. It is postulated that smaller seeded taxa might germinate only on the soil surface or at shallow depths, while larger seeded species might additionally germinate when buried in the soil if cued to do so by fluctuating temperatures. PMID:24232382

  12. Seed Dispersal and Germination Traits of 70 Plant Species Inhabiting the Gurbantunggut Desert in Northwest China

    PubMed Central

    Liu, Huiliang; Zhang, Daoyuan; Yang, Xuejun; Huang, Zhenying; Duan, Shimin; Wang, Xiyong

    2014-01-01

    Seed dispersal and germination were examined for 70 species from the cold Gurbantunggut Desert in northwest China. Mean and range (3 orders of magnitude) of seed mass were smaller and narrower than those in other floras (5–8 orders of magnitude), which implies that selection favors relatively smaller seeds in this desert. We identified five dispersal syndromes (anemochory, zoochory, autochory, barochory, and ombrohydrochory), and anemochorous species were most abundant. Seed mass (F = 3.50, P = 0.01), seed size (F = 8.31, P < 0.01), and seed shape (F = 2.62, P = 0.04) differed significantly among the five dispersal syndromes and barochorous species were significantly smaller and rounder than the others. There were no significant correlations between seed mass (seed weight) (P = 0.15), seed size (P = 0.38), or seed shape (variance) (P = 0.95) and germination percentage. However, germination percentages differed significantly among the dispersal syndromes (F = 3.64, P = 0.01) and seeds of ombrohydrochorous species had higher germination percentages than those of the other species. In the Gurbantunggut Desert, the percentage of species with seed dormancy was about 80%. In general, our studies suggest that adaptive strategies in seed dispersal and germination of plants in this area are closely related to the environment in which they live and that they are influenced by natural selection forces. PMID:25485296

  13. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds

    PubMed Central

    Waterworth, Wanda M.; Footitt, Steven; Bray, Clifford M.; Finch-Savage, William E.; West, Christopher E.

    2016-01-01

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884

  14. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    PubMed

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884

  15. Seed Germination and Seedling Emergence of Three Annuals Growing on Desert Sand Dunes in China

    PubMed Central

    TOBE, KAZUO; ZHANG, LIPING; OMASA, KENJI

    2005-01-01

    • Background and Aims Information on the initial growth characteristics of annuals found in Chinese deserts is very limited. The aim of this study was to investigate seed germination and interactive effects of irrigation and seed burial depth in sand on seedling emergence and seedling survival in three annuals (Agriophyllum squarrosum, Bassia dasyphylla and Aristida adscensionis) commonly growing on sand dunes in these regions. • Methods Effects of temperature, light and polyethylene glycol-6000 on seed germination were examined by irrigating seeds sown on filter paper in Petri dishes. Seedling emergence was examined for seeds sown on the surface of, or at different depths (5, 10, 20, 30, 40 and 50 mm) in, sand-filled pots, which were irrigated under different regimes. For seeds buried at a depth of 50 mm, seed viability was examined after irrigation of the pots. • Key Results Seeds of three species germinated at most temperatures recorded between spring and autumn in their native habitats. No seed dormancy was found in any species. For all three species, seedling emergence was most favoured when seeds were buried at a depth of 10 mm. When seeds sown on the sand surface were irrigated, seed germination was considerably suppressed due to water deficiency, but many seeds remained viable. For A. squarrosum and B. dasyphylla, many seeds that were deeply buried and irrigated remained ungerminated but viable, while for A. adscensionis deeply buried seeds germinated, but the seedlings did not emerge due to unfavourable seedling growth in deep sand. • Conclusions Precipitation is the most crucial factor in determining the seasonal emergence of seedlings of the three tested species in the field. The vertical distribution of seeds in sand determines the proportion of seeds that germinate after precipitation and acts to maintain seed banks over multiple years. PMID:15644383

  16. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.).

    PubMed

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  17. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.)

    PubMed Central

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  18. Effects of seed burial on germination, protein mobilisation and seedling survival in Dodonaea viscosa.

    PubMed

    Benítez-Rodríguez, L; Gamboa-deBuen, A; Sánchez-Coronado, M E; Alvarado-López, S; Soriano, D; Méndez, I; Vázquez-Santana, S; Carabias-Lillo, J; Mendoza, A; Orozco-Segovia, A

    2014-07-01

    Ecological restoration of disturbed areas requires substantial knowledge of the germination of native plants and the creation of novel methods to increase seedling establishment in the field. We studied the effects of soil matrix priming on the germination of Dodonaea viscosa seeds, which exhibit physical dormancy. To this end, we buried both pre-scarified (in H2SO4, 3 min) and non-pre-scarified seeds in the Parque Ecológico de la Ciudad de México. After seeds were unearthed, they were post-scarified for 0, 2, 6 and 10 min and their germination percentages compared to the germination of a control batch of laboratory-stored seeds. For both control and unearthed seeds, the protein pattern was determined in the enriched storage protein fraction in SDS-PAGE gels stained with Coomassie blue. Percentage germination increased as the scarification time increased. Pre-scarification significantly increased percentage germination of post-scarified seeds in relation to the control and non-pre-scarified seeds. In seeds unearthed from the forest site, the buried pre-scarified seeds had relatively high percentage germination, even in the absence of post-scarification treatment. A 48-kDa protein was not found in unearthed, pre-scarified seeds nor in the control germinated seeds, indicating that mobilisation of this protein occurred during soil priming. Burying seeds for a short period, including the beginning of the rainy season, promoted natural priming, which increased protein mobilisation. Functionally, priming effects were reflected in high percentage seedling survival in both the shade house and the field. Seed burial also reduced the requirement for acidic post-scarification. PMID:24148161

  19. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination

    PubMed Central

    Oracz, Krystyna; Karpiński, Stanisław

    2016-01-01

    Phytohormones and reactive oxygen species (ROS) are major determinants of the regulation of development and stress responses in plants. During life cycle of these organisms, signaling networks of plant growth regulators and ROS interact in order to render an appropriate developmental and environmental response. In plant’s photosynthetic (e.g., leaves) and non-photosynthetic (e.g., seeds) tissues, enhanced and suboptimal ROS production is usually associated with stress, which in extreme cases can be lethal to cells, a whole organ or even an organism. However, controlled production of ROS is appreciated for cellular signaling. Despite the current progress that has been made in plant biology and increasing number of findings that have revealed roles of ROS and hormonal signaling in germination, some questions still arise, e.g., what are the downstream protein targets modified by ROS enabling stimulus-specific cellular responses of the seed? Or which molecular regulators allow ROS/phytohormones interactions and what is their function in seed life? In this particular review the role of some transcription factors, kinases and phosphatases is discussed, especially those which usually known to be involved in ROS and hormonal signal transduction under stress in plants, may also play a role in the regulation of processes occurring in seeds. The summarized recent findings regarding particular ROS- and phytohormones-related regulatory proteins, as well as their integration, allowed to propose a novel, possible model of action of LESION SIMULATING DISEASE 1, ENHANCED DISEASE SUSCEPTIBILITY 1, and PHYTOALEXIN DEFICIENT 4 functioning during seeds life. PMID:27379144

  20. A high-throughput seed germination assay for root parasitic plants

    PubMed Central

    2013-01-01

    Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination

  1. Effects of hypobaria and hypoxia on seed germination of six plant species

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  2. A seed coat bedding assay to genetically explore in vitro how the endosperm controls seed germination in Arabidopsis thaliana.

    PubMed

    Lee, Keun Pyo; Lopez-Molina, Luis

    2013-01-01

    The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and embryos from seeds, which allows monitoring the growth of embryos on an underlying layer of seed coats. Remarkably, the SCBA reconstitutes the germination repressive activities of the seed coat in the context of seed dormancy and FR-dependent control of seed germination. Since the SCBA allows the combinatorial use of dormant, nondormant and genetically modified seed coat and embryonic materials, the genetic pathways controlling germination and specifically operating in the endosperm and embryo can be dissected. Here we detail the procedure to assemble a SCBA. PMID:24300527

  3. Seed fate in the myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination

    NASA Astrophysics Data System (ADS)

    Salazar-Rojas, Betzabeth; Rico-Gray, Víctor; Canto, Azucena; Cuautle, Mariana

    2012-04-01

    Myrmecochory (seed dispersal by ants) differs from other dispersal systems in a series of advantages offered by the ants to the plants. Here, seed fate, from fruit to germination, of the myrmecochorous Neotropical plant Turnera ulmifolia L. is described. Seed movement from the fruit to their germination was studied, using different measurements and experiments. The results show that a T. ulmifolia individual produces ca. 5000 seeds per year. The main pre-seed-fall predators are the larvae of the Microlepidopteran Crocidosema plebejana Zeller, which consumed 1% of the seeds on the plant. The red-land crab Gecarcinus lateralis (Freminville) consumed 19% of the seeds beneath the plant and was the main post-seed-fall predator. Seed removal by ants was recorded on and beneath the plant, and ants removed 49% of the total seed production. Considering the seed removal events, the ant Forelius analis contributed with 64% of the total number of events. F. analis took seeds to its nest and discarded 23% of the seeds collected. Germination of seeds collected by F. analis was two to four times higher than that of seeds with and without elaiosome, respectively. The relatively low seed predation was probably related to ant defense, associated with the presence of extrafloral nectaries in this plant and with seed removal on the plant. Our results suggest that F. analis is a quantitatively efficient but qualitatively inefficient seed disperser of T. ulmifolia.

  4. [Germination of Ficus insipida (Moraceae) seeds from toucan (Ramphastos sulfuratus) and spider monkey (Ateles geoffroyi) feces].

    PubMed

    Domínguez-Domínguez, Laura E; Morales-Mávil, Jorge E; Alba-Landa, Juan

    2006-06-01

    To test the null hypothesis that two vertebrate fructivores, toucans (Ramphastos sulfuratus) and spider monkeys (Ateles geoffroyi), are equally specialized in germinating Ficus insipida seeds after these have passed through their digestive tracts, we fed fruits to captive individuals. We extracted seeds from feces and placed them on filter paper in petri dishes under controled light, temperature and humidity. Control seeds had not passed through a digestive tract. We found that a greater proportion of seeds from A. geofroyi (65%) germinated (R. sulfuratus: 4%). The germinative value was also greater in seeds from monkey feces (rate=13.76; toucan 0.046; control group 0.172). If, despite individual variability of seeds and dispersers, future studies continue to show that A. geoffroyi favors germination more (maybe because of a longer digestion time), this would indicate that diet specialization is not necessarily related to dispersal efficiency. PMID:18494309

  5. Heterogeneity of Catalase in Maturing and Germinated Cotton Seeds 1

    PubMed Central

    Kunce, Christine M.; Trelease, Richard N.

    1986-01-01

    To investigate possible charge and size heterogeneity of catalase (EC 1.11.1.6) in cotton (Gossypium hirsutum L. cv Deltapine 62), extracts of cotyledons from different developmental ages were subjected to nondenaturing polyacrylamide gel electrophoresis and isoelectric focusing. Special precautions (e.g. fresh homogenates, reducing media) were necessary to prevent artefacts due to enzyme modification during extraction and storage. When the gels were stained for enzyme activity, two distinct electrophoretic forms of catalase were resolved in extracts of maturing and mature cotton seeds. In germinated seeds, three additional cathodic forms were detected revealing a total of five electrophoretic variants. In green cotyledons, the two anodic forms characteristic of ungerminated seeds were less active; whereas, the most cathodic form was predominant. All forms of catalase were found in isolated glyoxysomes. Corresponding electrophoretic patterns were found on Western blots probed with anticatalase serum; no immunoreactive, catalytically inactive forms were detected. Western blots of sodium dodecyl sulfate-polyacrylamide gels revealed only one immunoreactive (55 kilodaltons) polypeptide in cotton extracts of all developmental ages. Results from isoelectric focusing and Ferguson plots indicate that the electrophoretic variants of catalase are charge isomers with a molecular weight of approximately 230,000. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 Fig. 7 PMID:16664956

  6. Enhanced tocopherol levels during early germination events in Chamaerops humilis var. humilis seeds.

    PubMed

    Siles, Laura; Alegre, Leonor; Tijero, Verónica; Munné-Bosch, Sergi

    2015-10-01

    Most angiosperms accumulate vitamin E in the form of tocopherols in seeds, exerting a protective antioxidant role. However, several palm trees principally accumulate tocotrienols, rather than tocopherols, in seeds, as it occurs in other monocots. To unravel the protective role of either tocopherols or tocotrienols against lipid peroxidation during seed germination in Chamaerops humilis var. humilis; seed viability, natural and induced germination capacity, seed water content, malondialdehyde levels (as an indicator of the extent of lipid peroxidation) and vitamin E levels (including both tocopherols and tocotrienols) were examined at various germination phases in a simulated, natural seed bank. At the very early stages of germination (operculum removal), malondialdehyde levels increased 2.8-fold, to decrease later up to 74%, thus indicating a transient lipid peroxidation at early stages of germination. Tocopherol levels were absent in quiescent seeds and did not increase during operculum removal, but increased later presumably dampening malondialdehyde accumulation. Thereafter, tocopherols continued increasing, while lipid peroxidation levels decreased. By contrast, tocotrienols levels remained constant or even decreased as germination progressed, showing no correlation with lipid peroxidation levels. We hypothesize that despite their high tocotrienol content, seeds synthesize tocopherols during germination to protect lipids from peroxidation events. PMID:26241488

  7. [Viability and germination characteristics of canopy-stored seeds of plants in sand dune area].

    PubMed

    Ma, Jun-Ling; Liu, Zhi-Min

    2008-02-01

    The study on the viability and germination characteristics of canopy-stored seeds remained in canopy until next May after maturation of 10 plants species in Horqin sandy land showed that more than 80% of the canopy-stored seeds of psammophytes such as Agriophyllum squarrosum, Artemisia wudanica and A. halodendron had viability, while less than 80% or even less than 30% of non-psammophytes seeds had viability. The canopy-stored seeds of psammophytes presented a rapid germination pattern. The canopy seed bank made the seed release of psammophytes postponed until the windy season ended and the rainy season started, when the seeds had high viability and could germinate rapidly. The canopy seed bank is one of ways for psammophytes to adapt drift sand and seasonal drought. PMID:18464627

  8. Seed germination in response to chemicals: effect of nitrogen and pH in the media.

    PubMed

    Pérez-Fernández, M A; Calvo-Magro, E; Montanero-Fernández, J; Oyola-Velasco, J A

    2006-01-01

    Seed germination generally presents a peak in the next growing season after a fire. Among other factors associated with fire are the increase of soil nitrogen and changes in the pH of the soil. In this study, we addressed the question, whether or not the germination response of eight species is linked with the increase in pH and nitrogenous compounds in the germination media? We assessed the separate and combined effects of nitrogenous compounds and pH on the percentage and rate of germination of seeds of Medicago arabica (L.) Hudson, Epilobium hirsutum L., Foeniculum vulgare Miller, Daucus carota L., Thapsia villosa L., Cynosurus cristatus L., Dactylis glomerata L. and Rumex crispus L. All these species are well represented in the Mediterranean ecosystems of the central-west Spain. Water and CaCl2 were used as controls. Nitrogenous compounds increased percent germination (level) and rate in three of the species studied. High pH negatively affected the germination rate of seeds from most species, but had no effect on the per cent germination of any of the species. The higher concentration of the nutritious solutions affected negatively the germination level and rate. The different germination responses of seeds of the studied species could not be exclusively attributed to pH values in the media, whereas the amount and form of Nitrogen in the media has a greater effect on it. These differences in germination are species dependent. PMID:16850869

  9. [Effects of Pb2+ stress on seed germination & seedling growth of Rabdosia rubescens].

    PubMed

    Kong, Si-Xin; Su, He; Zhan, Yan-Ting; Li, Hai-Kui; Cui, Xu-Sheng; Guo, Yu-Hai

    2014-11-01

    The seeds of Rabdosia rubescens were as the materials to research the impacts of different lead (Pb2+) concentrations(0, 135, 270, 540, 1 080 mg x L(-1)) on seed germination and seedling growth. The results show that: Low concentration of lead had no obvious effect on early germination of the seed, the germination vigor and germination speed were lightly higher but not significantly differed at the level of Pb concentration 135 mg x L(-1) with control group; Mid-high concentration of Pb solution (270-1 080 mg x L(-1)) significantly inhibited the seed germination and seedling growth, which reduced the seed germination rate, germination vigor, germination index, embryo root length and shoot length, growth index with increasing of Pb concentrations. There was a inhibitory effect on embryo shoot length and root length at mid-high lead concentrations stress, and stronger inhibitory effect on root , which was more sensitive than shoot to Pb stress(P < 0.05). Pb bioaccumulation coefficient (BC) was 0.76-2.59, increased with concentration of Pb; Pb enrichment in seedling mainly caused the growth inhibition. The fitting model predictive analyses show, the critical concentration of Pb, which causes the germination rate and biomass fresh weight reducing 10%, is 195.18, 101.65 mg x L(-1). PMID:25775796

  10. Germinating Seeds of Citrus aurantium a Good Source of Bioactive Limonoids.

    PubMed

    Ariza, Marta R; Herrador del Pino, M Mar; Barrero, Alejandro F

    2015-06-01

    A simple method to obtain extracts enriched in bioactive limonoids from Citrus aurantium L. seeds has been developed, using solvents of increasing polarity. 1H NMR data from the extracts revealed that the highest amounts of limonoids were present in the t-butylmethylether extract. The comparison between extracts obtained from dormant and germinating seeds showed that the latter contained almost double amounts of limonoids, revealing germinating seeds as an excellent source of those bioactive compounds. PMID:26197503

  11. Vegetable product containing caseinomacropeptide and germinated seed and sprouts.

    PubMed

    Karakaya, Sibel; El, Sedef Nehir; Simsek, Sebnem; Buyukkestelli, Hulya Ilyasoglu

    2016-01-01

    In this study vegetable product containing germinated seed and sprouts of lentils and cowpeas, and caseinomacropeptide isolated from whey is produced. Three different forms of vegetable product namely puree (VP), freeze-dried (FD) and drum-dried (DD) are produced. Freeze-dried and DD forms are produced to diversify forms of utilization and to improve functionality such as increased shelf life and decreased storage space. Their beneficial effects on health are determined using in vitro methods. All forms displayed antioxidant activities against DPPH radical and oxygen radical, α-amylase inhibitory activities, bile acid binding capacities, and angiotension converting enzyme (ACE) inhibitory activities. Freeze-dried product exhibited the strongest inhibition on α-amylase and ACE with the IC50 value 0.09 μM total phenolic and 0.82 mg protein/g sample, respectively when evaluated on the basis of serving size. PMID:26788011

  12. Germination rate of Phyllospadix japonicus seeds relative to storage methods and periods

    NASA Astrophysics Data System (ADS)

    Park, Jung-Im; Lee, Kun-Seop; Son, Min Ho

    2014-03-01

    To determine the optimal storage method and longest possible storage period of Phyllospadix japonicus seeds, we examined post-storage germination rates using different storage methods and periods for P. japonicus seeds harvested in Korean coastal waters. P. japonicus seeds are classified as recalcitrant seeds with an average moisture content of 45.4%. Germination rates of P. japonicus seeds stored in seawater at 4 °C, seawater at room temperature with air supply, and an aquarium with continuous seawater circulation ranged from 35.0% to 43.5%, whereas seeds stored in seawater at 30°C, a refrigerator at -20°C, and a desiccator at room temperature did not germinate. Seeds stored at 4°C maintained germination rates of 72.5˜73.0% until 30 days of storage, but showed rapidly decreasing germination rates after 60 days and no germination after 180 days. Since few studies have investigated seed storage of P. japonicus, these results will serve as useful data for seed-based P. japonicus habitat restoration.

  13. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  14. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Carol C; Baskin, Jerry M

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  15. The effect of altitude on breaking seed dormancy and stimulation of seed germination of Persian hogweed (Heracleum persicum).

    PubMed

    Salehani, M Khajavi; Mahmoudi, J; Mahdavi, S Kh; Habibzadeh, R

    2013-01-01

    Persian hogweed is a perennial herb and aromatic plant which has pharmaceutical and fodder values, and the main propagation method of this species is seed. The goal of this study was to investigate the effect of altitude on breaking dormancy and stimulate seed germination of this species. The study was designed and carried out using the test of seed analysis. For our purpose, seeds were collected from three different altitudes (1700, 2200, 2700 masl) in Kojoor area. After initial purification, germination percent (GP) and speed (GS) of each elevation were determined by cold stratification compared to control. According to results, control seeds did not germinate, showing that the seeds of this species need to be treated. Statistical analysis of results showed that there are significant differences between GP and GS of each elevation, as seeds of higher elevation had slower and less germination in longer periods. So, changes in elevation are an effective factor on seed germination characteristics of this species and this factor has to be considered in seed preparation and restoration with this species. PMID:24311887

  16. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable. PMID:26934150

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  18. Seed flotation and germination of salt marsh plants: The effects of stratification, salinity, and/or inundation regime

    USGS Publications Warehouse

    Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.

    2009-01-01

    We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.

  19. Nitric oxide implication in the control of seed dormancy and germination

    PubMed Central

    Arc, Erwann; Galland, Marc; Godin, Béatrice; Cueff, Gwendal; Rajjou, Loïc

    2013-01-01

    Germination ability is regulated by a combination of environmental and endogenous signals with both synergistic and antagonistic effects. Nitric oxide (NO) is a potent dormancy-releasing agent in many species, including Arabidopsis, and has been suggested to behave as an endogenous regulator of this physiological blockage. Distinct reports have also highlighted a positive impact of NO on seed germination under sub-optimal conditions. However, its molecular mode of action in the context of seed biology remains poorly documented. This review aims to focus on the implications of this radical in the control of seed dormancy and germination. The consequences of NO chemistry on the investigations on both its signaling and its targets in seeds are discussed. NO-dependent protein post-translational modifications are proposed as a key mechanism underlying NO signaling during early seed germination. PMID:24065970

  20. Heat shock effects on seed germination of five Brazilian savanna species.

    PubMed

    Ribeiro, L C; Pedrosa, M; Borghetti, F

    2013-01-01

    Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T(50) ) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds. PMID:22672775

  1. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae)

    PubMed Central

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-01-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  2. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae).

    PubMed

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-07-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  3. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes.

    PubMed

    Espinar, José L; García, Luis V; Clemente, Luis

    2005-07-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three salt-marsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management. PMID:21646131

  4. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    USGS Publications Warehouse

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  5. Evaluation of factors that influence Benghal dayflower (Commelina benghalensis) seed germination and emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A perennial species in its native range, Benghal dayflower (BD) in North America establishes annually from seed. BD has the unique ability to produce aerial and subterranean flowers and seeds; information on how various environmental factors affect BD aerial and subterranean seed germination and eme...

  6. Ingestion and dispersal: direct and indirect effects of frugivores on seed viability and germination of Corema album (Empetraceae)

    NASA Astrophysics Data System (ADS)

    Calviño-Cancela, María

    2004-07-01

    The effect of gulls, blackbirds and rabbits on the viability and germination of Corema album seeds are compared. Frugivores can affect seed viability and germination (1) directly, through the effect of ingestion and (2) indirectly, dispersing seeds to different sites with different conditions. These two major factors in the quality of a seed disperser are not necessarily concordant in direction and magnitude. Gulls and blackbirds have similar direct effects, being much better than those of rabbits, due to the low probability of germination of seeds within rabbit pellets. Seed germination occurs mainly in the open ground, particularly in the sparse scrub, and is very low under vegetation cover. This pattern becomes crucial determining the indirect effects of seed dispersers that will depend on their capacity to carry seeds to the most suitable sites for germination. Gulls and rabbits disperse most of seeds to open ground, exerting a positive indirect effect on germination, whereas blackbirds disperse seeds mainly under shrubs, thus exerting a negative indirect effect. Direct and indirect effects on seed germination are concordant for gulls but discordant for blackbirds and rabbits. Gulls were the best dispersers; the overall probability of germination for a seed dispersed by gulls was 17.59%. The quality of blackbirds and rabbits was relatively low (3.49% and 1.17%, respectively). Frugivores seem to be essential for germination of C. album seeds, not as much for their direct effects but for their ability to carry seeds to suitable sites.

  7. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower

    PubMed Central

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant. PMID:26509675

  8. Annual dormancy cycles in buried seeds of shrub species: germination ecology of Sideritis serrata (Labiatae).

    PubMed

    Copete, M A; Herranz, J M; Ferrandis, P; Copete, E

    2015-07-01

    The germination ecology of Sideritis serrata was investigated in order to improve ex-situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non-deep physiological dormancy. Under unheated shade-house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade-house, exhibited an annual conditional dormancy/non-dormancy cycle, coming out of conditional dormancy in summer and re-entering it in winter. Non-dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non-dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non-dormancy cycle in seeds of shrub species. PMID:25598169

  9. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower.

    PubMed

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15-30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20-60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant. PMID:26509675

  10. Seed development and viviparous germination in one accession of a tomato rin mutant.

    PubMed

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-06-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45-50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25-60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  11. Seed development and viviparous germination in one accession of a tomato rin mutant

    PubMed Central

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-01-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45–50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25–60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  12. Using hyperspectral imaging to determine germination of native Australian plant seeds.

    PubMed

    Nansen, Christian; Zhao, Genpin; Dakin, Nicole; Zhao, Chunhui; Turner, Shane R

    2015-04-01

    We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism

  13. A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    USGS Publications Warehouse

    Klinger, R.; Rejmanek, M.

    2010-01-01

    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.

  14. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20

    PubMed Central

    2014-01-01

    Background Wheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array. Results A total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0–12 hours after imbibition [HAI]), a plateau phase (12–24 HAI), and a further water uptake phase (24–48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co

  15. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds

    PubMed Central

    Chen, Bing-Xian; Li, Wen-Yan; Gao, Yin-Tao; Chen, Zhong-Jian; Zhang, Wei-Na; Liu, Qin-Jian; Chen, Zhuang; Liu, Jun

    2016-01-01

    Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1–11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1–7) encode PAOs, whereas those in subfamily III (OsPAO8–11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1–7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals. PMID:27570530

  16. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds.

    PubMed

    Chen, Bing-Xian; Li, Wen-Yan; Gao, Yin-Tao; Chen, Zhong-Jian; Zhang, Wei-Na; Liu, Qin-Jian; Chen, Zhuang; Liu, Jun

    2016-01-01

    Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1-11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1-7) encode PAOs, whereas those in subfamily III (OsPAO8-11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1-7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals. PMID:27570530

  17. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. PMID:25270993

  18. Raffinose and Stachyose Metabolism are not Required for Efficient Soybean Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raffinose family oligosaccharides (RFOs), which include raffinose and stachyose, are thought to be an important source of energy during seed germination. In contrast to their potential for promoting germination, RFOs represent anti-nutritional units for monogastric animals when consumed as a compone...

  19. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis

    PubMed Central

    Guan, M.; Møller, I. S.; Schjoerring, J. K.

    2015-01-01

    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter–green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis. PMID:25316065

  20. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis.

    PubMed

    Guan, M; Møller, I S; Schjoerring, J K

    2015-01-01

    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter-green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis. PMID:25316065

  1. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico

    NASA Astrophysics Data System (ADS)

    Zuloaga-Aguilar, Susana; Briones, Oscar; Orozco-Segovia, Alma

    2011-05-01

    In many fire-prone ecosystems, seed germination is triggered by heat shock, smoke, ash and charred wood. However, few studies concerning the effect of these fire products on the germination of tropical and subtropical species exist. We assessed the effect of fire products and their interactions on seed germination in 12 species that frequently grow in burned areas of pine-oak and mixed forest in a mountainous subtropical area. Each species was exposed to a predetermined treatment of heat shock, which was optimised in accordance with a previous study. For smoke treatments, seeds were immersed in smoke water, whereas for ash treatments, 1.5 g of ash was added to the incubation medium. Germination increased in 92% of the species in response to the products of fire. Both the smoke water and the ash treatments promoted germination in four species that had permeable seed covers and physiological dormancy. Six species with physical dormancy required both heat shock and smoke water or ash to break dormancy. Our results indicate that seed germination response to fire products depends on the species and/or dormancy type. The germination response to the fire products varied between species; therefore, fire products may influence the species composition in post-fire regeneration.

  2. The decision to germinate is regulated by divergent molecular networks in spores and seeds.

    PubMed

    Vesty, Eleanor F; Saidi, Younousse; Moody, Laura A; Holloway, Daniel; Whitbread, Amy; Needs, Sarah; Choudhary, Anushree; Burns, Bethany; McLeod, Daniel; Bradshaw, Susan J; Bae, Hansol; King, Brian Christopher; Bassel, George W; Simonsen, Henrik Toft; Coates, Juliet C

    2016-08-01

    Dispersal is a key step in land plant life cycles, usually via formation of spores or seeds. Regulation of spore- or seed-germination allows control over the timing of transition from one generation to the next, enabling plant dispersal. A combination of environmental and genetic factors determines when seed germination occurs. Endogenous hormones mediate this decision in response to the environment. Less is known about how spore germination is controlled in earlier-evolving nonseed plants. Here, we present an in-depth analysis of the environmental and hormonal regulation of spore germination in the model bryophyte Physcomitrella patens (Aphanoregma patens). Our data suggest that the environmental signals regulating germination are conserved, but also that downstream hormone integration pathways mediating these responses in seeds were acquired after the evolution of the bryophyte lineage. Moreover, the role of abscisic acid and diterpenes (gibberellins) in germination assumed much greater importance as land plant evolution progressed. We conclude that the endogenous hormone signalling networks mediating germination in response to the environment may have evolved independently in spores and seeds. This paves the way for future research about how the mechanisms of plant dispersal on land evolved. PMID:27257104

  3. Effect of chemical and physical factors to improve the germination rate of Echinacea angustifolia seeds.

    PubMed

    Chuanren, Duan; Bochu, Wang; Wanqian, Liu; Jing, Chen; Jie, Lian; Huan, Zhao

    2004-09-01

    Seeds of Echinacea angustifolia are known for their deep dormancy. In this paper, we studied the responses of E. angustifolia seeds to some chemical and physical factors, such as scarification, chilling (5 degrees C) period, light and applied BA (6-benzylaminopurine), GA3 (gibberellic acid) and sound stimulation. When the seed coat layers were removed, the germination rate grew up from 6 to 20% (incubated in light) and the mean time germination (MTG) was reduced from 18 to 6.6 days. On the basis of layers-removed, chilling and continuous light gave significantly higher germination rate (up to 70%). Compare the data of seeds chilled by 0, 6, 12, 18 and 24 days, the maximum germination rate (up to 70%) achieved at 18-days chilling treatment. Further increases in the chilling period could slightly improve germination. Exogenous application of 0.1, 0.2, 0.3 mg/L GA3 or BA in the previous pretreatment increased germination to 78, 90 and 84% or 76, 86 and 84%, respectively. Obviously, the best concentration of GA or BA is 0.3 mg/L. And the GA3 or BA treatment shortened the MTG to about 4 days. The influence of sound stimulation was also tested in the experiment. The result showed that one 100 dB and 1000 Hz sound wave (sine-wave) was beneficial to the germination of E. angustifolia seeds. PMID:15342019

  4. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    PubMed

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. PMID:26564029

  5. Assessment of phytochemicals and antioxidant activities of raw and germinating Ceiba pentandra (kapok) seeds

    PubMed Central

    Ravi Kiran, Chekuboyina; Rao, Dadi Bhaskara; Sirisha, Nagala; Rao, Tamanam Raghava

    2015-01-01

    Abstract To determine the significance of germination on phytochemical constituents and non-enzymatic antioxidant activities of Ceiba pentandra seed extracts. Phytochemicals and antioxidant activities of raw and germinating seeds of Ceiba pentandra were estimated by different methods. The levels of phytochemical constituents were influenced by germination and increased except alkaloids and tannins, which were decreased significantly during germination. Among non-enzymatic antioxidants like DPPH, FRAP, reducing assay and hydroxyl radical scavenging activity all showed improved activity compared with non-germinating seeds. This may be due to various reactive oxygen species (ROS) that were generated as by-products of metabolism during germination. This group of ROS included superoxide radicals (O2), hydrogen peroxide radicals (H2O2) and hydroxyl radicals (OH). The formation of these oxygen radicals resulted in the accumulation of lipid hydroperoxides by radical chain oxidation via phospholipids peroxy radicals within membranes. Therefore, it was hypothesized that this could be related to the increase of antioxidant activity in large unilamellar vesicles observed in germinated seeds. The implication of this study is that the Ceiba pentandra seeds as natural antioxidant agents and put forward the possibility of employing for therapeutic potential. PMID:26442618

  6. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  7. Accelerating Seed Germination and seedling development of Sorghum (Sorghum bicolor L. Moench) through hydro-priming

    NASA Astrophysics Data System (ADS)

    Dembele, S., Jr.

    2015-12-01

    Mali, a West Africa Sahelian country, is characterized by a strong dependence on rain-fed agriculture and a low adaptive capacity, making it one of the most vulnerable regions to climate change worldwide. Moreover, although with high uncertainties, most climate models used for the region recognize a growing uncertainty in the onset of the rainy season, which demands urgent adaptation measures. Early-season drought limits crops germination, and hence growth, and yield during rainfed depending production as is common now in Mali, West Africa. Crops germination and establishment could be improved by using seed priming, a process that dry seeds take up water to initiate the primary stages of germination, but the amount of water added is not enough for completing germination. The effects of hydro-priming (distilled, tap, rain, river and well water) were evaluated for three priming durations (4, 8 and 12 hour) in 2014 and 2015. Monitored were seed germination and seedling development of nine sorghum genotypes. Preliminary results showed that hydro-priming significantly improved germination rate, germination speed, number of seminal root, rate of survival and seedling vigour index, compared to non-primed seed treatments. However, seedling length, root length, shoot length and seedling dry weight did not differ significantly. Four out of the nine genotypes evaluated were attributed good seed quality and good response to hydro-priming. The priming with different sources of water resulted in higher seed germination (90%) and seedling development with well and river water, compared to the others. Seed germination rate, uniformity and speed were also enhanced by hydro-priming. It is argued that hydro-priming is a simple but effective method for improving seed germination and seedling development of sorghum. In addition hydro-priming is a safe, simple and inexpensive method to enhance germination. The most promising genotypes have consequently been included in consequent pot

  8. QTLs for Seed Vigor-Related Traits Identified in Maize Seeds Germinated under Artificial Aging Conditions

    PubMed Central

    Han, Zanping; Ku, Lixia; Zhang, Zhenzhen; Zhang, Jun; Guo, ShuLei; Liu, Haiying; Zhao, Ruifang; Ren, Zhenzhen; Zhang, Liangkun; Su, Huihui; Dong, Lei; Chen, Yanhui

    2014-01-01

    High seed vigor is important for agricultural production due to the associated potential for increased growth and productivity. However, a better understanding of the underlying molecular mechanisms is required because the genetic basis for seed vigor remains unknown. We used single-nucleotide polymorphism (SNP) markers to map quantitative trait loci (QTLs) for four seed vigor traits in two connected recombinant inbred line (RIL) maize populations under four treatment conditions during seed germination. Sixty-five QTLs distributed between the two populations were identified and a meta-analysis was used to integrate genetic maps. Sixty-one initially identified QTLs were integrated into 18 meta-QTLs (mQTLs). Initial QTLs with contribution to phenotypic variation values of R2>10% were integrated into mQTLs. Twenty-three candidate genes for association with seed vigor traits coincided with 13 mQTLs. The candidate genes had functions in the glycolytic pathway and in protein metabolism. QTLs with major effects (R2>10%) were identified under at least one treatment condition for mQTL2, mQTL3-2, and mQTL3-4. Candidate genes included a calcium-dependent protein kinase gene (302810918) involved in signal transduction that mapped in the mQTL3-2 interval associated with germination energy (GE) and germination percentage (GP), and an hsp20/alpha crystallin family protein gene (At5g51440) that mapped in the mQTL3-4 interval associated with GE and GP. Two initial QTLs with a major effect under at least two treatment conditions were identified for mQTL5-2. A cucumisin-like Ser protease gene (At5g67360) mapped in the mQTL5-2 interval associated with GP. The chromosome regions for mQTL2, mQTL3-2, mQTL3-4, and mQTL5-2 may be hot spots for QTLs related to seed vigor traits. The mQTLs and candidate genes identified in this study provide valuable information for the identification of additional quantitative trait genes. PMID:24651614

  9. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions.

    PubMed

    Han, Zanping; Ku, Lixia; Zhang, Zhenzhen; Zhang, Jun; Guo, Shulei; Liu, Haiying; Zhao, Ruifang; Ren, Zhenzhen; Zhang, Liangkun; Su, Huihui; Dong, Lei; Chen, Yanhui

    2014-01-01

    High seed vigor is important for agricultural production due to the associated potential for increased growth and productivity. However, a better understanding of the underlying molecular mechanisms is required because the genetic basis for seed vigor remains unknown. We used single-nucleotide polymorphism (SNP) markers to map quantitative trait loci (QTLs) for four seed vigor traits in two connected recombinant inbred line (RIL) maize populations under four treatment conditions during seed germination. Sixty-five QTLs distributed between the two populations were identified and a meta-analysis was used to integrate genetic maps. Sixty-one initially identified QTLs were integrated into 18 meta-QTLs (mQTLs). Initial QTLs with contribution to phenotypic variation values of R(2)>10% were integrated into mQTLs. Twenty-three candidate genes for association with seed vigor traits coincided with 13 mQTLs. The candidate genes had functions in the glycolytic pathway and in protein metabolism. QTLs with major effects (R(2)>10%) were identified under at least one treatment condition for mQTL2, mQTL3-2, and mQTL3-4. Candidate genes included a calcium-dependent protein kinase gene (302810918) involved in signal transduction that mapped in the mQTL3-2 interval associated with germination energy (GE) and germination percentage (GP), and an hsp20/alpha crystallin family protein gene (At5g51440) that mapped in the mQTL3-4 interval associated with GE and GP. Two initial QTLs with a major effect under at least two treatment conditions were identified for mQTL5-2. A cucumisin-like Ser protease gene (At5g67360) mapped in the mQTL5-2 interval associated with GP. The chromosome regions for mQTL2, mQTL3-2, mQTL3-4, and mQTL5-2 may be hot spots for QTLs related to seed vigor traits. The mQTLs and candidate genes identified in this study provide valuable information for the identification of additional quantitative trait genes. PMID:24651614

  10. Physiological and biochemical responses of rice seeds to phosphine exposure during germination.

    PubMed

    Niu, Xiaojun; Mi, Lina; Li, Yadong; Wei, Aishu; Yang, Zhiquan; Wu, Jiandong; Zhang, Di; Song, Xiaofei

    2013-11-01

    Rice seeds (Tianyou, 3618) were used to examine the physiological and biochemical responses to phosphine exposure during germination. A control (0 mg m(-3)) and four concentrations of phosphine (1.4 mg m(-3), 4.2 mg m(-3), 7.0 mg m(-3) and 13.9 mg m(-3)) were used to treat the rice seeds. Each treatment was applied for 90 min once per day for five days. The germination rate (GR); germination potential (GP); germination index (GI); antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and lipid peroxidation measured through via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seeds to phosphine exposure. These indicators were determined once per day for five days. The results indicated that the GR, GP and GI of the rice seeds markedly decreased after phosphine exposure. The changes in the activities of the antioxidant enzymes due to the phosphine exposure were also significant. The exposure lowered the CAT and SOD activities and increased POD activity in the treated rice seeds compared with controls. The MDA content exhibited a slow increase trend with the increase of phosphine concentration. These results suggest that phosphine has inhibitory effects on seed germination. In addition, phosphine exposure caused oxidative stress in the seeds. The antioxidant enzymes could play a pivotal role against oxidative injury. Overall, the effect of phosphine on rice seeds is different from what has been reported previously for insects and mammals. PMID:23992639

  11. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.

    PubMed

    Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui

    2015-05-22

    Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺. PMID:25907538

  12. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds.

    PubMed

    Bhardwaj, Jyotsna; Anand, Anjali; Nagarajan, Shantha

    2012-08-01

    Seeds of cucumber were exposed to static magnetic field strength from 100 to 250 mT for 1, 2 or 3 h. Germination-percentage, rate of germination, length of seedling and dry weight increased by 18.5, 49, 34 and 33% respectively in magnetoprimed seeds compared to unexposed seeds. Among different magnetic field doses, 200 mT for 1 h showed significant effect on germination parameters and hence selected for studying changes in water uptake, (1)H transverse relaxation time (T(2)), hydrolytic enzymes, reactive oxygen species and antioxidant enzyme system in germinating seeds. Water uptake and T(2) values were significantly higher in treated seeds during imbibition. The activities of hydrolytic enzymes, amylase and protease were greater than the untreated controls by 51% and 13% respectively. Superoxide radicals also enhanced by 40% and hydrogen peroxide by 8% in magnetically exposed seeds. In magetoprimed seeds, increased activities of antioxidant enzymes, superoxide dismutase (8%), catalase (83%) and glutathione reductase (77%) over control was recorded. We report that magnetopriming of dry seeds can be effectively used as a pre-sowing treatment for seed invigoration in cucumber. Unlike other priming treatments seed is not required to be dehydrated after priming, allowing easy storage. PMID:22683465

  13. Effect of high pressure on green pea seeds germination and plantlets development

    NASA Astrophysics Data System (ADS)

    Alexandre, Elisabete M. C.; Carvalho, Andreia M.; Saraiva, Jorge A.

    2014-01-01

    The aim of this work was to study the impact of high pressure (50 MPa, 10 min) on germination of pea seeds with different imbibition times (0, 12 and 36 h). The parameters analysed were the percentage of germinated seeds, length of roots and stems, number of leaves developed and the weight of young plantlets. Peroxidase (POD), polyphenol oxidase (PPO), pectin methylesterase (PME) and total proteolytic activity were analysed in seeds after the pressure treatment and in leaves after the germination period. Results showed that 50 MPa applied during 10 min retarded the germination onset and inhibited seeds to germinate. The pressure treatment increased and decreased the length of roots and stems, respectively. The number of leaves per germinated seed decreased with the pressure treatment. Enzymatic activities of seeds showed that only total proteolytic activity was significantly reduced by pressure and only for 0 h of imbibition. POD and PPO activities determined in leaves of the plantlets increased with the pressure treatment, while PME activity also increased but only for 12 h of imbibition and total proteolytic activity decreased.

  14. EASTERN DODDER (CUSCUTA MONOGYNA VAHL.) SEED GERMINATION AFFECTED BY SOME HERBACEOUS DISTILLATES.

    PubMed

    Movassaghi, M; Hassannejad, S

    2015-01-01

    Eastern dodder (Cuscuta monogyna Vahl.) is one of the noxious parasitic weeds that infected many ornamental trees in green spaces and gardens. Our purpose is to find natural inhibitors for prevention of its seed germination. In order to reach this aim, laboratory studies were conducted by using of herbaceous distillates of Dracocephalum moldavica, Nasturtium officinalis, Malva neglecta, Mentha piperita, Mentha pulegium, Rosa damascene, Ziziphora tenuior, and Urtica dioica on seed germination of C. monogyna. Z. tenuior distillate stimulated C. monogyna seed germination, whereas others reduced this parasitic weed's seed germination. D. moldavica caused maximum inhibition on weed seed germination. Seedling growth of C. monogyna was more affected than its seed germination. All of these herbaceous distillates reduced C. monogyna seedling length so that the latter decreased from 28.2 mm in distilled water to 4.5, 3.97, 3.85, 3.67, 3.1, 2.87, 2.57, 1.9, and 1.17 in M. pulegium, M. piperita, F. officinalis, Z. tenuior, N. officinalis, M. neglecta, R. damascene, U. dioica and D. moldavica, respectively. By using these medicinal plants distillates instead of herbicides, the parasitic weed seedling length and host plant infection will reduce. PMID:27145591

  15. Seed germination of seven desert plants and implications for vegetation restoration.

    PubMed

    Lai, Liming; Chen, Lijun; Jiang, Lianhe; Zhou, Jihua; Zheng, Yuanrun; Shimizu, Hideyuki

    2016-01-01

    Germination cues reflect the conditions under which a species is likely to succeed in recruitment. Therefore, knowledge of the seed germination characteristics of key plant species in desertified areas is essential for restoration. The aims of this study were to evaluate the seed germination responses of seven native species, and to explore the implications for vegetation restoration. Seeds of seven desert species were sown in Petri dishes and subjected to various temperature and light conditions. The seeds germinated well at day/night temperatures of 25/15 °C and 30/20 °C but poorly at 35/25 °C. Seeds germinated best in the dark, and final germination percentages of all species were strongly inhibited at a photon irradiance of 1000 µmol m(-2) s(-1) Based on these results and the environmental conditions of their natural habitat, Agropyron cristatum and Artemisia halodendron are best adapted to shifting sand dunes: Elymus dahuricus, Caragana korshinskii and C. microphylla for semi-fixed sand dunes: and Medicago sativa and Melilotus suaveolen for fixed sand dunes. If seeds are sown in early May, they will likely be buried in sand, and the precipitation and temperature conditions will be suitable for seedling survival. PMID:27179541

  16. Seed germination of seven desert plants and implications for vegetation restoration

    PubMed Central

    Lai, Liming; Chen, Lijun; Jiang, Lianhe; Zhou, Jihua; Zheng, Yuanrun; Shimizu, Hideyuki

    2016-01-01

    Germination cues reflect the conditions under which a species is likely to succeed in recruitment. Therefore, knowledge of the seed germination characteristics of key plant species in desertified areas is essential for restoration. The aims of this study were to evaluate the seed germination responses of seven native species, and to explore the implications for vegetation restoration. Seeds of seven desert species were sown in Petri dishes and subjected to various temperature and light conditions. The seeds germinated well at day/night temperatures of 25/15 °C and 30/20 °C but poorly at 35/25 °C. Seeds germinated best in the dark, and final germination percentages of all species were strongly inhibited at a photon irradiance of 1000 µmol m−2 s−1. Based on these results and the environmental conditions of their natural habitat, Agropyron cristatum and Artemisia halodendron are best adapted to shifting sand dunes: Elymus dahuricus, Caragana korshinskii and C. microphylla for semi-fixed sand dunes: and Medicago sativa and Melilotus suaveolen for fixed sand dunes. If seeds are sown in early May, they will likely be buried in sand, and the precipitation and temperature conditions will be suitable for seedling survival. PMID:27179541

  17. Old sleeping Sicilian beauty: seed germination in the palaeoendemic Petagnaea gussonei (Spreng.) Rauschert (Saniculoideae, Apiaceae).

    PubMed

    De Castro, O; Gianguzzi, L; Carucci, F; De Luca, A; Gesuele, R; Guida, M

    2015-09-01

    Petagnaea gussonei (Apiaceae) is a perennial herbaceous species endemic to northeast Sicily (Nebrodi Mountains). It is considered a remnant of the Sicilian Tertiary flora, and is endangered according to the Red List. There is no information in the literature about the germinability of its seeds, even though seed production is know to occur. The aim of this study was to obtain data to better understand seed germination of this species and its biological implications. Thus, several approaches were employed: vitality analyses, gibberellic acid supply, germination and soil microbial flora analyses via end-point and qPCR. The results suggest that seed germination occurs after ca. 1.5 years at a rate of ca. 11%. The seeds can be classified as physiologically dormant, and probably require prolonged cold stratification for germination. Because seed germination is low, it is likely that agamic reproduction represents an important mean for its conservation and survival. These results have important implications for P. gussonei survival and should be considered in possible re-introduction attempts aimed at restoring threatened populations. PMID:25847095

  18. Seed germination of cirsium arvense and Lepidium latifolium: Implications for management of montane wetlands

    USGS Publications Warehouse

    Laubhan, M.K.; Shaffer, T.L.

    2006-01-01

    Cirsium arvense and Lepidium latifolium are species that can aggressively invade wetland margins and potentially reduce biodiversity and alter ecosystem function. Although expansion of these species primarily occurs via rhizomatous growth, seeds are thought to be important in initial establishment. We conducted this study to investigate differences in seed germination of C. arvense and L. latifolium in montane wetlands of Colorado and Wyoming, USA. We used germination chambers to simulate environmental conditions (photoperiod, day/night temperature) during three periods of the growing season at each site and evaluated seed germination in relation to three soil moisture levels and two soil depths. A combination of shallow (<1 cm) seed burial and wet conditions resulted in the greatest germination probability of C. arvense (x = 63.0%), 95% CI = 41.2-80.5%), whereas deep (2-3 cm) seed burial and saturated moisture conditions resulted in almost no germination (x?? = 0.3%, 95% CI = 0.1-1.3%). The maximum germination probability of 44.0% (CI = 28.1-61.4%) for L. latifolium also occurred in the shallow burial and wet treatment; however, only effects of seed burial were significant (P < 0.05). The estimated mean germination probability of deeply buried seeds was <1.0% (CI = 0.3-1.4%) compared to 32% (CI = 19.7-47.9%) for shallowly buried seeds. Our results suggest that each species has the ability to germinate at similar rates throughout the growing season and across a large portion of the moisture gradient. This suggests that management actions, including water-level manipulations, at any time during the growing season may stimulate germination. Although burial of seed to depths of 2-3 cm reduced the germination potential of both species, the use of mechanical implements may be problematic in established stands because new plants of both species easily sprout from root buds. Further, disturbance resulting from such actions diminishes the density and vigor of other plants

  19. [Bimodal changes in germinability of pea seeds under the influence of low doses of gamma-radiation].

    PubMed

    Veselovskiĭ, V A; Veselova, T V; Korogodina, V L; Florko, B V; Mokrov, Iu V

    2006-01-01

    Pea seeds (cv. 'Nemchinovskii-85', harvest of 2002, 80%-germination percentage) were exposed to gamma-radiation with doses ranging from 19 cGy to 100 Gy. One week after the irradiation with doses of 19 cGy and 3 Gy. the germination percentage decreased to 58 and 45%, respectively; at doses of 7 and 10 Gy it was 73 and 70% respectively. At greater doses (25, 50, and 100 Gy), germination percentage decreased in proportion. Anomalous changes in seed germination percentage (as a function of irradiation dose) were caused by the redistribution of irradiated seeds between fractions I and II. The measurements of room temperature phosphorescence in air-dry seeds and the phosphorescence of endogenous porphyrines of imbibing seeds showen that the germination decrease after the irradiation with low doses (19 cGy and 3 Gy) was caused by the increase in the number of weak seeds of fraction II, which had high rates of water uptake and suffered from hypoxia under seed coat. Some of these seeds suffocated from hypoxia, and other seeds produced seedlings with morphological defects (such seeds were considered incapable of germination). During storage of seeds irradiated at doses 19 cGy-10 Gy, the recovery of germination percentage (after its initial decrease) was caused by the decrease in seed number in fraction II. The subsequent germination decrease was caused by seed death. The higher was the irradiation dose, the faster were changes in germination percentage during storage of irradiated seeds. Bimodal changes in pea seed germination with the increase of y-irradiation dose has apparently the same origin as the changes in seed germination during accelerated ageing. PMID:17323697

  20. [Changes in Properties of Water during Germination of Zucchini Seed in Water Used].

    PubMed

    Novikov, S N; Novikov, L N; Ermolaeva, A I; Timoshenkov, S P; Goryunova, E P

    2015-01-01

    In this research the changes in the supramolecular structure of distilled water during germination of the seed in this water were studied. We used three methods: gravimetry, precision thermal analysis, electron work function measurements. In the first stage of seed germination--seed swelling--the seed extracts coherent domains in the water, herewith due to the transition of coherent domains adsorbed in nanofields into a stable state the flow of electromagnetic energy appears. In the second stage of the experiment--germ growing--the flow of biophotons occurs. This is evidenced by the increased water electron work function. A hypothetical model of the process of zucchini seed germination is suggested. PMID:26394483

  1. Cytochrome C oxidase activity in germinating Phaseolus vulgaris l. seeds: Effects of carbon monoxide

    SciTech Connect

    Caughey, W.S. ); Sowa, S.; Roos, E.E.

    1989-04-01

    Cytochrome c oxidase is a key bioenergetic enzyme required for seed germination. The enzyme was isolated from 2-day germinating beans and biochemically compared to its bovine heart counterpart. Carbon monoxide, which binds to the heme a{sub 3} site of cytochrome c oxidase, we used to probe O{sub 2} utilization activity in isolated enzyme, mitochondrial particles, and whole seeds. Bean seeds under 80% CO/20% O{sub 2} exhibited 46% growth inhibition as determined by root length. Reversible, dose-dependent partial inhibition of bean seed mitochondrial respiration was observed in the presence of CO; heart mitochondria had a more sensitive, less reversible response. Effects of CO on bean and bovine heart enzyme were similar. The close correlation of CO effects observed on seedling growth, mitochondrial respiration and cytochrome oxidase activity indicate an important role for this enzyme during the early stages of seed germination.

  2. A study of the effects of micro-gravity on seed germination

    NASA Technical Reports Server (NTRS)

    Klein, Lynn Suzanne; Mckibben, Mark; Brain, David A.; Johnson, Theodore C.; Dannenberg, Konrad K.

    1992-01-01

    This study will identify characteristics of seed germination dependent upon gravity. To accomplish this objective, four different seed types will be germinated in space and then be compared to a control group germinated on Earth. Both the experimental and control groups will be analyzed on the cellular level for the size of cells, structural anomalies, and gravitational effects. The experiment will be conducted in a Get Away Special Canister (GAS Can no. 608) owned by the U.S. Space and Rocket Center and designed for students. The GAS Can will remain in the cargo bay of the Space Shuttle with minimal astronaut interaction.

  3. Effects of different pretreatments on germination of Prunus serotina seed sources.

    PubMed

    Esen, Derya; Yildiz, Oktay; Sarginci, Murat; Isik, Kani

    2007-01-01

    Establishing intensive plantations of fast growing hardwood tree species that have high market values in the forest industry can narrow the gap between Turkey's demand and the supply of quality hardwood products. Black cherry (P. serotina Ehrh.) is a fast growing hardwood species with a high market value. Introducing and intensively growing black cherry (BC) in Turkey may significantly reduce the country's quality wood shortage. Adequate seed germination constitutes the first essential step for successful establishments. In this paper effects of different pretreatments, including artificial and natural stratification, on the seeds of different BC seed sources (SSs) were studied. Pretreatments had substantial effects on the dormancy breaking and germination behaviours of the SSs. Consecutive periods of complex warm and cold artificial stratification regimes longer than 90 days or natural stratification (where seeds were assumed to be naturally exposed to this complexity) resulted in best dormancy breaking and, in turn, germination among all pretreatments. Deeper dormancy and reduced germination rates of some BC seeds as the altitude of the source increases might suggest an ecological adaptive strategy of the species. BC may have deeper morphophysiological dormancy than is commonly believed. Seed size may have a positive effect on seed germination. PMID:17717993

  4. Induction of seed germination in Orobanche spp. by extracts of traditional Chinese medicinal herbs.

    PubMed

    Ma, YongQing; Zhang, Wei; Dong, ShuQi; Ren, XiangXiang; An, Yu; Lang, Ming

    2012-03-01

    The co-evolution of Orobanche spp. and their hosts within the same environment has resulted in a high degree of adaptation and effective parasitism whereby the host releases parasite germination stimulants, which are likely to be unstable in the soil. Our objective was to investigate whether extracts from non-host plants, specifically, Chinese medicinal plants, could stimulate germination of Orobanche spp. Samples of 606 Chinese medicinal herb species were extracted with deionized water and methanol. The extracts were used to induce germination of three Orobanche species; Orobanche minor, Orobanche cumana, and Orobanche aegyptiaca. O. minor exhibited a wide range of germination responses to the various herbal extracts. O. cumana and O. aegyptiaca exhibited an intermediate germination response to the herbal extracts. O. minor, which has a narrow host spectrum, showed higher germination rates in response to different herbal extracts compared with those of O. cumana and O. aegyptiaca, which have a broader host spectrum. Methanolic extracts of many Chinese herbal species effectively stimulated seed germination among the Orobanche spp., even though they were not the typical hosts. The effective herbs represent interesting examples of potential trap crops. Different countries can also screen extracts from indigenous herbaceous plants for their ability to induce germination of Orobanche spp. seeds. The use of such species as trap plants could diminish the global soil seed bank of Orobanche. PMID:22527522

  5. Influence of temperature and salinity on germination of eelgrass ( Zostera marina L.) seeds

    NASA Astrophysics Data System (ADS)

    Pan, Jinhua; Jiang, Xin; Li, Xiaojie; Cong, Yizhou; Zhang, Zhuangzhi; Li, Zhiling; Zhou, Weili; Han, Houwei; Luo, Shiju; Yang, Guanpin

    2011-06-01

    Seagrass restoration as part of ocean ecosystem protection has been launched for many years all over the world, but intensive research on this subject in China has just begun in recent years. Seed broadcasting has been widely accepted as the most potentially useful method for seagrass restoration over large areas. We examined the influence of key environmental factors on seed germination to help promote eelgrass bed restoration. Under anoxic conditions, the influence of temperature and salinity on the germination rate of eelgrass ( Zostera marina L.) seeds was examined at different combinations of four temperatures (4, 9, 14, and 24°C) and nine salinities (5 to 45, increment of 5). The effect of significant interaction of temperature and salinity on germination rate was observed (ANOVA) ( P<0.001). The highest germination rate (83.3 ± 3.5)% was reached in 8 weeks at 14°C and salinity 5. Higher temperature significantly increased the germination rate at salinity 5 ( P<0.001) during the whole observation period except for 24°C, while lower salinity significantly increased the germination rate at 14°C ( P<0.001). Although significant interaction was found between temperature and salinity ( P<0.001), the influence of salinity was stronger than that of temperature for the germination of eelgrass seeds. These results provide useful information for the propagation of artificial seedlings for seagrass restoration in China.

  6. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    PubMed

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  7. Effects of 35 C Heat Treatments on Photosensitive Grand Rapids Lettuce Seed Germination 1

    PubMed Central

    Carpita, Nicholas C.; Nabors, Murray W.

    1976-01-01

    Grand Rapids lettuce (Lactuca sativa L.) seeds were given 35 C heat treatments to increase photodormancy in a subsequent 20 C dark period. Short heat treatments (1-5 hours) induced a significant germination percentage increase of from 16% to over 50% depending on seed lot. With longer heat treatments dark germination percentage was gradually reduced to zero. If given at the end of 35 C, far red or red followed by far red further increased the amount of dark germination. Thermodormancy also delayed red-stimulated germination by 10 hours or more when red was given following a long 35 C treatment. The presence of Pfr was required during this time since far red light remained effective in reversing at least 50% of the red stimulation for up to 16 hours compared to only 4 hours in nonheat-treated seeds. PMID:16659537

  8. Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis) 1

    PubMed Central

    Samac, Deborah; Storey, Richard

    1981-01-01

    Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling. Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination. PMID:16662104

  9. Pyrimidine nucleoside phosphorylation in developing seeds and germinating seedlings of wheat

    SciTech Connect

    Rowe, M.L.

    1988-01-01

    Uridine- and thymidine-phosphorylating enzymes were measured in developing and germinating seeds of Triticum aestivum v. Arthur and T. aestivum v. Lemhi. Because crude extracts were to be used in the developmental study, characteristics of unpurified nucleoside phosphotransferase (NPTase) were examined. In the developmental study with two varieties of wheat, NPTase activity was found to be very low in all of the true seed tissues during seed maturation. Uridine-phosphorylating activity was due to primarily to uridine kinase. Thymidine phosphorylation was very low in all tissues throughout seed maturation, with a brief appearance by thymidine kinase in the developing embryo. In germinating seeds, uridine-phosphorylating activity was present from earliest stages of germination but showed a decrease in activity followed by a recovery after 48 hours inbibition. Experiments using ({alpha}-{sup 32}P)ATP indicated that uridine kinase was present during early germination but had disappeared by 96 hours. Uridine phosphorylation at later stages of germination was accomplished by NTPase. Thymidine phosphorylation did not begin until after 36 hours of germination and was the result of NPTase activity.

  10. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030