Science.gov

Sample records for germination plant growth

  1. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    PubMed Central

    2014-01-01

    Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae) plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), Italian ryegrass (Lolium multiflorum), barnyard grass (Echinochloa crus-galli), and timothy (Phleum pratense) at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP), germination index (GI), germination energy (GE), speed of emergence (SE), seedling vigour index (SVI), and coefficient of the rate of germination (CRG) of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T50) and mean germination time (MGT) were increased at the same or higher than this concentration. The increasing trend of T50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds. PMID:25032234

  2. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes.

    PubMed

    Espinar, José L; García, Luis V; Clemente, Luis

    2005-07-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three salt-marsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management. PMID:21646131

  3. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    USGS Publications Warehouse

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  4. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    ERIC Educational Resources Information Center

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  5. Dimorphic cypsela germination and plant growth in Synedrella nodiflora (L.) Gaertn. (Asteraceae).

    PubMed

    Souza Filho, P R M; Takaki, M

    2011-05-01

    Synedrella nodiflora is a weed species that has dimorphic cypselas: winged peripheral and lanceolate shaped central. The aim of this work is to describe the reproductive capability by measuring dimorphic cypselas morphology, imbibition rates and germinative patterns under temperature, light quality and water availability gradients, and compare the plant growth between two light treatments. The central cypselas were lighter, longer and its pappi were more elongated than the peripheral ones, favoring its dispersion. Neither type had deep dormancy and both of them germinated with the same pattern under the optimum conditions. Both cypselas showed higher germinability in temperatures between 25 and 30 °C, under white light and high water availability, although there are some differences between the types, mainly at dark treatments. Plants grown in direct sunlight accumulated more biomass, allowing for higher plant development and inflorescence production, although shaded light plants capitulum had a higher central: peripheral ratio than the direct sunlight treatment. S. nodiflora cypselas germinate better in unfiltered light places, although the plants are adapted to shady conditions. The species showed high germination potential over a wide range of environmental conditions, as well as fast plant development. All of these features favor distribution in environmental sites. PMID:21755175

  6. Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants.

    PubMed

    Saqrane, Sana; El Ghazali, Issam; Oudra, Brahim; Bouarab, L; Vasconcelos, Vitor

    2008-06-01

    The effects of cyanobacteria aqueous extracts containing Microcystin-LR (MC-LR) on the seed germination and growth of Pisum sativum, Lens esculenta, Zea mays and Triticum durum were investigated. Experiments were carried out on a range of doses of the extract (equivalent to 0, 1.6, 2.9, 5.8, 8.7 and 11.6 mu g MC-LR/mL). The results confirm that these plants were sensitive to cell-free extracts of a toxic Microcystis and that germination inhibition was dose dependent. One-way analysis of variance (ANOVA) showed that P. sativum is the most sensitive tested species with a 97% germination rate reduction and L. esculenta was the most resistant. At the 8th day, the exposure to the microcystins (MC) resulted in a significant decrease of plant epicotyls length, roots length and a net inhibition of lateral root formation. It is concluded that MC could affect also terrestrial plants seedling germination and growth. Therefore, the use of water for irrigation contaminated by MC could exert negative biochemical effects on seed and plant metabolism which might influence the agricultural crops. PMID:18576226

  7. Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth.

    PubMed

    Porras-Alfaro, Andrea; Bayman, Paul

    2007-01-01

    Mycorrhizal fungi are essential for the germination of orchid seeds. However, the specificity of orchids for their mycorrhizal fungi and the effects of the fungi on orchid growth are controversial. Mycorrhizal fungi have been studied in some temperate and tropical, epiphytic orchids, but the symbionts of tropical, terrestrial orchids are still unknown. Here we study diversity, specificity and function of mycorrhizal fungi in Vanilla, a pantropical genus that is both terrestrial and epiphytic. Mycorrhizal roots were collected from four Vanilla species in Puerto Rico, Costa Rica and Cuba. Cultured and uncultured mycorrhizal fungi were identified by sequencing the internal transcribed spacer region of nuclear rDNA (nrITS) and part of the mitochondrial ribosomal large subunit (mtLSU), and by counting number of nuclei in hyphae. Vanilla spp. were associated with a wide range of mycorrhizal fungi: Ceratobasidium, Thanatephorus and Tulasnella. Related fungi were found in different species of Vanilla, although at different relative frequencies. Ceratobasidium was more common in roots in soil and Tulasnella was more common in roots on tree bark, but several clades of fungi included strains from both substrates. Relative frequencies of genera of mycorrhizal fungi differed significantly between cultured fungi and those detected by direct amplification. Ceratobasidium and Tulasnella were tested for effects on seed germination of Vanilla and effects on growth of Vanilla and Dendrobium plants. We found significant differences among fungi in effects on seed germination and plant growth. Effects of mycorrhizal fungi on Vanilla and Dendrobium were similar: a clade of Ceratobasidium had a consistently positive effect on plant growth and seed germination. This clade has potential use in germination and propagation of orchids. Results confirmed that a single orchid species can be associated with several mycorrhizal fungi with different functional consequences for the plant. PMID

  8. Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants

    PubMed Central

    Yin, Liyan; Colman, Benjamin P.; McGill, Bonnie M.; Wright, Justin P.; Bernhardt, Emily S.

    2012-01-01

    The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs–20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)–to the effects of AgNO3 exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L−1). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L−1 GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L−1 AgNO3 enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO3 and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO3 and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO3 did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities. PMID:23091638

  9. A simple and versatile 2-dimensional platform to study plant germination and growth under controlled humidity.

    PubMed

    Sizmur, Tom; Lind, Kara R; Benomar, Saida; VanEvery, Hannah; Cademartiri, Ludovico

    2014-01-01

    We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile environment. The system can be assembled in 1-2 minutes, costs approximately 8.78$ per plant, is almost entirely reusable (0.43$ per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants (Brassica rapa). Germination rates were close to those expected for optimal conditions. PMID:24806462

  10. A Simple and Versatile 2-Dimensional Platform to Study Plant Germination and Growth under Controlled Humidity

    PubMed Central

    Sizmur, Tom; Lind, Kara R.; Benomar, Saida; VanEvery, Hannah; Cademartiri, Ludovico

    2014-01-01

    We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile environment. The system can be assembled in 1-2 minutes, costs approximately 8.78$ per plant, is almost entirely reusable (0.43$ per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants (Brassica rapa). Germination rates were close to those expected for optimal conditions. PMID:24806462

  11. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.

    PubMed

    Kim, Kee Dae

    2014-11-01

    This study aims to investigate effects of diesel and kerosene on seed germination and seedling growth among coastal wetland plants to select species that can be used for the restoration and revegetation of oil-polluted habitats. Tests on 51 species were performed in Petri dishes containing 0 %, 6 %, 12 %, and 18 % diesel, 20 %, 40 %, and 60 % kerosene; each treatment combination was replicated five times with 20 seeds in each Petri dish. All dishes were held in a growth chamber with 20°C day of 12 h/15°C night of 12 h in 80 % humidity for 20 days for calculating the germination percentage, seedling weight, and seedling vitality. The germination percentage of Rumex stenophyllus decreased significantly in diesel and kerosene treatments. The weights of seedlings treated with diesel and kerosene either increased or decreased in comparison with controls depending on the species. Vitality percentage values were high for seedlings of Chenopodium ficifolium. Thus, herbaceous plant responses to oil treatments are species-specific. PMID:25138038

  12. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    PubMed

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. PMID:23978671

  13. Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants.

    PubMed

    Macoustra, Gabriella K; King, Catherine K; Wasley, Jane; Robinson, Sharon A; Jolley, Dianne F

    2015-07-01

    Special Antarctic Blend (SAB) is a diesel fuel dominated by aliphatic hydrocarbons that is commonly used in Antarctic and subantarctic regions. The past and present use of SAB fuel at Australia's scientific research stations has resulted in multiple spills, contaminating soils in these pristine areas. Despite this, no soil quality guidelines or remediation targets have been developed for the region, primarily due to the lack of established indigenous test species and subsequent biological effects data. In this study, twelve plant species native to subantarctic regions were collected from Macquarie Island and evaluated to determine their suitably for use in laboratory-based toxicity testing, using germination success and seedling growth (shoot and root length) as endpoints. Two soil types (low and high organic carbon (OC)) were investigated to reflect the variable OC content found in soils on Macquarie Island. These soils were spiked with SAB fuel and aged for 14 days to generate a concentration series of SAB-contaminated soils. Exposure doses were quantified as the concentration of total petroleum hydrocarbons (TPH, nC9-nC18) on a soil dry mass basis. Seven species successfully germinated on control soils under laboratory conditions, and four of these species (Colobanthus muscoides Hook.f., Deschampsia chapmanii Petrie, Epilobium pendunculare A.Cunn. and Luzula crinita Hook.f.) showed a dose-dependent inhibition of germination when exposed to SAB-contaminated soils. Contaminated soils with low OC were generally more toxic to plants than high organic carbon soils. Increasing soil-TPH concentrations significantly inhibited shoot and root growth, and root length was identified as the most sensitive endpoint. Although the test species were tolerant to SAB-contaminated soils in germination assays, development of early life stages (up to 28 days) were generally more sensitive indicator of exposure effects, and may be more useful endpoints for future testing. PMID

  14. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  15. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants.

    PubMed

    Medina, E; Paredes, C; Pérez-Murcia, M D; Bustamante, M A; Moral, R

    2009-09-01

    This research work was conducted in order to investigate the possibility of using spent mushroom substrate (SMS) in the production of horticultural seedlings replacing part of the peat in the growing media. Three vegetable species with different salt sensitivities, the less sensitive being tomato (Lycopersicon esculentum var. Muchamiel), the moderately salt-sensitive being courgette (Cucurbita pepo L. var. Afrodite F1) and the most salt-sensitive being pepper (Capsicum annum L. var. Lamuyo F1) were grown in 12 media containing SMS of two types of mushroom (Agaricus bisporus (SMS-AB) and Pleurotus ostreatus (SMS-PO)) or a mixture of both 50% (v/v) (SMS-50), as well as peat in various ratios. The proportions of each residue in the mixtures elaborated with peat were 25%, 50%, 75% and 100% v/v residue. A substrate of 100% peat was used as control. The experiment was arranged in a completely-randomised design with two replicates per treatment under greenhouse conditions. Prior to sowing, some physical, physico-chemical and chemical properties of the growing media were determined and seed germination and fresh weight of seedling were also measured. In most of the cases, the addition of SMS to the growing media produced an increase in the pH values, salt contents, macro and micronutrient concentrations and a decrease in the water holding capacity contents in comparison to peat, whereas great differences were found in the air capacity values between SMS-based substrates and peat. Up to 75% SMS can be used in mixtures with peat for seed germination of the plant species studied. Regarding the most suitable SMS-based substrates for plant growth, any substrate could be used for tomato seedling production. However, all SMS-AB-based substrates and the media containing low dose of SMS-PO and SMS-50 were adequate for growth of courgette and pepper. PMID:19409775

  16. Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species

    NASA Astrophysics Data System (ADS)

    Hanley, Mick E.; Fenner, Michael

    1998-04-01

    The role of heat shock in the induction of seed germination for numerous Mediterranean fire-following plant species is well documented. However, the influence of pre-germination heating of seeds upon seedling survivorship and onward growth has not been studied. The aim of the experiments described here was to investigate how a range of heat treatments affects seedling survivorship and onward growth for six common fire-following Mediterranean plant species ( Anthyllis vulneraria, Cistus creticus, C. salvifolius, Hippocrepis unisiliquosa, Pinus brutia and P. halepensis). In the first experiment, seeds of five species were heated to temperatures ranging between 80°C and 120°C (at 10°C intervals) for 10 min and subsequent seedling growth monitored over 8 weeks. Survivorship for two pine species ( Pinus halepensis and Pinus brutia) was reduced after seeds were heated above 90°C. Onward growth for Pinus halepensis and the legume, Anthyllis vulneraria, was negatively affected by increasing pre-germination temperature. Survivorship and growth for both Cistus species was unaffected by heating seeds up to 110°C. The second experiment examined more closely seedling performance of Hippocrepis unisiliquosa seedlings when seeds were heated to temperatures ranging between 50°C and 90°C (at 10°C intervals) for 5, 10, 15 and 20 mins. Increasing pre-germination temperature and the length of time seeds were exposed to heating significantly reduced seedling growth rates in this species. The effect of fire on seedling emergence, growth and survivorship in the field is discussed with reference to the adaptation of the six species to post-fire regeneration and the patterns of seedling regeneration observed in the field.

  17. Effects of moist cold stratification on germination, plant growth regulators, metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae).

    PubMed

    Chen, Shun-Ying; Chou, Shih-Han; Tsai, Ching-Chu; Hsu, Wen-Yu; Baskin, Carol C; Baskin, Jerry M; Chien, Ching-Te; Kuo-Huang, Ling-Long

    2015-09-01

    Breaking of seed dormancy by moist cold stratification involves complex interactions in cells. To assess the effect of moist cold stratification on dormancy break in seeds of Acer morrisonense, we monitored percentages and rates of germination and changes in plant growth regulators, sugars, amino acids and embryo ultrastructure after various periods of cold stratification. Fresh seeds incubated at 25/15 °C for 24 weeks germinated to 61%, while those cold stratified at 5 °C for 12 weeks germinated to 87% in 1 week. Neither exogenous GA3 nor GA4 pretreatment significantly increased final seed germination percentage. Total ABA content of seeds cold stratified for 12 weeks was reduced about 3.3-fold, to a concentration similar to that in germinated seeds (radicle emergence). Endogenous GA3 and GA7 were detected in 8-week and 12-week cold stratified seeds but not in fresh seeds. Numerous protein and lipid bodies were present in the plumule, first true leaves and cotyledons of fresh seeds. Protein and lipid bodies decreased greatly during cold stratification, and concentrations of total soluble sugars and amino acids increased. The major non-polar sugars in fresh seeds were sucrose and fructose, but sucrose increased and fructose decreased significantly during cold stratification. The major free amino acids were proline and tryptophan in fresh seeds, and proline increased and tryptophan decreased during cold stratification. Thus, as dormancy break occurs during cold stratification seeds of A. morrisonense undergo changes in plant growth regulators, proteins, lipids, sugars, amino acids and cell ultrastructure. PMID:26094157

  18. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.)

    PubMed Central

    Agbodjato, Nadège A.; Noumavo, Pacôme A.; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  19. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.).

    PubMed

    Agbodjato, Nadège A; Noumavo, Pacôme A; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  20. Effect of fungal and plant metabolites on broomrapes (Orobanche and Phelipanche spp.) seed germination and radicle growth.

    PubMed

    Cimmino, Alessio; Fernández-Aparicio, Mónica; Andolfi, Anna; Basso, Sara; Rubiales, Diego; Evidente, Antonio

    2014-10-29

    Orobanche and Phelipanche species (the broomrapes) are root parasitic plants, some of which cause heavy yield losses on important crops. The development of herbicides based on natural metabolites from microbial and plant origin, targeting early stages on parasitic plant development, might contribute to the reduction of broomrape seed bank in agricultural soils. Therefore, the effect of metabolites belonging to different classes of natural compounds on broomrape seed germination and radicle development was assayed in vitro. Among the metabolites tested, epi-sphaeropsidone, cyclopaldic acid, and those belonging to the sesquiterpene class induced broomrape germination in a species-specific manner. epi-Epoformin, sphaeropsidin A, and cytochalasans inhibited germination of GR24-treated broomrape seeds. The growth of broomrape radicle was strongly inhibited by sphaeropsidin A and compounds belonging to cyclohexene epoxide and cytochalasan classes. Broomrape radicles treated with epi-sphaeropsidone developed a layer of papillae while radicles treated with cytochalasans or with sphaeropsidin A turned necrotic. These findings allow new lead natural herbicides for the management of parasitic weeds to be identified. PMID:25272312

  1. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Prabu, Periyasamy; Kannan, Narayanasamy

    2013-09-01

    The study was aimed at evaluating the effect of nanosilica and different sources of silicon on soil properties, total bacterial population and maize seed germination. Nanosilica was synthesised using rice husk and characterised. Silica powder was amorphous (50 nm) with >99.9% purity. Sodium silicate treated soil inhibited plant growth promoting rhizobacteria in contrast to nanosilica and other bulk sources. Surface property and effect of soil nutrient content of nanosilica treatment were improved. Colony forming unit (CFU) was doubled in the presence of nanosilica from 4 × 105 CFU (control) to 8 × 105 CFU per gram of soil. The silica and protein content of bacterial biomass clearly showed an increase in uptake of silica with an increase in nanosilica concentration. Nanosilica promoted seed germination percentage (100%) in maize than conventional Si sources. These studies show that nanosilica has favourable effect on beneficial bacterial population and nutrient value of soil. PMID:24028804

  2. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  3. Enhancing Effect of Shimizuomyces paradoxus on Seed Germination and Seedling Growth of Canola, Plant Growth of Cucumber, and Harvest of Tomato.

    PubMed

    Sung, Gi-Ho; Shrestha, Bhushan; Park, Ki-Byung; Han, Sang-Kuk; Sung, Jae-Mo

    2011-03-01

    Shimizuomyces paradoxus showed no inhibitory effect against plant pathogen fungi, such as Fusarium oxysporum f. sp. lycopersici and Alternaria solani. The S. paradoxus culture filtrate showed higher seed germination and seedling growth rates in canola than distilled water and potato-dextrose broth. A conidial suspension of 1.0×10(4)/mL resulted in the highest growth stimulating effects on total plant length, and fresh and dry weight of shoots and roots in cucumber, when compared to the highest suspension concentration. Total plant length and shoot weight increased with the foliar spray treatment, and root length and root weight increased by simultaneous treatments of soil drenching and foliar spray in cucumber. Lower concentrations of the S. paradoxus conidial suspension increased the harvest of tomato fruit. PMID:22783066

  4. Effects of Posidonia Oceanica Beach-Cast on Germination, Growth and Nutrient Uptake of Coastal Dune Plants

    PubMed Central

    Del Vecchio, Silvia; Marbà, Núria; Acosta, Alicia; Vignolo, Clara; Traveset, Anna

    2013-01-01

    Seagrass meadows play an important role in marine ecosystems. A part of seagrass production is also exported to adjacent coastal terrestrial systems, possibly influencing their functioning. In this work we experimentally analyzed the effect of Posidonia oceanica beach-cast on plant germination, growth, and nutrient uptake of two plant species (Cakile maritima and Elymus farctus) that grow on upper beaches and fore dunes along the Mediterranean coasts. We compared plants growing in simple sand (control) with those growing in a substrate enriched with P. oceanica wrack (treatment) in laboratory. P. oceanica wrack doubled the N substrate pool and kept the substrate humid. Plants growing in the treated substrate grew faster, were twice as large as those growing in the control substrate, while tissues were enriched in N and P (Cakile by the 1.3 fold in N and 2.5 fold in P; Elymus by 1.5 fold in N and 2 fold in P). Our results suggest a positive effect of seagrass litter for the enhancing of dune species, highlighting its role for the conservation of coastal dune ecosystems. PMID:23894678

  5. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient

    USGS Publications Warehouse

    Kellogg, C.H.; Bridgham, S.D.; Leicht, S.A.

    2003-01-01

    1. We examined the effect of soil organic content (1.4, 3.6, 7.2% soil C), water level (+2, -1, -4 cm from soil surface) and duration (13 or 33 days) on 10 species that varied in abundance during succession in freshwater marshes. We also determined the effect of shade (0, 40, 80% shade) and soil organic content (1.4 and 7.2% soil C) on germination of six species over 62 days with water 0.5 cm below the soil surface. 2. Water level consistently affected species germination on both dates. Above-ground biomass was generally higher with increasing organic content of soil, but shade had little effect on germination or height. 3 The hydrologic zone in which species were found in the field was a good indicator of the response of germination to hydrology. Both early successional species and species wide-spread across the successional gradient show similar germination on all organic contents, while later successional species appear to germinate best at higher organic contents. 4. Successional changes in soils are capable of affecting plant community development, independent of disturbance.

  6. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    PubMed

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. PMID:27155482

  7. Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae)

    PubMed Central

    Li, Haiyan; Li, Xiaoshuang; Zhang, Daoyuan; Liu, Huiliang; Guan, Kaiyun

    2013-01-01

    Eremosparton songoricum (Litv.) Vass. is an endemic and extremely drought-resistant desert plant with populations that are gradually declining due to the failure of sexual recruitment. The effects of drought stress on the seed germination and physiological characteristics of seeds and seedlings were investigated. The results showed that the germination percentage decreased with an increase of polyethylene glycol 6000 (PEG) concentration: -0.3 MPa (5 % PEG) had a promoting effect on seed germination, -0.9 MPa (15 % PEG) dramatically reduced germination, and -1.8 MPa (30 % PEG) was the threshold for E. songoricum germination. However, the contents of proline and soluble sugars and the activity of CAT increased with increasing PEG concentrations. At the young seedling stage, the proline content and CAT, SOD and POD activities all increased at 2 h and then decreased; except for a decrease at 2 h, the MDA content also increased compared to the control (0 h). These results indicated that 2 h may be a key response time point for E. songoricum to resist drought stress. The above results demonstrate that drought stress can suppress and delay the germination of E. songoricum and that the seeds accumulate osmolytes and augment the activity of antioxidative enzymes to cope with drought injury. E. songoricum seedlings are sensitive to water stress and can quickly respond to drought but cannot tolerate drought for an extended period. Although such physiological and biochemical changes are important strategies for E. songoricum to adapt to a drought-prone environment, they may be, at least partially, responsible for the failure of sexual reproduction under natural conditions. PMID:26417219

  8. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    PubMed

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments. PMID:25758141

  9. Effect of vermicast generated from an allelopathic weed lantana (Lantana camara) on seed germination, plant growth, and yield of cluster bean (Cyamopsis tetragonoloba).

    PubMed

    Karthikeyan, M; Hussain, N; Gajalakshmi, S; Abbasi, S A

    2014-11-01

    In perhaps the first-ever study of its kind, the effect of vermicompost, derived solely from an allelopathic weed, on the germination, growth, and yield of a botanical species, has been carried out. In test plots, the soil was treated with the vermicompost of lantana (Lantana camara) at the rates of 5, 7.5, and 10 t ha(-1), and cluster bean (Cyamopsis tetragonoloba) was grown on it. The performance of these systems was compared with the systems in which the soil was fortified with inorganic fertilizers (IFs) in concentrations equivalent to those present in the respective vermicompost (VC) treatments. Additionally, a set of control was studied in which the soil was used without fortification by either VC or IF. It was seen that up to 51.5 % greater germination success occurred in the VC treatments compared to controls. VC also supported better plant growth in terms of stem diameter, shoot length, shoot mass, number of leaves, and leaf pigments. The positive impact extended up to fruit yield. In addition, vermicast application enhanced root nodule formation, reduced disease incidence, and allowed for a smaller number of stunted plants. The results indicate that allelopathic ingredients of lantana seem to have been totally eliminated during the course of its vermicomposting and that lantana vermicompost has the potential to support germination, growth, and fruit yield better than equivalent quantities of IFs. PMID:24946699

  10. Germination and growth of wheat in simulated Martian atmospheres

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco L.

    1991-01-01

    One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat (Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the earth atmosphere controls.

  11. Germination and growth of wheat in simulated Martian atmospheres

    NASA Astrophysics Data System (ADS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco L.

    One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat ( Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the Earth atmosphere controls.

  12. Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato.

    PubMed

    Sharma, Rashmi; Gupta, Rajendra

    2007-05-30

    Cyperus rotundus (nutgrass) is the world's worst invasive weed through tubers. Its success in dominating natural habitats depends on its ability to prevent herbivory, and to kill or suppress other plants growing in its vicinity. The present study was done to investigate whether chemicals in nutgrass target neuronal and non-neuronal acetylcholinesterases to affect surrounding animals and plants respectively. Methanolic extract of tubers of nutgrass strongly inhibited activity of AChE from electric eel, wheat and tomato. It also inhibited seed germination and seedling growth in wheat and tomato. Our results suggest that inhibitor of AChE in nutgrass possibly acts as agent of plant's war against (a) herbivore animals, and (b) other plants trying to grow in the same habitat. An antiAChE from nutgrass has been purified by employing chromatography and crystallization. The structural determination of the purified inhibitor is in progress. PMID:17367818

  13. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    PubMed

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress. PMID:19396238

  14. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    PubMed

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows. PMID:25628114

  15. Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model.

    PubMed

    Raju, Dugyala; Mehta, Urmil J; Beedu, Sashidhar Rao

    2016-06-01

    An eco-friendly green and one-pot synthesis of highly monodispersed iron (Fe) nanoparticles (NPs) by using a natural biopolymer, gum kondagogu (GK) as reducing and capping agent is proposed. The NPs synthesised were characterised by ultra-violet-visible spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray diffraction. As the concentration of gum and time increases, the intensity of NPs formation increased. The NPs were highly monodispersed with uniform circular shapes of 2-6 nm in size. The formed NPs were crystalline in nature which was confirmed by diffraction analysis. The conversion ratio of Fe ionic form to NPs was 21% which was quantified by inductively coupled plasma mass spectroscopy (ICP-MS). Fe is essential for plant growth and development. A study was conducted to examine the effect of these NPs on the growth of mung bean (Vigna radiata). The radical length and biomass was increased in seeds exposed to Fe NPs than the ions. The uptake of Fe NPs by the sprouts was also quantified by ICP-MS, in which Fe was more in mung bean seeds exposed to NPs. The α-amylase activity was increased in the seeds exposed to NPs. The observed increase in the biomass by Fe NPs and seed germination may facilitate its application in the agriculture as an important cost-effective method for plant growth. PMID:27256894

  16. Kenaf (Hibiscus cannabinus L.) impact on post-germination seedling growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the post-germination growth of five plant species...

  17. Inter-specific variation in salinity effects on germination in Pacific Northwest tidal wetland plants

    EPA Science Inventory

    Environmental stressors such as salinity may affect plant germination and early growth, eventually impacting the distribution and abundance of more mature individuals. In a lab study we evaluated germination sensitivity to salinity in 13 tidal wetland species found in the Pacific...

  18. The contribution of germination functional traits to population dynamics of a desert plant community.

    PubMed

    Huang, Zhenying; Liu, Shuangshuang; Bradford, Kent J; Huxman, Travis E; Venable, D Lawrence

    2016-01-01

    Early life-cycle events play critical roles in determining the population and community dynamics of plants. The ecology of seeds and their germination patterns can determine range limits, adaptation to environmental variation, species diversity, and community responses to climate change. Understanding the adaptive consequences and environmental filtering of such functional traits will allow us to explain and predict ecological dynamics. Here we quantify key functional aspects of germination physiology and relate them to an existing functional ecology framework to explain long-term population dynamics for 13 species of desert annuals near Tucson, Arizona, USA. Our goal was to assess the extent to which germination functional biology contributes to long-term population processes in nature. Some of the species differences in base, optimum, and maximum temperatures for germination, thermal times to germination, and base water potentials for germination were strongly related to 20-yr mean germination fractions, 25-yr average germination dates, seed size, and long-term demographic variation. Comparisons of germination fraction, survival, and fecundity vs. yearly changes in population size found significant roles for all three factors, although in varying proportions for different species. Relationships between species' germination physiologies and relative germination fractions varied across years, with fast-germinating species being favored in years with warm temperatures during rainfall events in the germination season. Species with low germination fractions and high demographic variance have low integrated water-use efficiency, higher vegetative growth rates, and smaller, slower-germinating seeds. We have identified and quantified a number of functional traits associated with germination biology that play critical roles in ecological population dynamics. PMID:27008793

  19. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. PMID:17374428

  20. Impact of kenaf (Hibiscus cannabinus L.) leaf, bark, and core extracts on germination of five plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the germination and post-germination development ...

  1. Bioaugmentation with Petroleum-Degrading Consortia Has a Selective Growth-Promoting Impact on Crop Plants Germinated in Diesel Oil-Contaminated Soil.

    PubMed

    Graj, Weronika; Lisiecki, Piotr; Szulc, Alicja; Chrzanowski, Lukasz; Wojtera-Kwiczor, Joanna

    2013-01-01

    Rhizoremediation is a complex type of green clean-up technology that involves both plants and the rhizosphere-associated microorganisms to decompose hazardous compounds. The success of the strategy strongly depends on plant tolerance towards the pollutant, as well as plant's interactions with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation of all plant species. Moreover, M10 consortiums increased the germination index at 6,000 mg diesel oil per kilogram dry soil in the case of Indian mustard, alfalfa, and HEAR. The latter species was found to increment its dry weight upon bioaugmentation with M10 bacteria and all diesel oil treatments (6,000 and 24,000 mg diesel oil per kilogram dry soil). The initial results indicate HEAR and the M10 bacterial consortium as a promising plant-microbe tandem for a long-term rhizoremediation process. PMID:24078757

  2. The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates Pollen Germination and Tube Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato, LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here w...

  3. Growth patterns for etiolated soybeans germinated under spaceflight conditions

    NASA Astrophysics Data System (ADS)

    Levine, Howard G.; Piastuch, William C.

    In the GENEX (GENe EXpression) spaceflight experiment (flown on STS-87), six surface sterilized soybean seeds ( Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to initiate the process of seed germination on-orbit and subsequently transferred them to four light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight plants ( N = 177), (2) the corresponding ground control population ( N = 183), plus (3) additional controls grown on the ground under clinostat conditions ( N = 93). No significant morphological differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. Some causes underlying this phenomenon are speculated on.

  4. How Plants Make Light Work of Growth.

    ERIC Educational Resources Information Center

    Kendrick, R. E.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas in biology. Contained is information on how plants use light for growth, seed germination, and flowering. (PB)

  5. Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches.

    PubMed

    Ilyas, Muhammad; Rasheed, Awais; Mahmood, Tariq

    2016-09-01

    The important role of germins (GER) and genes coding for germin-like proteins (GLP) in responses against various stresses in both homologous and heterologous systems is well validated. This review summarizes the work on their functional validation using various biotechnological approaches. The genes are widely expressed during a specific period of plant growth and development, and exhibit a pattern of evolutionary subfunctionalization at both the intracellular and whole plant level. Their applications against various biotic and abiotic stresses, especially against fungal pathogens, are enormous. Although the validation of these proteins against various stresses has led to the development of commercially and agronomically important transgenic plants, much work is still needed to exploit this ever-expanding repertoire of genes and deploy them for commercial use. Historical progress of genetic engineering in GERs and GLPs is reviewed, and future prospects for their potential role in crop improvement are highlighted. PMID:27230937

  6. Effects of hypobaria and hypoxia on seed germination of six plant species

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  7. Strigolactones as germination stimulants for root parasitic plants.

    PubMed

    Yoneyama, Koichi; Awad, Ayman A; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo

    2010-07-01

    Witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are the two most devastating root parasitic plants belonging to the family Orobanchaceae and are causing enormous crop losses throughout the world. Seeds of these root parasites will not germinate unless they are exposed to chemical stimuli, 'germination stimulants' produced by and released from plant roots. Most of the germination stimulants identified so far are strigolactones (SLs), which also function as host recognition signals for arbuscular mycorrhizal fungi and a novel class of plant hormones inhibiting shoot branching. In this review, we focus on SLs as germination stimulants for root parasitic plants. In addition, we discuss how quantitative and qualitative differences in SL exudation among sorghum cultivars influence their susceptibility to Striga. PMID:20403809

  8. Strigolactones as Germination Stimulants for Root Parasitic Plants

    PubMed Central

    Yoneyama, Koichi; Awad, Ayman A.; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo

    2010-01-01

    Witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are the two most devastating root parasitic plants belonging to the family Orobanchaceae and are causing enormous crop losses throughout the world. Seeds of these root parasites will not germinate unless they are exposed to chemical stimuli, ‘germination stimulants’ produced by and released from plant roots. Most of the germination stimulants identified so far are strigolactones (SLs), which also function as host recognition signals for arbuscular mycorrhizal fungi and a novel class of plant hormones inhibiting shoot branching. In this review, we focus on SLs as germination stimulants for root parasitic plants. In addition, we discuss how quantitative and qualitative differences in SL exudation among sorghum cultivars influence their susceptibility to Striga. PMID:20403809

  9. Do High-nickel Leaves Shed by the Ni-hyperaccumulator Alyssum Murale Inhibit Seed Germination of Competing Plants?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental allelopathy suggests that nickel (Ni)-rich leaves shed by hyperaccumulators inhibit the germination and growth of nearby plant species. Here, the germination of eight herbaceous species following addition of Alyssum murale biomass or Ni(NO3)2, with the same Ni level added to soil, was ass...

  10. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  11. In Vivo Effects of Barbituates on Seed Germination and Seedling Growth.

    ERIC Educational Resources Information Center

    Kordan, H. A.

    1984-01-01

    A simple, low-cost experimental system can be used to demonstrate the "in vivo" effects of barbituates on seed germination and seedling growth behavior in different plant species. Lipid solubility and concentration of individual barbituates both affect the response. List of materials needed, procedures used, and typical results obtained are…

  12. Response of maize germination and growth to HTC filtrate type and concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrothermal carbonization (HTC) is a thermochemical treatment process that allows for the conversion of biomass slurries into value added products. The option of using HTC filtrate as a liquid based fertilizer for agricultural crop production was evaluated through germination and plant growth studi...

  13. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  14. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    PubMed

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  15. The effect of gravity on plant germination

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Goto, E.; Tanaka, M.

    1996-01-01

    An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degC under an average light condition of 110 mumol/m^2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under micro gravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth.

  16. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum. PMID:23741804

  17. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    PubMed Central

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed. PMID:26479260

  18. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis.

    PubMed

    Zhao, Shujuan; Wu, Yuxuan; He, Yuqing; Wang, Yarui; Xiao, Jun; Li, Lin; Wang, Yanping; Chen, Xi; Xiong, Wei; Wu, Yan

    2015-12-01

    The involvement of Rho of Plants (ROP) GTPases in abscisic acid (ABA) signalling in Arabidopsis has been demonstrated in many studies. However, the roles of RopGEFs (Rop guanine nucleotide exchange factors), which modulate ROP activities in ABA signalling, are poorly understood. Here, we demonstrate that RopGEF2 may play a negative role in ABA-suppressed seed germination and post-germination growth. We show that disruption of RopGEF2 enhances sensitivity to exogenous ABA in seed germination assays and that RopGEF2pro-GUS is mainly expressed in developing embryos and germinating seeds. Interestingly, YFP-RopGEF2 is located in both the cytoplasmic region and in mitochondria. Notably, the PRONE2 (plant-specific ROP nucleotide exchanger 2) domain of RopGEF2 is detected in mitochondria, whereas the N-terminus of RopGEF2 is shown to be in the cytosol. After ABA treatment, degradation of RopGEF2 is triggered in the cytosol through the ubiquitin-26S proteasome system. The binding of RopGEF2 to ROP2, ROP6 or ROP10, which has been demonstrated to be involved in ABA signalling, not only alters the localization of RopGEF2 but also enables RopGEF2 to escape degradation in the cell. Thus, in this study, we deduce a sophisticated mechanism of ABA-mediated RopGEF2-ROP signalling, which potentially implicates the inactivation of ROPs in responsiveness to ABA. PMID:26461226

  19. Effect of marble industry effluent on seed germination, post germinative growth and productivity of Zea mays L.

    PubMed

    Akbar, Fazal; Hadi, Fazal; Ullah, Zakir; Zia, Muhammad Amir

    2007-11-15

    A green house study was conducted at the University of Malakand, NWFP, Pakistan to evaluate the effect of marble industry effluent on soil pH, germination, post germinative growth and productivity of maize. The experiment was conducted in triplicate form for each treatment and tape water was used as control (T0). Effluents were diluted with tap water at concentration of 20% (T1), 40% (T2), 60% (T3), 80% (T4) and also used 100% (T5) concentration in 4 kg soil pot(-1) and plants were grown for 90 days. Results showed that there was a linear increase in pH of soil with increase in effluent concentration while germination, root length and stem girth was enhanced and found maximum at 40% concentration of effluent applied. The shoot length and root dry biomass was depressed as compared to control. It is concluded from the present study that marble industry effluent can be used as a fertilizer in low concentration especially for highly acidic soil but there is still need to carry out series of greenhouse and field trials to ascertain the fertilizer potentials of this effluent for maize crop. PMID:19090297

  20. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    PubMed Central

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  1. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L.) Verdc. (Fabaceae))

    PubMed Central

    Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire

    2015-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA. PMID:26550604

  2. He-Ne laser-induced changes in germination, thermodynamic parameters, internal energy, enzyme activities and physiological attributes of wheat during germination and early growth

    NASA Astrophysics Data System (ADS)

    Jamil, Yasir; Perveen, Rashida; Ashraf, Muhammad; Ali, Qasim; Iqbal, Munawar; Ahmad, Muhammad Raza

    2013-04-01

    Using low power continuous wave He-Ne laser irradiation of seeds, the germination characteristics, thermodynamic changes and enzyme activities as well as changes in morphological attributes were explored for wheat (Triticum aestivum L. cv. S-24) cultivar. The changes in thermodynamic properties such as change in enthalpy (ΔH), entropy generation [(ΔSe)], entropy flux [(ΔSc)], entropy generation ratio [(ΔS)e/Δt], and entropy flux ratio [(ΔS)c/Δt] showed significant (P < 0.05) changes at an energy level of 500 mJ. The germination energy (GE), germination percentage (G%), germination index (GI) as well as α-amylase and protease activities was also found to be higher at 500 mJ, while the mean emergence time (MET) and time for 50% germination (E50) decreased for 300 mJ irradiance. The internal energy of the seeds increased significantly at all laser energy levels, but was highest for 500 mJ 72 h after sowing. The enzyme activities increased up to 24 h after sowing and then declined. The activities of α-amylase and protease were found to be positively correlated with the plant physiological attributes. These results indicate that low power continuous wave He-Ne laser (632 nm) treatment has considerable biological effects on seed metabolism during germination as well as on later vegetative growth.

  3. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  4. Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut

    PubMed Central

    Palacios, Sofia; Casasnovas, Francisco; Ramirez, María L.; Reynoso, María. M.; Torres, Adriana M.

    2014-01-01

    Studies were conducted to determine the effect of osmotic and matric stress on germination and growth of two Fusarium solani strains, the etiological agent responsible of peanut brown root rot. Both strains had similar osmotic and matric potential ranges that allowed growth, being the latter one narrower. F. solani showed the ability to grow down to −14 MPa at 25 °C in non-ionic modified osmotic medium, while under matric stress this was limited to −8.4 MPa at 25 °C. However, both strains were seen to respond differently to decreasing osmotic and matric potentials, during early stages of germination. One strain (RC 338) showed to be more sensitive to matric than osmotic (non ionic) and the other one (RC 386) showed to be more sensitive to osmotic than matric imposed water stress. After 24 h of incubation, both isolates behaved similarly. The minimum water potential for germination was −8.4 MPa on glycerol amended media and −5.6 MPa for NaCl and PEG amended media, respectively. The knowledge of the water potential range which allow mycelia growth and spore germination of F. solani provides an inside to the likely behaviour of this devastating soilborne plant pathogen in nature and has important practical implications. PMID:25477950

  5. Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut.

    PubMed

    Palacios, Sofia; Casasnovas, Francisco; Ramirez, María L; Reynoso, María M; Torres, Adriana M

    2014-01-01

    Studies were conducted to determine the effect of osmotic and matric stress on germination and growth of two Fusarium solani strains, the etiological agent responsible of peanut brown root rot. Both strains had similar osmotic and matric potential ranges that allowed growth, being the latter one narrower. F. solani showed the ability to grow down to -14 MPa at 25 °C in non-ionic modified osmotic medium, while under matric stress this was limited to -8.4 MPa at 25 °C. However, both strains were seen to respond differently to decreasing osmotic and matric potentials, during early stages of germination. One strain (RC 338) showed to be more sensitive to matric than osmotic (non ionic) and the other one (RC 386) showed to be more sensitive to osmotic than matric imposed water stress. After 24 h of incubation, both isolates behaved similarly. The minimum water potential for germination was -8.4 MPa on glycerol amended media and -5.6 MPa for NaCl and PEG amended media, respectively. The knowledge of the water potential range which allow mycelia growth and spore germination of F. solani provides an inside to the likely behaviour of this devastating soilborne plant pathogen in nature and has important practical implications. PMID:25477950

  6. Effects of three fire-suppressant foams on the germination and physiological responses of plants.

    PubMed

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks. PMID:24943813

  7. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    NASA Astrophysics Data System (ADS)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  8. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice.

    PubMed

    Wang, Wenyi; Xu, Mengyun; Wang, Ya; Jamil, Muhammad

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3 (Ri)) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3 (Ri) seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3 (Ri) seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3 (Ri) lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants. PMID:24971328

  9. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa.

    PubMed

    Panuccio, M R; Jacobsen, S E; Akhtar, S S; Muscolo, A

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  10. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa

    PubMed Central

    Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  11. Effect of different fertilizers on the germination and growth of velvetleaf (Abutilon theohrasti Medic.).

    PubMed

    Nagy, V; Nádasy, E

    2011-01-01

    Velvetleaf (Abutilon theophrasti Medic.) is one of the most important and invasive weed species in Hungary and also in Europe. Its dangerousness derives from its germination biology characteristics and its strong competitive and allelopathic ability. In wide line space crops such as corn, sunflower and soybean it may reduce the yield significantly, According to some authors, this yield reducing ability is lower with bigger nutrient supplies. Our experiment was carried in Keszthely, Hungary (46 degrees 45'35.53"; 17 degrees 14'26.9") at the Institute of Plant Protection, Georgikon Faculty, University of Pannonia in 2009 and 2010. We studied the separate and combined effect of different fertilizers on the germination and growth of velvetleaf in greenhouse pot experiments. The applied fertilizers were Linzer NAC (27% N) in doses of 200 kg N ha(-1) (2,325 g Linzer NAC/pot), Patent Káli (30% K2O) in 100 kg K2O ha(-1) (1,05g Patent Káli/pot) and DC Szuperfoszfát (20.5% P2O5) in 100 kg P2O5 ha(-1) (1,05g DC Szuperfoszfát/pot). Our study was carried out in 1.5-litre pots with Ramman brown-forest soil in four replications, with 25 seeds of velvetleaf per pots. Five velvetleaf plants were removed four and six weeks after planting from the pots and the lenght, the fresh- and the air dried weight and the leaf area of the plants was measured. The data were analyzed by ANOVA. We observed that nitrogen which was applied alone or with other nutrients can reduce the germination and growth of Abutilon with 200kg N ha(-1) doses. Potassium and phosphorus stimulate germination and growth. The biggest stimulating effect was produced by potassium when it was applied alone. PMID:22696961

  12. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.).

    PubMed

    Zhou, Lina; Xia, Mengjie; Wang, Li; Mao, Hui

    2016-09-01

    As a persistent organic pollutant in the environment, perfluorooctanoic acid (PFOA) has been extensively investigated. It can accumulate in food chains and in the human body. This work investigated the effect of PFOA on wheat (Triticum aestivum L.) germination and seedling growth by conducting a germination trial and a pot trial. A stimulatory effect of PFOA on seedling growth and root length of wheat was found at <0.2 mg kg(-1), while >800 mg kg(-1) PFOA inhibited germination rate, index, and root and shoot growth. In the pot trial, PFOA concentration in root was double that in the shoot. Soil and plant analyzer development (SPAD) and plant height of wheat seedling were inhibited by adding 200 mg kg(-1) PFOA. Proline content and POD activity in wheat seedlings increased as PFOA increased, while CAT activity decreased. Using logarithmic equations, proline content was selected as the most sensitive index by concentration for 50% of maximal effect (EC50). Hence, the tolerance of wheat seedlings to PFOA levels could be evaluated on the basis of the physiological index. PMID:27337433

  13. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  14. Effects of cold plasma treatment on seed germination and seedling growth of soybean

    PubMed Central

    Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong

    2014-01-01

    Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean. PMID:25080862

  15. Cadmium Stress Disrupts the Endomembrane Organelles and Endocytosis during Picea wilsonii Pollen Germination and Tube Growth

    PubMed Central

    Feng, Yu; Li, Xue; Wei, Qian; Sheng, Xianyong

    2014-01-01

    As one of the most severe pollutants, cadmium has been reported to be harmful to plant cells, but the effects of cadmium on gymnosperm pollen germination and tube growth and the mechanism of this involvement are still unclear. Here, we report that cadmium not only strongly inhibited P. wilsonii pollen germination and tube growth, but also significantly altered tube morphology in a dose-dependent manner. Time-lapse images obtained with a laser scanning confocal microscope revealed that endocytosis was dramatically inhibited by cadmium stress. Further investigation with ER-Tracker dye indicated that cadmium stress reduced the number of the Golgi apparatus, and induced dilation of ER. Additionally, Lyso-Tracker staining showed that cadmium distinctly promoted the formation of acidic organelles in pollen tubes, likely derived from the dilated ER. Taken together, our studies indicated that P. wilsonii pollens were highly susceptible to cadmium stress, and that cadmium stress strongly inhibited pollen germination and tube growth by disrupting the endomembrane organelles, inhibiting endo/exocytosis, and forming acidic vacuoles, resulting in swollen tube tips and irregularly broadened tube diameters. These findings provide a new insight into the effects of cadmium toxicity on the tip growth of pollen tubes. PMID:24722362

  16. Effects of cold plasma treatment on seed germination and seedling growth of soybean

    NASA Astrophysics Data System (ADS)

    Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong

    2014-07-01

    Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean.

  17. Methyl anthranilate and γ-decalactone inhibit strawberry pathogen growth and achene Germination.

    PubMed

    Chambers, Alan H; Evans, Shane Alan; Folta, Kevin M

    2013-12-26

    Plant volatile compounds have been shown to affect microbial growth and seed germination. Here two fruity volatiles found in strawberry ( Fragaria × ananassa ), γ-decalactone ("peachlike" aroma) and methyl anthranilate ("grapelike" aroma), were tested for effects on relevant pathogens and seedling emergence. Significant growth reduction was observed for Botrytis cinerea , Colletotrichum gloeosporioides , Colletotrichum acutatum , Phomopsis obscurans , and Gnomonia fragariae at 1 mM γ-decalactone or methyl anthranilate, and 5 mM γ-decalactone or methyl anthranilate supplemented medium resulted in complete cessation of fungal growth. Phytophthora cactorum was especially sensitive to 1 mM γ-decalactone, showing complete growth inhibition. Bacteriostatic effects were observed in Xanthamonas cultures. Postharvest infestations on store-bought strawberries were inhibited with volatile treatment. The γ-decalactone volatile inhibited strawberry and Arabidopsis thaliana germination. These findings show that two compounds contributing to strawberry flavor may also contribute to shelf life and suggest that γ-decalactone may play an ecological role by preventing premature germination. PMID:24328200

  18. Effects of a magnetic field on the germination of plants

    NASA Astrophysics Data System (ADS)

    Hirota, Noriyuki; Nakagawa, Jun; Kitazawa, Koichi

    1999-04-01

    The effects of a nonuniform magnetic field on the germination of plants were studied. When a 10 T magnetic field was applied at the center of a superconducting magnet, a cucumber shoot germinating in a horizontal bore leaned towards the field center. In contrast, the root grew in the direction opposite the shoot. The observed result seemed to have occurred as a result of the magnetic force influencing the geotaxis of the cucumber. This idea was supported qualitatively by analysis results of the experimental data. Knowledge obtained in this study will be helpful for the evaluation of the effect of the magnetic field on living bodies and suggests the possibility of applying magnetic fields in other areas of research.

  19. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin. PMID:22640001

  20. Are cactus growth forms related to germination responses to light? A test using Echinopsis species

    NASA Astrophysics Data System (ADS)

    Ortega-Baes, Pablo; Aparicio-González, Mónica; Galíndez, Guadalupe; del Fueyo, Patricia; Sühring, Silvia; Rojas-Aréchiga, Mariana

    2010-05-01

    In this study, we investigated the effect of light regimen (white light vs. darkness) on the germination of 12 species of the Echinopsis genus (tribe Trichocereeae, Cactaceae). This genus presents a variety of growth forms and relatively small and uniform seed size. These traits allowed us to test, within the same linage and removing seed mass effect, the hypothesis that the germination response to light (indifferent to light or positive photoblastic) is related to growth form. Our results reject this hypothesis since no seeds germinated in darkness, so all of the species can be classified as being positively photoblastic. The proportion of seed germination with white light was significantly different among cactus growth forms. Columnar cacti (arborescent, creeping and short) showed a greater proportion of seed germination than barrel and globose cacti. The germination rate differed among growth forms and species. At constant temperatures, creeping columnar cacti presented a significantly higher germination rate than the other growth forms. With alternating temperatures, columnar cacti showed higher germination rates than the other growth forms. The low proportion of seeds that germinated for some species indicates that they show seed dormancy. Our results suggest that germination responses to light in the cactus family could be related to seed mass and phylogenetic constraints.

  1. Genome Sequence of Serratia plymuthica Strain S13, an Endophyte with Germination- and Plant-Growth-Promoting Activity from the Flower of Styrian Oil Pumpkin

    PubMed Central

    Fürnkranz, Michael; Grube, Martin; Berg, Gabriele

    2013-01-01

    The bacterium Serratia plymuthica strain S13 was demonstrated to colonize various plant-associated microhabitats and to suppress damping-off diseases. The completed genome sequence has a size of 5.5 Mb, containing 4,957 putative protein-encoding regions, and will be used to identify genetic determinants enabling the bacterium to escort a plant’s entire life cycle. PMID:23929484

  2. Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass

    PubMed Central

    Wang, Quanzhen; Chen, Guo; Yersaiyiti, Hayixia; Liu, Yuan; Cui, Jian; Wu, Chunhui; Zhang, Yunwei; He, Xueqing

    2012-01-01

    Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds. PMID:23071756

  3. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    PubMed

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area. PMID:24066549

  4. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  5. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth

    PubMed Central

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from −1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata. PMID:26089829

  6. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth.

    PubMed

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from -1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata. PMID:26089829

  7. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula

    PubMed Central

    Dias, Paula Menna Barreto; Brunel-Muguet, Sophie; Dürr, Carolyne; Huguet, Thierry; Demilly, Didier; Wagner, Marie-Helene

    2010-01-01

    Enhancing the knowledge on the genetic basis of germination and heterotrophic growth at extreme temperatures is of major importance for improving crop establishment. A quantitative trait loci (QTL) analysis was carried out at sub- and supra-optimal temperatures at these early stages in the model Legume Medicago truncatula. On the basis of an ecophysiological model framework, two populations of recombinant inbred lines were chosen for the contrasting behaviours of parental lines: LR5 at sub-optimal temperatures (5 or 10°C) and LR4 at a supra-optimal temperature (20°C). Seed masses were measured in all lines. For LR5, germination rates and hypocotyl growth were measured by hand, whereas for LR4, imbibition and germination rates as well as early embryonic axis growth were measured using an automated image capture and analysis device. QTLs were found for all traits. The phenotyping framework we defined for measuring variables, distinguished stages and enabled identification of distinct QTLs for seed mass (chromosomes 1, 5, 7 and 8), imbibition (chromosome 4), germination (chromosomes 3, 5, 7 and 8) and heterotrophic growth (chromosomes 1, 2, 3 and 8). The three QTL identified for hypocotyl length at sub-optimal temperature explained the largest part of the phenotypic variation (60% together). One digenic interaction was found for hypocotyl width at sub-optimal temperature and the loci involved were linked to additive QTLs for hypocotyl elongation at low temperature. Together with working on a model plant, this approach facilitated the identification of genes specific to each stage that could provide reliable markers for assisting selection and improving crop establishment. With this aim in view, an initial set of putative candidate genes was identified in the light of the role of abscissic acid/gibberellin balance in regulating germination at high temperatures (e.g. ABI4, ABI5), the molecular cascade in response to cold stress (e.g. CBF1, ICE1) and hypotheses on

  8. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula.

    PubMed

    Dias, Paula Menna Barreto; Brunel-Muguet, Sophie; Dürr, Carolyne; Huguet, Thierry; Demilly, Didier; Wagner, Marie-Helene; Teulat-Merah, Béatrice

    2011-02-01

    Enhancing the knowledge on the genetic basis of germination and heterotrophic growth at extreme temperatures is of major importance for improving crop establishment. A quantitative trait loci (QTL) analysis was carried out at sub- and supra-optimal temperatures at these early stages in the model Legume Medicago truncatula. On the basis of an ecophysiological model framework, two populations of recombinant inbred lines were chosen for the contrasting behaviours of parental lines: LR5 at sub-optimal temperatures (5 or 10°C) and LR4 at a supra-optimal temperature (20°C). Seed masses were measured in all lines. For LR5, germination rates and hypocotyl growth were measured by hand, whereas for LR4, imbibition and germination rates as well as early embryonic axis growth were measured using an automated image capture and analysis device. QTLs were found for all traits. The phenotyping framework we defined for measuring variables, distinguished stages and enabled identification of distinct QTLs for seed mass (chromosomes 1, 5, 7 and 8), imbibition (chromosome 4), germination (chromosomes 3, 5, 7 and 8) and heterotrophic growth (chromosomes 1, 2, 3 and 8). The three QTL identified for hypocotyl length at sub-optimal temperature explained the largest part of the phenotypic variation (60% together). One digenic interaction was found for hypocotyl width at sub-optimal temperature and the loci involved were linked to additive QTLs for hypocotyl elongation at low temperature. Together with working on a model plant, this approach facilitated the identification of genes specific to each stage that could provide reliable markers for assisting selection and improving crop establishment. With this aim in view, an initial set of putative candidate genes was identified in the light of the role of abscissic acid/gibberellin balance in regulating germination at high temperatures (e.g. ABI4, ABI5), the molecular cascade in response to cold stress (e.g. CBF1, ICE1) and hypotheses on

  9. Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families.

    PubMed

    Kumari, A; Papenfus, H B; Kulkarni, M G; Pošta, M; Van Staden, J

    2015-07-01

    Plant-derived smoke stimulates seed germination in numerous plant species. Smoke also has a positive stimulatory effect on pollen germination and pollen tube growth. The range of plant families affected my smoke still needs to be established since the initial study was restricted to only three species from the Amaryllidaceae. The effects of smoke-water (SW) and the smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB) on pollen growth characteristics were evaluated in seven different plant families. Smoke-water (1:1000 and 1:2000 v:v) combined with either Brewbaker and Kwack's (BWK) medium or sucrose and boric acid (SB) medium significantly improved pollen germination and pollen tube growth in Aloe maculata All., Kniphofia uvaria Oken, Lachenalia aloides (L.f.) Engl. var. aloides and Tulbaghia simmleri P. Beauv. Karrikinolide (10(-6) and 10(-7) m) treatment significantly improved pollen tube growth in A. maculata, K. uvaria, L. aloides and Nematanthus crassifolius (Schott) Wiehle compared to the controls. BWK or SB medium containing TMB (10(-3) m) produced significantly longer pollen tubes in A. maculata, K. uvaria and N. crassifolius. These results indicate that plant-derived smoke and the smoke-isolated compounds may stimulate pollen growth in a wide range of plant species. PMID:25545791

  10. Differences in Germination, Growth, and Fecundity Characteristics of Dicamba-Fluroxypyr-Resistant and Susceptible Kochia scoparia

    PubMed Central

    Kumar, Vipan; Jha, Prashant

    2016-01-01

    The widespread occurrence of herbicide-resistant (HR) Kochia scoparia is an increasing concern for growers in the US Great Plains and Canada. K. scoparia populations resistant to dicamba have been reported in six US states. Populations cross-resistant to dicamba and fluroxypyr have been reported from wheat fields in Montana, USA. It is unclear whether resistance to the auxinic herbicides (dicamba and/or fluroxypyr), can alter the fitness traits of K. scoparia. The objectives of this research were to compare the germination dynamics in response to thermal environment, vegetative growth and fecundity characteristics, and the relative competitive ability of dicamba-fluroxypyr–susceptible (S) vs.–resistant (R) K. scoparia selected from within a single segregating population (collected from wheat-fallow field in MT). S and R selected lines were developed after three generations of recurrent group selection. Compared to the S selected line, the R selected line had lower cumulative germination at all constant temperatures except 25°C, and at all alternating temperatures except 30/35°C. Also, the R selected line had delayed germination relative to the S selected line. The R had lower plant height, plant width, primary branches, total leaf area, stem diameter, and shoot dry weight compared with the S plants in the absence of competition. The reduction in seed production per plant resulted in a 39% fitness cost. The 1000-seed weight of R (1.6 g) was also less than that of S (2.6 g). When grown in an intraspecific competition at different mixture proportions, replacement series indices for the growth parameters further indicated that the R was less competitive than the S. Evident from this research, the dicamba-fluroxypyr–resistant R selected line is less likely to persist in a field population in the absence of the auxinic herbicides. PMID:27537419

  11. Differences in Germination, Growth, and Fecundity Characteristics of Dicamba-Fluroxypyr-Resistant and Susceptible Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2016-01-01

    The widespread occurrence of herbicide-resistant (HR) Kochia scoparia is an increasing concern for growers in the US Great Plains and Canada. K. scoparia populations resistant to dicamba have been reported in six US states. Populations cross-resistant to dicamba and fluroxypyr have been reported from wheat fields in Montana, USA. It is unclear whether resistance to the auxinic herbicides (dicamba and/or fluroxypyr), can alter the fitness traits of K. scoparia. The objectives of this research were to compare the germination dynamics in response to thermal environment, vegetative growth and fecundity characteristics, and the relative competitive ability of dicamba-fluroxypyr-susceptible (S) vs.-resistant (R) K. scoparia selected from within a single segregating population (collected from wheat-fallow field in MT). S and R selected lines were developed after three generations of recurrent group selection. Compared to the S selected line, the R selected line had lower cumulative germination at all constant temperatures except 25°C, and at all alternating temperatures except 30/35°C. Also, the R selected line had delayed germination relative to the S selected line. The R had lower plant height, plant width, primary branches, total leaf area, stem diameter, and shoot dry weight compared with the S plants in the absence of competition. The reduction in seed production per plant resulted in a 39% fitness cost. The 1000-seed weight of R (1.6 g) was also less than that of S (2.6 g). When grown in an intraspecific competition at different mixture proportions, replacement series indices for the growth parameters further indicated that the R was less competitive than the S. Evident from this research, the dicamba-fluroxypyr-resistant R selected line is less likely to persist in a field population in the absence of the auxinic herbicides. PMID:27537419

  12. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis

    PubMed Central

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7–10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and 15N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  13. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis.

    PubMed

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7-10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and (15)N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  14. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  15. [Effects of Pb2+ stress on seed germination & seedling growth of Rabdosia rubescens].

    PubMed

    Kong, Si-Xin; Su, He; Zhan, Yan-Ting; Li, Hai-Kui; Cui, Xu-Sheng; Guo, Yu-Hai

    2014-11-01

    The seeds of Rabdosia rubescens were as the materials to research the impacts of different lead (Pb2+) concentrations(0, 135, 270, 540, 1 080 mg x L(-1)) on seed germination and seedling growth. The results show that: Low concentration of lead had no obvious effect on early germination of the seed, the germination vigor and germination speed were lightly higher but not significantly differed at the level of Pb concentration 135 mg x L(-1) with control group; Mid-high concentration of Pb solution (270-1 080 mg x L(-1)) significantly inhibited the seed germination and seedling growth, which reduced the seed germination rate, germination vigor, germination index, embryo root length and shoot length, growth index with increasing of Pb concentrations. There was a inhibitory effect on embryo shoot length and root length at mid-high lead concentrations stress, and stronger inhibitory effect on root , which was more sensitive than shoot to Pb stress(P < 0.05). Pb bioaccumulation coefficient (BC) was 0.76-2.59, increased with concentration of Pb; Pb enrichment in seedling mainly caused the growth inhibition. The fitting model predictive analyses show, the critical concentration of Pb, which causes the germination rate and biomass fresh weight reducing 10%, is 195.18, 101.65 mg x L(-1). PMID:25775796

  16. Coordinated action of β-galactosidases in the cell wall of embryonic axes during chickpea germination and seedling growth.

    PubMed

    Hernández-Nistal, J; Martín, I; Dopico, B; Labrador, E

    2014-03-01

    The plant cell wall is a dynamic structure whose constant modification is necessary for plant cells to grow and divide. In the cell walls of chickpea (Cicer arietinum) there are at least four β-galactosidases, whose presence and location in embryonic axes during the first 48 h of seed imbibition are discussed in this paper. We examined their roles as cell wall-modifying enzymes in germinative and/or post-germinative events. At the start of germination, only βV-Gal, and to a lesser extent βIV-Gal, appear in the axes before rupture of the testa, suggesting they are related to germination sensu stricto. Once the testa has broken, the four β-galactosidases are involved in growth and differentiation of the axes. Immunolocation of the different proteins in axes, which in part confirms previous results in seedlings and plants, allows assignment of post-germinative roles to βI-Gal and βIII-Gal as cell wall modifiers in vascular tissue elements. βIV-Gal and βV-Gal participate in the initial events of germination in which cell walls are involved: βV-Gal in cell proliferation, detachment of root cap cells and initial vascular tissue differentiation; both of them in xylem maturation; and βIV-Gal in thickening of the primary cell wall. Together with other cell wall-modifying enzymes, such as expansins and XTH, chickpea galactosidases might function in a sequential order in turnover of the primary cell wall, allowing the elongation of embryonic axes during seed germination. PMID:23731125

  17. Germination characteristics of six plant species growing on the Hanford Site. [Disturbed land revegetation feasibility studies

    SciTech Connect

    Cox, G.R.; Kirkham, R.R.; Cline, J.F.

    1980-03-01

    Six plant species (Siberian and thickspike wheatgrass, cheatgrass, sand dropseed, Indian ricegrass, and Russian thistle) found on the Hanford Site were studied as part of an investigation into the revegetation of disturbed areas. Germination response to three environmental parameters (soil moisture, soil temperature, and planting depth) were measured. Results indicated that when a polyethylene glycol solution was used to control the osmotic potential of the imbibition media, no significant decrease in germination rate occurred down to -3.0 bars. However, below -7.0 bars all species experienced a decrease in germination. When germinated in soil, all species except Russian thistle exhibited a significant decrease in germination rate at -0.3 bars. Russian thistle was the only species tested that exhibited germination at a soil temperature of 1/sup 0/C. All species gave optimum germination at temperatures between 10 and 15/sup 0/C. Thickspike wheatgrass was the only species tested which was able to germinate and emerge from a planting depth of greater than 2 inches. If supplemental moisture is provided, a shallow planting would be advisable for those species tested. If not overcome by pretreatment prior to planting, seed dormancy may be a significant factor which will reduce the germination potential of some species tested.

  18. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles.

    PubMed

    Andersen, Christian P; King, George; Plocher, Milt; Storm, Marjorie; Pokhrel, Lok R; Johnson, Mark G; Rygiewicz, Paul T

    2016-09-01

    Ten agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs. Eight of 10 species responded to nTiO2 , and 5 species responded to nCeO2 . Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain the developmental effects of these 2 ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, with unknown effects at later stages of the life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Environ Toxicol Chem 2016;35:2223-2229. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26773270

  19. [Characteristics of Cannabis sativa L.: seed morphology, germination and growth characteristics, and distinction from Hibiscus cannabinus L].

    PubMed

    Yoshimatsu, Kayo; Kitazawa, Takashi; Kawano, Noriaki; Iida, Osamu; Kawahara, Nobuo

    2010-02-01

    Illegal cannabis (Cannabis sativa L.) cultivation is still a social problem worldwide. Fifty inquiries on cannabis that Research Center for Medicinal Plant Resources (Tsukuba Division) received between January 1, 2000 and March 31, 2009 were itemized in to 8 categories; 1: seed identification, 2: plant identification, 3: indoor cultivation, 4: outdoor cultivation, 5: germination and growth characteristics, 6: expected amount of cannabis products derived from illegal cannabis plant, 7: non-narcotic cannabis and 8: usage of medicinal cannabis. Top three inquiries were 1: seed identification (16 cases), 3: indoor cultivation (10 cases) and 4: outdoor cultivation (6 cases). Characteristics of cannabis, namely seed morphology, germination and growth characteristics, and distinction from kenaf (Hibiscus cannabinus L.) that is frequently misjudged as cannabis, were studied to contribute for prevention of illegal cannabis cultivation. PMID:20118648

  20. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    PubMed

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method. PMID:25093210

  1. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.)

    PubMed Central

    Tian, Yu; Guan, Bo; Zhou, Daowei; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method. PMID:25093210

  2. Germination, survival, and growth of grass and forb seedlings: effects of soil moisture variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination and seedling growth, survivorship, and final biomass and their responses to varying numbers of days between watering were studied in two grass and six forb species native to the U.S. Central Plains grasslands. Our object was to assess the potential role of germination and seedling g...

  3. Growth regulators and chemicals stimulate germination of leafy spurge seeds (Euphorbia esula)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to survey the effect of various growth regulator and chemical treatments on germination of leafy spurge seeds. Non-treated seeds in this population were nearly fully imbibed in 3 h and display approximately 35% germination in 21 d under the normal alternating temperature of ...

  4. Effect of electroplating factory effluent on the germination and growth of hyacinth bean and mustard. [Dolichos lablab; Brassica compestris

    SciTech Connect

    Ajmal, M.; Khan, A.U.

    1985-12-01

    The effect of electroplating factory effluent in different concentrations (viz., 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0%) on the germination and growth of hyacinth beans (Dolichos lablab) and mustard seeds (Brassica compestris) was studied. The germination of seeds was delayed with the increase of effluent concentration and the germination of mustard seeds was totally inhibited at 1.5% effluent concentration while hyacinth bean seeds tolerated the effluent up to 2.5% concentration. The metal content in the hyacinth bean plants increased with increasing effluent concentration but after 1.0% effluent concentration, the concentration of all the metals (Ca, Mg, Na, K, Cu, Zn, Fe) decreased in the plants except Cr, which increased throughout. Percentage germination, fresh weight, dry weight, root length, and shoot length of the plants were also analyzed. Cd, Ni, Co, Mn, and Pb were not detectable in the hyacinth bean plants.

  5. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life. PMID:24954142

  6. Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda.

    PubMed

    Barth, Connor W; Meyer, Susan E; Beckstead, Julie; Allen, Phil S

    2015-08-01

    Population-based threshold models using hydrothermal time (HTT) have been widely used to model seed germination. We used HTT to model conidial germination and mycelial growth for the seed pathogen Pyrenophora semeniperda in a novel approach to understanding its interactions with host seeds. Germination time courses and mycelial growth rates for P.semeniperda were measured on PDA amended to achieve a series of five water potentials (ca. 0 to -6 MPa) at six constant temperatures (5-30 °C). Conidial germination was described with alternative population-based models using constant or variable base and maximum temperature and water potential parameters. Mycelial growth was modeled as a continuous, linear process with constant base temperature and base water potential. Models based on HTT showed reasonable fit to germination and growth rate data sets. The best-fit conidial germination model (R(2) = 0.859) was based on variable base and maximum temperature as a function of water potential. The good fit of the linear mycelial growth model (R(2) = 0.916) demonstrated the utility of HTT for modeling continuous as well as population-based processes. HTT modeling may be a useful approach to the quantification of germination and growth processes in a wide range of filamentous fungi. PMID:26228560

  7. Seed fate in the myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination

    NASA Astrophysics Data System (ADS)

    Salazar-Rojas, Betzabeth; Rico-Gray, Víctor; Canto, Azucena; Cuautle, Mariana

    2012-04-01

    Myrmecochory (seed dispersal by ants) differs from other dispersal systems in a series of advantages offered by the ants to the plants. Here, seed fate, from fruit to germination, of the myrmecochorous Neotropical plant Turnera ulmifolia L. is described. Seed movement from the fruit to their germination was studied, using different measurements and experiments. The results show that a T. ulmifolia individual produces ca. 5000 seeds per year. The main pre-seed-fall predators are the larvae of the Microlepidopteran Crocidosema plebejana Zeller, which consumed 1% of the seeds on the plant. The red-land crab Gecarcinus lateralis (Freminville) consumed 19% of the seeds beneath the plant and was the main post-seed-fall predator. Seed removal by ants was recorded on and beneath the plant, and ants removed 49% of the total seed production. Considering the seed removal events, the ant Forelius analis contributed with 64% of the total number of events. F. analis took seeds to its nest and discarded 23% of the seeds collected. Germination of seeds collected by F. analis was two to four times higher than that of seeds with and without elaiosome, respectively. The relatively low seed predation was probably related to ant defense, associated with the presence of extrafloral nectaries in this plant and with seed removal on the plant. Our results suggest that F. analis is a quantitatively efficient but qualitatively inefficient seed disperser of T. ulmifolia.

  8. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide

    PubMed Central

    Reichler, Stuart A.; Torres, Jonathan; Rivera, Amy L.; Cintolesi, Viviana A.; Clark, Greg; Roux, Stanley J.

    2009-01-01

    Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPγS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPγS were transduced via nitric oxide. The results showed that increases in extracellular ATPγS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPγS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPγS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPγS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway. PMID:19363208

  9. A high-throughput seed germination assay for root parasitic plants

    PubMed Central

    2013-01-01

    Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination

  10. Germination and Growth of a Vegetable Exposed to Very Severe Environmental Conditions Experimentally Induced by High Voltage

    NASA Astrophysics Data System (ADS)

    Aoki, Takashi; Ikezawa, Shunjiro

    1982-09-01

    Ultra-high-voltage (UHV) transmission power lines are required in order to reduce transmission energy losses, and to transfer more power across long distances. However, the ecological and biological influence of UHV lines has not been documented well. Possible influences of UHV lines are: electro-magnetic field, ozone, NOx, and ion shower. The purpose of this study was to obtain information on the germination and growth of Raphanus sativus L.cv. Kaiware-daikon exposed to an experimental environment in which all the above influences at very severe intensity levels were working simultaneously. Several environmental conditions severer than those predicted for future UHV lines were set up, using a high voltage at 60 Hz. The germination and growth of this plant were suppressed under the experimental conditions used, the suppression being greater the severer the conditions. When the electric field is strong, corona discharge occurs at the tip of the plant.

  11. [Characteristics of seed germination of rare plant species Reaumuria trigyna in west Ordos].

    PubMed

    Zhang, Ying-juan; Wang, Yu-shan; Li, Qing-feng

    2008-12-01

    Reaumuria trigyna is a relic species in the desert shrubbery vegetation in arid regions of northwestern China, and plays an important role in the maintenance of the stability of desert vegetation. In this paper, the seed traits and germination strategy of R. trigyna under different environmental conditions, e.g., light, temperature, soil moisture, and sand bury, were investigated. The results showed that R. trigyna seed had high vigor and high germination rate, and endured reserve. The seed could germinate either in light or in darkness, and the optimal temperature for germination was 20 degrees C - 25 degrees C or 15 degrees C/25 degrees C, with the germination rate being 93%. The seed could start to germinate when soil moisture content was 2%, and the germination rate was the highest (89%) when the moisture content was 12%. The optimal sand burial depth of R. trigyna seed was 1 cm, and no seed would germinate when the sand burial depth was >5 cm. Sand burial depth had significant effects on the seedling's emergence percentage and growth height, but lesser effects on seedling' s mass. Soil moisture and sand burial depth were the main environmental factors limiting the seed germination and seedling emergence of R. trigyna. The high seed germination rate of R. trigyna enhanced the survival risk of its seedlings, which was unfavorable to its handling with the extreme changes of desert environment. Such a character of R. trigyna seed was one of the factors causing the species endangered. PMID:19288705

  12. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds

    PubMed Central

    Cornelius, Stefanie; Witz, Sandra; Rolletschek, Hardy; Möhlmann, Torsten

    2011-01-01

    PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage. PMID:21865177

  13. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana

    PubMed Central

    Mwamburi, Lizzy A.; Laing, Mark D.; Miller, Ray M.

    2015-01-01

    Three non-ionic surfactants: Tween20, Tween80 and Breakthru ® were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassiana spore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations . Breakthru ® had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25–30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses. PMID:26221090

  14. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip.

    PubMed

    Siddiqui, Maryam Mehmood; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Mohammad; Mahmood, Tariq

    2014-04-01

    Toxicity of heavy metal is a wide spread environmental problem affecting all life forms including plants. In the present study the toxic effects of heavy metals, cadmium (Cd), chromium (Cr) and lead (Pb) on seed germination rate (%), germination index (G-index) and growth (mm) of Brassica rapa var. turnip have been investigated. The seeds were soaked either in distilled water (control) or in aqueous solutions of Cd, Cr and Pb (1 g/l, 2.5 g/l and 5 g/l) at 4°C in dark for 24 hours. Prior to inoculation onto MS0 medium, the soaked seeds were either washed with sterile distilled water or inoculated without washing on solidified MS0 medium at 25 ± 2°C with 16/8-hour photoperiod in a growth chamber to germinate in vitro. Such stress conditions revealed that by increasing the concentration of heavy metals, the germination rate (%), G-index value and growth (mm) decreased significantly, suggesting their toxic effect on B. rapa var. turnip. This study further revealed that experiment with seed washing resulted in less toxicity of selected heavy metals on germination and growth of B. rapa var. turnip, as compared to experiment without washing. However, the resulting toxicity order of the selected heavy metals remained the same (Cd > Cr > Pb). Significant decrease has been observed in seed viability and germination potential and finally heavy metals completely ceased further growth and development of plants. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity revealed that significantly higher activity was observed in control plants without heavy metals treatment. Furthermore, the Cd-treated plants showed decreased antioxidant activity. Cr and Pb were less toxic as compared to Cd (control > Pb > Cr > Cd). This study revealed that selected heavy metals not only affected plant development but also disturbed plant metabolic pathways. PMID:22872632

  15. Frugivory and the effects of ingestion by bats on the seed germination of three pioneering plants

    NASA Astrophysics Data System (ADS)

    de Carvalho-Ricardo, Maria C.; Uieda, Wilson; Fonseca, Renata Cristina B.; Rossi, Marcelo N.

    2014-02-01

    The dispersion and seedling establishment of pioneering plants can be favoured by the presence of frugivorous bats because the bats usually improve seed germination after ingestion. Although seed germinability is known to vary greatly after ingestion by different bats, the relative contribution of each bat species to seed germination within plant communities is poorly understood. In this study, we first determined the fauna of frugivorous bats in a semideciduous seasonal forest remnant in southern Brazil and subsequently identified the plant species of the seeds passed through their guts. Second, the germination performance (i.e., germination percentage and speed) of the seeds of three pioneering plants (Piper aduncum, Piper hispidinervum and Solanum granuloso-leprosum) ingested by the most abundant bats was compared with that of the non-ingested seeds (seeds collected from fruits). Additionally, the effects on seed germination of different bat species were compared. During one year, five species of frugivorous bats were caught, and the seeds of eleven identifiable plant species (not counting those of undetermined species) were found in their faeces. We found that the germination performance of the seeds of Piper species was significantly enhanced after ingestion by bats, whereas S. granuloso-leprosum seeds had neutral or reduced germinability when seeds in faeces were compared with pulp-removed seeds. Our results revealed that the bat species that were captured exerted different effects upon seed germination; such a disparity is expected to result in different rates of early establishment of these pioneer plants in tropical forests, most likely affecting forest composition and structure, particularly during the initial stages of succession.

  16. Impatiens pollen germination and tube growth as a bioassay for toxic substances

    SciTech Connect

    Bliderback, D.E.

    1981-01-01

    Pollen of Impatiens sultanii Hook F. germinates and forms tubes rapidly at 25/sup 0/C in a simple medium containing 111.0 ppm CaCl/sub 2/, 13.6 ppm KH/sub 2/PO/sub 4/, and 1000 ppm boric acid. Calcium, potassium, and boron are essential for germination and tube growth, but sucrose is not required. Pollen tubes grow with equal rapidity in liquid medium or on a medium solidified with 1% agar. Tube growth rates are linear for 1 hr. When different pollen sources or clonal sources are utilized, no variation in pollen tube growth is observed, and pollen from individual flowers remain viable for 26 hr. Formaldehyde inhibits pollen germination, tube production, and tube lengths at 7.5-10 ppm. With 2,4-dichlorophenol, pollen germination and tube production is inhibited at 0.5-20 ppm, while tube growth is inhibited significantly at 25 ppm. A biphasic inhibition of germination and tube formation occurs with p-cresol with a low level of inhibition occurring at 40-60 ppm and a higher one at 100-125 ppm. Tube lengths were inhibited at 150 ppm p-cresol. Acrylamide and dioctyl phthalate have no measurable effect upon pollen germination and tube growth.

  17. Allelopathy effect of rice straw on the germination and growth of Echinochloa crus-galli (L.) P. Beauv

    NASA Astrophysics Data System (ADS)

    Anuar, Fitryana Dewi Khairul; Ismail B., S.; Ahmad, Wan Juliana Wan

    2015-09-01

    A study on the effect of extract and decomposing rice straw of MR220 CL2, MR253 and MR263 on the germination and seedling growth of Echinochloa crus-galli has been conducted in the laboratory and greenhouse of Universiti Kebangsaan Malaysia. Three concentrations of aqueous extract (25, 50 and 100 g L-1) and decomposing rice straw (5, 10 and 15 g 500g-1) were used in the experiment. The experimental design used was the Complete Randomized Design (CRD) to evaluate the allelopathic effect of various concentrations of rice straw on various growth parameters of the test plants. All the experiments were carried out in three replications and conducted twice. Results showed that the rice straw extract of all the varieties showed significant effects on the germination and seedling growth of E. crus-galli. Aqueous extract of MR263 showed the greatest reduction on the germination of E.crus-galli compared to the other varieties at 100 g L-1 concentration (26% as compared to control). As the extract concentration of rice straw increased, the radicle length of E. crus-galli was significantly reduced. The radicle and hypocotyl length of E. crus-galli was significantly inhibited by 82.28% and 41.13% respectively at 100 g L-1 concentration of the aqueous extract of MR263. Decomposing rice straw of all rice varieties inhibited germination and all the growth parameters of the test plants. As the concentration of rice debris increased, the radicle length of the test plant decreased for all treatments. Decomposing rice straw of MR220 CL2 showed the greatest inhibitory effect on the growth of E. crus-galli compared to the other varieties. It inhibited the radicle, hypocotyl, fresh and dry weight of the test plants by 63.29%, 62.61%, 83.68% and 82.49% respectively as compared to the control. Therefore, rice straw of MR220 CL2, MR253 and MR263 showed allelopathic characteristics as they inhibited the germination and various growth parameters of E. crus-galli. However, further studies need

  18. Interference of the Histone Deacetylase Inhibits Pollen Germination and Pollen Tube Growth in Picea wilsonii Mast.

    PubMed

    Cui, Yaning; Ling, Yu; Zhou, Junhui; Li, Xiaojuan

    2015-01-01

    Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components. PMID:26710276

  19. Effect of Light Crude Oil-Contaminated Soil on Growth and Germination of Festuca arundinacea

    NASA Astrophysics Data System (ADS)

    Minai-Tehrani, Dariush; Shahriari, Malek-Hossein; Savaghebi-Firoozabadi, Gholamreza

    In this study the effect of different concentrations of light crude oil (up to 10%) on the growth and germination of Festuca arundinacea (Tall fescue) was studied. Present results showed that the germination number and dry biomass of the plant decreased by increasing light crude oil concentration in the soil. The biomass was higher in 1% crude oil sample while it was lower in 10% crude oil sample. The length of leaves reduced in higher crude oil concentration in comparison with the control. Total and oil-degrading colony count of soil showed that the microbial population in 7 and 10% samples was higher than the control and low concentrations of crude oil (1 and 3% samples). The crude oil reduction in the vegetated and the non-vegetated samples was higher in 1% sample. All vegetated samples had higher crude oil reduction than non-vegetated samples. The higher reduction was occurred at 1% sample, while the lower reduction was seen at 10% sample.

  20. Interference of the Histone Deacetylase Inhibits Pollen Germination and Pollen Tube Growth in Picea wilsonii Mast

    PubMed Central

    Zhou, Junhui; Li, Xiaojuan

    2015-01-01

    Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components. PMID:26710276

  1. NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis

    PubMed Central

    Li, Xilong; Pan, Yajie; Chang, Bowen; Wang, Yucheng; Tang, Zhonghua

    2016-01-01

    The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant growth and stress responses. One of the mechanism of their crosstalk is that NO is able to activate ethylene biosynthesis, possibly through post-translational modification of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we focus on the crosstalk of NO with ethylene signaling transduction transcription factor EIN3 (Ethylene Insensitive 3) and downstream gene expression in alleviating germination inhibition and growth damage induced by high salt. The Arabidopsis lines affected in ethylene signaling (ein3eil1) and NO biosynthesis (nia1nia2) were employed to compare with the wild-type Col-0 and overexpressing line EIN3ox. Firstly, the obviously inhibited germination, greater ratio of bleached leaves and enhanced electrolyte leakage were found in ein3eil1 and nia1nia2 lines than in Col-0 plants upon high salinity. However, the line EIN3ox obtained a notably elevated ability to germinate and improved seedling resistance. The experiment with SNP alone or plus high salt mostly enhanced the expression of EIN3 transcripts, compared with ACO4 and ACS2. The western blot and transcript analysis found that high-salt-induced EIN3 stabilization and EIN3 transcripts were largely attenuated in the NO biogenesis mutant nia1nia2 plants than in Col-0 ones. This observation was confirmed by simulation experiments with NO scavenger cPTIO to block NO emission. Taken together, our study provides insights that NO promotes seed germination and seedlings growth under salinity may depend on EIN3 protein. PMID:26779234

  2. Effect of phytohormones on seed germination and seedling growth of Coriandrum sativum L.

    PubMed

    Kumar, Mahender; Agnihotri, R K; Vamil, R; Sharma, R

    2014-04-01

    Coriander commonly known as Dhania or Chinese parsley is generally grown for its use in soups, salads, dressing vegetables, seasoning and chutney. Effect of two phytohormones viz. GA3 and 2,4-D on seed germination, seedling growth and various physiological and biochemical parameters were studied. The hormones were applied individually in different concentrations (10, 50 and 100 μM concentrations). Both the hormones enhanced the germination percentage, seedling growth (root and shoot length), leaf area, chlorophyll and carotenoid content. The application of these hormones also decreased the germination time. Maximum germination, shoot length, leaf area and carotenoid content was observed in 100 μm concentration of GA3. Root length, chl. a and chl. b was maximum in 50 μM of 2,4-D and 100 μm GA3, respectively. The application of two hormones exhibited a marked increase on all the parameters studied as compared to the control. PMID:25911855

  3. Effects of acidity on tree Pollen germination and tube growth. Final report

    SciTech Connect

    Van Ryn, D.M.; Jacobson, J.S.

    1984-08-01

    Most of the northeastern hardwood forests in North America are exposed repeatedly to acidic rainfall at pH values below 5.0. Pollen germination, tube growth and fertilization, important parts of the reproductive process, are sensitive to changes in their chemical environment. Accordingly, the authors investigated the effects of acidity on pollen germination and tube elongation of four northeastern tree species: flowering dogwood, black birch, yellow birch, and sugar maple. Pollen was collected and germinated in a growth medium acidified to pH values ranging from 5.0 to 2.6. Pollen was found to be sensitive to acidification of the germination medium to below pH 4.2. These results suggest that acidic rain that now occurs in eastern North America may influence reproductive processes that are necessary for seed set and regeneration in northern hardwood forests.

  4. Red spruce germination and growth in soil-mediated regeneration microcosms under acid precipitation

    SciTech Connect

    Ho, M.

    1992-01-01

    In the past three decades, atmospheric pollution has caused substantial problems for the environment as well as for many biological processes. The objective of this study focuses on red spruce (Picea ruben Sarg.) regeneration potential and chemical change within the soil-water-plant continuum following simulated acid rain treatments. Inceptisols from three forests at 1735, 1920, and 2015 m at Mt. Mitchell, North Carolina had lower pH, bulk density, and higher organic matter, and base cations as altitude increased. Red spruce seeds were collected from two nearby standing trees at the 1735 m site. A strip-split-split plot experiment was constructed using soils from the two lower elevations, which support natural red spruce stands. Besides a control (pH 5.6, NO[sub 3]:SO[sub 4] ratio 0.10), eight treatments corresponding to two pHs (3.5 and 4.2) with four NO[sub 3]:SO[sub 4] ratios (0.20, 0.33, 0.40, and 0.67) each were used. Seedling emergence and growth, chemistry of soil. Soil leachate, and plant tissue were analyzed to test soil differences and treatment effects of acidity, nitrate, and sulfate. Temporal patterns of germination respond more to soil than to rain chemistry, but significant interactions were found. Besides higher survival, faster germinating seedlings in the 1735 m soil also produced more complex root system and more biomass. Lower root-to-shoot ratios at more acidic treatments suggest a negative effect of acidity on root growth. Canonical discriminant analysis revealed that factors controlling overall soil chemistry were dominated by soil origin, then by rain pH.

  5. Plant growth promoting rhizobacterium

    SciTech Connect

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  6. Microgravity Plant Growth Demonstration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Two visitors watch a TV monitor showing plant growth inside a growth chamber designed for operation aboard the Space Shuttle as part of NASA's Space Product Development program. The exhibit, featuring work by the Wisconsin Center for Space Automation and Robotics, was at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  7. Digital Gene Expression Analysis of Populus simonii × P. nigra Pollen Germination and Tube Growth

    PubMed Central

    Zhao, Li-Juan; Yuan, Hong-Mei; Guo, Wen-Dong; Yang, Chuan-Ping

    2016-01-01

    Pollen tubes are an ideal model for the study of cell growth and morphogenesis because of their extreme elongation without cell division; however, the genetic basis of pollen germination and tube growth remains largely unknown. Using the Illumina/Solexa digital gene expression system, we identified 13,017 genes (representing 28.3% of the unigenes on the reference genes) at three stages, including mature pollen, hydrated pollen, and pollen tubes of Populus simonii × P. nigra. Comprehensive analysis of P. simonii × P. nigra pollen revealed dynamic changes in the transcriptome during pollen germination and pollen tube growth (PTG). Gene ontology analysis of differentially expressed genes showed that genes involved in functional categories such as catalytic activity, binding, transporter activity, and enzyme regulator activity were overrepresented during pollen germination and PTG. Some highly dynamic genes involved in pollen germination and PTG were detected by clustering analysis. Genes related to some key pathways such as the mitogen-activated protein kinase signaling pathway, regulation of the actin cytoskeleton, calcium signaling, and ubiquitin-mediated proteolysis were significantly changed during pollen germination and PTG. These data provide comprehensive molecular information toward further understanding molecular mechanisms underlying pollen germination and PTG. PMID:27379121

  8. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  9. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    PubMed Central

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  10. Germination and early growth of Brassica juncea in copper mine tailings amended with technosol and compost.

    PubMed

    Novo, Luís A B; González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  11. Analysis of directional root growth patterns from corn and soybean seeds germinated in space

    NASA Astrophysics Data System (ADS)

    Levine, H.; Tynes, G.; Norwood, K.

    The JOSE (JASON Outreach Seed Experiment) payload was the first plant experiment conducted on the International Space Station (ISS). It consisted of having an on-orbit watering of eight transparent seed pouches each of which contained 6 individual seeds of either soybean (Glycine max cv McCall) or corn ( Zea mays ). The seeds were glued to a germination paper substrate using a 1.2% guar glue solution. The payload was launched on the Orbiter Endeavour (STS-97; ISS Flight 4A) on 11/30/00 and transferred to the ISS on 12/8/00. The eight seed pouches were each watered with 12 mL of distilled water on 1/5/01. Two pouches containing corn plus two pouches containing soybean seeds were maintained in the light after watering. Two additional seed pouches of each species were maintained in the dark after watering. Digital photography was used to document the growth of the germinating seedlings in space. The images were down-linked to a world wide web site for dissemination to students. "Within" species differences (between the light and dark grown seedlings) as well as "between" species differences (comparing corn and soybean) were observed. By day 4 (post-imbibition) there was a clear phototropic effect in the light-grown corn seedlings, each, possessing a green shoot which grew upward towards the light source. In contrast, the dark-grown corn shoots were neither green (since chlorophyll synthesis had not been induced by light) nor were they growing in a uniform direction. For day 4 soybean seedlings, the only difference evident between those germinated under the light vs dark conditions was a slight greening up of the seeds maintained in the presence of light. For both the corn and soybean seedlings, roots grew in a random fashion, with some moving in an upward direction and others progressing downward, reflecting the lack of a gravitropic response which is the primary (earth-based) mechanism controlling the direction of root growth. By day 7 the initial 12 mL of water

  12. Phosphoenolpyruvate carboxykinase (PEPCK) deficiency affects the germination, growth and fruit sugar content in tomato (Solanum lycopersicum L.).

    PubMed

    Huang, Yong-Xing; Yin, Yong-Gen; Sanuki, Atsuko; Fukuda, Naoya; Ezura, Hiroshi; Matsukura, Chiaki

    2015-11-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme and is utilized in the gluconeogenesis pathway in plants. Although, its catalytic and regulatory properties are quite well understood, there are uncertainties regarding its physiological role in many plants tissues such as the flesh of developing fruits. To further understand the function of PEPCK in fruits and other tissues, RNAi transgenic tomato plants in which SlPEPCK transcription was down-regulated by either CaMV 35S constitutive promoter or the fruit-specific E8 promoter were generated and characterized on the basis of their phenotypic and metabolic aspects. In the PEPCK-deficient lines, prominent growth suppression of germinated seedlings was observed and other vegetative suppression appeared during the early stage of plant growth in the 35S promoter-driven lines. In particular, root elongation was most obviously suppressed in the germinated seedlings, indicating that the gluconeogenesis pathway is involved in the root growth of seedlings. Regarding the primary metabolism in fruit, the soluble sugar content tended to decrease, whereas the malate content tended to increase in ripening fruits of the RNAi lines compared with the wild type. These results indicate that activation of the gluconeogenesis pathway from organic acids to sugars occurs during ripening but is suppressed by the knocking down of the PEPCK gene, suggesting that PEPCK participates in determining the sugar/acid ratio in ripening fruit. PMID:26381194

  13. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  14. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth.

    PubMed

    Su, Tao; Wolf, Sebastian; Han, Mei; Zhao, Hongbo; Wei, Hongbin; Greiner, Steffen; Rausch, Thomas

    2016-01-01

    In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling. PMID:26546341

  15. Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction

    SciTech Connect

    Gou J. Y.; Liu C.; Miller, L. M.; Hou, G.; Yu, X.-H.; Chen, X.-Y.

    2012-01-01

    Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.

  16. Seeds Use Temperature Cues to Ensure Germination under Nurse-plant Shade in Xeric Kalahari Savannah

    PubMed Central

    Kos, Martijn; Poschlod, Peter

    2007-01-01

    Background and Aims In arid environments many plant species are found associated with the canopies of woody perennials. Favourable conditions for establishment under canopies are likely to be associated with shade, but under canopies shade is distributed patchily and differs in quality. Diurnal temperature fluctuations and maximum temperatures could be reliable indicators of safe sites. Here, an examination is made as to whether canopy-associated species use temperature cues to germinate in shade patches, rather than matrix areas between trees. Methods The study was carried out in arid southern Kalahari savannah (Republic of South Africa). Perennial and annual species associated with Acacia erioloba trees and matrix species were germinated at temperature regimes resembling shaded and unshaded conditions. Soil temperature was measured in the field. Key Results Germination of all fleshy-fruited perennial acacia-associated species and two annual acacia-associated species was inhibited by the temperature regime resembling unshaded conditions compared with at least one of the regimes resembling shaded conditions. Inhibition in perennials decreased with seed mass, probably reflecting that smaller seedlings are more vulnerable to drought. Germination of matrix species was not inhibited by the unshaded temperature regime and in several cases it increased germination compared with shaded temperature regimes or constant temperature. Using phylogenetically independent contrasts a significant positive relationship was found between canopy association and the germination at shade temperatures relative to unshaded temperatures. Conclusions The data support the hypothesis that canopy species have developed mechanisms to prevent germination in open sun conditions. The results and data from the literature show that inhibition of germination at temperature regimes characteristic of open sun conditions can be found in fleshy-fruited species of widely divergent taxonomic groups. It is

  17. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    SciTech Connect

    Hammond, E.C. Jr.; Bridgers, K.; Brown, C.W.

    1995-02-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  18. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  19. Growth, Sporulation, and Germination of Clostridium perfringens in Media of Controlled Water Activity1

    PubMed Central

    Kang, Chunghee K.; Woodburn, Margy; Pagenkopf, Andrea; Cheney, Roberta

    1969-01-01

    Requirements in terms of water activity (aw) for the growth, sporulation, and germination of Clostridium perfringens were determined. Strain A48 was used in all phases, and in addition either NCTC 8239 or NCTC 8797 was used for growth, sporulation, and germination studies. The desired aw of the test media was obtained by the addition of one of three solutes: glycerol, sucrose, or sodium chloride. The freezing point depression method was used to determine the aw. The basal medium for growth and germination was Fluid Thioglycollate Medium. It had an aw of 0.995 and produced maximum growth and fastest growth rate among the six levels of aw tested. The lowest aw supporting growth and germination of C. perfringens was between 0.97 and 0.95 in the test media made with sucrose or sodium chloride and 0.93 or below in the test media adjusted with glycerol. Spore production by C. perfringens in Ellner's or modified medium required a higher aw than growth. PMID:4313168

  20. Cheatgrass germination at three seed maturity stages from five plant communities in northwestern Nevada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive exotic plant cheatgrass (Bromus tectorum), has invaded numerous plant communities throughout the Intermountain West. Our goal was to test whether cheatgrass seed in different phenotypic stages and site characteristics differ in germination. Cheatgrass seed from sites dominated by Wyom...

  1. Allelopathy of the invasive plant Bidens frondosa on the seed germination of Geum japonicum var. chinense.

    PubMed

    Wang, X F; Hassani, D; Cheng, Z W; Wang, C Y; Wu, J

    2014-01-01

    Five gradient concentrations (0.02, 0.04, 0.06, 0.08, and 0.10 g/mL) of leaching liquors from the roots, stems, and leaves of the invasive plant Bidens frondosa were used as conditioning fluid to examine its influence on seed germination conditions of the native plant Geum japonicum var. chinense in Huangshan. All leaching liquors of organs suppressed the seed germination of Geum japonicum var. chinense and reduced the final germination percentage and rate, and increased the germination inhibition rate, with a bimodal dependence on concentration. The leaching liquor inhibited the seed germination significantly at the concentration of 0.02 g/mL respectively. The seed germination was also inhibited as the concentration reached to 0.04 g/mL and beyond. Hence the allelopathic effects of the organs were significantly enhanced respectively. This phenomenon represented the presence of allelopathy substances in the root, stem and leaf of Bidens frondosa. PMID:25511044

  2. Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana.

    PubMed

    Pan, Wen-Juan; Xiong, Can; Wua, Qiu-Ping; Liu, Jin-Xia; Liao, Hong-Mei; Chen, Wei; Liu, Yong-Sheng; Zheng, Lei

    2013-11-01

    Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 µM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 µM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination. PMID:24206833

  3. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil.

    PubMed

    Visioli, Giovanna; Conti, Federica D; Gardi, Ciro; Menta, Cristina

    2014-04-01

    In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni. PMID:24288040

  4. Characterization of Arabidopsis thaliana GCN2 kinase roles in seed germination and plant development.

    PubMed

    Liu, Xiaoyu; Merchant, Azim; Rockett, Kristin S; McCormack, Maggie; Pajerowska-Mukhtar, Karolina M

    2015-01-01

    Eukaryotic GCN2 (general control nonderepressible 2) is a serine/threonine protein kinase that plays an essential role in modulating amino acid metabolism in response to nutrient deprivation. A wide spectrum of GCN2 functions in yeast and mammals has been characterized that spans from responses to amino acid deficiency, development, differentiation and proper functions of mammalian organs to organism's life span, tumor cell survival and immune responses. Here we demonstrate that Arabidopsis thaliana GCN2 (AtGCN2) plays crucial roles in plant growth and development. We present evidence that AtGCN2 negatively regulates seed germination under diverse environmental conditions. Our genetic data supported the notion that AtGCN2 is required for leaf morphology and normal cellular physiology by controlling chlorophyll contents. Our gene expression analyses revealed that AtGCN2 negatively regulates several transcription factor genes that play important roles in plant gibberellic acid-related crosstalk. We concluded that AtGCN2 plays pivotal roles in various cellular processes essential for normal growth and development, hence expanding the functions of this general regulator beyond being merely a stress player. PMID:25912940

  5. BOA detoxification of four summer weeds during germination and seedling growth.

    PubMed

    Schulz, Margot; Marocco, Adriano; Tabaglio, Vincenzo

    2012-07-01

    A recent greenhouse study revealed a significant reduction of germination and growth of redroot pigweed (Amaranthus retroflexus) and common purslane (Portulaca oleracea) by rye mulch, whereas velvetleaf (Abutilon theophrasti) and common lambsquarters (Chenopodium album) were not suppressed. Since BOA detoxification by metabolic alteration may influence the relation between the benzoxazinoid content of the soil mulch and weed suppression, we tested the dynamics in BOA detoxification in different plant organs of three and 10-day-old seedlings of four warm season weeds incubated with five BOA concentrations (4, 20, 40, 80, and 200 μmol g(-1) fresh weight). In addition, germination and length of 3-day-old seedlings were measured after exposure to 0, 0.3, 1.5, 3, 6, and 15 μmol BOA. Finally, we tested the influence of the MDR translocator inhibitors verapamil, nifedipine, and the GST inhibitor ethycrynic acid on BOA accumulation and detoxification activity. Due to BOA-detoxification, all weeds were able to grow in environments with low BOA contents. At higher contents, Abutilon theophrasti and Chenopodium album had a better chance to survive because of highly active mechanisms that avoided the uptake of BOA (A. theophrasti) and of efficient detoxification activities in youngest seedlings (C. album). The interpretation of all of the data gave the following sequence of increasing sensitivity: A. theophrasti < C. album < P. oleracea ≤ A. retroflexus. The results were in agreement with recent findings of the suppression of these weeds by rye mulches and their benzoxazinoid contents. Our studies demonstrate for the first time that the detoxification of BOA influences the survival of certain weeds in environments enriched with this allelochemical. Therefore, detoxification processes affect the potential for weed suppression by soil allelochemicals in sustainable weed management. PMID:22614450

  6. Plant Growth Facility (PGF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  7. Anaerobiosis and ethanol effects on germination, growth, and protein synthesis of five Echinochloa species

    SciTech Connect

    Dybiec, L.D. ); Rumpho, M.E.; Kennedy, R.A. )

    1989-04-01

    Five Echinochloa species, encompassing a spectrum from flood tolerant to flood intolerant, were studied to determine the mechanisms of anaerobic germination and growth. Seeds were germinated in air or N{sub 2}, plus 0, 1 or 3% ethanol, and germination rates and growth measurements recorded for 7 days. In air or N{sub 2} increasing ethanol levels did not affect total germination per se, although the rate of germination was delayed in N{sub 2}. Shoot/root lengths in air were highest for tolerant species and increased with increasing ethanol, whereas, in intolerant species, shoot/root lengths decreased with increasing ethanol. Aerobic vs. anaerobic polypeptide profiles of each of the species were compared by SDS/PAGE. For all species, the number of polypeptides decreased under anaerobiosis and several quantitative differences were apparent relative to the aerobic profile. In addition, amino acid incorporation into protein was analyzed by ({sup 35}S)-Met labeling of 3 day old seedlings grown in air or N{sub 2}. Significant protein synthesis was measured in tolerant seedlings under N{sub 2} and several polypeptides were specifically induced. These results are being compared with labeling patterns of the other semi-tolerant and intolerant Echinochloa species to determine their importance in flooding tolerance.

  8. Carbonhydrate Content and Root Growth in Seeds Germinated Under Salt Stress: Implications for Seed Conditioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugars and sugar alcohols have well documented roles in salt tolerance in whole plants and maturing seeds. Less is known, however, about possible effects of these compounds during germination. Seeds from mannitol-accumulating salt-tolerant celery [Apium graveloens L. var. dulce (P. Mill.) DC], non...

  9. Seed germination of seven desert plants and implications for vegetation restoration.

    PubMed

    Lai, Liming; Chen, Lijun; Jiang, Lianhe; Zhou, Jihua; Zheng, Yuanrun; Shimizu, Hideyuki

    2016-01-01

    Germination cues reflect the conditions under which a species is likely to succeed in recruitment. Therefore, knowledge of the seed germination characteristics of key plant species in desertified areas is essential for restoration. The aims of this study were to evaluate the seed germination responses of seven native species, and to explore the implications for vegetation restoration. Seeds of seven desert species were sown in Petri dishes and subjected to various temperature and light conditions. The seeds germinated well at day/night temperatures of 25/15 °C and 30/20 °C but poorly at 35/25 °C. Seeds germinated best in the dark, and final germination percentages of all species were strongly inhibited at a photon irradiance of 1000 µmol m(-2) s(-1) Based on these results and the environmental conditions of their natural habitat, Agropyron cristatum and Artemisia halodendron are best adapted to shifting sand dunes: Elymus dahuricus, Caragana korshinskii and C. microphylla for semi-fixed sand dunes: and Medicago sativa and Melilotus suaveolen for fixed sand dunes. If seeds are sown in early May, they will likely be buried in sand, and the precipitation and temperature conditions will be suitable for seedling survival. PMID:27179541

  10. Seed germination of seven desert plants and implications for vegetation restoration

    PubMed Central

    Lai, Liming; Chen, Lijun; Jiang, Lianhe; Zhou, Jihua; Zheng, Yuanrun; Shimizu, Hideyuki

    2016-01-01

    Germination cues reflect the conditions under which a species is likely to succeed in recruitment. Therefore, knowledge of the seed germination characteristics of key plant species in desertified areas is essential for restoration. The aims of this study were to evaluate the seed germination responses of seven native species, and to explore the implications for vegetation restoration. Seeds of seven desert species were sown in Petri dishes and subjected to various temperature and light conditions. The seeds germinated well at day/night temperatures of 25/15 °C and 30/20 °C but poorly at 35/25 °C. Seeds germinated best in the dark, and final germination percentages of all species were strongly inhibited at a photon irradiance of 1000 µmol m−2 s−1. Based on these results and the environmental conditions of their natural habitat, Agropyron cristatum and Artemisia halodendron are best adapted to shifting sand dunes: Elymus dahuricus, Caragana korshinskii and C. microphylla for semi-fixed sand dunes: and Medicago sativa and Melilotus suaveolen for fixed sand dunes. If seeds are sown in early May, they will likely be buried in sand, and the precipitation and temperature conditions will be suitable for seedling survival. PMID:27179541

  11. Using hyperspectral imaging to determine germination of native Australian plant seeds.

    PubMed

    Nansen, Christian; Zhao, Genpin; Dakin, Nicole; Zhao, Chunhui; Turner, Shane R

    2015-04-01

    We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism

  12. Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds

    SciTech Connect

    Fargasova, A. )

    1994-03-01

    Heavy metals have been widely recognized as highly toxic and dangerous. Plants, algae and bacteria respond to heavy metal toxicity by inducing different enzymes, creating ion influx/efflux for ionic balance and synthesizing small peptides. These peptides bind metal ions and reduce toxicity. Metals come from the natural weathering processes of the earth's crust, industrial discharge, pest or disease control agents applied to plants, urban run-off, mining, soil erosion, sewage effluents, air pollution fallout and other sources. Plants can be affected directly by air pollutants, as well as indirectly through the contamination of soil and water. At the same time, plant is a member of the food chain and may create a risk for man and animals through contamination of food supplies. In recent years a considerable progress has been made in the assay of trace elements in environmental plant samples. For higher plants, the accumulation of metals, especially cadmium, was tested when plants grew on sewage sludge-amended soils or in soils of cadmium residues from phosphate fertilizers. No reports were accessible to us on the direct effect of tested metals (Pb, Hg, Cr, As, Cd) on seed germination and root growth. The paucity of literature initiated our present work. In this study, an attempt has been made to investigate the acute toxicity of five metals (Cr[sup 6+], Cd[sup 2+], Hg[sup 2+], Pb[sup 2+], As[sup 5+]) which are widely spread in the environment and are widely recognized as highly toxic and dangerous. As the testing subject, mustard seeds (Sinapis alba) were used and their germination and root growth were observed. 12 refs., 1 tab.

  13. A Role of Arabidopsis Inositol Polyphosphate Kinase, AtIPK2α, in Pollen Germination and Root Growth1

    PubMed Central

    Xu, Jun; Brearley, Charles A.; Lin, Wen-Hui; Wang, Yuan; Ye, Rui; Mueller-Roeber, Bernd; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-01-01

    Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2α), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-β-glucuronidase reporter gene analyses showed that AtIPK2α is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2α antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2α transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca2+ concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca2+ concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2α, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores. PMID:15618435

  14. [Effects of light intensity on Quercus liaotungensis seed germination and seedling growth].

    PubMed

    Yan, Xing-fu; Wang, Jian-li; Zhou, Li-biao

    2011-07-01

    This paper studied the effects of different shading (55.4%, 18.9%, 5.5%, 2.2%, 0.5% , and 0.3% natural sunlight) on the seed germination and seedling growth of Quercus liaotungensis. The seed germination rate and germination index were the highest (72.5% and 0.22, respectively) at 55.4% natural sunlight, declined with decreasing light intensity, and were the lowest (42.5% and 0.11, respectively) at 0.3% natural sunlight. Strong light had definite delaying effect on the germination. The index of germination vigor increased with decreasing light intensity, being the maximum at 0.5% natural sunlight. The delay of seed germination under strong light could be the selective tradeoff on varied seed fates. Strong light benefited the basal stem diameter and root system growth and dry mass accumulation of Q. liaotunensis seedling, but resulted in the minimum seedlings height (6.06 cm). Greater morphological plasticity was observed for the seedlings under different shading, which lent support to the higher adaptability of the seedlings to light environment. For example, the specific leaf area, specific shoot length, specific root length, and chlorophyll b and total chlorophyll contents were the maximum at 0.5% natural sunlight, being 142.57 cm2 x g(-1), 156.86 cm x g(-1), 271.87 cm x g(-1), 0.07 g x cm(-2), and 0.24 g x cm(-2), respectively, and the minimum at 55.4% natural sunlight, being 44.89 cm2 x g(-1), 52.84 cm x g(-1), 101.98 cm x g(-1), 0.04 g x cm(-2), and 0.15 g x cm(-2), respectively. The variation of the root/shoot ratio of Q. liaotungensis seedlings under different shading could be the effects of the combination of light intensity and water availability. PMID:22007441

  15. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings.

    PubMed

    Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan

    2014-01-01

    Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely. PMID:24988274

  16. Arabidopsis Fatty Acid Desaturase FAD2 Is Required for Salt Tolerance during Seed Germination and Early Seedling Growth

    PubMed Central

    Sun, Jian; Li, Bei; Zhu, Qiang; Chen, Shaoliang; Zhang, Hongxia

    2012-01-01

    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis. PMID:22279586

  17. Complete Genome of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida BIRD-1

    SciTech Connect

    Matilla, M.A.; van der Lelie, D.; Pizarro-Tobias, P.; Roca, A.; Fernandez, M.; Duque, E.; Molina, L.; Wu, X.; Gomez, M. J.; Segura, A.; Ramos, J.-L.

    2011-03-01

    We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.

  18. Effects of water potential on mycelial growth, sclerotial production, and germination of Rhizoctonia solani from potato.

    PubMed

    Ritchie, Faye; McQuilken, Mark P; Bain, Ruairidh A

    2006-06-01

    The effects of osmotic and matric potential on mycelial growth, sclerotial production and germination of isolates of Rhizoctonia solani [anastomosis groups (AGs) 2-1 and 3] from potato were studied on potato dextrose agar (PDA) adjusted osmotically with sodium chloride, potassium chloride, glycerol, and matrically with polyethylene glycol (PEG) 6000. All isolates from AGs 2-1 and AG-3 exhibited fastest mycelial growth on unamended PDA (-0.4MPa), and growth generally declined with decreasing osmotic and matric potentials. Growth ceased between -3.5 and -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media, with slight differences between isolates and osmotica. Sclerotium yield declined with decreasing osmotic potential, and formation by AG 2-1 and AG-3 isolates ceased between -1.5 and -3.0MPa and -2.5 and -3.5MPa, respectively. On matrically adjusted media, sclerotial formation by AG 2-1 isolates ceased at -0.8MPa, whereas formation by AG-3 isolates ceased at the lower matric potential of -1.5MPa. Sclerotial germination also declined with decreasing osmotic and matric potential, with total inhibition occurring over the range -3.0 to -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media. In soil, mycelial growth and sclerotial germination of AG-3 isolates declined with decreasing total water potential, with a minimum potential of -6.3MPa permitting both growth and germination. The relevance of these results to the behaviour of R. solani AGs in soil and their pathogenicity on potato is discussed. PMID:16765034

  19. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  20. The effect of some non-protein amino acids on pollen germination and pollen-tube growth in five species of the Vicieae.

    PubMed

    Simola, L K

    1967-12-01

    The effects of canavanine, α,γ-diaminobutyric acid, homoarginine and lathyrine on the germination of pollen and on in-vitro growth of pollen tubes were studied in the following species: Lathyrus niger, L. silvestris, Vicia unijuga, Pisum sativum and Cicer arietinum.The effects of these non-protein amino acids depended on their quantity and on the plant species. Every amino acid had a promoting effect on germination and growth at some concentration in some species. Inhibition or promotion of pollen germination and pollen-tube growth were usually parallel. The stronger influence of some amino acid on growth than on germination may be due to slow penetration of the acid into the cell.Homoarginine and lathyrine had a promoting effect at all concentrations in L. niger, a species in which these amino acids occur naturally. In most other species they had, if anything, a very slight inhibitory effect, α,γ-Diaminobutyric acid and canavanine had the strongest inhibitory effects on the species studied. It seems possible that these amino acids are antimetabolites of common amino acids.It is obvious that non-protein amino acids can form effective hybridization barries, although the conditions in nature are more complex than in vitro. The ability to synthesize a new amino acid may therefore be of evolutionary significance in the isolation of new species and genera. PMID:24522605

  1. [Viability and germination characteristics of canopy-stored seeds of plants in sand dune area].

    PubMed

    Ma, Jun-Ling; Liu, Zhi-Min

    2008-02-01

    The study on the viability and germination characteristics of canopy-stored seeds remained in canopy until next May after maturation of 10 plants species in Horqin sandy land showed that more than 80% of the canopy-stored seeds of psammophytes such as Agriophyllum squarrosum, Artemisia wudanica and A. halodendron had viability, while less than 80% or even less than 30% of non-psammophytes seeds had viability. The canopy-stored seeds of psammophytes presented a rapid germination pattern. The canopy seed bank made the seed release of psammophytes postponed until the windy season ended and the rainy season started, when the seeds had high viability and could germinate rapidly. The canopy seed bank is one of ways for psammophytes to adapt drift sand and seasonal drought. PMID:18464627

  2. Seed Dispersal and Germination Traits of 70 Plant Species Inhabiting the Gurbantunggut Desert in Northwest China

    PubMed Central

    Liu, Huiliang; Zhang, Daoyuan; Yang, Xuejun; Huang, Zhenying; Duan, Shimin; Wang, Xiyong

    2014-01-01

    Seed dispersal and germination were examined for 70 species from the cold Gurbantunggut Desert in northwest China. Mean and range (3 orders of magnitude) of seed mass were smaller and narrower than those in other floras (5–8 orders of magnitude), which implies that selection favors relatively smaller seeds in this desert. We identified five dispersal syndromes (anemochory, zoochory, autochory, barochory, and ombrohydrochory), and anemochorous species were most abundant. Seed mass (F = 3.50, P = 0.01), seed size (F = 8.31, P < 0.01), and seed shape (F = 2.62, P = 0.04) differed significantly among the five dispersal syndromes and barochorous species were significantly smaller and rounder than the others. There were no significant correlations between seed mass (seed weight) (P = 0.15), seed size (P = 0.38), or seed shape (variance) (P = 0.95) and germination percentage. However, germination percentages differed significantly among the dispersal syndromes (F = 3.64, P = 0.01) and seeds of ombrohydrochorous species had higher germination percentages than those of the other species. In the Gurbantunggut Desert, the percentage of species with seed dormancy was about 80%. In general, our studies suggest that adaptive strategies in seed dispersal and germination of plants in this area are closely related to the environment in which they live and that they are influenced by natural selection forces. PMID:25485296

  3. The Parasitic Plant Cuscuta australis Is Highly Insensitive to Abscisic Acid-Induced Suppression of Hypocotyl Elongation and Seed Germination

    PubMed Central

    Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang

    2015-01-01

    Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution. PMID:26258814

  4. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination.

    PubMed

    Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang

    2015-01-01

    Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution. PMID:26258814

  5. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  6. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  7. Nitric Oxide Participates in Cold-Inhibited Camellia sinensis Pollen Germination and Tube Growth Partly via cGMP In Vitro

    PubMed Central

    Zhu-Ge, Qiang; Jiang, Xin; Wang, Wei-Dong; Fang, Wan-Ping; Chen, Xuan; Li, Xing-Hui

    2012-01-01

    Nitric oxide (NO) plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS)-like activity, cGMP content and proline (Pro) accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC) inhibitor ODQ or phosphodiesterase (PDE) inhibitor Viagra at 25°C (control) or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis. PMID:23272244

  8. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica.

    PubMed

    Holbrook-Smith, Duncan; Toh, Shigeo; Tsuchiya, Yuichiro; McCourt, Peter

    2016-09-01

    Striga spp. (witchweed) is an obligate parasitic plant that attaches to host roots to deplete them of nutrients. In Sub-Saharan Africa, the most destructive Striga species, Striga hermonthica, parasitizes major food crops affecting two-thirds of the arable land and over 100 million people. One potential weakness in the Striga infection process is the way it senses the presence of a host crop. Striga only germinates in the presence of the plant hormone strigolactone, which exudes from a host root. Hence small molecules that perturb strigolactone signaling may be useful tools for disrupting the Striga lifecycle. Here we developed a chemical screen to suppress strigolactone signaling in the model plant Arabidopsis. One compound, soporidine, specifically inhibited a S. hermonthica strigolactone receptor and inhibited the parasite's germination. This indicates that strigolactone-based screens using Arabidopsis are useful in identifying lead compounds to combat Striga infestations. PMID:27428512

  9. Growth Protocols for Etiolated Soybeans Germinated within BRIC-60 Canisters Under Spaceflight Conditions

    NASA Astrophysics Data System (ADS)

    Levine, H. G.; Sharek, J. A.; Johnson, K. M.; Stryjewski, E. C.; Prima, V. I.; Martynenko, O. I.; Piastuch, W. C.

    As part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented

  10. Students' Ideas about Plants and Plant Growth

    ERIC Educational Resources Information Center

    Barman, Charles R.; Stein, Mary; McNair, Shannan; Barman, Natalie S.

    2006-01-01

    Because the National Science Education Standards (1996) outline specific things K-8 students should know about plants, and previous data indicated that elementary students had difficulty understanding some major ideas about plants and plant growth, the authors of this article thought it appropriate to initiate an investigation to determine the…

  11. Effects of extract liquid of SLS made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Wenting; Liu, Hong; Yan, Min; Li, Leyuan

    Rice and wheat are the main candidate crops in the bioregenerative life support system (BLSS) of China, for they are traditional food in Asia. Thus the recycling of their straws is an important issue in our BLSS, and it is a vital way to biologically process them into the soil like substrate (SLS) first and then reuse them in the plant cultivation system to achieve their recycle in BLSS. However, rice is a plant with strong allelopathic effects. And so far, it is also not clear that what kind of raw materials can be processed into proper SLS to grow rice in the BLSS. Therefore, in this study, the extract liquid of SLS made from three different materials including rice straw, wheat straw and rice-wheat mixed straw was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil: water) were 1:3, 1:5, 1:9, and 1:15 with the deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, root fresh weight, seedling fresh weight and other indicates. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll and hormone content of rice, the mechanism of the inhibition was speculated and the preventive methods of this phenomenon was explored. Finally, the feasibility of cultivating rice on the SLS made from the above three kinds of raw materials was evaluated and the proper raw materials to be processed into SLS to grow rice were determined.

  12. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2016-06-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  13. Different heavy metals have various effects on Picea wilsonii pollen germination and tube growth

    PubMed Central

    Wang, Xiaoxia; Zhang, Shasha; Gao, Yuan; Lü, Wengeng; Sheng, Xianyong

    2015-01-01

    Heavy metal pollution has became one of the realistic matters of globality. Previous reports indicated that heavy metals could significantly inhibit pollen germination and tube growth. In the present study, comparative studies on the effects of different heavy metals (As, Hg, Cd, Cr and Cu) on in-vitro picea wilsonii pollen gernimation and tube growth were carried out. Microscopic evaluation revealed that different heavy metals had various degree of toxicity on P. wilsonii pollen tube development. As showed the most toxic effects on pollen germination, which was followed by Hg and Cd, while Cr and Cu showed relatively lower toxicity. Besides, pollentubes showed varying shapes in response to different heavy metal stress. Pollen tubes treated with Cd, Hg and As were usually characterized by irregularly increasing diameters and swelling tips with distinct cytoplasimic vacuolation. On the other hand, except for the slightly increased diameters, no obvious abnormal shape were observed in tubes treated with Cr or Cu. Lyso-Tracker Green staining indicated that only Cd-treated pollen tubes showed numerous vacuole-like acidic organelles, though cytoplasmic vacuolization were also observed in pollen tubes treated with Hg and A. In brief, our data indicated that different heavy metals have various effects on Picea wilsonii pollen germination and tube growth, and that in-vitro pollen culture might be used as a competent system for biomonitoring of air pollution. PMID:25830714

  14. Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods.

    PubMed

    Dotaniya, M L; Das, H; Meena, V D

    2014-05-01

    The tannery effluents contain a high concentration of chromium (Cr). It drastically reduces the crop yield when used for irrigation purpose. A huge volume of tannery effluents is available as irrigation for crop production. It is negatively affecting germination as well as yield of the crop. The wheat seeds were exposed to five different concentrations of Cr (0, 20, 40, 80, and 100 ppm). In Petri plates, 100 seeds were placed and the germination percent was recorded after 72 hour (h). Root elongation and coleoptile growth were measured at 72, 120, 168, and 240 h. Results showed that the germination percent of the test crop decreased with increasing Cr levels. It decreased by 6, 14, 30, and 37 % under the Cr concentration of 20, 40, 80, and 100 ppm, respectively. The root elongation was more sensitive than the coleoptile growth. The negative correlation was found between Cr levels and root elongation as well as coleoptile growth. These growth parameters were significantly affected up to 80 ppm of Cr level. The wheat growers using tannery effluent as irrigation should be well treated prior to application. PMID:24415062

  15. Using composting for control seed germination of invasive plant (water hyacinth) in Extremadura (Spain)

    NASA Astrophysics Data System (ADS)

    Labrador, Juana; Gordillo, Judit; Ruiz, Trinidad; Albano, Eva; Moreno, Marta M.

    2016-04-01

    The biotransformation of the invasive water hyacinth (Eichhornia crassipes) by composting has been showed as a viable alternative to offset the economic cost of eliminating an invasive plant giving a value to the by-product; however, as result of the propagative plant capacity, it was necessary to check if the composting process could eliminate the germination seed rate. Despite the high temperatures and the biochemical biotransformation processes of the composting components, in the case of seed water hyacinth, with a recovery rate of 100%, damage was observed in some parts of the seed anatomy such as in the outer teguments; however, other parts of the seed coat and the endosperm maintained their integrity. A microscopic analysis revealed that the embryo was noticeable and this was supported by the rate of seed germination observed (3.5 ± 0.96%). The results indicate that the use of water hyacinth for compost production is not completely safe from an environmental perspective. Keywords: Eichhornia crassipes, water hyacinth, invasive plant, seed anatomy, seed germination rate, compost. References: Ruiz T., Martín de Rodrigo E., Lorenzo G., Albano E., Morán R., Sánchez J.M. 2008. The Water Hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions Volume 3, Issue 1:42-53.

  16. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress.

    PubMed

    Coast, Onoriode; Murdoch, Alistair J; Ellis, Richard H; Hay, Fiona R; Jagadish, Krishna S V

    2016-01-01

    Resilience of rice cropping systems to potential global climate change will partly depend on the temperature tolerance of pollen germination (PG) and tube growth (PTG). Pollen germination of high temperature-susceptible Oryza glaberrima Steud. (cv. CG14) and Oryza sativa L. ssp. indica (cv. IR64) and high temperature-tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4 °C temperature gradient system. Mean maximum PG was 85% at 27 °C with 1488 μm PTG at 25 °C. The hypothesis that in each pollen grain, the minimum temperature requirements (Tn ) and maximum temperature limits (Tx ) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50) ) was the lowest (29.8 °C) in IR64 compared with CG14 (34.3 °C) and N22 (35.6 °C). Standard deviation (sx ) of Tx was also low in IR64 (2.3 °C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1 mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures. PMID:25346255

  17. Laser effects on the growth and photosynthesis process in mustard plants (Sinapis Alba)

    NASA Astrophysics Data System (ADS)

    Anghel, Sorin; Stanescu, Constantin S.; Giosanu, Dana; Flenacu, Monica; Iorga-Siman, Ion

    2001-06-01

    In this paper we present the results of our experiments concerning the influence of the low energy laser (LEL) radiation on the germination, growth and photosyntheses processes in mustard plants (sinapis alba). We used a He-Ne laser ((lambda) equals 632.8 nm, P equals 6 mW) to irradiate the mustard seeds with different exposure times. The seeds were sowed and some determinations (the germination and growth intensity, chlorophyll quantity, and respiration intensity) were made on the plant culture. We ascertained that the germination and growth of the plants are influenced by the irradiation. Also, the chlorophyll quantity is the same for both plants from irradiated and non-irradiated seeds but the respiration and photosynthesis processes are influenced by the irradiation.

  18. [Relationship of bacteria of Bacillus genus with ciliate Colpoda steinii and their impact on germination of plant seeds].

    PubMed

    Pogorelova, V V; Bega, Z T; Kurdish, I K

    2012-01-01

    Features of symbiotic coexistence of bacteria of the genus Bacillus with ciliates Colpoda steinii have been studied. In their mutual cultivation during 10 days the number of bacteria B. subtilis IMV V-7023 was reduced 4.4 times, B. pumilus 3 - 3.4 times, B. megaterium 12 - 2.5 times. In the mixed culture with B. pumilus 3 the number of the ciliates increased gradualluy while under availability of the other two bacilli strains the number of protozoan increased in the first two days, after that their amount decreased. Treatment of some plants seeds by suspension of B. subtilis IMV V-7023 with the protozoan increased their germination and stimulated the growth of plants at the early stages of development. PMID:22686018

  19. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  20. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth

    PubMed Central

    Ratnikova, Tatsiana A.; Podila, Ramakrishna; Rao, Apparao M.; Taylor, Alan G.

    2015-01-01

    Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth. PMID:26495423

  1. [Effects of salt stress on germination and in vitro growth of pistachio (Pistacia vera L.)].

    PubMed

    Benmahioul, Benamar; Daguin, Florence; Kaid-Harche, Meriem

    2009-08-01

    In order to study the salinity tolerance of pistachio (Pistacia vera L.), embryos developed from mature seeds were isolated and cultured in vitro and subjected to different NaCl concentrations (0, 42.8, 85.5, 171.1 and 256.6 mM) for 30 days. The results showed that in vitro germination of embryonic axes was not affected by the salt concentration. However, the germinated embryo survival rates decreased from 100% for the control to 62.9% for the highest salt concentration (256.6 mM). In addition, the plantlet growth (length of aerial and root parts, number of leaf produced per embryo, as well as the production of total fresh and dry matter for both aerial parts and roots) showed significant differences according the various salt concentrations. PMID:19632659

  2. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    PubMed

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed. PMID:24044614

  3. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays).

    PubMed

    Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria

    2013-09-01

    The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses. PMID:23996407

  4. Seed weight and germination behavior of the submerged plant Potamogeton pectinatus in the arid zone of northwest China

    PubMed Central

    Li, Zhongqiang; Lu, Wei; Yang, Lei; Kong, Xianghong; Deng, Xuwei

    2015-01-01

    Variation in seed weight is common within and among plant species, but few studies have attempted to document the pattern of seed weight and germination attributes for aquatic macrophytes at a large scale. This study examined within-species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Our results showed that the average seed weight was 0.24 g per 100 seeds with a coefficient of variation (CV) of 28.4% among the eight P. pectinatus populations. The total germination fraction of seeds of P. pectinatus was relatively poor, less than 35% in seven P. pectinatus populations, and the lowest germination percentage found was only 2%. There were significant differences in seed weight, time to onset of germination, and total germination fraction among the eight different populations. Hierarchical partitioning analysis showed a strongly positive correlation between seed weight and water temperature and pH. Seed weight and the maternal environmental factors significantly affected both time to initiation of germination and total germination fraction. Our results suggest that (1) seed weight variation in P. pectinatus primarily is the result of temperature variation during fruit development; (2) relatively poor germination fraction suggests that seeds are relatively unimportant in the short-term survival of populations and that it may be another adaptive trait allowing plants to take place in the right place and at the right time, especially in harsh environment; and (3) variation in seed germination traits should be determined by local environmental and intrinsic factors that interact in a complex fashion. PMID:25897389

  5. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.)

    PubMed Central

    Miro, Berta; Ismail, Abdelbagi M.

    2013-01-01

    Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops

  6. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.).

    PubMed

    Miro, Berta; Ismail, Abdelbagi M

    2013-01-01

    Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops

  7. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  8. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates.

    PubMed

    Di Salvatore, M; Carafa, A M; Carratù, G

    2008-11-01

    Seed germination and root elongation test is used to evaluate hazardous waste sites and to assess toxicity of organic and inorganic compounds. Paper substrate, especially circular filter paper placed inside a Petri dish has long been used for this test. Same reports indicate that filter paper might interfere with the toxicity of inorganic substances, especially metal cations. This study evaluate toxicity of Cd, Pb, Ni, Cu on lettuce, broccoli, tomato and radish seed using two bed material: agar and filter paper. The results show that percent germination is not affected by substrates; vice versa, as for root elongation, the test in agar showed to be more sensible than that the one on filter paper. The radical growth inhibition depends on the metal, on the tested concentration and on the species; among the tested metals, cadmium was the one determining the highest toxic effects on different species and lettuce was the plant that suffered more. From the comparison, it is clearly evident the greater sensibility of the test in agar; on the other hand, the lower sensibility of the test on the filter paper might be caused by the partial and not homogeneous exposition of the root to metal cations. PMID:18768198

  9. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  10. Germination and early plant development of 10 plant species exposed to Nano TiO2 and CeO2

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano-TiO2 or CeO2 (0, 250, 500 and 1000 ug/l) and followed to examine effects on germination and early seedling development. For TiO2, cabbage showed increased and corn decreased percent germination, while ...

  11. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa.

    PubMed

    Kim, Hyun Il; Kisugi, Takaya; Khetkam, Pichit; Xie, Xiaonan; Yoneyama, Kaori; Uchida, Kenichi; Yokota, Takao; Nomura, Takahito; McErlean, Christopher S P; Yoneyama, Koichi

    2014-07-01

    Root exudates from the allelopathic plant, black oat (Avena strigosa Schreb.), were found to contain at least six different germination stimulants for root parasitic plants, but no known strigolactones (SLs). One of these germination stimulants was purified and named avenaol. Its HR-ESI-TOFMS analysis indicated that the molecular formula of avenaol is C20H24O7, and thus it contains an additional carbon compared with known C19-SLs. Its structure was determined as 5-((E)-(5-(3-hydroxy-1,5,5-trimethyl-2-oxobicyclo[4.1.0]heptan-7-yl)-2-oxodihydrofuran-3(2H)-ylidene)methoxy)-3-methylfuran-2(5H)-one, by 1D and 2D NMR spectroscopy, and ESI- and EI-MS spectrometry. Although avenaol contains the C-D moiety, the common structural feature for all known SLs, it lacks the B ring and has an additional carbon atom between the A and C rings. Avenaol is a potent germination stimulant of Phelipanche ramosa seeds, but only a weak stimulant for seeds of Striga hermonthica and Orobanche minor. PMID:24768285

  12. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.

    PubMed

    He, Jun-Min; Bai, Xiao-Ling; Wang, Rui-Bin; Cao, Bing; She, Xiao-Ping

    2007-10-01

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m(-2) UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor N(G)-nitro-l-Arg-methyl eater (l-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks. PMID:18251898

  13. Inhibition of bacterial, fungal and plant growth by testa extracts of Citrullus genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon (Citrullus lanatus var. lanatus (Thunb.) Matsum & Nakai) seed exudates inhibit germination and seedling growth of several plant species and growth of pathogenic fungi and bacteria. This study was conducted to determine if extractable components in testae contribute to the inhibition. T...

  14. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds

    PubMed Central

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-01-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy. PMID:23077725

  15. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-10-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy.

  16. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds.

    PubMed

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-01-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy. PMID:23077725

  17. Small RNA mediated regulation of seed germination

    PubMed Central

    Das, Shabari Sarkar; Karmakar, Prakash; Nandi, Asis Kumar; Sanan-Mishra, Neeti

    2015-01-01

    Mature seeds of most of the higher plants harbor dormant embryos and go through the complex process of germination under favorable environmental conditions. The germination process involves dynamic physiological, cellular and metabolic events that are controlled by the interplay of several gene products and different phytohormones. The small non-coding RNAs comprise key regulatory modules in the process of seed dormancy and germination. Recent studies have implicated the small RNAs in plant growth in correlation with various plant physiological processes including hormone signaling and stress response. In this review we provide a brief overview of the regulation of seed germination or dormancy while emphasizing on the current understanding of the role of small RNAs in this regard. We have also highlighted specific examples of stress responsive small RNAs in seed germination and discussed their future potential. PMID:26528301

  18. Within-and among-year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment.

    PubMed

    Gremer, Jennifer R; Kimball, Sarah; Venable, D Lawrence

    2016-10-01

    In variable environments, organisms must have strategies to ensure fitness as conditions change. For plants, germination can time emergence with favourable conditions for later growth and reproduction (predictive germination), spread the risk of unfavourable conditions (bet hedging) or both (integrated strategies). Here we explored the adaptive value of within- and among-year germination timing for 12 species of Sonoran Desert winter annual plants. We parameterised models with long-term demographic data to predict optimal germination fractions and compared them to observed germination. At both temporal scales we found that bet hedging is beneficial and that predicted optimal strategies corresponded well with observed germination. We also found substantial fitness benefits to varying germination timing, suggesting some degree of predictive germination in nature. However, predictive germination was imperfect, calling for some degree of bet hedging. Together, our results suggest that desert winter annuals have integrated strategies combining both predictive plasticity and bet hedging. PMID:27515951

  19. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1

    PubMed Central

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W.A.; Franssen, Maurice C.R.; Beale, Michael H.; Bouwmeester, Harro J.

    2005-01-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation. PMID:16183851

  20. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii.

    PubMed

    Ling, Yu; Chen, Tong; Jing, Yanping; Fan, Lusheng; Wan, Yinglang; Lin, Jinxing

    2013-11-01

    γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components. PMID:23900837

  1. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa.

    PubMed

    Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C

    2012-10-01

    Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids. PMID:22835725

  2. Distributions of the growth rate of the germ tubes and germination time of Penicillium chrysogenum conidia depend on water activity.

    PubMed

    Judet, Daniela; Bensoussan, Maurice; Perrier-Cornet, Jean-Marie; Dantigny, Philippe

    2008-10-01

    The effects of water activities for sporulation (a(wsp)) and germination (a(wge)) on the distributions of the growth rate of the germ tubes (mu) and the germination time (t(G)) of Penicillium chrysogenum conidia were determined by monitoring the length of the same germ tubes throughout the experiments automatically. No relationship between the individual t(G)'s and mu's could be established. Irrespective of the water activity for germination, mu was greater and t(G) was less for conidia produced at 0.95a(wsp) than that at 0.99a(wsp). At 0.99 a(wge) the mean and the standard deviation of t(G) were smaller than those obtained at 0.95a(wge). At 0.99a(wge), normal distributions for mu and t(G) were exhibited, but not at 0.95a(wge). The cumulative frequencies were used to reconstruct the germination curves. Great differences in the percentage of spores capable of germination (P(G)) and in the mean germination times between conidia produced at 0.95a(wsp) and at 0.99a(wsp) were clearly exhibited at 0.95a(wge), thus demonstrating the paramount influence of sporulation conditions on germination kinetics. PMID:18721680

  3. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    PubMed

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out. PMID:25884442

  4. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways. PMID:25045602

  5. Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction[C][W

    PubMed Central

    Gou, Jin-Ying; Miller, Lisa M.; Hou, Guichuan; Yu, Xiao-Hong; Chen, Xiao-Ya; Liu, Chang-Jun

    2012-01-01

    Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility. PMID:22247250

  6. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth

    PubMed Central

    Weingarden, Alexa R.; Dosa, Peter I.; DeWinter, Erin; Steer, Clifford J.; Shaughnessy, Megan K.; Johnson, James R.; Khoruts, Alexander; Sadowsky, Michael J.

    2016-01-01

    Fecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI), but its mechanisms remain poorly understood. Emerging evidence suggests that gut bile acids have significant influence on the physiology of C. difficile, and therefore on patient susceptibility to recurrent infection. We analyzed spore germination of 10 clinical C. difficile isolates exposed to combinations of bile acids present in patient feces before and after FMT. Bile acids at concentrations found in patients’ feces prior to FMT induced germination of C. difficile, although with variable potency across different strains. However, bile acids at concentrations found in patients after FMT did not induce germination and inhibited vegetative growth of all C. difficile strains. Sequencing of the newly identified germinant receptor in C. difficile, CspC, revealed a possible correspondence of variation in germination responses across isolates with mutations in this receptor. This may be related to interstrain variability in spore germination and vegetative growth in response to bile acids seen in this and other studies. These results support the idea that intra-colonic bile acids play a key mechanistic role in the success of FMT, and suggests that novel therapeutic alternatives for treatment of R-CDI may be developed by targeted manipulation of bile acid composition in the colon. PMID:26789728

  7. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles.

    PubMed

    Mello, Thaís Pereira de; Aor, Ana Carolina; Oliveira, Simone Santiago Carvalho de; Branquinha, Marta Helena; Santos, André Luis Souza Dos

    2016-06-27

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms. PMID:27355215

  8. [Effect of smoke water and distillation liquid on the seed germination and seedling growth of Trichosathes kirilowii].

    PubMed

    Zhou, Jie; Bian, Li-hua; Zou, Lin; Zhou, Bin-qian; Liu, Wei; Wang, Xiao

    2015-10-01

    Smoke water and distillation liquid were used to treat the seeds of Trichosathes kirilowii and to study the effects of smoke water and distillation liquid on the seed germination and seedling growth of T. kirilowii. The results showed that germination rate, germination index and germination vigor of T. kirilowii all were significantly improved with the treatment of SW and DL treatment. The activity of α-amylase were significantly increased with the treatment of SW and DL at 1:2,000. SW and DL treatment showed no significant effects on the activity of SOD. The activity of POD were markedly enhanced under the treatment of SW (1:000) and DL (1:2,000). CAT activity were increased with the treatment of SW and DL at 1:2,000 while were inhibited by SW and DL at 1:500. Seedling height and root length were increased with the treatment of SW and DL (1:1,000, 1:2,000). SW and DL treaments improved the content of chlorophyll, and moreover with the concentration of SW and DL, the stimulatory were also increased. This work demonstrated that smoke water and diatillation liquid at 1:2,000 could stimulate the seed germination and seedling growth of T. kirilowii, and it provided the references for the study of seed germination technology. PMID:27062809

  9. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth.

    PubMed

    Weingarden, Alexa R; Dosa, Peter I; DeWinter, Erin; Steer, Clifford J; Shaughnessy, Megan K; Johnson, James R; Khoruts, Alexander; Sadowsky, Michael J

    2016-01-01

    Fecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI), but its mechanisms remain poorly understood. Emerging evidence suggests that gut bile acids have significant influence on the physiology of C. difficile, and therefore on patient susceptibility to recurrent infection. We analyzed spore germination of 10 clinical C. difficile isolates exposed to combinations of bile acids present in patient feces before and after FMT. Bile acids at concentrations found in patients' feces prior to FMT induced germination of C. difficile, although with variable potency across different strains. However, bile acids at concentrations found in patients after FMT did not induce germination and inhibited vegetative growth of all C. difficile strains. Sequencing of the newly identified germinant receptor in C. difficile, CspC, revealed a possible correspondence of variation in germination responses across isolates with mutations in this receptor. This may be related to interstrain variability in spore germination and vegetative growth in response to bile acids seen in this and other studies. These results support the idea that intra-colonic bile acids play a key mechanistic role in the success of FMT, and suggests that novel therapeutic alternatives for treatment of R-CDI may be developed by targeted manipulation of bile acid composition in the colon. PMID:26789728

  10. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles

    PubMed Central

    de Mello, Thaís Pereira; Aor, Ana Carolina; de Oliveira, Simone Santiago Carvalho; Branquinha, Marta Helena; dos Santos, André Luis Souza

    2016-01-01

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms. PMID:27355215

  11. Effect of light exposure on in vitro germination and germ tube growth of eight species of rust fungi.

    PubMed

    Buck, James W; Dong, Weibo; Mueller, Daren S

    2010-01-01

    The effects of light on urediniospore germination and germ tube elongation was studied with eight species of rust fungi that infect ornamental plants or row crops. Exposure of six species of fungi to cool white fluorescent light at 400 or 600 micromol s(-1) m(-2) for 24 h significantly reduced germination with largest decreases typically observed at 600 micromol s(-1) m(-2). Germination and germ tube elongation did not recover during 24 h dark incubation after 18 h exposure to fluorescent light at 600 micromol s(-1) m(-2), indicating the effects were not reversible. Germ tube elongation of all fungi was negatively affected by increased length of exposure to fluorescent light. Increased exposure to fluorescent light differentially affected germination of the fungi with Puccinia hemerocallidis, Phakopsora pachyrhizi, Pucciniastrum vaccinii and Puccinia menthae negatively affected and Puccinia sorghi, Puccinia triticina, Puccinia pelargonii-zonalis and Puccinia iridis relatively unaffected in 10 h incubation. Exposure of Ph. pachyrhizi and P. triticina urediniospores to sunlight rapidly reduced germination and germ tube elongation with no germination observed for Ph. pachyrhizi after 2.5 h. Germ tube elongation but not germination of hydrated urediniospores of Ph. pachyrhizi and P. triticina was significantly reduced compared to dry urediniospores exposed to 10 h fluorescent light followed by 24 h dark incubation. Exposure to fluorescent light (all fungi) or sunlight (two fungi) negatively affected urediniospore germ tube elongation. Differences observed in urediniospore germination between fungi suggest some species have co-evolved with their host for differing light conditions. Our data suggests exposure of urediniospores to strong light could inactivate rust fungi on plant surfaces or in the atmosphere. PMID:20943512

  12. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone.

    PubMed

    Meena, Kamlesh K; Kumar, Manish; Kalyuzhnaya, Marina G; Yandigeri, Mahesh S; Singh, Dhananjaya P; Saxena, Anil K; Arora, Dilip K

    2012-05-01

    Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 μg ml(-1) of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner. PMID:22200783

  13. Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize.

    PubMed

    Degani, Ofir; Drori, Ran; Goldblat, Yuval

    2015-01-01

    Late wilt, a severe vascular disease of maize caused by the fungus Harpophora maydis, is characterized by rapid wilting of maize plants before tasseling and until shortly before maturity. The pathogen is currently controlled by resistant maize cultivars, but the disease is constantly spreading to new areas. The plant's late phenological stage at which the disease appears suggests that plant hormones may be involved in the pathogenesis. This work revealed that plant growth hormones, auxin (Indole-3-acetic acid) and cytokinin (kinetin), suppress H. maydis in culture media and in a detached root assay. Kinetin, and even more auxin, caused significant suppression of fungus spore germination. Gibberellic acid did not alter colony growth rate but had a signal suppressive effect on the pathogens' spore germination. In comparison, ethylene and jasmonic acid, plant senescing and defense response regulators, had minor effects on colony growth and spore germination rate. Their associate hormone, salicylic acid, had a moderate suppressive effect on spore germination and colony growth rate, and a strong influence when combined with auxin. Despite the anti-fungal auxin success in vitro, field experiments with dimethylamine salt of  2,4-dichlorophenoxyacetic acid (that mimics the influence of auxin) failed to suppress the late wilt. The lines of evidence presented here reveal the suppressive influence of the three growth hormones studied on fungal development and are important to encourage further and more in-depth examinations of this intriguing hormonal complex regulatory and its role in the maize-H. maydis interactions. PMID:25649030

  14. Effects of aqueous eucalyptus extracts on seed germination, seedling growth and activities of peroxidase and polyphenoloxidase in three wheat cultivar seedlings (Triticum aestivum L.).

    PubMed

    Ziaebrahimi, L; Khavari-Nejad, R A; Fahimi, H; Nejadsatari, T

    2007-10-01

    Evaluation of allelopathic effects of this plant on other near cultivations especially wheat is the aim of this study. Effects of water extracts of eucalyptus leaves examined on germination and growth of three wheat cultivar seeds and seedlings. Results showed that: germination percentage strongly decreased, leaf and root lengths also affected and dry and wet weights of both roots and shoots showed similar change patterns. Activities of peroxidase and polyphenoloxidase as antioxidant enzymes in roots and shoots measured. Activity of peroxidases increased in stress conditions and roots showed more increased enzyme activity than leaves. Activity of polyphenoloxidases increased only in one of three cultivars and again roots showed more activity of this enzyme in response to eucalyptus extract. Suggest that detoxification process were conducted mainly in roots of seedlings. PMID:19090161

  15. Bean Plants: A Growth Experience

    ERIC Educational Resources Information Center

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  16. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    PubMed

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments. PMID:26905653

  17. A Simple Plant Growth Analysis.

    ERIC Educational Resources Information Center

    Oxlade, E.

    1985-01-01

    Describes the analysis of dandelion peduncle growth based on peduncle length, epidermal cell dimensions, and fresh/dry mass. Methods are simple and require no special apparatus or materials. Suggests that limited practical work in this area may contribute to students' lack of knowledge on plant growth. (Author/DH)

  18. Seed biopriming with plant growth promoting rhizobacteria: a review.

    PubMed

    Mahmood, Ahmad; Turgay, Oğuz Can; Farooq, Muhammad; Hayat, Rifat

    2016-08-01

    Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds. PMID:27222220

  19. The toxic effect of lead on seed germination, growth, chlorophyll and protein contents of wheat and lens.

    PubMed

    Mesmar, M N; Jaber, K

    1991-01-01

    Lead is a heavy metal which is believed to be toxic when present in excessive amount. Excess Pb in Triticum sativum and Lens esculanta alters several physiological and biochemical processes in both species. Seed germination of both species grown on soaked filter paper with Pb (NO3)2 was highly inhibited (about 60% at 20 mM Pb (NO3)2). Results obtained from measurement of lead content in the roots and shoots of both species indicated that most of the lead accumulated in the roots of both species with a lower degree within the shoots. Lead uptake by both species whether grown in perlite medium or on filter paper soaked with Pb (NO3)2, was correlated with lead concentration. These results indicate a passive process of lead translocation. These results also show that lead inhibits the growth of both plant species, but root growth inhibition was more pronounced than shoot growth inhibition at different lead concentration. Total chlorophyll content was found to be decreased in both species after treatment with Pb (NO3)2. Total protein content in the seedlings, as our results have indicated, was found to be increased with increasing lead concentration in both species. PMID:1841484

  20. Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields

    PubMed Central

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2011-01-01

    Background and Aims Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence. Methods The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species. Key Results It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods. Conclusions These results underline the functional role of delayed germination and light for survival of seeds in the soil

  1. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China

    USGS Publications Warehouse

    Zhang, Yuanming; Belnap, Jayne

    2015-01-01

    In almost all dryland systems, biological soil crusts (biocrusts) coexist alongside herbaceous and woody vegetation, creating landscape mosaics of vegetated and biocrusted patches. Results from past studies on the interaction between biocrusts and vascular plants have been contradictory. In the Gurbantunggut desert, a large temperate desert in northwestern China, well-developed lichen-dominated crusts dominate the areas at the base and between the sand dunes. We examined the influence of these lichen-dominated biocrusts on the germination, growth, biomass accumulation, and elemental content of five common plants in this desert: two shrubs (Haloxylon persicum, Ephedra distachya) and three herbaceous plants (Ceratocarpus arenarius, Malcolmia africana and Lappula semiglabra) under greenhouse conditions. The influence of biocrusts on seed germination was species-specific. Biocrusts did not affect percent germination in plants with smooth seeds, but inhibited germination of seeds with appendages that reduced or eliminated contact with the soil surface or prevented seeds from slipping into soil cracks. Once seeds had germinated, biocrusts had different influences on growth of shrub and herbaceous plants. The presence of biocrusts increased concentrations of nitrogen but did not affect phosphorus or potassium in tissue of all tested species, while the uptake of the other tested nutrients was species-specific. Our study showed that biocrusts can serve as a biological filter during seed germination and also can influence growth and elemental uptake. Therefore, they may be an important trigger for determining desert plant diversity and community composition in deserts.

  2. Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field.

    PubMed

    Payez, Atefeh; Ghanati, Faezeh; Behmanesh, Mehrdad; Abdolmaleki, Parviz; Hajnorouzi, Abazar; Rajabbeigi, Elham

    2013-12-01

    There is a large body of experimental data demonstrating various effects of magnetic field (MF) on plants growth and development. Although the mechanism(s) of perception of MF by plants is not yet elucidated, there is a possibility that like other stimuli, MF exerts its effects on plants by changing membrane integrity and conductance of its water channels, thereby influencing growth characteristics. In this study, the seeds of wheat (Triticum aestivum L. cv. Kavir) were imbibed in water overnight and then treated with or without a 30-mT static magnetic field (SMF) and a 10-kHz electromagnetic field (EMF) for 4 days, each 5 h. Water uptake of seeds reduced 5 h of the treatment with EMF but did not show changes in SMF treatment. Exposure to both magnetic fields did not affect germination percent of the seeds but increased the speed of germination, compared to the control group. Treatment with EMF significantly reduced seedling length and subsequently vigor index I, while SMF had no effects on these parameters. Both treatments significantly increased vigor index II, compared to the control group. These treatments also remarkably increased catalase activity and proline contents of seedlings but reduced the activity of peroxidase, the rate of lipid peroxidation and electrolyte leakages of membranes. The results suggest promotional effects of EMFs on membrane integrity and growth characteristics of wheat seedlings. PMID:23343429

  3. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development1[OPEN

    PubMed Central

    Cheng, Jintao; Wang, Zhenyu; Yao, Fengzhen; Gao, Lihong; Ma, Si; Zhang, Zhenxian

    2015-01-01

    Efficient sugar transport is needed to support the high metabolic activity of pollen tubes as they grow through the pistil. Failure of transport results in male sterility. Although sucrose transporters have been shown to play a role in pollen tube development, the role of hexoses and hexose transporters is not as well established. The pollen of some species can grow in vitro on hexose as well as on sucrose, but knockouts of individual hexose transporters have not been shown to impair fertilization, possibly due to transporter redundancy. Here, the functions of CsHT1, a hexose transporter from cucumber (Cucumis sativus), are studied using a combination of heterologous expression in yeast (Saccharomyces cerevisiae), histochemical and immunohistochemical localization, and reverse genetics. The results indicate that CsHT1 is a plasma membrane-localized hexose transporter with high affinity for glucose, exclusively transcribed in pollen development and expressed both at the levels of transcription and translation during pollen grain germination and pollen tube growth. Overexpression of CsHT1 in cucumber pollen results in a higher pollen germination ratio and longer pollen tube growth than wild-type pollen in glucose- or galactose-containing medium. By contrast, antisense suppression of CsHT1 leads to inhibition of pollen germination and pollen tube elongation in the same medium and results in a decrease of seed number per fruit and seed size when antisense transgenic pollen is used to fertilize wild-type or transgenic cucumber plants. The important role of CsHT1 in pollen germination, pollen tube growth, and seed development is discussed. PMID:25888616

  4. Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong

    2014-03-01

    Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.

  5. Building Up of the Plastid Transcriptional Machinery during Germination and Early Plant Development1

    PubMed Central

    Demarsy, Emilie; Courtois, Florence; Azevedo, Jacinthe; Buhot, Laurence; Lerbs-Mache, Silva

    2006-01-01

    The plastid genome is transcribed by three different RNA polymerases, one is called plastid-encoded RNA polymerase (PEP) and two are called nucleus-encoded RNA polymerases (NEPs). PEP transcribes preferentially photosynthesis-related genes in mature chloroplasts while NEP transcribes preferentially housekeeping genes during early phases of plant development, and it was generally thought that during plastid differentiation the building up of the NEP transcription system precedes the building up of the PEP transcription system. We have now analyzed in detail the establishment of the two different transcription systems, NEP and PEP, during germination and early seedling development on the mRNA and protein level. Experiments have been performed with two different plant species, Arabidopsis (Arabidopsis thaliana) and spinach (Spinacia oleracea). Results show that the building up of the two different transcription systems is different in the two species. However, in both species NEP as well as PEP are already present in seeds, and results using Tagetin as a specific inhibitor of PEP activity demonstrate that PEP is important for efficient germination, i.e. PEP is already active in not yet photosynthetically active seed plastids. PMID:16963522

  6. The fitness costs of delayed germination and diminutive growth response of cheatgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitive ability of cheatgrass is often attributed to rapid early season germination. Our previous research has observed germination occurring from October through June near the Reno, Nevada ARS research location. In a controlled experiment we allowed cheatgrass to germinate naturally (Octo...

  7. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    NASA Astrophysics Data System (ADS)

    Rupiasih, N. Nyoman; Vidyasagar, Pandit B.

    2016-03-01

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  8. Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth.

    PubMed

    Bowerman, Andrew F; Newberry, Marcus; Dielen, Anne-Sophie; Whan, Alex; Larroque, Oscar; Pritchard, Jenifer; Gubler, Frank; Howitt, Crispin A; Pogson, Barry J; Morell, Matthew K; Ral, Jean-Philippe

    2016-01-01

    Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species. PMID:25989474

  9. An effective system to produce smoke solutions from dried plant tissue for seed germination studies1

    PubMed Central

    Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie

    2014-01-01

    • Premise of the study: An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Methods and Results: Smoke solutions (300 mL per batch) were produced by burning small quantities (100–200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Conclusions: Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process. PMID:25202613

  10. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa.

    PubMed

    Zaka, Mehreen; Abbasi, Bilal Haider; Rahman, Latif-Ur; Shah, Afzal; Zia, Muhammad

    2016-06-01

    The synthesis, characterisation and application of metal nanoparticles have become an important and attractive branch of nanotechnology. In current study, metallic nanoparticles of silver, copper, and gold were synthesised using environment friendly method (polyols process), and applied on medicinally important plant: Eruca sativa. Effects of application of these nanoparticles were evaluated on seed germination frequency and biochemical parameters of plant tissues. Seeds of E. sativa were germinated on Murashige and Skoog (MS) medium incorporated with various combinations of nanoparticles suspension (30 µg/ml). Phytotoxicity study showed that nanoparticles could induce stress in plants by manipulating the endogenous mechanisms. In response to these stresses, plants release various defensive compounds; known as antioxidant secondary metabolites. These plants derived secondary metabolites having a great potential in treating the common human ailments. In the authors study, small-sized nanoparticles showed higher toxicity levels and enhanced secondary metabolites production, total protein content, total flavonoids content and total phenolics content. PMID:27256893

  11. Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria.

    PubMed

    Twigg, Matthew S; Tait, Karen; Williams, Paul; Atkinson, Steve; Cámara, Miguel

    2014-02-01

    Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores. PMID:23879807

  12. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  13. Axon growth and guidance genes identify T-dependent germinal centre B cells.

    PubMed

    Yu, Di; Cook, Matthew C; Shin, Dong-Mi; Silva, Diego G; Marshall, Jennifer; Toellner, Kai-Michael; Havran, Wendy L; Caroni, Pico; Cooke, Michael P; Morse, Herbert C; MacLennan, Ian C M; Goodnow, Christopher C; Vinuesa, Carola G

    2008-01-01

    Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms. PMID:17938642

  14. Glycine Betaine Biosynthesized from Glycine Provides an Osmolyte for Cell Growth and Spore Germination during Osmotic Stress in Myxococcus xanthus▿

    PubMed Central

    Kimura, Yoshio; Kawasaki, Shinji; Yoshimoto, Hinae; Takegawa, Kaoru

    2010-01-01

    Glycine sarcosine methyltransferase (Gsm) and sarcosine dimethylglycine methyltransferase (Sdm) catalyze glycine betaine synthesis from glycine. Disruption of the M. xanthus gsmA (MXAN 7068) or sdmA (MXAN 3190) gene, encoding Gsm or Sdm homologue proteins, respectively, generated mutants that exhibited a longer lag period of growth and delayed spore germination under osmostress. PMID:20023011

  15. Overexpression of the Vacuolar Sugar Carrier AtSWEET16 Modifies Germination, Growth, and Stress Tolerance in Arabidopsis1[W

    PubMed Central

    Klemens, Patrick A.W.; Patzke, Kathrin; Deitmer, Joachim; Spinner, Lara; Le Hir, Rozenn; Bellini, Catherine; Bedu, Magali; Chardon, Fabien; Krapp, Anne; Neuhaus, H. Ekkehard

    2013-01-01

    Here, we report that SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET16) from Arabidopsis (Arabidopsis thaliana) is a vacuole-located carrier, transporting glucose (Glc), fructose (Fru), and sucrose (Suc) after heterologous expression in Xenopus laevis oocytes. The SWEET16 gene, similar to the homologs gene SWEET17, is mainly expressed in vascular parenchyma cells. Application of Glc, Fru, or Suc, as well as cold, osmotic stress, or low nitrogen, provoke the down-regulation of SWEET16 messenger RNA accumulation. SWEET16 overexpressors (35SPro:SWEET16) showed a number of peculiarities related to differences in sugar accumulation, such as less Glc, Fru, and Suc at the end of the night. Under cold stress, 35SPro:SWEET16 plants are unable to accumulate Fru, while under nitrogen starvation, both Glc and Fru, but not Suc, were less abundant. These changes of individual sugars indicate that the consequences of an increased SWEET16 activity are dependent upon the type of external stimulus. Remarkably, 35SPro:SWEET16 lines showed improved germination and increased freezing tolerance. The latter observation, in combination with the modified sugar levels, points to a superior function of Glc and Suc for frost tolerance. 35SPro:SWEET16 plants exhibited increased growth efficiency when cultivated on soil and showed improved nitrogen use efficiency when nitrate was sufficiently available, while under conditions of limiting nitrogen, wild-type biomasses were higher than those of 35SPro:SWEET16 plants. Our results identify SWEET16 as a vacuolar sugar facilitator, demonstrate the substantial impact of SWEET16 overexpression on various critical plant traits, and imply that SWEET16 activity must be tightly regulated to allow optimal Arabidopsis development under nonfavorable conditions. PMID:24028846

  16. The Window of Desiccation Tolerance Shown by Early-Stage Germinating Seedlings Remains Open in the Resurrection Plant, Xerophyta viscosa

    PubMed Central

    Lyall, Rafe; Ingle, Robert A.; Illing, Nicola

    2014-01-01

    Resurrection plants are renowned for their vegetative desiccation tolerance (DT). While DT in vegetative tissues is rare in angiosperms, it is ubiquitous in mature orthodox seeds. During germination, seedlings gradually lose DT until they pass a point of no return, after which they can no longer survive dehydration. Here we investigate whether seedlings of the resurrection plant Xerophyta viscosa ever lose the capacity to establish DT. Seedlings from different stages of germination were dehydrated for 48 hours and assessed for their ability to recover upon rehydration. While a transient decline in the ability of X. viscosa seedlings to survive dehydration was observed, at no point during germination was the ability to re-establish DT completely lost in all seedlings. Pre-treatment of seedlings with PEG or sucrose reduced this transient decline, and improved the survival rate at all stages of germination. Additionally, we observed that the trait of poikilochlorophylly (or loss of chlorophyll) observed in adult X. viscosa leaves can be induced throughout seedling development. These results suggest that the window of DT seen in germinating orthodox seeds remains open in X. viscosa seedlings and that vegetative DT in Xerophyta species may have evolved from the ability to retain this program through to adulthood. PMID:24667896

  17. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2012-12-01

    Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from oxidative stress. The present study aimed at determining the role of flavonoids in Arabidopsis thaliana (L.) seed germination, and the involvement of salicylic acid (SA) and auxin (indole-3-acetic acid), two phytohormones with the same biosynthetic origin as flavonoids, the shikimate pathway, in such a putative role. We show that naringenin, a flavanone, strongly inhibits the germination of A. thaliana seeds in a dose-dependent and SA-independent manner. Altered auxin levels do not affect seed germination in Arabidopsis, but impaired auxin transport does, although to a minor extent. Naringenin and N-1-naphthylphthalamic acid (NPA) impair auxin transport through the same mechanisms, so the inhibition of germination by naringenin might involve impaired auxin transport among other mechanisms. From the present study it is concluded that naringenin inhibits the germination of Arabidopsis seeds in a dose-dependent and SA-independent manner, and the results also suggest that such effects are exerted, at least to some extent, through impaired auxin transport, although additional mechanisms seem to operate as well. PMID:23031844

  18. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  19. Effect of Temperature, Light and Salinity on Seed Germination and Radicle Growth of the Geographically Widespread Halophyte Shrub Halocnemum strobilaceum

    PubMed Central

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.

    2008-01-01

    Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from ‘salt steppes’ in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 °C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0·1 to 0·75 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ≥2·0 m NaCl. Elongation of radicles from salt solutions <3·0 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean ‘salt steppe’ of Spain and the inland cold salt desert of north-west China. PMID:17428834

  20. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes.

    PubMed

    Bae, Jichul; Benoit, Diane L; Watson, Alan K

    2016-06-01

    In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. PMID:26882164

  1. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  2. Effect of water activity and temperature on the germination and growth of Aspergillus tamarii isolated from "Maldive fish".

    PubMed

    Mohamed, Shazla; Mo, Li; Flint, Steve; Palmer, Jon; Fletcher, Graham C

    2012-11-15

    Germination times and radial growth rates of cyclopiazonic acid producing strains of Aspergillus tamarii isolated from a smoked dried fish product were studied over water activities (a(w)) ranging from 0.99 to 0.79 at 25°C, 30°C, 35°C and 40°C on two laboratory media. The a(w) of the media was controlled by either NaCl or a mixture of glucose and fructose. The optimum germination and growth were observed at temperatures between 30°C and 35°C. Germination was favored at the highest a(w) of 0.99 under all conditions. Growth however was dependent on the media and temperature with a lower optimum a(w) of 0.95 for NaCl media and 0.95 to 0.92 a(w) on media containing glucose/fructose. The minimum a(w) for growth was often higher than for germination while both parameters were influenced by temperature and media type. Germination on NaCl media was prevented at a(w) values below 0.82 at 25°C and 30°C, 0.85 at 35°C and 40°C. However, growth did not occur at a(w) <0.85 at 25-35°C. At those temperatures on glucose/fructose media, growth was observed at the lowest a(w) tested (0.79). On both media, the restrictive effect of lowered water activity was more pronounced at 40°C than at 25-35°C. Delays in germination increased and growth rates decreased with marginal a(w) and temperature conditions. The fungi displayed better tolerance on glucose/fructose media than on NaCl media on which it was partly inhibited by the NaCl. The information obtained here could be used to develop strategies for the control of this xerophilic fungus on smoked dried fish and other tropical foods on which it predominates. PMID:23177051

  3. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  4. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae)

    PubMed Central

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-01-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  5. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae).

    PubMed

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-07-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  6. Evaluation of germination, growth and ecophysiological response of Cistus monspeliensis L. in different contaminated and uncontaminated soils of the Iberian Pyrite Belt

    NASA Astrophysics Data System (ADS)

    Arenas Lago, Daniel; Santos, Erika S.; Carvalho, Luisa C.; Abreu, Maria Manuela

    2016-04-01

    Iberian Pyrite Belt (IPB) is one of the most important volcanogenic massive sulfide ore deposits in the world. As a result of the mine activities, many areas from the IPB have become extreme environments with high concentrations of a wide variety of potentially hazardous elements (PHEs) and low pH in their soils, which cause severe contamination problems and inhibit or reduce the plant colonization and their growth. Nevertheless, Cistus monspeliensis L. grows spontaneously in mine areas from the IPB under these extreme conditions, which suggests that this species must have mechanisms to adapt and defend itself against oxidative stress caused by the high levels of PHEs. The main objectives of this study are to evaluate germination, growth, development and ecophysiological behaviour of C. monspeliensis in different contaminated and uncontaminated soils. For this purpose, two different assays were conducted in potted plants in a greenhouse with C. monspeliensis seeds collected in the São Domingos mine area (SE Portugal, IPB). In the first assay, twenty C. monspeliensis seeds were sowed to evaluate the germination in pots (n=4) with five different contaminated and uncontaminated soils - Uncontaminated soils: a sandy soil (A) and a soil from Caldeirão (C) (S of Portugal), Contaminated soils: two gossans from São Domingos mine (SD and G) and a gossan amended with an organic corrective (GC). After one month, germination rate was evaluated. Total and available multielemental concentrations were determined in the soils. In the second assay, C. monspeliensis seedlings were planted in the contaminated soil GC and in the uncontaminated soil C. After three months of growth, plants were harvested and shoots were separated from roots. Plant height, fresh biomass and multielemental concentration in shoots were quantified. Pigments (chlorophylls, anthocyanins and carotenoids), glutathione, ascorbate, H2O2 and the activities of several key antioxidative enzymes were also

  7. Characterization of Peanut Germin-Like Proteins, AhGLPs in Plant Development and Defense

    PubMed Central

    Wang, Tong; Chen, Xiaoping; Zhu, Fanghe; Li, Haifen; Li, Ling; Yang, Qingli; Chi, Xiaoyuan; Yu, Shanlin; Liang, Xuanqiang

    2013-01-01

    Background Germin-like superfamily members are ubiquitously expressed in various plant species and play important roles in plant development and defense. Although several GLPs have been identified in peanut (Arachis hypogaea L.), their roles in development and defense remain unknown. In this research, we study the spatiotemporal expression of AhGLPs in peanut and their functions in plant defense. Results We have identified three new AhGLP members (AhGLP3b, AhGLP5b and AhGLP7b) that have distinct but very closely related DNA sequences. The spatial and temporal expression profiles revealed that each peanut GLP gene has its distinct expression pattern in various tissues and developmental stages. This suggests that these genes all have their distinct roles in peanut development. Subcellular location analysis demonstrated that AhGLP2 and 5 undergo a protein transport process after synthesis. The expression of all AhGLPs increased in responding to Aspergillus flavus infection, suggesting AhGLPs' ubiquitous roles in defense to A. flavus. Each AhGLP gene had its unique response to various abiotic stresses (including salt, H2O2 stress and wound), biotic stresses (including leaf spot, mosaic and rust) and plant hormone stimulations (including SA and ABA treatments). These results indicate that AhGLPs have their distinct roles in plant defense. Moreover, in vivo study of AhGLP transgenic Arabidopsis showed that both AhGLP2 and 3 had salt tolerance, which made transgenic Arabidopsis grow well under 100 mM NaCl stress. Conclusions For the first time, our study analyzes the AhGLP gene expression profiles in peanut and reveals their roles under various stresses. These results provide an insight into the developmental and defensive roles of GLP gene family in peanut. PMID:23626720

  8. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  9. Nickel toxicity on seed germination and growth in radish (Raphanus sativus) and its recovery using copper and boron.

    PubMed

    Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K

    2009-05-01

    Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings. PMID:20120479

  10. Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice

    PubMed Central

    Qi, Xiaoli; Wu, Wei; Shah, Farooq; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Liu, Hongyan; Nie, Lixiao

    2012-01-01

    Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding. PMID:22454611