Science.gov

Sample records for geyser basin yellowstone

  1. Temporal variations of geyser water chemistry in the Upper Geyser Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Hunt, Andrew G.; Evans, William C.

    2012-01-01

    Geysers are rare features that reflect a delicate balance between an abundant supply of water and heat and a unique geometry of fractures and porous rocks. Between April 2007 and September 2008, we sampled Old Faithful, Daisy, Grand, Oblong, and Aurum geysers in Yellowstone National Park's Upper Geyser Basin and characterized temporal variations in major element chemistry and water isotopes (δ18O, δD, 3H). We compare these temporal variations with temporal trends of Geyser Eruption Intervals (GEI). SiO2 concentrations and geothermometry indicate that the geysers are fed by waters ascending from a reservoir with temperatures of ∼190 to 210°C. The studied geysers display small and complex chemical and isotopic seasonal variations, and geysers with smaller volume display larger seasonal variations than geysers with larger volumes. Aurum and Oblong Geysers contain detectable tritium concentrations, suggesting that erupted water contains some modern meteoric water. We propose that seasonal GEI variations result from varying degrees of evaporation, meteoric water recharge, water table fluctuations, and possible hydraulic interaction with the adjacent Firehole River. We demonstrate that the concentrations of major dissolved species in Old Faithful Geyser have remained nearly constant since 1884 despite large changes in Old Faithful's eruption intervals, suggesting that no major changes have occurred in the hydrothermal system of the Upper Geyser Basin for >120 years. Our data set provides a baseline for monitoring future changes in geyser activity that might result from varying climate, earthquakes, and changes in heat flow from the underlying magmatic system.

  2. Temporal variations of geyser water chemistry in the Upper Geyser Basin, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Hunt, Andrew G.; Evans, William C.

    2012-12-01

    Geysers are rare features that reflect a delicate balance between an abundant supply of water and heat and a unique geometry of fractures and porous rocks. Between April 2007 and September 2008, we sampled Old Faithful, Daisy, Grand, Oblong, and Aurum geysers in Yellowstone National Park's Upper Geyser Basin and characterized temporal variations in major element chemistry and water isotopes (δ18O, δD, 3H). We compare these temporal variations with temporal trends of Geyser Eruption Intervals (GEI). SiO2 concentrations and geothermometry indicate that the geysers are fed by waters ascending from a reservoir with temperatures of ˜190 to 210°C. The studied geysers display small and complex chemical and isotopic seasonal variations, and geysers with smaller volume display larger seasonal variations than geysers with larger volumes. Aurum and Oblong Geysers contain detectable tritium concentrations, suggesting that erupted water contains some modern meteoric water. We propose that seasonal GEI variations result from varying degrees of evaporation, meteoric water recharge, water table fluctuations, and possible hydraulic interaction with the adjacent Firehole River. We demonstrate that the concentrations of major dissolved species in Old Faithful Geyser have remained nearly constant since 1884 despite large changes in Old Faithful's eruption intervals, suggesting that no major changes have occurred in the hydrothermal system of the Upper Geyser Basin for >120 years. Our data set provides a baseline for monitoring future changes in geyser activity that might result from varying climate, earthquakes, and changes in heat flow from the underlying magmatic system.

  3. Protecting the geyser basins of Yellowstone National Park: toward a new national policy for a vulnerable environmental resource.

    PubMed

    Barrick, Kenneth A

    2010-01-01

    Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world's remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone's geysers extend well beyond the Park borders, and onto two "Known Geothermal Resource Areas"-Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a "Geyser Protection Area" (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone's geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area's "wicked" public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world's few remaining geyser basins. PMID:19841971

  4. Heat Budget Monitoring in Norris Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Mohamed, R. A. M.; Neale, C. M. U.; Jaworowski, C.

    2014-12-01

    Frequent estimation of heat flux in active hydrothermal areas are required to monitor the variation in activity. Natural changes in geothermal and hydrothermal features can include rapid significant changes in surface temperature distribution and may be an indication of "re-plumbing" of the systems or potential hydrothermal explosions. Frequent monitoring of these systems can help Park managers make informed decisions on infrastructure development and/or take precautionary actions to protect the public. Norris Geyser Basin (NGB) is one of Yellowstone National Park's hottest and most dynamic basins. Airborne high-resolution thermal infrared remote sensing was used to estimate radiometric temperatures within NGB and allow for the estimation of the spatial and temporal distribution of surface temperatures and the heat flow budget. The airborne monitoring occurred in consecutive years 2008-2012 allowing for the temporal comparison of heat budget in NGB. Airborne thermal infrared images in the 8-12 µm bands with 1-m resolution were acquired using a FLIR SC640 scanner. Digital multispectral images in the green (0.57 μm), red (0.65 μm), and near infrared (0.80 μm) bands were also acquired to classify the terrain cover and support the atmospheric and emissivity correction of the thermal images. The airborne images were taken in the month of September on selected days with similar weather and under clear sky conditions. In the winter of 2012, images were also taken in March to compare the effect of the cold weather and snow cover on the heat budget. Consistent methods were used to acquire and process the images each year to limit the potential variability in the results to only the variability in the hydrothermal system. Data from radiation flux towers installed within the basin were used to compare with airborne radiometric surface temperatures and compensate for residual solar heating in the imagery. The presentation will discuss the different mechanisms involved in

  5. Helium isotopes: Lower geyser basin, Yellowstone National Park

    SciTech Connect

    Kennedy, B.M.; Reynolds, J.H.; Smith, S.P.; Truesdell, A.H.

    1987-11-10

    High /sup 3/He//sup 4/He ratios associated with the Yellowstone caldera reflect the presence of a magmatic helium component. This component is ultimately derived from a mantle plume capped by a cooling batholith underlying the caldera. In surface hot springs, fumaroles, etc., the /sup 3/He//sup 4/He ratio varies from approx.1 to 16 tims the air ratio. The variations are produced by varying degrees of dilution of the magmatic component with radiogenic helium. The radiogenic helium is crustal-derived and is thought to be scavenged from aquifers in which the hydrothermal fluids circulate. We determined the helium iosotopic composition in 12 different springs from the Lower Geyser Basin, a large hydrothermal basin with the caldera. The /sup 3/He//sup 4/He ratio was found to vary from approx.2.7 to 7.7 times the air ratio. The variations correlate with variations in water chemistry. Specifically, the /sup 3/He//sup 4/He ratio increased with total bicarbonate concentration. The dissolved bicarbonate is from gas-water-rock interactions involving CO/sub 2/ and Na silicates. The concentration of bicarbonate is a function of the availability of dissolved CO/sub 2/, which, in turn, is a function of deep boiling with phase separation prior to CO/sub 2/-bicarbonate conversion. The correlation of high /sup 3/He//sup 4/He ratios with high bicarbonate is interpreted as the result of deep dilution of a single thermal fluid with cooler water during ascent to the surface. The dilution and cooling deters deep boiling, and therefore both CO/sub 2/ and /sup 3/He are retained in the rising fluid. Fluids that are not diluted with boil to a greater extent, losing a large proportion of /sup 3/He, as well as CO/sub 2/, leaving a helium-poor residual fluid in which the isotopic composition of helium will be strongly affected by the addition of radiogenic helium.

  6. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  7. The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    White, D.E.; Keith, T.E.C. ); Hutchinson, R.A. )

    1988-01-01

    Norris Geyser Basin is adjacent to the north rim of the Yellowstone Caldera, one of the largest volcanic features of its type in the world. Hydrothermal activity may have been continuous for {gt}100,000 years B.P. Norris Basin includes the highest erupting geyser of recent water types, colors of organisms and inorganic precipitates, frequent changes in activity and chemistry, and very high subsurface temperatures ({gt}240{degrees}C). Norris Basin is only a part of the Norris-Mammoth Corridor that strikes north from the caldera rim to Mammoth Hot Springs. Norris Basin has a heat flow roughly 10 percent of that of the Yellowstone Caldera and requires an estimated 0.01 km{sup 3} of rhyolitic magma per year-a quantity far greater than the corridor's rate of eruption.

  8. Hydrothermal disturbances at the Norris Geyser Basin, Yellowstone National Park (USA) in 2003

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Heasler, H.; Smith, R. B.

    2003-12-01

    The Norris Geyser Basin in north-central Yellowstone National Park (YNP) experienced a series of notable changes during 2003, including formation of new hot springs and fumaroles, renewed activity of dormant geysers and elevated ground temperatures. This abstract provides a short synopsis of the new hydrothermal activity. In 2000, Yellowstone's tallest geyser, Steamboat, erupted after a dormant period of nearly 9 years. It erupted twice in 2002 and then again on 26 March and 27 April 2003. Surges in flux of thermal water preceding the eruptions (preplay) were recorded by a couplet of temperature data loggers placed in the outlet stream. The data indicated pulses of water flow with 1 and ~3 day intervals. On 10 July 2003, a new thermal feature was reported just west of Nymph Lake, ~ 3.5 km northwest of the Norris Museum. A linear series of vigorous fumaroles, about 75 m long had formed in a forested area, ~ 200 m up a hill on the lake's west shore. Fine particles of rock and mineral fragments coated nearby vegetation. Fumarole temperatures were around the local boiling temperature of water (92° C). After two months, somewhat reduced steam emission was accompanied by discharge of ~ 3-10 gallons per minute of near-neutral thermal water. Trees within 4 meters of the lineament were dead and were being slowly combusted. Porkchop Geyser in Norris' Back Basin had been dormant since it exploded in 1989, littering the nearby area with boulders up to over 1 m in diameter. Since that time, its water had remained well below the boiling temperature of water. From 1 April through 1 July `03, the temperature of waters in Porkchop's vent increased continuously from 67° to 88° C. Each Summer, Norris' Back Basin experiences an "annual disturbance" where individual hot springs and geysers typically show anomalous boiling, and have measurable increases in turbidity, acidity and SO4/Cl ratios. The disturbance has been linked to depressurization of the hydrothermal system as the

  9. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  10. Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin

    USGS Publications Warehouse

    Lowenstern, J. B.; Bergfeld, D.; Evans, William C.; Hurwitz, S.

    2012-01-01

    We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s−1 of parent thermal water, corresponding to 68 ± 14 MW, or –1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).

  11. Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Bergfeld, D.; Evans, W. C.; Hurwitz, S.

    2012-01-01

    We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s-1of parent thermal water, corresponding to 68 ± 14 MW, or ˜1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).

  12. A Prototype Hydrothermal Monitoring System, Norris Geyser Basin, Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Farrell, J. M.; Waite, G. P.; Puskas, C. M.; Chang, W.; Smith, R. B.; Heasler, H.; Lowenstern, J.

    2007-12-01

    Hydrothermal explosions are a prominent geologic hazard in Yellowstone National Park and are of consideration for park infrastructure and visitor safety. It is estimated that small rock-hurling phreatic explosions occur somewhere in the park almost every year and larger basin-wide events on the order of several hundred years. The Yellowstone Volcano Observatory (U.S. Geological Survey, University of Utah, and the National Park Service) has deployed a prototype network of GPS and seismic stations in Norris Geyser Basin. The monitoring system consists of five GPS stations and one broadband seismograph that were installed and operated for a year (October 2006 through September 2007) including during Yellowstone's harsh winter. The five GPS stations operated remarkably well over the survey period with at least 3 stations operating 98% of the time. The general southwest horizontal motion and subsidence of the 5 GPS stations are consistent with observations from nearby permanent GPS stations and InSAR. However, local transient signals of uplift and subsidence up to 6 cm are observed. Various long-period signals are observed in the seismic data, ranging from 2 to 100 seconds, which may be indicative of the transport of hydrothermal fluids within the basin. GPS and seismic data will be analyzed and compared to available temperature (air and water), rainfall, and barometric pressure data to try and isolate signals that can be attributed to the hydrothermal system. Ground deformation data can be used to determine the interdependence between regional deformation and hydrothermal activity. Seismic data can be used to help determine the interdependence between regional earthquakes and hydrothermal activity. These data will be valuable to YVO to help us better monitor Yellowstone's many hydrothermal systems to both gain a greater understanding of how they work as well as to be able to better understand the safety hazards involved to both park employees and visitors.

  13. Geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    White, D.E.; Hutchinson, R.A.; Keith, T.E.C.

    1988-01-01

    Norris Geyser Basin is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. The dominant quartz sand is hydrothermally cemented by chalcedony and is extremely hard, thereby justifying the term hydrothermal quartzite. The fundamental water type in Norris Basin is nearly neutral in pH and high in Cl and SiO/sub 2/. Another common type of water in Norris Basin is high in SO/sub 4/ and moderately high in Cl, with Cl/SO/sub 4/ ratios differing considerably. This study provides no new conclusive data on an old problem, the source or sources of rare dissolved constitutents. An important part of this paper consists of examples of numerous changes in behavior and chemical composition of most springs and geysers, to extents not known elsewhere in the park and perhaps in the world. Hydrothermal mineralogy in core samples from three research holes drilled entirely in Lava Creek Tuff to a maximum depth of -331.6 m permits an interpretation of the hydrothermal alteration history. A model for large, long-lived, volcanic-hydrothermal activity is also suggested, involving all of the crust and upper mantle and using much recent geophysical data bearing on crust-mantle interrelations.

  14. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    SciTech Connect

    Hearn, E.H.; Kennedy, B.M. ); Truesdell, A.H. )

    1990-11-01

    Early studies of {sup 3}He/{sup 4}He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic {sup 3}He-rich helium or to local differences in the deep flux of magmatic {sup 3}He-rich helium. Kennedy et al, however, show that near-surface processes such as boiling and dilution may also drastically affect {sup 3}He/{sup 4}He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO{sub 3}{sup {minus}} concentrations correlate with {sup 3}He/{sup 4}He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO{sub 2} and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface.

  15. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Hearn, E.H.; Kennedy, B.M.; Truesdell, A.H.

    1990-01-01

    Early studies of 3He/4He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic 3He-rich helium or to local differences in the deep flux of magmatic 3He-rich helium. Kennedy et al. (1987), however, show that near-surface processes such as boiling and dilution may also drastically affect 3He 4He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO3- concentrations correlate with 3He 4He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO2 (and therefore HCO3-) and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface. ?? 1990.

  16. The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    White, Donald Edward; Hutchinson, Roderick A.; Keith, Terry E.C.

    1988-01-01

    Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends from Hebgen Lake, west of the park, to Norris Basin. No local evidence exists at the surface in Norris Basin for the two oldest Yellowstone volcanic caldera cycles (~2.0 and 1.3 m.y.B.P.). The third and youngest cycle formed the Yellowstone caldera, which erupted the 600,000-year-old Lava Creek Tuff. No evidence is preserved of hydrothermal activity near Norris Basin during the first 300,000.years after the caldera collapse. Glaciation probably removed most of the early evidence, but erratics of hot-spring sinter that had been converted diagenetically to extremely hard, resistant chalcedonic sinter are present as cobbles in and on some moraines and till from the last two glacial stages, here correlated with the early and late stages of the Pinedale glaciation <150,000 years B.P.). Indirect evidence for the oldest hydrothermal system at Norris Basin indicates an age probably older than both stages of Pinedale glaciation. Stream deposits consisting mainly of rounded quartz phenocrysts of the Lava Creek Tuff were subaerial, perhaps in part windblown and redeposited by streams. A few small rounded pebbles are interpreted as chalcedonic sinter of a still older cycle. None of these are precisely dated but are unlikely to be more than 150,000 to 200,000 years old. ...Most studies of active hydrothermal areas have noted chemical differences in fluids and alteration products but have given little attention to differences and models to explain evolution in types. This report, in contrast, emphasizes the kinds of changes in vents and their changing chemical types of waters and then

  17. Using environmental tracers and numerical simulation to investigate regional hydrothermal basins—Norris Geyser Basin area, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Gardner, W. Payton; Susong, David D.; Solomon, D. Kip; Heasler, Henry P.

    2013-06-01

    Heat and fluid flow fields are simulated for several conceptual permeability fields and compared to processes inferred from environmental tracers in springs around Norris Geyser Basin, Yellowstone National Park. Large hydrothermal basins require specific permeability distributions in the upper crust. High permeability connections must exist between the land surface and high-temperature environments at depths of up to 5 km. The highest modeled temperatures are produced with a vertical conduit permeability of 10-15m2. Permeability at depths of 3-5 km must be within one order of magnitude of the near-surface permeability and must be ≥10-16m2. Environmental tracers from springs are used to develop a plausible numerical model of the local to regional groundwater flow field for the Norris Geyser Basin area. The model simulations provide insight into the dynamics of heat and fluid flow in a large regional hydrothermal system.

  18. Surface and subsurface hydrothermal flow pathways at Norris Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Graham Wall, B. R.

    2005-12-01

    During summer 2003 at Yellowstone's Norris Geyser Basin notable changes were observed in the discharge of heat and steam, creating new thermal features, dying vegetation, and the consequent closure of trails to protect public safety. In order to interpret data collected from GPS, seismic, and temperature instruments deployed in response to the increased hydrothermal activity, a study has been undertaken to provide a more complete knowledge of the spatial distribution of subsurface fluid conduits. Geologic data, including mapped outcrops, aerial imagery, thermal infrared imagery, and subsurface core, indicate that fracture pathways in the Lava Creek Tuff (LCT) channel flow in the hydrothermal system. These data show clear evidence that NE-SW and NW-SE trending structures provide major flow pathways at Norris. By mapping fracture sets in outcrops of LCT with varied degrees of hydrothermal alteration, one can consistently identify fractures that localize hydrothermal fluid flow, alteration, and the geometry of surface thermal features. Alteration is characterized by acid leaching that quickly alters LCT mafic minerals and glassy groundmass, which in outcrop is recognized by corroded and disaggregated LCT with local secondary mineral deposition. Mapping the sequence from unaltered to altered LCT has identified vertical cooling joints as primary conduits for hydrothermal fluids. These vertical joints correlate with the NE-SW trending geomorphic expression of the LCT in this area, and parallel the adjacent caldera boundary. Horizontal fractures parallel depositional stratigraphy, and in core from drill holes Y-9 (248 m) and Y-12 (332 m) appear to initiate at collapsed vapor-phase cavities or regions of altered fiamme. Vertical fractures in the core show sequences of hydrothermal minerals locally derived from water-rock interaction that line fracture walls, characteristic of mineral deposition associated with repeat reactivation. Although the hydrothermal system is

  19. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    Bargar, K.E.; Beeson, M.H.

    1981-05-01

    Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

  20. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  1. The Mw4.8 Norris Geyser Basin Earthquake of 30 March, 2014 and its Relationship to Crustal Deformation and Seismic Activity of the Yellowstone Volcanic System

    NASA Astrophysics Data System (ADS)

    Farrell, J.; Shelly, D. R.; Smith, R. B.; Puskas, C. M.; Chang, W. L.

    2014-12-01

    The largest earthquake to be recorded in Yellowstone in over 30 years, a magnitude 4.8 earthquake, occurred on March 30, 2014 near the Norris Geyser Basin on the NW side of the 0.64 Ma Yellowstone caldera. The earthquake was felt throughout Yellowstone and the surrounding region. We analyze this unusual event using data from the Yellowstone Seismic and Geodetic networks in the context of active volcanic-tectonic processes of the Yellowstone volcanic system and its relationship to regional swarm seismicity and crustal deformation. Moment tensor analysis of the March 30 earthquake revealed a strike-slip, double-couple source mechanism with no isotropic contribution. This earthquake was part of a larger sequence of earthquake swarm activity in the Norris Geyser Basin area that began in September 2013 and continued into June 2014. During that period, 50-60% of the total seismicity recorded in Yellowstone, including nearly all of the swarm seismicity (earthquakes clustered in time and space), occurred in the Norris Geyser Basin area. In addition, GPS derived deformation data revealed unusually high uplift rates at ~15 cm/yr in the Norris area prior to the MW4.8 event, while a dramatic reversal to subsidence at rates of ~20 cm/yr occurred after the event. Regionally, the much larger Yellowstone caldera had experienced subsidence since January 2010 at rates of ~1.5 cm/yr prior to the MW4.8 event. After March 30, 2014 the caldera reversed to regional uplift at rates of ~10 cm/yr, similar to accelerated uplift rates observed in mid-2004.

  2. Real-time Remote Data Online For Norris Geyser Basin in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Perry, J. E.; Lowenstern, J. B.; Clor, L.; Cervelli, P. F.; Allen, S. T.; Heasler, H.; Moloney, T.

    2010-12-01

    Perry, John, Lowenstern, Jacob, Cervelli, Peter, Clor, Laura, Heasler, Henry, Allen, Scott, Moloney, Tim During June 2010, ten 900MHz wireless temperature data loggers (nodes) were installed around the Norris Geyser Basin to monitor geothermal features, streams and soil temperatures. The loggers can provide near real-time updates on temperature variations within 0.2 deg C due to hydrothermal discharges or subsurface fluid migration. Each sensor node is programmed to measure the temperature every two minutes and automatically upload data to the base station computer daily. The hardware consists of a waterproof case containing an M5 logger (made by Marathon Products, Inc.®) with internal memory, lithium D-cell batteries and a 900 MHz, 1-W-transceiver and 5 meter long Teflon-coated probe with a thermistor sensor. Tethered stub or panel antennas are oriented to optimize signal strength to the base station near the Norris Museum. A 0.61 meter-long base-station antenna located 10m high provides signal to the furthest node over 850 meters away with most being “line-of-sight”. A 20-meter coaxial cable and lightning grounding wire connects the base-station antenna to an Ethernet-radio connected to the YNP local-area network. A server located 26-km north at Mammoth Hot Springs requests data at regular intervals (normally daily), archives the information, and then sends it to the USGS for further archiving and internet distribution. During periods of unusual hydrothermal behavior, data can be requested as needed, and it is possible to set user-programmable alarm limits for notification. The RF network is designed to monitor changes from three different sub-basins at Norris (Gray Lakes, Steamboat-Echinus and Porcelain Basin), the main Tantalus Creek drainage, and five individual thermal features (Constant, Porkchop, Steamboat and Echinus Geysers, and Opalescent Spring). The logger installed in Nuphar Lake provides ambient temperatures controlled solely by local

  3. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2011-01-01

    Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.

  4. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15–152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  5. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John P.

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15-152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  6. Variability in geyser eruptive timing and its causes: Yellowstone National Park

    USGS Publications Warehouse

    Rojstaczer, S.; Galloway, D.L.; Ingebritsen, S.E.; Rubin, D.M.

    2003-01-01

    Field data from Upper Geyser Basin, Yellowstone, indicate that geyser frequency is less sensitive to elastic deformation than might be surmised from a review of the literature. Earth-tide influences are not identifiable in any of the geysers we monitored. Though atmospheric-pressure influences are observed, only long-period variations on the order of 5 mBars or greater seem to influence geyser frequency. Long-distance interconnections between geysers are common and add to the difficulty of identifying strain influences. Additional variations in geyser periodicity may be governed by the internal dynamics of the geysers rather than external influences.

  7. Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser Basin, Yellowstone National Park during June-September, 1995

    USGS Publications Warehouse

    Fournier, R.O.; Weltman, U.; Counce, D.; White, L.D.; Janik, C.J.

    2002-01-01

    Each year at Norris Geyser Basin, generally in August or September, a widespread hydrothermal 'disturbance' occurs that is characterized by simultaneous changes in the discharge characteristics of many springs, particularly in the Back Basin. During the summer season of 1995, water samples from eight widely distributed hot springs and geysers at Norris were collected each week and analyzed to determine whether chemical and isotopic changes also occurred in the thermal waters at the time of the disturbance. In addition, Beryl Spring in Gibbon Canyon, 5.8 km southwest of Norris Geyser Basin, was included in the monitoring program. Waters discharged by four of the monitored hot springs and geysers appear to issue from relatively deep reservoirs where temperatures are at least 270 C and possibly higher than 300 C. At the time of, and for several days after, the onset of the 1995 disturbance, the normally neutral-chloride waters discharged by these four features all picked up an acid-sulfate component and became isotopically heavier. The acid-sulfate component appears to be similar in composition to some waters discharged in 100 Spring Plain that issue from subsurface regions where temperatures are in the range 170-210 C. However, the two monitored springs that discharge acid-chloride-sulfate waters in the 100 Spring Plain region did not show any significant chemical or isotopic response to the annual disturbance. Beryl Spring, and two neutral-chloride hot springs at Norris that appear to draw their water from reservoirs where temperatures are 250 C or less, also did not show any significant chemical or isotopic response to the annual disturbance. After the start of the annual disturbance, chloride concentrations in water sampled from Double Bulger Geyser in the Back Basin increased from about 800 ppm to about 1500 ppm, nearly twice as high as any previously reported chloride concentration in a thermal water at Yellowstone. The isotopic composition of that water

  8. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    PubMed

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  9. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    PubMed Central

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M.; Fields, Matthew W.

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  10. Evolution of Seismic Geyser, Yellowstone National Park

    USGS Publications Warehouse

    Marler, G. D.; White, D. E.

    1977-01-01

    Among the thousands of thermal springs in Yellowstone Park, Seismic Geyser is one of the few that it totally recent in origin. It is not quiescent or dormant spring that was reactivated; rather it is one that had its genesis as a direct result of the earthquake on August 17, 1959/ 

  11. Infrasound characterization of some Yellowstone geysers' eruptions

    NASA Astrophysics Data System (ADS)

    Quezada-Reyes, A.; Johnson, J.

    2012-12-01

    Geysers are springs that intermittently erupt hot water and steam. As with volcanoes, infrasonic airwaves produced by different geysers provide information about the processes that occur near the nozzle, such as the amount of fluid released during eruptive episodes. The aim of this study was to investigate acoustic sources from different geyser behaviors observed at Lone Star, Sawmill and Great Fountain geysers, Yellowstone National Park, Wyoming. Acoustic signal were measured by arrays of microphones deployed around Lone Star and Great Fountain geysers between August 9th to 14th, 2011, and during one hour on August 16th, 2011 at Sawmill Geyser. Infrasound was analyzed with coincident video recordings to quantify and compare the pressure fields generated during explosive phases at the three geysers. We propose that the periodic infrasound recorded at Sawmill, and dominated by energy at 1 to 40 Hz, is generated by: 1) steam-filled bubble oscillations, and 2) subsequent bursting at the free surface resulting in a violent steam and water discharge. At Lone Star geyser, where ~18 m/s eruption jets endure for about 30 minutes, sound is dominated by higher frequency infrasound and audio-band signal evolving from 20 - 60 Hz to 40 - 85 Hz. We suggest that the infrasound tremor amplitudes are related to the transition of the erupted two-phase mixture from mostly water (low acoustic radiation) to steam (high acoustic radiation). At Great Fountain we observed three explosive bursts of water and steam during the last stage on the August 11 eruption with bi-modal infrasound pulses of up to 0.7 Pa-m. We model these pulses as volumetric sound sources and infer up to 32 m3 of fluid ejection. The variety of recordings reflect the variety of eruption mechanisms at the different geyser systems. Better understanding of the mechanisms of geyser infrasound radiation may help us to understand infrasound analogues at erupting silicic volcanoes, which are considerably more difficult to

  12. Park Visitors' Understandings, Values and Beliefs Related to Their Experience at Midway Geyser Basin, Yellowstone National Park, USA.

    ERIC Educational Resources Information Center

    Brody, Michael; Tomkiewicz, Warren

    2002-01-01

    Investigates the development of park visitors' knowledge, values, and beliefs during their visit to the Midway Geyser Basin. Draws on prior work in the areas of museum and informal education, and public understanding of science and cognitive psychology. Interprets the results in terms of park visitors' knowledge systems, how the experience…

  13. Systematics of Water Temperature and Flow at Tantalus Creek During Calendar Year 2005, Norris Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Clor, Laura E.; Lowenstern, Jacob B.; Heasler, Henry P.

    2007-01-01

    We analyze data for stream flow and water temperature from Tantalus Creek in the Norris Geyser Basin and their relationship to air temperature, precipitation, and geyser eruptions during calendar year 2005. The creek is of interest because it is the primary drainage of the Norris Geyser Basin and carries a very high proportion of thermal water derived directly from hot springs. Two separate diurnal patterns emerge - (1) a winter pattern where increases in water temperature and stream flow closely track those of air temperature and (2) a summer pattern where water and air temperature are closely aligned but stream flow declines once water temperature reaches its daily maximum. The winter pattern is present when the daily average temperature consistently drops below 0 ?C whereas the summer pattern is recognizable when the daily average temperature regularly exceeds 0 ?C. Spring and fall systematics are much more irregular, although both summer and winter patterns can be discerned occasionally during those seasons. We interpret increases in stream flow associated with the winter pattern to result from addition of locally sourced melt water (both snow and soil-bound ice) that increases in abundance once temperatures increase in the morning. Melting is facilitated by the warm ground temperatures in the geyser basin, which are significantly higher than air temperatures in the winter. The summer pattern appears to be strongly affected by increased evaporation in the afternoon, decreasing flow and cooling the remaining water. Discharge from eruptions at Echinus Geyser are clearly visible as peaks in the hydrograph, and indicate that water from this geyser reach the Tantalus weir in 80 to 90 minutes, reflecting a slug of water that travels about 0.4 m s-1.

  14. Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Meyer-Dombard, D'Arcy R; Swingley, Wesley; Raymond, Jason; Havig, Jeff; Shock, Everett L; Summons, Roger E

    2011-08-01

    In Yellowstone National Park, a small percentage of thermal features support streamer biofilm communities (SBCs), but their growth criteria are poorly understood. This study investigates biofilms in two SBC hosting, and two non-SBC springs. Sequencing of 16S rRNA clones indicates changing community structure as a function of downstream geochemistry, with many novel representatives particularly among the Crenarchaeota. While some taxonomic groups show little genetic variation, others show specialization by sample location. The transition fringe environment between the hotter chemosynthetic and cooler photosynthetic zones hosts a larger diversity of organisms in SBC bearing springs. This transition is proposed to represent an ecotone; this is the first description of an ecotone in a hydrothermal environment. The Aquificales are ubiquitous and dominate among the Bacteria in the hottest environments. However, there is no difference in species of Aquificales from SBC and non-SBC locations, suggesting they are not responsible for the formation of SBCs, or that their role in SBC formation is competitively suppressed in non-SBC sites. In addition, only SBC locations support Thermotogales-like organisms, highlighting the potential importance these organisms may have in SBC formation. Here, we present a novel view of SBC formation and variability in hydrothermal ecosystems. PMID:21453405

  15. Using Multiple Environmental Age Tracers to Investigate Interactions between Hydrothermal and Shallow Local Systems in the Norris Geyser Basin Area, Yellowstone National Park.

    NASA Astrophysics Data System (ADS)

    Gardner, P.; Susong, D.; Solomon, D. K.; Heasler, H.

    2008-12-01

    Multiple age tracers are used to constrain the evolution of groundwater and interactions between shallow local flow and the hydrothermal system in the area surrounding Norris Geyser Basin in Yellowstone National Park. Springs, ranging in temperature from 4°C - 92°C, were sample for dissolved chloroflourocarbons (CFC-11, CFC-12, and CFC-113) concentrations and tritium concentrations. Sample springs had a wide distribution of elevations, aspects, and volcanic deposits. CFC concentrations indicate a short (< 50 years) mean residence time for the shallow, cool-water system that circulates through the rhyolite and tuff flows adjacent to the geyser basin. Mixing processes and gas phase stripping can be assessed using the three different time dependent input curves for CFC-11, CFC-12, and CFC-113. Comparison of CFC and tritium concentrations provides verification of CFC ages and is an additional measure of mixing processes. All cool samples (0-20°C) contain CFC's and tritium, and indicate little to no mixing of pre-modern waters, with a mean CFC age of ~ 40 years. The relative concentrations of CFC's and tritium reveal mixing processes in the warm and thermal waters. Springs warmer than 20°C show increased mixing of pre-modern water with increasing temperature. Thermal waters (50 - 90°C) are well described by a binary mixing model of modern and pre-modern waters with minimum pre-modern fractions of .75 to .9. The use of multiple age tracers allows for interpretation of different age stratification and mixing models, and provides insight into other processes affecting the groundwater system such as phase distribution and boiling. Age tracers allow for the integrated study of the hydrothermal and local groundwater systems in the Norris Geyser Basin area and help constrain interactions between the two using non-invasive techniques.

  16. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.

    PubMed

    Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W

    2016-05-01

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community. PMID:26995682

  17. Water discharge from Lone Star Geyser, Yellowstone NP, WY

    NASA Astrophysics Data System (ADS)

    Murphy, F.; Randolph-Flagg, N. G.; Hurwitz, S.

    2014-12-01

    During four days in April, 2014 we made a series of measurements at Lone Star Geyser in Yellowstone National Park, WY. This work included the continuous measurement of liquid water discharge from the geyser and some nearby not springs, and concurrent meteorological measurements. The discharge of the geyser and the hot springs was measured in channels that carry the water to the Firehole River. We found that average measured discharge varies from day to night, likely due to melting of geyser-generated and meteoric snow during warmer daylight hours and freezing of erupted liquid and vapor during the night. The nearby hot springs contribute a nearly constant flow of about 3 l/s to the Firehole River, while during eruptions the total discharge increases to a maximum of about 25 l/s. Two small geysers within 5 meters of the Lone Star Geyser cone were observed to erupt during a time when Lone Star Geyser was not erupting. The water discharged from these small geysers is a very small fraction of that from Lone Star Geyser.

  18. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Schubotz, F; Meyer-Dombard, D R; Bradley, A S; Fredricks, H F; Hinrichs, K-U; Shock, E L; Summons, R E

    2013-11-01

    Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show

  19. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  20. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  1. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  2. Bimodal Distribution of Geyser Preplay Eruptions: Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Hurwitz, S.; Murphy, F.; Manga, M.

    2014-12-01

    Geyser eruption intervals are determined by rates of water and heat discharge into shallow subsurface reservoirs and the conduit. In some geysers, small amounts of water discharge prior to a main eruption ('Preplay') can affect eruption intervals. Water discharge during preplay reduces the hydrostatic pressure, which in turn, induces boiling of water that is at, or near the critical temperature. Ascending steam slugs from depth can also lead to shorter eruption intervals (Namiki et al., 2014). In April 2014, we carried a five day experiment at Lone Star Geyser, Yellowstone National Park. Eruptions and their preplays were recorded with an infrared sensor that measured temperature variations immediately above the geyser cone (3.4~m high), temperature loggers that measured water temperature at the base of the cone and in the outflow channels, and visual observations. At Lone Star Geyser, during the preplay phase of the eruption, mainly liquid water is erupted, whereas the main phase of the eruption begins with the liquid-water dominated eruption and turns into the steam discharge. The temperature rise in an outflow channel indicates the occurrence of preplays and initiation of the main eruption. The acquired data suggests that the preplay patterns of Lone Star Geyser are vigorous and complex, consistent with previous observations (Karlstrom et al., 2013). Our new observations reveal two typical styles: 1) vigorous preplays with few events (<5) and long intervals (>20~minutes) that last approximately 40~minutes, and 2) less vigorous preplays that include several events (>5) with short intervals (few minutes), and continue approximately for one hour. Probability distributions of preplay durations show two peaks indicating the bimodal activity. The bimodality of Lone Star preplays may be a result of subtle change of temperature distribution in a convecting reservoir which has been observed in laboratory experiments (Toramaru and Maeda, 2013).

  3. A Multi-Method Experiment to Investigate Geyser Dynamics: Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Hurwitz, S.; Vandemeulebrouck, J.; Johnston, M. J.; Sohn, R. A.; Karlstrom, L.; Rudolph, M. L.; Murphy, F.; McPhee, D. K.; Glen, J. M.; Soule, S. A.; Pontbriand, C.; Meertens, C. M.

    2011-12-01

    Geysers are intermittently discharging hot springs that are driven by steam and non-condensable gas. They provide unique opportunities to study multiphase eruption processes and the geophysical signals they induce. In September 2010 we carried out a four-day experiment at Lone Star Geyser in Yellowstone National Park. The geyser is located about 5 km SSE of Old Faithful Geyser and 75 m north of the Upper Firehole River. Lone Star is a cone geyser that was selected for the experiment because it is isolated from other geysers, its eruptions are vigorous and voluminous, and its eruption intervals are relatively constant and predictable, occurring approximately every 3 hours. We made measurements during 32 eruption cycles using a suite of instruments including a broadband seismometer, 2 microphones, 5 platform tiltmeters, 3 collimating InfraRed sensors, 2 gravimeters, 2 self-potential sensors, 2 Light Detection And Ranging (LiDAR) scanners, a Forward Looking InfraRed (FLIR) camera, high-speed video cameras, and stream gauging. We also integrated meteorological data from nearby weather stations. The large dataset acquired during the experiment allows for the detection of a myriad of processes in the subsurface and in the erupting column at many different frequencies. The analyzed data yield new insights on multiphase eruptive processes that have implications for understanding self-organized, intermittent processes in nature that result from phase separation and localized input of energy and mass. The geophysical signals recorded during the experiment allow comparison with signals recorded in more complex volcanic systems where gas-driven and magma-driven processes are often hard to distinguish.

  4. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  5. The Concentrations and Possible Effects of CO2 in Geysers of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Hurwitz, S.; Evans, W.; Thordsen, J. J.; Murphy, F.

    2012-12-01

    It has long been proposed that non-condensable gases could have a significant impact on the dynamics of geyser eruptions in Yellowstone National Park (Bloss and Barth, 1949). More recently, Hutchinson et al. (1997) postulated that CO2 dissolved in Old Faithful Geyser waters exerts a significant control on its eruptions. Based on the concentrations of major cations and the pH of erupted water and assuming mineral buffering, they calculated a CO2 partial pressure of <0.3 bar. To test the hypothesis suggesting that CO2 could be significant in geyser eruption dynamics, in April 2012 we sampled water and dissolved gases in research well Y-7 located in Biscuit Basin, approximately 3 km NNW of Old Faithful Geyser. Concentrations of major elements in the well are similar to those at Old Faithful Geyser, suggesting that a comparison can be made. The two samples were collected using a pre-evacuated stainless steel sealed sampler near the bottom of the well at a depth of 72 meters and a temperature of 141 °C. The partial pressures of CO2 and H2O(v) at in-situ conditions were calculated to be 0.9 and 3.7 bars, respectively. The calculated dissolved CO2 concentration is less than the saturation concentration at a hydrostatic (+atmospheric) load of ~8 bar (~72 m). However, the measured dissolved CO2 concentrations are more than double the highest concentrations calculated by Hutchinson et al., 1997, and likely support their hypothesis regarding the significance of CO2 in geyser eruptions. Initial calculations suggest CO2 helps induce boiling at shallow levels, exsolving into the steam phase that drives the eruption. The initial bubbles may be CO2 rich, such that the presence of CO2 can have a significant effect on the subsurface seismic signals and on the dynamics of the erupting jet. As boiling progresses during decompression, the CO2 signal will be diluted by the addition of steam. *** Bloss, F.D. and T.F.W. Barth, Bull. Geol. Soc. Amer., 60, 861-8865, 1949. *** Hutchinson, R

  6. Hydrologic Connection Between Geysers and Adjacent Thermal Pools, Two Examples: El Tatio, Chile and Yellowstone, USA

    NASA Astrophysics Data System (ADS)

    Munoz Saez, C.; Fauria, K.; Manga, M.; Hurwitz, S.; Namiki, A.

    2014-12-01

    Geyser eruption cycles can be influenced by adjacent and distant thermals sources, suggesting a hydraulic connection through permeable pathways. Diffusion of fluid pressure can be responsible for the communication between geysers. In this study we examine the processes linking two different geysers with adjacent thermal pools. The first was Vega Rinconada, located at El Tatio geyser field, Chile, where we measured temperature inside the conduit between the ground surface and a depth of seven meters, at one-meter intervals. The second was Lone Star Geyser in Yellowstone National Park, where we measured temperature of the overflow water at the base of the cone. Concurrently, we measured temperature and the water level in pools adjacent to both geysers. We found common elements in both geyser - pool systems: First, water temperature in both adjacent pools was below the boiling point and cooler than water in the geysers. Second, changes in pool water levels were correlated with eruptions of the geysers. During the quiescent period of the geysers, the water level increased in adjacent pools, while water level in the pools deceased during eruptions. Additionally, measurements inside of the conduit in Vega Rinconada Geyser showed that water temperature increased in the deepest part of the conduit during eruptions, while water temperature decreased in the shallow part of the geyser conduit (~1 to 2 m). These drops in temperature in the shallow conduit were coincident with the drop in water level in the adjacent pool. This suggests that after the initiation of an eruption, water may drain from the pool to the geyser. Furthermore, we observed a temperature drop of 3oC in the shallow conduit immediately preceding the end of an eruption. This suggests that flow from the pool to geyser contributes to eruption shut off. Our observations of geyser-pool systems indicate a hydrologic connection between the geysers and their adjacent pools. In the case of Vega Rinconada, cold water

  7. The role of extremophile in the redox reaction of Fe and As relating with the formation of secondary phase mineral in extreme environment, Norris Geyser Basin, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Koo, T. H.; Kim, J. Y.; Park, K. R.; Jung, D. H.; Geesey, G. G.; Kim, J. W.

    2015-12-01

    Redox reaction associated with microbial elemental respiration is a ubiquitous process in sediments and suspended particles at various temperatures or pH/Eh conditions. Particularly, changes in elemental redox states (structural or dissolved elemental form) induced by microbial respiration result in the unexpected biogeochemical reactions in the light of biotic/abiotic mineralization. The objective of the present study is, therefore to investigate the secondary phase mineralization through a-/biogeochemical Fe and As redox cycling in the acido-hyperhtermal Norris Geyser Basin (NGB) in Yellowstone National Park, USA, typical of the extreme condition. X-ray diffraction, scanning electron microscope with energy dispersive x-ray spectroscopy, X-ray absorption near edge structure, inductively coupled plasma-atomic emission spectrometer and liquid chromatography with ICP-mass spectroscopy with filtrated supernatant were performed for the mineralogical and hydro-geochemical analysis. The clay slurry collected from the active hot-spring of the NGB area (pH=3.5 and Temperature=78 ℃) was incubated with ("enrichment") or without the growth medium ("natural"). The control was prepared in the same condition except adding the glutaraldehyde to eliminate the microbial activity. The secondary phase mineral formation of the oxidative phase of Fe and As, and K identified as 'Pharmacosiderite' only appeared in the enrichment set suggesting a role of extremophiles in the mineral formation. The considerable population of Fe-oxidizer (Metallosphera yellowstonensis MK-1) and As-oxidizer (Sulfurihydrogenibium sp.) was measured by phylogenetic analysis in the present study area. The inhibition of As-oxidation in the low pH conditions was reported in the previous study, however the As-redox reaction was observed and consequently, precipitated the Pharmacosiderite only in the enrichment set suggesting a biotic mineralization. The present study collectively suggests that the microbial

  8. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-03-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1-0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  9. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J. S.; Soule, S. Adam; McPhee, Darcy; Glen, Jonathan M. G.; Karlstrom, Leif; Murphy, Fred

    2014-12-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5-40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  10. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    USGS Publications Warehouse

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  11. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments. PMID:22404902

  12. Climate-induced variations of geyser periodicity in Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, S.; Kumar, A.; Taylor, R.; Heasler, H.

    2008-01-01

    The geysers of Yellowstone National Park, United States, attract millions of visitors each year, and their eruption dynamics have been the subject of extensive research for more than a century. Although many of the fundamental aspects associated with the dynamics of geyser eruptions have been elucidated, the relationship between external forcing (Earth tides, barometric pressure, and precipitation) and geyser eruption intervals (GEIs) remains a matter of ongoing debate. We present new instrumental GEI data and demonstrate, through detailed time-series analysis, that geysers respond to both long-term precipitation trends and to the seasonal hydrologic cycle. Responsiveness to long-term trends is reflected by a negative correlation between the annual averages of GEIs and stream flow in the Madison River. This response is probably associated with long-term pressure changes in the underlying hydrothermal reservoir. We relate seasonal GEI lengthening to snowmelt recharge. ?? 2008 The Geological Society of America.

  13. Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of yellowstone national park.

    PubMed

    Walter, M R; Bauld, J; Brock, T D

    1972-10-27

    Growing algal and bacterial stromatolites composed of nearly amorphous silica occur around hot springs and geysers in Yellowstone National Park, Wyoming. Some Precambrian stromatolites may be bacterial rather than algal, which has important implications in atmospheric evolution, since bacterial photo-synthesis does not release oxygen. Conophyton stromatolites were thought to have become extinct at the end of the Precambrian, but are still growing in hot spring effluents. PMID:17815363

  14. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    USGS Publications Warehouse

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  15. Broadband Seismic Observations of Lone Star Geyser, Yellowstone National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Nayak, A.; Hurwitz, S.; Johnson, H. E., III; Manga, M.; Gomez, F. G.

    2014-12-01

    Geysers are natural phenomena that episodically erupt water and steam. Geophysical observations at geysers are analyzed to shed light on subsurface multi-phase mass and heat exchange processes and geometries controlling geyser eruptions, which are still are not completely understood. Lone Star Geyser (LSG) in Yellowstone National Park, Wyoming, USA erupts every ~3 hours, with brief episodes (~5-10 min) of water and steam fountaining (preplays) leading up to the main eruption (~28 min), and the discharge evolves from a water-dominated phase to a steam-dominated phase as the main eruption proceeds in time. We describe observations from multiple seismometers deployed around LSG as part of a comprehensive geophysical survey conducted in April 2014. 3-component seismograms were continuously recorded at 250 samples per second by 6 Nanometrics Trillium 120 P/PA broadband seismometers (lower corner frequency at 120 seconds) and Taurus dataloggers at distances ~10 to 25 m from the geyser cone for a period of 3 days. We identify distinct episodes of hydrothermal tremor associated with preplay events and main eruptions. We find that the dominant tremor frequencies during main eruptions are consistently higher (> 10.0 Hz) than those during preplays (> 1.0 Hz) indicating slightly different source locations or processes controlling the two phenomena. Unlike seismic observations at the Old Faithful Geyser, we also observe subtle harmonic tremor and spectral gliding in the frequency range ~1.0-8.0 Hz towards the end of both main eruption and preplay tremor episodes. We interpret long-period pulses on horizontal components of the seismometers located close to the geyser and synchronous with preplays, as pseudo-tilts resulting from deformation of the sinter terrace. We also compare the evolution of hydrothermal tremor in time with synchronous changes in temperature, acoustic emission and discharge for interpretation of the possible tremor source processes.

  16. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    USGS Publications Warehouse

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  17. Geysers.

    ERIC Educational Resources Information Center

    White, Donald E.

    One of a series of general interest publications on science topics, the booklet provides those interested in geysers with a nontechnical introduction to the subject. Separate sections examine the nature and workings of geysers--why geysers erupt, where they occur, the cause of volcanoes and hot springs, the deep circulation of water in geyser…

  18. Detecting geyser activity with infrasound

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Anderson, J. F.; Anthony, R. E.; Sciotto, M.

    2013-04-01

    We monitored geyser activity in the Lower Geyser Basin (LGB) of Yellowstone National Park with dual four-element microphone arrays separated by ~ 600 m. The arrays were independently used to identify incident coherent plane wave energy, then conjoint cross beam back-azimuths from the two arrays were used to precisely locate signal sources. During a week in August 2011 we located repeating infrasound events, peaked in energy between 1 and 10 Hz, originating from at least five independent geothermal features, including the episodically erupting Great Fountain, Fountain and Kaleidoscope Geysers, as well as periodic infrasound from nearby Botryoidal and persistent sound from Firehole Spring. Although activity from nearby cone-type geysers was not detected in the infrasound band up through 50 Hz, the major fountain-type geysers (i.e., with columns greater than 10 m) could be detected at several kilometers, and two minor geysers (i.e., a few meters in eruption height) could be tracked at distances up to a few hundred meters. Detection of geyser activity was especially comprehensive at night when ambient noise was low. We conclude that infrasound monitoring of fountain-type geysers permits convenient tracking of geyser activity, episodicity, signal duration, energy content, and spectral content. These parameters enable objective statistical quantification of geyser behavior and changes over time that may be due to external forcing. Infrasonic study of geyser activity in an individual basin has great monitoring utility and can be reasonably accomplished with two or more distributed sensor arrays.

  19. An organic geochemical investigation into lipid distribution at Imperial Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bird, L. R.; Krukenberg, V.; Lohman, E.; Santillan, E.; Urrejola, C.; Caporaso, J. G.; Sessions, A. L.; Spear, J. R.

    2011-12-01

    Imperial Geyser, Yellowstone National Park, is an alkaline, silica-rich thermal spring with a diverse microbial constituency. In order to characterize this microbial community, mat samples growing downstream from the vent were studied for lipid composition and abundance. Both fatty acids and hopanoids were extracted from the mat samples and analyzed using GC-MS and GC-FID. Microbial community profiling was also performed targeting the 16S rRNA gene and the SHC (squalene-hopene cyclase) gene. Results for both lipid and metagenomic data were compared using principle components analysis (PCA). PCA revealed the clustering of sample sites for both lipids and genes. A strong correlation (p value < .01) between lipid composition and phylogenetic composition per sample was observed. Procrustes analysis also showed a strong correlation between hopanoid abundance and phylogenetic composition (p=0.005). A correlation was also seen between relative abundances of C15 and a-C17 fatty acids with genetic data of Chloroflexus and Chlorobium, indicating that they are the likely source of these lipids at Imperial Geyser. Hopanoid data shows the ratio of methylated to unmethylated hopanoids varies with distance from the vent, potentially representing a response to environmental stress. The ratio of methylated to unmethylated hopanoids appears to be controlled environmentally, being produced by organisms beyond Cyanobacteria. Thus in this setting the 2-methylhopanoid index does not correspond directly to the relative abundance of Cyanobacteria. Results indicate that temperature and pH exert some control over community composition between sample sites and that this is reflected in the lipid composition. However, we also expect to see additional geochemical variants, such as dissolved inorganic carbon, nitrogen, phosphorous, and sulfur from the stream water, contributing to the beta diversity of our results. This research was undertaken as part of the International Geobiology Course 2011.

  20. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006-2008

    USGS Publications Warehouse

    Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk

    2010-01-01

    Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the

  1. Carbon uptake, microbial community structure, and mineralization of layered mats from Imperial Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Woycheese, K. M.; Grabenstatter, J.; Haddad, A.; Ricci, J. N.; Johnson, H.; Berelson, W.; Spear, J. R.; Caporaso, J. G.; International Geobiology Course 2011

    2011-12-01

    Layered microbial mats provide an analog for early microbial communities, and remain one of the few microbiological structures consistently preserved in the geologic record. Despite this, growth rates, metabolic capabilities, and methods of mineralization in modern communities are poorly understood. Imperial Geyser, an alkaline siliceous hot spring in Yellowstone National Park, provides a useful setting to study these parameters. Mat and water samples (T = 64-40 °C) were collected for 13C analysis and 13C-spiked bicarbonate and acetate incubation experiments. Carbon isotopes were measured for the stream water, pore water and biomass. We experimentally determined rates of bicarbonate uptake, acetate uptake and mineral content. Bicarbonate uptake rates ranged from 0 - 0.4% per day, while acetate uptake rates ranged from 0 - 2.0% per day. These results indicate that the mat biomass is capable of turnover in about 300 days resulting in potential growth rates of 1-2 cm/year. Organic carbon content (% dry weight) ranged from 2 to 16%, and decreased with depth in the mat. The mineral content of these mats is predominantly amorphous SiO2. An inverse correlation between mineral percent and bicarbonate uptake rate was observed, suggesting that there may be a link between metabolism and the prevention of mineralization. Comparing the 13C and carbon uptake rates with 16S rDNA pyrosequencing data we were able to hypothesize the carbon fixation pathways and heterotrophic interactions occurring in this environment. In general, two patterns of 13C values were observed. The first pattern was characterized by increased heterotrophy with depth. In the other, preliminary evidence supporting a photoheterotrophic lifestyle for Roseiflexus spp. was found.

  2. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved

  3. Surface deformation and seismic signatures associated with the eruption cycle of Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.

    2014-12-01

    Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors

  4. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 1999-2000

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were

  5. Geyser decline and extinction in New Zealand: energy development impacts and implications for environmental management.

    PubMed

    Barrick, Kenneth A

    2007-06-01

    Geysers are rare natural phenomena that represent increasingly important recreation, economic, and scientific resources. The features of geyser basins, including hot springs, mud pots, and fumaroles, are easily damaged by human development. In New Zealand, the extinction of more than 100 geysers provides important lessons for the environmental management of the world's remaining geyser basins. The impacts on New Zealand's geysers are described in sequential "phases," including the following: the first use of geothermal resources by the indigenous people-the Maori; early European-style tourism and spa development; streamside geyser decline caused by river level modification at the Spa geyser basin; multiple geyser basin extinctions caused by industrial-scale geothermal well withdrawal at Wairakei; the drowning of geysers at Orakeikorako after the filling of a hydroelectric reservoir; and geyser decline caused by geothermal well heating systems in Rotorua City. The crisis in Rotorua prompted preservation of the few remaining geysers at Whakarewarewa -- the last major geyser basin in New Zealand. The New Zealand government ordered the geothermal wells within 1.5 km of Pohutu Geyser, Whakarewarewa, to be closed, which was a locally controversial measure. The well closure program resulted in a partial recovery of the Rotorua geothermal reservoir, but no extinct geysers recovered. The implications of recent geothermal computer modeling and future planning are discussed. The New Zealand case suggests that the protection of geysers requires strong regulations that prevent incompatible development at the outset, a prescription that is especially relevant for the future management of the geothermal fields adjacent to the geyser basins of Yellowstone National Park, U.S.A. PMID:17453282

  6. Geyser Decline and Extinction in New Zealand—Energy Development Impacts and Implications for Environmental Management

    NASA Astrophysics Data System (ADS)

    Barrick, Kenneth A.

    2007-06-01

    Geysers are rare natural phenomena that represent increasingly important recreation, economic, and scientific resources. The features of geyser basins, including hot springs, mud pots, and fumaroles, are easily damaged by human development. In New Zealand, the extinction of more than 100 geysers provides important lessons for the environmental management of the world’s remaining geyser basins. The impacts on New Zealand’s geysers are described in sequential “phases,” including the following: the first use of geothermal resources by the indigenous people—the Maori; early European-style tourism and spa development; streamside geyser decline caused by river level modification at the Spa geyser basin; multiple geyser basin extinctions caused by industrial-scale geothermal well withdrawal at Wairakei; the drowning of geysers at Orakeikorako after the filling of a hydroelectric reservoir; and geyser decline caused by geothermal well heating systems in Rotorua City. The crisis in Rotorua prompted preservation of the few remaining geysers at Whakarewarewa—the last major geyser basin in New Zealand. The New Zealand government ordered the geothermal wells within 1.5 km of Pohutu Geyser, Whakarewarewa, to be closed, which was a locally controversial measure. The well closure program resulted in a partial recovery of the Rotorua geothermal reservoir, but no extinct geysers recovered. The implications of recent geothermal computer modeling and future planning are discussed. The New Zealand case suggests that the protection of geysers requires strong regulations that prevent incompatible development at the outset, a prescription that is especially relevant for the future management of the geothermal fields adjacent to the geyser basins of Yellowstone National Park, U.S.A.

  7. Energy development and water options in the Yellowstone River Basin

    SciTech Connect

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  8. The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park: Chapter H in Integrated geoscience studies in Integrated geoscience studies in the Greater Yellowstone Area—Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem

    USGS Publications Warehouse

    Rye, Robert O.; Truesdell, Alfred Hemingway

    2007-01-01

    The extraordinary number, size, and unspoiled beauty of the geysers and hot springs of Yellowstone National Park (the Park) make them a national treasure. The hydrology of these special features and their relation to cold waters of the Yellowstone area are poorly known. In the absence of deep drill holes, such information is available only indirectly from isotope studies. The δD-δ18O values of precipitation and cold surface-water and ground-water samples are close to the global meteoric water line (Craig, 1961). δD values of monthly samples of rain and snow collected from 1978 to 1981 at two stations in the Park show strong seasonal variations, with average values for winter months close to those for cold waters near the collection sites. δD values of more than 300 samples from cold springs, cold streams, and rivers collected during the fall from 1967 to 1992 show consistent north-south and east-west patterns throughout and outside of the Park, although values at a given site vary by as much as 8 ‰ from year to year. These data, along with hot-spring data (Truesdell and others, 1977; Pearson and Truesdell, 1978), show that ascending Yellowstone thermal waters are modified isotopically and chemically by a variety of boiling and mixing processes in shallow reservoirs. Near geyser basins, shallow recharge waters from nearby rhyolite plateaus dilute the ascending deep thermal waters, particularly at basin margins, and mix and boil in reservoirs that commonly are interconnected. Deep recharge appears to derive from a major deep thermal-reservoir fluid that supplies steam and hot water to all geyser basins on the west side of the Park and perhaps in the entire Yellowstone caldera. This water (T ≥350°C; δD = –149±1 ‰) is isotopically lighter than all but the farthest north, highest altitude cold springs and streams and a sinter-producing warm spring (δD = –153 ‰) north of the Park. Derivation of this deep fluid solely from present-day recharge is

  9. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  10. YELLOWSTONE RIVER WATCH (YRW)

    EPA Science Inventory

    Yellowstone River Watch seeks to expand its monitoring and education efforts throughout the Yellowstone River Basin by actively recruiting and training new teacher members. Yellowstone River Watch also seeks to advance existing school programs by offering quality assurance/quali...

  11. 18.6-year Earth tide regulates geyser activity.

    PubMed

    Rinehart, J S

    1972-07-28

    Over 40 years of records from Yellowstone National Park, Wyoming, show that the 18.6-year tidal component strongly regulates the frequencies of eruption of Grand and Steamboat geysers. The frequency of Grand Geyser increases with increasing tidal force and that of Steamboat Geyser decreases, which suggests that tidal dilatation is one factor affecting heat flow to a geyser. PMID:17813197

  12. Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974-1975

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.; Vivit, Davison V.

    1998-01-01

    This report presents all analytical determinations for samples collected from Yellowstone National Park and vicinity during 1974 and 1975. Water temperature, pH, Eh, and dissolved O2 were determined on-site. Total alkalinity and F were determined on the day of sample collection. Flame atomic-absorption spectrometry was used to determine concentrations of Li, Na, K, Ca, and Mg. Ultraviolet/visible spectrophotometry was used to determine concentrations of Fe(II), Fe(III), As(III), and As(V). Direct-current plasma-optical-emission spectrometry was used to determine the concentrations of B, Ba, Cd, Cs, Cu, Mn, Ni, Pb, Rb, Sr, and Zn. Two samples collected from Yellowstone Park in June 1974 were used as reference samples for testing the plasma analytical method. Results of these tests demonstrate acceptable precision for all detectable elements. Charge imbalance calculations revealed a small number of samples that may have been subject to measurement errors in pH or alkalinity. These data represent some of the most complete analyses of Yellowstone waters available.

  13. Vp/Vs ratios in the Yellowstone National Park region, Wyoming

    USGS Publications Warehouse

    Chatterjee, S.N.; Pitt, A.M.; Iyer, H.M.

    1985-01-01

    In this paper we study the variation of Vp/Vs and Poisson's ratio (??) in the Yellowstone National Park region, using earthquakes which were well recorded by a local seismic network. We find that the average Vp/Vs value within the geothermally active Yellowstone caldera is about 7% lower than in the area outside the caldera. Within the caldera itself there may be a further 2-7% reduction of Vp/Vs in the hydrothermally active Norris Geyser Basin, the Upper and Lower Geyser Basins, and the Yellowstone Lake and Mud Volcano regions. After considering various possible causes for Vp/Vs changes, such as geologic and structural differences, thermal effects, partial melting, and hydrothermal activity, we conclude that the most plausible explanation for the observed Vp/Vs reduction is the presence of hot-water at temperatures and pore-pressures near the water steam transition in the caldera geothermal reservoirs. ?? 1985.

  14. Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park.

    PubMed

    Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-08-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56 degrees C at the source and 40 degrees C at the confluence of both springs. Growth and survival assays at 56 degrees C for 60 days were performed, confirming the origin of the strain. PMID:17557859

  15. Mycobacterium parascrofulaceum in Acidic Hot Springs in Yellowstone National Park▿

    PubMed Central

    Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-01-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56°C at the source and 40°C at the confluence of both springs. Growth and survival assays at 56°C for 60 days were performed, confirming the origin of the strain. PMID:17557859

  16. Video Observations Inside Channels of Erupting Geysers, Geyser Valley, Russia

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Belousova, M.; Nechaev, A.

    2011-12-01

    Geysers are a variety of hot springs characterized by violent ejections of water and steam separated by periods of repose. While ordinary boiling springs are numerous and occur in many places on Earth, geysers are very rare. In total, less than 1000 geysers are known worldwide, and most of them are located in three large geyser fields: Yellowstone (USA), Geyser Valley (Russia), and El Tatio (Chile). Several physical models were suggested to explain periodic eruptions of geysers, but realistic understanding of processes was hampered by the scarcity of field data on the internal plumbing of geyser systems. Here we present data based on video observations of interior conduit systems for geysers in Geyser Valley in Kamchatka, Russia. To investigate geyser plumbing systems we lowered a video camera (with thermal and water insulation) into the conduits of four erupting geysers. These included Velikan and Bolshoy, the largest geysers in the field, ejecting about 20 and 15 cub.m of water to heights of 25 and 15 m, respectively, with rather stable periods of approximately 5 h and 1 h. We also investigated Vanna and Kovarny, small geysers with irregular regimes, ejecting about ten liters of water to heights as much as 1.5 m, with periods of several minutes. The video footage reveals internal plumbing geometries and hydrodynamic processes that contradict the widely accepted "simple vertical conduit model", which regards geyser eruptions as caused by flashing of superheated water into steam. In contrast, our data fit the long-neglected "boiler model", in which steam accumulates in an underground cavity (boiler) and periodically erupts out through a water-filled, inverted siphon. We describe the physical rationale and conditions for the periodic discharge of steam from a boiler. Channels of the studied geysers are developed by ascending hot water in deposits of several voluminous prehistoric landslides (debris avalanches). The highly irregular contacts between adjacent debris

  17. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R.R.; Roach, F.; Gollehon, N.R.; Creel, B.J.

    1981-07-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict for water now used by the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. In the Green River Basin, we found that Duchesne and Uintah Counties, Utah, would experience the greatest economic impacts when agricultural water supplies were reduced by 50%. In the Upper Yellowstone River Basin, Treasure and Rosebud Counties, Montana, would experience the greatest total income and employment reductions when water supplies were reduced less than or equal to 40%. When these supplies were reduced by more than 40%, Stillwater, Carbon, Yellowstone, and Big Horn Counties, Montana, would experience the greatest reductions.

  18. Environmental setting of the Yellowstone River basin, Montana, North Dakota, and Wyoming

    USGS Publications Warehouse

    Zelt, Ronald B.; Boughton, G.K.; Miller, K.A.; Mason, J.P.; Gianakos, L.M.

    1999-01-01

    Natural and anthropogenic factors influence water-quality conditions in the Yellowstone River Basin. Physiography parallels the structural geologic setting that is generally composed of several uplifts and structural basins. Contrasts in climate and vegetation reflect topographic controls and the midcontinental location of the study unit. Surface-water hydrology reflects water surpluses in mountainous areas that are dominated by snowmelt runoff, and arid to semiarid conditions in the plains that are dissected by typically irrigated valleys in the remainder of the study unit. Principal shallow aquifers are Tertiary sandstones and unconsolidated Quaternary deposits. Human population, though sparsely distributed in general, is growing most rapidly in a few urban centers and resort areas, mostly in the northwestern part of the basin. Land use is areally dominated by grazing in the basins and plains and economically dominated by mineral-extraction activities. Forests are the dominant land cover in mountainous areas. Cropland is a major land use in principal stream valleys. Water use is dominated by irrigated agriculture overall, but mining and public-supply facilities are major users of ground water. Coal and hydrocarbon production and reserves distinguish the Yellowstone River Basin as a principal energy-minerals resources region. Current metallic ore production or reserves are nationally significant for platinum-group elements and chromium.The study unit was subdivided as an initial environmental stratification for use in designing the National Water-Quality Assessment Program investigation that began in 1997. Ecoregions, geologic groups, mineral-resource areas, and general land-cover and land-use categories were used in combination to define 18 environmental settings in the Yellowstone River Basin. It is expected that these different settings will be reflected in differing water-quality or aquatic-ecological characteristics.

  19. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. . Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  20. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire

  1. Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park

    SciTech Connect

    Stauffer, R.E.; Jenne, E.A.; Ball, J.W.

    1980-01-01

    Intensive chemical studies were made of S(-II), O/sub 2/, Al, Fe, Mn, P, As(III), As(V), and Li in waters from two high-Cl, low Ca-Mg hotspring drainages in the Lower Geyser Basin, a warm spring system rich in Ca and Mg in the Yellowstone Canyon area, and the Madison River system above Hebgen Lake. Analyses were also made of other representative thermal waters from the Park.

  2. The Yellowstone 'hot spot' track results from migrating Basin Range extension

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Christiansen, R. L.; Anderson, D. L.

    2014-12-01

    Whether Columbia River Basalts, eastern Snake River Plain and Yellowstone volcanism is related to a mantle plume or plate tectonic processes is a long-standing controversy. There are numerous geological mismatches with the plume model, and logical flaws, including the use of arguments for a deep-mantle origin to support upper-mantle plume models. The sweeping of the USArray seismic network across the continent has recently yielded abundant new seismological results but despite this, the most sophisticated seismic experiment ever staged having targeted the Yellowstone region, seismic analyses have still not resolved the disparity of opinion. This suggests that seismology is fundamentally unable to resolve the plume question for Yellowstone and likely elsewhere. USArray data, have, however, inspired many new models that relate western USA volcanism to shallow mantle convection associated with evolution of the subduction zone to the west. These models assume, however, that all that is required for surface volcanism is melt in the mantle and that the lithosphere is essentially passive. We propose a pure Plate model in which melt is commonplace in the mantle, and its tendency to rise is not the cause of surface eruptions. Instead, it is extension of the lithosphere that permits melt to rise. Eruptions occur where there is extension and not simply where there is melt. The time-progressive chain of rhyolitic calderas in the eastern Snake River Plain-Yellowstone zone formed in response to systematic eastward migration of the axis of most intense Basin Range extension since the province formed at ~ 16 Ma. Rhyolitic volcanism followed migration of the locus of most rapid extension, not vice versa. This model does not depend on seismology to test it, but can be investigated using surface geological observations.

  3. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  4. Water quality in the Yellowstone River Basin, Wyoming, Montana, and North Dakota, 1999-2001

    USGS Publications Warehouse

    Peterson, David A.; Bartos, Timothy T.; Clark, Melanie L.; Miller, Kirk A.; Porter, Stephen D.; Quinn, Thomas L.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Yellowstone River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Yellowstone River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://wy.water.usgs.gov/YELL/index.htm. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  5. Delineating Spatial Patterns in the Yellowstone Hydrothermal System using Geothermometry

    NASA Astrophysics Data System (ADS)

    King, J.; Hurwitz, S.; Lowenstern, J. B.

    2015-12-01

    Yellowstone National Park is unmatched with regard to its quantity of active hydrothermal features. Origins of thermal waters in its geyser basins have been traced to mixing of a deep parent water with meteoric waters in shallow local reservoirs (Fournier, 1989). A mineral-solution equilibrium model was developed to calculate water-rock chemical re-equilibration temperatures in these shallow reservoirs. We use the GeoT program, which uses water composition data as input to calculate saturation indices of selected minerals; the "best-clustering" minerals are then statistically determined to infer reservoir temperatures (Spycher et al., 2013). We develop the method using water composition data from Heart Lake Geyser Basin (HLGB), for which both chemical and isotopic geothermometers predict a reservoir water temperature of 205°C ± 10°C (Lowenstern et al., 2012), and minerals found in drill cores in Yellowstone's geyser basins. We test the model for sensitivity to major element composition, pH, Total Inorganic Carbon (TIC) and selected minerals to optimize model parameters. Calculated temperatures are most accurate at pH values below 9.0, and closely match the equilibrium saturation indices of quartz, stilbite, microcline, and albite. The model is optimized with a TIC concentration that is consistent with the mass of diffuse CO2 flux in HLGB (Lowenstern et al., 2012). We then use water compositions from other thermal basins in Yellowstone in search of spatial variations in reservoir temperatures. We then compare the calculated temperatures with various SiO2 and cation geothermometers.

  6. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. I. Low-flow discharge and major solute chemistry

    NASA Astrophysics Data System (ADS)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-06-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO 2, Cl, F, HCO 3, SO 4, NO 3, and NH 4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO 4, and N loads (35-58%) in the Gibbon River. The largest source of HCO 3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH 4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO 2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9-14% of the river discharge at the gage is from thermal flows during this period.

  7. Influence of basin-scale physical variables on life history characteristics of cutthroat trout in Yellowstone Lake

    USGS Publications Warehouse

    Gresswell, Robert E.; Liss, W.J.; Larson, Gary L.; Bartlein, P.J.

    1997-01-01

    Individual spawning populations of Yellowstone cutthroat trout Oncorhynchus clarki bouvieri differ in life history characteristics associated with broad spatial and temporal environmental patterns, but relationships between specific life history characteristics of Yellowstone cutthroat trout and physical aspects of the environment are poorly understood. We examined basin-scale physical characteristics of tributary drainages and subbasins of Yellowstone Lake in relation to timing (peak and duration) of lacustrinea??adfluvial Yellowstone cutthroat trout spawning migrations and mean length of cutthroat trout spawners in 27 tributaries to the lake. Stream drainages varied along gradients that can be described by mean aspect, mean elevation, and drainage and stream size. Approximately two-thirds of the variation in the timing of the peak of the annual cutthroat trout spawning migrations and average length of spawners was explained by third-order polynomial regressions with mean aspect and basin area as predictor variables. Because most cutthroat trout ascend tributaries soon after peak runoff, it appears that the influence of basin-scale physical variables on the date of the migration peak is manifested by the pattern of stream discharge. Spawner length does not seem to be a direct function of stream size in the Yellowstone Lake watershed, and aspect of the tributary basin seems to have a greater influence on the body length of cutthroat trout spawners than does stream size. Mechanisms that explain how the interaction of basin-scale physical variables influence spawner length were not investigated directly; however, we found evidence of distinct aggregations of cutthroat trout that are related to physical and limnological characteristics of the lake subbasins, and there is some indication that lake residence may be related to tributary location.

  8. Ground Penetrating Radar Investigation of Sinter Deposits at Old Faithful Geyser and Immediately Adjacent Hydrothermal Features, Yellowstone National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Foley, D.; Lynne, B. Y.; Jaworowski, C.; Heasler, H.; Smith, G.; Smith, I.

    2015-12-01

    Ground Penetrating Radar (GPR) was used to evaluate the characteristics of the shallow subsurface siliceous sinter deposits around Old Faithful Geyser. Zones of fractures, areas of subsurface alteration and pre-eruption hydrologic changes at Old Faithful Geyser and surrounding hydrothermal mounds were observed. Despite being viewed directly by about 3,000,000 people a year, shallow subsurface geologic and hydrologic conditions on and near Old Faithful Geyser are poorly characterized. GPR transects of 5754 ft (1754m) show strong horizontal to sub-horizontal reflections, which are interpreted as 2.5 to 4.5 meters of sinter. Some discontinuities in reflections are interpreted as fractures in the sinter, some of which line up with known hydrothermal features and some of which have little to no surface expression. Zones with moderate and weak amplitude reflections are interpreted as sinter that has been hydrothermally altered. Temporal changes from stronger to weaker reflections are correlated with the eruption cycle of Old Faithful Geyser, and are interpreted as post-eruption draining of shallow fractures, followed by pre-eruption fracture filling with liquid or vapor thermal fluids.

  9. Yellowstone plume trigger for Basin and Range extension and emplacement of the Nevada-Columbia Basin magmatic belt

    USGS Publications Warehouse

    Camp, Victor E; Pierce, Kenneth L.; Morgan Morzel, Lisa Ann.

    2015-01-01

    Widespread extension began across the northern and central Basin and Range Province at 17–16 Ma, contemporaneous with magmatism along the Nevada–Columbia Basin magmatic belt, a linear zone of dikes and volcanic centers that extends for >1000 km, from southern Nevada to the Columbia Basin of eastern Washington. This belt was generated above an elongated sublithospheric melt zone associated with arrival of the Yellowstone mantle plume, with a north-south tabular shape attributed to plume ascent through a propagating fracture in the Juan de Fuca slab. Dike orientation along the magmatic belt suggests an extension direction of 245°–250°, but this trend lies oblique to the regional extension direction of 280°–300° during coeval and younger Basin and Range faulting, an ∼45° difference. Field relationships suggest that this magmatic trend was not controlled by regional stress in the upper crust, but rather by magma overpressure from below and forceful dike injection with an orientation inherited from a deeper process in the sublithospheric mantle. The southern half of the elongated zone of mantle upwelling was emplaced beneath a cratonic lithosphere with an elevated surface derived from Late Cretaceous to mid-Tertiary crustal thickening. This high Nevadaplano was primed for collapse with high gravitational potential energy under the influence of regional stress, partly derived from boundary forces due to Pacific–North American plate interaction. Plume arrival at 17–16 Ma resulted in advective thermal weakening of the lithosphere, mantle traction, delamination, and added buoyancy to the northern and central Basin and Range. It was not the sole cause of Basin and Range extension, but rather the catalyst for extension of the Nevadaplano, which was already on the verge of regional collapse.

  10. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  11. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Morgan, Lisa A.

    2002-06-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  12. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  13. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    NASA Astrophysics Data System (ADS)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  14. Is the ancestral Yellowstone hotspot responsible for the Tertiary “Carlin” mineralization in the Great Basin of Nevada?

    NASA Astrophysics Data System (ADS)

    Oppliger, Gary L.; Brendan Murphy, J.; Brimhall, George H., Jr.

    1997-07-01

    We propose a genetic relationship between the 43 34 Ma magmatism, extensional tectonics, and gold mineralization event centered in the Great Basin of Nevada and the development of the ancestral Yellowstone hotspot. The model is compatible with Cenozoic regional tectonics and provides a plausible explanation of the spatial coincidence of the Eocene-Oligocene magmatic events and the Carlin-type gold deposits. These features are centered in the Battle Mountain region of the Great Basin, coincident with the inferred ca. 40 30 Ma position of the Yellowstone hotspot. The Yellowstone hotspot is probably a plume that ascended from the core-mantle boundary, a region thought to be anomalously rich in gold and in the moderately siderophile elements associated with gold deposits. As the hotspot was progressively overridden by the North American plate after ca. 60 Ma, a magmatically quiescent period related to subhorizontal subduction gave way to the generation of ca. 43 34 Ma voluminous intracrustal melts and metamorphic devolatization as the hotspot broke though the subducted Farallon plate. Coeval crustal extension and convective circulation of hydrothermal fluids in the upper crust facilitated the exploitation of the structural and lithologic traps that characterize the classic Carlin-type deposits.

  15. Estimated monthly percentile discharges at ungaged sites in the Upper Yellowstone River Basin in Montana

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1986-01-01

    Once-monthly streamflow measurements were used to estimate selected percentile discharges on flow-duration curves of monthly mean discharge for 40 ungaged stream sites in the upper Yellowstone River basin in Montana. The estimation technique was a modification of the concurrent-discharge method previously described and used by H.C. Riggs to estimate annual mean discharge. The modified technique is based on the relationship of various mean seasonal discharges to the required discharges on the flow-duration curves. The mean seasonal discharges are estimated from the monthly streamflow measurements, and the percentile discharges are calculated from regression equations. The regression equations, developed from streamflow record at nine gaging stations, indicated a significant log-linear relationship between mean seasonal discharge and various percentile discharges. The technique was tested at two discontinued streamflow-gaging stations; the differences between estimated monthly discharges and those determined from the discharge record ranged from -31 to +27 percent at one site and from -14 to +85 percent at the other. The estimates at one site were unbiased, and the estimates at the other site were consistently larger than the recorded values. Based on the test results, the probable average error of the technique was + or - 30 percent for the 21 sites measured during the first year of the program and + or - 50 percent for the 19 sites measured during the second year. (USGS)

  16. The Glaciation of the Yellowstone Valley North of the Park

    USGS Publications Warehouse

    Weed, Walter Harvey

    1893-01-01

    The local glaciers of Quaternary times, of which evidences abound throughout the highest portions of the Rocky mountain cordillera, attained an unusually extensive development in that broad elevated region known as the Yellowstone Park. It was indeed the center of a considerable ice sheet whose glaciers spread out and down the valleys leading from this mountain region in all directions. In the northern part of the park two streams of ice found an outlet for their united flow northward down the valley of the Yellowstone, and they have left impressive memorials of the power and size of this stream that at once attract the attention of the observant traveler on the way to the famous geyser basins of the park. The number and size of the erratic bowlders scattered so abundantly over the valley floor and perched high up on the mountain slopes, can not fail to impress the beholder, while the second canyon of the Yellowstone, known as Yankee Jim canyon, through which the river has cut its way to the broad mountain encircled lower valley, is a grand and perfect piece of ice sculpture that affords striking proof of the power and magnitude of the glacier which once filled the valley. While studying and mapping the geology of a portion of the country north of the Yellowstone Park, under the direction of Mr. Arnold Hague, and for the United States Geological Survey, I found a long desired opportunity to study the glaciation of this interesting region.

  17. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Bergfeld, D.; Evans, W.; Lowenstern, J. B.; Hurwitz, S.

    2012-12-01

    Brimstone Basin is a remote area of intense hydrothermal alteration a few km outside the southeast boundary of the Yellowstone Caldera. The area has long been considered to be a cold remnant of an ancient hydrothermal system. A 2008 field campaign confirmed that emissions from discrete gas vents were cold and that soil temperatures in the altered area were at background levels. Accumulation chamber measurements across the altered ground revealed a surprisingly large diffuse flux of CO2 and H2S, ~277 and 0.6 tonnes per day, respectively, comparable to those from Yellowstone's thermal areas. The acidic nature and low discharge of the creeks that drain the basin preclude a significant flux of dissolved magmatic carbon. Diffuse gas flux is clearly the main component of the magmatic volatile efflux from Brimstone Basin. The cold waters of Alluvium Creek flow through the active degassing areas at Brimstone Basin. On average, the isotopic composition of the waters in the degassing areas are shifted about 3.5 permil off the global meteoric water line to lighter δ18O values without an apparent shift in δD. We used the measured diffuse CO2 discharge from Brimstone Basin and stable isotope mass balance modeling to show that the observed δ18O shift can be plausibly linked to isotopic equilibration with CO2 from an underlying thermal reservoir at 88±17°C. Results from analyses of Brimstone gases indicate that although there are no surface thermal anomalies, a clear connection to a heat source remains. The δ13C-CO2 values of -2.9 and -3.0 per mil (3 sites) are typical of CO2 in Yellowstone high-temperature gas, and the helium isotope ratio of 3.0 RA (2 sites) clearly indicates that some of the helium is from a magmatic source. Relations between C2H6 and CH4 concentrations and δ13C-CH4 values (3 sites; -46.4 to -42.8 per mil) reveal the gases have a distinct thermogenic signature. Findings from gas and water chemistry when combined with the diffuse gas flux suggest that

  18. Helium Isotopes in Basalt-Hosted Olivines From the Yellowstone Plateau: Implications on Volcanic Processes

    NASA Astrophysics Data System (ADS)

    Abedini, A. A.; van Soest, M.; Hurwitz, S.; Kennedy, B. M.

    2006-12-01

    The Yellowstone Plateau volcanic field is the youngest part of a magmatic system that began its northeastward propagation along the path of the eastern Snake River Plain in the mid-Miocene. Previous noble gas isotopic studies in Yellowstone have focused on samples from hydrothermal features. Such samples are often subject to shallow crustal contamination that may mask a deeper magmatic component. Most of the reported He-isotope ratios within the Yellowstone caldera perimeter are ~7 ± 1 RA, with peaks occurring around Mud Volcano (~16 RA) and Gibbon Geyser Basin (~13 RA). Outside the caldera, the He-isotope ratios generally drop to <3 RA. The elevated helium isotope data from Mud Volcano and Gibbon Geyser Basin was interpreted as unequivocal evidence for the presence of a deep mantle plume underlying the Yellowstone volcanic field (Craig et al., 1978; Kennedy et al., 1985). However, in an attempt to reconcile the available geochemical and geophysical data some researchers argue solely for a shallow mantle source for the magmatism related to Yellowstone (Christiansen et al., 2002). To gain a better understanding of the helium isotope composition of the mantle source below Yellowstone and its possible changes in time, we have started a study of helium isotopes in basalt-hosted olivines from the Yellowstone volcanic field. A total of 28 samples representing most basalt units from Yellowstone's three eruptive cycles were collected. All of the exposed basalts are located outside the Yellowstone caldera, mainly near Mammoth Hot Springs and Tower Junction to the north and in the Island Park area to the southwest. Most basalts contain 46-52 wt% SIO2, 8-12 wt% FeO, and 0.16-0.23 wt% MgO. Helium was released from aliquots of ~1.5 g olivine by crushing in vacuo, and initial helium isotope results, corrected for 10-15% procedural blank include: 1. The Gerrit basalt from Island Park, with a ratio of 15.7 ± 2.2 RA; 2. Falls River basalt from Island Park, 15.1 ± 0.8 RA; 3. Warm

  19. How and Why Do Geysers Erupt?

    NASA Astrophysics Data System (ADS)

    Manga, M.

    2014-12-01

    Geysers are features that produce episodic eruptions of water, steam and sometimes non-condensable gases. Natural geysers are rare, with fewer than 1,000 worldwide. They are more than curiosities and popular tourist attractions: they offer a direct window into geothermal processes, and may serve as a natural small-scale laboratory to study larger-scale eruptive process such as those at volcanoes, and other self-organized, intermittent processes that result from phase separation and localized input of energy and mass. Despite > 200 years of scientific study, basic questions remain: Do eruptions begin from the bottom or top of the geyser? What controls eruption duration? Why do eruptions end? What are the required special subsurface geometries? Why are some geysers periodic, and others irregular? How and why do they respond to external influences such as weather, tides, and earthquakes? This presentation will review new insights from field studies at Lone Star geyser, Yellowstone National Park, geysers in the El Tatio geyser field, Chile, and laboratory models. At Lone Star we infer that dynamics are controlled by thermal and mechanical coupling between the conduit and a deeper, laterally-offset reservoir (called a "bubble trap" in previous studies). At El Tatio, we measured pressure and temperature within geysers over multiple eruption cycles: this data document the heating of liquid water by steam delivered from below. The laboratory experiments reveal how episodic release of steam from a bubble trap prepares a conduit for eruption and can generate a range of eruption intensities. In all cases, the eruption initiation, duration and termination are controlled by the interaction between the accumulation and transport of steam and liquid, and modulated by the geometry of the geyser's plumbing. Time series of thousands of eruptions confirm that internal processes control eruptions, with only pool geysers showing a sensitivity to air temperature; only very large stress

  20. HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1984-01-01

    The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.

  1. Yellowstone National Park as an opportunity for deep continental drilling in thermal regions. [Abstract only

    SciTech Connect

    Fournier, R.O.

    1983-03-01

    The Yellowstone caldera represnets the most intense magnatic and thermal anomaly within the conterminous United States. Voluminous rhyolite ash flows, accompanied by formation of huge calderas, occurred approximately 2.0, 1.3, and 0.6 My B.P. Although the last lava flow was about 70,000 B.P., much evidence suggests that magma may still be present at relatively shallow depth. The evidence from gravity and magnetic lows, magnetotelluric soundings, seismic wave velocities, maximum depths of earthquake foci, significant recent uplift of the caldera floor, and exceptionally high heat flux suggest that magmatic temperatures may be attained 5 to 10 km beneath much of the caldera. Most of the hot-spring and geyser activity occurs within the caldera and along a fault zone that trends north from the caldera rim through Norris Geyser Basin and Mammoth Hot Springs. The thermal waters and gases have been extensively sampled and analyzed over a period of 100 years. The chemical, isotopic, and hydrologic data obtained from natural discharges and from shallow wells drilled in thermal areas, enable formulation of models of the hydrothermal system. No previous intermediate-depth drilling has been conducted at Yellowstone to help select the best location for a deep drill hole, and because Yellowstone is a National Park, no commercial drilling will be available for add-on experiments. Also, a deep drill hole in Yellowstone would have to be sited with great regard to environmental and ecological considerations. Nevertheless, the large amount of existing data is sufficient to formulate testable models. The Yellowstone thermal anomaly is so extensive and scientifically interesting that almost any suitable drilling site there may be superior to the best drilling site in any other silicic caldera complex in the United States.

  2. Mantle-Crust Volcanics and Geodynamics of the Yellowstone Hotspot from Seismic and GPS Imaging and Earthquake Swarm Magmatic Interaction

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Puskas, C. M.

    2015-12-01

    The Yellowstone hotspot is the product of plume-plate interaction that has produced a large and active silicic volcanic field within the N. American Plate. Our newest research on Yellowstone includes: 1) A recent discovery by seismic imaging that the Yellowstone volcanic system extends as a connected magmatic system from at least 1000 km deep in the mantle with melt ascending upward in a WNW tilted plume to a newly discovered lower-crustal magma body at 20-45 km depth and 4x larger than the shallow crustal reservoir 5-15 km deep. Moreover the shallow 70 km NE-SW crustal magma body unexpectedly extends 15 km NE well beyond Yellowstone's volcanic field a distance that N. American Plate would advance in 640,000 years, i.e., the time of the last Yellowstone super eruption and hence reflecting plate motion over the Yellowstone mantle plume; 2) Yellowstone's giant mantle-crust connected magma system represents ~48,000 km3 with ~1800 km3 of melt that fuels Yellowstone's extraordinarily high heat flux of up to ~ 3 Watts/meter2 that in turn drives Yellowstone's world renown hydrothermal system; and 3) How migration of magma vertically into and laterally out of the crustal magma reservoir, measured by GPS and earthquake correlation, reveals the mechanics of Yellowstone's "natural volcano pressure relief valve" that retards volcanic eruptions for thousands of years, but that occasionally breach the brittle-ductile transition in volcanic eruptions. We will also discuss the most recent and largest earthquake in Yellowstone in over 30 years, a magnitude 4.8 event, on March 30, 2014 near Norris Geyser Basin. This earthquake was part of a larger sequence of swarm activity in the Norris area that began in September 2013 and continued into June 2014. GPS derived deformation at Norris revealed unusually high uplift rates at ~15 cm/yr. attaining 60 mm of uplift at the time of the MW4.8 event and that dramatically reversed to subsidence at rates of ~17 cm/yr. Notably, however the much

  3. Conditions leading to a recent small hydrothermal explosion at Yellowstone National Park

    USGS Publications Warehouse

    Fournier, R.O.; Thompson, J.M.; Cunningham, C.G.; Hutchinson, R.A.

    1991-01-01

    Porkchop Geyser, in Yellowstone National Park, was the site of a small hydrothermal explosion on September 5, 1989. The geyser column suddenly rose to a height of 20-30 m, followed immediately by the explosive ejection of sinter blocks up to 1.88 m in maximum dimension and formation of an irregular crater 13.9 m long and 11.7 m wide. The ejected blocks show a variety of siliceous deposits indicative of changing environments of deposition with time, and possibly of prior hydrothermal explosive activity at this site. Water samples from Porkchop were collected and analyzed once in the 1920s, again in 1951, ten times between 1960 and mid-1989, and once in January 1990 after the explosion. It is hypothesized that a sudden breaking loose of the constriction at the exit of the geyser tube, likely triggered by a seasonal increase in subsurface boiling throughout Norris Basin, allowed water and steam to be discharged from Porkchop much more rapidly than previously. This resulted in a drop in pressure within the geyser tube, causing water in adjacent connected chambers to become superheated. An ensuing rapid flashing of superheated water to steam within relatively confined spaces resulted in the hydrothermal explosion. -after Authors

  4. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  5. Landslide Buries Valley of the Geysers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Geysers are a rare natural phenomena found only in a few places, such as New Zealand, Iceland, the United States (Yellowstone National Park), and on Russia's far eastern Kamchatka Peninsula. On June 3, 2007, one of these rare geyser fields was severely damaged when a landslide rolled through Russia's Valley of the Geysers. The landslide--a mix of mud, melting snow, trees, and boulders--tore a scar on the land and buried a number of geysers, thermal pools, and waterfalls in the valley. It also blocked the Geyser River, causing a new thermal lake to pool upstream. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this infrared-enhanced image on June 11, 2007, a week after the slide. The image shows the valley, the landslide, and the new thermal lake. Even in mid-June, just days from the start of summer, the landscape is generally covered in snow, though the geologically heated valley is relatively snow free. The tree-covered hills are red (the color of vegetation in this false-color treatment), providing a strong contrast to the aquamarine water and the gray-brown slide. According to the Russian News and Information Agency (RIA) [English language], the slide left a path roughly a kilometer and a half (one mile) long and 200 meters (600 feet) wide. Within hours of the landslide, the water in the new lake inundated a number of additional geysers. The geysers directly buried under the landslide now lie under as much as 60 meters (180 feet) of material, according to RIA reports. It is unlikely that the geysers will be able to force a new opening through this thick layer, adds RIA. Among those directly buried is Pervenets (Firstborn), the first geyser found in the valley, in 1941. Other geysers, such as the Bolshoi (Greater) and Maly (Lesser) Geysers, were silenced when buried by water building up behind the new natural dam. According to Vladimir and Andrei Leonov of the Russian Federation Institute of

  6. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    SciTech Connect

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  7. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  8. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  9. Origin of the northeastern basin and range seismic parabola: Thermal and mechanical effects of the Yellowstone hotspot

    SciTech Connect

    Anders, M.H. . Lamont-Doherty Earth Observatory and Dept. of Geological Sciences)

    1993-04-01

    Centered about the track of the Yellowstone hotspot is a parabolic pattern of seismicity encompassing a region of aseismicity. Recent studies have shown that this pattern has migrated in tandem with the hotspot. A one dimensional finite-difference thermomechanical model is developed which successfully accounts for the observed patterns of seismicity. The volume, chemistry and timing of magma intrusion used in the model are contained by several geophysical, geochemical and geochronological studies of the eastern Snake River Plain. In this model, mafic magmas are intruded into a lithosphere that is already extending. The intrusions heat the surrounding rock resulting in locally increased strain rates. As the intruded magmas solidify, the length of time required to return strain rates to their pre-intrusion level is then determined. The model assumes constant horizontal tectonic forces and maps strain rate as a function of yield strength and time since intrusion. Model parameters such as crustal thickness, initial geothermal gradient, and amount of magma intruded, are varied in order to assess how they affect turnaround time for strain rates. Off-axis seismicity (seismicity within the seismic parabola exclusive of Yellowstone) is accounted for by lower crustal flow. The lower crustal flow under the seismic parabola is driven by buoyancy forces generated by a sublithospheric plume. The shape of the seismic parabola is controlled by the combination of two irrotational fields; a radial flow field due to the plume and a constant velocity field corresponding to plate motion. In summation the author discusses several other models that have recently been proposed to explain the observed patterns of seismicity and late Cenozoic tectonism of the northeastern Basin and Range province.

  10. Continuous real-time monitoring of chloride in geothermal areas in Yellowstone National Park: initial results from newly developed long-term in-situ chloride analyzers.

    NASA Astrophysics Data System (ADS)

    Chapin, T.; Heasler, H.; Hurwitz, S.

    2007-12-01

    Chloride in the surface waters of Yellowstone National Park is primarily derived from magmatic/hydrothermal sources. Discrete chloride measurements, collected at weekly to monthly intervals, are a key component of the ongoing geothermal monitoring program conducted by Yellowstone Volcano Observatory and National Park Service scientists. Chloride flux, estimated from discrete chloride measurements and streamflow data, could potentially be used as a proxy for geothermal heat flux and volcanic-geothermal unrest in the Park. However, infrequent chloride sampling restricts our understanding of dynamic geothermal processes, and the lack of real- time chloride data limits our ability to provide early warning and timely response to geologic hazards in Yellowstone. We seek to combine real-time chloride and streamflow data to examine variations in chloride flux due to changes in the volcanic-geothermal system and to determine if real-time chloride flux data can be used as an early warning indicator of volcanic hazards in the park. To address these objectives, we have developed a low-cost instrument for long-term, real-time, in-situ chemical analysis, the Field Sequential Injection Analyzer (Field-SIA). The Field-SIA is self-calibrating, performs hourly analyses for over two months between service visits, and integrates with existing USGS streamflow gaging stations which provide solar power and satellite telemetry of real-time chloride data. The Field-SIA greatly increases chemical data collection while significantly decreasing the cost of sampling and analysis. We will present data from long-term, high-resolution, real-time chloride monitoring of: 1) Tantalus Creek which drains the Norris Geyser Basin; 2) the Firehole River which drains the Upper, Middle, and Lower Geyser Basins; and 3) the Yellowstone River near Gardiner, MT. Initial results suggest that chloride fluctuations at Tantalus Creek were linked to diel temperature cycling while chloride fluctuations at the

  11. Source Modeling and Tectono-Volcanic Implications of the 2004-2006 Rapid Deformation at Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Chang, W.; Smith, R. B.; Puskas, C. M.; Farrell, J. M.

    2006-12-01

    The Yellowstone volcanic system, centered at Yellowstone National Park in northwestern Wyoming, is one of the largest and most active silicic volcanic fields in the world. The most recent caldera-forming eruptions at 0.64 Ma formed the 45-km-wide by 75-km-long Yellowstone caldera that subsided up to 500 m. Geodetic techniques have been employed to monitor crustal motion of Yellowstone beginning with leveling benchmarks in 1923. Since 1997, the University of Utah has installed six permanent GPS stations inside Yellowstone National Park for continuously monitoring of ground deformation associated with seismic, volcanic, and hydrothermal activities. Starting in mid-2004, the GPS network recorded an episode of rapid uplift along the caldera floor together with subsidence near Norris Geyser Basin. The deformation continues into 2006, with nearly constant inflation rates of about 6 cm/yr and 4 cm/yr at the Sour Creek and Mallard Lake resurgent domes, respectively, which are 2-3 times faster than the caldera uplift rate between 1923 and 1984. The horizontal velocities, in addition, are 7-21 mm/yr away from both domes. Meanwhile, Norris Geyser Basin, located just outside the north caldera boundary, experienced an inflation of ~4 cm/yr that is two times higher than the 1996-2002 uplift rate. A preliminary elastic-dislocation source model constrained by the measured ground motion indicates a volumetric expansion 0.11 km3 for a horizontal sill at 8 km beneath the caldera, and a volumetric contraction of 0.018 km3 for an inclined sill at 10 km under the Norris area. Incorporating data from five new PBO stations, we further evaluate other source models such as pressurized prolate and oblate cavities that are more physically plausible for volcanic deformation. Based on seismic, hydrothermal, and geochemical evidence, we propose that a new intrusion of magma into the mid-crustal or pressurization of a deep hydrothermal system likely caused the uplift within the Yellowstone

  12. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  13. Investigating Rapid Uplift and Subsidence Near Norris, Yellowstone, During 2013-2014

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; Cervelli, P. F.; Shelly, D. R.

    2014-12-01

    Although Yellowstone's last magmatic eruption occurred about 70,000 years ago, hydrothermal explosions, earthquakes, and ground deformation still occur as testament to ongoing volcanic and tectonic processes. Since the late 1990s, a network of continuously recording Global Positioning System (GPS) receivers has recorded uplift and subsidence of the caldera and northwest caldera margin near Norris Geyser Basin. Previous deformation episodes have shown opposing vertical motion at the two sites, which has been attributed to temporal variations in magmatic fluid flux from the caldera laterally through the Norris-Mammoth fault corridor that intersects the caldera's northwest margin (Dzurisin et al., 2012; Wicks et al., 2006). These episodes have exhibited gradual changes, transitioning from uplift to subsidence (and vice versa) over weeks to months. Large earthquake swarms accompanied transitions from caldera uplift to subsidence in 1985 and 2010. Recent deformation in Yellowstone differs from previously observed episodes. In the latter half of 2013, uplift began around Norris, and by January of 2014 it reached rates of over 15 cm/yr. Also at the start of 2014, caldera deformation shifted from approximately 4 years of slow subsidence to slow uplift. On March 30, 2014, a M4.8 earthquake, the largest in Yellowstone since 1980, occurred northwest of Norris Geyser Basin near the center of uplift. Shortly after the event, deformation near Norris abruptly reversed to rapid subsidence (over 20 cm/yr). Caldera uplift began to accelerate around the same time. Thus, uplift can occur simultaneously in both the caldera and the Norris area, and dramatic reversals from rapid uplift to rapid subsidence can occur within a matter of days. While the complexity of the deformation defies a simple explanation, we hypothesize that the rapid transition from uplift to subsidence at Norris may indicate that the M4.8 earthquake opened a pathway for fluid migration away from Norris and allowed an

  14. Testing Geyser Models using Down-vent Data

    NASA Astrophysics Data System (ADS)

    Wang, C.; Munoz, C.; Ingebritsen, S.; King, E.

    2013-12-01

    Geysers are often studied as an analogue to magmatic volcanoes because both involve the transfer of mass and energy that leads to eruption. Several conceptual models have been proposed to explain geyser eruption, but no definitive test has been performed largely due to scarcity of down-vent data. In this study we compare simulated time histories of pressure and temperature against published data for the Old Faithful geyser in the Yellowstone National Park and new down-vent measurements from geysers in the El Tatio geyser field of northern Chile. We test two major types of geyser models by comparing simulated and field results. In the chamber model, the geyser system is approximated as a fissure-like conduit connected to a subsurface chamber of water and steam. Heat supplied to the chamber causes water to boil and drives geyser eruptions. Here the Navier-Stokes equation is used to simulate the flow of water and steam. In the fracture-zone model, the geyser system is approximated as a saturated fracture zone of high permeability and compressibility, surrounded by rock matrix of relatively low permeability and compressibility. Heat supply from below causes pore water to boil and drives geyser eruption. Here a two-phase form of Darcy's law is assumed to describe the flow of water and steam (Ingebritsen and Rojstaczer, 1993). Both models can produce P-T time histories qualitatively similar to field results, but the simulations are sensitive to assumed parameters. Results from the chamber model are sensitive to the heat supplied to the system and to the width of the conduit, while results from the fracture-zone model are most sensitive to the permeability of the fracture zone and the adjacent wall rocks. Detailed comparison between field and simulated results, such as the phase lag between changes of pressure and temperature, may help to resolve which model might be more realistic.

  15. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Lowenstern, J. B.; Hurwitz, S.

    2012-01-01

    Brimstone Basin, a remote area of intense hydrothermal alteration a few km east of the Yellowstone Caldera, is rarely studied and has long been considered to be a cold remnant of an ancient hydrothermal system. A field campaign in 2008 confirmed that gas emissions from the few small vents were cold and that soil temperatures in the altered area were at background levels. Geochemical and isotopic evidence from gas samples (3He/4He ~ 3RA, δ13C-CO2 ~ − 3‰) however, indicate continuing magmatic gas input to the system. Accumulation chamber measurements revealed a surprisingly large diffuse flux of CO2 (~ 277 t d-1) and H2S (0.6 t d-1). The flux of CO2 reduces the 18O content of the overlying cold groundwater and related stream waters relative to normal meteoric waters. Simple isotopic modeling reveals that the CO2 likely originates from geothermal water at a temperature of 93 ± 19 °C. These results and the presence of thermogenic hydrocarbons (C1:C2 ~ 100 and δ13C-CH4 = − 46.4 to − 42.8‰) in gases require some heat source at depth and refute the assumption that this is a “fossil” hydrothermal system.

  16. Signature of hydrothermal alteration in ground-magnetic surveys at Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.; McPhee, D. K.

    2011-12-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Although hydrothermal alteration in YNP has been extensively studied with field observations, remote-sensing imagery, and core drilling, the volume and geometry of hydrothermal systems at depth remain poorly constrained. Magnetic surveys can help to investigate buried hydrothermal alteration as demonstrated by the high-resolution aeromagnetic survey of YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity. This suggests large volumes of buried demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although the interpretation of magnetic anomalies is non-unique, Finn and Morgan (2002) used these magnetic lows to estimate a minimum volume of buried altered rock assuming complete demagnetization of the substratum. This aeromagnetic survey was of relatively high resolution (flight line spacing < 500 m and flight elevation <350 m above ground), but it was insufficient for detailed mapping of individual thermal areas. In order to obtain a closer look at several areas, we performed ground-based magnetic surveys within YNP using a cesium-vapor magnetometer along 4-5 km long transects crossing four thermal areas (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser Basin, and Smoke Jumper Hot-springs). We also performed a detailed survey over an area of about 800 m x 500 m around Lone Star Geyser. We also collected gravity data to help characterize the subsurface geologic structures and performed magnetic susceptibility, magnetic remanence, and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. The long magnetic transects show that magnetic anomalies are damped in altered areas suggesting a significant

  17. Myxobolus cerebralis (Hofer) infection risk in native cutthroat trout Oncorhynchus clarkii (Richardson) and its relationships to tributary environments in the Yellowstone Lake Basin.

    PubMed

    Murcia, S; Kerans, B L; Koel, T M; MacConnell, E

    2015-07-01

    Conservation of native species is challenged by the introduction of non-native pathogens and diseases into aquatic and terrestrial environments worldwide. In the Yellowstone Lake basin, Yellowstone National Park, the invasive parasite causing salmonid whirling disease Myxobolus cerebralis (Hofer) has been identified as one factor contributing to population declines of native Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri (Jordan & Gilbert). In 2002 and 2003, we examined relationships between the stream environment and severity of M. cerebralis infection in native trout. Coefficients of variation of environmental features were calculated to examine variability. Ten years later, we reassessed infection levels at 22 tributaries broadly across the system. Results of principal component analysis (PCA) of physical features (2003) were negatively correlated with infection severity, mostly in lower jaw cartilage of cutthroat trout, and PCA of chemical features (and temperature) correlated with infection severity in cranial cartilage. Pelican Creek, where M. cerebralis prevalence and severity was high 2002-2003, remained high in 2012. We did not find evidence that the parasite had dispersed further within the system. Variable environmental features (physiological stress) across short spatiotemporal scales within a stream or season may possibly predispose salmonids to infection in the wild and facilitate parasite establishment. PMID:24953674

  18. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    SciTech Connect

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  19. Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT

    SciTech Connect

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  20. Anomalous chloride flux discharges from Yellowstone National Park

    USGS Publications Warehouse

    Friedman, I.; Norton, D.R.

    1990-01-01

    The chloride concentration of some thermal springs in and adjacent to Yellowstone National Park is constant through time although their discharge varies seasonally. As a result the chloride flux from these springs increases during periods of increased discharge. We believe that this is caused by changes in the height of the local groundwater table, which affects the discharge of the springs but not their chloride concentration. The discharge from Mammoth Hot Springs varies seasonally, but its chloride concentration remains constant. We take this as evidence that this major thermal feature is derived from orifices that are tapping the local water table close to its surface. Three of the four major rivers (Yellowstone, Snake and Falls) exiting the Park also show an increased chloride flux during the spring runoff that cannot be explained solely by the contribution of snowmelt, nor by release of hot-spring-derived chloride stored in the soil during the winter and released in the spring. The increased chloride flux in these rivers is attributed to their draining shallow hot springs similar to those mentioned above. In contrast to the Yellowstone, Snake and Falls Rivers, the Firehole and Gibbon Rivers, which unite to form the Madison River and which collectively drain several major geyser basins, display a poor correlation between chloride flux and discharge. The cause, we believe, is that a large part of the thermal water input to these two rivers originated at great depths where the seasonal variation in the height of the water table had a negligible effect on hot spring discharge. Monitoring of seasonal discharge and chloride concentration of thermal features yields information on the depths at which these thermal features tap the local water table. ?? 1990.

  1. Anomalous chloride flux discharges from Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Friedman, Irving; Norton, Daniel R.

    1990-08-01

    The chloride concentration of some thermal springs in and adjacent to Yellowstone National Park is constant through time although their discharge varies seasonally. As a result the chloride flux from these springs increases during periods of increased discharge. We believe that this is caused by changes in the height of the local groundwater table, which affects the discharge of the springs but not their chloride concentration. The discharge from Mammoth Hot Springs varies seasonally, but its chloride concentration remains constant. We take this as evidence that this major thermal feature is derived from orifices that are tapping the local water table close to its surface. Three of the four major rivers (Yellowstone, Snake and Falls) exiting the Park also show an increased chloride flux during the spring runoff that cannot be explained solely by the contribution of snowmelt, nor by release of hot-spring-derived chloride stored in the soil during the winter and released in the spring. The increased chloride flux in these rivers is attributed to their draining shallow hot springs similar to those mentioned above. In contrast to the Yellowstone, Snake and Falls Rivers, the Firehole and Gibbon Rivers, which unite to form the Madison River and which collectively drain several major geyser basins, display a poor correlation between chloride flux and discharge. The cause, we believe, is that a large part of the thermal water input to these two rivers originated at great depths where the seasonal variation in the height of the water table had a negligible effect on hot spring discharge. Monitoring of seasonal discharge and chloride concentration of thermal features yields information on the depths at which these thermal features tap the local water table.

  2. Yellowstone Hotspot Geodynamics

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.

    2012-12-01

    , Quaternary fault slip, and seismic data suggest that the gravitational potential of the Yellowstone swell creates a regional extension affecting much of the western U.S. Overall, the Yellowstone hotspot swell is the vertex of tensional stress axes rotation from E-W in the Basin-Range to NE-SW at the Yellowstone Plateau as well as the cause of edge faulting, nucleating the nearby Teton and Centennial faults. We extrapolate the original location of the Yellowstone mantle-source southwestward 800 km to an initial position at 17 million years ago beneath eastern Oregon and Washington suggesting a common origin for the YSRP and Columbia Plateau volcanism. We propose that the original plume head ascended vertically behind the subducting Juan de Fuca plate, but was entrained ~12 Ma ago in a faster mantle flow beneath the continental lithosphere and tilted into its present configuration.

  3. Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry

    2005-01-01

    Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.

  4. The plumbing of Old Faithful Geyser revealed by hydrothermal tremor

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Roux, P.; Cros, E.

    2013-05-01

    Faithful Geyser in Yellowstone National Park (USA) has attracted numerous scientific investigations for over two centuries to better understand its geological structure, the physics of its eruptions, and the controls of its intermittency. Using data acquired with a seismic array in 1992, we track the sources of hydrothermal tremor produced by boiling and cavitation inside the geyser. The location of seismic sources identifies a previously unknown lateral cavity at 15 m below the surface, on the SW side of the vent, and connected to the conduit. This reservoir is activated at the beginning of each geyser eruption cycle and plays a major role in the oscillatory behavior of the water level in the conduit before each eruption.

  5. Satellite InSAR Reveals a new Style of Deformation at Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Wicks, C. W.; Thatcher, W.; Dzurisin, D.

    2002-12-01

    Interferograms constructed from European Space Agency ERS-2 satellite image pairs reveal a ~40 km diameter area of uplift straddling the north rim of Yellowstone caldera, just south of the Norris Geyser Basin. From 1996 to 2001, the area of peak uplift moved ~100 mm in a line-of-sight (LOS) direction toward the ERS-2 satellite, consistent with an episode of inflation. The latest interferogram of the episode is from autumn 2000 and autumn 2001 scenes, and it reveals ~30 mm of LOS movement, suggesting that the episode is ongoing. A simple point-source model of the uplift, puts an inflation source at ~10 km depth, with an associated volume increase of ~0.05 km3. In an earlier satellite interferometry study, we found deformation to be mostly restricted to the caldera floor, associated with the two main resurgent domes. However, based on limited but active deformation of the Norris-Mammoth Corridor (an active hydrothermal area from Norris Geyser Basin, northeast to Mammoth Hot Springs) we suggested in our earlier study the presence of an outlet from the caldera that feeds the hydrothermal features of the Norris-Mammoth Corridor. The area of uplift that we find in this study is centered on the proposed outlet. The inferred source depth of ~10 km seems to require a magmatic source, however, further modeling using distributed sources is needed to constrain the range of permitted source depths.

  6. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.

    PubMed

    Miller-Coleman, Robin L; Dodsworth, Jeremy A; Ross, Christian A; Shock, Everett L; Williams, Amanda J; Hartnett, Hilairy E; McDonald, Austin I; Havig, Jeff R; Hedlund, Brian P

    2012-01-01

    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6) 16S rRNA gene copies g(-1) wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to

  7. Characterizing Thermal features in Norris Basin, Yellowstone National Park, Using Multi- spectral Remote Sensing Data and Dynamic Calibration Procedures

    NASA Astrophysics Data System (ADS)

    Hardy, C. C.; Queen, L. P.; Heasler, H. P.; Jaworowski, C.

    2007-12-01

    A thermal infrared remote sensing project was implemented to develop methods for identifying, classifying, and mapping thermal features. This study is directed at geothermal features, with the expectation that new protocols developed here will apply to the wildland fire thermal environment. Airborne multi-spectral digital imagery were acquired over the geothermally active Norris Basin region of Yellowstone National Park, USA. Two image acquisitions were flown, with one acquisition near solar noon and the other at night. Raw data from the five sensors were uncalibrated, so a vicarious calibration procedure was developed to compute reflectance for the visible and NIR bands using an independently calibrated hyperspectral dataset. Calibration of the thermal sensor band utilized a dynamic, in-scene calibration procedure that exploited natural, pseudo-invariant thermal reference targets instrumented with in situ kinetic temperature recorders. The calibrated reflectance and radiant temperature data from each acquisition were processed and analyzed to develop a suite of thermal attributes, including radiant temperatures, a daytime-nighttime temperature difference (DeltaT), albedo, an albedo derivative (one minus albedo), and apparent thermal inertia (ATI). The albedo terms were computed using a published weighed-average albedo algorithm based on ratios of the narrowband red and near-infrared (NIR) reflectances to total solar irradiance for the respective red and NIR bandpasses. The weighing factors for each band were the proportion of total solar irradiance incident on the surface within each segment represented by a respective bandpass. In the absence of verifiable "truth," a step-wise chain of unsupervised classification and multivariate analysis exercises was performed, drawing heavily on "fuzzy truth" to assess the quality, efficiency, and efficacy of classification procedures and results. A final classification synthesizes a "geothermal phenomenology" comprised of

  8. Korarchaeota Diversity, Biogeography, and Abundance in Yellowstone and Great Basin Hot Springs and Ecological Niche Modeling Based on Machine Learning

    PubMed Central

    Miller-Coleman, Robin L.; Dodsworth, Jeremy A.; Ross, Christian A.; Shock, Everett L.; Williams, Amanda J.; Hartnett, Hilairy E.; McDonald, Austin I.; Havig, Jeff R.; Hedlund, Brian P.

    2012-01-01

    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g−1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to

  9. Radium isotope geochemistry of thermal waters, Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Sturchio, N.C.; Bohlke, J.K.; Markun, F.J. )

    1993-03-01

    Radium isotope activities ([sup 226]Ra, [sup 228]Ra, and [sup 224]Ra), chemical compositions, and sulfur isotope ratios in sulfate were determined for water samples from thermal areas in Yellowstone National Park, Wyoming. Activities of [sup 226]Ra in these waters range from <0.2 to 37.9 dpm/kg. Activity ratios of [sup 228]Ra/[sup 226]Ra range from 0.26 to 14.2, and those of [sup 224]Ra/[sup 228]Ra range from 0.73 to 3.1. Radium concentrations are inversely correlated with aquifer equilibration temperatures (estimated from dissolved silica concentrations), while [Ra/Ba][sub aq] and [sup 228]Ra/[sup 226]Ra activity ratios depend upon U/Ba and Th/U ratios in aquifer rocks. Major controls on Ra concentration in Yellowstone thermal waters are inferred to be (1) barite saturation (at Norris Geyser Basin, Mammoth Hot Springs, and other northern areas) and (2) zeolite-water ion exchange (at Upper Geyser Basin). The data are consistent with a model in which (1) radium and barium are supplied to water by bulk dissolution of aquifer rock, and (2) chemical equilibration of water with rock is rapid relative to the 1602 year half-life of [sup 226]Ra. The [sup 228]Ra/[sup 226]Ra activity ratios of the waters may in some cases reflect surface enrichments of [sup 232]Th and/or may indicate that [alpha]-recoil input of [sup 228]Ra is rapid relative to water-rock chemical equilibration. Activity ratios of [sup 224]Ra/[sup 228]Ra indicate a nearly ubiquitous [sup 224]Ra excess that generally increases with decreasing pH. Near-surface ([le]100 m) thermal water flow velocities at Mammoth Hot Springs are estimated from [sup 224]Ra/[sup 228]Ra variation to be [ge]1 m h[sup [minus]1]. 73 refs., 4 figs., 4 tabs.

  10. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  11. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance

    SciTech Connect

    Palmer, M.R. ); Sturchio, N.C. )

    1990-10-01

    Boron concentrations and isotope compositions have been measured in fourteen hot spring waters, two drill hole waters, an unaltered rhyolite flow, and hydrothermally altered rhyolite from the geothermal system in Yellowstone National Park, Wyoming. The samples are representative of the major thermal areas within the park and span the range of fluid types. For the fluids, the B concentrations range from 0.043-2.69 mM/kg, and the {delta}{sup 11}B values range from {minus}9.3 to +4.4{per thousand}. There is no relationship between the dissolved B concentrations or isotope compositions with the concentration of any major element (other than Cl) or physical property. Each basin is characterized by a restricted range in B/Cl ratios and {delta}{sup 11}B values. Hot spring waters from the Norris Basin, Upper Geyser Basin, Calcite Springs, and Clearwater have {delta}{sup 11}B values close to that of unaltered rhyolite ({minus}5.2{per thousand}) and are interpreted to have derived their B from this source. Waters from Mammoth Hot Springs, Sheepeater, and Rainbow Springs have lower {delta}{sup 11}B values close to {minus}8{per thousand}. These lower values may reflect leaching of B from sedimentary rocks outside the Yellowstone caldera, but they are similar to the {delta}{sup 11}B value of hydrothermally altered rhyolite ({minus}9.7{per thousand}). Hence, the light boron isotope compositions recorded in these hot spring waters may reflect leaching of previously deposited hydrothermal minerals. Cooler springs along the Yellowstone River just outside the park boundary have lower B concentrations and higher {delta}{sup 11}B values that may reflect mixing with shallow meteoric water.

  12. Controls on geyser periodicity

    USGS Publications Warehouse

    Ingebritsen, S.E.; Rojstaczer, S.A.

    1993-01-01

    Geyser eruption frequency is not constant over time and has been shown to vary with small (???10-6) strains induced by seismic events, atmospheric loading, and Earth tides. The geyser system is approximated as a permeable conduit of intensely fractured rock surrounded by a less permeable rock matrix. Numerical simulation of this conceptual model yields a set of parameters that controls geyser existence and periodicity. Much of the responsiveness to remote seismicity and other small strains in the Earth can be explained in terms of variations in permeability and lateral recharge rates.

  13. Controls on geyser periodicity.

    PubMed

    Ingebritsen, S E; Rojstaczer, S A

    1993-11-01

    Geyser eruption frequency is not constant over time and has been shown to vary with small (geyser system is approximated as a permeable conduit of intensely fractured rock surrounded by a less permeable rock matrix. Numerical simulation of this conceptual model yields a set of parameters that controls geyser existence and periodicity. Much of the responsiveness to remote seismicity and other small strains in the Earth can be explained in terms of variations in permeability and lateral recharge rates. PMID:17757358

  14. Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Cullings, K.; Makhija, S.

    2001-01-01

    Molecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) were collected for molecular identification and to compare fruiting body (above-ground) diversity to below-ground diversity. Our results indicate (i) that there were significant decreases in both the level of EM infection (130 +/- 22 EM root tips/core in forest soil; 68 +/- 22 EM root tips/core in thermal soil) and EM fungal species richness (4.0 +/- 0.5 species/core in forest soil; 1.2 +/- 0.2 species/core in thermal soil) in soils associated with the thermal feature; (ii) that the EM mycota of thermal soils was comprised of a small set of dominant species and included very few rare species, while the EM mycota of forest soils contained a few dominant species and several rare EM fungal species; (iii) that Dermocybe phoenecius and a species of Inocybe, which was rare in forest soils, were the dominant EM fungal species in thermal soils; (iv) that other than the single Inocybe species, there was no overlap in the EM fungal communities of the forest and thermal soils; and (v) that the fungal species forming the majority of the above-ground fruiting structures in thermal soils (Pisolithus tinctorius, which is commonly used in remediation of acid soils) was not detected on a single EM root tip in either type of soil. Thus, P. tinctorius may have a different role in these thermal soils. Our results suggest that this species may not perform well in remediation of all acid soils and that factors such as pH, soil temperature, and soil chemistry may interact to influence EM fungal community structure. In addition, we identified at least one new species with potential for use in remediation of hot acidic soil.

  15. Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming.

    PubMed

    Cullings, K; Makhija, S

    2001-12-01

    Molecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) were collected for molecular identification and to compare fruiting body (above-ground) diversity to below-ground diversity. Our results indicate (i) that there were significant decreases in both the level of EM infection (130 +/- 22 EM root tips/core in forest soil; 68 +/- 22 EM root tips/core in thermal soil) and EM fungal species richness (4.0 +/- 0.5 species/core in forest soil; 1.2 +/- 0.2 species/core in thermal soil) in soils associated with the thermal feature; (ii) that the EM mycota of thermal soils was comprised of a small set of dominant species and included very few rare species, while the EM mycota of forest soils contained a few dominant species and several rare EM fungal species; (iii) that Dermocybe phoenecius and a species of Inocybe, which was rare in forest soils, were the dominant EM fungal species in thermal soils; (iv) that other than the single Inocybe species, there was no overlap in the EM fungal communities of the forest and thermal soils; and (v) that the fungal species forming the majority of the above-ground fruiting structures in thermal soils (Pisolithus tinctorius, which is commonly used in remediation of acid soils) was not detected on a single EM root tip in either type of soil. Thus, P. tinctorius may have a different role in these thermal soils. Our results suggest that this species may not perform well in remediation of all acid soils and that factors such as pH, soil temperature, and soil chemistry may interact to influence EM fungal community structure. In addition, we identified at least one new species with potential for use in remediation of hot acidic soil. PMID:11722904

  16. Yellowstone Attenuation Tomography from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Seats, K.; Lawrence, J. F.

    2013-12-01

    The goal of this study is to create a tomographic attenuation image for the Yellowstone region by analyzing ambient seismic noise. An attenuation image generated from ambient noise should provide more information about the structure and properties beneath Yellowstone, especially the caldera, which is known to be active. I applied the method of Lawrence & Prieto [2011] to examine lateral variations in the attenuation structure of Yellowstone. Ambient noise data were collected from broadband seismic stations located around Yellowstone National Park from 1999-2013. Noise correlation functions derived from cross correlations of the ambient noise at two stations were used to calculate a distance dependent decay (an attenuation coefficient) at each period and distance. An inversion was then performed to isolate and localize the spatial attenuation coefficients within the study area. I observe high amplitude decay of the ambient noise at the Yellowstone caldera, most likely due to elevated temperature and crustal melts caused by volcanism, geothermal heat flow, and hydrothermal activity such as geysers.

  17. Dynamics of the Yellowstone hydrothermal system

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-09-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  18. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  19. More than one way to stretch: A tectonic model for extension along the plume track of the Yellowstone hotspot and adjacent Basin and Range Province

    USGS Publications Warehouse

    Parsons, T.; Thompson, G.A.; Smith, R.P.

    1998-01-01

    The eastern Snake River Plain of southern Idaho poses a paradoxical problem because it is nearly aseismic and unfaulted although it appears to be actively extending in a SW-NE direction continuously with the adjacent block-faulted Basin and Range Province. The plain represents the 100-km-wide track of the Yellowstone hotspot during the last ???16-17 m.y., and its crust has been heavily intruded by mafic magma, some of which has erupted to the surface as extensive basalt flows. Outside the plain's distinct topographic boundaries is a transition zone 30-100 km wide that has variable expression of normal faulting and magmatic activity as compared with the surrounding Basin and Range Province. Many models for the evolution of the Snake River Plain have as an integral component the suggestion that the crust of the plain became strong enough through basaltic intrusion to resist extensional deformation. However, both the boundaries of the plain and its transition zone lack any evidence of zones of strike slip or other accommodation that would allow the plain to remain intact while the Basin and Range Province extended around it; instead, the plain is coupled to its surroundings and extending with them. We estimate strain rates for the northern Basin and Range Province from various lines of evidence and show that these strains would far exceed the elastic limit of any rocks coupled to the Basin and Range; thus, if the plain is extending along with its surroundings, as the geologic evidence indicates, it must be doing so by a nearly aseismic process. Evidence of the process is provided by volcanic rift zones, indicators of subsurface dikes, which trend across the plain perpendicular to its axis. We suggest that variable magmatic strain accommodation, by emplacement and inflation of dikes perpendicular to the least principal stress in the elastic crust, allows the crust of the plain to extend nearly aseismically. Dike injection releases accumulated elastic strain but

  20. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  1. A New Model for Episodic Caldera Deformation at Yellowstone

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Gervais, S. M.; Lowenstern, J. B.; Wicks, C. W.

    2012-12-01

    For nearly 90 years, geodetic measurements at Yellowstone have shown recurring episodes of uplift and subsidence confined mostly to the caldera but also extending into the Norris Geyser Basin. The most recent such episode began in late 2004 with the onset of caldera-wide uplift that continued for about 5 years before switching to subsidence in late 2009. The physical mechanism driving the deformation is unknown, though several researchers have proposed kinematic models that can reproduce the observed data. The "Lake" earthquake swarm, which occurred in the northern part of Yellowstone Lake from December 2008 through January 2009, provides a new constraint on caldera deformation models. The timing of the swarm correlates with an abrupt change in local deformation, which preceded the gradual transition from uplift to subsidence in late 2009. Thus, caldera deformation, at least in the vicinity of Yellowstone Lake, consists of two (or more) distinct parts, implying the existence of two (or more) distinct deformation sources. This fresh information leads us to propose a new kinematic model for deformation at Yellowstone, which we develop from the last 15 years of continuous GPS and InSAR data. Our new model consists of three deformation sources: (1) a cauldron block source that is subject to a constant displacement at its base while its surrounding ring fault remains locked; (2) a pressurizing (or depressurizing) spherical cavity near the Norris Geyser Basin, which is known to deform separately from the caldera; and (3) a pressurizing (or depressurizing) spherical cavity at the Sour Creek Dome, which we infer from the abrupt change in deformation rate after the Lake Swarm. We use the GPS and InSAR data from the period of strongest signal, summer 2005 through summer 2007, to optimize the geometry of the three sources: the locations and depths of the spherical cavity, and the perimeter of the cauldron block. We then, while holding their geometry fixed, estimate the

  2. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    USGS Publications Warehouse

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30–45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the

  3. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-07-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30-45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the strengths

  4. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem

    USGS Publications Warehouse

    Morgan, Lisa A., (Edited By)

    2007-01-01

    Yellowstone ecosystem as influenced by the Yellowstone hotspot. Another paper by Paul Carrara describes the recent movement of a large landslide block dated by tree-ring analyses in the Tower Falls area. The section under Yellowstone Lake studies begins with a classic paper by J. David Love and others on ancestral Lake Yellowstone. Other papers in this section include results and interpretation of the high-resolution bathymetric, seismic reflection, and submersible studies by Lisa Morgan and others. Ken Pierce and others describe results from their studies of shorelines along Yellowstone Lake and their interpretation of inflation-deflation cycles, tilting, and faulting in the Yellowstone caldera. The influence of sublacustrine hydrothermal vent fluids on the geochemistry of Yellowstone Lake is described by Laurie Balistrieri and others. In Pat Shanks and others' chapter, hydrothermal reactions, stable-isotope systematics, sinter deposition, and spire formation are related to the geochemistry of sublacustrine hydrothermal deposits in Yellowstone Lake. The geochemical studies section considers park-wide geochemical systems in Yellowstone National Park. In Bob Rye and Alfred Truesdell's paper, the question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park is discussed. Irving Friedman and Dan Norton report on the chloride flux emissions from Yellowstone in their paper questioning whether Yellowstone is losing its steam. Wildlife issues as addressed by examining trace-element and stable-isotope geochemistry are discussed in a chapter by Maurice Chaffee and others. In another chapter by Chaffee and others, natural and anthropogenic anomalies and their potential impact on the environment using geochemistry is reported. Pam Gemery-Hill and others present geochemical data for selected rivers, lake waters, hydrothermal vents, and subaerial geysers for the time interval of 1996-2004. The life cycle of gold deposits near th

  5. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  6. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    NASA Astrophysics Data System (ADS)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  7. Integrative analysis and discoveries of Yellowstone science revealing new interpretations and assessments of earthquake and volcano risk

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Massin, F.; Puskas, C. M.; Chang, W.; Shelly, D. R.

    2013-12-01

    We integrate multiple ideas and data from earthquakes, deformation, and volcano/tectonic history to form a new interpretation of the active processes and hazard implication of the Yellowstone volcano-tectonic system. 1) The Yellowstone mantle plume is not vertical beneath Yellowstone and evolving new seismic tomographic data suggests that the plume extends ~1500 km deep into the lower mantle. Moreover the plume tilts NW from 80 km to ~600 km, then tilts SE, as a result of being caught in the eastward upper mantle return flow, i.e. it is caught in the 'mantle wind'. In addition, the Yellowstone plume is imaged to be twice as wide as earlier estimated. Using seismic and electrical tomography it is shown to have a high conductivity annulus of mineralized fluids surrounding the upper mantle part of the plume doubling its width to ~150km; 2) Newly acquired local earthquake data have shown that the Yellowstone crustal magma body is now seismically imaged to be 50% larger than originally thought. It extends ~90 km NE-SW and shallows markedly from ~15 km beneath the caldera to less than ~2 km 20 km north of the caldera and coincident with a large gravity low of`60 mGal. This geometry is consistent with the southwest N. American Plate motion of ~20 km over the Yellowstone mantle plume in the last 640,000 years, the age of the caldera, and fueling the progressive evolution of the magma reservoir to the northeast; 3) Earthquake swarms are the dominant mode of Yellowstone seismic energy release and account for ~47% of the earthquakes. Also, earthquakes 'repeat themselves' in multiplets on time scales ranging from seconds to decades for which we suggest 'Yellowstone is shaking all the time' and represents a process that indicates continuous migration of magma in and out of the Yellowstone crustal magma reservoir; 4) the strong E-W band of earthquakes extending from the 1959 M7.3 Hebgen Lake earthquake to Norris geyser basin and the Madison Plateau is shown to be the result of

  8. In situ observations of Old Faithful Geyser

    NASA Astrophysics Data System (ADS)

    Hutchinson, Roderick A.; Westphal, James A.; Kieffer, Susan W.

    1997-10-01

    In a series of experiments from 1983 to 1993, four probes were carefully lowered into Old Faithful Geyser, Yellowstone National Park, Wyoming. At different times, these probes variously recorded pressure-temperature-time conditions (to nearly 22 m depth), and video probes showed the conduit geometry and processes of recharge (to 13 m depth). Temperatures recorded were, within experimental error, the same as those recorded in 1942, with a peak bottom temperature (T) of 118 °C. Processes observed include fog formation in the upper levels of the conduit owing to wind and entrainment of cool air; “bank storage” of hot water that splashes to high levels, cools, and recharges; recharge of cooler ground water into the conduit; superheated steam expansion into the conduit (T = 129.5 °C); periodic temperature fluctuations; and exsolution of bubbles of noncondensable gas, which we propose are CO2.

  9. Geodetic and Seismic Monitoring of Yellowstone: A Living, Breathing, Shaking Volcano

    NASA Astrophysics Data System (ADS)

    Farrell, J.; Smith, R. B.; Chang, W.; Puskas, C. M.

    2009-12-01

    The Yellowstone volcano has shown a remarkable modern history of ground deformation since measurement began ~80 years ago. When the Yellowstone National Park road system was first built in 1923, leveling benchmarks were installed and surveyed at the same time. Precise leveling surveys by the University of Utah and USGS in the mid ‘70s and ‘80s re-measured the benchmarks revealing ~1 m of net uplift centered along the NE-SW axis of the 0.64 Ma Yellowstone caldera. Subsequent GPS surveys initiated in 1987 by the University of Utah recorded multiple uplift and subsidence episodes at decadal scales both in the caldera as well as near the Norris Geyser Basin, north of the caldera. Most recently, campaign and permanent GPS measurements, as well as InSAR, have recorded an episode of accelerated caldera uplift at rates up to ~7 cm/yr starting in mid-2004 and continuing today at lower rates of up to ~3.7 cm/yr. This most recent uplift episode has been numerically modeled as the surface manifestation of an inflating volcanic sill at ~10 km depth beneath the caldera. In addition to ground deformation monitoring, the USGS and the University of Utah have been recording seismicity in Yellowstone since 1973. More than 34,000 earthquakes have been located in the Yellowstone area of 0>MC>6.0 from 1973 to August 2009. The largest historic earthquake in the Intermountain West, the 1959 Hebgen Lake, MT MW7.3 event occurred just west of the Yellowstone caldera. Forty percent of earthquakes in Yellowstone occur in definitive earthquake swarms. The swarms last from 1 day to many months and contain tens to thousands of earthquakes. The unusual 2008-2009 Yellowstone Lake swarm was the second largest swarm recorded at Yellowstone and contained >1,000 earthquakes in a ten-day period. The swarm produced 21 earthquakes of MC≥3, including one MW4.0 event. In comparison, only 5 events had magnitudes of 3 or greater prior to the swarm in 2008. Moreover, hypocenters of the swarm migrated

  10. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat, III; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  11. Spatial/temporal patterns of Quaternary faulting in the southern limb of the Yellowstone-Snake River Plain seismic parabola, northeastern Basin and Range margin

    SciTech Connect

    McCalpin, J.P. )

    1993-04-01

    During the period 1986--1991, 11 backhoe trenches were excavated across six Quaternary faults on the northeastern margin of the Basin and Range province. These faults comprise the southern limb of a parabola of Quaternary faults and historic moderate-magnitude earthquakes which is roughly symmetrical about the Snake River Plain, and heads at the Yellowstone hot spot. Fifteen Holocene paleoseismic events have been bracketed by radiocarbon or thermoluminescence ages. On the six central faults, the latest rupture event occurred in a relatively short time interval between 3 ka and 6 ka. The period between 6 ka and the end of the latest glaciation (ca. 15 ka) was a period of relative tectonic quiescence on the central faults, but not on the two end faults with higher slip rates (Wasatch and Teton faults). Southward-younging of events in the 3--6 ka period may indicate that temporally-clustered faulting was initiated at the Yellowstone hot spot. Faults at the same latitude, such as the Star Valley-Grey's River pair of faults, or the East Cache-Bear Lake-Rock Creek system of faults, show nearly identical timing of latest rupture events within the pairs or systems. Faults at common latitudes probably sole into the same master decollement, and thus are linked mechanically like dominoes. The timing of latest ruptures indicates that faulting on the westernmost fault preceded faulting on successively more eastern faults by a few hundred years. This timing suggests that slip on the westernmost faults mechanically unloaded the system, causing tectonic instabilities farther east.

  12. Thermographic mosaic of Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.; Hasell, P. G., Jr.; Sellman, A. N.; Smedes, H. W.

    1976-01-01

    An uncontrolled aerial thermographic mosaic of Yellowstone National Park was assembled from the videotape record of 13 individual thermographs obtained with linescan radiometers. Post mission processing of the videotape record rectified the nadir line to a topographic map base, corrected for v/h variations in adjacent flight lanes, corrected for yaw and pitch distortions, and distortions produced by nonlinearity of the side-wise scan. One of the purposes of the thermographic study was to delineate the areas of thermal emission (hot springs, geysers, etc.) throughout the Park, a study which could have great value in reconnaissance surveys of geothermal areas in remote regions or regions of high relief.

  13. Accelerated Ground Deformation of the Yellowstone Caldera, 2004-2008: Update from GPS and InSAR Observations

    NASA Astrophysics Data System (ADS)

    Chang, W.; Smith, R. B.; Wicks, C.; Puskas, C.

    2008-12-01

    The Yellowstone volcanic system is characterized by decadal-scale episodes of ground deformation, extensive seismicity, extraordinarily high heat flow exceeding ~2,000 mW/m2, and widespread hydrothermal activity. In mid-2004, ground motion of the 640,000 year-old, 40-km-wide by 60-km-long Yellowstone caldera unexpectedly changed from subsidence to uplift at rates of up to 7 cm/yr based upon GPS and InSAR measurements. This pronounced uplift, three to four times faster than earlier historic deformation episodes, was also accompanied by a subsidence of up to 4 cm/yr across the northwest caldera rim near the Norris Geyser Basin. Source modeling of the deformation data indicated magmatic injection of a volcanic sill 10 km beneath the caldera that coincides with the top of a tomographically imaged magma body. As an update to the initial observations it shows that the uplift rate has diminished to ~5 cm/yr since mid-2006 and continued to fall 2008, whereas the Norris subsidence episode ceased near the middle of 2006. To better assess these spatial and temporal variations of the deformation field, we conducted a GPS survey of 17 sites, originally observed beginning in 1987, in the summer of 2008 to supplement data from the 13 permanent GPS stations of the Yellowstone GPS network. Updated 3D source modeling based on these data and 2008 InSAR observations provides key information on the temporal variations and volcanic properties of this important episode of Yellowstone deformation.

  14. Enceladus’ Geysers: Relation to Geological Features

    NASA Astrophysics Data System (ADS)

    Helfenstein, Paul; Porco, Carolyn C.

    2015-09-01

    We apply histogram analysis, photogeological methods, and tidal stress modeling to Porco et al.'s survey of 101 Enceladus South Polar Basin geysers and their three-dimensional orientations to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Geysers emplaced along the three most active tiger stripe fractures (Damascus Sulcus, Baghdad Sulcus, and Cairo Sulcus) occur in local groupings with relatively uniform nearest-neighbor separation distances (∼5 km). Their placement may be controlled by uniformly spaced en echelon Riedel-type shear cracks originating from left-lateral strike-slip fault motion inferred to occur along tiger stripes. The spacing would imply a lithosphere thickness of ∼5 km in the vicinity of the tiger stripes. The orientations of tilted geyser jets are not randomly distributed; rather their azimuths correlate with the directions either of tiger stripes, cross-cutting fractures, or else fine-scale local tectonic fabrics. Diurnal tidal stress modeling suggests that periodic changes of plume activity are significantly affected by cross-cutting fractures that open and close at different times than the tiger stripes that they intersect. We find evidence of sub-kilometer scale morphological modification of surface geological features surrounding geysers from sublimation-aided erosion, and ablation, and scouring. We propose that the simultaneous crushing and shearing action of periodic transpressional tidal stress on ice condensing on the inside walls of geyser conduits is the mechanism that extrudes the peculiar, paired narrow ridges known as “shark fins” that flank the medial tiger stripe fissures. We present a gallery of high-resolution image mosaics showing the placement of all the jets in their source region and consequently their geological context.

  15. Upper crustal structure of the Yellowstone Caldera from seismic delay time analyses and gravity correlations

    SciTech Connect

    Lehman, J.A.; Smith, R.B.; Schilly, M.M.; Braile, L.W.

    1982-04-10

    The 1978 Yellowstone-Snake River Plain seismic experiment provided detailed refraction data that were recorded across a two-dimensional array of seismographs in Yellowstone National Park. A delay time analysis was applied to 173 crystalline basement P/sub g/ arrivals from these data to determine the three-dimensional distribution of velocities and the layer configuration of the upper crust beneath the Yellowstone caldera. The P wave velocity structure of the caldera is characterized by a surface layer of combined sediments and rhyolite flows, averaging 2.8 km/s, that range in thickness from 1.5 to 2.0 km. Adjacent to the caldera, the crystalline upper crustal layer has a velocity of 6.05 +- 0.01 km/s, but this layer decreases by 6% to 5.70 km/s beneath the caldera and extends northeast 15 km beyond the caldera. Smaller zones of very low P velocity, 4.0 km/s, a 30% velocity reduction compared to the 6.05 km/s layer, occur in the upper crust beneath the northeastern caldera rim and beneath the southwest caldera in the vicinity of the Upper and Midway Geyser basins. A three-dimensional gravity interpretation based upon densities derived from the seismic model suggests that the regional gravity low of -60 mGal over the caldera correlates directly with (1) the surface layer of combined sediments and rhyolite flows, (2) the low-velocity, 5.7-km/s, upper crustal layer, and (3) the 4.0-km/s low-velocity zone beneath the northeastern caldera rim. An interpretation of the seismic velocities and densities, based on experimental data and theoretical models is made.

  16. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    USGS Publications Warehouse

    Yellowstone Volcano Observatory

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for

  17. Chloride flux out of Yellowstone National Park

    USGS Publications Warehouse

    Norton, D.R.; Friedman, I.

    1985-01-01

    Monitoring of the chloride concentration, electrical conductivity, and discharge was carried out for the four major rivers of Yellowstone National Park from September 1982 to January 1984. Chloride flux out of the Park was determined from the measured values of chloride concentration and discharge. The annual chloride flux from the Park was 5.86 ?? 1010 g. Of this amount 45% was from the Madison River drainage basin, 32% from the Yellowstone River basin, 12% from the Snake River basin, and 11% from the Falls River basin. Of the annual chloride flux from the Yellowstone River drainage basin 36% was attributed to the Yellowstone Lake drainage basin. The geothermal contribution to the chloride flux was determined by subtracting the chloride contribution from rock weathering and atmospheric precipitation and is 94% of the total chloride flux. Calculations of the geothermal chloride flux for each river are given and the implications of an additional chloride flux out of the western Park boundary discussed. An anomalous increase in chloride flux out of the Park was observed for several weeks prior to the Mt. Borah earthquake in Central Idaho on October 28, 1983, reaching a peak value shortly thereafter. It is suggested that the rise in flux was a precursor of the earthquake. The information in this paper provides baseline data against which future changes in the hydrothermal systems can be measured. It also provides measurements related to the thermal contributions from the different drainage basins of the Park. ?? 1985.

  18. Chloride flux out of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Norton, Daniel R.; Friedman, Irving

    1985-12-01

    Monitoring of the chloride concentration, electrical conductivity, and discharge was carried out for the four major rivers of Yellowstone National Park from September 1982 to January 1984. Chloride flux out of the Park was determined from the measured values of chloride concentration and discharge. The annual chloride flux from the Park was 5.86 × 10 10 g. Of this amount 45% was from the Madison River drainage basin, 32% from the Yellowstone River basin, 12% from the Snake River basin, and 11% from the Falls River basin. Of the annual chloride flux from the Yellowstone River drainage basin 36% was attributed to the Yellowstone Lake drainage basin. The geothermal contribution to the chloride flux was determined by subtracting the chloride contribution from rock weathering and atmospheric precipitation and is 94% of the total chloride flux. Calculations of the geothermal chloride flux for each river are given and the implications of an additional chloride flux out of the western Park boundary discussed. An anomalous increase in chloride flux out of the Park was observed for several weeks prior to the Mt. Borah earthquake in Central Idaho on October 28, 1983, reaching a peak value shortly thereafter. It is suggested that the rise in flux was a precursor of the earthquake. The information in this paper provides baseline data against which future changes in the hydrothermal systems can be measured. It also provides measurements related to the thermal contributions from the different drainage basins of the Park.

  19. Selective concentration of cesium in analcime during hydrothermal alteration, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Mays, R.E.

    1983-01-01

    Chemical and mineralogical studies of fresh and hydrothermally altered rhyolitic material in Upper and Lower Geyser Basins, Yellowstone National Park, show that all the altered rocks are enriched in Cs and that Cs is selectively concentrated in analcime. The Cs content of unaltered rhyolite lava flows, including those from which the altered sediments are derived, ranges from 2.5 to 7.6 ppm. The Cs content of analcime-bearing altered sedimentary rocks is as high as 3000 ppm, and in clinoptilolite-bearing altered sedimentary rocks Cs content is as high as 180 ppm. Altered rhyolite lava flows which were initially vitrophyres, now contain up to 250 ppm Cs, and those which were crystallized prior to hydrothermal alteration contain up to 14 ppm. Mineral concentrates of analcime contain as much as 4700 ppm Cs. The Cs must have been incorporated into the analcime structure during crystallization, rather than by later cation substitution, because analcime does not readily exchange Cs. The Cs Cl of the fluids circulating through the hydrothermal system varies, suggesting that Cs is not always a conservative ion and that Cs is lost from upflowing thermal waters due to water-rock interaction resulting in crystallization of Cs-bearing analcime. The source of Cs for Cs enrichment of the altered rocks is from leaching of rhyolitic rocks underlying the geyser basins, and from the top of the silicic magma chamber that underlies the area. Analcime is an important natural Cs sink, and the high Cs concentrations reported here may prove to be an important indicator of the environment of analcime crystallization. ?? 1983.

  20. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  1. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  2. Geysers reservoir studies

    SciTech Connect

    Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

    1993-04-01

    LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

  3. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile

  4. Let's Explore Yellowstone!

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    This presents several classroom activities that have been adapted from the Expedition Yellowstone program activities for fourth, fifth and sixth graders. Language arts, science, math, and social studies activities are presented. Expedition Yellowstone activities focus on the geology, ecology, animal life, and history of Yellowstone Park. (IAH)

  5. Geyser preplay and eruption in a laboratory model with a bubble trap

    NASA Astrophysics Data System (ADS)

    Adelstein, E.; Tran, A.; Munoz Saez, C.; Shteinberg, A.; Manga, M.

    2013-12-01

    Geysers are springs that produce episodic eruptions of liquid water and vapor. Relatively short eruption cycles and accessibility of conduits make extensive observation of eruptive processes in geysers feasible. Along with field observations, laboratory models are useful for further describing geyser dynamics. Here we focus on the role of a 'bubble trap', a region in the geyser's plumbing system in which vapor can accumulate. We present measurements from a laboratory model. The model geyser consists of two reservoirs connected by a conduit with a central tight S-shaped bend to create a bubble trap. The conduit is thus divided into two sections: one extends into the upper reservoir and the other is connected to the lower reservoir. A second conduit returns erupted liquid to the lower reservoir. The apparatus is filled with water and heated below the lower reservoir. A period of quiescence follows each eruption. During this phase, a bubble is trapped in the lower S-bend. As the bubble grows, most of its volume remains in the bend while its edges oscillate and vapor is released into the upper conduit. Vapor occasionally reaches the top of the conduit and expels a small amount of liquid. This process may be analogous to geyser preplay. Eruption begins when the upper surface of the main bubble reaches the top of the conduit. We observe two modes of eruption: boiling occurs (1) in the entire system or (2) only in the conduit above the upper boundary of the trapped bubble. In the former case, the rapid hydrostatic pressure drop from filling the upper conduit with vapor results in boiling in the entire system. Eruption ends when enough cold erupted water has been recycled to the lower reservoir that the temperature drops below boiling. Though simpler than a natural geyser, our model provides insight into preplay and eruption styles in a conduit with a bubble trap, a feature that has been invoked to explain dynamics of geysers in Kamchatka and Yellowstone.

  6. Lessons from geothermal gases at Yellowstone

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.

    2015-12-01

    The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (<0.01% gas) dominated by N2 and Ar. The clear implication is that deep gas is diluted with atmospheric gas boiled off of geothermal liquids. The general trend is antithetical to that predicted by progressive boiling of a parent fluid (Rayleigh or batch degassing), where decreasing gas content should correlate with increasing proportions of soluble gas (i.e., CO2). Deep gas at Yellowstone fits into two general categories: 1) mantle-derived CO2 with a hotspot He isotope signature (>16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall

  7. Measuring Variable Scales of Surface Deformation in and around the Yellowstone Caldera with TerraSAR-X Interferometry

    NASA Astrophysics Data System (ADS)

    Wicks, C. W., Jr.; Dzurisin, D.

    2014-12-01

    Utilizing three years of TerraSAR-X (TSX) Stripmap data covering the Yellowstone Caldera, Wyoming, we identify several examples showing the benefits of the high spatial and temporal resolution TSX data. Although the Stripmap footprints are small, compared to those of past SAR satellites, we are nonetheless able to track subsidence/uplift cycles of the ~50 x 80 km Yellowstone caldera using multiple strips. The Stripmap data are also useful for measuring deformation associated with the area of the North Rim anomaly, an area of repeated uplift and subsidence, ~30 km in diameter near the intersection of the north caldera rim, north-trending Mammoth-Norris Corridor, and west-northwest trending seismic belt east of Hebgen Lake. We measured ~45 mm of uplift associated with an episode that occurred mostly during the winter of 2013-2014 (as verified by GPS), and ~15 mm of subsequent subsidence in the early summer of 2014. The TSX Stripmap data have also proven effective at measuring small-scale deformation features. Because of the high-resolution of the TSX Stripmap data, we have also been able to measure many small-scale deforming features in Yellowstone National Park that are associated with apparent aquifer discharge/recharge cycles, unstable slope movement, geyser basin deformation, and deformation related to other hydrothermal features. We present an example of ~3 cm of seasonal deformation likely resulting from water movement in and out of an aquifer along the southwest caldera rim. We also document subsidence of ~1 cm/yr in a circular area nearly 0.5 km across near the vent from the Pitchstone Plateau, a thick rhyolite flow that erupted nearly 70 ka. TSX data are instrumental in identifying the seasonal variation found in some of these features, and in measuring the small spatial areas of deformation associated with other features.

  8. Upper crustal structure of the Yellowstone Caldera from seismic delay time analyses and gravity correlations

    NASA Astrophysics Data System (ADS)

    Lehman, Jay A.; Smith, Robert B.; Schilly, Michael M.; Braile, Lawrence W.

    1982-04-01

    The 1978 Yellowstone-Snake River Plain seismic experiment provided detailed refraction data that were recorded across a two-dimensional array of seismographs in Yellowstone National Park. A delay time analysis was applied to 173 crystalline basement Pg arrivals from these data to determine the three-dimensional distribution of velocities and the layer configuration of the upper crust beneath the Yellowstone caldera. The P wave velocity structure of the caldera is characterized by a surface layer of combined sediments and rhyolite flows, averaging 2.8 km/s, that range in thickness from 1.5 to 2.0 km. Adjacent to the caldera, the crystalline upper crustal layer has a velocity of 6.05±0.01 km/s, but this layer decreases by 6% to 5.70 km/s beneath the caldera and extends northeast 15 km beyond the caldera. Smaller zones of very low P velocity, 4.0 km/s, a 30% velocity reduction compared to the 6.05 km/s layer, occur in the upper crust beneath the northeastern caldera rim and beneath the southwest caldera in the vicinity of the Upper and Midway Geyser basins. A three-dimensional gravity interpretation based upon densities derived from the seismic model suggests that the regional gravity low of -60 mGal over the caldera correlates directly with (1) the surface layer of combined sediments and rhyolite flows, (2) the low-velocity, 5.7-km/s, upper crustal layer, and (3) the 4.0-km/s low-velocity zone beneath the northeastern caldera rim. An interpretation of the seismic velocities and densities, based on experimental data and theoretical models, suggests that the 6.05-km/s (ρ = 2.70 g/cm3) regional Pg velocity is characteristic of crystalline basement rocks such as the Precambrian granitic gneisses that are exposed north and south of the Yellowstone caldera. The 5.7-km/s velocity layer (ρ = 2.65 g/cm3) is interpreted to be a 10-km-thick hot body of granitic composition. The 4.0-km/s low-velocity body (ρ = 2.40 g/cm3) beneath the northeastern caldera rim is associated

  9. Understanding the dynamics of a geyser using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Cros, Estelle; Roux, Philippe; Vandemeulebrouck, Jean; Kedar, Sharon

    2010-05-01

    Old Faithful Geyser in Yellowstone National Park, Wyoming, is one of the most studied geysers in the world. The predictability, the repeatability and the short time lag, ~1.5 hour, between 2 eruptions make the study convenient. The surface expression of the geyser is a 4m high, 60m wide mound with an approximately 2m x 1m opening at the top, which permits to deploy a dense network of sensors closed to the orifice. In 1992, Sharon Kedar deployed 96 vertical geophones in a tight grid over the geyser's dome. The geophones recorded the ambient seismic noise during an entire eruptive cycle, including a short period of quiet seismic activity. The survey was completed by seven shots carried out with a sledge hammer. The signal consists in a series of impulsive events, most likely due to bubble collapse in boiling water areas inside the geyser's plumbing system. The aim of this study is to locate the sources of these events. We revisited a 10 minutes-long data set from S. Kedar's records and processed the signal using a Matched Field Processing (MFP) algorithm derived from ocean acoustics. The cross-correlation of the signals recorded by the 96 geophones showed a great level of coherency between the sensors, which is a pre-requisite to use MFP. This method introduced in geophysics by Capon is based on comparing forward modelling solutions of the wave equation in a grid search with acquired data, measured on an array of motion sensors. The process consists in placing a test source at each point of the grid search, computing the acoustic field corresponding at all the elements of the array and then correlating this modelled field with the data. The correlation is maximum when the candidate point source is co-located with the true point source. We used both linear (Bartlett) and non linear (MVDR : Minimum Variance Distorsionless) processors. The MFP processor was performed either incoherently from the raw ambient noise data or coherently from the cross-correlated traces

  10. The Geysers felsite

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1996-12-31

    The {open_quotes}felsite{close_quotes} is a northwest-trending pluton of batholithic dimensions which underlies and partially hosts The Geysers vapor-dominated geothermal system. It is a composite igneous body with three readily mappable rock types - granite, microgranite porphyry, and late granodiorite. The pluton is affiliated, compositionally and almost certainly in part temporally, with the overlying 1.1 Ma Cobb Mountain volcanic center at the southern margin of the Clear Lake volcanic field, although portions of the intrusive may be at least as old as 1.3-1.4 Ma. Intrusion of the felsite, at the crustal levels explored by drilling, is interpreted to have taken place along periodically reactivated, northwest-trending Cenozoic strike-slip faults. The upper part of the felsite in the central and northwestern Geysers is intensely mineralized with borosilicate (tourmaline plus ferroaxinite), commonly accompanied by potassium metasomatism of the granitic host rocks. These anomalies as well as the geometrically, geochemically, and thermally distinct southeastern and northwestern portions of the steam field are separated by the downward projection of a major northeast-trending regional lineament (the Cobb Creek lineament) which may have formed initially as an antithetic shear in the regional strike-slip fault regime. Steam entries in the felsite are apparently concentrated along the top of and above the granodiorite, and (with notable exceptions) in portions of the pluton relatively impoverished in secondary borosilicates.

  11. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  12. Yellowstone Park

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Thirteen years after devastating forest fires burned over 1.6 million acres in Yellowstone National Park, the scars are still evident. In this simulated natural color ASTER image, burned areas appear gray, in contrast to the dark green of unburned forests. The image covers an area of 60 x 63 km. This image was acquired on July 2, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the

  13. Geyser periodicity and the response of geysers to deformation

    USGS Publications Warehouse

    Ingebritsen, S.E.; Rojstaczer, S.A.

    1996-01-01

    Numerical simulations of multiphase fluid and heat transport through a porous medium define combinations of rock properties and boundary conditions which lead to geyser-like periodic discharge. Within the rather narrow range of conditions that allow geyser-like behavior, eruption frequency and discharge are highly sensitive to the intrinsic permeabilities of the geyser conduit and the surrounding rock matrix, to the relative permeability functions assumed, and to pressure gradients in the matrix. In theory, heats pipes (concomitant upward flow of steam and downward flow of liquid) can exist under similar conditions, but our simulations suggest that the periodic solution is more stable. Simulated time series of geyser discharge are chaotic, but integrated quantities such as eruption frequency and mass discharge per eruption are free of chaos. These results may explain the observed sensitivity of natural geysers to small strains such as those caused by remote earthquakes, if ground motion is sufficient to induce permeability changes. Changes in geyser behavior caused by minor preseismic deformation, periodic surface loading, and Earth tides are more difficult to explain in the context of our current model. Copyright 1996 by the American Geophysical Union.

  14. Heat-tolerant flowering plants of active geothermal areas in Yellowstone National Park.

    PubMed

    Stout, Richard G; Al-Niemi, Thamir S

    2002-08-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (> or = 40 degrees C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 degrees C at 2-5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long-term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 degrees C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti-sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 degrees C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  15. Evolution of geothermal fluids deduced from chemistry plots: Yellowstone National Park (U.S.A.)

    USGS Publications Warehouse

    Mazor, E.; Thompson, J.M.

    1982-01-01

    Large amounts of chemical data, obtained in geothermal fields, may readily be sorted-out by the aid of a simple set of graphs that provide a clear over-all picture and facilitate the understanding of geochemical processes taking place. As a case study, data from several hundred samples of the thermal springs at the well-known Yellowstone National Park are discussed. The pattern obtained seems to indicate: (1) geochemical similarity between the spring groups of Heart Lake, Shoshone, Upper, Midway, Lower and Norris Geyser Basins, i.e., a geochemical uniformity of major spring groups located over 40 km apart; (2) these groups may be described as originating from a common fluid, most resembling the composition of Norris waters, accompanied by CO2, and other volatiles, that react with igneous rocks, forming local variations; (3) the secondary reactions occur at (medium) depth, before the ascent to the surface; (4) extensive concentration-dilution processes occur during the ascent to the surface. The water of the Mammoth group may be described as originating from the same Norris-like fluid that has been diluted (low Na and Cl contents) and intensively reacted with carbonaceous rocks, thus gaining in Ca, Mg, SO4, and HCO3. ?? 1982.

  16. Heat‐tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park

    PubMed Central

    STOUT, RICHARD G.; AL‐NIEMI, THAMIR S.

    2002-01-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (≥40 °C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 °C at 2–5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long‐term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 °C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti‐sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 °C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  17. Large-scale hydrothermal fluid discharges in the Norris-Mammoth corridor, Yellowstone National Park, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Sorey, M.L.; Thordsen, J.J.

    2000-01-01

    Norris–Mammoth corridor is a complex subsidence structure that extends ∼40 km northward from the 0.6 Ma Yellowstone caldera, and contains many hydrothermal features with high fluid discharges totaling ∼1000 l/s. About 150–250 l/s of hydrothermal water, which attains boiling temperature at surface and 360°C at depth, discharge from the Norris Geyser Basin, adjacent to the caldera. The highest thermal water and gas discharges in the corridor are from Mammoth Hot Springs, where 500–600 l/s thermal water with surface temperatures of up to 73°C and calculated subsurface temperatures of ∼100°C issue from ∼100 hot springs scattered over a score of step-like travertine terraces that range in age from ∼0.4 Ma to recent. All the thermal water is meteoric, likely recharged in the Gallatin Range at 2.5–3.0 km elevations. The isotopic and chemical compositions of thermal waters and solutes can be interpreted to indicate a common magmatic source for heat and volatile solutes located near Norris. However, the chemical and isotopic compositions of gases, especially the 3He/4He ratios, provide strong evidence for a separate magmatic source for the Mammoth system.

  18. Earth Tremors Generated by Old Faithful Geyser.

    PubMed

    Rinehart, J S

    1965-10-22

    Several types of earth tremors that could be associated with the eruption cycle of Old Faithful Geyser were registered by a seismograph placed a few meters from the geyser's orifice. Each tremor type was indicative of a specific geyser action. A totally unexpected result was an observed bimodal distribution in frequency of the interval between eruptions. PMID:17842756

  19. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  20. Development of a Wireless Network of Temperature Sensors for Yellowstone National Park (USA)

    NASA Astrophysics Data System (ADS)

    Munday, D. A.; Hutter, T.; Minolli, M.; Obraczka, K.; Manduchi, R.; Petersen, S.; Lowenstern, J. B.; Heasler, H.

    2007-12-01

    Temperature sensors deployed at Yellowstone clearly document that thermal features can vary in temperature on a variety of timescales and show regional correlations unrelated to meteorological variables such as air temperature. Yellowstone National Park (YNP) staff currently measures temperatures at over 40 thermal features and streams within the park, utilizing USGS stream gaging stations and portable data loggers deployed in geyser basins. The latter measure temperature every 1 to 15 minutes, and the data are physically downloaded after about 30 days. Installation of a wireless sensor network would: 1) save considerable time and effort in data retrieval, 2) minimize lost data due to equipment failure, and 3) provide a means to monitor thermal perturbations in near-real time. To meet this need, we developed a wireless sensor network capable of in-situ monitoring of air and water temperature. Temperature sensors are dispersed as nodes that communicate among themselves and through relays to a single base-station linked to the Internet. The small, weatherproof sensors operate unattended for over six months at temperatures as low as -40°C. Each uses an ultra-low-power Texas Instruments' MSP430 microcontroller and an SD card as mass storage. They are powered by 15Ah, 3.6 v, inert Li-ion batteries and transmit data via 900MHz radio modules with a 1-km range. The initial prototype consists of 4 nodes, and is designed to scale with additional nodes for finer spatial resolution and broader coverage. Temperature measurements are asynchronous from node to node, with intervals as frequent as 30 seconds. Data are stored internally to withstand temporary communication failures; underlying intelligent software is capable of re-routing data through alternative nodes to the base station and a MySQL data archiving system. We also developed a Google-Maps-based, front-end that displays the data, recent trends and sensor locations. The system was tested in the Santa Cruz Mountains

  1. Seismic Evidence for Dilatational Source Deformation of the Yellowstone Accelerated Uplift Episode

    NASA Astrophysics Data System (ADS)

    Taira, T.; Smith, R. B.; Chang, W.

    2008-12-01

    Dominant dilatational deformations associated with earthquakes in the area of the 2004-2008 Yellowstone accelerated uplift episode were identified through detailed analysis of moment tensor inversions of two unusual M3+ earthquakes characterized by notable coseismic volumetric changes. Highly pressurized hydrothermal fluids are suggested to be associated with the source processes of these events, which is consistent with the mechanism of the GPS-InSAR derived deformation signal of the above uplift modeled as intrusion of a near horizontal magmatic sill at ~10 km depth beneath the Yellowstone caldera. One of the unusual earthquakes, the 5 November 2007 Mw 3.3 event, occurred near the West Thumb Geyser Basin and was located at the southeast side of the deforming area of the uplift. This unusual event occurred in a volume of expected crustal expansion above the inflating magmatic sill. A notable 60% explosive isotropic source component was determined for this West Thumb event with a 2.2 cm opening across an area of 0.06 km squared. We propose that the inflation of the magmatic sill activates a high-pressurized fluid migration upward that triggers a dilatational deformation inducing the unusual earthquake. The other earthquake with a dilatational deformation, the 9 January 2008 Mw 3.8 event, occurred on the northern rim of the caldera. The moment tensor solution for this event shows that the source mechanism had a 30% of tensile dislocation corresponding to a 1.2-cm opening crack over an area of 0.5 km squared. The source region of this event appears to be composed of dense micro fractures, inferred from tomographically imaged seismic velocity structure. We also suggest that stress changes produced by a collocated Mw 3.4 earthquake, occurring one week before the unusual event, may have increased the fracture permeability promoting fluid migration and thus encouraging the dilatational (tensile) dislocation. The dilatational deformations that we detected are very

  2. Geologic research at The Geysers

    SciTech Connect

    Hulen, J.B.; Moore, J.N.; Nielson, D.L.

    1996-04-10

    Geologic research at The Geysers vapor-dominated geothermal field during the past year has yielded new information on the nature of steam-reservoir porosity and permeability; the origin of the caprock; mechanisms of lateral sealing; the evolution of The Geysers hydrothermal system; and specific reservoir controls in and immediately above {open_quotes}the felsite{close_quotes}, an hypabyssal, batholith-sized pluton largely responsible for The Geysers` existence. Our research has shown that (1) fluid conduits above the felsite may be dominantly vuggy, high-angle hydrothermal veins; (2) latest-stage hydrothermal calcite in such veins may seal them at the margins of the steam reservoir; mixed-layer clays are probably the corresponding seals in the caprock; (3) steam entries in the felsite are concentrated along the top of the youngest intrusive phase in the pluton - a 1 m.y.-old granodiorite; (4) steam entries in the felsite show a negative correlation with massive borosilicate enrichments.

  3. Boundary Creek thermal areas of Yellowstone National Park: II, thermal water analyses

    SciTech Connect

    Thompson, J.M.; Hutchinson, R.A.

    1980-09-01

    Water samples from 28 thermal springs, 2 non-thermal springs, and 2 creeks from the Boundary Creek Thermal Areas (BCTA) in the southwestern corner of Yellowstone National Park were analyzed to help establish a chemical water-quality base line prior to possible geothermal exploitation of the Island Park Geothermal Area (IPGA). The springs, situated at the southwestern end of the Madison Plateau, are the Yellowstone Park thermal waters nearest to the IPGA and might respond to geothermal exploitation in the IPGA. Water temperatures ranging from 50/sup 0/ to 90/sup 0/C and low Cl concentrations (< 110 mgL/sup -1/) characterize spring waters in the BCTA. They are chemically distinct from the major geysers and hot springs in Yellowstone Park. The Na-K-Ca and silica geothermometers are in general agreement, usually within 10/sup 0/C, and indicate reservoir temperatures of 150 to 170/sup 0/C.

  4. Physicochemical and Biological Zonation of High Temperature Silica and Arsenic-Rich Streams at El Tatio Geyser Field, Chile

    NASA Astrophysics Data System (ADS)

    Myers, K. D.; Engel, A. S.; Omelon, C. R.; Bennett, P.

    2012-12-01

    El Tatio Geyser Field is a geothermal complex comprised of three main basins in the northern Atacama Desert (Region II), Chile. Located at 4400 m elevation in the Andes Mountains it experiences intense solar radiation and a UV flux 33% higher than at Yellowstone National Park (Wyoming). Local boiling point is 86°C, and geothermal waters are Na-Ca-Cl type with circumneutral pH, high dissolved silica, and high dissolved arsenic concentrations (30-50 ppm). Most thermal features contain scant dissolved inorganic carbon (DIC as CO2(aq) + HCO3- + CO3-2). There is a conspicuous lack of microbial mat development in temperature zones where thick mats are seen at other geothermal sites. This investigation focused on understanding the physicochemical controls on microbial diversity that lead to microbial mat colonization and development within specific thermal regions of the geothermal features. Temperature surveys were done at three geothermal features where microbial mats and water chemistry were sampled, and a high-resolution thermal survey was conducted at one geyser orifice through the discharge channel where chemistry and mineralogy have been characterized, and microbial diversity was evaluated from 16S rRNA gene sequences. At the main study geyser, the stream is 0.25 m wide near its source, and for the first 20 m, the discharge stream is constrained by a solid silica bank with a mineralized channel bottom and no obvious microbial mat development. Temperatures decrease from ~86°C to ~67°C. In this zone sparse filaments were observed on rare sediments below the water surface consisting of ~80% Thermus spp. with rare uncultured Chloroflexus spp. and Candidate Division OP1 sequences. At 12 m, visible red-orange mat development starts on the sides of the channel where bulk water temperature is 67°C. Photosynthetic Chloroflexus spp. dominate red-orange filaments that form the first conspicuous mats (between 43-88% of the 16S rRNA sequences from different samples), with

  5. Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid-inclusion evidence

    SciTech Connect

    Bargar, K.E.; Fournier, R.O. )

    1988-12-01

    Hydrothermal quartz and fluorite crystals containing liquid-rich fluid inclusions (coexisting vapor-rich fluid inclusions were not observed) were found in drill cores from eight relatively shallow research holes drilled by the US Geological Survey in and near major geyser basins of Yellowstone National Park. Homogenization temperatures (T{sub h}) for mostly secondary fluid inclusions show variations in temperature that have occurred at give depths since precipitation of the host minerals. Within major hydrothermal upflow zones, fluid-inclusion T{sub h} values all were found to be equal to or higher (commonly 20-50 C and up to 155 C higher) than present temperatures at the depths sampled. During periods when thick glacial ice covered the Yellowstone National Park region, pore-fluid pressures in the underlying rock were increased in proportion to the weight of the overlying column of ice. Accordingly, theoretical reference boiling-point curves that reflect the maximum temperature attainable in a hot-water geothermal system at a given depth were elevated, and temperatures within zones of major hydrothermal upflow (drill holes Y-2, Y-3, Y-6, Y-11, Y-13, and upper part of Y-5) increased. The thicknesses of ice required to elevate boiling-point curves sufficiently to account for the observed fluid-inclusion T{sub h} values are within the ranges estimated by glacial geologic studies. At the margins of major hydrothermal upflow zones (drill holes Y-4 and Y-9), fluid-inclusion T{sub h} values at given depths range from 57 C lower to about the same as the current temperature measurements because of a previous decrease in the rate of discharge of warm water and/or an increase in the rate of recharge of cold water into the hydrothermal system.

  6. Yellowstone Volcanic Unrest from GPS and SAR Interferometric Observations between 1992 and 2015

    NASA Astrophysics Data System (ADS)

    Aly, M. H.

    2015-12-01

    Incorporating geodetic measurements from nine Global Positioning System (GPS) stations and multi-sensor Interferometric Synthetic Aperture Radar (InSAR), six prominent episodes of Yellowstone caldera unrest are identified between 1992 and 2015. Episode 1: 1992-1995, deflation rate of about 2.7 cm/yr, episode 2: 1996-2000, minimal deflation of 0.5 cm/yr with considerable inflation of 1.7 cm/yr at Norris, episode 3: 2000-2004, slight deflation of 0.7 cm/yr with local inflation of 0.6 cm/yr at Norris, episode 4: 2004-2009, extraordinary inflation of 3-8 cm/yr with substantial deflation of 1-4 cm/yr at Norris, episode 5: 2010-2014, notable deflation of about 1-2.4 cm/yr across the entire caldera floor, and ultimately episode 6: 2014-2015, remarkable caldera-wide inflation of about 2-6 cm/yr. During the period of observation (1992-2015), extensive deformation has occurred primarily at three locations; namely, the Mallard Lake resurgent dome, the Sour Creek resurgent dome, and the Norris Geyser Basin that is located nearby the northwestern rim of the caldera. InSAR data acquired during 1992-2015 by ERS-1, ERS-2, ENVISAT, TerraSAR-X, TanDEM-X, and Sentinel-1 are analyzed using the two-pass and the small baseline subset interferometric methods. The created interferograms do not show any alignment of crustal deformation with fault zones across the intermittently active caldera, which indicate that the magma charge and discharge, as well as the widespread hydrothermal activity are responsible for the induced deformation. Fault zones most likely have acted as pathways for the movements of magma and hydrothermal fluids, but they do not have any influence on the measured rates of surface motion. Source modeling of recent GPS and InSAR measurements indicates the existence of two distinct planar sources beneath the caldera (8-12 km) and the Norris Geyser Basin (10-16 km).

  7. Good to the bone: microbial community thrives within bone cavities of a bison carcass at Yellowstone National Park.

    PubMed

    Reeb, Valérie; Kolel, Avraham; McDermott, Timothy R; Bhattacharya, Debashish

    2011-09-01

    The discovery of unanticipated microbial diversity in remote, often hostile environments has led to a greater appreciation of the complexity and richness of the natural world. Yellowstone National Park (YNP) has long been a focus of work on taxa that inhabit extreme environments. Here we report the finding of microbial flora that inhabit an unexpected niche: the cavities of bone remnants from a bison carcass in Norris Geyser Basin in YNP. Although bleached white on the surface, the bone cavities are bright green due to the presence of Stichococcus-like trebouxiophyte green algae. The cavities also harbour different fungi and bacteria. Stichococcus species are common lichen photobionts and the Thelebolales fungi present in the bone cavities have previously been found in association with animal remains. Scanning electron microscope analysis suggests the fungi and algae do not form lichen-like associations in the bone. Rather these taxa and the bacteria appear to be opportunists that have colonized an isolated oasis that provides nutrients and protection from desiccation and UV radiation. PMID:21044237

  8. Design Study for a Mars Geyser Hopper

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven J.; McGuire, Melissa

    2012-01-01

    The Mars Geyser Hopper is a design reference missions (DRMs) for a Discovery-class spacecraft using Advanced Stirling Radioisotope Generator (ASRG) power source. The Geyser Hopper is a mission concept that will investigate the springtime carbon-dioxide geysers found in regions around the south pole of Mars. The Geyser Hopper design uses Phoenix heritage systems and approach, but uses a single ASRG as the power source, rather than twin solar arrays, and is designed to last over a one-year stay on the South Pole. The spacecraft will land at a target landing area near the south pole of Mars, and have the ability to "hop" after a summertime landing to reposition itself close to a geyser site, and wait through the winter until the first sunlight of spring to witness first-hand the geyser phenomenon.

  9. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  10. Abortion caused by Brucella abortus biovar 1 in a free-ranging bison (Bison bison) from Yellowstone National Park.

    PubMed

    Rhyan, J C; Quinn, W J; Stackhouse, L S; Henderson, J J; Ewalt, D R; Payeur, J B; Johnson, M; Meagher, M

    1994-07-01

    A near-term aborted bison (Bison bison) fetus was collected near Old Faithful geyser in Yellowstone National Park, Wyoming (USA). On necropsy, the fetus liver had a small capsular tear, and there was a small quantity of blood in the peritoneal cavity. Microscopic lesions included mild, purulent bronchopneumonia and mild, multifocal, interstitial pneumonia. Brucella abortus biovar 1 was isolated from fetal abomasal contents, lung, and heart blood. PMID:7933293

  11. Mechanics of Old Faithful Geyser, Calistoga, CA

    USGS Publications Warehouse

    Rudolph, M.L.; Manga, M.; Hurwitz, Shaul; Johnston, Malcolm J.; Karlstrom, L.; Wang, Chun-Yong

    2012-01-01

    In order to probe the subsurface dynamics associated with geyser eruptions, we measured ground deformation at Old Faithful Geyser of Calistoga, CA. We present a physical model in which recharge during the period preceding an eruption is driven by pressure differences relative to the aquifer supplying the geyser. The model predicts that pressure and ground deformation are characterized by an exponential function of time, consistent with our observations. The geyser's conduit is connected to a reservoir at a depth of at least 42 m, and pressure changes in the reservoir can produce the observed ground deformations through either a poroelastic or elastic mechanical model.

  12. 1978 Yellowstone-eastern Snake River Plain seismic profiling experiment: Data and upper crustal structure of the Yellowstone region

    SciTech Connect

    Schilly, M.M.; Smith, R.B.; Braile, L.W.; Ansorge, J.

    1982-04-10

    Eleven in-line refraction profiles, recorded to distances of 300 km, and one azimuthal fan plot were constructed from data recorded with a 150-station array in the Yellowstone National Park area during the 1978 Yellowstone-Snake River Plain seismic experiment. Interpretations of the data suggest that the crustal P wave velocity model for the Yellowstone region is characterized by (1) an averaged 10-km-thick upper crustal layer, V/sub p/ = 6.0 km/s, (2) an average crustal velocity of 6.3 km/s, and (3) a total crustal thickness of 44 km. Velocity models are presented for profiles that emphasize the upper crust and show (1) a decrease in the depth to the top of the upper crustal crystalline basement from 5 km in southwestern Yellowstone near Island Park to 1 km at the northeast side of the Yellowstone Plateau that is interpreted as a progressive thinning of the silicic surface volcanic layer to the northeast and (2) evidence for a large lateral inhomogeneity interpreted to be a low-velocity body, with a decrease of at least 10% in P wave velocity, located beneath the northeast corner of the Yellowstone Plateau. The low-velocity zone coincides with a local -30-mgal residual gravity anomaly and is located beneath part of the Sour Creek resurgent dome and part of the Hot Springs Basin, the largest hydrothermal system in Yellowstone. The low-velocity body has a maximum depth to the top of 3 km and a minimum depth to the bottom of 9 km and may represent a zone of partial melt. In comparison to the thermally undisturbed upper crust of the surrounding Rocky Mountains the upper crust of the northeastern Yellowstone plateau appears laterally inhomogeneous in velocity and layer thickness, suggesting effects of thermal and magma intrusion, whereas the lower crust appears relatively homogeneous.

  13. Geyser Interaction: Two examples from El Tatio, Chile

    NASA Astrophysics Data System (ADS)

    Munoz Saez, Carolina; Namiki, Atsuko; Manga, Michael

    2015-04-01

    Geysers are eruptive hot springs that episodically discharge steam, liquid water, and non-condensable gases. While hot springs are abundant in geothermal areas, geysers are uncommon and they require special conditions of water supply, heat flow, and fractures and/or porous rocks. Despite more than 200 years of study, there are still open questions about how and why geysers erupt: How is geyser cycle influenced by other adjacent and distant thermal sources? Are hot springs and geyser connected through permeable pathways? Why do only a few hot springs erupt as geysers? We conducted two week-long field studies of geyser interactions in the El Tatio geyser field, Chile during Oct. 2012 and Oct. 2014. We found two different cases: geyser-pool interaction and geyser-geyser interaction. In the first case, we documented how the water level of the pool varies as the geyser eruption evolves. Measured temperature in the geyser conduit has a repeatable pattern, when it reaches boiling the eruption occurs. In contrast, the temperature in the adjacent pool is constant and never reaches the boiling point, suggesting that heat is supplied only to the geyser conduit. Pressure in the geyser conduit and pool have a similar evolution over time so that the side pool acts as a barometer for the conduit. The geyser-geyser interaction was documented in 2014. A geyser with long eruption intervals (1-3 hours) changes the behavior of a short-interval geyser (c.a. 10 minutes). When the long-interval geyser erupts, the short-interval geyser stops erupting. When the eruption of the long-interval geyser becomes less vigorous, the short-interval geyser resumes its eruptions with shorter intervals. During the week of measurements in 2012, we did not observe the short-interval geyser erupting. At that time, the eruption of the long-interval geyser was regular (4 hours and 40 minutes, ref 1). We thus infer that the geyser-geyser interaction made the eruption cycle chaotic. Geyser-pool and geyser-geyser

  14. Source Modeling and Seismic-Volcano Implications of the 2004-2007 Accelerated Deformation at Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Chang, W.; Smith, R.; Wicks, C.; Farrell, J.; Puskas, C.

    2007-12-01

    The youthful Yellowstone volcanic system is characterized by extensive earthquakes, episodes of cyclical uplift and subsidence, extraordinarily high heat flow, and widespread hydrothermal activity. In mid-2004, deformation of the 45-km-wide by 75-km-long Yellowstone caldera, measured by continuously operating GPS and InSAR, unexpectedly changed from subsidence to uplift at rates of up to 6.6 cm/yr that is three to four times faster than earlier deformation episodes. This pronounced uplift has continued to the time of this abstract submission, fall 2007, and was also accompanied by unusual subsidence of up to 4 cm/yr across the northwest caldera rim near the Norris Geyser Basin. Corresponding horizontal motions of 0.8-2.2 cm/yr and 0.7-2.0 cm/yr directed outward from the caldera and inward to the Norris area, respectively. Source modeling of the deformation data revealed an expanding sill-like structure 10 km beneath the caldera with a volumetric expansion rate of 0.11 km3/yr, consistent with the amount of magma required to supply the observed high heat flow of the caldera, and a contracting tabular body 8 km under the Norris area with a volumetric contraction rate of 0.01 km3/yr. The modeled expanding sill overlaps with the top of a tomographically imaged magma body, implying that the accelerated uplift is related to the inflation from the shallowest part of the magma chamber. The inflation of the caldera sill can furthermore induce dilatational strain in the surrounding volcanic rocks beneath the northern caldera rim, causing hydrothermal fluids to migrate into the caldera that can depressurize the Norris hydrothermal systems and cause the ground to subside. We also evaluate the elastic and viscoelastic stress evolution of this accelerated uplift to model the temporal changes of Columb failure stress on adjacent faults. The results will help us understand the interaction between the volcanic system and earthquake occurrence of the Yellowstone region.

  15. The Plausibility of Boiling Geysers on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1995-01-01

    A mechanism is suggested and modeled whereby there may be boiling geysers on Triton. The geysers would be of nitrogen considering that Voyager detected cryovolcanic activity, that solid nitrogen conducts heat much less than water ice, and that there is internal heat on Triton.

  16. Modeling Geyser Eruptions in the Classroom

    ERIC Educational Resources Information Center

    Mattox, Stephen; Webster, Christine

    2005-01-01

    Watching Old Faithful transform from a smoldering mound to an explosive 50-meter high geyser is enough to generate awe in any observer. Behind this stunning, visual geologic display is a triad of heat, water, and plumbing that rarely unify on our planet. But geologists are not the only scientists drawn to geysers. Biologists have recently…

  17. Hydrogeologic reconnaissance of the beowawe geysers geothermal area, Nevada

    USGS Publications Warehouse

    Olmsted, F.H.; Rush, F.E.

    1987-01-01

    The Beowawe Geysers in north-central Nevada are the discharge from a hydrothermal-convection system in a region of high heat flow. The site of thermal-fluid upflow (at about 18 kg/s before drilling and well testing) appears to be related to the intersection at depth of two major fault zones. Assuming steady-state conditions, recharge within the drainage basin could account for both thermal and nonthermal ground-water discharge. Circulation of thermal fluid to depths exceeding 5 km is required to attain estimated temperatures of more than 220??C. ?? 1987.

  18. Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. isolates from Yellowstone National Park.

    PubMed

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L; McDermott, Timothy R

    2013-05-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥ 99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized. PMID:23435891

  19. Comparative Genomic Analysis of Phylogenetically Closely Related Hydrogenobaculum sp. Isolates from Yellowstone National Park

    PubMed Central

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L.

    2013-01-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized. PMID:23435891

  20. Track of the Yellowstone hotspot: young and ongoing geologic processes from the Snake River Plain to the Yellowstone Plateau and Tetons

    USGS Publications Warehouse

    Morgan, Lisa A.; Pierce, Kenneth L.; Shanks, Pat

    2008-01-01

    This field trip highlights various stages in the evolution of the Snake River Plain–Yellowstone Plateau bimodal volcanic province, and associated faulting and uplift, also known as the track of the Yellowstone hotspot. The 16 Ma Yellowstone hotspot track is one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Recent interest in young and possible renewed volcanism at Yellowstone along with new discoveries and synthesis of previous studies, i.e., tomographic, deformation, bathymetric, and seismic surveys, provide a framework of evidence of plate motion over a mantle plume. This 3-day trip is organized to present an overview into volcanism and tectonism in this dynamically active region. Field trip stops will include the young basaltic Craters of the Moon, exposures of 12–4 Ma rhyolites and edges of their associated collapsed calderas on the Snake River Plain, and exposures of faults which show an age progression similar to the volcanic fields. An essential stop is Yellowstone National Park, where the last major caldera-forming event occurred 640,000 years ago and now is host to the world's largest concentration of hydrothermal features (>10,000 hot springs and geysers). This trip presents a quick, intensive overview into volcanism and tectonism in this dynamically active region. Field stops are directly linked to conceptual models related to hotspot passage through this volcano-tectonic province. Features that may reflect a tilted thermal mantle plume suggested in recent tomographic studies will be examined. The drive home will pass through Grand Teton National Park, where the Teton Range is currently rising in response to the passage of the North American plate over the Yellowstone hotspot.

  1. Seismic monitoring at The Geysers

    SciTech Connect

    Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E.; Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W.

    1993-04-01

    During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

  2. Enceladus' 101 Geysers: Phantoms? Hardly

    NASA Astrophysics Data System (ADS)

    Porco, C.; Nimmo, F.; DiNino, D.

    2015-12-01

    The discovery by the Cassini mission of present-day geysering activity capping the southern hemisphere of Saturn's moon Enceladus (eg, Porco, C. C. et al. Science 311, 1393, 2006) and sourced within a subsurface body of liquid water (eg, Postberg, F. et al. Nature 459, 1098, 2009; Porco, C.C. et al. AJ 148, 45, 2014, hereafter PEA], laced with organic compounds (eg, Waite, J.H. et al. Science 311, 1419, 2006), has been a significant one, with far-reaching astrobiological implications. In an extensive Cassini imaging survey of the moon's south polar terrain (SPT), PEA identified 101 distinct, narrow jets of small icy particles erupting, with varying strengths, from the four major fractures crossing the SPT. A sufficient spread in stereo angles of the 107 images used in that work allowed (in some cases, many) pair-wise triangulations to be computed; precise surface locations were derived for 98 jets. Recently, it has been claimed (Spitale, J.N. et al. Nature 521, 57, 2015) that the majority of the geysers are not true discrete jets, but are "phantoms" that appear in shallow-angle views of a dense continuous curtain of material with acute bends in it. These authors also concluded that the majority of the eruptive material is not in the form of jets but in the form of fissure-style 'curtain' eruptions. We argue below the contrary, that because almost all the moon's geysers were identified by PEA using multiple images with favorable viewing geometries, the vast majority of them, and likely all, are discrete jets. Specifically, out of 98 jets, no fewer than 90 to 95 were identified with viewing geometries that preclude the appearance of phantoms. How the erupting solids (i.e., icy particles) that are seen in Cassini images are partitioned between jets and inter-jet curtains is still an open question.

  3. Bison in the greater Yellowstone

    USGS Publications Warehouse

    Meagher, Mary

    1994-01-01

    In the Greater Yellowstone Area, free-ranging bison occur in Jackson Hole, Wyoming, and Yellowstone National Park. The Yellowstone population is discussed, with emphasis on changes in numbers from approximately 400 in 1968 to about 3500 now. Major influences for change initially were natural; more recently the winter road system used by snowmobiles appeared to be the dominant factor. The situation is in a state of flux. Interagency planning is in progress to address management alternatives for conflicts outside the park.

  4. Yellowstone--A Natural Laboratory.

    ERIC Educational Resources Information Center

    Gemery, Laura

    1992-01-01

    Describes the rationale and purpose of the Yellowstone Institute, an educational facility that offers short field courses to professional adults about the greater Yellowstone area as one of the last remaining intact wilderness ecosystems in the world. Contact information concerning the course catalog is provided. (JJK)

  5. The 1988 Fires in Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2008-01-01

    The 1988 fires at Yellowstone National Park burned 1.4 million acres in the tri-state areas of Wyoming, Montana, and Idaho--encompassing the greater Yellowstone area--and burned some 800,000 acres within the park itself (Franke 2000). This article discusses this extraordinary fire event and contains helpful resources for bringing the science of…

  6. A simple model for Geyser Flat, Whakarewarewa

    SciTech Connect

    Weir, G.J.; Young, R.M.; McGavin, P.N. )

    1992-04-01

    The work presented in this paper is based on records of geyser activity and other data collected at Geyser Flat, Whakarewarewa, New Zealand. The data is used to used to construct a simple quasi-steady mass, heat, and chemical balance model to account for the interactions between the three geysers Pohutu, Prince of Wales Feathers, Waikorohihi, and the non-eruptive Te Horu cauldron. This model has provided order of magnitude estimates for mass and energy flows, and geyser cavern properties. The importance of the west-south-west wind component on the Te Horu waterlevel is established from the data. Te Horu waterlevels are also shown to correlate significantly with geyser performance. High waterlevels are connected with regular geyser behavior, while low waterlevels are associated with rapid irregular eruptions. Cavern temperatures of 118{degrees} C, 107{degrees} C and 109{degrees} C are inferred from the observed full column plume heights of 20, 8 and 8 meters from Pohutu, Prince of Wales Feathers, and Waikorohihi respectively.

  7. Microgravity Geyser and Flow Field Prediction

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.

    2006-01-01

    Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.

  8. Microgravity Propellant Tank Geyser Analysis and Prediction

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.; Hochstein, John I.; Turner, James E. (Technical Monitor)

    2001-01-01

    An established correlation for geyser height prediction of an axial jet inflow into a microgravity propellant tank was analyzed and an effort to develop an improved correlation was made. The original correlation, developed using data from ethanol flow in small-scale drop tower tests, uses the jet-Weber number and the jet-Bond number to predict geyser height. A new correlation was developed from the same set of experimental data using the jet-Weber number and both the jet-Bond number and tank-Bond number to describe the geyser formation. The resulting correlation produced nearly a 40% reduction in geyser height predictive error compared to the original correlation with experimental data. Two additional tanks were computationally modeled in addition to the small-scale tank used in the drop tower testing. One of these tanks was a 50% enlarged small-scale tank and the other a full-scale 2 m radius tank. Simulations were also run for liquid oxygen and liquid hydrogen. Results indicated that the new correlation outperformed the original correlation in geyser height prediction under most circumstances. The new correlation has also shown a superior ability to recognize the difference between flow patterns II (geyser formation only) and III (pooling at opposite end of tank from the bulk fluid region).

  9. "Geyser" leakage on fluorescein angiography.

    PubMed

    Levy, Jaime; Fagan, Xavier J; Lifshitz, Tova; Schneck, Marina

    2013-01-01

    An 82-year-old patient with diabetes was followed up due to moderate nonproliferative diabetic retinopathy with macular edema in the right eye. Visual acuity was 6/36. Focal macular laser was conducted (A). Three years later, the patient presented with blurry vision in the right eye. Visual acuity was 3/60. Vitreous hemorrhage was observed (B), and neovascularization of the disc was suspected (C). Fluorescein angiography (D, mid venous phase; E-F, recirculation phase) confirmed neovascularization of the disc and depicted a striking vertical leakage. Panretinal photocoagulation was started. Possible explanations for the "geyser" leakage may be either a partial posterior vitreous detachment allowing the fluorescein to track upwards but not elsewhere or a pocket of syneretic vitreous allowing the fluorescein passage in which to diffuse, much like the passage the blood would have taken. PMID:24548789

  10. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  11. Archaea in Yellowstone Lake

    PubMed Central

    Kan, Jinjun; Clingenpeel, Scott; Macur, Richard E; Inskeep, William P; Lovalvo, Dave; Varley, John; Gorby, Yuri; McDermott, Timothy R; Nealson, Kenneth

    2011-01-01

    The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (∼51 000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed full-length Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, ∼69–84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96–97% identity). Importance of the lake nitrogen cycling was also suggested by >5% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages. PMID:21544103

  12. Measuring and Monitoring Heat Flow and Hydrothermal Changes in the Yellowstone Geothermal System using ASTER and MODIS Thermal Infrared Data

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Keszthelyi, L. P.; Lowenstern, J. B.; Heasler, H.; Jaworowski, C.

    2011-12-01

    The aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within Yellowstone geothermal area (YGA) to meet the missions of both the U.S. Geological Survey and the National Park Service. Specific goals were to 1) address the challenges of monitoring the surface thermal characteristics of the >10,000 spatially and temporally dynamic thermal features in the YGA (including hot springs, pools, geysers, fumaroles, and mud pots), by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux for individual thermal areas and for the entire YGA, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., thermal changes related to tectonic or hydrothermal activity, volcanic unrest, or geothermal development). Frequent, low-spatial resolution night time TIR observations from the MODIS instrument (1-km pixels) were used to quantify the background thermal flux of the whole YGA and all individual thermal areas. The MODIS Terra archive covering the previous decade (2000-2010) was analyzed and a background subtraction method was developed to automatically remove seasonal variations and extract TIR spectral radiance values. It was determined that the thermal change detection limit was equivalent to a 3-5 °C change over the entire (3x3 pixel) measured area, which is equivalent to a 9-17 °C change over a 29% fraction of the area (the sub-pixel fraction occupied by the thermal area). Alternatively, an area of static warm temperature (e.g., 93 °C) would have to increase from 100 to 36,500 m2 (11 to 216 m-diameter) to be clearly detected above scatter in the data. All of the thermal areas have been relatively stable within these limits for the last decade, although there are some thermal variations, near the limits of detection, which may reflect thermal disturbances that occur episodically in

  13. Yellowstone Lake Nanoarchaeota

    PubMed Central

    Clingenpeel, Scott; Kan, Jinjun; Macur, Richard E.; Woyke, Tanja; Lovalvo, Dave; Varley, John; Inskeep, William P.; Nealson, Kenneth; McDermott, Timothy R.

    2013-01-01

    Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park (YNP), where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR) were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels). However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp) demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (71 pyrosequencing reads) was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations. PMID:24062731

  14. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.

    1998-01-01

    Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.

  15. Mass and style of eruptions in experimental geysers

    NASA Astrophysics Data System (ADS)

    Toramaru, Atsushi; Maeda, Kazuki

    2013-05-01

    In the present study, we conducted laboratory experiments of geysers to reproduce the time predictability of natural geysers in Yellowstone and other geothermal areas. We measured pressure and temperature in a hot water chamber, flux from a cold water reservoir, and mass erupted by each eruption (total number of eruptions are up to 100), varying experimental conditions such as the heating rate, water quality, and system geometry. We observed two styles of eruptions, "jet" and "flow" depending on the maximum height reached. Under some conditions, only jet events occurred, while under other conditions, jet and flow events co-occurred. Based on the statistical analysis of the erupted mass, an experiment setup that produces only jet events exhibits a narrower frequency distribution with a relatively large average mass. As the proportion of flow events increases, the frequency distribution of the erupted mass widens with relatively small average mass. The temperature measurements indicated that jet-dominated experimental setups had smaller temperature fluctuations than flow-dominated setup. We proposed a triggering condition involving boiling of water that defined the onset of an eruption. We assumed two thresholds of the efficiency of decompression boiling that defined explosivity and eruption development on the basis of hydrodynamic energetics. Using the triggering condition and the two thresholds, to explain experimental correlations between erupted mass, eruption style, and the magnitude of thermal fluctuation, we conducted a Monte Carlo simulation in a square consisting of 256 × 256 parcels with the superheating temperature as a stochastic variable by a Gaussian probability density function (PDF). The results showed that when the PDF has a larger average and smaller standard deviation, the event tends to be explosive and large fraction of water is evacuated, as in jet events. Decreasing the average temperature or increasing the standard deviation of the PDF shifts

  16. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming.

    PubMed

    Boomer, Sarah M; Noll, Katherine L; Geesey, Gill G; Dutton, Bryan E

    2009-04-01

    In this study, glass rods suspended at the air-water interface in the runoff channel of Fairy Geyser, Yellowstone National Park, WY, were used as a substratum to promote the development of biofilms that resembled multilayered mat communities in the splash zone at the geyser's source. This approach enabled the establishment of the temporal relationship between the appearance of Cyanobacteria, which ultimately formed the outer green layer, and the development of a red underlayer containing Roseiflexus-like Chloroflexi. This is the first study to define time-dependent successional events involved in the development of differently colored layers within microbial mats associated with many thermal features in Yellowstone National Park. Initial (1-month) biofilms were localized below the air-water interface (60 to 70 degrees C), and the majority of retrieved bacterial sequence types were similar to Synechococcus and Thermus isolates. Biofilms then shifted, becoming established at and above the air-water interface after 3 months. During winter sampling (6 to 8 months), distinct reddish orange microcolonies were observed, consistent with the appearance of Roseiflexus-like sequences and bacteriochlorophyll a pigment signatures. Additionally, populations of Cyanobacteria diversified to include both unicellular and filamentous cell and sequence types. Distinct green and red layers were observed at 13 months. Planctomycetes-like sequences were also retrieved in high abundance from final biofilm layers and winter samples. Finally, biomass associated with geyser vent water contained Roseiflexus-like sequence types, in addition to other high-abundance sequence types retrieved from biofilm samples, supporting the idea that geothermal water serves as an inoculum for these habitats. PMID:19218404

  17. Formation of Multilayered Photosynthetic Biofilms in an Alkaline Thermal Spring in Yellowstone National Park, Wyoming▿

    PubMed Central

    Boomer, Sarah M.; Noll, Katherine L.; Geesey, Gill G.; Dutton, Bryan E.

    2009-01-01

    In this study, glass rods suspended at the air-water interface in the runoff channel of Fairy Geyser, Yellowstone National Park, WY, were used as a substratum to promote the development of biofilms that resembled multilayered mat communities in the splash zone at the geyser's source. This approach enabled the establishment of the temporal relationship between the appearance of Cyanobacteria, which ultimately formed the outer green layer, and the development of a red underlayer containing Roseiflexus-like Chloroflexi. This is the first study to define time-dependent successional events involved in the development of differently colored layers within microbial mats associated with many thermal features in Yellowstone National Park. Initial (1-month) biofilms were localized below the air-water interface (60 to 70°C), and the majority of retrieved bacterial sequence types were similar to Synechococcus and Thermus isolates. Biofilms then shifted, becoming established at and above the air-water interface after 3 months. During winter sampling (6 to 8 months), distinct reddish orange microcolonies were observed, consistent with the appearance of Roseiflexus-like sequences and bacteriochlorophyll a pigment signatures. Additionally, populations of Cyanobacteria diversified to include both unicellular and filamentous cell and sequence types. Distinct green and red layers were observed at 13 months. Planctomycetes-like sequences were also retrieved in high abundance from final biofilm layers and winter samples. Finally, biomass associated with geyser vent water contained Roseiflexus-like sequence types, in addition to other high-abundance sequence types retrieved from biofilm samples, supporting the idea that geothermal water serves as an inoculum for these habitats. PMID:19218404

  18. Prospects for Yellowstone grizzlies

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1985-12-01

    Recent analyses of data on the grizzly population of Yellowstone National Park and its environs suggest the likelihood of a continuing decline in numbers, if losses of fully adult females are not reduced. Current size of the population is not known, but a simple projection model has been used to identify some inconsistencies in the index data. Population dynamics calculations, based on Lotka's equation or a stochastic model, indicate a continuing decrease in numbers. The margin between stabilization of the population and a continued decrease appears to be roughly the loss of one fully adult female bear per year. At present, the risk of extirpation over the next 30 years appears to be small. Continued monitoring of survivorship will be needed, particularly since ''recovery'' of the population may be mainly characterized by a shift in the pattern of mortality, and not necessarily in absolute number of losses. 5 refs., 4 figs.

  19. Analysis of reinjection strategies for The Geysers

    SciTech Connect

    Shook, M.; Faulder, D.D.

    1991-01-01

    The Geysers has undergone severe pressure decline in recent years, and reinjection of condensate is thought to be one key to sustaining current steam production. Other methods of pressure maintenance include load cycling, or reduction of steam production during off-peak hours. It is likely that a combination of these two will prove to be optimum in providing pressure and fluid maintenance. This paper presents preliminary results of a study of various injection schemes for The Geysers. A number of injection scenarios are investigated, and an optimum scheme (based on specific parameters) is identified for two different quantities of reinjection. 9 refs., 14 figs., 1 tab.

  20. Analysis of reinjectiion strategies for The Geysers

    SciTech Connect

    Shook, Mike; Faulder, D.D.

    1991-01-01

    The Geysers has undergone severe pressure decline in recent years, and reinjection of condensate is thought to be one key to sustaining current steam production. Other methods of pressure maintenance include load cycling, or reduction of steam production during off-peak hours. It is likely that a combination of these two will prove to be optimum in providing pressure and fluid maintenance. This paper presents preliminary results of a study of various injection schemes for The Geysers. A number of injection scenarios are investigated, and an optimum scheme (based on specific parameters) is identified for two different quantities of reinjection.

  1. Gas geochemistry of the Geysers geothermal field

    SciTech Connect

    Truesdell, A.H.

    1993-04-01

    Increases in gas concentrations in Central and Southeast Geysers steam are related to the decreases in pressure caused by heavy exploitation in the 1980s. When reservoir pressures in the central parts of the field decreased, high-gas steam from undrilled reservoir margins (and possibly from underlying high-temperature zones) flowed into exploited central areas. The Northwest Geysers reservoir probably lacks high-gas marginal steam and a decline in pressure may not cause a significant increase of gas concentrations in produced steam.

  2. Investigation of an Aseismic ``Doughnut Hole'' Region in The Northwest Geysers, CA

    NASA Astrophysics Data System (ADS)

    Boyle, K.; Jarpe, S.; Hutchings, L. J.; Peterson, J.; Depaolo, D.; Majer, E.

    2010-12-01

    The Geysers Geothermal Reservoir experiences thousands of seismic events each month; some of these events are associated with recent coldwater injection and steam-based production within the Geysers basin. The greatest injection volume rate occurs in the Northwest Geysers, and it is here that a spheroidal region of apparent aseismicity, called the Doughnut Hole, has become visible within the last 20 years. The Doughnut Hole is preliminarily defined as a region where seismic density (number of earthquakes per km^3) drops to 1/3 or less of the density of contiguous gridblocks. This study set out to determine the true 3-D extent of the Doughnut Hole, to understand the source mechanisms of earthquakes in and around it, to image the crustal structure, and to investigate correlations with injection and production. Calpine Corporation has provided nearly 20 years of seismic data to help constrain the Doughnut Hole's first appearance, and a new automated processing system has been deployed to produce a 95,000-event catalog, including moment magnitudes, from over 4 years of triggered data recorded by 30 stations in The Geysers. Using the highest quality locations from this catalog, we confine the feature to a 2.2km (X) x 2.2km (Y) x 3km (Z) volume, with accuracies of 0.11 km (X/Y) and 0.25 km (Z). The Doughnut Hole spatial extent and centroid appear to change with time, although the feature is generally centered at N38.935, W122.68, -2.225km (relative to sea level). A subset of the Geysers earthquake dataset is being processed with tomoDD, a 3-D double-difference tomography program, in order to relocate cross-correlated event clusters around the Doughnut Hole. We will use tomoDD results to better characterize the changing 3-D extent of the region, and to define the local velocity model at a finer resolution.

  3. Post-200-ka Pyroclastic Eruptions of the Yellowstone Plateau

    NASA Astrophysics Data System (ADS)

    Morgan, L. A.; Shanks, W. C.

    2010-12-01

    Pyroclastic deposits intercalated in post-Yellowstone-caldera rhyolitic lava flows form a minor component of the total volume of high-silica rhyolites erupted between 200 and 70 ka. Such events produced significant volumes of ash, fast-moving pyroclastic flows, and volcanic gases during young eruptions on the Plateau. Thus, while these were less common events, it is important to know the details of these deposits, including the number and frequency of eruptions, their sources, and possible associations or relations to other volcanic or tectonic events. The tuff of Bluff Point is the largest of these <640-ka pyroclastic flows and is mapped within the Central Plateau Member above the Yellowstone Caldera. Eruption of the tuff of Bluff Point, around 170-200 ka, is estimated from current maps to be ~50 km3 and resulted in collapse of the 10-km-wide West Thumb caldera, centered in the western-most basin of Yellowstone Lake. Large amounts of water derived from an ancestral Yellowstone Lake may have been involved in the eruption, suggested by large blocks of glass and abundant smaller fragments of obsidian incorporated into the ignimbrite. The oval-shaped West Thumb caldera occurs within the much larger and older Yellowstone Caldera and has dimensions comparable to Crater Lake (Oregon). New mapping, variable 40Ar/39Ar ages, and differences in mineralogy, grain size, and component data between key exposures all suggest that the tuff of Bluff Point, as mapped, represents as many as three pyroclastic eruptions. These eruptions may have occurred over a 20- to 40-k.y. interval, which may explain enigmatic age discrepancies. Stratigraphic, mineralogical, geochemical, radiometric, granulometric, and component analyses are being employed to unravel the details and origins of these pyroclastic deposits, which are rich in glass, pumice, ash, crystal, and lithic fragments. Several pumice morphologies are present in each deposit. Pyroclastic fallout, sinter, and volcaniclastic

  4. Complete genome sequence of Geobacillus strain Y4.1MC1, a novel CO-utilizing Geobacillus thermoglucosidasius strain isolated from Bath Hot Spring in Yellowstone National Park

    DOE PAGESBeta

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren John; Jeffries, Cynthia D.; Chang, Yun-Juan; Mead, David A.

    2015-01-01

    Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. We present this species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway.more » This is the first report of a nonanaerobic organism with the Wood-Ljungdahl pathway. Also, this anaerobic pathway permits the strain to utilize H2 and fix CO2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H2, and CO2.« less

  5. Complete genome sequence of Geobacillus strain Y4.1MC1, a novel CO-utilizing Geobacillus thermoglucosidasius strain isolated from Bath Hot Spring in Yellowstone National Park

    SciTech Connect

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren John; Jeffries, Cynthia D.; Chang, Yun-Juan; Mead, David A.

    2015-01-01

    Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. We present this species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway. This is the first report of a nonanaerobic organism with the Wood-Ljungdahl pathway. Also, this anaerobic pathway permits the strain to utilize H2 and fix CO2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H2, and CO2.

  6. Geysers from the Tiger Stripes of Enceladus

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Enceladus, the sixth-largest moon of Saturn, is a cold, icy world but its also remarkably active. Recent studies have charted over a hundred geysers venting gas and dust into space from Enceladus south polar region. New research addresses the question of how the moons extreme surface terrain influences the locations and behavior of these geysers.Active PlumesEnceladus orbiting within Saturns E ring. Enceladus plumes probably created this ring. [NASA/JPL/Space Science Institute]A decade ago, scientists discovered that Enceladus south polar region is home to a prominent set of four fractures known as the tiger stripes. This region was found to contain roughly 100 geyser jets, which form plumes of gas and dust venting into space at a combined rate of ~200 kilograms per second! These plumes are probably the source of the material in Saturns E ring, in which Enceladus orbits.Recently, Carolyn Porco (UC Berkeley and CICLOPS Space Science Institute) led a study that analyzed 6.5 years of Cassini data, surveying the locations and orientations of 101 geysers. The outcome was peculiar: the geysers are distributed along the tiger stripes, but their directions are not all pointing vertically from the surface (see the video below!).Now, Paul Helfenstein (Cornell University) has teamed up with Porco to examine whether the surface terrain surrounding the geysers affects where the jets erupt, what direction they point, and even when theyre active.Surface InfluenceHelfenstein and Porco demonstrate that the locations and behavior of the geysers are very likely influenced by Enceladus surface features in this region. In particular, they find:The spacing of the geyser jets on Enceladus is not random.The jets are roughly uniformly distributed along the three most active tiger stripes, spaced about 5 kilometers apart. This fixed spacing might be due to shear fractures produced by fault motion along the tiger stripes cutting across the stripes at regular intervals and providing

  7. Dynamics within geyser conduits: Insights from downhole measurements in El Jefe geyser, El Tatio Geyser Field, Chile

    NASA Astrophysics Data System (ADS)

    Munoz Saez, C.; Manga, M.; Hurwitz, S.; Rudolph, M. L.; Namiki, A.; Wang, C.; King, E.; Patel, A.

    2013-12-01

    The El Tatio geothermal area is located in the Atacama Desert at an elevation of 4200 m asl. It is the third largest geyser field in the world, with more than 100 active geysers. Recharge of meteoric waters from the NE is limited, and temperatures vary daily from -5 to 10 C. We studied a geyser that we named 'El Jefe' (601768 E, 7530174 S, WGS84 19S). Its conduit has a constriction at a depth of 1.5 m and its diameter is 30 cm. Erupted water ponds in a natural pool around the conduit, and a large fraction then flows back into to the conduit at the end of the eruption. To quantify the mechanics and thermodynamics of the geyser's eruptions, we measured temperature, and pressure continuously inside the geyser conduit for 7 days. Pressure was measured at three depths at a frequency of 100 Hz and temperature was measured at depth intervals of 30 cm at a frequency of 1Hz. During the period of our study, eruption duration was 25 +/- 1.5 seconds and the interval between eruptions was 132 +/-2.5 sec. Variations of the eruption duration and intervals did not correlate with atmospheric pressure and temperature variations. The eruption cycle consists of four distinct stages: (1) Pre-play: lasts for 15 seconds prior to the surface manifestation of the eruption. (2) Eruption: lasts for 25 seconds (3) Post-eruption relaxation: pressure decreases rapidly in two steps, but temperature decreases gradually lagging behind the pressure decrease. Erupted water is drained into the conduit. (4) Recharge: temperature remains nearly constant while pressure increases, suggesting recharge of cold water from below.

  8. A database for the geysers geothermal field

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. ); Truesdell, A. )

    1989-09-01

    This document contains graphs of data collected from Geysers Geothermal Field. These graphs display data concerning wellhead pressure and degrees of super heat from 1968 to 1988 in Appendix B; injection rate and cumulative injection rate in Appendix C. 255 figs. (FSD)

  9. Southeast geysers effluent pipeline project. Final report

    SciTech Connect

    Dellinger, M.

    1998-01-15

    The project concept originated in 1990 with the convergence of two problems: (1) a need for augmented injection to mitigate declining reservoir productivity at the Geysers; and (2) a need for a new method of wastewater disposal for Lake County communities near the The Geysers. A public/private partnership of Geysers operators and the Lake County Sanitation District (LACOSAN) was formed in 1991 to conduct a series of engineering, environmental, and financing studies of transporting treated wastewater effluent from the communities to the southeast portion of The Geysers via a 29-mile pipeline. By 1994, these evaluations concluded that the concept was feasible and the stakeholders proceeded to formally develop the project, including pipeline and associated facilities design; preparation of an environmental impact statement; negotiation of construction and operating agreements; and assembly of $45 million in construction funding from the stakeholders, and from state and federal agencies with related program goals. The project development process culminated in the system`s dedication on October 16, 1997. As of this writing, all project components have been constructed or installed, successfully tested in compliance with design specifications, and are operating satisfactorily.

  10. Nitrogen cycling in Yellowstone National Park thermal features: using gene expression to reveal ecological function

    NASA Astrophysics Data System (ADS)

    Lafree, S. T.; Burton, M. S.; Meyer-Dombard, D. R.

    2010-12-01

    Studies of biodiversity, metabolic strategies, and functional ecology in modern hydrothermal systems have the potential to provide insight into the metabolism and evolution of life. The geochemical and microbial diversity present at Yellowstone National Park (YNP), Wyoming, USA, makes it an ideal place for studying the functional ecology and metabolic processes of prokaryotic organisms. While much work in terrestrial hydrothermal features is focused on phylogenetic and geochemical analyses, a few recent investigations in YNP and other hydrothermal areas have focused on “gene hunting”: screening thermal sediment and biofilm samples for the presence of genes utilized in specific metabolic processes [2, 3, 6, 7, 8]. Although research has evaluated and confirmed the presence of many of these genes in various thermophilic microbial communities, the existence of a gene in the DNA of an organism does not verify its use, and few researchers have done work to confirm the utilization (expression) of the genes discovered in thermal samples [1, 6, 7, 8]. Disequilibrium between reduced hydrothermal fluid of YNP thermal features and the atmosphere provides a copious source of potential energy to be harnessed through microbial metabolic processes, with NO3- and NO2- serving as the preferred electron acceptors and top energy sources after O2 [4, 5]. Consequentially, nitrogen cycling likely plays a vital role in microbial metabolic processes, as well as nutrient availability. This study explores the presence and utilization of functional genes that are key in steps of the nitrogen cycle, such as nitrogen fixation (NifH), denitrification (nirKS), and ammonia oxidation (amoA). Both DNA and RNA were extracted from thermal sediment and streamer biofilm communities collected in the chemosynthetic zone of various thermal features of the Sentinel Meadows Group in Lower Geyser Basin, YNP. Extracted DNA and reverse transcribed RNA (cDNA) were amplified using the polymerase chain

  11. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard, Jr.

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  12. Correlation of gold in siliceous sinters with 3He 4He in hot spring waters of Yellowstone National Park

    USGS Publications Warehouse

    Fournier, R.O.; Kennedy, B.M.; Aoki, M.; Thompson, J.M.

    1994-01-01

    temperatures may contain waters with different [H2S] and [Au]. The [H2S] in a subsurface reservoir water is difficult to assess on the basis of analyses of hot spring waters because of uncertainties about steam loss during fluid ascent. However, the same processes that result in low [H2S] in reservoir waters also tend to result in decreases in the ratio of 3He 4He(R) dissolved in that water. Values of R relative to this ratio in air (Ra) attain values > 15 in YNP thermal waters. To date, all of the thermal waters at YNP that have R Ra values <9 have been found to deposit sinters with relatively low gold concentrations. These include all of the thermal waters that discharge from 180-215??C reservoirs at Upper, Midway, and Lower Geyser Basins within the western part of the Yellowstone caldera, and thermal waters at Norris Geyser Basin, outside the Yellowstone caldera, where some of the waters flow directly to the surface from a reservoir where the temperature is about 300??C. A high 3He 4He ratio in thermal water discharged at the surface does not guarantee high gold concentrations in the sinter deposited by this water. Boiling with loss of steam (the gas phase takes a separate route to the surface) during rapid upflow from the shallowest reservoir to the surface decreases the [H2S] and total He dissolved in the residual liquid without appreciably changing the 3He 4He ratio. This is because the isotopic composition of the He of the initial bulk fluid is unchanged and there is too little time for much radiogenic 4He to build back into the liquid during this rapid ascent from the near-surface reservoir. However, if boiling with phase separation and loss of steam occurs deep in the system, the 3He 4He ratio in the residual liquid, now depleted in H2S and total He, will be susceptible to dilution with radiogenic 4He that is acquired during the longer residence time underground. Some or all of the Au that comes out of solution when an initial gold bisulfide complex breaks

  13. Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G)

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.

    2011-01-01

    The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.

  14. Life-history organization of Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) in Yellowstone Lake

    USGS Publications Warehouse

    Gresswell, Robert E.; Liss, W.J.; Larson, Gary L.

    1994-01-01

    Life-history organization of the cutthroat trout (Oncorhynchus clarki) may be viewed at various levels, including species, subspecies, metapopulation, population, or individual. Each level varies in spatial scale and temporal persistence, and components at each level continually change with changes in environment. Cutthroat trout are widely distributed throughout the western United States, occurring in such diverse environments as coastal rivers of the Pacific Northwest and interior streams of the Great Basin. During its evolution the species has organized into 14 subspecies with many different life-history characteristics and habitat requirements. Within subspecies, organization is equally complex. For example, life-history traits, such as average size and age, migration strategy, and migration timing, vary among individual spawning populations of Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) in tributary streams of Yellowstone Lake. Understanding the effects of human perturbations on life-history organization is critical for management of the cutthroat trout and other polytypic salmonid species. Loss of diversity at any hierarchical level jeopardizes the long-term ability of the species to adapt to changing environments, and it may also lead to increased fluctuations in abundance and yield and increase the risk of extinction.

  15. A database for the Geysers geothermal field

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.

    1988-10-01

    A general use menu driven software package has been developed that stores and retrieves geothermal field data and produces a large variety of graphic displays. These include, for example, production plots, cross-sections, contour plots, base maps and Horner plots. This software package has been applied to the Geysers geothermal field which has open file data for over 200 wells. The data include production histories, directional surveys, lithology logs, wellhead temperatures and pressures, digitized base maps, steam entry locations, casing diagrams, pressure transient tests, heat flow measurements and noncondensible gas concentrations. Although the software was developed for use with data from the Geysers, it can be used with data from any geothermal reservoir. 2 refs., 5 figs.

  16. Subsurface steam sampling in Geysers wells

    SciTech Connect

    Lysne, P.; Koenig, B.; Hirtz, P.; Normann, R.; Henfling, J.

    1997-01-01

    A new downhole sampling tool has been built for use in steam wells at The Geysers geothermal reservoir. The tool condenses specimens into an initially evacuated vessel that is opened down hole at the direction of an on-board computer. The tool makes a temperature log of the well as it is deployed, and the pressure and temperature of collected specimens are monitored for diagnostic purposes. Initial tests were encouraging, and the Department of Energy has funded an expanded effort that includes data gathering needed to develop a three-dimensional model of The Geysers geochemical environment. Collected data will be useful for understanding the origins of hydrogen chloride and non-condensable gases in the steam, as well as tracking the effect of injection on the composition of produced steam. Interested parties are invited to observe the work and to join the program.

  17. Geysers advanced direct contact condenser results

    SciTech Connect

    Henderson, J.; Bahning, T.

    1997-12-31

    The world`s first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational at The Geysers Power Plant Unit 11. This major research effort was supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). The project was the first geothermal adaptation of an advanced condenser design originally demonstrated at the Ocean Thermal Energy Conversion (OTEC) plant in Kona, Hawaii. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  18. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  19. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  20. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park.

    PubMed

    Miller, Scott R; Strong, Aaron L; Jones, Kenneth L; Ungerer, Mark C

    2009-07-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for approximately 70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s). PMID:19429553

  1. Rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Lewis, A.J.; Palmer, M.R.; Kemp, A.J.; Sturchio, N.C.

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm: their chondrite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg{sup -1} ({ge}162 ppm), and {Sigma}REE concentrations in sinter are {ge}181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu{sup 2+} is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in mixing and dilution of the geothermal fluids and may have lead to changes in the extent and nature of REE complexing. 37 refs., 7 figs., 4 tabs.

  2. A database for The Geysers geothermal field

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. ); Truesdell, A. )

    1989-09-01

    In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

  3. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Schoonen, M. A. A.; Nordstrom, D. K.; Cunningham, K. M.; Ball, J. W.

    2000-04-01

    Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques. Dissolved sulfide (H 2S), thiosulfate (S 2O 32-), polythionates (S xO 62-), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H 2S

  4. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.

    2000-01-01

    Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques. Dissolved sulfide (H2S), thiosulfate (S2O32−), polythionates (SxO62−), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H2S

  5. Reservoir assessment of The Geysers Geothermal field

    SciTech Connect

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  6. Volume strain within The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Mossop, Antony; Segall, Paul

    1999-12-01

    During the 1970s and 1980s, The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5×10-4 are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6×109 Pa. However, seismic velocities indicate a much suffer reservoir with K = 3.4 × 1010 Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate.

  7. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  8. Yellowstone and Long Valley - A Comparison of Two Restless Calderas

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Smith, R. B.

    2007-12-01

    Three large, silicic calderas in the conterminous United States have explosively erupted volumes > 300 km3 within in the last 2 million years -- Yellowstone caldera (Wyoming) Long Valley caldera (California) and the Vallez caldera (New Mexico) all located in extensional tectonic environments. All have shown varying levels of historic unrest. Pronounced unrest episodes at Yellowstone and Long Valley calderas over the past three decades stimulated extensive research on these two closely monitored calderas, and we explore some emerging similarities and differences. Yellowstone caldera is underlain by a long-lived (> 17 my) upper-mantle hot-spot that has fed a series of caldera-forming, extending to the southwest across southern Idaho to central Oregon including three caldera-forming eruptions from the Yellowstone caldera system in the last 2 my, the most recent at 600,000 ybp. It is marked by relatively low density and low seismic velocities extending to depths of at least 400 km and a regional topographic swell with elevations exceeding 2000 m. The extensive Yellowstone hydrothermal system has a thermal output of 5 GW. The most recent magmatic eruption dated at 70,000 ybp. By comparison, Long Valley caldera is underlain by a relatively modest "hot-spot", the locus of which appears to be influenced by a dilatational jog between the dextral Eastern California Shear Zone and the Walker Lane and westward delamination of the dense lithospheric root of the adjacent Sierra Nevada. The Long Valley system has fed multiple eruptions of over the past 4 my and a single caldera-forming eruption at 760,000 ybp. It is marked by a limited topographic swell but with the elevation of the caldera floor and adjacent basins comparable to the 2000-plus m elevation of the Yellowstone swell. Long Valley caldera hydrothermal system has a thermal output of 0.3 GW (including a 40 MW geothermal power plant). The most recent eruptions from the Long Valley Caldera- Mono Domes volcanic field

  9. Intermittent Convective Overturn As a Geyser Eruption Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.

    2014-12-01

    The mechanism of geyser eruption has long intrigued scientists and the public, yet it has remained a matter of debate. Three major categories of model have been proposed: One category focuses on the processes in the geyser conduit. The second focuses on the processes in an underground 'bubble trap' that connects to the surface through a conduit. The third considers the geyser system to consist of a vertical fracture zone of high permeability and compressibility, surrounded by rock matrix of low permeability and compressibility. Since the interior of geysers is largely inaccessible to direct observation, numerical simulation constrained by available observation may be an important tool for deciphering the mechanism of geyser eruption. Here we use numerical simulation to explore the mechanism of geyser eruption from a system that consists of a heated underground cavern, delineated by seismic tremor location near the Old Faithful Geyser, WY (Vandemeulebrouck, et al., 2013) and connects to the surface through a conduit. Differential equations representing conservations of mass, momentum and energy, constrained by appropriate initial and boundary conditions, are solved to simulate the coupled geyser processes. Hydrothermal fluids seeping into the cavern heat up the bottom water to form an unstable thermal boundary layer near the base. Convection becomes intermittent at large Rayleigh number. Top-down boiling in the conduit releases pressure not only in the conduit but also in the cavern, triggering bubble nucleation and uprise from the base. Convective overturn of the thermal boundary layer leads to vigorous boiling in the cavern and geyser eruption through the conduit. Boiling in the cavern sustains geyser eruption until the thermal boundary layer is destroyed. Results suggest that the complex interaction between processes in the conduit and in the cavern, rather than either one in isolation, may control geyser eruption.

  10. A 12,000-year record of vertical deformation across the Yellowstone caldera margin: The shorelines of Yellowstone Lake

    NASA Technical Reports Server (NTRS)

    Locke, William W.; Meyer, Grant A.

    1994-01-01

    The 600 ka Yellowstone caldera exhibits several signs of unrest, the most evident of which is historic ground deformation including both uplift and subsidence. We document deformation in the area of the southern caldera across approximately 12,000 years using the postglactic shoreline terraces of Yellowstone Lake. Raised shoreline elevations were interpreted from 230 leveling profiles surveyed across flights of terraces, with an accuracy of +/- 0.5 m. Of about 11 recognizable terraces, the five most continuous raised shorelines were correlated around the lake basin to reveal deformation patterns. Net deformation over the past approximatley 3 kyr has been dominantly up within the caldera interior and slightly down along the caldera rim, relative to the extracaldera region. This uplift is roughly similar to the historic pattern and may largely represent the effects of the most recent inflation episode. Subtraction of the total estimated magnitude of inflation in this epsiode suggests that the overall trend of postglacial deformation has been subsidence. The cause of this trend is undetermined but is most likely related to the effects of regional extension and long-term cooling within the Yellowstone caldera.