Science.gov

Sample records for gh27 bifunctional proteins

  1. Genetics Home Reference: D-bifunctional protein deficiency

    MedlinePlus

    ... Genetics Home Health Conditions D-bifunctional protein deficiency D-bifunctional protein deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description D-bifunctional protein deficiency is a disorder that causes ...

  2. Divergent evolution of a bifunctional de novo protein.

    PubMed

    Smith, Betsy A; Mularz, Ann E; Hecht, Michael H

    2015-02-01

    Primordial proteins, the evolutionary ancestors of modern sequences, are presumed to have been minimally active and nonspecific. Following eons of selective pressure, these early progenitors evolved into highly active and specific proteins. While evolutionary trajectories from poorly active and multifunctional generalists toward highly active specialists likely occurred many times in evolutionary history, such pathways are difficult to reconstruct in natural systems, where primordial sequences are lost to time. To test the hypothesis that selection for enhanced activity leads to a loss of promiscuity, we evolved a de novo designed bifunctional protein. The parental protein, denoted Syn-IF, was chosen from a library of binary patterned 4-helix bundles. Syn-IF was shown previously to rescue two different auxotrophic strains of E. coli: ΔilvA and Δfes. These two strains contain deletions for proteins with very different biochemical functions; IlvA is involved in isoleucine biosynthesis, while Fes is involved in iron assimilation. In two separate experiments, Syn-IF, was evolved for faster rescue of either ΔilvA or Δfes. Following multiple rounds of mutagenesis, two new proteins were selected, each capable of rescuing the selected function significantly faster than the parental protein. In each case, the evolved protein also lost the ability to rescue the unselected function. In both evolutionary trajectories, the original bifunctional generalist was evolved into a monofunctional specialist with enhanced activity. PMID:25420677

  3. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.

    PubMed

    Lansky, Shifra; Salama, Rachel; Solomon, Hodaya V; Feinberg, Hadar; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-11-01

    L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer

  4. Bifunctional Ligands for Inhibition of Tight-Binding Protein-Protein Interactions.

    PubMed

    Ivan, Taavi; Enkvist, Erki; Viira, Birgit; Manoharan, Ganesh Babu; Raidaru, Gerda; Pflug, Alexander; Alam, Kazi Asraful; Zaccolo, Manuela; Engh, Richard Alan; Uri, Asko

    2016-08-17

    The acknowledged potential of small-molecule therapeutics targeting disease-related protein-protein interactions (PPIs) has promoted active research in this field. The strategy of using small molecule inhibitors (SMIs) to fight strong (tight-binding) PPIs tends to fall short due to the flat and wide interfaces of PPIs. Here we propose a biligand approach for disruption of strong PPIs. The potential of this approach was realized for disruption of the tight-binding (KD = 100 pM) tetrameric holoenzyme of cAMP-dependent protein kinase (PKA). Supported by X-ray analysis of cocrystals, bifunctional inhibitors (ARC-inhibitors) were constructed that simultaneously associated with both the ATP-pocket and the PPI interface area of the catalytic subunit of PKA (PKAc). Bifunctional inhibitor ARC-1411, possessing a KD value of 3 pM toward PKAc, induced the dissociation of the PKA holoenzyme with a low-nanomolar IC50, whereas the ATP-competitive inhibitor H89 bound to the PKA holoenzyme without disruption of the protein tetramer. PMID:27389935

  5. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    PubMed Central

    Dehbashi, Sanaz; Pourmand, Mohammad Reza; Mashhadi, Rahil

    2016-01-01

    Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. PMID:27092228

  6. MULT1E/mIL-12: a novel bifunctional protein for natural killer cell activation.

    PubMed

    Tietje, A; Li, J; Yu, X; Wei, Y

    2014-05-01

    Natural killer (NK) cells have the potential to be effective killers of tumor cells. They are governed by inhibitory and activating receptors like NKG2D, whose ligands are normally upregulated in cells that are stressed, like cancer cells. Advanced cancer cells, however, have ways to reduce these ligands' expression, leaving them less detectable by NK cells. Along with these receptors, NK cells also require activating cytokines, like interleukin 12 (IL-12). The goal of this study is to develop a novel bi-functional fusion protein for enhanced NK cell activation. The proposed protein combines the extracellular domain of the NKG2D ligand Mouse UL-16-binding protein-like transcript 1 (MULT1E) and mouse IL-12 (mIL-12). It is hypothesized that when expressed by tumor cells, the protein will activate NK and other killer cells using the NKG2D receptor, and deliver mIL-12 to the NK cells where it can interact with the IL-12R and enhance cytotoxicity. The fusion protein, when expressed by engineered tumor cells, indeed activated NK cells in vitro as assayed by increased production of interferon-γ and cytotoxicity and significantly reduced tumor growth in vivo. Although the study is preliminary, the data suggest that the MULT1E/mIL-12 bi-functional fusion protein is an effective activator of NK cells for cancer treatment. PMID:24572784

  7. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition.

    PubMed

    Qi, Xiaoyue; Chen, Long; Zhang, Chaoqun; Xu, Xinyuan; Zhang, Yiding; Bai, Yu; Liu, Huwei

    2016-07-27

    A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe. PMID:27381638

  8. Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR.

    PubMed

    Thompson, Andrew R; Binder, Benjamin P; McCaffrey, Jesse E; Svensson, Bengt; Thomas, David D

    2015-01-01

    While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifunctional spin label (BSL) to measure muscle protein structure and dynamics. We demonstrate that bifunctional attachment eliminates nanosecond internal rotation of the spin label, thereby allowing the accurate measurement of protein backbone rotational dynamics, including microsecond-to-millisecond motions by saturation transfer EPR. BSL also allows for accurate determination of helix orientation and disorder in mechanically and magnetically aligned systems, due to the label's stereospecific attachment. Similarly, labeling with a pair of BSL greatly enhances the resolution and accuracy of distance measurements measured by double electron-electron resonance (DEER). Finally, when BSL is applied to a protein with high helical content in an assembly with high orientational order (e.g., muscle fiber or membrane), two-probe DEER experiments can be combined with single-probe EPR experiments on an oriented sample in a process we call BEER, which has the potential for ab initio high-resolution structure determination. PMID:26477249

  9. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution.

    PubMed

    Fan, Jiying; Wang, Zhanqing; Huang, Liying; Shen, Yaling

    2016-09-01

    VAS-TRAIL is a bifunctional fusion protein that combines anti-angiogenic activity with tumor-selective apoptotic activity for enhanced anti-tumor efficacy. VAS-TRAIL is expressed as inclusion body in Escherichia coli, but protein refolding is difficult to achieve and results in low yields of bioactive protein. In this study, we describe an efficient method for VAS-TRAIL refolding. The solubilization of aggregated VAS-TRAIL was achieved by a triple agent solution, which consists of an alkaline solution (pH 11.5) containing 0.4M l-arginine and 2M urea. The solubilized protein showed high purity and preserved secondary structure according to fluorescence properties. VAS-TRAIL refolding was performed through stepwise dialysis and resulted in more than 50% recovery of the soluble protein. The function of l-arginine was additive with alkaline pH, as shown by the significant improvement in refolding yield (≈30%) by l-arginine-containing solubilization solutions compared with alkaline solubilization solutions without l-arginine. The refolded VAS-TRAIL also showed β-sheet structures and the propensity for oligomerization. Bioassays showed that the refolded fusion protein exhibited the expected activities, including its apoptotic activities toward tumor and endothelial cells, which proposed its promising therapeutic potential. PMID:26358405

  10. Construction of three different recombinant scorpion fusion proteins with bifunctional activity.

    PubMed

    Cui, Y; Guo, G L; Liu, Y F; Mao, Y Z; Zhang, R; Wu, C F; Zhang, J H

    2011-06-01

    This is the first report of three different fusion proteins with an antitumor-analgesic peptide obtained from Chinese scorpion Buthus martensii Karsch (BmKAGAP). The fusion proteins were constructed in the form of chimeric toxins, aiming to obtain bifunctional analgesic and antitumor activity. The fusion proteins consisted of luteinizing hormone-releasing hormone (LHRH), three different types of flexible linkers (L1, Ser-Ser-His-His-His-His-His-His-Ser-Ser-Gly-Leu-Val-Pro-Arg-Gly-Ser-His-Met; L2, Gly-Gly-Gly-Ser-Gly-Gly-Gly-Ser; L3, Ser-Gly-Gly-Ser-Gly-Gly-Ser-Gly-Gly-Gly-Ser-Ser-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser), and BmKAGAP. The genes coding three fusion proteins were cloned and expressed in E. coli in soluble form. Following two successive column chromatographic separations, purified fusion proteins were obtained. These fusion proteins exhibited analgesic activity in mice and were cytotoxic to a hepatocellular carcinoma cell line Hep3B. PMID:21793303

  11. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  12. Bifunctional polyacrylamide based polymers for the specific binding of hexahistidine tagged proteins on gold surfaces.

    PubMed

    Thompson, Lucas B; Mack, Nathan H; Nuzzo, Ralph G

    2010-05-01

    We describe a modified bifunctional analogue of polyacrylamide that spontaneously forms self-assembled polymeric thin films on Au surfaces. The film is engineered to specifically bind histidine tagged proteins (6His), while simultaneously remaining inherently resistant to the non-specific adsorption of proteins in solution. The backbone of a polyacrylamide-co-n-acryloxysuccinimide copolymer is functionalized via tandem active ester (NHS) couplings with 3-(methylthio)propylamine (MTP) and nitrilotriacetic acid (NTA). The resulting functionalized polymers form stable and exceptionally hydrophilic thin films that are approximately 2-5 nm thick, a mass coverage that varies with the MTP graft density. These films are characterized using a variety of techniques (X-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), ellipsometry, surface plasmon resonance (SPR), and matrix assisted laser desorption ionization (MALDI)) to establish their structure and function. The protein resistance of the films, as demonstrated by their exposure to solutions of bovine serum albumin (BSA), can be modulated by the amount of MTP grafted to the polymer, which in turn, affects their mass coverage. We show that it is possible to specifically capture hexahistidine tagged proteins with low incidences of nonspecific adsorption using these materials, a discrimination quantified using surface plasmon resonance (SPR) at concentrations down to approximately 20 nM. These polymers also bind strongly to the surfaces of Au nanoparticles, stabilizing them against aggregation, providing them with a similar capacity to selectively bind 6His tagged proteins that can then be speciated using MALDI. PMID:20407699

  13. Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

    PubMed Central

    Kim, Yong-Il; Bhandari, Sushil; Lee, Joon No; Yoo, Kyeong-Won; Kim, Se-Jin; Oh, Gi-Su; Kim, Hyung-Jin; Cho, Meyoung; Kwak, Jong-Young; So, Hong-Seob; Park, Raekil; Choe, Seong-Kyu

    2014-01-01

    The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal β-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development. PMID:24552713

  14. Function and Localization Dynamics of Bifunctional Penicillin-Binding Proteins in Caulobacter crescentus

    PubMed Central

    Strobel, Wolfgang; Möll, Andrea; Kiekebusch, Daniela; Klein, Kathrin E.

    2014-01-01

    The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes. PMID:24532768

  15. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking.

    PubMed

    Dadová, Jitka; Vrábel, Milan; Adámik, Matej; Brázdová, Marie; Pohl, Radek; Fojta, Miroslav; Hocek, Michal

    2015-11-01

    N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given. PMID:26377361

  16. High-level expression, purification, and characterization of bifunctional ScFv-9R fusion protein.

    PubMed

    Zhang, Xiguang; Xie, Jiasen; Sun, Yan; Xu, Huijing; Du, Tonghua; Liu, Zixuan; Chen, Jinhui; Zheng, Zhong; Liu, Keqiang; Zhang, Jizhou; Kan, Mujie; Li, Xiaokun; Xiao, Yechen

    2014-06-01

    Fibroblast growth factor receptor 3 (FGFR3) is a noted proto-oncogene involved in the pathogenesis of many tumors, so more and more studies focus on the potential use of receptor kinase inhibitor and therapeutic antibodies against FGFR3. In this study, we designed a novel fusion protein containing the single-chain Fv (ScFv) against FGFR3 and 9-arginine, denoted as ScFv-9R. To achieve the high-level production and soluble expression, ScFv and ScFv-9R were fused with small ubiquitin-related modifier (Sumo) by polymerase chain reaction and expressed in Escherichia coli BL21 (DE3). The recombinant bacteria was induced by 0.5 mM isopropyl-β-D-thiogalactopyranoside for 20 h at 20 °C; supernatants of Sumo-ScFv was harvested and purified by DEAE Sepharose FF and Ni-NTA orderly, and supernatants of Sumo-ScFv-9R was harvested and purified by Ni-NTA. After cleaved by the Sumo protease, the recombinant ScFv or ScFv-9R was released from the fusion protein, respectively. The purity of ScFv or ScFV-9R was shown to be higher than 90 %, and their yield reached 3-5 mg per liter of bacterial culture. In vitro data showed that ScFV-9R can attenuate the phosphorylation of FGFR3 and ERK in the absence or presence of FGF9. Gel retardation assay showed that 1 μg of ScFv-9R could efficiently bind to about 4 pmol siRNA. Fluorescent microscope analysis showed that ScFv-9R can efficiently bind and deliver siRNA into RT112 cells. In conclusion, we use Sumo fusion system to acquire high-level production, soluble expression, and bifunctional activity of ScFv-9R in E. coli. Our results also revealed that ScFv-9R, as a novel carrier, may have potential applications in antitumor studies and pharmaceutical development. PMID:24519456

  17. Diagnosis of D-Bifunctional Protein Deficiency through Whole-Genome Sequencing: Implications for Cost-Effective Care

    PubMed Central

    Khromykh, Alina; Solomon, Benjamin D.; Bodian, Dale L.; Leon, Eyby L.; Iyer, Ramaswamy K.; Baker, Robin L.; Ascher, David P.; Baveja, Rajiv; Vockley, Joseph G.; Niederhuber, John E.

    2015-01-01

    D-Bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe disorder of peroxisomal fatty acid oxidation. Nonspecific clinical features may contribute to diagnostic challenges. We describe a newborn female with infantile-onset seizures and nonspecific mild dysmorphisms who underwent extensive genetic workup that resulted in the detection of a novel homozygous mutation (c.302+1_4delGTGA) in the HSD17B4 gene, consistent with a diagnosis of D-bifunctional protein deficiency. By comparing the standard clinical workup to diagnostic analysis performed through research-based whole-genome sequencing (WGS), which independently identified the causative mutation, we demonstrated the ability of genomic sequencing to serve as a timely and cost-effective diagnostic tool for the molecular diagnosis of apparent and occult newborn diseases. As genomic sequencing becomes more available and affordable, we anticipate that WGS and related omics technologies will eventually replace the traditional tiered approach to newborn diagnostic workup. PMID:26733776

  18. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    PubMed

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  19. The use of bifunctional polyethyleneglycol derivatives for coupling of proteins to and cross-linking of collagen matrices.

    PubMed

    Chen, J-S; Noah, E M; Pallua, N; Steffens, G C M

    2002-11-01

    The realization of three-dimensional (3D) degradable matrices which slowly release bio-active components represents a major challenge in the field of tissue engineering. In this paper we report on the usage of commercially available bifunctional agents for both the covalent coupling of proteins to and the cross-linking of collagen matrices. Proteins - horse radish peroxidase (HRP) was used as a model protein - were cross-linked with either a homobifunctional (disuccinimidyldisuccinatepolyethylene-glycol) or a heterobifunctional (N-hydroxysuccinimidylvinylsulfonepolyethyleneglycol) agent. In the case of the heterobifunctional cross-linking agent the collagen matrices were previously modified with succinimidylacetylthioacetate in order to introduce sulfhydryl groups. As compared with control experiments a 10-fold and 50-fold increase of immobilized proteins were achieved with the homobifunctional and heterobifunctional cross-linker resp. The HRP-PEG conjugates demonstrated a better long-term stability as compared to the non-treated HRP. The effects of the cross-linking agents and the thiolation reagent succinimidylacetylthio acetate on the in vitro degradation of the collagen matrices by collagenase were also investigated. In particular the reaction with succinimidylacetylthio acetate appears to offer interesting opportunities both for coupling active proteins and modulating the degradation times of collagen matrices. PMID:15348172

  20. Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein.

    PubMed

    Wang, Welson Wen-Shang; Das, Dipankar; McQuarrie, Stephen A; Suresh, Mavanur R

    2007-03-01

    We have developed a universal ovarian cancer cell targeting vehicle that can deliver biotinylated therapeutic drugs. A single-chain antibody variable domain (scFv) that recognizes the CA125 antigen of ovarian cancer cells was fused with a core-streptavidin domain (core-streptavidin-VL-VH and VL-VH-core-streptavidin orientations) using recombinant DNA technology and then expressed in Escherichia coli using the T7 expression system. The bifunctional fusion protein (bfFp) was expressed in a shaker flask culture, extracted from the periplasmic soluble protein, and affinity purified using an IMAC column. The two distinct activities (biotin binding and anti-CA125) of the bfFp were demonstrated using ELISA, Western blot and confocal laser-scanning microscopy (CLSM). The ELISA method utilized human NIH OVCAR-3 cells along with biotinylated bovine serum albumin (B-BSA) or biotinylated liposomes, whereas, the Western blot involved probing with B-BSA. The CLSM study has shown specificity in binding to the OVCAR-3 cell-line. ELISA and Western blot studies have confirmed the bifunctional activity and specificity. In the presence of bfFp, there was enhanced binding of biotinylated antigen and liposome to OVCAR-3 cells. In contrast, the control EMT6 cells, which do not express the CA125 antigen, showed minimal binding of the bfFp. Consequently, bfFp based targeting of biotinylated therapeutic drugs, proteins, liposomes, or nanoparticles could be an alternative, convenient method to deliver effective therapy to ovarian cancer patients. Peritoneal infusion of the bfFp-therapeutic complex could also be effective in locally targeting the most common site of metastatic spread. PMID:17257818

  1. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor.

    PubMed

    Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C; Morse, Daniel E

    2006-04-11

    The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein's catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (gamma-Ga(2)O(3)). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518

  2. The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain

    PubMed Central

    LaPlante, Janice M.; Falardeau, John L.; Brown, Edward M.; Slaugenhaupt, Susan A.; Vassilev, Peter M.

    2011-01-01

    Phospholipase modulators have been shown to affect the topology of lipid bilayers and the formation of tubulo-vesicular structures, but the specific endogenous phospholipases involved have yet to be identified. Here we show that TRPML1 (MLN1), a Ca2+-permeable channel contributes to membrane remodeling through a serine-lipase consensus domain, and thus represents a novel type of bifunctional protein. Remarkably, this serine lipase active site determines the ability of MLN1 to generate tubulo-vesicular extensions in mucolipin-1-expressing oocytes, human fibroblasts and model membrane vesicles. Our demonstration that MLN1 is involved in membrane remodeling and the formation of extensions suggests that it may play a role in the formation of cellular processes linked to the late endosome/lysosome (LE/L) pathway. MLN1 is absent or mutated in patients with mucolipidosis IV (MLIV), a lysosomal disorder with devastating neurological and other consequences. This study provides potential insight into the pathophysiology of MLIV. PMID:21256127

  3. Bi-functional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells

    PubMed Central

    O'Reilly, Mary K.; Collins, Brian E.; Han, Shoufa; Liao, Liang; Rillahan, Cory; Kitov, Pavel I.; Bundle, David R.; Paulson, James C.

    2008-01-01

    CD22 is a B cell specific sialic-acid-binding immunoglobulin-like lectin (Siglec) whose function as a regulator of B cell signaling is modulated by its interaction with glycan ligands bearing the sequence NeuAcα2-6Gal. To date, only highly multivalent polymeric ligands (n=450) have achieved sufficient avidity to bind to CD22 on native B cells. Here we demonstrate that a synthetic bi-functional molecule comprising a ligand of CD22 linked to an antigen (nitrophenol; NP) can use a monoclonal anti-NP-IgM as a decavalent protein scaffold to efficiently drive assembly of IgM-CD22 complexes on the surface of native B cells. Surprisingly, anti-NP antibodies of lower valency, IgA (n =4) and IgG (n =2), were also found to drive complex formation, though with lower avidity. Ligands bearing alternate linkers of variable length and structure were constructed to establish the importance of a minimal length requirement, and versatility in the structural requirement. We show that the ligand drives assembly of IgM complexes exclusively on the surface of B cells and not other classes of white blood cells that do not express CD22, which lends itself to the possibility of targeting B cells in certain hematopoietic malignancies. PMID:18505252

  4. Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways.

    PubMed Central

    Qui, H F; Dubois, E; Messenguy, F

    1991-01-01

    ARGRII is a regulatory protein which regulates the arginine anabolic and catabolic pathways in combination with ARGRI and ARGRIII. We have investigated, by deletion analysis and fusion to LexA protein, the different domains of ARGRII protein. In contrast to other yeast regulatory proteins, 92% of ARGRII is necessary for its anabolic repression function and 80% is necessary for its catabolic activator function. We can define three domains in this protein: a putative DNA-binding domain containing a zinc finger motif, a region more involved in the repression activity located around the RNase-like sequence, and a large activation domain. Images PMID:2005903

  5. Bifunctional DTPA-type ligand

    SciTech Connect

    Gansow, O.A.; Brechbiel, M.W.

    1990-03-26

    The subject matter of the invention relates to bifunctional cyclohexyl DTPA ligands and methods of using these compounds. Specifically, such ligands are useful for radiolabeling proteins with radioactive metals, and can consequently be utilized with respect to radioimmunoimaging and/or radioimmunotherapy.

  6. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization

    PubMed Central

    Quinlan, Anna; Murat, Dorothée; Vali, Hojatollah; Komeili, Arash

    2011-01-01

    Summary Magnetotactic bacteria contain nanometer-sized, membrane-bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB-1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of magnetosome proteins. In this work we use a directed genetic approach to find that MamE, and another predicted magnetosome-associated protease, MamO, likely function as proteases in vivo. However, as opposed to the complete loss of mamE where no biomineralization is observed, the protease-deficient variant of this protein still supports the initiation and formation of small, 20 nm-sized crystals of magnetite, too small to hold a permanent magnetic dipole moment. This analysis also reveals that MamE is a bifunctional protein with a protease-independent role in magnetosome protein localization and a protease-dependent role in maturation of small magnetite crystals. Together these results imply the existence of a previously unrecognized “checkpoint” in biomineralization where MamE moderates the completion of magnetite formation and thus committal to magneto-aerotaxis as the organism’s dominant mode of navigating the environment. PMID:21414040

  7. Construction and evaluation of a novel bifunctional phenylalanine-formate dehydrogenase fusion protein for bienzyme system with cofactor regeneration.

    PubMed

    Jiang, Wei; Fang, Bai-Shan

    2016-05-01

    Phenylalanine dehydrogenase (PheDH) plays an important role in enzymatic synthesis of L-phenylalanine for aspartame (sweetener) and detection of phenylketonuria (PKU), suggesting that it is important to obtain a PheDH with excellent characteristics. Gene fusion of PheDH and formate dehydrogenase (FDH) was constructed to form bifunctional multi-enzymes for bioconversion of L-phenylalanine coupled with coenzyme regeneration. Comparing with the PheDH monomer from Microbacterium sp., the bifunctional PheDH-FDH showed noteworthy stability under weakly acidic and alkaline conditions (pH 6.5-9.0). The bifunctional enzyme can produce 153.9 mM L-phenylalanine with remarkable performance of enantiomers choice by enzymatic conversion with high molecular conversion rate (99.87 %) in catalyzing phenylpyruvic acid to L-phenylalanine being 1.50-fold higher than that of the separate expression system. The results indicated the potential application of the PheDH and PheDH-FDH with coenzyme regeneration for phenylpyruvic acid analysis and L-phenylalanine biosynthesis in medical diagnosis and pharmaceutical field. PMID:26819086

  8. A novel bifunctional histone protein in Streptomyces: a candidate for structural coupling between DNA conformation and transcription during development and stress?

    PubMed Central

    Aldridge, Matthew; Facey, Paul; Francis, Lewis; Bayliss, Sion; Del Sol, Ricardo; Dyson, Paul

    2013-01-01

    Antibiotic-producing Streptomyces are complex bacteria that remodel global transcription patterns and their nucleoids during development. Here, we describe a novel developmentally regulated nucleoid-associated protein, DdbA, of the genus that consists of an N-terminal DNA-binding histone H1-like domain and a C-terminal DksA-like domain that can potentially modulate RNA polymerase activity in conjunction with ppGpp. Owing to its N-terminal domain, the protein can efficiently bind and condense DNA in vitro. Loss of function of this DNA-binding protein results in changes in both DNA condensation during development and the ability to adjust DNA supercoiling in response to osmotic stress. Initial analysis of the DksA-like activity of DdbA indicates that overexpression of the protein suppresses a conditional deficiency in antibiotic production of relA mutants that are unable to synthesise ppGpp, just as DksA overexpression in Escherichia coli can suppress ppGpp0 phenotypes. The null mutant is also sensitive to oxidative stress owing to impaired upregulation of transcription of sigR, encoding an alternative sigma factor. Consequently, we propose this bifunctional histone-like protein as a candidate that could structurally couple changes in DNA conformation and transcription during the streptomycete life-cycle and in response to stress. PMID:23525459

  9. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation.

    PubMed

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  10. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  11. Sperm surface protein PH-20 is bifunctional: one activity is a hyaluronidase and a second, distinct activity is required in secondary sperm-zona binding.

    PubMed

    Hunnicutt, G R; Primakoff, P; Myles, D G

    1996-07-01

    In previous studies, we have found that the sperm membrane protein PH-20 acts during two different stages of fertilization. On acrosome-intact sperm, PH-20 has a hyaluronidase activity that is required for sperm penetration through the cumulus cell layer that surrounds the oocyte. On acrosome-reacted sperm, PH-20 has a required function in sperm-zona binding (secondary binding). Because hyaluronic acid (HA) has been detected in the zona pellucida, secondary sperm-zona adhesion could depend on repetitive binding and hydrolysis of HA by PH-20 acting as a hyaluronidase. Alternatively, PH-20 may be bifunctional and have a second, different activity required for secondary binding. To distinguish between these two possibilities, in this study we used reagents that inhibit either PH-20's function in sperm-zona binding or its hyaluronidase activity. We found that an anti-PH-20 monoclonal antibody that inhibited sperm-zona binding (approximately 90%) had no effect on hyaluronidase activity. Conversely, apigenin, a hyaluronidase inhibitor, blocked PH-20 hyaluronidase activity 93% without inhibiting sperm-zona binding. Similarly, another anti-PH-20 monoclonal antibody that inhibited hyaluronidase activity 95% only partially inhibited sperm-zona binding (approximately 45%). We also extensively pretreated oocytes with hyaluronidase to remove all accessible HA on or in the zona pellucida and found little or no effect on secondary sperm-zona binding. Our results suggest that PH-20 is bifunctional and has two activities: a hyaluronidase activity and a second, separate activity required for secondary sperm-zona binding. PMID:8793062

  12. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family.

    PubMed Central

    Strom, M S; Nunn, D N; Lory, S

    1993-01-01

    Precursors of the type IV pilins of a number of bacterial pathogens, as well as related proteins involved in extracellular protein export and DNA uptake, are synthesized with short basic leader sequences. Maturation of these proteins involves two consecutive posttranslational modifications. The leader sequence is first proteolytically removed by specialized endopeptidases, of which the prototype is encoded by the pilD gene of Pseudomonas aeruginosa. Subsequently, the amino termini of these proteins are methylated. Here we demonstrate that PilD, in addition to cleaving the amino-terminal leader sequences of prepilin, also catalyzes N-methylation of the amino-terminal phenylalanine of the mature pilin, using S-adenosyl-L-methionine as a methyl donor. Thus, to our knowledge, PilD is the first characterized bacterial N-methyltransferase. Complete inhibition of N-methylation, but not peptide cleavage, by structural analogues of S-adenosyl-L-methionine suggests that PilD is a bifunctional enzyme with proteolytic and methylation activities carried out within two distinct active sites. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8096341

  13. Cross-linking with bifunctional reagents and its application to the study of the molecular symmetry and the arrangement of subunits in hexameric protein oligomers.

    PubMed

    Azem, Abdussalam; Tsfadia, Yossi; Hajouj, Omar; Shaked, Isabella; Daniel, Ezra

    2010-04-01

    Cross-linking with a bifunctional reagent and subsequent SDS gel electrophoresis is a simple but effective method to study the symmetry and arrangement of subunits in oligomeric proteins. In this study, theoretical expressions for the description of cross-linking patterns were derived for protein homohexamers through extension of the method used for tetramers by Hajdu et al. (1976). The derived equations were used for the analysis of cross-linking by glutardialdehyde of four protein hexamers: beef liver glutamate dehydrogenase (GDH), jack bean urease, hemocyanin from the spiny lobster Panulirus pencillatus (PpHc), Escherichia coli glutamate decarboxylase (GDC) and for analysis of published data on the cross-linking of hexameric E. coli rho by dimethyl suberimidate. Best fit models showed that the subunits in the first four proteins are arranged according to D(3) symmetry in two layers, each subunit able to cross-link to three neighboring subunits for GDH and urease, or to four for PpHc and GDC. The findings indicate a dimer-of-trimers eclipsed arrangement of subunits for GDH and urease and a trimer-of-dimers staggered one for PpHc and GDC. In rho, the subunits are arranged according to D(3) symmetry in a trimer-of-dimers ring. The conclusions from cross-linking of GDH and GDC, PpHc and rho are consistent with results from X-ray crystal structure, those for urease with findings from electron microscopy. PMID:20005307

  14. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    PubMed Central

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  15. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUN

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, is an innovative extension of zero-valent metal (ZVM) technology for ground water remediation. Bifunctional aluminum has a dual functionality of simultaneously decomposing both reductively- an...

  16. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  17. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  18. Tight bifunctional hierarchical catalyst.

    PubMed

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  19. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  20. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  1. Mouse interleukin-12/FasTI: A novel bi-functional fusion protein for cancer immuno/gene therapy.

    PubMed

    Yang, Xi; Tietje, Ashlee H; Yu, Xianzhong; Wei, Yanzhang

    2016-06-01

    Whereas cancer immunotherapy with cytokines in recent research was demonstrated effective in activating immune response against tumor cells, one major obstacle with the use of these cytokines is their severe side effects when delivered systemically at high doses. Another challenge is that advanced tumor cells often evade immunosurveillance of the immune system as well as of the Fas-mediated apoptosis by various mechanisms. We report the design and preliminary evaluation of the antitumor activity of a novel fusion protein-mIL-12/FasTI, consisting of mouse interleukin-12 and the transmembrane and intracellular domains of mouse Fas. The fusion construct (pmIL-12/FasTI) was transfected into mouse lung carcinoma cell line TC-1. Stable cell clones expressing the fusion protein were established as assayed by RT-PCR and immunohistochemistry. ELISA and cell proliferation analyses demonstrated that NK cells were effectively activated by the fusion protein with increased IFN-γ production and cytotoxicity. Enhanced caspase-3 activity of the clones when co-cultured with NK cells indicated that apoptosis was induced through Fas/FasL signaling pathway. The preliminary results suggest a synergized anticancer activity of the fusion protein. It may represent a promising therapeutic agent for cancer treatment. PMID:27081758

  2. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency

    PubMed Central

    2012-01-01

    Background D-bifunctional protein (DBP) deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old) with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS) platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val) and hydratase domain (c.1547T>C; p.Ile516Thr) of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4). These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP hydratase and dehydrogenase

  3. [The construction of recombinant adenovirus expressing bifunctional fusion protein sCAR-EGF and the detection of its activity].

    PubMed

    Ren, Peng-Kang; Wang, Feng; Li, Hui-Ming; Li, Zong-Hai; Huang, Qian

    2006-09-01

    To improve the targeting of adenovirus vector for gene therapy, a fusion gene sCAR-EGF, in which epidermal growth factor gene was fused to the 3' end of extracellular Coxsackie virus-adenovirus receptor gene, was constructed and cloned into shuttle plasmid pDC315 to obtain a recombinant plasmid pDC315-sCAR-EGF. With the AdMax system, AD-293 cells were co-transfected with pDC315-sCAR-EGF and adenovirus genomic plasmid pBHGloxdeltaE13cre. Through high efficiency site specific recombination, a replication-defective adenovirus Ad5-CMV-sCAR-EGF was constructed. The recombinant adenovirus was analyzed by PCR and Western blotting, the results indicated that Ad5-CMV-sCAR-EGF contained the fusion gene sCAR-EGF, and the adenovirus infected cells was induced to produce and secrete the fusion protein into the supernatant. We have demonstrated that the fusion protein sCAR-EGF is helpful for elevating the infection efficiency of Ad5-CMV-luc with the reporter gene in vitro, which providing a new approach to the gene therapy for tumors overexpressing EGFR. PMID:17037191

  4. Discovery of Bifunctional Oncogenic Target Inhibitors against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K).

    PubMed

    Van Dort, Marcian E; Hong, Hao; Wang, Hanxiao; Nino, Charles A; Lombardi, Rachel L; Blanks, Avery E; Galbán, Stefanie; Ross, Brian D

    2016-03-24

    The synthesis of a series of single entity, bifunctional MEK1/PI3K inhibitors achieved by covalent linking of structural analogs of the ATP-competitive PI3K inhibitor ZSTK474 and the ATP-noncompetitive MEK inhibitor PD0325901 is described. Inhibitors displayed potent in vitro inhibition of MEK1 (0.015 < IC50 (nM) < 56.7) and PI3K (54 < IC50 (nM) < 341) in enzymatic inhibition assays. Concurrent MEK1 and PI3K inhibition was demonstrated with inhibitors 9 and 14 in two tumor cell lines (A549, D54). Inhibitors produced dose-dependent decreased cell viability similar to the combined administration of equivalent doses of ZSTK474 and PD0325901. In vivo efficacy of 14 following oral administration was demonstrated in D54 glioma and A549 lung tumor bearing mice. Compound 14 showed a 95% and 67% inhibition of tumor ERK1/2 and Akt phosphorylation, respectively, at 2 h postadministration by Western blot analysis, confirming the bioavailability and efficacy of this bifunctional inhibitor strategy toward combined MEK1/PI3K inhibition. PMID:26943489

  5. Analyzing the Case for Bifunctional Catalysis.

    PubMed

    Andersen, Mie; Medford, Andrew J; Nørskov, Jens K; Reuter, Karsten

    2016-04-18

    Bifunctional coupling of two different catalytic site types has often been invoked to explain experimentally observed enhanced catalytic activities. We scrutinize such claims with generic scaling-relation-based microkinetic models that allow exploration of the theoretical limits for such a bifunctional gain for several model reactions. For sites at transition-metal surfaces, the universality of the scaling relations between adsorption energies largely prevents any improvements through bifunctionality. Only the consideration of systems that involve the combination of different materials, such as metal particles on oxide supports, offers hope for significant bifunctional gains. PMID:27005967

  6. Specific binding of nuclear proteins to a bifunctional promoter element upstream of the H1/AC box of the testis-specific histone H1t gene.

    PubMed

    Wolfe, Steven A; Grimes, Sidney R

    2003-06-01

    The testis-specific histone H1t gene is transcribed exclusively in primary spermatocytes during spermatogenesis. Studies with transgenic mice show that 141 base pairs (bp) of the H1t proximal promoter accompanied with 800 bp of downstream sequence are sufficient for tissue-specific transcription. Nuclear proteins from testis and pachytene spermatocytes produce footprints spanning the region covering the repressor element (RE) from 100 to 125 nucleotides upstream of the H1t transcriptional initiation site. Only testis nuclear proteins bind to the 5'-end of the element and produce a unique, low-mobility complex in electrophoretic mobility shift assays. This testis complex is distinct from the complex formed by a repressor protein derived from several cell lines that binds to the 3'-end of the element. The testis complex band is formed when using nuclear proteins from primary spermatocytes, where the H1t gene is transcribed, and band intensity drops 70%-80% when using nuclear proteins from early spermatids, where H1t gene transcription ceases. Protein-DNA cross-linking experiments using testis nuclear proteins produce electrophoretic bands of 59, 52, and 50 kDa on SDS/PAGE gels. PMID:12606375

  7. Interaction of Heat Shock Protein 90 and the Co-chaperone Cpr6 with Ura2, a Bifunctional Enzyme Required for Pyrimidine Biosynthesis*

    PubMed Central

    Zuehlke, Abbey D.; Wren, Nicholas; Tenge, Victoria; Johnson, Jill L.

    2013-01-01

    The molecular chaperone heat shock protein 90 (Hsp90) is an essential protein required for the activity and stability of multiple proteins termed clients. Hsp90 cooperates with a set of co-chaperone proteins that modulate Hsp90 activity and/or target clients to Hsp90 for folding. Many of the Hsp90 co-chaperones, including Cpr6 and Cpr7, contain tetratricopeptide repeat (TPR) domains that bind a common acceptor site at the carboxyl terminus of Hsp90. We found that Cpr6 and Hsp90 interacted with Ura2, a protein critical for pyrimidine biosynthesis. Mutation or inhibition of Hsp90 resulted in decreased accumulation of Ura2, indicating it is an Hsp90 client. Cpr6 interacted with Ura2 in the absence of stable Cpr6-Hsp90 interaction, suggesting a direct interaction. However, loss of Cpr6 did not alter the Ura2-Hsp90 interaction or Ura2 accumulation. The TPR domain of Cpr6 was required for Ura2 interaction, but other TPR containing co-chaperones, including Cpr7, failed to interact with Ura2 or rescue CPR6-dependent growth defects. Further analysis suggests that the carboxyl-terminal 100 amino acids of Cpr6 and Cpr7 are critical for specifying their unique functions, providing new information about this important class of Hsp90 co-chaperones. PMID:23926110

  8. A bifunctional converter: fluorescein quenching scFv/fluorogen activating protein for photostability and improved signal to noise in fluorescence experiments.

    PubMed

    Saunders, Matthew J; Block, Ethan; Sorkin, Alexander; Waggoner, Alan S; Bruchez, Marcel P

    2014-08-20

    Monoclonal antibodies are one of the most useful and ubiquitous affinity reagents used in the biological sciences. Immunostaining of fixed and live cells for microscopy or cytometry measurements frequently employs fluorescently labeled antibodies, in particular fluorescein-labeled antibodies. This dye emits light at a wavelength overlapping with cellular autofluorescence, making it difficult to measure antibody binding to proteins of relatively low copy number or in cells of high green autofluorescence. A number of high affinity fluorescein binding antibodies and antibody domains have been developed that quench the dye's fluorescence. Using a fluorescein-binding recombinant antibody domain genetically fused to a fluorogen activating protein (FAP), we demonstrate a molecular converter capable of binding and quenching fluorescein, while binding and activating a fluorogenic triarylmethane dye. This reagent converts fluorescein conjugates to far-red fluorescent probes, where cellular autofluorescence is low, improving signal-to-background of cell-based antibody binding measurements by ∼7-fold. Microscopy experiments show colocalization of both fluorescein and MG fluorescence. This dual affinity fluorescein-quenching-FAP can also be used to convert fluorescein to the red fluorescing MG fluorogen on biological molecules other than antibodies. PMID:25072845

  9. Bifunctional fusion proteins of the human engineered antibody domain m36 with human soluble CD4 are potent inhibitors of diverse HIV-1 isolates

    PubMed Central

    Chen, Weizao; Xiao, Xiaodong; Wang, Yanping; Zhu, Zhongyu; Dimitrov, Dimiter S.

    2010-01-01

    Currently used antiretroviral therapy is highly successful but there is still a need for new effective and safe prophylactics and therapeutics. We have previously identified and characterized a human engineered antibody domain (eAd), m36, which exhibits potent broadly neutralizing activity against HIV-1 by targeting a highly conserved CD4 binding-induced (CD4i) structure on the viral envelope glycoprotein (Env) gp120. m36 has very small size (~15 kDa) but is highly specific and is likely to be safe in long-term use thus representing a novel class of potentially promising HIV-1 inhibitors. Major problems with the development of m36 as a candidate therapeutic are possible short serum half life and lack of effector functions that could be important for effective protection in vivo. Fusion of m36 to human IgG1 Fc resulted in dramatically diminished neutralization potency most likely due to the sterically restricted nature of the m36 epitope that limits access of large molecules. To confer effector functions and simultaneously increase the potency, we first matured m36 by panning and screening a mutant library for mutants with increased binding to gp120. We next fused m36 and its mutants with the first two domains (soluble CD4, sCD4) of the human CD4 by using a polypeptide linker. Our results showed that the selected m36 mutants and the sCD4-fusion proteins exhibited more potent antiviral activities than m36. The m36-sCD4 fusion proteins with human IgG1 Fc showed even higher potency likely due to their bivalency and increased avidity although with a greater increase in molecular size. Our data suggest that m36 derivatives are promising HIV-1 candidate therapeutics and tools to study highly conserved gp120 structures with implications for understanding mechanisms of entry and design of vaccine immunogens and small molecule inhibitors. PMID:20709110

  10. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.

    PubMed

    de Moraes, L M; Astolfi-Filho, S; Oliver, S G

    1995-11-01

    Eight constructions involving the Bacillus subtilis alpha-amylase gene (amyE), a mouse pancreatic alpha-amylase cDNA (AMY2) and an Aspergillus awamori glucoamylase cDNA (glaA) were prepared: three fusion genes, involving one alpha-amylase and the glucoamylase, two double-cassette plasmids (expressing one or other alpha-amylase and the glucoamylase) and three single-cassette plasmids, expressing the individual coding sequences. Following transformation of each plasmid into Saccharomyces cerevisiae, a plate test revealed that the largest starch hydrolysis halo was produced by the strain bearing the B. subtilis alpha-amylase/glucoamylase fusion (BsAAase/GAase), and the smallest halo by the one expressing the mouse pancreatic alpha-amylase/glucoamylase fusion (MAAase/GAase). When assayed for enzymatic activity in liquid medium, the strains bearing the fusion and the double-cassette plasmids involving B. subtilis alpha-amylase and the glucoamylase exhibited both enzymic activities. Moreover, the BsAAase/GAase hybrid was able to adsorb and digest raw starch. The MAAse/GAase fusion protein was found to exhibit only alpha-amylase activity. Finally, the capacity to grow on soluble and corn starch was tested in liquid medium for the strains bearing plasmids coding for the fusion proteins and the separate enzymes. The strain carrying the double-cassette BsAAase + GAase, which produced one of the smallest hydrolysis haloes in the place test, showed the best performance, not only in digesting soluble and corn starch but also in using all of the hydrolysis products for growth. The transformant bearing the BsAAase/GAase fusion was able to grow on soluble starch, but not on corn starch. PMID:8590658

  11. Insect cell production of a secreted form of human alpha(1)-proteinase inhibitor as a bifunctional protein which inhibits neutrophil elastase and has growth factor-like activities.

    PubMed

    Curtis, Heather; Sandoval, Carolyn; Oblin, Colette; Difalco, Marcos R; Congote, L Fernando

    2002-01-31

    alpha(1)-proteinase inhibitor (API) is a potential therapeutic agent in all diseases in which elastase released by neutrophils has to be effectively neutralized. We ligated the cDNA of human API to the C-terminal section of an insulin-like growth factor II analogue (BOMIGF), known to be properly folded and secreted in insect cells using the baculovirus expression system. The BOMIGF-API chimera was recovered from the incubation medium of the infected cells. It shared the properties of both IGFs and API. It inhibited neutrophil elastase and formed SDS-stable complexes with the enzyme. The attachment of the large API protein to the C-terminal end of the 10 kDa IGF analogue did not destroy the IGF-mediated stimulation of thymidine incorporation into bovine fetal erythroid cells. We tested the capacity of the chimera to affect fibronectin-dependent TF-1 cell migration. BOMIGF-API significantly restored TF-1 cell migration in the presence of elastase, which is the enzyme of burn wound fluid most probably involved in fibronectin degradation. Some of the beneficial uses for this chimera may include all instances for which inhibition of elastase-mediated extracellular matrix destruction as well as stimulation of cell migration and proliferation are required for tissue repair. PMID:11690693

  12. Tailored bifunctional polymer for plutonium monitoring.

    PubMed

    Paul, Sumana; Pandey, Ashok K; Kumar, Pranaw; Kaity, Santu; Aggarwal, Suresh K

    2014-07-01

    Monitoring of actinides with sophisticated conventional methods is affected by matrix interferences, spectral interferences, isobaric interferences, polyatomic interferences, and abundance sensitivity problems. To circumvent these limitations, a self-supported disk and membrane-supported bifunctional polymer were tailored in the present work for acidity-dependent selectivity toward Pu(IV). The bifunctional polymer was found to be better than the polymer containing either a phosphate group or a sulfonic acid group in terms of (i) higher Pu(IV) sorption efficiency at 3-4 mol L(-1) HNO3, (ii) selective preconcentration of Pu(IV) in the presence of a trivalent actinide such as Am(III), and (iii) preferential sorption of Pu(IV) in the presence of a large excess of U(VI). The bifunctional polymer was formed as a self-supported matrix by bulk polymerization and also as a 1-2 μm thin layer anchored on a microporous poly(ether sulfone) by surface grafting. The proportions of sulfonic acid and phosphate groups in both the self-supported disk and membrane-supported bifunctional polymer were found to be the same as expected from the mole proportions of monomers in polymerizing solutions used for syntheses. α radiography by a solid-state nuclear track detector indicated fairly homogeneous anchoring of the bifunctional polymer on the surface of the membrane. Pu(IV) preconcentrated on a single bifunctional bead was used for determination of the Pu isotopic composition by thermal ionization mass spectrometry. The membrane-supported bifunctional polymer was used for preconcentration and subsequent quantification of Pu(IV) by α spectrometry using the absolute efficiency at a fixed counting geometry. The analytical performance of the membrane-supported-bifunctional-polymer-based α spectrometry method was found to be highly reproducible for assay of Pu(IV) in a variety of complex samples. PMID:24901969

  13. Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme.

    PubMed

    Straube, Ronny

    2013-10-15

    Regulation by covalent modification is a common mechanism to transmit signals in biological systems. The modifying reactions are catalyzed either by two distinct converter enzymes or by a single bifunctional enzyme (which may employ either one or two catalytic sites for its opposing activities). The reason for this diversification is unclear, but contemporary theoretical models predict that systems with distinct converter enzymes can exhibit enhanced sensitivity to input signals whereas bifunctional enzymes with two catalytic sites are believed to generate robustness against variations in system's components. However, experiments indicate that bifunctional enzymes can also exhibit enhanced sensitivity due to the zero-order effect, raising the question whether both phenomena could be understood within a common mechanistic model. Here, I argue that this is, indeed, the case. Specifically, I show that bifunctional enzymes with two catalytic sites can exhibit both ultrasensitivity and concentration robustness, depending on the kinetic operating regime of the enzyme's opposing activities. The model predictions are discussed in the context of experimental observations of ultrasensitivity and concentration robustness in the uridylylation cycle of the PII protein, and in the phosphorylation cycle of the isocitrate dehydrogenase, respectively. PMID:24138868

  14. Bifunctional hydrogen bonds in monohydrated cycloether complexes.

    PubMed

    Vallejos, Margarita M; Angelina, Emilio L; Peruchena, Nélida M

    2010-03-01

    In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds. PMID:20136161

  15. Bifunctional crosslinking ligands for transthyretin

    PubMed Central

    Mangione, P. Patrizia; Deroo, Stéphanie; Ellmerich, Stephan; Bellotti, Vittorio; Kolstoe, Simon; Wood, Stephen P.; Robinson, Carol V.; Smith, Martin D.; Tennent, Glenys A.; Broadbridge, Robert J.; Council, Claire E.; Thurston, Joanne R.; Steadman, Victoria A.; Vong, Antonio K.; Swain, Christopher J.; Pepys, Mark B.; Taylor, Graham W.

    2015-01-01

    Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR–ligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms. PMID:26400472

  16. An enzymatic approach to bifunctional chelating agents.

    PubMed

    Minazzi, Paolo; Lattuada, Luciano; Menegotto, Ivan G; Giovenzana, Giovanni B

    2014-09-21

    Bifunctional chelating agents (BFCAs) combine the complexing properties of a multidentate ligand with the presence of a free reactive functional group, mainly devoted to conjugation purposes. Indeed, products obtained by conjugation of a BFCA to a biomolecule and coordination of a suitable metal ion are widely applied in medicine nowadays as diagnostic and therapeutic agents. BFCAs are generally prepared through multi-step syntheses and with extensive application of protection-deprotection strategies, due to the large number of functional groups involved. Hydrolytic enzymes, with their unique chemoselectivity, provided the best results in the preparation of three different BFCAs based on very useful and well known ligand platforms. PMID:25060174

  17. Bifunctional Gallium-68 Chelators: Past, Present, and Future.

    PubMed

    Spang, Philipp; Herrmann, Christian; Roesch, Frank

    2016-09-01

    This article reviews the development of bifunctional chelates for synthesising (68)Ga radiopharmaceuticals. It structures the chelates into groups of macrocycles, nonmacrocycles, and chimeric derivatives. The most relevant bifunctional chelates are discussed in chelate structure, parameters of (68)Ga-labeling, and stability of the (68)Ga-chelate complexes. Furthermore those derivatives are included, where (67)Ga was applied instead of (68)Ga. A particular feature discussed is the ability of certain bifunctional chelate structures to function in kit-type preparation of the (68)Ga radiopharmaceuticals. Currently, nonmacrocyclic and chimeric derivates attract particular attention such as THP-derivates and DATA-derivates. PMID:27553464

  18. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  19. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR. PMID:26720587

  20. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle. PMID:14756315

  1. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials. PMID:26496655

  2. Identification of a Bifunctional Maize C- and O-Glucosyltransferase*

    PubMed Central

    Falcone Ferreyra, María Lorena; Rodriguez, Eduardo; Casas, María Isabel; Labadie, Guillermo; Grotewold, Erich; Casati, Paula

    2013-01-01

    Flavonoids accumulate in plant vacuoles usually as O-glycosylated derivatives, but several species can also synthesize flavonoid C-glycosides. Recently, we demonstrated that a flavanone 2-hydroxylase (ZmF2H1, CYP93G5) converts flavanones to the corresponding 2-hydroxy derivatives, which are expected to serve as substrates for C-glycosylation. Here, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT708A6), and its activity was characterized by in vitro and in vivo bioconversion assays. In vitro assays using 2-hydroxyflavanones as substrates and in vivo activity assays in yeast co-expressing ZmF2H1 and UGT708A6 show the formation of the flavones C-glycosides. UGT708A6 can also O-glycosylate flavanones in bioconversion assays in Escherichia coli as well as by in vitro assays with the purified recombinant protein. Thus, UGT708A6 is a bifunctional glycosyltransferase that can produce both C- and O-glycosidated flavonoids, a property not previously described for any other glycosyltransferase. PMID:24045947

  3. TbGT8 is a bifunctional glycosyltransferase that elaborates N-linked glycans on a protein phosphatase AcP115 and a GPI-anchor modifying glycan in Trypanosoma brucei.

    PubMed

    Nakanishi, Masayuki; Karasudani, Moe; Shiraishi, Takahiro; Hashida, Kazunori; Hino, Mami; Ferguson, Michael A J; Nomoto, Hiroshi

    2014-06-01

    The procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: βGal β1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110 kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively. PMID:24508870

  4. Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor

    PubMed Central

    Højfeldt, Jonas W.; Cruz-Rodríguez, Osvaldo; Imaeda, Yasuhiro; Van Dyke, Aaron R.; Carolan, James P.; Mapp, Anna K.

    2014-01-01

    Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics. PMID:24422633

  5. Bifunctional Phosphorus Dendrimers and Their Properties.

    PubMed

    Caminade, Anne-Marie; Majoral, Jean-Pierre

    2016-01-01

    Dendrimers are hyperbranched and monodisperse macromolecules, generally considered as a special class of polymers, but synthesized step-by-step. Most dendrimers have a uniform structure, with a single type of terminal function. However, it is often desirable to have at least two different functional groups. This review will discuss the case of bifunctional phosphorus-containing dendrimers, and the consequences for their properties. Besides the terminal functions, dendritic structures may have also a function at the core, or linked off-center to the core, or at the core of dendrons (dendritic wedges). Association of two dendrons having different terminal functions leads to Janus dendrimers (two faces). The internal structure can also possess functional groups on one layer, or linked to one layer, or on several layers. Finally, there are several ways to have two types of terminal functions, besides the case of Janus dendrimers: either each terminal function bears two functions sequentially, or two different functions are linked to each terminal branching point. Examples of each type of structure will be given in this review, as well as practical uses of such sophisticated structures in the fields of fluorescence, catalysis, nanomaterials and biology. PMID:27120586

  6. Biochemical and Structural Characterization of the Arabidopsis Bifunctional Enzyme Dethiobiotin Synthetase–Diaminopelargonic Acid Aminotransferase: Evidence for Substrate Channeling in Biotin Synthesis[C][W

    PubMed Central

    Cobessi, David; Dumas, Renaud; Pautre, Virginie; Meinguet, Céline; Ferrer, Jean-Luc; Alban, Claude

    2012-01-01

    Diaminopelargonic acid aminotransferase (DAPA-AT) and dethiobiotin synthetase (DTBS) catalyze the antepenultimate and the penultimate steps, respectively, of biotin synthesis. Whereas DAPA-AT and DTBS are encoded by distinct genes in bacteria, in biotin-synthesizing eukaryotes (plants and most fungi), both activities are carried out by a single enzyme encoded by a bifunctional gene originating from the fusion of prokaryotic monofunctional ancestor genes. In few angiosperms, including Arabidopsis thaliana, this chimeric gene (named BIO3-BIO1) also produces a bicistronic transcript potentially encoding separate monofunctional proteins that can be produced following an alternative splicing mechanism. The functional significance of the occurrence of a bifunctional enzyme in biotin synthesis pathway in eukaryotes and the relative implication of each of the potential enzyme forms (bifunctional versus monofunctional) in the plant biotin pathway are unknown. In this study, we demonstrate that the BIO3-BIO1 fusion protein is the sole protein form produced by the BIO3-BIO1 locus in Arabidopsis. The enzyme catalyzes both DAPA-AT and DTBS reactions in vitro and is targeted to mitochondria in vivo. Our biochemical and kinetic characterizations of the pure recombinant enzyme show that in the course of the reaction, the DAPA intermediate is directly transferred from the DAPA-AT active site to the DTBS active site. Analysis of several structures of the enzyme crystallized in complex with and without its ligands reveals key structural elements involved for acquisition of bifunctionality and brings, together with mutagenesis experiments, additional evidences for substrate channeling. PMID:22547782

  7. Interdomain communications in bifunctional enzymes: how are different activities coordinated?

    PubMed

    Nagradova, Natalya

    2003-08-01

    Although bifunctional enzymes containing two different active centers located within separate domains are quite common in living systems, the significance of this bifunctionality is not always clear, and the molecular mechanisms of site-site interactions in such complex systems have come under the scrutiny of science only in recent years. This review summarizes recent data on the mechanisms of communication between active centers in bifunctional enzymes. Three types of enzymes are considered: (1) those catalyzing consecutive reactions of a metabolic pathway and exhibiting substrate channeling (glutamate synthase and imidazole glycerol phosphate synthase), (2) those catalyzing consecutive reactions without substrate channeling (lysine-ketoglutarate reductase/saccharopine dehydrogenase), and (3) those catalyzing opposed reactions (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase). The functional role of interdomain communications is briefly discussed. PMID:14609201

  8. Strategies for the preparation of bifunctional gadolinium(III) chelators

    PubMed Central

    Frullano, Luca; Caravan, Peter

    2012-01-01

    The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications. PMID:22375102

  9. Novel bifunctional natriuretic peptides as potential therapeutics.

    PubMed

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  10. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    PubMed Central

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  11. Bifunctional Chelates Optimized for Molecular MRI

    PubMed Central

    2015-01-01

    Important requirements for exogenous dyes or contrast agents in magnetic resonance imaging (MRI) include an effective concentration of paramagnetic or superparamagnetic ions at the target to be imaged. We report the concise synthesis and characterization of several new enantiopure bifunctional derivatives of (α1R,α4R,α7R,α10R)-α1,α4,α7,α10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTMA) (and their 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) analogues as controls) that can be covalently attached to a contrast agent delivery system using either click or peptide coupling chemistry. Gd complexes of these derivatives can be attached to delivery systems while maintaining optimal water residence time for increased molecular imaging sensitivity. Long chain biotin (LC-biotin) derivatives of the Eu(III) and Gd(III) chelates associated with avidin are used to demonstrate higher efficiencies. Variable-temperature relaxometry, 17O NMR, and nuclear magnetic resonance dispersion (NMRD) spectroscopy used on the complexes and biotin–avidin adducts measure the influence of water residence time and rotational correlation time on constrained and unconstrained systems. The Gd(III)-DOTMA derivative has a shorter water residence time than the Gd(III)-DOTA derivative. Compared to the constrained Gd(III)-DOTA derivatives, the rotationally constrained Gd(III)-DOTMA derivative has ∼40% higher relaxivity at 37 °C, which could increase its sensitivity as an MRI agent as well as reduce the dose of the targeting agent. PMID:24933389

  12. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    PubMed Central

    2011-01-01

    Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK), which is regulated by a bifunctional enzyme, Regulatory Protein (RP). The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP) formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP), substrate levels (ATP and pyruvate) and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels). Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels. PMID:22024416

  13. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    SciTech Connect

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2007-11-11

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate the impact of gene fusion on the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme and a genetically engineered MsrB protein. We report that MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin; in comparison only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. MsrBA has a twenty-fold enhanced rate of repair for MetSO in proteins in comparison with the individual MsrA or MsrB enzymes alone and respective 14- and 50-fold increases in catalytic efficiency (i.e., kcat/KM). In comparison, MsrBA and MsrA have similar catalytic efficiencies when free MetSO is used as a substrate. These results indicate that the individual domains within bifunctional MsrBA work cooperatively to selectively recognize and reduce MetSO in highly oxidized proteins. The enhanced catalytic activity of MsrBA against oxidized proteins and its common expression in bacterial pathogens is consistent with an important role for this enzyme activity in promoting bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.

  14. Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups

    NASA Astrophysics Data System (ADS)

    Roik, N. V.; Belyakova, L. A.

    2013-12-01

    Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.

  15. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions.

    PubMed Central

    Birkholtz, Lyn-Marie; Wrenger, Carsten; Joubert, Fourie; Wells, Gordon A; Walter, Rolf D; Louw, Abraham I

    2004-01-01

    Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains

  16. Active-site remodelling in the bifunctional fructose-1,6-bisphosphate aldolase/phosphatase.

    PubMed

    Du, Juan; Say, Rafael F; Lü, Wei; Fuchs, Georg; Einsle, Oliver

    2011-10-27

    Fructose-1,6-bisphosphate (FBP) aldolase/phosphatase is a bifunctional, thermostable enzyme that catalyses two subsequent steps in gluconeogenesis in most archaea and in deeply branching bacterial lineages. It mediates the aldol condensation of heat-labile dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP) to FBP, as well as the subsequent, irreversible hydrolysis of the product to yield the stable fructose-6-phosphate (F6P) and inorganic phosphate; no reaction intermediates are released. Here we present a series of structural snapshots of the reaction that reveal a substantial remodelling of the active site through the movement of loop regions that create different catalytic functionalities at the same location. We have solved the three-dimensional structures of FBP aldolase/phosphatase from thermophilic Thermoproteus neutrophilus in a ligand-free state as well as in complex with the substrates DHAP and FBP and the product F6P to resolutions up to 1.3 Å. In conjunction with mutagenesis data, this pinpoints the residues required for the two reaction steps and shows that the sequential binding of additional Mg(2+) cations reversibly facilitates the reaction. FBP aldolase/phosphatase is an ancestral gluconeogenic enzyme optimized for high ambient temperatures, and our work resolves how consecutive structural rearrangements reorganize the catalytic centre of the protein to carry out two canonical reactions in a very non-canonical type of bifunctionality. PMID:21983965

  17. Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum.

    PubMed

    Kim, Ho Myeong; Lee, Yoon Gyo; Patel, Darshan H; Lee, Kwang Ho; Lee, Dae-Seok; Bae, Hyeun-Jong

    2012-07-01

    The endoglucanase (Cel5B) from the filamentous fungus Gloeophyllum trabeum was cloned and expressed without a signal peptide, and alanine residue 22 converted to glutamine in Pichia pastoris GS115. The DNA sequence of Cel5B had an open reading frame of 1,077 bp, encoding a protein of 359 amino acid residues with a molecular weight of 47 kDa. On the basis of sequence similarity, Cel5B displayed active site residues at Glu-175 and Glu-287. Both residues lost full hydrolytic activity when replaced with alanine through point mutation. The purified recombinant Cel5B showed very high specific activity, about 80- to 1,000-fold and 13- to 70-fold in comparison with other endoglucanases and cellobiohydrolase, on carboxymethylcellulose and filter paper, respectively, at pH 3.5 and 55°C. Cel5B displayed bifunctional characteristics under acidic conditions. The kinetic properties of the enzyme determined using a Lineweaver-Burk plot indicated that Cel5B is a catalytically efficient cellulolytic enzyme. These results suggest that Cel5B has high bifunctional endo- and exoglucanase activity under acidic conditions and is a good candidate for bioconversion of lignocellulose. PMID:22395898

  18. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb.

    PubMed

    Chappell, L L; Dadachova, E; Milenic, D E; Garmestani, K; Wu, C; Brechbiel, M W

    2000-01-01

    Radioisotopes of Pb(II) have been of some interest in radioimmunotherapy and radioimmunoimaging (RII). However, the absence of a kinetically stable bifunctional chelating agent for Pb(II) has hampered its use for these applications. 203Pb (T(1/2) = 52.02 h) has application potential in RII, with a gamma-emission that is ideal for single photon emission computerized tomography, whereas 212Pb (T(1/2) = 10 h) is a source of highly cytotoxic alpha-particles via its decay to its 212Bi (T(1/2) = 60 min) daughter. The synthesis of the novel bifunctional chelating agent 2-(4-isothiocyanotobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra- (2-carbamoyl methyl)-cyclododecane (4-NCS-Bz-TCMC) is reported herein. The Pb[TCMC]2+ complex was less labile to metal ion release than Pb[DOTA]2- at pH 3.5 and below in isotopic exchange experiments. In addition to increased stability to Pb2+ ion release at low pH, the bifunctional TCMC ligand was found to have many other advantages over the bifunctional 1,4,7,10-tetraazacyclodocane-1,4,7,10-tetraacetic acid (DOTA) ligand. These include a shorter and more straightforward synthetic route, a more efficient conjugation reaction to a monoclonal antibody (mAb), with a higher chelate to protein ratio, a higher percent immuroreactivity, and a more efficient radiolabeling reaction of the mAb-ligand conjugate with 203Pb. PMID:10755652

  19. RNA Secondary Structure Modulates FMRP's Bi-Functional Role in the MicroRNA Pathway.

    PubMed

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%-60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP's interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  20. The amino acid sequence of a 20 kDa bifunctional subtilisin/alpha-amylase inhibitor from bran [correction of brain] of rice (Oryza sativa L.) seeds.

    PubMed

    Ohtsubo, K; Richardson, M

    1992-08-31

    A 20 kDa bifunctional inhibitor of the microbial proteinase, subtilisin, and the alpha-amylase from the larvae of the red flour beetle (Tribolium castaneum) was purified from bran of rice seeds by saline extraction, precipitation with ammonium sulphate, ion-exchange chromatography on DEAE-Cellulose and Toyopearl CM-650, and preparative HPLC on Vydac C18. The complete primary structure was determined by automatic degradation of the intact, reduced and S-alkylated protein, and by manual DABITC/PITC micro-sequencing of peptides obtained from the protein following separate enzymic digestions with trypsin, pepsin, chymotrypsin, elastase and the protease from S. aureus V8. The protein sequence, which contained 176 residues, showed strong homology with similar bifunctional inhibitors previously isolated from wheat and barley which are related to the Kunitz family of proteinase inhibitors from legume seeds. PMID:1511747

  1. Chimeric bifunctional oligonucleotides as a novel tool to invade telomerase assembly

    PubMed Central

    Azhibek, Dulat; Zvereva, Maria; Zatsepin, Timofei; Rubtsova, Maria; Dontsova, Olga

    2014-01-01

    Telomerase is a key participant in the telomere length maintaining system in eukaryotic cells. Telomerase RNA and protein reverse transcriptase subunits are essential for the appearance of active telomerase in vitro. Telomerase is active in many cancer types and is a potential target for anticancer drug development. Here we report a new approach for impairing telomerase function at the stage of human telomerase assembly. The approach is based on the application of chimeric bifunctional oligonucleotides that contain two oligonucleotide parts complementary to the functional domains of telomerase RNA connected with non-nucleotide linkers in different orientations (5′-3′, 5′-5′ or 3′-3′). Such chimeras inhibited telomerase in vitro in the nM range, but were effective in vivo in sub-nM concentrations, predominantly due to their effect on telomerase assembly and dimerization. PMID:25081209

  2. Bifunctional organophosphorus liquid-liquid extraction reagents: development and applications

    SciTech Connect

    Schulz, W.W.; Navratil, J.D.

    1985-01-01

    American and Russian workers have evidenced great interest in the last decade in the potential application of certain neutral and acidic bifunctional organophosphorus compounds in solvent extraction processes. Triggering this interest is the ability of some carbamoylmethylenephosphorus (CMP) and carbamoylmethylenephosphine oxide (CMPO) compounds to extract trivalent actinides and lanthanides from strong HNO/sub 3/ (>1 M) solutions, a property which distinguishes them from monofunctional organophosphorus reagents. Investigators at several US Department of Energy laboratories have concentrated on synthesis of novel CMP and CMPO reagents and on reactions and mechanisms involved in extraction of metal ions from aqueous nitrate media; application of selected CMP and CMPO reagents in solvent extraction and supported liquid membrane recovery of metal values from nuclear waste solutions have been proposed. This paper, based upon a book now in preparation, provides a brief overview of the current status of the development and application of bifunctional organophosphorus extractants. 44 references, 4 tables.

  3. Bifunctional organophosphorus liquid-liquid extraction reagents: development and applications

    SciTech Connect

    Schulz, W.W.; Navratil, J.D.

    1984-03-13

    American and Russian workers have evidenced great interest in the last decade in the potential application of certain neutral and acidic bifunctional organophosphorus compounds in solvent extraction processes. Triggering this interest is the ability of some carbamoylmethylenephosphorus (CMP) and carbamoylmethylenephosphine oxide (CMPO) compounds to extract trivalent actinides and lanthanides from strong HNO/sub 3/ (>1M) solutions, a property which distinguishes them from monofunctional organophosphorus reagents. Investigators at several US Department of Energy laboratories have concentrated on synthesis of novel CMP and CMPO reagents and on reactions and mechanisms involved in extraction of metal ions from aqueous nitrate media; application of selected CMP and CMPO reagents in solvent extraction and supported liquid membrane recovery of metal values from nuclear waste solutions have been proposed. This paper, based upon a book now in preparation, provides a brief overview of the current status of the development and application of bifunctional organophosphorus extractants. 42 references, 4 tables.

  4. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  5. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    PubMed Central

    G. Sonsona, Isaac

    2016-01-01

    Summary The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts. PMID:27340443

  6. The aminoindanol core as a key scaffold in bifunctional organocatalysts.

    PubMed

    G Sonsona, Isaac; Marqués-López, Eugenia; Herrera, Raquel P

    2016-01-01

    The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel-Crafts alkylation, Michael addition, Diels-Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts. PMID:27340443

  7. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    SciTech Connect

    Shi, Dashuang Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-12-01

    Expression, crystallization and preliminary X-ray diffraction studies of a novel bifunctional N-acetylglutamate synthase/kinase from X. campestris homologous to vertebrate N-acetylglutamate synthase are reported. A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 2}22, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method.

  8. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  9. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  10. Room Temperature Hydrosilylation of Silicon Nanocrystals with Bifunctional Terminal Alkenes

    PubMed Central

    Yu, Yixuan; Hessel, Colin M.; Bogart, Timothy; Panthani, Matthew G.; Rasch, Michael R.; Korgel, Brian A.

    2013-01-01

    H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties—ethyl-, methyl-ester or carboxylic acids—without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene. PMID:23312033

  11. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons.

    PubMed

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P; Martens, Johan A

    2015-12-10

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites. Here we show for a bifunctional catalyst--comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder--that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts. PMID:26659185

  12. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    PubMed Central

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2016-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the maximum distance between the two site types beyond which catalytic activity decreases. The lack of synthesis and material characterization methods with nanometer precision has long prevented in-depth exploration of the criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites8–11. Here we show for a bifunctional catalyst, comprised of an intimate mixture of zeolite Y and alumina binder and with platinum (Pt) metal controllably deposited20,21 on either the zeolite or the binder, that close proximity between metal and zeolite acid sites can be detrimental: the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains Pt on the binder, i.e. with a larger distance between metal and acid sites. Cracking of the large and complex hydrocarbon molecules typically derived from alternative sources such as gas-to-liquid technology, vegetable oil or algal oil6–7 should thus benefit especially from bifunctional catalysts that avoid locating Pt on the zeolite as the traditionally assumed optimal location. More generally, we anticipate that the ability to spatially organize different active sites at the nanoscale demonstrated here will benefit the further development and optimization of the newly emerging generation of multifunctional catalysts12–15. PMID:26659185

  13. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo

    PubMed Central

    Staller, Max V.; Vincent, Ben J.; Bragdon, Meghan D. J.; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H.

    2015-01-01

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA—it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two “shadow enhancers” use different regulatory logic to create the same pattern. PMID:25564665

  14. In vivo kinetics of micronuclei induction by bifunctional alkylating antineoplastics.

    PubMed

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia L; López-Iturbe, Rosario; Alvaro-Delgadillo, Horacio

    2004-05-01

    The aim of the present study was to determine in vivo the kinetics of micronucleated polychromatic erythrocyte (MN-PCE) induction in mice, as an approach for studying the mechanism of micronuclei induction by mitomycin C, cis-diamine dichloroplatinum, busulfan and bis-chloroethylnitrosourea, bifuctional alkylating antineoplastic agents having different patterns of crosslink induction. The kinetics of MN-PCE induction was established by scoring the frequency of MN-PCE in 2000 PCE in peripheral blood, for periods of 8 or 10 h after acute treatment and up to 80 h, with different doses of the agent. The kinetics of MN-PCE induction and particularly the times of maximal induction by different bifunctional alkylating agents were compared with the kinetics previously obtained for ethylnitrosourea, methylnitrosourea and 6-mercaptopurine, agents that cause MN-PCE mainly in the first, second and third divisions after exposure, respectively. The results obtained in the present study allow us to conclude that: (i) bifunctional alkylating agents have very different efficiencies of genotoxic and cytotoxic action; (ii) all assayed bifunctional alkylating agents induced micronuclei during the first cell division, owing to the mistaken repair of primary lesions, e.g. excision; (iii) busulfan and bis-chloroethylnitrosourea showed an additional late mechanism of micronuclei induction, which is expressed at the third division and seems to be related to the mismatch repair process. PMID:15123786

  15. Dimerization and Bifunctionality Confer Robustness to the Isocitrate Dehydrogenase Regulatory System in Escherichia coli*

    PubMed Central

    Dexter, Joseph P.; Gunawardena, Jeremy

    2013-01-01

    An important goal of systems biology is to develop quantitative models that explain how specific molecular features give rise to systems-level properties. Metabolic and regulatory pathways that contain multifunctional proteins are especially interesting to study from this perspective because they have frequently been observed to exhibit robustness: the ability for a system to perform its proper function even as levels of its components change. In this study, we use extensive biochemical data and algebraic modeling to develop and analyze a model that shows how robust behavior arises in the isocitrate dehydrogenase (IDH) regulatory system of Escherichia coli, which was shown in 1985 to experimentally exhibit robustness. E. coli IDH is regulated by reversible phosphorylation catalyzed by the bifunctional isocitrate dehydrogenase kinase/phosphatase (IDHKP), and the level of IDH activity determines whether carbon flux is directed through the glyoxylate bypass (for growth on two-carbon substrates) or the full tricarboxylic acid cycle. Our model, which incorporates recent structural data on IDHKP, identifies several specific biochemical features of the system (including homodimerization of IDH and bifunctionality of IDHKP) that provide a potential explanation for robustness. Using algebraic techniques, we derive an invariant that summarizes the steady-state relationship between the phospho-forms of IDH. We use the invariant in combination with kinetic data on IDHKP to calculate IDH activity at a range of total IDH levels and find that our model predicts robustness. Our work unifies much of the known biochemistry of the IDH regulatory system into a single quantitative framework and highlights the importance of constructing biochemically realistic models in systems biology. PMID:23192354

  16. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  17. Bifunctional Phage-Based Pretargeted Imaging of Human Prostate Carcinoma Bifunctional Phage Based Pretargeted Imaging

    PubMed Central

    Newton-Northup, Jessica R.; Figueroa, Said D.; Quinn, Thomas P.; Deutscher, Susan L.

    2009-01-01

    Introduction Two-step and three-step pretargeting systems utilizing biotinylated prostate tumor-homing bacteriophage (phage) and 111In-radiolabeled- streptavidin or biotin were developed for use in cancer radioimaging. The in vivo selected prostate carcinoma-specific phage (G1) displaying up to five copies of the peptide IAGLATPGWSHWLAL, was the focus of the present study. Methods The ability of G1 phage to extravasate and target prostate tumor cells was investigated using immunohistochemistry. G1 phage were biotinylated, streptavidin was conjugated to diethylenetriaminepentaacetic acid (DTPA), and biotin was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Biodistribution studies and single photon emission computed tomography (SPECT)/CT imaging of xenografted PC-3 tumors via two-step pretargeted 111In-labeled streptavidin and three-step pretargeted 111In-labeled biotin were performed in SCID mice to determine the optimal pretargeting method. Results The ability of G1 phage to extravasate the vasculature and bind directly to human PC-3 prostate carcinoma tumor cells in vivo was demonstrated via immunocytochemical analysis. Comparative biodistribution studies of the two-step and three-step pretargeting strategies indicated increased PC-3 human prostate carcinoma tumor uptake in SCID mice of 4.34 ±0.26 %ID/g at 0.5 hours post-injection of 111In radiolabeled biotin (utilized in a three-step protocol) compared to that of 0.67 ±0.06 %ID/g at twenty four hour postinjection of 111In radiolabeled streptavidin (employed in a two-step protocol). In vivo SPECT/CT imaging of xenografted PC-3 tumors in SCID mice with the three-step pretargeting method was superior to that of the two-step pretargeting method, and, importantly, blocking studies demonstrated specificity of tumor uptake of 111In-labeled biotin in the three-step pretargeting scheme. Conclusion This study demonstrates the use of multivalent bifunctional phage in a three

  18. Bi-functionality of Opisthorchis viverrini aquaporins.

    PubMed

    Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi

    2015-01-01

    Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels. PMID:25461277

  19. The Use of Glass Substrates with Bi-Functional Silanes for Designing Micropatterned Cell-Secreted Cytokine Immunoassays

    PubMed Central

    Seo, Jeong Hyun; Chen, Li-Jung; Verkhoturov, Stanislav V.; Schweikert, Emile A.; Revzin, Alexander

    2011-01-01

    It is often desirable to sequester cells in specific locations on the surface and to integrate sensing elements next to the cells. In the present study, surfaces were fabricated so as to position cytokine sensing domains inside non-fouling poly(ethylene glycol) (PEG) hydrogel microwells. Our aim was to increase sensitivity of micropatterned cytokine immunoassays through covalent attachment of biorecognition molecules. To achieve this, glass substrates were functionalized with a binary mixture of acrylate- and thiol-terminated methoxysilanes. During subsequent hydrogel photopatterning step acrylate moieties served to anchor hydrogel microwells to glass substrates. Importantly, glass attachment sites within the microwells contained thiol groups that could be activated with a hetero-bifunctional cross-linker for covalent immobilization of proteins. After incubation with fluorescently-labeled avidin, microwells fabricated on a mixed acryl/thiol silane layer emitted ~6 times more fluorescence compared to microwells fabricated on an acryl silane alone. This result highlighted the advantages of covalent attachment of avidin inside the microwells. To create cytokine immunoassays, micropatterned surfaces were incubated with biotinylated IFN-γ or TNF-α antibodies (Abs). Micropatterned immunoassays prepared in this manner were sensitive down to 1 ng/ml or 60 pM IFN-γ. To further prove utility of this bionterface design, macrophages were seeded into 30 µm diameter microwells fabricated on either bi-functional (acryl/thiol) or monofunctional silane layers. Both types of microwells were coated with avidin and biotin-anti-TNF-α prior to cell seeding. Short mitogenic activation followed by immunostaining for TNF-α revealed that microwells created on bi-functional silane layer had 3 times higher signal due to macrophage-secreted TNF-α compared to microwells fabricated on mono-functional silane. The rational design of cytokine-sensing surfaces described here will be leveraged

  20. A Fundamental Trade-off in Covalent Switching and Its Circumvention by Enzyme Bifunctionality in Glucose Homeostasis*

    PubMed Central

    Dasgupta, Tathagata; Croll, David H.; Owen, Jeremy A.; Vander Heiden, Matthew G.; Locasale, Jason W.; Alon, Uri; Cantley, Lewis C.; Gunawardena, Jeremy

    2014-01-01

    Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between “on” and “off” and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed “linear framework” for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon. PMID:24634222

  1. Invariants reveal multiple forms of robustness in bifunctional enzyme systems.

    PubMed

    Dexter, Joseph P; Dasgupta, Tathagata; Gunawardena, Jeremy

    2015-08-01

    Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements. PMID:26021467

  2. Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts.

    PubMed

    Bryant, Laura A; Fanelli, Rossana; Cobb, Alexander J A

    2016-01-01

    Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens. PMID:27340439

  3. Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts

    PubMed Central

    Bryant, Laura A; Fanelli, Rossana

    2016-01-01

    Summary Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens. PMID:27340439

  4. Mimivirus Collagen Is Modified by Bifunctional Lysyl Hydroxylase and Glycosyltransferase Enzyme*

    PubMed Central

    Luther, Kelvin B.; Hülsmeier, Andreas J.; Schegg, Belinda; Deuber, Stefan A.; Raoult, Didier; Hennet, Thierry

    2011-01-01

    Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying collagens has never been described outside of animals. We demonstrate that the L230 open reading frame of the giant virus Acanthamoeba polyphaga mimivirus encodes an enzyme that has distinct lysyl hydroxylase and collagen glycosyltransferase domains. We show that mimivirus L230 is capable of hydroxylating lysine and glycosylating the resulting hydroxylysine residues in a native mimivirus collagen acceptor substrate. Whereas in animals from sponges to humans the transfer of galactose to hydroxylysine in collagen is conserved, the mimivirus L230 enzyme transfers glucose to hydroxylysine, thereby defining a novel type of collagen glycosylation in nature. The presence of hydroxylysine in mimivirus proteins was confirmed by amino acid analysis of mimivirus recovered from A. polyphaga cultures. This work shows for the first time that collagen post-translational modifications are not confined to the domains of life. The utilization of glucose instead of the galactose found throughout animals as well as a bifunctional enzyme rather than two separate enzymes may represent a parallel evolutionary track in collagen biology. These results suggest that giant viruses may have contributed to the evolution of collagen biology. PMID:22045808

  5. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme-A Potential Selective Radioprotector.

    PubMed

    Pan, Jianru; He, Huocong; Su, Ying; Zheng, Guangjin; Wu, Junxin; Liu, Shutao; Rao, Pingfan

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wild SOD had little radioprotective effect on irradiated L-02 and Hep G2 cells while amifostine was protective to both cell lines. SOD-TAT or GST-TAT-SOD pretreatment 3 h prior to radiation protects irradiated normal liver cells against radiation damage by eliminating intracellular excrescent superoxide, reducing cellular MDA level, enhancing cellular antioxidant ability and colony formation ability, and reducing apoptosis rate. Compared with SOD-TAT, GST-TAT-SOD was proved to have better protective effect on irradiated normal liver cells and minimal effect on irradiated hepatoma cells. Besides, GST-TAT-SOD was safe for normal cells and effectively transduced into different organs in mice, including the brain. The characteristics of this protein suggest that it may be a potential radioprotective agent in cancer therapy better than amifostine. Fusion of two antioxidant enzymes and cell-penetrating peptides is potentially valuable in the development of radioprotective agent. PMID:27313832

  6. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme—A Potential Selective Radioprotector

    PubMed Central

    Pan, Jianru; He, Huocong; Su, Ying; Zheng, Guangjin; Wu, Junxin; Liu, Shutao; Rao, Pingfan

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wild SOD had little radioprotective effect on irradiated L-02 and Hep G2 cells while amifostine was protective to both cell lines. SOD-TAT or GST-TAT-SOD pretreatment 3 h prior to radiation protects irradiated normal liver cells against radiation damage by eliminating intracellular excrescent superoxide, reducing cellular MDA level, enhancing cellular antioxidant ability and colony formation ability, and reducing apoptosis rate. Compared with SOD-TAT, GST-TAT-SOD was proved to have better protective effect on irradiated normal liver cells and minimal effect on irradiated hepatoma cells. Besides, GST-TAT-SOD was safe for normal cells and effectively transduced into different organs in mice, including the brain. The characteristics of this protein suggest that it may be a potential radioprotective agent in cancer therapy better than amifostine. Fusion of two antioxidant enzymes and cell-penetrating peptides is potentially valuable in the development of radioprotective agent. PMID:27313832

  7. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations.

    PubMed

    Wang, Tianli; Han, Xiaoyu; Zhong, Fangrui; Yao, Weijun; Lu, Yixin

    2016-07-19

    Even though seminal reports on phosphine catalysis appeared in the 1960s, in the last few decades of the past century trivalent phosphines were viewed primarily as useful ligands for transition-metal-mediated processes. The 1990s saw revived interest in using phosphines in organic catalysis, but the key advances in asymmetric phosphine catalysis have all come within the past decade. The uniqueness of phosphine catalysis can be attributed to the high nucleophilicity of the phosphorus atom. In typical phosphine-catalyzed reactions, nucleophilic attacks of the phosphorus atom on electron-deficient multiple bonds create different reactive ylide-type intermediates. When such structurally diverse zwitterionic species react with a variety of suitable substrates, new reaction patterns are often discovered and a diverse array of reactions can be developed. In recent years, substantial progress has been made in the field of asymmetric phosphine catalysis; many new reactions have been discovered, and numerous enantioselective processes have been reported. However, we felt that powerful and versatile phosphine catalysts that can work for a wide range of asymmetric reactions are still lacking. We therefore set our goal to develop a family of easily derived phosphine catalysts that are efficient in asymmetric induction for a broad range of phosphine-mediated transformations. This Account describes our efforts in the past few years on the development of amino acid-based bifunctional phosphines and their applications to enantioselective processes. Building upon our previous success in primary-amine-mediated enamine catalysis, we first established that bifunctional phosphines could be readily prepared from amino acids. In most of our studies, we chose threonine as the key backbone for catalyst development, and threonine-based monoamino acid or dipeptide bifunctional phosphines have displayed remarkable stereochemical control. We began our investigations by demonstrating the

  8. Winged bean [Psophorcarpus tetragonolobus (L.) DC] seeds as an underutilised plant source of bifunctional proteolysate and biopeptides.

    PubMed

    Yea, Chay Shyan; Ebrahimpour, Afshin; Hamid, Azizah Abdul; Bakar, Jamilah; Muhammad, Kharidah; Saari, Nazamid

    2014-05-01

    Hypertension is one of the major causes of cardiovascular-related diseases, which is highly associated with angiotensin-I-converting enzyme (ACE) activity and oxidative stress. In this study, winged bean seed (WBS), a potential source of protein, was utilised for the production of bifunctional proteolysate and biopeptides with ACE inhibitory and antioxidative properties. An enzymatic approach was applied, coupled with pretreatment of shaking and centrifuging techniques to remove endogenous ACE inhibitors prior to proteolysis. ACE inhibition reached its highest activity, 78.5%, after 12 h proteolysis while antioxidative activities, determined using assays involving DPPH˙ radical scavenging activity and metal ion-chelating activity, reached peaks of 65.0% and 65.7% at 8 h and 14 h, respectively. The said bioactivities were proposed to share some common structural requirements among peptides. A two-dimensional approach was employed for characterisation of effective peptides based on hydrophobicity, using RP-HPLC, and isoelectric property, using isoelectric focusing technique. Results revealed that acidic and basic peptides with partially higher hydrophobicity provided higher ACE inhibition activity than did neutral peptides. Finally, by using Q-TOF mass spectrometry, two peptide sequences (YPNQKV and FDIRA) with ACE inhibitory and antioxidative activities were successfully matched with a database. This study indicates that the WBS proteolysate can be a potential bifunctional food ingredient as the identified biopeptides demonstrated both ACE inhibitory and antioxidative activities in vitro. PMID:24658538

  9. A novel bifunctional hybrid with marine bacterium alkaline phosphatase and Far Eastern holothurian mannan-binding lectin activities.

    PubMed

    Balabanova, Larissa; Golotin, Vasily; Kovalchuk, Svetlana; Bulgakov, Alexander; Likhatskaya, Galina; Son, Oksana; Rasskazov, Valery

    2014-01-01

    A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25 ± 5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens. PMID:25397876

  10. A Novel Bifunctional Hybrid with Marine Bacterium Alkaline Phosphatase and Far Eastern Holothurian Mannan-Binding Lectin Activities

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Kovalchuk, Svetlana; Bulgakov, Alexander; Likhatskaya, Galina; Son, Oksana; Rasskazov, Valery

    2014-01-01

    A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25±5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens. PMID:25397876

  11. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  12. RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    PubMed Central

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  13. Three crystal forms of the bifunctional enzyme proline utilization A (PutA) from Bradyrhizobium japonicum.

    PubMed

    Schuermann, Jonathan P; White, Tommi A; Srivastava, Dhiraj; Karr, Dale B; Tanner, John J

    2008-10-01

    Proline utilization A proteins (PutAs) are large (1000-1300 residues) membrane-associated bifunctional flavoenzymes that catalyze the two-step oxidation of proline to glutamate by the sequential action of proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase domains. Here, the first successful crystallization efforts for a PutA protein are described. Three crystal forms of PutA from Bradyrhizobium japonicum are reported: apparent tetragonal, hexagonal and centered monoclinic. The apparent tetragonal and hexagonal crystals were grown in the presence of PEG 3350 and sodium formate near pH 7. The apparent tetragonal form diffracted to 2.7 A resolution and exhibited pseudo-merohedral twinning such that the true space group is P2(1)2(1)2(1) with four molecules in the asymmetric unit. The hexagonal form diffracted to 2.3 A resolution and belonged to space group P6(2)22 with one molecule in the asymmetric unit. Centered monoclinic crystals were grown in ammonium sulfate, diffracted to 2.3 A resolution and had two molecules in the asymmetric unit. Removing the histidine tag was important in order to obtain the C2 crystal form. PMID:18931443

  14. Three crystal forms of the bifunctional enzyme proline utilization A (PutA) from Bradyrhizobium japonicum

    PubMed Central

    Schuermann, Jonathan P.; White, Tommi A.; Srivastava, Dhiraj; Karr, Dale B.; Tanner, John J.

    2008-01-01

    Proline utilization A proteins (PutAs) are large (1000–1300 residues) membrane-associated bifunctional flavoenzymes that catalyze the two-step oxidation of proline to glutamate by the sequential action of proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase domains. Here, the first successful crystallization efforts for a PutA protein are described. Three crystal forms of PutA from Bradyrhizobium japonicum are reported: apparent tetragonal, hexagonal and centered monoclinic. The apparent tetragonal and hexagonal crystals were grown in the presence of PEG 3350 and sodium formate near pH 7. The apparent tetragonal form diffracted to 2.7 Å resolution and exhibited pseudo-merohedral twinning such that the true space group is P212121 with four molecules in the asymmetric unit. The hexagonal form diffracted to 2.3 Å resolution and belonged to space group P6222 with one molecule in the asymmetric unit. Centered monoclinic crystals were grown in ammonium sulfate, diffracted to 2.3 Å resolution and had two molecules in the asymmetric unit. Removing the histidine tag was important in order to obtain the C2 crystal form. PMID:18931443

  15. Enantioselective tandem reaction over a site-isolated bifunctional catalyst.

    PubMed

    Xu, Jianyou; Cheng, Tanyu; Zhang, Kun; Wang, Ziyun; Liu, Guohua

    2016-05-21

    Construction of a site-isolated heterogeneous catalyst to realize the compatibility of bimetallic complexes for a feasible tandem reaction is a significant challenge in heterogeneous asymmetric catalysis. Herein, taking advantage of yolk-shell-structured mesoporous silica, we assemble an active site-isolated bifunctional catalyst through assembly of organopalladium-functionality into silicate channels as an outer shell and chiral organoruthenium-functionality onto silicate yolk as an inner core, realizing the one-pot enantioselective tandem reaction from Pd-catalyzed Sonogashira coupling to Ru-catalyzed asymmetric transfer hydrogenation. As presented in this study, this tandem Sonogashira coupling-asymmetric transfer hydrogenation of haloacetophenones and arylacetylenes affords various chiral conjugated alkynols with high yields and up to 99% enantioselectivity. Moreover, a catalyst can also be recovered easily and recycled repeatedly, making it an interesting feature in a practical organic transformation. PMID:27063335

  16. Bifunctional combined aptamer for simultaneous separation and detection of thrombin.

    PubMed

    Bing, Tao; Liu, Xiangjun; Cheng, Xiaohong; Cao, Zehui; Shangguan, Dihua

    2010-02-15

    Here we report on the construction and evaluation of a bifunctional combined aptamer (BCA) that consists of a DNA streptavidin-binding aptamer (SBA), a DNA thrombin-binding aptamer (TBA) and a fluorophore. The BCA adopts a new conformation that is very different from simply linking the conformations of the two individual aptamers together, so that it does not bind to streptavidin in the absence of thrombin. Binding of this novel DNA aptamer to streptavidin is triggered by the thrombin binding and depends on the concentration of thrombin. Meanwhile, fluorescence from the streptavidin captured BCA reflects the quantity of the target molecule in the sample. This aptamer combination strategy based on the SBA holds good potential for applications in simultaneous detection and separation of targets of aptamers or certain DNA and RNA targets. PMID:19959350

  17. Bifunctional magnetic-fluorescent nanoparticles: synthesis, characterization, and cell imaging.

    PubMed

    Lu, Yanjiao; Zheng, Yang; You, Shusen; Wang, Feng; Gao, Zhuo; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2015-03-11

    A new type of bifunctional magnetic-fluorescent Fe3O4@SiO2-PDI-PAA/Ca(2+) nanoparticles has been prepared by coating PDI-cored star polymers (PDI-PAA) onto the surface of Fe3O4@SiO2 core-shell nanostructures. The morphology and properties of the composite nanoparticles are investigated by transmission electron microscopy, ultraviolet-visible spectrometry, fluorescence spectrometry, and vibrating sample magnetometry. The composite nanoparticles display a strong red emission and superparamagnetic behavior at room temperature. The cell viability and uptake assays reveal good biocompatibility of these hybrid nanoparticles. Hence, the composite nanoparticles are of potential to be further explored as therapeutic vector in biomedical field. PMID:25691125

  18. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  19. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  20. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  1. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    PubMed

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. PMID:26545408

  2. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  3. First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2.

    PubMed

    Ghasemi, Seyedhadi; Ahmadian, Gholamreza; Sadeghi, Mehdi; Zeigler, Daniel R; Rahimian, Heshmatollah; Ghandili, Soheila; Naghibzadeh, Neda; Dehestani, Ali

    2011-03-01

    Bacillus pumilus SG2 isolated from high salinity ecosystem in Iran produces two chitinases (ChiS and ChiL) and secretes them into the medium. In this study, chiS and chiL genes were cloned in pQE-30 expression vector and were expressed in the cytoplasm of Escherichia coli strain M15. The recombinant proteins were purified using Ni-NTA column. The optimum pH and optimum temperature for enzyme activity of ChiS were pH 6, 50°C; those of ChiL were pH 6.5, 40°C. The purified chitinases showed antifungal activity against Fusarium graminearum, Rhizoctonia solani, Magnaporthe grisea, Sclerotinia sclerotiorum, Trichoderma reesei, Botrytis cinerea and Bipolaris sp. Moreover, purified ChiS was identified as chitinase/lysozyme, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of cell walls with many kinds of bacteria (Xanthomonas translucens pv. hordei, Xanthomonas axonopodis pv. citri, Bacillus licheniformis, E. coli C600, E. coli TOP10, Pseudomonas aeruginosa and Pseudomonas putida). Strong homology was found between the three-dimensional structures of ChiS and a chitinase/lysozyme from Bacillus circulans WL-12. This is the first report of a bifunctional chitinase/lysozyme from B. pumilus. PMID:22112904

  4. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  5. Discovery of a bifunctional acyltransferase responsible for ornithine lipid synthesis in Serratia proteamaculans.

    PubMed

    Vences-Guzmán, Miguel Ángel; Guan, Ziqiang; Escobedo-Hinojosa, Wendy Itzel; Bermúdez-Barrientos, José Roberto; Geiger, Otto; Sohlenkamp, Christian

    2015-05-01

    Ornithine lipids (OLs) are phosphorus-free membrane lipids that can be formed by many bacteria but that are absent from archaea and eukaryotes. A function for OLs in stress conditions and in host-bacteria interactions has been shown in some bacteria. Some bacterial species have been described that can form OLs, but lack the known genes (olsBA) involved in its biosynthesis, which implied the existence of a second pathway. Here we describe the bifunctional protein OlsF from Serratia proteamaculans involved in OL formation. Expression of OlsF and its homologue from Flavobacterium johnsoniae in Escherichia coli causes OL formation. Deletion of OlsF in S. proteamaculans caused the absence of OL formation. Homologues of OlsF are widely distributed among γ-, δ- and ε-Proteobacteria and in the Cytophaga-Flavobacterium-Bacteroidetes group of bacteria, including several well-studied pathogens for which the presence of OLs has not been suspected, such as for example Vibrio cholerae and Klebsiella pneumonia. Using genomic data, we predict that about 50% of bacterial species can form OLs. PMID:25040623

  6. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  7. Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum

    SciTech Connect

    Srivastava, Dhiraj; Schuermann, Jonathan P.; White, Tommi A.; Krishnan, Navasona; Sanyal, Nikhilesh; Hura, Greg L.; Tan, Anmin; Henzl, Michael T.; Becker, Donald F.; Tanner, John J.

    2010-04-26

    The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD{sup +}-dependent {Delta}{sup 1}-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 {angstrom} resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 {angstrom}. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 {angstrom} and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, {Delta}{sup 1}-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of {Delta}{sup 1}-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site.

  8. Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum

    PubMed Central

    Srivastava, Dhiraj; Schuermann, Jonathan P.; White, Tommi A.; Krishnan, Navasona; Sanyal, Nikhilesh; Hura, Greg L.; Tan, Anmin; Henzl, Michael T.; Becker, Donald F.; Tanner, John J.

    2010-01-01

    The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 Å resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 Å. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 Å and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, Δ1-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of Δ1-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site. PMID:20133651

  9. Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme.

    PubMed Central

    Kurland, I. J.; Pilkis, S. J.

    1995-01-01

    The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms. PMID:7549867

  10. Xenon in And at the End of the Tunnel of Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase

    SciTech Connect

    Doukov, T.I.; Blasiak, L.C.; Seravalli, J.; Ragsdale, S.W.; Drennan, C.L.; /MIT /SLAC, SSRL /Nebraska U.

    2009-05-11

    A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.

  11. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    PubMed Central

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2008-01-01

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal -reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from Shewanella oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM); while only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. A restoration of the normal protein fold is observed coincident with the repair of MetSO in oxidized CaM by MsrBA, as monitored by the time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4′5′-bis(1,3,2-dithoarsolan-2yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in oxidized CaM is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in an order of magnitude rate enhancement in comparison to the individual MsrA or MsrB enzymes alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation. PMID:17997579

  12. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    PubMed

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization. PMID:26646606

  13. Gold(I) catalysts with bifunctional P, N ligands.

    PubMed

    Wetzel, Corinna; Kunz, Peter C; Thiel, Indre; Spingler, Bernhard

    2011-08-15

    A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds [(5)(2)Au(3)Cl(2)]Cl and [(3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene). PMID:21761834

  14. Radical initiated polymerization in a bifunctional mixture via computer simulation

    NASA Astrophysics Data System (ADS)

    Diamond, Keri L.; Pandey, Ras B.; Thames, Shelby F.

    2004-06-01

    Computer simulations are performed to study the polymerization behavior in a mixture of bifunctional groups such as olefins (A) and acrylates (B) in an effective solvent (a coarse description for vegetable oil derived macromonomers (VOMMs) in solution) on a cubic lattice. A set of interactions between these units and solvent (S) constituents and their relative concentrations (pA, pB, and pS) are considered. Samples are equilibrated with Metropolis algorithm to model the perceived behavior of VOMMs. The covalent bonding between monomeric units is then implemented via reaction pathways initiated by stochastic motion of free radicals (a very small fraction). The rate of reaction shows decay patterns with the time steps (t) with power laws (i.e., Rabαt-r, r≅0.4-0.8), exponential decays (i.e., Rabαe-0.001t), and their combination. Growth of A-B bonding is studied as a function of polymer concentration p=pA+pB for four different model systems appropriate for VOMMs. The data from the free radical initiated simulations are compared to the original simulations with homopolymerization. While most of the data are consistent with experimental observations, the variations are found to be model dependent.

  15. Turning the spotlight on protein-lipid interactions in cells

    PubMed Central

    Peng, Tao; Yuan, Xiaoqiu; Hang, Howard C.

    2014-01-01

    Protein function is largely dependent on coordinated and dynamic interactions of the protein with biomolecules including other proteins, nucleic acids and lipids. While powerful methods for global profiling of protein-protein and protein-nucleic acid interactions are available, proteome-wide mapping of protein-lipid interactions is still challenging and rarely performed. The emergence of bifunctional lipid probes with photoactivatable and clickable groups offers new chemical tools for globally profiling protein-lipid interactions under cellular contexts. In this review, we summarize recent advances in the development of bifunctional lipid probes for studying protein-lipid interactions. We also highlight how in vivo photocrosslinking reactions contribute to the characterization of lipid-binding proteins and lipidation-mediated protein-protein interactions. PMID:25129056

  16. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries.

    PubMed

    Park, Hey Woong; Lee, Dong Un; Park, Moon Gyu; Ahmed, Raihan; Seo, Min Ho; Nazar, Linda F; Chen, Zhongwei

    2015-03-01

    Developing an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.5 Co0.8 Fe0.2 O3 nanoparticles (LSCF-NPs). Confirmed by half-cell testing, op-LN exhibits synergistic effects of LSCF-NP and NCNT with excellent bifunctionality for both the oxygen reduction reaction and the oxygen evolution reaction. Furthermore, op-LN exhibits comparable performances in these reactions to Pt/C and Ir/C, respectively, which highlights its potential for use as a commercially viable bifunctional catalyst. Moreover, the results obtained by testing op-LN in a practical Li-air battery demonstrate improved and complementary charge/discharge performance compared to those of LSCF-NP and NCNT, and this confirms that simply prepared op-LN is a promising candidate as a highly effective bifunctional catalyst for rechargeable metal-air batteries. PMID:25684405

  17. Bifunctional drugs for the treatment of asthma and chronic obstructive pulmonary disease.

    PubMed

    Page, Clive; Cazzola, Mario

    2014-08-01

    Over the last decade, there has been a steady increase in the use of fixed-dose combinations of drugs for the treatment of a range of diseases, including hypertension, cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed-dose combinations, including combinations of a long-acting β2-agonist and an inhaled corticosteroid, and combinations of long-acting β2-agonists and long-acting muscarinic receptor antagonists. In fact, there are now a number of "triple-inhaler" fixed-dose combinations under development, with the first such triple combination having been approved in India. This use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has also led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule, which we have called "bifunctional drugs". In this review, we discuss the state of the art of these new bifunctional drugs as novel treatments for asthma and COPD that can be categorised as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs and bifunctional anti-inflammatory drugs. PMID:24696121

  18. Bifunctional ectodermal stem cells around the nail display dual fate homeostasis and adaptive wounding response toward nail regeneration

    PubMed Central

    Leung, Yvonne; Kandyba, Eve; Chen, Yi-Bu; Ruffins, Seth; Chuong, Cheng-Ming; Kobielak, Krzysztof

    2014-01-01

    Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration. On the body surface, different ectodermal organs exhibit distinctive modes of regeneration and the dynamics of their SC homeostasis remain to be unraveled. A slow cycling characteristic has been used to identify SCs in hair follicles and sweat glands; however, whether a quiescent population exists in continuously growing nails remains unknown. Using an in vivo label retaining cells (LRCs) system, we detected an unreported population of quiescent cells within the basal layer of the nail proximal fold, organized in a ring-like configuration around the nail root. These nail LRCs express the hair stem cell marker, keratin 15 (K15), and lineage tracing show that these K15-derived cells can contribute to both the nail structure and peri-nail epidermis, and more toward the latter. Thus, this stem cell population is bifunctional. Upon nail plucking injury, the homeostasis is tilted with these SCs dominantly delivering progeny to the nail matrix and differentiated nail plate, demonstrating their plasticity to adapt to wounding stimuli. Moreover, in vivo engraftment experiments established that transplanted nail LRCs can actively participate in functional nail regeneration. Transcriptional profiling of isolated nail LRCs revealed bone morphogenetic protein signaling favors nail differentiation over epidermal fate. Taken together, we have found a previously unidentified ring-configured population of bifunctional SCs, located at the interface between the nail appendage organ and adjacent epidermis, which physiologically display coordinated homeostatic dynamics but are capable of rediverting stem cell flow in response to injury. PMID:25277970

  19. Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway

    SciTech Connect

    Kwak, Mi-Kyoung . E-mail: mkwak@yumail.ac.kr; Kensler, Thomas W.

    2006-07-14

    The 26S proteasome is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins and may play a role as a component of a cellular antioxidative system. However, little is known about regulation of proteasome expression. In the present study, regulation of proteasome expression by the bifunctional enzyme inducer and a specific signaling pathway for this regulation were investigated in murine neuroblastoma cells. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene (3-MC). Studies using reporter genes containing the murine Psmb5 promoter showed that transcriptional activity of this gene was enhanced by 3-MC. Overexpression of AhR/Arnt did not affect activation of the Pmsb5 promoter by 3-MC and deletion of the xenobiotic response elements (XREs) from this promoter exerted modest effects on inducibility in response to 3-MC. However, mutation of the proximal AREs of the Psmb5 promoter largely abrogated its inducibility by 3-MC. In addition, this promoter showed a blunted response toward 3-MC in the absence of nrf2; 3-MC incubation increased nuclear levels of Nrf2 only in wild-type cells. Collectively, these results indicate that expression of proteasome subunit PSMB5 is modulated by bifunctional enzyme inducers in a manner independent of the AhR/Arnt-XRE pathway but dependent upon the Nrf2-ARE pathway.

  20. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites.

    PubMed

    Petrie, Jonathan R; Cooper, Valentino R; Freeland, John W; Meyer, Tricia L; Zhang, Zhiyong; Lutterman, Daniel A; Lee, Ho Nyung

    2016-03-01

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of the eg orbitals, which can customize orbital asymmetry at the surface. Analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides. PMID:26866808

  1. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases. PMID:26165289

  2. Polymer-Supported Reagents: The Role of Bifunctionality in the Design of Ion-Selective Complexants

    SciTech Connect

    Alexandratos, S. D.

    2001-06-01

    The importance of multi-functionality in the preparation of ion-selective polymers is evident from the structure of enzymes where specific metal ions are bound through cooperative interactions among different amino acids. In synthetic polymers, ionic selectivity is enhanced when a chemical reaction is superimposed on an ion-exchange process. The concept of reactive ion exchange has been extended through the synthesis of crosslinked polymers whose metal ion selectivity is a function of reduction, coordination or precipitation reactions as determined by various covalently bound ligands. Development of three classes of dual mechanism bifunctional polymers, a new series of bifunctional diphosphonate polymers, and novel bifunctional ion-selective polymers with enhanced ionic accessibility has been accomplished.

  3. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Zhu, Wenxin; Yue, Xiaoyue; Zhang, Wentao; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Jianlong

    2016-01-25

    Developing low-cost, efficient, and bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an appealing yet challenging task. Herein, for the first time, a NiS microsphere film was grown in situ on Ni foam (NiS/Ni foam) via a sulfurization reaction as an efficient bifunctional electrocatalyst for overall water splitting with superior activity and good durability. This NiS/Ni foam electrode delivers 20 mA cm(-2) at an overpotential of 158 mV for the HER and 50 mA cm(-2) at an overpotential of 335 mV for the OER in 1.0 M KOH. This bifunctional electrode also enables a high-efficiency alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of only 1.64 V, which could be promising in water splitting devices for large-scale hydrogen production. PMID:26661579

  4. Therapeutic Potential of a Non-Steroidal Bifunctional Anti-Inflammatory and Anti-Cholinergic Agent against Skin Injury Induced by Sulfur Mustard

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-01-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551

  5. Construction of Engineered Bifunctional Enzymes and Their Overproduction in Aspergillus niger for Improved Enzymatic Tools To Degrade Agricultural By-Products

    PubMed Central

    Levasseur, Anthony; Navarro, David; Punt, Peter J.; Belaïch, Jean-Pierre; Asther, Marcel; Record, Eric

    2005-01-01

    Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 × 10−8 M for the dissociation constant and 0.98 μmol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates. PMID:16332795

  6. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  7. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  8. Physical properties of bifunctional BST/LSMO nanocomposites

    SciTech Connect

    Beltran-Huarac, Juan Morell, Gerardo; Martinez, Ricardo

    2014-02-28

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.

  9. Janus nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-02-01

    A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special nanostructure. Compared with Fe3O4/Tb(BA)3phen/PMMA composite nanobelts, the magnetic-fluorescent bifunctional Janus nanobelts provided better performance. The new magnetic-fluorescent bifunctional Janus nanobelts have potential applications in novel nano-bio-label materials, drug target delivery materials and future nanodevices due to their excellent magnetic-fluorescent properties, flexibility and insolubility. Moreover, the construction technique for the Janus nanobelts is of universal significance for the fabrication of other multifunctional Janus nanobelts.A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special

  10. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    DOE PAGESBeta

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; et al

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  11. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    SciTech Connect

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C. H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  12. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    PubMed

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics. PMID:25686086

  13. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum.

    PubMed

    Dou, Wenfang; Xu, Meijuan; Cai, Dongmei; Zhang, Xiaomei; Rao, Zhiming; Xu, Zhenghong

    2011-10-01

    Ornithine acetyltransferase (EC 2.3.1.35; OATase) gene (argJ) from the L-arginine-producing mutant Corynebacterium crenatum SYPA5-5 was cloned, sequenced, and expressed in Escherichia coli BL21 (DE3). Analysis of the argJ sequence revealed that the argJ coded a polypeptide of 388 amino acids with a calculated molecular weight of 39.7 kDa. In this study, the function of the OATase (argJ) of C. crenatum SYPA5-5 has been identified as a conserved ATML sequence for the autolysis of the protein to α- and β-subunits. When the argJ regions corresponding to the α- and β-subunits were cloned and expressed separately in E. coli BL21, OATase activities were abolished. At the same time, a functional study revealed that OATase from C. crenatum SYPA5-5 was a bifunctional enzyme with the functions of acetylglutamate synthase (EC 2.3.1.1, NAGS) and acetylornithine deacetylase (EC 3.5.1.16, AOase) activities. In order to investigate the effects of the overexpression of the argJ gene on L: -arginine production, the argJ gene was inserted into pJCtac to yield the recombinant shuttle plasmid pJCtac-argJ and then transformed into C. crenatum SYPA5-5. The results showed that the engineered strains could not only express more OATase (90.9%) but also increase the production of L: -arginine significantly (16.8%). PMID:21785983

  14. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.

    PubMed

    Marc, F; Weigel, P; Legrain, C; Almeras, Y; Santrot, M; Glansdorff, N; Sakanyan, V

    2000-08-01

    The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences. PMID:10931207

  15. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  16. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    SciTech Connect

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  17. Bifunctional oligodeoxynucleotide/antagomiR constructs: evaluation of a new tool for microRNA silencing.

    PubMed

    Ziegler, Saskia; Eberle, Mariel Esther; Wölfle, Sabine J; Heeg, Klaus; Bekeredjian-Ding, Isabelle

    2013-12-01

    MicroRNAs (miRNAs) are fine-tuners in cellular processes, including those of the immune response. To study their functions and effects in immune cells, it is necessary to achieve specific silencing of individual miRNAs. To date, introduction of antisense microRNAs (antagomiRs) into primary cells is based on electroporation, lipofection, and viral vectors. However, these techniques often compromise viability, proliferative capacity, and differentiation. Furthermore, efficiency varies depending on the cell type and some are not suitable for in vivo approaches. To overcome these limitations we exploited the property of phosphorothioate (PTO)-modified DNA oligodeoxynucleotides (ODN) to enter cells with high efficacy: we developed and evaluated ODN/antagomiR constructs that consist of a PTO-ODN carrier covalently linked to a fully methylated antagomiR RNA sequence. Using these constructs, we achieved transfection efficiency of approximately 99% in leukocytes-in particular, in B lymphocytes that are hard to transfect with other methods. Our data demonstrate that miRNA silencing by the antagomiR portion of the constructs was specific and efficient, which could be further confirmed by an increase in target protein under silencing conditions. The constructs were successfully tested in human B cells, plasmacytoid dendritic cells, monocytes, and monocyte-derived dendritic cells, thus demonstrating their versatility. Moreover, introduction of stimulatory CpG sequences into the ODN portion conveys immune stimulatory quality when intended. Thus, bifunctional ODN/antagomiR constructs represent a highly efficient, versatile, and easy-to-handle tool to manipulate cellular miRNA expression levels and to allow the subsequent investigation of specific miRNA functions. PMID:24236889

  18. Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation.

    PubMed

    Shen, Ya; Wang, Zhejun; Wang, Jiao; Zhou, Yinghong; Chen, Hui; Wu, Chengtie; Haapasalo, Markus

    2016-04-22

    Gingival recession is a common clinical problem that results in esthetic deficiencies and poor plaque control and predominantly occurs in aged patients. In order to restore the cervical region, ideal biomaterials should possess the ability to stimulate proliferation and osteogenesis/cementogenesis of human gingival fibroblasts (HGF) and have a strong antibiofilm effect. The aim of the present study was to investigate the interactions of HGF and oral multispecies biofilms with Ca, Mg and Si-containing bredigite (BRT, Ca7MgSi4O16) bioceramics. BRT extract induced osteogenic/cementogenic differentiation of HGF and its inhibition of plaque biofilm formation were systematically studied. BRT extract in concentrations lower than <200 mg mL(-1) presented high biocompatibility to HGF cells in 3 days. Ion extracts from BRT also stimulated a series of bone-related gene and protein expressions in HGF cells. Furthermore, BRT extract significantly inhibited oral multispecies plaque biofilm growth on its surface and contributed to over 30% bacterial cell death without additional antibacterial agents in two weeks. A planktonic killing test showed that BRT suppressed 98% plaque bacterial growth compared to blank control in 3 days. The results also revealed that BRT extract has an osteostimulation effect on HGF. The suppression effect on plaque biofilms suggested that BRT might be used as a bioactive material for cervical restoration and that the synergistic effect of bioactive ions, such as Ca, Mg and Si ions, played an important role in the design and construction of bifunctional biomaterials in combination with tissue regeneration and antibiofilm activity. PMID:26806408

  19. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  20. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. PMID:27329566

  1. A bifunctional chiral [2]catenane based on 1,1'-binaphthyl-phosphates.

    PubMed

    Mitra, R; Thiele, M; Octa-Smolin, F; Letzel, M C; Niemeyer, J

    2016-05-21

    A novel [2]catenane was synthesised by ring-closing metathesis from a Ca-bisphosphate template. The resulting interlocked structure features two chiral 1,1'-binaphthyl-phosphates, leading to a bifunctional catenane structure. Initial binding studies point at the applicability of such mechanically interlocked bisphosphates as artificial receptors for dicationic guest molecules. PMID:27058367

  2. Bifunctional phosphoramidite reagents for the introduction of histidyl and dihistidyl residues into oligonucleotides.

    PubMed

    Smith, T H; LaTour, J V; Bochkariov, D; Chaga, G; Nelson, P S

    1999-01-01

    The synthesis and characterization of reagents for the incorporation of histidyl residues into oligonucleotides by automated chemical synthesis is described. Automated oligonucleotide synthesis utilizing a bifunctional reagent for the incorporation of a dihistidyl residue into oligonucleotides is described. Oligonucleotides incorporating one to three dihistidyl residues were prepared and characterized. The interaction of these oligonucleotides with a metal chelating IMAC matrix was explored. PMID:10411463

  3. Bifunctional N-heterocyclic carbene-catalyzed highly enantioselective synthesis of spirocyclic oxindolo-β-lactams.

    PubMed

    Zhang, Han-Ming; Gao, Zhong-Hua; Ye, Song

    2014-06-01

    The N-heterocyclic carbene-catalyzed Staudinger reaction of ketenes with isatin-derived ketimines was investigated. The bifunctional NHCs with a free hydroxyl group were demonstrated as efficient catalysts for the reaction, giving the corresponding spirocyclic oxindolo-β-lactams in high yields with excellent diastereo- and enantioselectivities. PMID:24856000

  4. Asymmetric α-amination of β-keto esters using a guanidine–bisurea bifunctional organocatalyst

    PubMed Central

    Yamamoto, Yoshiharu

    2016-01-01

    Summary An asymmetric α-amination of β-keto esters with azodicarboxylate in the presence of a guanidine–bisurea bifunctional organocatalyst was investigated. The α-amination products were obtained in up to 99% yield with up to 94% ee. PMID:26977179

  5. Porous MoO2 Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting.

    PubMed

    Jin, Yanshuo; Wang, Haotian; Li, Junjie; Yue, Xin; Han, Yujie; Shen, Pei Kang; Cui, Yi

    2016-05-01

    A porous MoO2 nanosheet as an active and stable bifunctional electrocatalyst for overall water splitting, is presented. It needs a cell voltage of only about 1.53 V to achieve a current density of 10 mA cm(-2) and maintains its activity for at least 24 h in a two-electrode configuration. PMID:26996884

  6. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+

    PubMed Central

    2015-01-01

    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with 68Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced 68Ga3+ in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60–80 MBq nmol–1. Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new 68Ga3+-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1–2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of 68Ga biomolecules under mild conditions suitable for peptides and proteins. PMID:26286399

  7. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-­acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    PubMed Central

    Shi, Dashuang; Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-01-01

    A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. PMID:17142901

  8. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding.

    PubMed

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro

    2016-12-15

    Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity. PMID:27451220

  9. Molecular cloning and characterization of a novel bi-functional α-amylase/subtilisin inhibitor from Hevea brasiliensis.

    PubMed

    Bunyatang, Orawan; Chirapongsatonkul, Nion; Bangrak, Phuwadol; Henry, Robert; Churngchow, Nunta

    2016-04-01

    A novel cDNA encoding a bi-functional α-amylase/subtilisin inhibitor (HbASI) was isolated from rubber (Hevea brasiliensis) leaves cultivar RRIM600. The HbASI had strong homology with the soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Its putative amino acid sequence was similar to that of the α-amylase/subtilisin inhibitor from Ricinus communis (72% identity). Genomic sequencing indicated that the HbASI gene contained no introns. The messenger RNA of HbASI was detected in leaf, hypocotyl and root. The recombinant HbASI expressed extracellularly in Pichia pastoris exhibited inhibitory activity against α-amylase from Aspergillus oryzae, trypsin and subtilisin A. The HbASI gene was induced in the rubber leaves infected with a rubber tree pathogen, Phytophthora palmivora. It was also enhanced by salicylic acid (SA) treatment and mechanical wounding. In addition, the biological activity of the HbASI protein involving in the plant defence responses was also investigated. The HbASI at a concentration of 0.16 mg mL(-1) could inhibit the mycelium growth of P. palmivora. These data suggested that the HbASI protein might play a crucial role in defence against pathogen of rubber trees. PMID:26854410

  10. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities.

    PubMed

    Rapala-Kozik, Maria; Olczak, Mariusz; Ostrowska, Katarzyna; Starosta, Agata; Kozik, Andrzej

    2007-12-01

    A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis. PMID:17696876

  11. CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis

    PubMed Central

    Margulieux, Katie R.; Fox, Jay W.; Nakamoto, Robert K.

    2016-01-01

    ABSTRACT Bacillus anthracis is killed by the interferon-inducible, ELR(−) CXC chemokine CXCL10. Previous studies showed that disruption of the gene encoding FtsX, a conserved membrane component of the ATP-binding cassette transporter-like complex FtsE/X, resulted in resistance to CXCL10. FtsX exhibits some sequence similarity to the mammalian CXCL10 receptor, CXCR3, suggesting that the CXCL10 N-terminal region that interacts with CXCR3 may also interact with FtsX. A C-terminal truncated CXCL10 was tested to determine if the FtsX-dependent antimicrobial activity is associated with the CXCR3-interacting N terminus. The truncated CXCL10 exhibited antimicrobial activity against the B. anthracis parent strain but not the ΔftsX mutant, which supports a key role for the CXCL10 N terminus. Mutations in FtsE, the conserved ATP-binding protein of the FtsE/X complex, resulted in resistance to both CXCL10 and truncated CXCL10, indicating that both FtsX and FtsE are important. Higher concentrations of CXCL10 overcame the resistance of the ΔftsX mutant to CXCL10, suggesting an FtsX-independent killing mechanism, likely involving its C-terminal α-helix, which resembles a cationic antimicrobial peptide. Membrane depolarization studies revealed that CXCL10 disrupted membranes of the B. anthracis parent strain and the ΔftsX mutant, but only the parent strain underwent depolarization with truncated CXCL10. These findings suggest that CXCL10 is a bifunctional molecule that kills B. anthracis by two mechanisms. FtsE/X-dependent killing is mediated through an N-terminal portion of CXCL10 and is not reliant upon the C-terminal α-helix. The FtsE/X-independent mechanism involves membrane depolarization by CXCL10, likely because of its α-helix. These findings present a new paradigm for understanding mechanisms by which CXCL10 and related chemokines kill bacteria. PMID:27165799

  12. Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe.

    PubMed

    Li, Feng; Du, Zongfeng; Yang, Limin; Tang, Bo

    2013-03-15

    A bifunctional fluorescent oligonucleotide probe for small molecules and protein detection has been developed based on turn on fluorescence response via the target induced structure-switching of molecular beacon. The two loops of this molecular beacon are designed in such a manner that they consist of thrombin (Tmb) aptamer sequence and adenosine triphosphate (ATP) aptamer sequence, respectively, which are utilized to sense thrombin and ATP. The oligonucleotide forms double stem-loops in the absence of targets, yielding no fluorescence emission because of the FRET from the excited fluorophore to the proximal quencher. Upon addition of the target, the ATP or Tmb, its specific interaction with loop sequence of the hairpin structure induce the separation of reporter fluorophore and the fluorescence quencher of the molecular beacon, resulting in an increase of fluorescence response. Hence, the separate analysis of ATP and Tmb could be realized through only one designed molecular beacon. The detection limits were estimated to be 25 nM for ATP and 12 nM for Tmb, respectively. The results of this study should substantially broaden the perspective for future development of oligonucleotide probe for analysis of other analytes. PMID:23102434

  13. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  14. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHES77). Interestingly, the ADHES77 was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH4)2SO4 without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. PMID:26216639

  15. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids

    PubMed Central

    Houten, Sander M.; Denis, Simone; Argmann, Carmen A.; Jia, Yuzhi; Ferdinandusse, Sacha; Reddy, Janardan K.; Wanders, Ronald J. A.

    2012-01-01

    L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting. PMID:22534643

  16. Identification and characterization of a thermostable bifunctional enzyme with phosphomannose isomerase and sugar-1-phosphate nucleotidylyltransferase activities from a hyperthermophilic archaeon, Pyrococcus horikoshii OT3.

    PubMed

    Akutsu, Jun-ichi; Zhang, Zilian; Morita, Rihito; Kawarabayasi, Yutaka

    2015-11-01

    Mannosylglycerate is known as a compatible solute, and plays important roles for salinity adaptation and high temperature stability of microorganisms. In the gene cluster for the mannosylglycerate biosynthetic pathway predicted from the genomic data of Pyrococcus horikoshii OT3, the PH0925 protein was found as a putative bifunctional enzyme with phosphomannose isomerase (PMI) and mannose-1-phosphate guanylyltransferase (Man-1-P GTase) activities, which can synthesize GDP-mannose when accompanied by a phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme (PH0923). The recombinant PH0925 protein, expressed in E. coli, exhibited both expected PMI and Man-1-P GTase activities, as well as absolute thermostability; 95 °C was the optimum reaction temperature. According to the guanylyltransferase activity (GTase) of the PH0925 protein, it was found that the protein can catalyze glucose-1-phosphate (Glc-1-P) and glucosamine-1-phosphate (GlcN-1-P) in addition to Man-1-P. The analyses of C-terminus-truncated forms of the PH0925 protein indicated that sugar-1-phosphate nucleotidylyltransferase (Sugar-1-P NTase) activity was located in the region from the N-terminus to the 345th residue, and that the C-terminal 114 residue region of the PH0925 protein inhibited the Man-1-P GTase activity. Conversely, the PMI activity was abolished by deletion of the C-terminal 14 residues. This is the first report of a thermostable enzyme with both PMI and multiple Sugar-1-P NTase activities. PMID:26290359

  17. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    PubMed

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products. PMID:25721170

  18. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  19. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  20. Highly enantioselective conjugate addition of malononitrile to 2-enoylpyridines with bifunctional organocatalyst.

    PubMed

    Molleti, Nagaraju; Rana, Nirmal K; Singh, Vinod K

    2012-09-01

    An efficient enantioselective conjugate addition of malononitrile to a range of β-substituted 2-enoylpyridines catalyzed by cinchona alkaloid-based bifunctional urea catalysts has been developed. Both enantiomers of the products could be achieved with the same level of enantioselectivity by using pseudoenantiomeric catalysts in up to 97% ee and in excellent yields. One of the enantioenriched products has been transformed to a highly functionalized piperidone derivative. PMID:22920458

  1. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries. PMID:27043451

  2. L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to trans-β-Nitroolefins.

    PubMed

    Jin, Hui; Kim, Seung Tae; Hwang, Geum-Sook; Ryu, Do Hyun

    2016-04-15

    A series of novel L-proline derived tertiary amine bifunctional organocatalysts 9 are reported, which were applied to the asymmetric Michael addition of dithiomalonates 2 to trans-β-nitroolefins 1. The reaction proceeded in high yields (up to 99%) with high enantioselectivities (up to 97% ee). The synthetic utility of this methodology was demonstrated in the short synthesis of (R)-phenibut in high yield. PMID:26989804

  3. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  4. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation.

    PubMed

    Yang, Yang; Fei, Huilong; Ruan, Gedeng; Tour, James M

    2015-05-27

    A mixed-phased Co-based catalyst composed of Co phosphide and Co phosphate is successfully fabricated for bifunctional water electrolysis. The highly porous morphology in this anodized film enables efficient catalytic activity toward water splitting in an extremely low loading mass. The mixed phases in the porous film afford an ability to generate both H2 and O2 in a single electrolyzer. PMID:25872881

  5. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    PubMed Central

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  6. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  7. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.

    PubMed

    Zhan, Yi; Du, Guojun; Yang, Shiliu; Xu, Chaohe; Lu, Meihua; Liu, Zhaolin; Lee, Jim Yang

    2015-06-17

    Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts. PMID:25997179

  8. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    DOE PAGESBeta

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of themore » eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  9. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    PubMed Central

    Bazan, J F; Fletterick, R J; Pilkis, S J

    1989-01-01

    The bifunctional rat liver enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (ATP:D-fructose-6-phosphate 2-phosphotransferase/D-fructose-2,6-bisphosphate 2-phosphohydrolase, EC 2.7.1.105/EC 3.1.3.46) is constructed of two independent catalytic domains. We present evidence that the kinase and bisphosphatase halves of the bifunctional enzyme are, respectively, structurally similar to the glycolytic enzymes 6-phosphofructo-1-kinase and phosphoglycerate mutase. Computer-assisted modeling of the C-terminal bisphosphatase domain reveals a hydrophobic core and active site residue constellation equivalent to the yeast mutase structure; structural differences map to length-variable, surface-located loops. Sequence patterns derived from the structural alignment of mutases and the bisphosphatase further detect a significant similarity to a family of acid phosphatases. The N-terminal kinase domain, in turn, is predicted to form a nucleotide-binding fold that is analogous to a segment of 6-phosphofructo-1-kinase, suggesting that these unrelated enzymes bind fructose 6-phosphate and ATP substrates in a similar geometry. This analysis indicates that the bifunctional enzyme is the likely product of gene fusion of kinase and mutase/phosphatase catalytic units. Images PMID:2557623

  10. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. PMID:26247625

  11. (S)-5-(p-Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics

    PubMed Central

    Tircsó, Gyula; Benyó, Enikő Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E.; Sherry, A. Dean; Kovács, Zoltán

    2009-01-01

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N, N′, N″-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO2-Bn-PCTA) (M = Mg2+, Ca2+, Cu2+, Zn2+) complexes was similar to that of the corresponding PCTA complexes while the stability of Ln3+ complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO2-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid catalyzed decomplexation kinetic studies of the selected Ln(NO2-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO2-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications. PMID:19220012

  12. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  13. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  14. Identification of cellulase gene from the metagenome of Equus burchelli fecal samples and functional characterization of a novel bifunctional cellulolytic enzyme.

    PubMed

    Chandrasekharaiah, Matam; Thulasi, Appoothy; Bagath, Madiajagan; Kumar, Duvvuri Prasanna; Santosh, Sunil Singh; Palanivel, Chenniappan; Jose, Vazhakkala Lyju; Sampath, Koratokare Thirumalachar

    2012-05-01

    The metagenomic approach has been used successfully to isolate novel biocatalyst gene from uncultured microorganisms. The gene encoding exo-1,4-β-glucanase avicelase was amplified from the metagenome of the Equus burchelli fecal sample and cloned. The gene was found to be of 1,007 bp of nucleotide which encodes a protein of 318 amino acids with a calculated MW of 36 kDa. The deduced amino acid sequence was homologous with cellulases belonging to the glycosyl hydrolases 6 superfamily. The expressed protein was active towards the substrates avicel and carboxymethyl cellulose, indicating that it has bifunctional cellulolytic enzyme activity. The recombinant protein showed an activity of 5.23 U with specific activity of 6.8 U mg(-1) protein with the substrate avicel, while when CMC was used, an activity of 3.0 U with a specific activity of 4.2 U mg(-1) protein was achieved. Its optimum pH was determined to be 7.0 and optimum temperature of 35°C. PMID:22528653

  15. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings

  16. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.

  17. New approach to immunochemical determinations for triclopyr and 3,5,6-trichloro-2-pyridinol by using a bifunctional hapten, and evaluation of polyclonal antiserum.

    PubMed

    Watanabe, Eiki; Hoshino, Ryoko; Kanzaki, Yukiko; Tokumoto, Hiroshi; Kubo, Hiroaki; Nakazawa, Hiroyuki

    2002-06-19

    The present work describes the design and synthesis of the structurally unique hapten, "bifunctional hapten", to produce a group-specific polyclonal antiserum to triclopyr and 3,5,6-trichloro-2-pyridinol. A bifunctional hapten was designed and synthesized by conjugating commercially available Nepsilon-2,4-dinitrophenyl (DNP)-L-lysine to triclopyr, and then coupling this to carrier proteins such as bovine serum albumin (BSA). The synthesized bifunctional hapten greatly raised the antiserum titer in comparison with that of the conventional hapten, triclopyr. Antiserum with a sufficiently high titer to provide the determinations of targeted compounds was obtained only 63 days after the primary immunization. The obtained antiserum showed the highest affinity to triclopyr (IC(50) = 3.5 nM) and 3,5,6-trichloro-2-pyridinol (IC(50) = 5.1 nM) in homologous ELISA. The cross-reactivities to various agrochemicals and some chlorinated phenolic compounds were determined. Significant cross-reactivity was found to the herbicide 2,4,5-T. The antiserum reacted to both triclopyr and its metabolite. Assay sensitivity was evaluated for effects of various assay conditions, including pH value and concentrations of organic solvents and detergents. Under optimized assay conditions, the quantitative working range of triclopyr ELISA was from 0.1 to 5.2 ng/mL with a limit of detection (LOD) of 0.037 ng/mL, and an IC(50) of 0.72 ng/mL. On the other hand, the quantitative working range of 3,5,6-trichloro-2-pyridinol ELISA was from 0.13 to 6.0 ng/mL with a LOD of 0.052 ng/mL, and an IC(50) of 0.95 ng/mL. Water samples fortified with triclopyr or its metabolite at 1, 5, and 10 ng/mL were directly analyzed without extraction and cleanup by the proposed ELISA. The mean recovery was 101.6%, and the mean coefficient of variation (CV) was 7.1% in the case of the triclopyr ELISA. In the case of the 3,5,6-trichloro-2-pyridinol ELISA, the mean recovery was 99.8%, and the mean CV was 9.5%. The proposed

  18. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.

    PubMed

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng

    2015-10-01

    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center. PMID:26332273

  19. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    PubMed

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity. PMID:26410361

  20. Crystallization and preliminary crystallographic analysis of Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus.

    PubMed

    Lansky, Shifra; Salama, Rachel; Solomon, Vered H; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2013-06-01

    Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp. PMID:23722857

  1. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  2. Unidirectional Adsorption of Bifunctional 1,4-Phenylene Diisocyanide on the Ge(100)-2 × 1 Surface.

    PubMed

    Shong, Bonggeun; Sandoval, Tania E; Crow, Allison M; Bent, Stacey F

    2015-03-19

    Adsorption of bifunctional organic molecules on semiconductor surfaces is important for surface modification; however, most bifunctional molecules previously studied have yielded mixtures of singly and dually tethered adsorbates. Here we report the adsorption of bifunctional 1,4-phenylene diisocyanide (PDI) on the Ge(100)-2 × 1 surface, in which singly bound adsorbates are selectively produced. As shown by polarized multiple internal reflection infrared spectroscopy experiments and density functional theory calculations, PDI adsorbates form a single C-dative bonding configuration through one of the isocyanide functionalities, retaining one unreacted isocyanide moiety per adsorbate. The angle of the molecular axis is ∼30° from the surface normal. The delocalized π* molecular orbital of the free molecule is also preserved upon adsorption. These results demonstrate the potential usefulness of isocyanide adsorbates as a means toward selective organic functionalization of semiconductor surfaces. PMID:26262866

  3. Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries.

    PubMed

    Liu, Xien; Park, Minjoon; Kim, Min Gyu; Gupta, Shiva; Wu, Gang; Cho, Jaephil

    2015-08-10

    The lack of high-efficient, low-cost, and durable bifunctional electrocatalysts that act simultaneously for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is currently one of the major obstacles to commercializing the electrical rechargeability of zinc-air batteries. A nanocomposite CoO-NiO-NiCo bifunctional electrocatalyst supported by nitrogen-doped multiwall carbon nanotubes (NCNT/CoO-NiO-NiCo) exhibits excellent activity and stability for the ORR/OER in alkaline media. More importantly, real air cathodes made from the bifunctional NCNT/CoO-NiO-NiCo catalysts further demonstrated superior performance to state-of-the-art Pt/C or Pt/C+IrO2 catalysts in primary and rechargeable zinc-air batteries. PMID:26118973

  4. Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396.

    PubMed

    Ghatge, Sunil Subhash; Telke, Amar Anandrao; Kang, Seo-Hee; Arulalapperumal, Venkatesh; Lee, Keun-Woo; Govindwar, Sanjay Prabhu; Um, Youngsoon; Oh, Doo-Byoung; Shin, Hyun-Dong; Kim, Seon-Won

    2014-05-01

    Cel5 from marine Hahella chejuensis is composed of glycoside hydrolase family-5 (GH5) catalytic domain (CD) and two carbohydrate binding modules (CBM6-2). The enzyme was expressed in Escherichia coli and purified to homogeneity. The optimum endoglucanase and xylanase activities of recombinant Cel5 were observed at 65 °C, pH 6.5 and 55 °C, pH 5.5, respectively. It exhibited K m of 1.8 and 7.1 mg/ml for carboxymethyl cellulose and birchwood xylan, respectively. The addition of Ca(2+) greatly improved thermostability and endoglucanase activity of Cel5. The Cel5 retained 90 % of its endoglucanase activity after 24 h incubation in presence of 5 M concentration of NaCl. Recombinant Cel5 showed production of cellobiose after hydrolysis of cellulosic substrates (soluble/insoluble) and methylglucuronic acid substituted xylooligosaccharides after hydrolysis of glucuronoxylans by endo-wise cleavage. These results indicated that Cel5 as bifunctional enzyme having both processive endoglucanase and xylanase activities. The multidomain structure of Cel5 is clearly distinguished from the GH5 bifunctional glycoside hydrolases characterized to date, which are single domain enzymes. Sequence analysis and homology modeling suggested presence of two conserved binding sites with different substrate specificities in CBM6-2 and a single catalytic site in CD. Residues Glu132 and Glu219 were identified as key catalytic amino acids by sequence alignment and further verified by using site directed mutagenesis. CBM6-2 plays vital role in catalytic activity and thermostability of Cel5. The bifunctional activities and multiple substrate specificities of Cel5 can be utilized for efficient hydrolysis of cellulose and hemicellulose into soluble sugars. PMID:24343767

  5. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues.

    PubMed

    Sanders, Lindsey; Stone, Roland; Webb, Kenneth; Mefford, Thompson; Nagatomi, Jiro

    2015-03-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a four-arm poly(propylene oxide)-poly(ethylene oxide) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive (Cho et al., Acta Biomater 2012;8:2223-2232; Barrett et al., Adv Health Mater 2012;1-11; Balakrishnan, Evaluating mechanical performance of hydrogel-based adhesives for soft tissue applications. Clemson University, All Theses, Paper 1574: Tiger Prints; 2013). Building on the success of these studies, this study explored bifunctionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni and bifunctional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone. Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bifunctional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of this study provided evidence that the bifunctional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  6. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-01

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way. PMID:27322613

  7. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  8. Direct transformation of esters into arenes with 1,5-bifunctional organomagnesium reagents.

    PubMed

    Link, Achim; Fischer, Christian; Sparr, Christof

    2015-10-01

    A direct transformation of carboxylic acid esters into arenes with 1,5-bifunctional organomagnesium reagents is described. This efficient and practical method enables the one-step defunctionalization of various carboxylic acid esters to prepare benzene, anthracene, tetracene, and pentacene derivatives. A double nucleophilic addition of the 1,5-organodimagnesium reagent to the ester is followed by an immediate 1,4-elimination reaction that leads to the direct [5+1] formation of a new aromatic ring. PMID:26291060

  9. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.

    PubMed

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  10. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    SciTech Connect

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; Jones, Christopher W.

    2015-12-29

    Shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  11. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm‑2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm‑2 at 1.64 V.

  12. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

    PubMed Central

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo

    2015-01-01

    Summary New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  13. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones.

    PubMed

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo; Waser, Mario; Massa, Antonio

    2015-01-01

    New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  14. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  15. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGESBeta

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  16. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  17. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. PMID:26835655

  18. Highly Enantioselective, Intermolecular Hydroamination of Allenyl Esters Catalyzed by Bifunctional Phosphinothioureas

    PubMed Central

    2015-01-01

    Bifunctional phosphinothiourea catalysts have been developed successfully for the highly regio- and enantioselective γ-hydroamination of allenyl and propargyl esters with N-methoxy carbamate nucleophiles to yield α,β-unsaturated γ-amino acid ester products. In the case of propargyl ester substrates, the reaction proceeds through reversible phosphinothiourea-catalyzed isomerization to the corresponding allenyl ester. The high enantioselectivity of the process is attributed to a cooperative conjugate addition of a thiourea-bound carbamate anion to a vinyl phosphonium ion resulting from covalent activation of the allenyl ester substrate. PMID:25496451

  19. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide.

    PubMed

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-10

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm(-2) at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm(-2) at 1.64 V. PMID:27146428

  20. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  1. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  2. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes†||‡

    PubMed Central

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-01-01

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain, and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 Å apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5-β-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product. PMID:20968298

  3. Characterization of bifunctional L-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis.

    PubMed

    Yang, Jianhua; Li, Wei; Wang, Dezheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-07-01

    Glutathione (GSH), an important bioactive substance, is widely applied in pharmaceutical and food industries. In this work, two bifunctional L-glutathione synthetases (GshF) from Actinobacillus pleuropneumoniae (GshFAp) and Actinobacillus succinogenes (GshFAs) were successfully expressed in Escherichia coli BL-21(DE3). Similar to the GshF from Streptococcus thermophilus (GshFSt), GshFAp and GshFAs can be applied for high titer GSH production because they are less sensitive to end-product inhibition (Ki values 33 and 43 mM, respectively). The active catalytic forms of GshFAs and GshFAp are dimers, consistent with those of GshFPm (GshF from Pasteurella multocida) and GshFSa (GshF from Streptococcus agalactiae), but are different from GshFSt (GshF from S. thermophilus) which is an active monomer. The analysis of the protein sequences and three dimensional structures of GshFs suggested that the binding sites of GshFs for substrates, L-cysteine, L-glutamate, γ-glutamylcysteine, adenosine-triphosphate, and glycine are highly conserved with only very few differences. With sufficient supply of the precursors, the recombinant strains BL-21(DE3)/pET28a-gshFas and BL-21(DE3)/pET28a-gshFap were able to produce 36.6 and 34.1 mM GSH, with the molar yield of 0.92 and 0.85 mol/mol, respectively, based on the added L-cysteine. The results showed that GshFAp and GshFAs are potentially good candidates for industrial GSH production. PMID:26996628

  4. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase

    PubMed Central

    Gibson, Marc W.; Dewar, Simon; Ong, Han B.; Sienkiewicz, Natasha

    2016-01-01

    Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed. PMID:27175479

  5. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase.

    PubMed

    Gibson, Marc W; Dewar, Simon; Ong, Han B; Sienkiewicz, Natasha; Fairlamb, Alan H

    2016-05-01

    Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed. PMID:27175479

  6. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    SciTech Connect

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R.; Whitfield, Chris; Naismith, James H.

    2012-10-01

    The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  7. A Bifunctional Enzyme That Has Both Monoacylglycerol Acyltransferase and Acyl Hydrolase Activities1[W][OA

    PubMed Central

    Vijayaraj, Panneerselvam; Jashal, Charnitkaur B.; Vijayakumar, Anitha; Rani, Sapa Hima; Venkata Rao, D.K.; Rajasekharan, Ram

    2012-01-01

    Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX4D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions. PMID:22915575

  8. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  9. Magnetically labelled gold and epoxy bi-functional microcarriers for suspension based bioassay technologies.

    PubMed

    Vyas, Kunal N; Palfreyman, Justin J; Love, David M; Mitrelias, Thanos; Barnes, Crispin H W

    2012-12-21

    Microarrays and suspension-based assay technologies have attracted significant interest over the past decade with applications ranging from medical diagnostics to high throughput molecular biology. The throughput and sensitivity of a microarray will always be limited by the array density and slow reaction kinetics. Suspension (or bead) based technologies offer a conceptually different approach, improving detection by substituting a fixed plane of operation with many individually distinguishable microcarriers. In addition to all the features of a suspension based assay technology, our technology offers a rewritable label. This has the potential to be truly revolutionary by opening up the possibility of generating, on chip, extensive labelled molecular libraries. We unveil our latest SU-8 microcarrier design with embedded magnetic films that can be utilized for both magnetic and optical labelling. The novel design significantly simplifies fabrication and additionally incorporates a gold cap to provide a dual surface, bi-functional architecture. The microcarriers are fabricated using deep-ultraviolet lithography techniques and metallic thin film growth by evaporation. The bi-functional properties of the microcarriers will allow us to use each microcarrier as its own positive control thereby increasing the reliability of our technology. Here we present details of the design, fabrication, magnetic detection and functionalization of these microcarriers. PMID:23128508

  10. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  11. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    PubMed Central

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  12. Construction of a bifunctional enzyme fusion for the combined determination of biogenic amines in foods.

    PubMed

    Lee, Jae-Ick; Jang, Jun-Hyuck; Yu, Mi-Ji; Kim, Young-Wan

    2013-09-25

    Biogenic amines (BAs) are a group of low-molecular-mass organic bases derived from free amino acids. Due to the undesirable effects of BAs on human health, amine oxidase-based detection methods for BAs in foods have been developed. Here, we developed a bifunctional enzyme fusion (MAPO) using a Cu(2+)-containing monoamine oxidase (AMAO2) and a flavin adenine dinucleotide-containing putrescine oxidase (APUO) from Arthrobacter aurescens. It was necessary to activate MAPO with supplementary Cu(2+) ions, leading to a 6- to 12-fold improvement in catalytic efficiency (kcat/KM) for monoamines. The optimal temperatures of Cu(2+)-activated MAPO (cMAPO) for both tyramine and putrescine were 50 °C, and the optimal pH values for tyramine and putrescine were pH 7.0 and pH 8.0, respectively, consistent with those of AMAO2 and APUO, respectively. The cMAPO showed relative specific activities of 100, 99, 32, and 32 for 2-phenylethylamine, tyramine, histamine, and putrescine, respectively. The tyramine-equivalent BA contents of fermented soybean pastes by cMAPO were more than 90% of the total BA determined by HPLC. In conclusion, cMAPO is fully bifunctional toward biogenic monoamines and putrescine, allowing the combined determination of multiple BAs in foods. This colorimetric determination method could be useful for point-of-care testing to screen safety-guaranteed products prior to instrumental analyses. PMID:24001036

  13. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    PubMed

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution. PMID:24115374

  14. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h. PMID:27064172

  15. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase.

    PubMed

    Fushinobu, Shinya; Nishimasu, Hiroshi; Hattori, Daiki; Song, Hyun-Jin; Wakagi, Takayoshi

    2011-10-27

    Enzymes catalyse specific reactions and are essential for maintaining life. Although some are referred to as being bifunctional, they consist of either two distinct catalytic domains or a single domain that displays promiscuous substrate specificity. Thus, one enzyme active site is generally responsible for one biochemical reaction. In contrast to this conventional concept, archaeal fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) consists of a single catalytic domain, but catalyses two chemically distinct reactions of gluconeogenesis: (1) the reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GA3P) to FBP; (2) the dephosphorylation of FBP to fructose-6-phosphate (F6P). Thus, FBPA/P is fundamentally different from ordinary enzymes whose active sites are responsible for a specific reaction. However, the molecular mechanism by which FBPA/P achieves its unusual bifunctionality remains unknown. Here we report the crystal structure of FBPA/P at 1.5-Å resolution in the aldolase form, where a critical lysine residue forms a Schiff base with DHAP. A structural comparison of the aldolase form with a previously determined phosphatase form revealed a dramatic conformational change in the active site, demonstrating that FBPA/P metamorphoses its active-site architecture to exhibit dual activities. Thus, our findings expand the conventional concept that one enzyme catalyses one biochemical reaction. PMID:21983966

  16. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-05-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT) however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices.

  17. Bifunctional catalysis of the dedeuteration of methoxyacetone-1,1,3,3,3-d

    SciTech Connect

    Hine, J.; Sinha, A.

    1984-06-15

    The dedeuteration of methoxyacetone-1,1,3,3,3-d/sub 5/ is subject to bifunctional catalysis by 3-(dimethylamino)-propylamine (3DP) and (1R,2S,3R,4R)-3-((dimethylamino)methyl)-1,7,7-trimethyl-2-norbornamine (DTN). These catalysts act by using their primary amino groups to transform the ketone to an iminium ion and their tertiary amino groups to transfer a deuteron internally, changing the iminium ion to an enamine. Although analogous monofunctional bases favor exchange at the methyl position relative to exchange at the methylene position by factors of up to 4-fold, bifunctional catalysis by the diamines used favors the methyl group by 11- to 15-fold. Exchange at the methylene group in the presence of DTN was strongly stereoselective. The pro-S deuteron was removed 12-20 times as rapidly as the pro-R deuteron. This is the result of the steric effect of the methoxy substituent. 19 references, 2 figures, 2 tables.

  18. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium.

    PubMed

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-30

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology. PMID:27560165

  19. Bifunctional graphene/γ-Fe₂O₃ hybrid aerogels with double nanocrystalline networks for enzyme immobilization.

    PubMed

    Chen, Liang; Wei, Bin; Zhang, Xuetong; Li, Chun

    2013-07-01

    Highly porous hosting materials with conducting (favorable to electron transfer) and magnetic (favorable to product separation) bicontinuous networks should possess great potentials for immobilization of various enzymes in the field of biocatalytic engineering, but the synthesis of such materials is still a great challenge. Herein, bifunctional graphene/γ-Fe2 O3 hybrid aerogels with quite low density (30-65 mg cm(-3) ), large specific surface area (270-414 m(2) g(-1) ), high electrical conductivity (0.5-5 × 10(-2) S m(-1) ), and superior saturation magnetization (23-54 emu g(-1) ) are fabricated. Single networks of either graphene aerogels or γ-Fe2 O3 aerogels are obtained by etching of the hybrid aerogels with acid solution or calcining of the hybrid aerogels in air, indicative of the double networks of the as-synthesized graphene/γ-Fe2 O3 hybrid aerogels for the first time. The resulting bifunctional aerogels are used to immobilize β-glucuronidase for biocatalytic transformation of glycyrrhizin into glycyrrhetinic acid monoglucuronide or glycyrrhetinic acid, with high biocatalytic activity and definite repeatability. PMID:23423944

  20. Binuclear platinum (II)-terpyridine complexes. A new class of bifunctional DNA-intercalating agent.

    PubMed Central

    McFadyen, W D; Wakelin, L P; Roos, I A; Hillcoat, B L

    1986-01-01

    A series of binuclear DNA-binding ligands was prepared by linking two (2,2':6',2"-terpyridine)platinum(II) moieties via alpha omega-dithiols of the type HS-[CH2]n-SH where n = 4-10. A monomeric analogue was also synthesized. Compounds were characterized by elemental analysis and electronic and n.m.r. spectroscopy. Viscometric measurements with sonicated rod-like DNA fragments and covalently closed circular DNA were performed to investigate the mode of binding of these agents. The ligands with n = 5 and 6 function as bis intercalators and form a single 'base-pair sandwich' in violation of neighbour-exclusion binding. Bifunctional reaction occurs for the ligand with n = 7, whereas the ligands with n = 8 and 10 show a preference for mixed monofunctional/bifunctional binding. The data do not permit definitive assignment of the binding mode of the ligands with n = 4 and 9. All compounds are growth-inhibitory against mouse leukaemia L1210 cells in culture with IC50 values in the range 2-14 microM. PMID:3800959

  1. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices.

    PubMed

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  2. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs. PMID:25970133

  3. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  4. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces.

    PubMed

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  5. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.

    PubMed

    Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk

    2016-01-27

    Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles. PMID:26766495

  6. Biochemical Properties and Biological Function of a Monofunctional Microbial Biotin Protein Ligase

    PubMed Central

    Daniels, Kyle G.; Beckett, Dorothy

    2010-01-01

    Biotin protein ligases constitute a family of enzymes that catalyze biotin linkage to biotin-dependent carboxylases. In bacteria these enzymes are functionally divided into two classes; the monofunctional enzymes that only catalyze biotin addition and the bifunctional enzymes that also bind to DNA to regulate transcription initiation. Biochemical and biophysical studies of the bifunctional Escherichia coli ligase suggest that several properties of the enzyme have evolved to support its additional regulatory role. Included among these properties are the order of substrate binding and linkage between oligomeric state and ligand binding. PMID:20499837

  7. Facile synthesis of 4-vinyl- and 4-fluorovinyl-1,2,3-triazoles via bifunctional “click-olefination” reagents

    PubMed Central

    Kumar, Rakesh; Pradhan, Padmanava; Zajc, Barbara

    2011-01-01

    Modular synthesis of vinyl and fluorovinyl triazoles can be achieved from bifunctional propargyl and fluoropropargyl sulfones by Cu-catalyzed azide-alkyne ligation and Julia-Kocienski olefination. Competitive click reactions of the protio and fluoropropargyl sulfones show higher reactivity of the latter, and a preliminary DFT analysis was performed. PMID:21336351

  8. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation

    PubMed Central

    Sterner, Reinhard; Merkl, Rainer

    2016-01-01

    Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans. PMID:26824644

  9. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries.

    PubMed

    Liu, Qin; Wang, Yaobing; Dai, Liming; Yao, Jiannian

    2016-04-01

    A flexible nanoporous carbon-fiber film for wearable electronics is prepared by a facile and scalable method through pyrolysis of electrospun polyimide. It exhibits excellent bifunctional electrocatalytic activities for oxygen reduction and oxygen evolution. Flexible rechargeable zinc-air batteries based on the carbon-fiber film show high round-trip efficiency and mechanical stability. PMID:26914270

  10. Bifunctional-Phosphine-Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Poly-heterocycle Rings.

    PubMed

    Li, Erqing; Jin, Hongxing; Jia, Penghao; Dong, Xuelin; Huang, You

    2016-09-12

    A highly stereoselective sequential annulation reaction between γ-substituted allenoates and ketimines was reported. By using bifunctional N-acyl aminophosphine catalysts, poly-heterocycle rings were obtained with high stereocontrol in good to excellent yields. The desired products have four contiguous stereogenic centers (one quaternary and three tertiary carbon centers), and only one isomer was obtained in all reactions. PMID:27529614