Science.gov

Sample records for ghg saving potentials

  1. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  2. GHG emissions and mitigation potential in organic egg production

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Malin, Daniella; Smith, Pete; Hillier, Jon

    2016-04-01

    Models and tools are used to estimate greenhouse gas (GHG) emissions in agriculture from management processes when measurements are not available. The Cool Farm Tool is widely used by farmers for this purpose. This study focus on the livestock part of the tool. The GHG emissions from livestock include enteric methane emissions from ruminants, nitrous oxide emissions from manure management, land use and land-use change, feed production, processing and transport. A case study is presented of organic egg producers in the USA, who used the tool over three years to calculate their emissions with the Cool Farm Tool. The highest GHG emissions were produced through feed, followed by transport and manure management. The farmers became more aware about the emissions in egg production and started to take action to reduce emissions. The results showed that the averaged GHG emissions decreased over the three years of the study.

  3. Reduction potentials of total energy consumption and GHG emissions in Xiamen

    NASA Astrophysics Data System (ADS)

    Bin, C.; Cui, S.

    2009-12-01

    Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China’s energy uses and CO2 emissions. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying effects of energy-saving policies and finding solution to GHG emissions in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from Xiamen city. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2007-2020 and GHG emissions are estimated. Two scenarios have been designed to describe the future strategies relating to the development of Xiamen city. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of urban energy demand. The ‘Integrated’ scenario is considered to be the most optimized case where a series of available reduction measures such as clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control and new and renewable energy development and utilization are assumed to be implemented. Energy demand and GHG emissions in Xiamen up to 2020 are estimated in these two scenarios. The total reduction potentials in the ‘Integrated’ scenario and the relative contribution rate of reduction potentials of each measure have been estimated.

  4. Potential options to reduce GHG emissions in Venezuela

    SciTech Connect

    Pereira, N.; Bonduki, Y.; Perdomo, M.

    1996-12-31

    The Government of Venezuela ratified the United Nations Framework Convention on Climate Change (UNFCCC) in December, 1994. The Convention requires all parties to develop and publish national inventories of anthropogenic greenhouse gas emissions (GHG) as well as national plans to reduce or control emissions, taking into account their common but differentiated responsibilities and their specific national and regional development priorities, objectives, and circumstances. Within this context, the Ministry of Environment and Renewable Natural Resources and the Ministry of Energy and Mines developed the `Venezuelan Case-Study to Address Climate Change`. The study was initiated in October 1993, with the financial and technical assistance of the Government of United States, through the U.S. Country Studies Program (USCSP), and the Global Environment Facility (GEF), through the United Nations Environment Programme (UNEP).

  5. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    PubMed

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. PMID:26300422

  6. Potential GHG mitigation options for agriculture in China

    SciTech Connect

    Erda, Lin; Yue, Li; Hongmin, Dong

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions is improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.

  7. Drivers of potential GHG fluxes under bioenergy land use change in the UK

    NASA Astrophysics Data System (ADS)

    Parmar, Kim; Keith, Aidan M.; Perks, Mike; Rowe, Rebecca; Sohi, Saran; McNamara, Niall

    2013-04-01

    The greatest contributors to global greenhouse gases (GHG's) are CO2 emissions from fossil fuel use and following land use change (LUC). Globally, soils contain three times more carbon than the atmosphere and have the potential to act as GHG sources or sinks. A significant amount of land may be converted to bioenergy production to help meet UK 2050 renewable energy and GHG emissions reduction targets. This raises considerable sustainability concerns with respect to the effects of LUC on soil carbon (C) conservation and GHG emissions. Forests are a key component in the global C cycle and when managed effectively can reduce atmospheric GHG concentrations. Together with other dedicated bioenergy crops, Short Rotation Forestry (SRF) could be used to meet biomass requirements. SRF is defined as high density plantations of fastgrowing tree species grown on short rotational lengths (8-20 years) for biomass (McKay 2011). As SRF is likely to be an important domestic source of biomass for energy it is imperative that we gain an understanding of the implications for large-scale commercial application on soil C and the GHG balance. We utilized a paired-site approach to investigate how LUC to SRF could potentially alter the underlying processes of soil GHG production and consumption. This work was linked to a wider soil C stock inventory for bioenergy LUC, so our major focus was on changes to soil respiration. Specifically, we examined the relative importance of litter, soil, and microbial properties in determining potential soil respiration, and whether these relationships were consistent at different soil temperatures (10 ° C and 20 ° C). Soils were sampled to a depth of 30 cm from 30 LUC transitions across the UK and incubated under controlled laboratory conditions, with gas samples taken over a seven day enclosure period. CO2, N2O and CH4 gas fluxes were measured by gas chromatography and were examined together with other soil properties measured in the field and

  8. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    NASA Astrophysics Data System (ADS)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  9. Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy

    NASA Astrophysics Data System (ADS)

    Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin

    2012-12-01

    In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.

  10. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  11. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  12. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  13. Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050

    SciTech Connect

    Stadler, Michael; DeForest, Nicholas; Marnay, Chris; Bonnet, Florence; Lai, Judy; Phan, Trucy

    2010-10-01

    various USDOE research funding scenarios on the adoption of these and other building energy technologies. The results demonstrate that passive technologies contain significant potential for carbon reductions - exceeding 1165 Mt cumulative savings between 2005 and 2050 (with 50% likelihood) and outperforming similar R&D funding programs for distributed photovoltaics and high efficiency solid-state lighting.

  14. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  15. Potential cost savings with terrestrial rabies control

    PubMed Central

    Recuenco, Sergio; Cherry, Bryan; Eidson, Millicent

    2007-01-01

    Background The cost-benefit of raccoon rabies control strategies such as oral rabies vaccination (ORV) are under evaluation. As an initial quantification of the potential cost savings for a control program, the collection of selected rabies cost data was pilot tested for five counties in New York State (NYS) in a three-year period. Methods Rabies costs reported to NYS from the study counties were computerized and linked to a human rabies exposure database. Consolidated costs by county and year were averaged and compared. Results Reported rabies-associated costs for all rabies variants totalled $2.1 million, for human rabies postexposure prophylaxes (PEP) (90.9%), animal specimen preparation/shipment to laboratory (4.7%), and pet vaccination clinics (4.4%). The proportion that may be attributed to raccoon rabies control was 37% ($784,529). Average costs associated with the raccoon variant varied across counties from $440 to $1,885 per PEP, $14 to $44 per specimen, and $0.33 to $15 per pet vaccinated. Conclusion Rabies costs vary widely by county in New York State, and were associated with human population size and methods used by counties to estimate costs. Rabies cost variability must be considered in developing estimates of possible ORV-related cost savings. Costs of PEPs and specimen preparation/shipments, as well as the costs of pet vaccination provided by this study may be valuable for development of more realistic scenarios in economic modelling of ORV costs versus benefits. PMID:17407559

  16. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  17. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  18. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa

    SciTech Connect

    Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-01-01

    This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

  19. GHG Mitigation potential and cost in tropical forestry - Relative role for agroforestry

    SciTech Connect

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  20. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    SciTech Connect

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  1. On the potential of GHG emissions estimation by multi-species inverse modeling

    NASA Astrophysics Data System (ADS)

    Gerbig, Christoph; Boschetti, Fabio; Filges, Annette; Marshall, Julia; Koch, Frank-Thomas; Janssens-Maenhout, Greet; Nedelec, Philippe; Thouret, Valerie; Karstens, Ute

    2016-04-01

    Reducing anthropogenic emissions of greenhouse gases is one of the most important elements in mitigating climate change. However, as emission reporting is often incomplete or incorrect, there is a need to independently monitor the emissions. Despite this, in the case of CO2 one typically assumes that emissions from fossil fuel burning are well known, and only natural fluxes are constrained by atmospheric measurements via inverse modelling. On the other hand, species such as CO2, CH4, and CO often have common emission patterns, and thus share part of the uncertainties, both related to the prior knowledge of emissions, and to model-data mismatch error. We implemented the Lagrangian transport model STILT driven by ECMWF analysis and short-term forecast meteorological fields together with emission sector and fuel-type specific emissions of CO2, CH4 and CO from EDGARv4.3 at a spatial resolution of 0.1 x 0.1 deg., providing an atmospheric fingerprint of anthropogenic emissions for multiple trace gases. We combine the regional STILT simulations with lateral boundary conditions for CO2 and CO from MACC forecasts and CH4 from TM3 simulations. Here we apply this framework to airborne in-situ measurements made in the context of IAGOS (In-service Aircraft for a Global Observing System) and in the context of a HALO mission conducted for testing the active remote sensing system CHARM-F during April/May 2015 over central Europe. Simulated tracer distributions are compared to observed profiles of CO2, CH4, and CO, and the potential for a multi-species inversion using synergies between different tracers is assessed with respect to the uncertainty reduction in retrieved emission fluxes. Implications for inversions solving for anthropogenic emissions using atmospheric observations from ICOS (Integrated Carbon Observing System) are discussed.

  2. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  3. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  4. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGESBeta

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  5. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    SciTech Connect

    McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

    2011-01-12

    The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1

  6. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  7. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  8. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    SciTech Connect

    Webber, Carrie A.; Brown, Richard E.

    1998-06-19

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  9. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  10. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  11. Fuel savings potential of the NASA Advanced Turboprop Program

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.; Sievers, G. K.

    1984-01-01

    The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technology are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.

  12. Essays on the U.S. biofuel policies: Welfare impacts and the potential for reduction of GHG emission

    NASA Astrophysics Data System (ADS)

    Hossiso, Kassu Wamisho

    This dissertation study investigates the impact of the US biofuel policies related to greenhouse gas (GHG) emission regulation, tax credit and renewable fuel standard (RFS2) mandate over production and consumption of ethanol as well as technical and environmental performance of corn ethanol plants. The study develops analytical models and provides quantitative estimation of the impact of various biofuel policies in each of the three chapters. Chapter 1 of this dissertation examines the tradeoff between achieving the environmental goal of minimizing life cycle GHG emissions and minimizing production costs in recently built dry-grind corn ethanol plants. The results indicate that the average ethanol plant is able to reduce GHG emissions by 36 % relative to the level under cost minimization, but production costs are 22 % higher. To move from least cost to least emissions allocations, ethanol plants would on average produce 25 % more of wet byproduct and 47% less of dry byproduct. Using a multi-output, multi-input partial equilibrium model, Chapter 2 explores the impact of the tax credit and RFS2 mandate policy on market price of ethanol, byproducts, corn, and other factor inputs employed in the production of corn ethanol. In the short-run, without tax credit ethanol plants will not have the incentive to produce the minimum level of ethanol required by RFS2. In the long-run, if ethanol plants to have the incentive to produce the minimum RFS2 mandate without tax credit policy, gasoline price will need to increase by order of 50% or more relative to the 2011 price. Chapter 3 develop meta-regression model to investigate the extent to which statistical heterogeneity among results of multiple studies on soil organic carbon (SOC) sequestration rates can be related to one or more characteristics of the studies in response to conventional tillage (CT) and no-till (NT). Regarding the difference in the rate of SOC sequestration between NT and CT, our results shows that the

  13. Assessment of Emerging Regional Air Quality (AQ) and Greenhouse Gas (GHG) Impacts and Potential Mitigation Strategies in U.S. Energy Sectors

    NASA Astrophysics Data System (ADS)

    Kinnon, Michael Mac

    The current domestic reliance on high-emitting fossil fuels for energy needs is the key driver of U.S. greenhouse gas (GHG) and pollutant emissions driving both climate change and regional air quality (AQ) concerns. Moving forward, emission sources in U.S. energy sectors will be subjected to changes driven by numerous phenomena, including technology evolution, environmental impacts, sustainability goals, and socioeconomic factors. This evolution will directly affect emissions source-related impacts on regional AQ that effective emissions control strategies must account for, including relative source contributions. Though previous studies have evaluated the emissions and AQ impacts of different sectors, technologies and fuels, most previous studies have assessed emissions impacts only without using advanced atmospheric models to accurately account for both spatial and temporal emissions perturbations and atmospheric chemistry and transport. In addition, few previous studies have considered the integration of multiple technologies and fuels in different U.S. regions.. Finally, most studies do not project emissions several decades into the future to assess what sources should be targeted with priority over time. These aspects are critical for understanding how both emissions sources and potential mitigation strategies impact the formation and fate of primary and secondary pollutants, including ground-level ozone and particulate matter concentrations. Therefore, this work utilizes a set of modeling tools to project and then to spatially and temporally resolve emissions as input into a 3-D Eulerian AQ model to assess how sources of emissions contribute to future atmospheric pollutant burdens. Further, analyses of the potential impacts of alternative energy strategies contained in potential mitigation strategies are conducted for priority targets to develop an understanding of how to maximize AQ benefits and avoid unforeseen deleterious tradeoffs between GHG reduction

  14. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  15. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  16. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  17. Potential for energy savings in old and new auto engines

    NASA Astrophysics Data System (ADS)

    Reitz, John R.

    1985-11-01

    This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.

  18. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.

    PubMed

    Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud

    2016-04-01

    The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate. PMID:26690584

  19. Advertising energy saving programs: The potential environmental cost of emphasizing monetary savings.

    PubMed

    Schwartz, Daniel; Bruine de Bruin, Wändi; Fischhoff, Baruch; Lave, Lester

    2015-06-01

    Many consumers have monetary or environmental motivations for saving energy. Indeed, saving energy produces both monetary benefits, by reducing energy bills, and environmental benefits, by reducing carbon footprints. We examined how consumers' willingness and reasons to enroll in energy-savings programs are affected by whether advertisements emphasize monetary benefits, environmental benefits, or both. From a normative perspective, having 2 noteworthy kinds of benefit should not decrease a program's attractiveness. In contrast, psychological research suggests that adding external incentives to an intrinsically motivating task may backfire. To date, however, it remains unclear whether this is the case when both extrinsic and intrinsic motivations are inherent to the task, as with energy savings, and whether removing explicit mention of extrinsic motivation will reduce its importance. We found that emphasizing a program's monetary benefits reduced participants' willingness to enroll. In addition, participants' explanations about enrollment revealed less attention to environmental concerns when programs emphasized monetary savings, even when environmental savings were also emphasized. We found equal attention to monetary motivations in all conditions, revealing an asymmetric attention to monetary and environmental motives. These results also provide practical guidance regarding the positioning of energy-saving programs: emphasize intrinsic benefits; the extrinsic ones may speak for themselves. PMID:25581089

  20. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  1. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  2. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  3. GHG emission mitigation measures and technologies in the Czech Republic

    SciTech Connect

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  4. Assessment of the GHG budget mitigation potential of intercrops: analysis on several trials and intercrops species in the Southwest of France.

    NASA Astrophysics Data System (ADS)

    Ferlicoq, M.; Ceschia, E.; Brut, A.; VandeWalle, A.

    2012-04-01

    To reduce organic carbon loss from the soil and nitrate leaching to groundwater, the European directives have promoted Good Agricultural Practices (GAP), such as the use of intercrops (IC). As shown by Béziat et al. 2009, Ceschia et al. 2010, the IC (or voluntary regrowth from the previous crop) limit net CO2 release from the ecosystem or even contribute to carbon storage during their development. However, the seeding and destruction of IC can be difficult on soil with high clay content, especially when soil is wet, and they must be destroyed early enough so that the nitrogen they contain can be released in the soil and used by the following crops. For these reasons, the Midi-Pyrenees Agriculture Department obtained a 2-year temporary derogation to test the implementation of several nitrates catch crops (mustard, diploïd oat, black oat, oat/vetch, oat/phacelia) on clay soils in order to evaluate the best management practices for growing and destroying them. Their impact on the next crop development was also analysed. In this study, the CESBIO helped the Midi-Pyrénées Agriculture Department to 1) calculate a carbon budget for the different trials and 2) to estimate GHG budgets for those trials by using a life cycle analysis (LCA) approach. Emissions associated to Field Operations (FO) were estimated based on study by Ceschia et al. (2010). During long periods of bare soil, the net CO2 flux is reduced to heterotrophic respiration. Since this component of NEE is not measured on the IC sites, it has been estimated using data from a GHG-Europe instrumented site in the same region, the same year and on similar soils (Auradé site, Gers). Heterotrophic respiration was estimated to range between 96.4 and 131 g eq-C m-2 during the IC cycle that lasted between 65 and 89 days. At the end of the IC period, biomass was (in g eq-C) 0.77, 0.18, 9.89, 0.42, 0.48 for mustard, diploïd oat, black oat, oat/vetch, oat/phacelia respectively. The low amount of biomass is explained

  5. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    SciTech Connect

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  6. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  7. Potential water saving through changes in European diets.

    PubMed

    Vanham, D; Hoekstra, A Y; Bidoglio, G

    2013-11-01

    This study quantifies the water footprint of consumption (WFcons) regarding agricultural products for three diets - the current diet (REF), a healthy diet (HEALTHY) and a vegetarian diet (VEG) - for the four EU zones WEST, NORTH, SOUTH and EAST. The WFcons related to the consumption of agricultural products (4265l per capita per day or lcd) accounts for 89% of the EU's total WFcons (4815lcd). The effect of diet has therefore an essential impact on the total WFcons. The current zonal WFcons regarding agricultural products is: 5875lcd (SOUTH), 4053lcd (EAST), 3761lcd (WEST) and 3197lcd (NORTH). These differences are the result of different consumption behaviours as well as different agricultural production methods and conditions. From the perspective of a healthy diet based on regional dietary guidelines, the intake of several product groups (sugar, crop oils, animal fats and meat) should be decreased and increased for others (vegetables, fruit). The WFcons regarding agricultural products for the alternative diets are the following: HEALTHY 4110lcd (-30%) and VEG 3476lcd (-41%) for SOUTH; HEALTHY 3606lcd (-11%) and VEG 2956lcd (-27%) for EAST; HEALTHY 2766lcd (-26%) and VEG 2208lcd (-41%) for WEST; HEALTHY 3091lcd (-3%) and VEG 2166lcd (-32%) for NORTH. Both the healthy and vegetarian diets thus result - consistent for all zones - in substantial WFcons reductions. The largest reduction takes place for the vegetarian diet. Indeed, a lot of water can be saved by EU citizens by a change in their diet. PMID:24096041

  8. A multisector analysis of urban irrigation and water savings potential

    NASA Astrophysics Data System (ADS)

    Bijoor, N.; Kim, H.; Famiglietti, J. S.

    2014-12-01

    Urban irrigation strains limited water supplies in semi-arid areas such as Orange County, CA, yet the quantity and controlling factors of urban irrigation are not well understood. The goals of this research are to (1) quantify and compare landscape irrigation applied by residential and commercial sectors in various retail agencies at a parcel scale (2) determine over- and under-irrigation compared to theoretical need (3) determine the climatic and socioeconomic controls on landscape irrigation. A research partnership was established between six water retail agencies in Orange County, CA representing a wide range of climatic and economic conditions. These agencies contributed between 3 and 13 years of water use data on a monthly/bimonthly basis. Irrigation depth (mm) was estimated using the "minimum month method," and landscape evapotranspiration was calculated using the Hargreaves equation for 122,345 parcels. Multiple regressions of water use were conducted with climatic and socioeconomic variables as possible explanatory variables. Single family residences accounted for the majority of urban water use. Findings from 112,192 single family residences (SFRs) show that total and indoor water use declined, though irrigation did not significantly change. Average irrigation for SFRs was 94 L/day, and a large proportion (42%) of irrigation was applied in excess to landscapes. Air temperature was found to be the primary driver of irrigation. We mapped over-irrigation relative to plant water demand to highlight areas that can be targeted for water conservation efforts. We also show the water savings that would be gained by improving the efficiency of irrigation systems. The information gained in this study would be useful for developing water use efficiency policies and/or educational programs to promote sustainable irrigation practices at the individual parcel scale.

  9. Assessment of energy saving technologies with potential for applications in US industries

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The purpose of this study was to assess and evaluate information on energy technologies displayed at international trade shows was assessed and evaluated. Technologies that had potential for saving energy in applications in US industries were identified. These technologies are identified and concise summaries on potential energy savings, economics, basic operational considerations, and potential applications are prepared. An objective of this study was to determine whether international trade shows can provide a convenient and useful forum for the identification of energy saving technologies which could have wider applications in US industry. Forty-four technologies were chosen for inclusion which are grouped into the following categories: heat recovery devices, heat exchangers, heat pumps, and various other technologies. Some of the technologies include: a low energy drying system, solid waste in cement manufacturing, boiler fuel optimization system, multifuel boiler plant and coal combustion efficiency improvements.

  10. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    SciTech Connect

    Garbesi, Karina; Desroches, Louis-Benoit; Bolduc, Christopher; Burch, Gabriel; Hosseinzadeh, Griffin; Saltiel, Seth

    2011-05-06

    This study surveyed the technical potential for efficiency improvements in 150 categories of appliances and equipment representing 33 quads of primary energy use across the US economy in 2010 and (1) documented efficient product designs, (2) identified the most promising cross-cutting strategies, and (3) ranked national energy savings potential by end use. Savings were estimated using a method modeled after US Department of Energy priority-setting reports - simplified versions of the full technical and economic analyses performed for rulemakings. This study demonstrates that large savings are possible by replacing products at the end-of-life with ultra-efficient models that use existing technology. Replacing the 50 top energy-saving end-uses (constituting 30 quads of primary energy consumption in 2010) with today's best-on-market equivalents would save {approx}200 quads of US primary energy over 30 years (25% of consumption anticipated there from). For the 29 products for maximum feasible savings potential could be estimated, the savings were twice as high. These results demonstrate that pushing ultra-efficient products to market could significantly escalate carbon emission reductions and is a viable strategy for sustaining large emissions reductions through standards. The results of this analysis were used by DOE for new coverage prioritization, to identify key opportunities for product prototyping and market development, and will leverage future standards rulemakings by identifying the full scope of maximum feasible technology options. High leverage products include advances lighting systems, HVAC, and televisions. High leverage technologies include electronic lighting, heat pumps, variable speed motors, and a host of controls-related technologies.

  11. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    SciTech Connect

    Zogg, Robert; Goetzler, William; Ahlfeldt, Christopher; Hiraiwa, Hirokazu; Sathe, Amul; Sutherland, Timothy

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  12. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  13. Wastewater treatment process impact on energy savings and greenhouse gas emissions.

    PubMed

    Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D

    2015-01-01

    The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO₂e/PE. The highest values of CO₂emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions. PMID:25633956

  14. The potential savings of using thiazides as the first choice antihypertensive drug: cost-minimisation analysis

    PubMed Central

    Fretheim, Atle; Aaserud, Morten; Oxman, Andrew D

    2003-01-01

    Background All clinical practice guidelines recommend thiazides as a first-choice drug for the management of uncomplicated hypertension. Thiazides are also the lowest priced antihypertensive drugs. Despite this, the use of thiazides is much lower than that of other drug-classes. We wanted to estimate the potential for savings if thiazides were used as the first choice drug for the management of uncomplicated hypertension. Methods For six countries (Canada, France, Germany, Norway, the UK and the US) we estimated the number of people that are being treated for hypertension, and the proportion of them that are suitable candidates for thiazide-therapy. By comparing this estimate with thiazide prescribing, we calculated the number of people that could switch from more expensive medication to thiazides. This enabled us to estimate the potential drug-cost savings. The analysis was based on findings from epidemiological studies and drug trials, and data on sales and prescribing provided by IMS for the year 2000. Results For Canada, France, Germany, Norway, the UK and the US the estimated potential annual savings were US$13.8 million, US$37.4 million, US$72.2 million, US$10.7 million, US$119.7 million and US$433.6 million, respectively. Conclusions Millions of dollars could be saved each year if thiazides were prescribed for hypertension in place of more expensive drugs. Our calculations are based on conservative assumptions. The potential for savings is likely considerably higher and may be more than US$1 billion per year in the US. PMID:12959644

  15. Jordanian industrial sector future energy consumption: Potential savings and environmental impact

    NASA Astrophysics Data System (ADS)

    Abdallat, Yousef; Al-Ghandoor, Ahmed; Salaymah, Mohammad

    2012-11-01

    This paper analyzes and evaluates impacts of introducing some efficient measures on the future fuel and electricity demands and associated reduction in GHG emissions. Without employing most effective energy conservation measures, energy demand is expected to rise by approximately 38% within 12 years time. Consequently, associated GHG emissions resulting from activities within the industrial sector are predicted to rise by 33% for the same period. However, if recommended energy management measures are implemented on a gradual basis, electricity and fuel consumptions as well as GHG emissions are forecasted to increase at a lower rate.

  16. Potential Savings From Increasing Adherence to Inhaled Corticosteroid Therapy in Medicaid-Enrolled Children

    PubMed Central

    Rust, George; Zhang, Shun; McRoy, Luceta; Pisu, Maria

    2016-01-01

    Background Many asthma-related exacerbations could be prevented by consistent use of daily inhaled corticosteroid therapy (ICS-Rx). Objectives We sought to measure the potential cost savings that could accrue from increasing ICS-Rx adherence in children. Study Design We measured observed costs for a cohort of 43,156 Medicaid-enrolled children in 14 southern states whose initial ICS-Rx was prescribed in 2007. Methods Adherence rates and associated costs were calculated from Medicaid claims. Children were categorized as high or low adherence based on the ratio of ICS-Rx claims filled to total asthma drug claims. Branching tree simulation was used to project the potential cost savings achieved by increasing the proportion of children with ICS-Rx to total asthma Rx ratios greater than 0.5 to 20%, 40%, 60%, 80%, and 100%. Results Increasing the proportion of children who maintain higher adherence after initial ICS-Rx to 40% would generate savings of $95 per child per year. An intervention costing $10 per member per month that resulted in even half of the children maintaining high adherence would generate a 98% return on investment for managed care plans or state Medicaid programs. Net costs decreased incrementally at each level of increase in ICS-Rx adherence. The projected Medicaid cost savings for these 14 states in 2007 ranged from $8.2 million if 40% of the children achieved high adherence, to $57.5 million if 80% achieved high adherence. Conclusions If effective large-scale interventions can be found, there are substantial cost savings to be gained from even modest increases in real-world adherence to ICS-Rx among Medicaid-enrolled children with asthma. PMID:25880622

  17. The energy saving potential of precooling incoming outdoor air by indirect evaporative cooling

    SciTech Connect

    Chen, P.; Qin, H.; Huang, Y.J.; Wu, H.; Blumstein, C.

    1992-09-01

    This paper investigates the energy saving potentials of using indirect evaporative coolers to precool incoming outdoor air as the first stage of a standard cooling system. For dry and moderately humid locations, either exhaust room air or outdoor air can be used as the secondary air to the indirect evaporative precooler with similar energy savings. Under these conditions, the use of outdoor air is recommended due to the simplicity in installing the duct system. For humid locations, the use of exhaust room air is recommended because the precooling capacity and energy savings will be greatly increased. For locations with short cooling seasons, the use of indirect evaporative coolers for precooling may not be worthwhile. The paper also gives some simplified indices for easily predicting the precooling capacity, energy savings and water consumption of an indirect evaporative precooler. These indices can be used for cooling systems with continuous operation, but further work is needed to determine whether the same indices are also suitable for cooling systems with intermittent operations.

  18. Potential fresh water saving using greywater in toilet flushing in Syria.

    PubMed

    Mourad, Khaldoon A; Berndtsson, Justyna C; Berndtsson, Ronny

    2011-10-01

    Greywater reuse is becoming an increasingly important factor for potable water saving in many countries. Syria is one of the most water scarce countries in the Middle East. However, greywater reuse is still not common in the country. Regulations and standards for greywater reuse are not available. Recently, however, several stakeholders have started to plan for greywater reuse. The main objective of this paper is to evaluate the potential for potable water saving by using greywater for toilet flushing in a typical Syrian city. The Sweida city in the southern part of Syria was chosen for this purpose. Interviews were made in order to reflect the social acceptance, water consumption, and the percentage of different indoor water uses. An artificial wetland (AW) and a commercial bio filter (CBF) were proposed to treat the greywater, and an economic analysis was performed for the treatment system. Results show that using treated greywater for toilet flushing would save about 35% of the drinking water. The economic analyses of the two proposed systems showed that, in the current water tariff, the payback period for AW and CBF in block systems is 7 and 52 years, respectively. However, this period will reduce to 3 and 21 years, respectively, if full water costs are paid by beneficiaries. Hence, introducing artificial wetlands in order to make greywater use efficient appears to be a viable alternative to save potable water. PMID:21621904

  19. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers

    SciTech Connect

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-02-28

    External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

  20. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment.

    PubMed

    Tonini, Davide; Hamelin, Lorie; Alvarado-Morales, Merlin; Astrup, Thomas Fruergaard

    2016-05-01

    Greenhouse gas (GHG) emission savings from biofuels dramatically depend upon the source of energy displaced and the effects induced outside the energy sector, for instance land-use changes (LUC). Using consequential life-cycle assessment and including LUC effects, this study provides GHG emission factors (EFs) for bioelectricity, biomethane, and bioethanol produced from twenty-four biomasses (from dedicated crops to residues of different origin) under a fossil and a non-fossil energy system. Accounting for numerous variations in the pathways, a total of 554 GHG EFs were quantified. The results showed that, important GHG savings were obtained with residues and seaweed, both under fossil and non-fossil energy systems. For high-yield perennial crops (e.g. willow and Miscanthus), GHG savings were achieved only under fossil energy systems. Biofuels from annual crops and residues that are today used in the feed sector should be discouraged, as LUC GHG emissions exceeded any GHG savings from displacing conventional energy sources. PMID:26938807

  1. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect

    Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

    1997-05-01

    Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

  2. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  3. Electricity production from anaerobic digestion of household organic waste in Ontario: techno-economic and GHG emission analyses.

    PubMed

    Sanscartier, David; Maclean, Heather L; Saville, Bradley

    2012-01-17

    The first Feed-in-Tariff (FiT) program in North America was recently implemented in Ontario, Canada to stimulate the generation of electricity from renewable sources. The life cycle greenhouse gas (GHG) emissions and economics of electricity generation through anaerobic digestion (AD) of household source-separated organic waste (HSSOW) are investigated within the FiT program. AD can potentially provide considerable GHG emission reductions (up to 1 t CO(2)eq/t HSSOW) at relatively low to moderate cost (-$35 to 160/t CO(2)eq) by displacing fossil electricity and preventing the emission of landfill gas. It is a cost-effective GHG mitigation option compared to some other FiT technologies (e.g., wind, solar photovoltaic) and provides unique additional benefits (waste diversion, nutrient recycling). The combination of electricity sales at a premium rate, savings in waste management costs, and economies of scale allow AD facilities processing >30,000 t/yr to be cost-competitive against landfilling. However, the FiT does not sufficiently support smaller-scale facilities that are needed as a transition to larger, more economically viable facilities. Refocusing of the FiT program and waste policies are needed to support the adoption of AD of HSSOW, which has not yet been developed in the Province, while more costly technologies (e.g., photovoltaic) have been deployed. PMID:22191423

  4. Preliminary Study of the Fuel Saving Potential of Regenerative Turbofans for Commercial Subsonic Transports. [engine tests

    NASA Technical Reports Server (NTRS)

    Kraft, G. A.

    1975-01-01

    The fuel savings potential of regenerative turbofans was calculated and compared with that of a reference turbofan. At the design altitude of 10.67 km and Mach 0.80, the turbine-inlet-temperature of the regenerative turbofan was fixed at 1700 K while the overall pressure ratio was varied from 10 to 20. The fan pressure ratio was fixed at 1.6 and the bypass ratio varied from 8 to 10. The heat exchanger design parameters such as pressure drop and effectiveness varied from 4 to 8 percent and from 0.80 to 0.90, respectively. Results indicate a fuel savings due to regeneration of 4.1 percent and no change in takeoff gross weight.

  5. Pittsburgh as a High Risk Population: The Potential Savings of a Personalized Dental Care Plan

    PubMed Central

    Ng, Andrew J.

    2016-01-01

    Objectives. Little evidence exists for the current standard of two annual preventative care visits. The purpose of this study was investigate this claim by modeling the potential savings of implementing a personalized care plan for high risk individuals in the Pittsburgh region. Methods. Using radiographs from 39 patients in the University of Pittsburgh Dental Registry and DNA Repository database, two models were created to analyse the direct savings of implementing a more aggressive preventative treatment plan and to view the longitudinal cost of increased annual yearly visits. Results. There is a significant decrease (p < 0.001) between original and modeled treatment cost when treatment severity is reduced. In addition, there is a significant decrease in adult lifetime treatment cost (p < 0.001) for up to four annual visits. Conclusions. Patients in high risk populations may see significant cost benefits in treatment cost when a personalized care plan, or higher annual preventative care visits, is implemented. PMID:27006657

  6. Carbon sink activity and GHG budget of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Klumpp, Katja; Herfurth, Damien; Soussana, Jean-Francois; Fluxnet Grassland Pi's, European

    2013-04-01

    In agriculture, a large proportion (89%) of greenhouse gas (GHG) emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities of European ecosystemes, however, often questioned the existence of C storing grasslands, as though a net sink of C was observed, uncertainty surrounding this estimate was larger than the sink itself (Janssens et al., 2003, Schulze et al., 2009. Then again, some of these estimates were based on a small number of measurements, and on models. Not surprising, there is still, a paucity of studies demonstrating the existence of grassland systems, where C sequestration would exceed (in CO2 equivalents) methane emissions from the enteric fermentation of ruminants and nitrous oxide emissions from managed soils. Grasslands are heavily relied upon for food and forage production. A key component of the carbon sink activity in grasslands is thus the impact of changes in management practices or effects of past and recent management, such as intensification as well as climate (and -variation). We analysed data (i.e. flux, ecological, management and soil organic carbon) from a network of European grassland flux observation sites (36). These sites covered different types and intensities of management, and offered the opportunity to understand grassland carbon cycling and trade-offs between C sinks and CH4 and N2O emissions. For some sites, the assessment of carbon sink activities were compared using two methods; repeated soil inventory and determination of the ecosystem C budget by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports (net C storage, NCS). In general grassland, were a potential sink of C with 60±12 g C /m2.yr (median; min -456; max 645). Grazed sites had a higher NCS compared to cut sites (median 99 vs 67 g C /m2.yr), while permanent grassland sites tended to have a lower NCS compared to temporary sown grasslands (median 64 vs

  7. Potential unintended pregnancies averted and cost savings associated with a revised Medicaid sterilization policy

    PubMed Central

    Borrero, Sonya; Zite, Nikki; Potter, Joseph E.; Trussell, James; Smith, Kenneth

    2013-01-01

    Objective Medicaid sterilization policy, which includes a mandatory 30-day waiting period between consent and the sterilization procedure, poses significant logistical barriers for many women who desire publicly-funded sterilization. Our goal was to estimate the number of unintended pregnancies and the associated costs resulting from unfulfilled sterilization requests due to Medicaid policy barriers. Study design We constructed a cost effectiveness model from the health care payer perspective to determine the incremental cost over a 1-year time horizon of the current Medicaid sterilization policy compared to a hypothetical, revised policy in which women who desire a post-partum sterilization would face significantly reduced barriers. Probability estimates for potential outcomes in the model were based on published sources; costs of Medicaid-funded sterilizations and Medicaid-covered births were based on data from the Medicaid Statistical Information System and The Guttmacher Institute, respectively. Results With the implementation of a revised Medicaid sterilization policy, we estimated that the number of fulfilled sterilization requests would increase by 45%, from 53.3% of all women having their sterilization requests fulfilled to 77.5%. Annually, this increase could potentially lead to over 29,000 unintended pregnancies averted and $215 million saved. Conclusion A revised Medicaid sterilization policy could potentially honor women's reproductive decisions, reduce the number of unintended pregnancies, and save a significant amount of public funds. Implication Compared to the current federal Medicaid sterilization policy, a hypothetical, revised policy that reduces logistical barriers for women who desire publicly-funded, post-partum sterilization could potentially avert over 29,000 unintended pregnancies annually and therefore lead to a cost savings of $215 million each year. PMID:24028751

  8. Part-load performance characterization and energy savings potential of the RTU challenge unit: Carrier weather expert

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Taasevigen, Danny J.

    2015-09-29

    This report documents the development of part-load performance curves and there use with the EnergyPlus simulation tool to estimate the potential savings from the use of WeatherExpert units compared to other standard options.

  9. Voluntary GHG reduction of industrial sectors in Taiwan.

    PubMed

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. PMID:22627150

  10. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  11. Voluntary GHG reduction in the US electric industry

    SciTech Connect

    2005-11-15

    The report is a study of efforts by members of the industry to voluntarily reduce their greenhouse gas emission. Dozens of US utilities are leveraging voluntary greenhouse gas (GHG) emissions reduction programs to help develop cost-effective plans for responding to future potential regulation. Many of these utilities are taking aggressive steps to reduce their GHG emissions and positioning themselves as leaders. They are participating in voluntary programs for reasons ranging from pressure by environmental groups and investors to a desire for a stronger voice in shaping climate change policy. The report takes a comprehensive look at what is driving these voluntary efforts, what government and industry help is available to support them, and what specific activities are being undertaken to reduce GHG emissions. It explains the features of the most prominent voluntary utility programs to help companies determine which might best suit their needs. 1 app.

  12. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  13. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    SciTech Connect

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  14. A Comparison of Drug Formularies and the Potential for Cost-Savings

    PubMed Central

    Kjos, Andrea L.; Schommer, Jon C.; Yuan, Yingli

    2010-01-01

    Background Brand-name drug costs have been escalating in the United States, and the reasons for this are not immediately clear. A lack of adequate and accurate information about drug effectiveness, safety, and cost has implications for drug utilization and cost. Objective To explore the extent to which health plan formularies were consistent with recommended drug listings and identify what would be the potential cost-savings on total drug expenditures if the utilization rate of the recommended therapies was increased. Method This study compared publicly available recommended drug listings with the formularies of 8 major health plans in Minnesota. Data from 1 of the health plans underwent an in-depth case analysis to evaluate the potential impact on pharmaceutical expenditures, using increased utilization rate scenarios of the recommended drugs. Results Health plans were similar with respect to degree of coverage for the recommended drugs. However, the case analysis showed that by increasing the utilization rate of recommended drugs, a potential cost-savings of more than 50% could be realized for the evaluated health plan for some therapeutic categories. Conclusion This study demonstrates an approach to assessing drug formularies using publicly available, recommended drug lists that incorporated evidence for effectiveness, safety, and cost. By using the application of this type of reliable information, formulary changes can be guided to incentivize value-based utilization for patient populations. PMID:25126325

  15. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock

    NASA Astrophysics Data System (ADS)

    Zervas, G.; Tsiplakou, E.

    2012-03-01

    Greenhouse gas (GHG) emissions are expected to cause global warming which results in extreme weather changes that could affect crop yields and productivity, food supplies and food prices. It is also expected that climate change will have an impact on animal metabolism and health, reproduction and productivity. On the other hand, the expected increased demand of animal origin products in the coming years will increase the reared animal numbers and consequently GHG emissions. This paper outlines the main GHGs emitted from livestock which are CO2, CH4 and N2O, coming from respiration, enteric fermentation and manure management respectively, with CH4 and N2O having the highest global warming potential. Ruminant livestock has the highest contribution to these GHG emissions with small ruminants share being 12.25% of the total GHG emissions from livestock's enteric and manure CH4, and manure N2O in CO2 equivalent, producing 9.45 kg CO2 equivalent per kg body weight with the respective values for cattle, pigs and poultry being 5.45, 3.97 and 3.25. Since the production systems significantly affect the GHG emissions, the grazing, livestock crop complex, and intensive ones account for 30.5%, 67.29% and 5.51% for total CH4 emission (from enteric fermentation and manure management) and 24.32%, 68.11% and 7.57% for N2O respectively. Taking into account the positive and negative impacts of small ruminant livestock production systems to the environmental aspects in general, it is recommended that a number of potentially effective measures should be taken and the appropriate mitigation technologies should be applied in order to reduce effectively and essentially the GHG emissions to the atmosphere, with no adverse effects on intensification and increased productivity of small ruminants production systems.

  16. An Investigation on the Energy Saving Potential of Electromagnetic Ballast Fluorescent Lamps

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2009-08-01

    Energy saving issue is a matter of great concern for industry and electrical utilities. Energy saving from fluorescent lamp system can be achieved by means of optimizing lighting level, reducing power consumption and improving the efficiency of fluorescent lamps. This paper presents an alternative energy saving control method for electromagnetic ballast fluorescent lamps. Non-linearity characteristics of fluorescent lamps and the effect of energy saving controller are taken into account in the proposed energy saving controller. The proposed energy saving controller provides energy saving feature and dimmable illuminance level control for electromagnetic ballast fluorescent lamps. In comparison to electronic ballast, integration of an energy saving controller with electromagnetic ballast results in less power consumption, less green house gas emission and longer lifespan at a much lower installation cost. Experiment results based on the proposed controller showed that 37.5% energy can be saved by reducing 15% of the AC line voltage.

  17. The costs and potential savings of a novel telepaediatric service in Queensland

    PubMed Central

    Smith, Anthony C; Scuffham, Paul; Wootton, Richard

    2007-01-01

    Background There are few cost-minimisation studies in telemedicine. We have compared the actual costs of providing a telepaediatric service to the potential costs if patients had travelled to see the specialist in person. Methods In November 2000, we established a novel telepaediatric service for selected regional hospitals in Queensland. Instead of transferring patients to Brisbane, the majority of referrals to specialists in Brisbane were dealt with via videoconference. Since the service began, 1499 consultations have been conducted for a broad range of paediatric sub-specialities including burns, cardiology, child development, dermatology, diabetes, endocrinology, gastroenterology, nephrology, neurology, oncology, orthopaedics, paediatric surgery and psychiatry. Results During a five year period, the total cost of providing 1499 consultations through the telepaediatric service was A$955,996. The estimated potential cost of providing an outpatient service to the same number of patients at the Royal Children's Hospital in Brisbane was A$1,553,264; thus, telepaediatric services resulted in a net saving of approximately A$600,000 to the health service provider. Conclusion Telepaediatrics was a cheaper method for the delivery of outpatient services when the workload exceeded 774 consultations. A sensitivity analysis showed that the threshold point was most sensitive to changes related to patient travel costs, coordinator salaries and videoconference equipment costs. The study showed substantial savings for the health department, mainly due to reduced costs associated with patient travel. PMID:17331259

  18. GHG Fluxes in semi-natural grasslands in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Debouk, Haifa; Altimir, Nuria; Ribas, Angela; Ibañez, Mercedes; Sebastià, Teresa

    2015-04-01

    Mountain areas are identified by the IPCC report (2013) as particularly sensitive to climate change. The need to understand mountain grasslands is crucial since these ecosystems can act as both sinks and sources of CO2. Investigating CH4 and N2O fluxes is important because they can offset potential CO2 sequestration. While most studies have been focusing on CO2, the knowledge on the temporal and spatial variability of CH4 and N2O, particularly in semi-natural mountain grasslands, is scarce. This study describes the magnitude and range of variability of the fluxes of CO2, N2O, and CH4 from four semi-natural pastures in the Pyrenees across an altitudinal gradient (1026 to 2436 m a.s.l.) during the growth period in 2012 and 2013. We measured GHG fluxes of the grassland during both light and dark conditions in the study sites using a photoacoustic field gas-monitor (INNOVA 1412, LumaSense Technologies). After completing the GHG measurements, we collected vegetation samples for the estimation of above-ground and below-ground biomass and separated them into functional groups and species. We present here the analysis of the relationship between GHG fluxes and above-ground biomass including the contribution of the relative abundance of plant functional types. Our preliminary results showed a clear seasonal pattern of GHG fluxes. We observed a negative impact of the summer period on the GHG fluxes, which was mostly pronounced in the CO2. We will further elaborate in-depth the effect of the temporal and spatial variability on the fluxes of CO2, N2O and CH4. Also, we will present the relationship between the GHG fluxes and the contribution of the vegetation in terms of the relative abundance of different plant functional types.

  19. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.

    PubMed

    Rehl, T; Müller, J

    2013-01-15

    Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in

  20. The energy-savings potential of electrochromic windows in the UScommercial buildings sector

    SciTech Connect

    Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

    2004-04-30

    Switchable electrochromic (EC) windows have been projected to significantly reduce the energy use of buildings nationwide. This study quantifies the potential impact of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader database of energy use and peak demand savings for perimeter zones than that given in previous LBNL simulation studies. The DOE-2.1E building simulation program was used to predict the annual energy use of a three-story prototypical commercial office building located in five US climates and 16 California climate zones. The energy performance of an electrochromic window controlled to maintain daylight illuminance at a prescribed setpoint level is compared to conventional and the best available commercial windows as well as windows defined by the ASHRAE 90.1-1999 and California Title 24-2005 Prescriptive Standards. Perimeter zone energy use and peak demand savings data by orientation, window size, and climate are given for windows with interior shading, attached shading, and horizon obstructions (to simulate an urban environment). Perimeter zone primary energy use is reduced by 10-20% in east, south, and west zones in most climates if the commercial building has a large window-to-wall area ratio of 0.60 compared to a spectrally selective low-e window with daylighting controls and no interior or exterior shading. Peak demand for the same condition is reduced by 20-30%. The emerging electrochromic window with daylighting controls is projected to save approximately 91.5-97.3 10{sup 12} Btu in the year 2030 compared to a spectrally selective low-E window with manually-controlled interior shades and no daylighting controls if it reaches a 40% market penetration level in that year.

  1. Energy saving potential of residential HVAC options at Fort Irwin, California

    SciTech Connect

    Hadley, D.L.; Stucky, D.J.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) evaluated heating and cooling system options for existing family housing at Fort Irwin, California. The purpose of this work was to quantify the energy conservation potential of alternative system types and to identify the most cost-effective technology available. The conventional residential heating/cooling systems at Fort Irwin are separate propane forced-air furnaces and central air conditioners. The options examined included air- and ground-source heat pumps, a natural gas furnace with central air conditioning, and a natural-gas-fired heat pump. The most cost-effective technology applicable to Fort Irwin was found to be the high-efficiency ground-source heat pumps. If all conventional units were replaced immediately, the net energy savings would be 76,660 MBtu (80.9 TJ) per year and a reduction in electrical demand of approximately 15,000 kW-month. The initial investment for implementing this technology would be approximately $7.1 million, with a savings-to-investment ratio of 1.74.

  2. Web-based Tool Identifies and Quantifies Potential Cost Savings Measures at the Hanford Site

    SciTech Connect

    Renevitz, Marisa J.; Peschong, Jon C.; Charboneau, Briant L.; Simpson, Brett C.

    2014-01-09

    The Technical Improvement system is an approachable web-based tool that is available to Hanford DOE staff, site contractors, and general support service contractors as part of the baseline optimization effort underway at the Hanford Site. Finding and implementing technical improvements are a large part of DOE’s cost savings efforts. The Technical Improvement dashboard is a key tool for brainstorming and monitoring the progress of submitted baseline optimization and potential cost/schedule efficiencies. The dashboard is accessible to users over the Hanford Local Area Network (HLAN) and provides a highly visual and straightforward status to management on the ideas provided, alleviating the need for resource intensive weekly and monthly reviews.

  3. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  4. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    SciTech Connect

    Friedrich, Elena Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  5. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    NASA Astrophysics Data System (ADS)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  6. Office technology energy use and savings potential in New York. Final report

    SciTech Connect

    Piette, M.A., Cramer, M., Eto, J., Koomey, J.

    1995-06-01

    This report discusses energy use by office equipment in New York State and the energy savings potential of energy-efficient equipment. A model containing equipment densities and energy-use characteristics for major categories of office equipment has been developed. The model specifies power requirements and hours of use for three modes of average operation for each device: active, standby, and suspend. The energy-use intensity for each device is expressed as a function of the average device density (number of units/1,000 sq ft), the hours of operation in each mode, and the average power requirements in each mode. Output includes an estimate of total energy use (GWh) for each device by building type. Three scenarios are developed. First is a business-as-usual efficiency baseline. Second is a future with increased use of power-managed devices projected under the current Energy Star Computers program sponsored by the US EPA. Third is a scenario that examines energy savings from greater use of products that go well beyond the standard Energy Star products. A series of sensitivity analyses were conducted to explore uncertainties in model inputs. The business-as-usual baseline forecast confirms that office equipment energy use has been rising over the past decade, and may continue to increase for the next decade and beyond. Office equipment currently consumes about 2,900 GWh/year in the State of New York. Under the business-as-usual baseline forecast, this load may increase to 3,300 GWh/year by the year 2000, and approximately double again before 2010. Widespread use of power management technologies adopted with the promotion of the Energy Star program could reduce this load growth by about 30% by the year 2000. Use of more advanced energy-efficient technology could reduce total energy use by office equipment to about 1,900 GWh/year in 2010, which is less than current consumption.

  7. The potential cost savings of implementing an inter-utility NO{sub x} trading program

    SciTech Connect

    Siegel, S.; Kalagnanam, J.

    1995-10-01

    Technology based standards such as RACT, which require the installation of a (R)easonably (A)vailable (C)ontrol (T)echnology on a boiler by boiler basis have been the dominant factor driving electric utility NO{sub x} compliance plans. In this paper, the authors examine the cost savings of implementing NO{sub x} trading, an alternative market based strategy for reducing the emissions of nitrogen oxides (NO{sub x}) to achieve NO{sub x} reduction goals set under Title IV of the 1990 Clean Air Act. In order to estimate the potential cost savings of inter-utility NO{sub x} trading, they use a combinatorial optimization approach to identify boiler retrofits and operating parameters which yield efficient (i.e., the most cost effective) NO{sub x} abatement strategies. In their formulation, annual emissions at individual boilers which are expensive to abate may exceed RACT levels by up to a factor of two thus allowing for trades with boilers which can abate in a more cost effective manner. They constrain total emissions in a trading region to be at or below the level obtained had all the boilers adopted RACT. Increasing the flexibility with which trades can occur has two main effects: (1) the cost effectiveness of meeting an aggregate reduction goal increases and (2) the spatial distribution of emissions shift relative to what it would have been under a strict RACT based compliance strategy. They estimate the magnitude of these effects for two Eastern electric utilities making intra- and inter-utility NO{sub x} trades. Results indicate that the cost effectiveness of meeting RACT level reduction can be increased by as much as 38% under certain trading regimes.

  8. The potential cost savings of implementing an inter-utility NO{sub x} trading program

    SciTech Connect

    Siegel, S.; Kalagnanam, J.

    1995-12-31

    Technology based standards such as RACT, which require the installation of a Reasonably Available Control Technology on a boiler by boiler basis have been the dominant factor driving electric utility NO{sub x} compliance plans. In this paper, the authors examine the cost savings of implementing NO{sub x} trading, an alternative market based strategy for reducing the emissions of nitrogen oxides (NO{sub x}) to achieve NO{sub x} reduction goals set under Title IV of the 1990 Clean Air Act. In order to estimate the potential cost savings of inter-utility NO{sub x} trading, the authors have used a combinatorial optimization approach to identify boiler retrofits and operating parameters which yield efficient (i.e., the most cost effective) NO{sub x} abatement. In the formulation, annual emissions at individual boilers which are expensive to abate may exceed RACT levels by up to a factor of two thus allowing for trades with boilers which can abate in a more cost effective manner. The authors constrain total emissions in a trading region to be at or below the level obtained had all the boilers adopted RACT. Increasing the flexibility with which trades can occur has two main effects: (1) the cost effectiveness of meeting an aggregate reduction goal increases and (2) the spatial distribution of emissions shift relative to what it would have been under a strict RACT based compliance strategy. The authors estimate the magnitude of these effects for two Eastern electric utilities making intra and inter-utility NO{sub x} trades. Results indicate that the cost effectiveness of meeting RACT level reduction can be increased by as much as 38% under certain trading regimes.

  9. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  10. Peatland-GHG emissions in Europe

    NASA Astrophysics Data System (ADS)

    Droesler, Matthias

    2013-04-01

    Managed peatlands are hot spots for CO2, CH4 and N2O emissions. GHG which have been not fully integrated in past European climate projects. Peatlands contribute to European GHG emissions 10 times more per unit area than other terrestrial ecosystems. Peatland management and exploration by drainage, agricultural use and peat extraction turned pristine peatland GHG sinks into sources. Emissions can reach more than 40 t CO2equiv. ha-1 a-1 in intensively managed peatlands. On the other hand, the restoration of degraded peatlands does normally reduce these emissions significantly towards climate neutral levels, once the restoration work is done wisely. But in some cases the net climate effect do not decrease significantly depending on hydrological regimes, fertilization status of the peatlands, climate and vegetation type. In many European countries with significant peatland cover nationally funded projects were set up to investigate peatland GHG fluxes and their drivers. These scattered data and knowledge are currently being brought together under the coverage of the GHG-Europe project (Grant agreement no.: 244122) within a new synthesis to develop the relevant EF, identify the drivers and develop upscaling options for GHG-emissions. The talk will: (1) show a first cut of new Emission Factors for peatlands in Europe and compare these with IPCC-default values. (2) discuss the developed sensible response functions for GHG-fluxes against natural and anthropogenic drivers such as land use intensity, land management with drainage and climate variability. (3) show case studies from Germany show the applicability of response functions for upscaling of GHG-balances. (4) An outlook is given to the future European peatland GHG-Balance.

  11. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry

  12. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings.

    PubMed

    Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J

    2015-01-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328

  13. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    PubMed Central

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-01-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328

  14. Potential hospital cost-savings attributed to improvements in outcomes for colorectal cancer surgery following self-audit

    PubMed Central

    2010-01-01

    Background One of the potential benefits of surgical audit is improved hospital cost-efficiencies arising from lower resource consumption associated with fewer adverse events. The aim of this study was to estimate the potential cost-savings for Australian hospitals from improved surgical performance for colorectal surgery attributed to a surgical self-audit program. Methods We used a mathematical decision-model to investigate cost differences in usual practice versus surgical audit and synthesized published hospital cost data with epidemiological evidence of adverse surgical events in Australia and New Zealand. A systematic literature review was undertaken to assess post-operative outcomes from colorectal surgery and effectiveness of surgical audit. Results were subjected to both one-way and probabilistic sensitivity analyses to address uncertainty in model parameters. Results If surgical self-audit facilitated the reduction of adverse surgical events by half those currently reported for colorectal cancer surgery, the potential cost-savings to hospitals is AU$48,720 (95% CI: $18,080-$89,260) for each surgeon treating 20 cases per year. A smaller 25% reduction in adverse events produced cost-savings of AU$24,960 per surgeon (95%CI: $1,980-$62,980). Potential hospital savings for all operative colorectal cancer cases was estimated at AU$30.3 million each year. Conclusions Surgical self-audit has the potential to create substantial hospital cost-savings for colorectal cancer surgery in Australia when considering the widespread incidence of this disease. The study is limited by the current availability and quality of data estimates abstracted from the published literature. Further evidence on the effectiveness of self-audit is required to substantiate these findings. PMID:20105290

  15. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J; Smith, David E; Daw, C Stuart

    2015-01-01

    Comparisons are reported on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. However, there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Thus, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  16. Angular selective window systems: Assessment of technical potential for energy savings

    DOE PAGESBeta

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  17. Angular selective window systems: Assessment of technical potential for energy savings

    SciTech Connect

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.

  18. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGESBeta

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  19. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  20. Potential cost savings from investments in energy-conserving irrigation systems

    SciTech Connect

    Patton, W.P.; Wilfert, G.L.; Harrer, B.J.; Clark, M.A.; Sherman, K.L.

    1982-10-01

    A comparative analysis is presented of the levelized costs of selected irrigation systems, with an emphasis on the costs and benefits of energy savings. The net economic benefits are evaluated, measured as energy cost savings minus additional capital and operating costs, of some energy-conserving systems. Energy use in irrigation and descriptions of both the conventional and the energy-saving technologies involved in the analysis are discussed. The approach used in the analysis is outlined, and comparative analysis results are discussed. Detailed cost information is presented by state. (LEW)

  1. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    SciTech Connect

    Nichol, Corrie Ian

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  2. A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Kriner, Scott; Manlove, Gary

    2013-01-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.

  3. DairyGHG: a tool for evaluating the greenhouse gas emissions and carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on the environment have become important national and international concerns. Dairy production, along with all other animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from our farm...

  4. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities.

    PubMed

    Friedrich, Elena; Trois, Cristina

    2013-11-01

    GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from -290kg CO2 e (glass) to -19111kg CO2 e (metals - Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186kg CO2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard. PMID:23791423

  5. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  6. Analysis of energy-saving potential in residential buildings in Xiamen City and its policy implications for southern China

    NASA Astrophysics Data System (ADS)

    Guo, Fei

    The buildings sector is the largest energy-consuming sector in the world. Residential buildings consume about three-quarters of the final energy in the buildings sector. Promoting residential energy savings is in consequence critical for addressing many energy-use-related environmental challenges, such as climate change and air pollution. Given China's robust economic growth and fast urbanization, it is now a critical time to develop policy interventions on residential energy use in the nation. With this as a background, this dissertation explores effective policy intervention opportunities in southern China through analyzing the residential energy-saving potential, using the city of Xiamen as a case study. Four types of residential energy-saving potential are analyzed: technical potential, economic potential, maximum achievable potential (MAP), and possible achievable potential (PAP). Of these, the first two types are characterized as static theoretical evaluation, while the last two represent dynamic evaluation within a certain time horizon. The achievable potential analyses are rarely seen in existing literature. The analytical results reveal that there exists a significant technical potential for residential energy savings of about 20.9-24.9% in the city of Xiamen. Of the technical potential, about two-thirds to four-fifths are cost-effective from the government or society perspective. The cost-effectiveness is evaluated by comparing the "Levelized Cost of Conserved Energy (LCOCE)" of available advanced technical measures with the "Actual Cost" of conserved energy. The "Actual Cost" of energy is defined by adding the environmental externalities costs and hidden government subsidies over the retail prices of energy. The achievable potential analyses are particularly based on two key realistic factors: 1) the gradual ramping-up adoption process of advanced technical measures; and 2) individuals' adoption-decision making on them. For implementing the achievable

  7. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect

    Konopacki, S.; Akbari, H.; Gartland, L.

    1997-05-01

    The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

  8. Literature Review of the Potential Energy Savings and Retention Water from Green Roofs in Comparison with Conventional Ones

    NASA Astrophysics Data System (ADS)

    Tselekis, Kyriakoulis

    2012-09-01

    The objective of this study is the comparison of green roof systems with conventional isolated and non-isolated ones in order to identify the potential energy savings of green roofs and the benefits provided in comparison with the cost of construction to the buildings. The region of interest is the Watergraafsmeer area in the city of Amsterdam. The method evaluates literature reports - mostly from 2003 to 2010 - that present the advantages of green roofs. Examples in real implementation of green roofs in USA, UK and Germany, retention of rainfall and a Life Cycle Assessment from a residential construction in Madrid will be introduced, showing the energy savings from insulation and heating/cooling that can be gained. All the reports have shown a reduction in energy costs and in runoff of water. Hence, costs and retrofitting potential completes the research. The age of buildings and the absence of insulation make green roofs an ideal alternative project for the retrofit of Watergraafsmeer.

  9. Water savings potentials of irrigation systems: global simulation of processes and linkages

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global

  10. GHG Emissions and Costs of Developing Biomass Energy in Malaysia: Implications on Energy Security in the Transportation and Electricity Sector

    NASA Astrophysics Data System (ADS)

    Hassan, Mohd Nor Azman

    Malaysia's transportation sector accounts for 48% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This study addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse gas emissions from land use change. When converting primary and secondary forests to oil-palm plantations between 270 - 530 g and 120 -190 g CO2 equivalent (CO2-eq) per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 to 85 g CO2-eq per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. Fossil fuels contributed about 93% to Malaysia's electricity generation mix and emit about 65 million tonnes (Mt) or 36% of the country's 2010 Greenhouse Gas (GHG) emissions. The government has set a target to install 330 MW biomass electricity by 2015, which is hoped to avoid 1.3 Mt of GHG emissions annually. The availability of seven types of biomass residues in Peninsular Malaysia is estimated based on residues-to-product ratio, recoverability and accessibility factor and other competing uses. It was found that there are approximately 12.2 Mt/yr of residues. Oil-palm residues contribute about 77% to the total availability with rice and forestry residues at 17%. Electricity from biomass can be produced via direct combustion in dedicated power plants or co-fired with coal. The co-firing of the residues at four existing coal plants in

  11. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  12. Immune Response in Severe Infection: Could Life-Saving Drugs Be Potentially Harmful?

    PubMed Central

    Popovic, Nada; Djordjevic, Dragan

    2013-01-01

    Critically ill patients suffer a high rate of nosocomial infection with secondary sepsis being a common cause of death. Usage of antibiotics and catecholamines is often necessary, but it can compromise complex immune response to infection. This review explores influence of these life-saving drugs on host immune response to severe infection. PMID:24198733

  13. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  14. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  15. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  16. Mitigating GHG emissions in dairy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive inventories of greenhouse gas (GHG) mitigation options for animal agriculture have been published recently. For dairy production systems, management option include (1) manipulation of dietary components (e.g., forages, concentrates) and use of feed additives (e.g., oils, tannins) to re...

  17. Market analysis, energy savings potential, and future development requirements for Radiance. Final report

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) Office of Conservation and Renewable Energy (CE), Building Equipment Division has funded the development of a sophisticated computer rendering program called Radiance at Lawrence Berkeley Laboratories (LBL). The project review study included: (1) Surveys of the lighting profession to determine how designers would use an improved, user-friendly Radiance, (2) Elucidation of features, including how Radiance could be used to save energy, which could be incorporated into Radiance to facilitate its more widespread use, (3) Outline of a development plan and determination of what costs the DOE might incur if it were to proceed with the development of an improved version, and (4) Weighing the anticipated development costs against anticipated energy-saving benefits.

  18. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    PubMed

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. PMID:24953314

  19. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    SciTech Connect

    Bender, Frank A. Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  20. GHG MITIGATION TECHNOLOGY PERFORMANCE EVALUATIONS UNDERWAY AT THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper outlines the verification approach and activities of the Greenhouse Gas (GHG) Technology Verification Center, one of 12 independent verification entities operating under the U.S. EPA-sponsored Environmental Technology Verification (ETV) program. (NOTE: The ETV program...

  1. Wastewater GHG Accounting Protocols as Compared to the State of GHG Science.

    PubMed

    Willis, John L; Yuan, Zhiguo; Murthy, Sudhir

    2016-08-01

    Greenhouse gas (GHG) accounting protocols have addressed emissions from wastewater conveyance and treatment using a variety of simplifying methodologies. While these methodologies vary to some degree by protocol, within each protocol they provide consistent tools for organizational entities of varying size and scope to report and verify GHG emissions. Much of the science supporting these methodologies is either limited or the protocols have failed to keep abreast of developing GHG research. This state-of-the-art review summarizes the sources of direct GHG emissions (both those covered and not covered in current protocols) from wastewater handling; provides a review of the wastewater-related methodologies in a select group of popular protocols; and discusses where research has out-paced protocol methodologies and other areas where the supporting science is relatively weak and warrants further exploration. PMID:27456141

  2. GHG Emissions and Costs of Developing Biomass Energy in Malaysia: Implications on Energy Security in the Transportation and Electricity Sector

    NASA Astrophysics Data System (ADS)

    Hassan, Mohd Nor Azman

    Malaysia's transportation sector accounts for 48% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This study addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse gas emissions from land use change. When converting primary and secondary forests to oil-palm plantations between 270 - 530 g and 120 -190 g CO2 equivalent (CO2-eq) per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 to 85 g CO2-eq per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. Fossil fuels contributed about 93% to Malaysia's electricity generation mix and emit about 65 million tonnes (Mt) or 36% of the country's 2010 Greenhouse Gas (GHG) emissions. The government has set a target to install 330 MW biomass electricity by 2015, which is hoped to avoid 1.3 Mt of GHG emissions annually. The availability of seven types of biomass residues in Peninsular Malaysia is estimated based on residues-to-product ratio, recoverability and accessibility factor and other competing uses. It was found that there are approximately 12.2 Mt/yr of residues. Oil-palm residues contribute about 77% to the total availability with rice and forestry residues at 17%. Electricity from biomass can be produced via direct combustion in dedicated power plants or co-fired with coal. The co-firing of the residues at four existing coal plants in

  3. Assessment of GHG mitigation technology measures in Ukraine

    SciTech Connect

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  4. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  5. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  6. Weyerhaeuser Company: Longview Mill Conducts Energy and Water Assessment that Finds Potential for $3.1 Million in Annual Savings

    SciTech Connect

    Not Available

    2004-06-01

    Weyerhaeuser completed a plant-wide energy assessment at its pulp and paper manufacturing facility in Longview, Washington, in 2002. The assessment identified nine projects for improving energy efficiency and reducing water consumption. Implementing these projects will save an estimated $3.1 million annually in natural gas costs. These measures will also reduce site water consumption by 3,600 gallons per minute. The estimated cost of these improvements is estimated at $5 million to $11 million. Aside from the nine projects discussed above, the assessment team also identified the potential to increase onsite power generation by up to 15 megawatts.

  7. ENERGY SAVINGS POTENTIALS IN RESIDENTIAL AND SMALL COMMERCIAL THERMAL DISTRIBUTION SYSTEMS - AN UPDATE

    SciTech Connect

    ANDREWS,J.W.

    2003-10-31

    This is an update of a report (Andrews and Modera 1991) that quantified the amounts of energy that could be saved through better thermal distribution systems in residential and small commercial buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling from the space-conditioning equipment to the conditioned space. This update involves no basic change in methodology relative to the 1991 report, but rather a review of the additional information available in 2003 on the energy-use patterns in residential and small commercial buildings.

  8. Corning Inc.: Proposed Changes at Glass Plant Indicate $26 Million in Potential Savings

    SciTech Connect

    2004-01-01

    In 2000, the Corning glass plant in Greenville, Ohio, consumed almost 114 million kWh of electricity and nearly 308,000 MMBtu of natural gas in its glassmaking processes for a total cost of approximately $6.4 million. A plant-wide assessment indicated that improvement projects could save nearly $26 million and reduce natural gas use by 122,900 MMBtu per year, reduce electrical use by 72,300,000 kWh per year, and reduce CO2 emissions by 180 million pounds per year.

  9. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    SciTech Connect

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-11-15

    Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

  10. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    SciTech Connect

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg

    2013-03-15

    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  11. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  12. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect

    Das, Sujit; Andress, David A; Nguyen, Tien

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  13. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    PubMed

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-01

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers. PMID:25369123

  14. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect

    Childs, Kenneth W; Stovall, Therese K

    2012-03-01

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  15. Energy efficiency monitoring and economic analysis for energy saving potential in UNITEN

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Yew, Kang Chin; Azwa Shaaya, Sharifah

    2013-06-01

    This paper discusses on energy efficiency survey for typical buildings in Universiti Tenaga Nasional (UNITEN). Undeniably, wastage of energy will cause the increase of operation cost and depletion of fossil fuel resources which contributes to the climate change issue in the world. UNITEN was commenced in the late 1990s and most of the buildings in this university are not equipped with energy management system. Such system is the solution to reduce energy use while maximizing the comfort levels of the occupants. Disregard to the energy management system, the implementation of other energy saving measures is the main objective of this paper. By taking the right measures, the energy wastage in the buildings of this university can be reduced.

  16. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    NASA Astrophysics Data System (ADS)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach

  17. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance

  18. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation

    SciTech Connect

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  19. Global climate targets and future consumption level: an evaluation of the required GHG intensity

    NASA Astrophysics Data System (ADS)

    Girod, Bastien; van Vuuren, Detlef Peter; Hertwich, Edgar G.

    2013-03-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO2-eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation.

  20. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    SciTech Connect

    Hong, Tianzhen; Fisk, William J.

    2009-07-08

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) of $0.52/ft{sup 2} in climate zone 14, followed by $0.32/ft{sup 2} in climate zone 16 and $0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $0

  1. Making it real: operationalizing soil C sequestration and GHG mitigation on agricultural lands

    NASA Astrophysics Data System (ADS)

    Paustian, Keith; Chambers, Adam; Easter, Mark; Lugato, Emanuele

    2015-04-01

    Land use and management account for roughly one-third of total anthropogenic greenhouse gases (GHGs) with about 10-12% coming from active management, primarily on agricultural lands and ca. 15-20% from land clearing and deforestation, which in many instances is tied to expansion of agricultural land use. Within this larger GHG source category of land use, soils play a significant role not only as a GHG source but also as a potential sink, through storing C in soil organic matter. However, despite 'being in the conversation' for many years, there has been relatively little engagement of agriculture, particularly with regards to soil management, in policies and programs for GHG mitigation. Now, that appears to be changing and there is increasing interest in 'bottom-up' strategies to incentivize agricultural management practices that sequester C in soils and reduce non-CO2 soil emissions, ranging from GHG offset projects within cap-and-trade systems, to inclusion of GHG emission reductions in 'green labeling' of agricultural products for consumers. In this paper, we review current knowledge of how soil management practices impact emissions and removals of GHGs and the current status of agricultural soil mitigation activities, in the US and globally. Critical areas for science support to further operationalize soil GHG mitigation strategies at local to national scales are discussed, including providing rigorous quantification technologies into the hands of management practitioners, providing estimates of impacts on productivity and costs associated with implementing mitigation practices, and gathering data on baseline practices and monitoring changes in practices over time.

  2. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    PubMed

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. PMID:20822893

  3. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGESBeta

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian; Radermacher, Reinhard

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  4. Estimate of Fuel Consumption and GHG Emission Impact from an Automated Mobility District

    SciTech Connect

    Chen, Yuche; Young, Stanley; Qi, Xuewei; Gonder, Jeffrey

    2015-10-19

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  5. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  6. Functions and potential applications of glycolipid biosurfactants--from energy-saving materials to gene delivery carriers.

    PubMed

    Kitamoto, Dai; Isoda, Hiroko; Nakahara, Tadaatsu

    2002-01-01

    Biosurfactants (BS) produced by various microorganisms show unique properties (e.g., mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared to their chemical counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in environmental protection and energy-saving technology as well. Glycolipid BS are the most promising, due to high productivity from renewable resources and versatile biochemical properties. Mannosylerythritol lipids (MEL), which are glycolipid BS produced by a yeast Candida antarctrica, exhibit not only excellent interfacial properties but also remarkable differentiation-inducing activities against human leukemia cells. MEL also show a potential anti-agglomeration effect on ice particles in ice slurry used for cold thermal storage. Recently, the cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BS should broaden its applications in new advanced technologies. The current status of research and development on glycolipid BS, especially their function and potential applications, is discussed. PMID:16233292

  7. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  8. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  9. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  10. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  11. A Systems Approach to Reducing Institutional GHG Emissions

    ERIC Educational Resources Information Center

    Williamson, Sean R.

    2012-01-01

    Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

  12. 40 CFR 98.233 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Calculating GHG emissions. 98.233 Section 98.233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.233 Calculating GHG emissions. You must calculate and report...

  13. 40 CFR 98.233 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Calculating GHG emissions. 98.233 Section 98.233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.233 Calculating GHG emissions. You must calculate and report...

  14. 40 CFR 98.233 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.233 Section 98.233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.233 Calculating GHG emissions. You must calculate and report...

  15. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.53 Section 98.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions....

  16. 40 CFR 98.243 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.243 Section 98.243 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petrochemical Production § 98.243 Calculating GHG emissions. (a) If you route all process vent emissions...

  17. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions. (a) You must calculate total annual emissions of each fluorinated GHG emitted by electronics... subpart (metric tons). N = The total number of process sub-types j that depends on the...

  18. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.33 Section 98.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.33 Calculating GHG emissions. You must calculate CO2...

  19. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  20. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  1. Potential energy cost savings by use of building roofs as thermal storage of a multi-storied building

    NASA Astrophysics Data System (ADS)

    Shelbaya, Ahmad Adam

    The thermal mass of a building has been used for more than two decades to shift the peak cooling load occurring during the day time to evening or night time. This is typically accomplished by use of concrete slabs embedded with pipes carrying hot or chilled water to meet the heating or cooling load, respectively. The water temperature drops across the coils and the frequency and intensity of room air circulation can be varied, along with controlling the gains through the windows, to shift the peak load hours to the nighttime when energy costs are cheaper and electric demands are lower. This thesis deals with the transient finite element heat transfer analysis of a concrete slab embedded with pipes circulating heated or chilled water of a multi-storied office building. A hypothetical office building in Chattanooga, Tennessee, USA is analyzed with weather data of that locale. The electrical power consumption of such a system operating at milder conditions or evening or night hours is estimated by use of hourly weather data. The estimated electric power consumption is then compared to the traditional method of operations. The influence of the wall envelope, including the size and orientation of windows, is considered in reducing the energy gain or loss from the space. The results presented in this thesis identify the potential energy cost savings of such a system as well as challenges involved compared to traditional buildings in commercial applications.

  2. Understanding and quantifying greenhouse gases (GHG) emissions: the UK GHG Emissions and Feedback Programme

    NASA Astrophysics Data System (ADS)

    Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew

    2016-04-01

    We give an overview over the structure, objectives, and methods of the UK-based Greenhouse Gases Emissions and Feedback Programme. The overarching objective of this research programme is to deliver improved GHG inventories and predictions for the UK, and for the globe at a regional scale. To address this objective, the Programme has developed a comprehensive, multi-year and interlinked measurement and data analysis programme, focussing on the major GHGs carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The Programme integrates three UK research consortia with complementary objectives, focussing on observation and modelling in the atmosphere, the oceans, and the terrestrial biosphere: GAUGE (Greenhouse gAs Uk and Global Emissions) will produce robust estimates of the UK GHG budget, using new and existing atmospheric measurement networks and modelling activities at a range of scales. It integrates inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology. The GREENHOUSE (Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments) project aims to understand the spatio-temporal patterns of biogenic GHG emissions in the UK's landscape of managed and semi-managed ecosystems. It uses existing UK field data and several targeted new measurement campaigns to build regional GHG inventories and improve the capabilities of land surface models. RAGNARoCC (Radiatively active gases from the North Atlantic Region and Climate Change) is an oceanographic project to investigate the air-sea fluxes of GHGs in the North Atlantic region. Through dedicated research cruises as well as data collection from ships of opportunity, it develops a comprehensive budget of natural and anthropogenic components of the carbon cycle in the North Atlantic and a better understanding of why the air-sea fluxes of CO2 vary regionally, seasonally and multi

  3. Alcoa World Alumina: Plant-Wide Assessment at Arkansas Operations Reveals More than$900,000 in Potential Annual Savings

    SciTech Connect

    Not Available

    2003-07-01

    The plant-wide energy-efficiency assessment performed in 2001 at the Alcoa World Alumina Arkansas Operations in Bauxite, Arkansas, identified seven opportunities to save energy and reduce costs. By implementing five of these improvements, the facility can save 15,100 million British thermal units per year in natural gas and 8.76 million kilowatt-hours per year in electricity. This translates into approximate annual savings of$925,300 in direct energy costs and non-fuel operating and maintenance costs. The required capital investment is estimated at$271,200. The average payback period for all five projects would be approximately 8 months.

  4. Alcoa World Alumina: Plant Wide Assessment at Arkansas Operation Reveals More than $900,000 in Potential Annual Savings

    SciTech Connect

    2003-07-01

    The plant-wide energy-efficiency assessment performed in 2001 at the Alcoa World Alumina Arkansas Operations in Bauxite, Arkansas, identified seven opportunities to save energy and reduce costs. By implementing five of these improvements, the facility can save 15,100 million British thermal units per year in natural gas and 8.76 million kilowatt-hours per year in electricity. This translates into approximate annual savings of $925,300 in direct energy costs and non-fuel operating and maintenance costs. The required capital investment is estimated at $271,200. The average payback period for all five projects would be approximately 8 months.

  5. Conversion of Grazed Pastures to Energy Cane as a Biofuel Feedstock Alters Soil GHG Fluxes

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; DeLucia, N.; Bernacchi, C.; DeLucia, E. H.

    2013-12-01

    Changes in land use profoundly affect climate through variations in soil Greenhouse Gas (GHG) exchange. The need for alternative energies is accelerating land use change as marginal land or managed ecosystems are being converted to highly productive second-generation bioenergy crops such as energy cane (Saccharum spp. L). Although the deployment of energy cane is a promising strategy to meet global bioenergy industry demands, few studies have investigated soil GHG fluxes in these crops and sub-tropical low-intensity grazing pasture (bahiagrass, Paspalum notatum L., as forage for cattle, Bos taurus L.) with which they are competing for land. Here, we showed that soil N2O fluxes in bioenergy crops were higher (>250%) than those observed in pastures following fertilization when soil moisture and temperature were high. In the absence of recent fertilization, the N2O source strength in energy cane and pasture sites was similar. Under drier and cooler soil conditions, both pastures and bioenergy crops were weak sources of N2O even when energy cane plots were recently fertilized. Soils on grazed pastures were sources of CH4 during the wet season but became sinks under drier, colder conditions. Energy cane plantations were weak sources of CH4 over a complete wet-dry seasonal cycle. The heterotrophic component of soil respiration was larger (139-155%) in pastures than in energy cane crops, suggesting lower decomposition of SOC in bioenergy crops. In terms of global warming potential, grazed pastures were stronger (120-150%) soil GHG emitters than energy cane crops over a complete wet-dry seasonal cycle. Moreover, pastures became a substantial source of GHG emitters when including estimates of CH4 flux from cattle. Our results suggest that the conversion of pasture to energy cane will be beneficial in relation to GHGs emitted from soils and cattle. Improved understanding of land use impact on soil GHG dynamics will provide valuable information for decision makers debating

  6. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    SciTech Connect

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  7. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect

    Hong, Tianzhen; Fisk, William

    2010-01-01

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

  8. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a... flow rate of effluent gas per test run during the performance test (dscf/hr). P = Production rate...

  9. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... analysis related to the low-pressure gas phase infrared absorption spectrum of the fluorinated GHG. (ii..., and water). (iii) The radiative transfer analysis that integrates the lifetime and infrared...

  10. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... analysis related to the low-pressure gas phase infrared absorption spectrum of the fluorinated GHG. (ii..., and water). (iii) The radiative transfer analysis that integrates the lifetime and infrared...

  11. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and N2O emissions as follows: (a) Convert the... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG...

  12. GHG Mitigation Options Database (GMOD) and Analysis Tool

    EPA Science Inventory

    There is a growing consensus among scientists, agencies, and nonprofit organizations that the primary cause of climate change is anthropogenic (resulting from human activity) greenhouse gas (GHG) emissions (Figueroa et al., 2008). Given the strengthening science behind the human ...

  13. Save Energy: Save Money!

    ERIC Educational Resources Information Center

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  14. Problems and the potential direction of reforms for the current individual medical savings accounts in the Chinese health care system.

    PubMed

    Kong, Xiangjin; Yang, Yang; Gong, Fuqing; Zhao, Mingjie

    2012-12-01

    Individual health savings accounts are an important part of the current basic medical insurance system for urban workers in China. Since 1998 when the system of personal medical insurance accounts was first implemented, there has been considerable controversy over its function and significance within different social communities. This paper analyzes the main problems in the practical implementation of individual medical insurance accounts and discusses the social and cultural foundations for the establishment of family health savings accounts from the perspective of Chinese Confucian familism. Accordingly, it addresses the direction of the reform and the development of the current system of individual health insurance accounts in China. PMID:23192456

  15. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  16. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    SciTech Connect

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-15

    Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel

  17. Potential Savings in Rural Public School Non-Instructional Costs through Shared Services Arrangements: A Regional Study.

    ERIC Educational Resources Information Center

    ECM, Inc., Williamsville, NY.

    A study was undertaken in 16 rural New York school districts to determine the feasibility of sharing noninstructional services as an avenue to achieving cost savings and enhanced services. The districts involved were within the Delaware/Chenango/Madison/Otsego BOCES (Board of Cooperative Educational Services) in a rural mountainous region of…

  18. Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.

    PubMed

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-11-01

    Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management. PMID:23916845

  19. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China.

    PubMed

    Xu, Ying; Ge, Junzhu; Tian, Shaoyang; Li, Shuya; Nguy-Robertson, Anthony L; Zhan, Ming; Cao, Cougui

    2015-02-01

    As pressure on water resources increases, alternative practices to conserve water in paddies have been developed. Few studies have simultaneously examined the effectiveness of different water regimes on conserving water, mitigating greenhouse gases (GHG), and maintaining yields in rice production. This study, which was conducted during the drought of 2013, examined all three factors using a split-plot experiment with two rice varieties in a no-till paddy managed under three different water regimes: 1) continuous flooding (CF), 2) flooded and wet intermittent irrigation (FWI), and 3) flooded and dry intermittent irrigation (FDI). The Methane (CH₄) and nitrous oxide (N₂O) emissions were measured using static chamber-gas measurements, and the carbon dioxide (CO₂) emissions were monitored using a soil CO₂ flux system (LI-8100). Compared with CF, FWI and FDI irrigation strategies reduced CH₄ emissions by 60% and 83%, respectively. In contrast, CO₂ and N₂O fluxes increased by 65% and 9%, respectively, under FWI watering regime and by 104% and 11%, respectively, under FDI managed plots. Although CO₂ and N₂O emissions increased, the global warming potential (GWP) and greenhouse gas intensity (GHGI) of all three GHG decreased by up to 25% and 29% (p<0.01), respectively, using water-saving irrigation strategies. The rice variety also affected yields and GHG emissions in response to different water regimes. The drought-resistance rice variety (HY3) was observed to maintain yields, conserve water, and reduce GHG under the FWI irrigation management compared with the typical variety (FYY299) planted in the region. The FYY299 only had significantly lower GWP and GHGI when the yield was reduced under FDI water regime. In conclusion, FWI irrigation strategy could be an effective option for simultaneously saving water and mitigating GWP without reducing rice yields using drought-resistant rice varieties, such as HY3. PMID:25461105

  20. The influence of management on GHG fluxes over Central European grasslands

    NASA Astrophysics Data System (ADS)

    Hoertnagl, Lukas; Bahn, Michael; Buchmann, Nina; Dias-Pinez, Eugenio; Eugster, Werner; Kiese, Ralf; Klumpp, Katja; Thomas, Ladreiter-Knauss; Lu, Haiyan; Wohlfahrt, Georg; Zeeman, Matthias; Merbold, Lutz

    2016-04-01

    Central European grasslands are characterized by a wide range of different agricultural practices along an altitudinal and management gradient, reaching from low pastures and meadows up to high alpine grasslands above the tree line. In the future, the intensification of already available agricultural land as a consequence of increased demand for feed and food will play an important role because of the scarcity of unused, productive land. The land use intensity strongly affects the exchange of trace gases between the biosphere and atmosphere. Therefore, the greenhouse gas (GHG) reduction potential for different farming strategies needs to be quantified before effective greenhouse gas mitigation strategies can be introduced. Direct measurements of long-term grassland GHG exchange at ecosystem scale along altitudinal and management gradients can help in identifying key processes that lead to GHG emissions. In this synthesis we investigated GHG fluxes with a focus on N2O and CH4 from 15 grassland sites, quantified by means of the eddy covariance or chamber technique. Grasslands were a source of N2O, with the exception of one abandoned site, while they were a source or small sink for CH4. The predictive power of soil temperature and water-filled pore space for N2O and CH4 flux patterns during snow-free time periods in-between management events was generally low but varied considerably across the year. However, setting fluxes in relation to classes of the two soil parameters revealed favorable conditions ('sweet spots') for N2O and CH4 emissions for some sites. In addition, fertilization had a clear impact on N2O and CH4 fluxes, with emission peaks on the day of fertilization or one day later. N2O-N emission factors at fertilized sites were found to be slightly higher than the IPCC Tier 1 approach, ranging between 1.31 and 1.53 %, depending on the gap-filling method to calculate yearly cumulative N2O emissions.

  1. Scenario Analysis on Global Hydropower Development Paths and Their Contribution to GHG Mitigation Utilizing a Dynamic CGE Model

    NASA Astrophysics Data System (ADS)

    Qian, Z.; Hanasaki, N.; Fujimori, S.; Masaki, Y.; Hijioka, Y.

    2015-12-01

    Currently, hydropower accounts for 16% of the worldwide electricity power supply and 86% of the total renewable electricity energy source due to its low cost, low greenhouse gas (GHG) emission, and relatively high reliability. It is well known that the global hydropower has not yet been fully developed, but the future paths of development and corresponding contribution to GHG mitigation in each region combined with socioeconomic activities are less known. Here we investigated following three questions. How much will hydropower generation increase in the future? Will hydropower generation reach the economically exploitable capability (EEC)? If this will be the case, when and where will it occur? How much GHG emission will be reduced by adding new hydropower? In order to address these questions, we used the AIM/CGE model, a dynamic computable general equilibrium model to quantify the global hydropower development paths and corresponding GHG mitigation contribution for 17 regions in the world associated with a socio-economic scenario termed SSP2. We compared two scenarios with different assumptions on EEC. One is BAU which takes EEC from the report of "World Energy Resources", the other is FIX_BAU which fix EEC at the current hydropower generation amount throughout the research period (2005-2100) or no additional installation of hydropower plants. The comparison between two scenarios indicated that promoting hydropower development contributed to GHG emission reduction globally but the magnitude varied by region. For example we found that in North Africa, hydropower development grew fast because of the rapid economic development, but it reached EEC as soon as in 2040 because of limitation in EEC due to its climatic and geographical conditions. Conversely, in Brazil, it grew steadily and did not reach its abundant EEC. Consequently, GHG mitigation contribution of North Africa is far less than Brazil. This research provides important information for policy makers to

  2. Mitigation potential and costs for global agricultural greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a substantial contributor to global greenhouse gas (GHG) emissions, accounting for about 58% of the world’s anthropogenic non-carbon dioxide GHG emissions and 14% of all anthropogenic GHG emissions, and agriculture is often viewed as a potential source of relatively low-c...

  3. More wind generation means lower GHG emissions, right?

    SciTech Connect

    2010-11-15

    The answer to what will be the net effect of an x percent increase in wind generation on GHG emissions in a given system is not a simple y percent -- but is likely to depend on many variables, assumptions, modeling, and number crunching. But the result is important, and hence there has been a flurry of contradictory studies, confusing policymakers and the general public alike. While one can certainly find exceptions, under most circumstances, more renewable generation can be expected to result in lower GHG emissions.

  4. Computer-assisted school bus routing and scheduling optimization. An evaluation of potential fuel savings and implementation alternatives

    SciTech Connect

    McCoy, G.A.; Mandlebaum, R.

    1985-11-01

    School Bus Routing and Scheduling Optimization (SBRSO) systems can substantially reduce school bus fleet operating costs. Fuel savings in excess of 450,000 gallons per year are achievable and a 10% decrease in route miles is attainable given computerized or computer-assisted SBRSO system use by the 32 Washington school districts operating bus fleets of at least 30 vehicles. Additional annual savings in excess of $3 million are possible assuming an 8% reduction in bus fleet size is made possible due to routing efficiency improvements. Three computerized SBRSO programs are examined, differing in the degree of state involvement and level of decentralization. We recommend the Washington State Energy Office (WSEO) acquire available low cost public domain SBRSO systems, convert the software to IBM and DEC compatibility, and demonstrate the software capabilities with at least one school district fleet. The most acceptable SBRSO system would then be disseminated and training offered to interested school districts, Educational Service Districts, and the Superintendent of Public Instruction's regional pupil transportation coordinators. If the existing public domain SBRSO systems prove unsatisfactory, or suitable only for rural districts, we recommend that the WSEO allocate oil company rebate monies for the development of a suitable SBRSO system. Training workshops would then be held when the SBRSO software was completed.

  5. Cost-of-illness analysis reveals potential healthcare savings with reductions in type 2 diabetes and cardiovascular disease following recommended intakes of dietary fiber in Canada

    PubMed Central

    Abdullah, Mohammad M. H.; Gyles, Collin L.; Marinangeli, Christopher P. F.; Carlberg, Jared G.; Jones, Peter J. H.

    2015-01-01

    Background: Type 2 diabetes (T2D) and cardiovascular disease (CVD) are leading causes of mortality and two of the most costly diet-related ailments worldwide. Consumption of fiber-rich diets has been repeatedly associated with favorable impacts on these co-epidemics, however, the healthcare cost-related economic value of altered dietary fiber intakes remains poorly understood. In this study, we estimated the annual cost savings accruing to the Canadian healthcare system in association with reductions in T2D and CVD rates, separately, following increased intakes of dietary fiber by adults. Methods: A three-step cost-of-illness analysis was conducted to identify the percentage of individuals expected to consume fiber-rich diets in Canada, estimate increased fiber intakes in relation to T2D and CVD reduction rates, and independently assess the potential annual savings in healthcare costs associated with the reductions in rates of these two epidemics. The economic model employed a sensitivity analysis of four scenarios (universal, optimistic, pessimistic, and very pessimistic) to cover a range of assumptions within each step. Results: Non-trivial healthcare and related savings of CAD$35.9-$718.8 million in T2D costs and CAD$64.8 million–$1.3 billion in CVD costs were calculated under a scenario where cereal fiber was used to increase current intakes of dietary fiber to the recommended levels of 38 g per day for men and 25 g per day for women. Each 1 g per day increase in fiber consumption resulted in annual CAD$2.6 to $51.1 million savings for T2D and $4.6 to $92.1 million savings for CVD. Conclusion: Findings of this analysis shed light on the economic value of optimal dietary fiber intakes. Strategies to increase consumers’ general knowledge of the recommended intakes of dietary fiber, as part of healthy diet, and to facilitate stakeholder synergy are warranted to enable better management of healthcare and related costs associated with T2D and CVD in Canada. PMID

  6. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  7. Current and Future Impacts of Atmospheric Nitrogen Deposition on Grassland GHG Balance

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Gomez-Casanovas, N.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Nitrogen deposition (Ndep), a consequence of human activities, affects the greenhouse gas (GHG; CO2, N2O and CH4) sink capacity of terrestrial ecosystems. Grasslands play an important role in determining the concentration of GHGs in the atmosphere. While they store greater than 10% of terrestrial net primary productivity and sustain up to 30% of the world's organic C in their soils, grasslands also may be responsible for significant CH4 and N2O emissions. Many fertilization experiments have examined the response of grasslands to N loads of 50 to 100 kg N ha-1 yr-1. However, few studies have been designed to examine ecosystem responses to low N loads (< 20 kg N ha-1 yr-1) which they are likely to experience in the future according to the new IPCC representative concentration pathway (RCP) scenarios. This is consistent with the notion that the N saturation threshold at which Net Ecosystem Productivity (NEP) levels off, or the dose-response relationships between N2O, N-trace gases, CH4, and Ndep in grasslands have not being well characterized. We combined data from grassland ecosystems in major climate zones and biogeochemical modeling (DayCent v. 4.5) to characterize the dose-response relationship between increased Ndep and GHG, and other N-trace gases fluxes and N leaching of these grasslands. We used the synthesized data to evaluate the modeling for above- and belowground NPP, N2O, CH4, and response to N fertilization and climate. We found that in most cases increased Ndep will continue to increase the non-CO2 GHG source strength of grasslands, whereas NEP will saturate at N levels ranging from 10 - 70 kg N ha-1 yr-1depending on the precipitation, fire regime, and/or species composition of the grassland. Given these thresholds, we modeled the potential net GHG sink capacity for the world's major grassland biomes using several of the IPCC RCP scenarios which include a range of climate and Ndep trajectories. Our results suggest that although global grassland C

  8. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  9. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  10. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  11. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  12. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Søderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  13. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Søderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  14. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Sderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  15. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... this section: ER30OC09.025 Where: EPFC = Annual PFC emissions from aluminum production (metric tons PFC). Em = PFC emissions from aluminum production for the month “m” (metric tons PFC). (b) Use Equation...

  16. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Søderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  17. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... required under § 75.13 or section 2.3 of appendix G to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions....

  18. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  19. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  20. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  1. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  2. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  3. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  4. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  5. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  6. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  7. 40 CFR 98.283 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.283 Calculating GHG emissions. You must calculate and report the combined annual process CO2 emissions from all silicon carbide... factor for the amount of carbon in silicon carbide product (assuming 35 percent of carbon input is in...

  8. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace...

  9. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace...

  10. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace...

  11. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Calculating GHG emissions. 98.173 Section 98.173 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... weights, CO2 to carbon. (Fs) = Annual mass of the solid fuel combusted (metric tons). (Csf) =...

  12. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  13. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  14. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  15. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  16. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  17. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  18. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  19. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  20. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... required under § 75.13 or section 2.3 of appendix G to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions....

  1. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each hydrogen production process unit... emissions associated with each fuel and feedstock used for hydrogen production by following paragraphs...

  2. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.173 Calculating GHG emissions... basic oxygen furnace (metric tons). 44/12 = Ratio of molecular weights, CO2 to carbon. (Iron) = Annual mass of molten iron charged to the furnace (metric tons). (CIron) = Carbon content of the molten...

  3. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.173 Calculating GHG emissions... oxygen furnace (metric tons). 44/12 = Ratio of molecular weights, CO2 to carbon. (Iron) = Annual mass of molten iron charged to the furnace (metric tons). (CIron) = Carbon content of the molten iron, from...

  4. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  5. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a) You must determine annual N2O emissions from adipic acid production according to paragraphs (a)(1) or... must conduct the test on the vent stream from the nitric acid oxidation step of the process,...

  6. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  7. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  8. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  9. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  10. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  11. 40 CFR 98.153 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GHG emissions. (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable: (1) Where the mass flow of the combined stream of HFC...) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product....

  12. 40 CFR 98.153 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GHG emissions. (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable: (1) Where the mass flow of the combined stream of HFC...) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product....

  13. 40 CFR 98.153 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GHG emissions. (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable: (1) Where the mass flow of the combined stream of HFC...) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product....

  14. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions... electronics manufacturing production processes at your facility, for each process type, using Equations I-6...). N = The total number of recipes or process sub-types j that depends on the electronics...

  15. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions... electronics manufacturing production processes at your facility, for each process type, using Equations I-6...). N = The total number of recipes or process sub-types j that depends on the electronics...

  16. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions... electronics manufacturing production processes at your facility, for each process type, using Equations I-6...). N = The total number of recipes or process sub-types j that depends on the electronics...

  17. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  18. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  19. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  20. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  1. Investigating the performance and energy saving potential of Chinese commercial building benchmark models for the hot humid and severe cold climate regions

    NASA Astrophysics Data System (ADS)

    Herrmann, Lesley Anne

    2011-12-01

    The demand for energy in China is growing at an alarming rate. Buildings have become a significant component of the energy-demand mix accounting for nearly one-quarter of the country's total primary energy consumption. This study compares the building code standards for office and hotel buildings in the hot humid and severe cold climate regions of China and the United States. Benchmark office and hotel building models have been developed for Guangzhou and Harbin, China that meets China's minimum national and regional building energy codes with the integration of common design and construction practices for each region. These models are compared to the ASHRAE standard based US reference building models for Houston, Texas and Duluth, Minnesota which have similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmarks using existing US products to identify the primary areas for potential energy savings. In the case of the Harbin models, an economic analysis has also been performed to determine the economic feasibility of alternative building designs. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building energy codes.

  2. Remanufacturing and energy savings.

    PubMed

    Gutowski, Timothy G; Sahni, Sahil; Boustani, Avid; Graves, Stephen C

    2011-05-15

    Remanufactured products that can substitute for new products are generally claimed to save energy. These claims are made from studies that look mainly at the differences in materials production and manufacturing. However, when the use phase is included, the situation can change radically. In this Article, 25 case studies for eight different product categories were studied, including: (1) furniture, (2) clothing, (3) computers, (4) electric motors, (5) tires, (6) appliances, (7) engines, and (8) toner cartridges. For most of these products, the use phase energy dominates that for materials production and manufacturing combined. As a result, small changes in use phase efficiency can overwhelm the claimed savings from materials production and manufacturing. These use phase energy changes are primarily due to efficiency improvements in new products, and efficiency degradation in remanufactured products. For those products with no, or an unchanging, use phase energy requirement, remanufacturing can save energy. For the 25 cases, we found that 8 cases clearly saved energy, 6 did not, and 11 were too close to call. In some cases, we could examine how the energy savings potential of remanufacturing has changed over time. Specifically, during times of significant improvements in energy efficiency, remanufacturing would often not save energy. A general design trend seems to be to add power to a previously unpowered product, and then to improve on the energy efficiency of the product over time. These trends tend to undermine the energy savings potential of remanufacturing. PMID:21513286

  3. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated

  4. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  5. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  6. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  7. Assessing Potential Energy Savings in Household Travel: Methodological and Empirical Considerations of Vehicle Capability Constraints and Multi-day Activity Patterns

    NASA Astrophysics Data System (ADS)

    Bolon, Kevin M.

    The lack of multi-day data for household travel and vehicle capability requirements is an impediment to evaluations of energy savings strategies, since (1) travel requirements vary from day-to-day, and (2) energy-saving transportation options often have reduced capability. This work demonstrates a survey methodology and modeling system for evaluating the energy-savings potential of household travel, considering multi-day travel requirements and capability constraints imposed by the available transportation resources. A stochastic scheduling model is introduced---the multi-day Household Activity Schedule Estimator (mPHASE)---which generates synthetic daily schedules based on "fuzzy" descriptions of activity characteristics using a finite-element representation of activity flexibility, coordination among household members, and scheduling conflict resolution. Results of a thirty-household pilot study are presented in which responses to an interactive computer assisted personal interview were used as inputs to the mPHASE model in order to illustrate the feasibility of generating complex, realistic multi-day household schedules. Study vehicles were equipped with digital cameras and GPS data acquisition equipment to validate the model results. The synthetically generated schedules captured an average of 60 percent of household travel distance, and exhibited many of the characteristics of complex household travel, including day-to-day travel variation, and schedule coordination among household members. Future advances in the methodology may improve the model results, such as encouraging more detailed and accurate responses by providing a selection of generated schedules during the interview. Finally, the Constraints-based Transportation Resource Assignment Model (CTRAM) is introduced. Using an enumerative optimization approach, CTRAM determines the energy-minimizing vehicle-to-trip assignment decisions, considering trip schedules, occupancy, and vehicle capability

  8. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3 (-)) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3 (-) addition were the main factors affecting N2O fluxes, whilst glucose, NO3 (-) and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  9. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  10. Saving Water Saves Energy

    SciTech Connect

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.