Science.gov

Sample records for ghrelin induces fos

  1. Anti-ghrelin Spiegelmer inhibits exogenous ghrelin-induced increases in food intake, hoarding, and neural activation, but not food deprivation-induced increases

    PubMed Central

    Teubner, Brett J. W.

    2013-01-01

    Circulating concentrations of the stomach-derived “hunger-peptide” ghrelin increase in direct proportion to the time since the last meal. Exogenous ghrelin also increases food intake in rodents and humans, suggesting ghrelin may increase post-fast ingestive behaviors. Food intake after food deprivation is increased by laboratory rats and mice, but not by humans (despite dogma to the contrary) or by Siberian hamsters; instead, humans and Siberian hamsters increase food hoarding, suggesting the latter as a model of fasting-induced changes in human ingestive behavior. Exogenous ghrelin markedly increases food hoarding by ad libitum-fed Siberian hamsters similarly to that after food deprivation, indicating sufficiency. Here, we tested the necessity of ghrelin to increase food foraging, food hoarding, and food intake, and neural activation [c-Fos immunoreactivity (c-Fos-ir)] using anti-ghrelin Spiegelmer NOX-B11–2 (SPM), an l-oligonucleotide that specifically binds active ghrelin, inhibiting peptide-receptor interaction. SPM blocked exogenous ghrelin-induced increases in food hoarding the first 2 days after injection, and foraging and food intake at 1–2 h and 2–4 h, respectively, and inhibited hypothalamic c-Fos-ir. SPM given every 24 h across 48-h food deprivation inconsistently inhibited food hoarding after refeeding and c-Fos-ir, similarly to inabilities to do so in laboratory rats and mice. These results suggest that ghrelin may not be necessary for food deprivation-induced foraging and hoarding and neural activation. A possible compensatory response, however, may underlie these findings because SPM treatment led to marked increases in circulating ghrelin concentrations. Collectively, these results show that SPM can block exogenous ghrelin-induced ingestive behaviors, but the necessity of ghrelin for food deprivation-induced ingestive behaviors remains unclear. PMID:23804279

  2. Ghrelin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut hormone ghrelin was discovered in 1999. In the last 15 years, ample data have been generated on ghrelin. Bedsides its hallmark function as an appetite stimulator, ghrelin also has many other important functions. In this review, we discussed ghrelin's functions in learning and memory, gut mov...

  3. Evidence that diet-induced hyperleptinemia, but not hypothalamic gliosis, causes ghrelin resistance in NPY/AgRP neurons of male mice.

    PubMed

    Briggs, Dana I; Lockie, Sarah H; Benzler, Jonas; Wu, Qunli; Stark, Romana; Reichenbach, Alex; Hoy, Andrew J; Lemus, Moyra B; Coleman, Harold A; Parkington, Helena C; Tups, Alex; Andrews, Zane B

    2014-07-01

    High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology. Pair-feeding studies that matched HFD calorie intake with chow calorie intake show that HFD exposure does not cause ghrelin resistance independent of body weight gain. We observed increased plasma leptin in mice fed a HFD for 3 weeks and show that leptin-deficient obese ob/ob mice are still ghrelin sensitive but become ghrelin resistant when central leptin is coadministered. Moreover, ob/ob mice fed a HFD for 3 weeks remain ghrelin sensitive, and the ability of ghrelin to induce action potential firing in NPY neurons was blocked by leptin. We also examined hypothalamic gliosis in mice fed a chow diet or HFD, as well as in ob/ob mice fed a chow diet or HFD and lean controls. HFD-fed mice exhibited increased glial fibrillary acidic protein-positive cells compared with chow-fed mice, suggesting that hypothalamic gliosis may underlie ghrelin resistance. However, we also observed an increase in hypothalamic gliosis in ob/ob mice fed a HFD compared with chow-fed ob/ob and lean control mice. Because ob/ob mice fed a HFD remain ghrelin sensitive, our results suggest that hypothalamic gliosis does not underlie ghrelin resistance. Further, pair-feeding a HFD to match the calorie intake of chow-fed controls did not increase body weight gain or cause central ghrelin resistance; thus, our evidence suggests that diet-induced hyperleptinemia, rather than diet-induced hypothalamic gliosis or HFD exposure, causes ghrelin resistance. PMID:24742194

  4. Ghrelin

    PubMed Central

    Müller, T.D.; Nogueiras, R.; Andermann, M.L.; Andrews, Z.B.; Anker, S.D.; Argente, J.; Batterham, R.L.; Benoit, S.C.; Bowers, C.Y.; Broglio, F.; Casanueva, F.F.; D'Alessio, D.; Depoortere, I.; Geliebter, A.; Ghigo, E.; Cole, P.A.; Cowley, M.; Cummings, D.E.; Dagher, A.; Diano, S.; Dickson, S.L.; Diéguez, C.; Granata, R.; Grill, H.J.; Grove, K.; Habegger, K.M.; Heppner, K.; Heiman, M.L.; Holsen, L.; Holst, B.; Inui, A.; Jansson, J.O.; Kirchner, H.; Korbonits, M.; Laferrère, B.; LeRoux, C.W.; Lopez, M.; Morin, S.; Nakazato, M.; Nass, R.; Perez-Tilve, D.; Pfluger, P.T.; Schwartz, T.W.; Seeley, R.J.; Sleeman, M.; Sun, Y.; Sussel, L.; Tong, J.; Thorner, M.O.; van der Lely, A.J.; van der Ploeg, L.H.T.; Zigman, J.M.; Kojima, M.; Kangawa, K.; Smith, R.G.; Horvath, T.; Tschöp, M.H.

    2015-01-01

    Background The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. Scope of review In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. Major conclusions In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism. PMID:26042199

  5. Role of calcium and EPAC in norepinephrine-induced ghrelin secretion.

    PubMed

    Mani, Bharath K; Chuang, Jen-Chieh; Kjalarsdottir, Lilja; Sakata, Ichiro; Walker, Angela K; Kuperman, Anna; Osborne-Lawrence, Sherri; Repa, Joyce J; Zigman, Jeffrey M

    2014-01-01

    Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to β1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca(2+) and cAMP. Several voltage-gated Ca(2+) channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca(2+) levels both in the presence and absence of extracellular Ca(2+). Ca(2+)-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, whereas an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca(2+) influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca(2+). Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE. PMID:24189139

  6. Anti‐ghrelin Spiegelmer NOX‐B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats

    PubMed Central

    Kobelt, P; Helmling, S; Stengel, A; Wlotzka, B; Andresen, V; Klapp, B F; Wiedenmann, B; Klussmann, S; Mönnikes, H

    2006-01-01

    Background and aims Ghrelin, the natural ligand of the growth hormone secretagogue receptor 1a, is the most powerful peripherally active orexigenic agent known. In rodents, ghrelin administration stimulates growth hormone release, food intake, and adiposity. Because of these effects, blocking of ghrelin has been widely discussed as a potential treatment for obesity. Spiegelmer NOX‐B11 is a synthetic l‐oligonucleotide, which was previously shown to bind ghrelin. We examined the effects of NOX‐B11 on ghrelin induced neuronal activation and food intake in non‐fasted rats. Methods Animals received various doses of NOX‐B11, inactive control Spiegelmer, or vehicle intravenously. Ghrelin or vehicle was administered intraperitoneally 12 hours later and food intake was measured over four hours. Neuronal activation was assessed as c‐Fos‐like immunoreactivity in the arcuate nucleus. Results Treatment with NOX‐B11 30 nmol suppressed ghrelin induced c‐Fos‐like immunoreactivity in the arcuate nucleus and blocked the ghrelin induced increase in food intake within the first half hour after ghrelin injection (mean 1.13 (SEM 0.59) g/kg body weight; 4.94 (0.63) g/kg body weight versus 0.58 (0.58) g/kg body weight; p<0.0001). Treatment with NOX‐B11 1 nmol or control Spiegelmer had no effect whereas treatment with NOX‐B11 10 nmol showed an intermediate effect on ghrelin induced food intake. Conclusions Spiegelmer NOX‐B11 suppresses ghrelin induced food intake and c‐Fos induction in the arcuate nucleus in rats. The use of an anti‐ghrelin Spiegelmer could be an innovative new approach to inhibit the biological action of circulating ghrelin. This may be of particular relevance to conditions associated with elevated plasma ghrelin, such as the Prader‐Willi syndrome. PMID:15994217

  7. Sexual reward induces Fos in the cerebellum of female rats.

    PubMed

    Paredes-Ramos, Pedro; Pfaus, James G; Miquel, Marta; Manzo, Jorge; Coria-Avila, Genaro A

    2011-02-01

    The cerebellum is generally considered a neural structure specialized in motor control and recent imaging data suggest its role in sexual behavior. Herein, we analyzed the pattern of Fos immunoreactivity (Fos-IR) in the cerebellum of female rats allowed to pace copulation as a model of sexual reward in rodents. Ovariectomized, hormone-primed, sexually naïve females formed three groups: Pacing, Nonpacing and Control. Pacing occurred in arenas bisected by a middle divider that allowed only females to control sexual interaction with stud males. For nonpaced copulation the divider was removed, and control females were allowed to pace in chambers without a male. Fos-IR was analyzed in granule and Purkinje layers of the 10 cerebellar lobules, and in the fastigial deep nucleus (FDN). Results indicated that Pacing females expressed more Fos-IR in the granule layer compared to Nonpacing and Controls, and more Fos-IR in Purkinje compared to Nonpacing. No differences were observed in FDN. Such response cannot be explained with motor activity because Pacing females moved less in general. We discuss the role of the cerebellum and its connections in the sexual reward induced by pacing. PMID:21059365

  8. Reduced ghrelin production induced anorexia after rat gastric ischemia and reperfusion.

    PubMed

    Mogami, Sachiko; Suzuki, Hidekazu; Fukuhara, Seiichiro; Matsuzaki, Juntaro; Kangawa, Kenji; Hibi, Toshifumi

    2012-02-01

    The gastrointestinal (GI) tract is one of the most susceptible organs to ischemia. We previously reported altered gastric motility after gastric ischemia and reperfusion (I/R). However, there have also been few reports of alterations in the eating behavior after gastric I/R. Ghrelin is a GI peptide that stimulates food intake and GI motility. Although ghrelin itself has been demonstrated to attenuate the mucosal injuries induced by gastric I/R, the endogenous ghrelin dynamics after I/R has not yet been elucidated. The present study was designed to investigate the relationship between food intake and the ghrelin dynamics after gastric I/R. Wistar rats were exposed to 80-min gastric ischemia, followed by 12-h or 48-h reperfusion. The food intake, plasma ghrelin levels, gastric preproghrelin mRNA expression levels, and the histological localization of ghrelin-immunoreactive cells were evaluated. The effect of exogenous ghrelin on the food intake after I/R was also examined. Food intake, the plasma ghrelin levels, the count of ghrelin-immunoreactive cells corrected by the percentage areas of the remaining mucosa, and the expression levels of preproghrelin mRNA in the stomach were significantly reduced at 12 h and 48 h after I/R compared with the levels in the sham-operated rats. Intraperitoneal administration of ghrelin significantly reversed the decrease of food intake after I/R. These data show that gastric I/R evoked anorexia with decreased plasma ghrelin levels and ghrelin production, which appears to be attributable to the I/R-induced gastric mucosal injuries. The decrease in the plasma ghrelin levels may have been responsible for the decreased food intake after gastric I/R. PMID:22114115

  9. Ghrelin secretion is not reduced by increased fat mass during diet-induced obesity.

    PubMed

    Qi, Xiang; Reed, Jason T; Wang, Guiyun; Han, Song; Englander, Ella W; Greeley, George H

    2008-08-01

    Ghrelin is a stomach hormone that stimulates growth hormone (GH) secretion, adiposity, and food intake. Gastric ghrelin production and secretion are regulated by caloric intake; ghrelin secretion increases during fasting, decreases with refeeding, and is reduced by diet-induced obesity. The aim of the present study was to test the hypotheses that 1) an increase in body adiposity will play an inhibitory role in the reduction of gastric ghrelin synthesis and secretion during chronic ingestion of a high-fat (HF) diet and 2) chronic ingestion of an HF diet will suppress the rise in circulating ghrelin levels in response to acute fasting. Adult male Sprague-Dawley rats were fed a standard AIN-76A (approximately 5-12% of calories from fat) or an HF (approximately 45% of calories from fat) diet. The effect of increased adiposity on gastric ghrelin homeostasis was assessed by comparison of stomach ghrelin production and plasma ghrelin levels in obese and nonobese rats fed the HF diet. HF diet-fed, nonobese rats were generated by administration of triiodothyronine to lower body fat accumulation. Our findings indicate that an increased fat mass per se does not exert an inhibitory effect on ghrelin homeostasis during ingestion of the HF diet. Additionally, the magnitude of change in plasma ghrelin in response to fasting was not blunted, indicating that a presumed, endogenous signal for activation of ingestive behavior remains intact, despite excess stored calories in HF-fed rats. PMID:18495830

  10. Influence of a long-term high-fat diet on ghrelin secretion and ghrelin-induced food intake in rats.

    PubMed

    Gomez, Guillermo; Han, Song; Englander, Ella W; Greeley, George H

    2012-01-10

    The aims of this study were: (1) to define the extent to which a high-fat (HF) diet given on a long-term basis reduces resting plasma ghrelin (total [acyl+des-acyl]) levels and the plasma ghrelin (total) response to fasting, (2) to determine whether a chronic HF diet modifies the orexigenic activity of acyl-ghrelin, (3) whether insulin pretreatment inhibits the plasma ghrelin (total) response to fasting, and (4) the extent to which pioglitazone (PIO) treatment will increase stomach and plasma ghrelin (total) levels in rats fed a HF diet. PIO is a drug given to diabetics which improves insulin resistance. Our findings show that a chronic HF diet given for either 10 or 60 weeks exerts a persistent inhibitory effect on resting plasma ghrelin (total) levels. Additionally, the plasma ghrelin (total) elevation to overnight fasting is not altered in rats fed a HF diet on a long-term basis. A HF diet does not impair the ingestive response to acyl-ghrelin. Together, these results suggest that acyl-ghrelin serves as an important orexigenic factor. Results show that insulin pretreatment does not inhibit the plasma ghrelin (total) response to fasting suggesting that meal-induced insulin secretion does not have a role in reducing ghrelin (total) secretion. In rats fed a HF diet, PIO administration increases stomach ghrelin (total) levels. Because PIO can reduce systemic glucose and lipid levels, our findings suggest that elevated glucose and lipid levels are part of the inhibitory mechanism behind reduced ghrelin (total) secretion in rats fed a HF diet. PMID:21971115

  11. The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice.

    PubMed

    Lee, Jun Ho; Kim, Tae-Jin; Kim, Jie Wan; Yoon, Jeong Seon; Kim, Hyuk Soon; Lee, Kyung-Mi

    2016-08-01

    Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis. PMID:27574503

  12. The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

    PubMed Central

    Kim, Tae-Jin; Kim, Jie Wan; Yoon, Jeong Seon; Kim, Hyuk Soon

    2016-01-01

    Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis. PMID:27574503

  13. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties. PMID:26713317

  14. Protective effects of ghrelin on cisplatin-induced nephrotoxicity in mice.

    PubMed

    Nojiri, Takashi; Hosoda, Hiroshi; Kimura, Toru; Tokudome, Takeshi; Miura, Koichi; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-08-01

    Cisplatin is a potent chemotherapeutic agent that has activity against malignant tumors. However, cisplatin causes various adverse effects, such as nephrotoxicity, which are associated with high morbidity and mortality. Recent studies have revealed that the mechanism of cisplatin nephrotoxicity includes a robust inflammatory response. Since ghrelin has been shown to have anti-inflammatory properties, we hypothesized that ghrelin might have protective effects against cisplatin nephrotoxicity. Mice were randomly divided into three groups: control, cisplatin with vehicle, and cisplatin with ghrelin. Ghrelin (0.8μg/kg/min via osmotic-pump, subcutaneously) or vehicle administration was started one day before cisplatin injection. At 72h after cisplatin administration (20mg/kg, intraperitoneally), we measured serum blood urea nitrogen and creatinine, urine albumin/creatinine, renal mRNA levels of monocyte chemoattractant protein-1, interleukin-6, tumor necrosis factor-α, interleukin-1β, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin by real-time polymerase chain reaction, and histological changes. Ghrelin significantly attenuated the increase in serum blood urea nitrogen and creatinine induced by cisplatin. Ghrelin tended to attenuate the increase in urine albumin/creatinine, although not significantly. Cisplatin-induced renal tubular injury and apoptosis were significantly attenuated by ghrelin pretreatment. Consequently, ghrelin significantly attenuated renal mRNA levels of monocyte chemoattractant protein-1, interleukin-6, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin. In conclusion, ghrelin produces protective effects in cisplatin-induced nephrotoxicity through inhibition of inflammatory reactions. Pretreatment with ghrelin may become a new prophylactic candidate for cisplatin-induced nephrotoxicity. PMID:27298204

  15. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  16. Cage-induced stereotypic behaviour in laboratory mice covaries with nucleus accumbens FosB/ΔFosB expression.

    PubMed

    Phillips, Danielle; Choleris, Elena; Ervin, Kelsy S J; Fureix, Carole; Harper, Laura; Reynolds, Kathryn; Niel, Lee; Mason, Georgia J

    2016-03-15

    Stereotypic behaviour (SB) occurs in certain human disorders (e.g. autism), and animals treated with stimulants or raised in impoverished conditions, including laboratory mice in standard cages. Dysfunctional cortico-basal ganglia pathways have been implicated in these examples, but for cage-induced forms of SB, the relative roles of ventral versus dorsal striatum had not been fully ascertained. Here, we used immunohistochemical staining of FosB and ΔFosB to assess long-term activation within the nucleus accumbens and caudate-putamen of C57BL/6 mice. Housed in typical laboratory cages, these mice spontaneously developed different degrees of route-tracing, bar-mouthing and other forms of SB (spending 0% to over 50% of their active time budgets in this behaviour). The most highly stereotypic mice showed the most elevated FosB/ΔFosB activity in the nucleus accumbens. No such patterns occurred in the caudate-putamen. The cage-induced SB common in standard-housed mice thus involves elevated activity within the ventral striatum, suggesting an aetiology closer to compulsive gambling, eating and drug-seeking than to classic amphetamine stereotypies and other behaviours induced by motor loop over-activation. PMID:26731014

  17. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons.

    PubMed

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Lluís, Carme; Ferré, Sergi

    2016-06-17

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. PMID:27129257

  18. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice.

    PubMed

    Jerlhag, Elisabet; Landgren, Sara; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2011-06-01

    Ghrelin, the first endogenous ligand for the type 1A growth hormone secretagogue receptor (GHS-R1A), plays a role in energy balance, feeding behavior, and reward. Previously, we showed that pharmacologic and genetic suppression of the GHS-R1A attenuates the alcohol-induced stimulation, accumbal dopamine release, and conditioned place preference as well as alcohol consumption in mice, implying that the GHS-R1A is required for alcohol reward. The present study further elucidates the role of ghrelin for alcohol-induced dopamine release in nucleus accumbens and locomotor stimulation by means of ghrelin knockout mice. We found that the ability of alcohol to increase accumbal dopamine release in wild-type mice is not observed in ghrelin knockout mice. Furthermore, alcohol induced a locomotor stimulation in the wild-type mice and ghrelin knockout mice; however, the locomotor stimulation in homozygote mice was significantly lower than in the wild-type mice. The present series of experiments suggest that endogenous ghrelin may be required for the ability of alcohol to activate the mesolimbic dopamine system. PMID:21145690

  19. Endogenous ghrelin attenuates pressure overload-induced cardiac hypertrophy via a cholinergic anti-inflammatory pathway.

    PubMed

    Mao, Yuanjie; Tokudome, Takeshi; Kishimoto, Ichiro; Otani, Kentaro; Nishimura, Hirohito; Yamaguchi, Osamu; Otsu, Kinya; Miyazato, Mikiya; Kangawa, Kenji

    2015-06-01

    Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1β and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway. PMID:25870195

  20. The effect of ghrelin on MK-801 induced memory impairment in rats.

    PubMed

    Goshadrou, Fatemeh; Kermani, Mojtaba; Ronaghi, Abdolaziz; Sajjadi, Samad

    2013-06-01

    Accumulating evidence indicates that the brain-gut peptide ghrelin which is expressed in hippocampus improves memory and learning processes. The MK-801, a noncompetitive NMDA receptor antagonist, has also shown amnesic properties in animal model. The current study was to find out whether intracerebroventricular administration of ghrelin can prevent amnesia induced by MK-801 in rats. A week after the surgery, during which cannuals were implanted in the lateral ventricular, the animals were trained and tested in a step-through type passive avoidance task. Memory retrieval was measured by step-through latency (STL) and total time in dark compartments (TDC). In the first series of experiments, we established a dose-response relationship for ghrelin on the passive avoidance paradigm. In the second set of experiments, animals were divided to two groups. In the first group, MK-801 (0.075, 0.15 and 0.3mg/kg) was injected intraperitoneally (i.p.) immediately after the acquisition session and in the second group MK-801 (same doses) was injected (i.p.) 30 min before the retention session. Analysis of data showed that in both groups, MK-801 impaired learning and memory. In the third set of experiments, administration of ghrelin (200 ng/rat) right after the acquisition session (i.e. before MK-801 injection) improved the MK-801 induced memory impairment, but administration of ghrelin before retrieval session did not affect the MK-801 induced memory impairment. These results show an interaction between ghrelin and glutamatergic system. A novel finding in this study is that ghrelin can prevent amnesia produced by NMDA antagonist in rats when injected in post-training phase. PMID:23538209

  1. Neuronal Deletion of Ghrelin Receptor Almost Completely Prevents Diet-Induced Obesity.

    PubMed

    Lee, Jong Han; Lin, Ligen; Xu, Pingwen; Saito, Kenji; Wei, Qiong; Meadows, Adelina G; Bongmba, Odelia Y N; Pradhan, Geetali; Zheng, Hui; Xu, Yong; Sun, Yuxiang

    2016-08-01

    Ghrelin signaling has major effects on energy and glucose homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, growth hormone secretagogue receptor (GHS-R), is highly expressed in the brain and detectable in some peripheral tissues. To understand the roles of neuronal GHS-R, we generated a mouse line where Ghsr gene is deleted in all neurons using synapsin 1 (Syn1)-Cre driver. Our data showed that neuronal Ghsr deletion abolishes ghrelin-induced spontaneous food intake but has no effect on total energy intake. Remarkably, neuronal Ghsr deletion almost completely prevented diet-induced obesity (DIO) and significantly improved insulin sensitivity. The neuronal Ghsr-deleted mice also showed improved metabolic flexibility, indicative of better adaption to different fuels. In addition, gene expression analysis suggested that hypothalamus and/or midbrain might be the sites that mediate the effects of GHS-R in thermogenesis and physical activity, respectively. Collectively, our results indicate that neuronal GHS-R is a crucial regulator of energy metabolism and a key mediator of DIO. Neuronal Ghsr deletion protects against DIO by regulating energy expenditure, not by energy intake. These novel findings suggest that suppressing central ghrelin signaling may serve as a unique antiobesity strategy. PMID:27207529

  2. Acute and repeated cocaine induces alterations in FosB/DeltaFosB expression in the paraventricular nucleus of the hypothalamus.

    PubMed

    Chocyk, Agnieszka; Czyrak, Anna; Wedzony, Krzysztof

    2006-05-23

    Apart from activation of the brain reward system, cocaine administration influences the activity of the hypothalamo-pituitary-adrenal (HPA) axis by affecting CRH neurons in the paraventricular nucleus of the hypothalamus (PVN). In order to find a molecular mechanism of cocaine-evoked effects in the PVN, in the present study, we investigated the impact of cocaine on the expression of FosB/DeltaFosB transcription factors in the PVN. Using an immunohistochemical method, we found that acute cocaine treatment (25 mg/kg) induced a relatively long-lasting (at least 72 h) expression of FosB/DeltaFosB in the PVN, whereas repeated cocaine administration (25 mg/kg, once daily for 5 consecutive days) caused accumulation of FosB/DeltaFosB in the PVN. The latter observation was further confirmed by the Western blot technique which revealed that repeated exposure to cocaine specifically increased the expression of a stable isoform of DeltaFosB (35 kDa). Using a double-labeling immunofluorescent method, it was established that FosB/DeltaFosB proteins induced by repeated cocaine treatment were present in a small population of CRF-immunoreactive neurons of the PVN. Furthermore, it was found that pretreatment with the specific antagonist of dopamine D1-like receptors SCH 23390 (1 mg/kg) attenuated the expression and accumulation of FosB/DeltaFosB in the PVN, evoked by repeated cocaine administration. Although functional consequences of the above effects for the process of addiction remain to be established, the obtained results indicate that cocaine administration can produce relatively long-lasting changes in the expression of FosB/DeltaFosB transcription factors in PVN neurons (in some populations of CRF-immunoreactive neurons, among others) and that dopamine D1-like receptors are involved in the above effects. Finally, it is proposed that the long-lasting expression as well as the accumulation of DeltaFosB in the PVN may constitute a molecular basis underlying adaptive changes

  3. Ghrelin partially protects against cisplatin-induced male murine gonadal toxicity in a GHSR-1a-dependent manner.

    PubMed

    Whirledge, Shannon D; Garcia, Jose M; Smith, Roy G; Lamb, Dolores J

    2015-03-01

    The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr(-/-) mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure. PMID:25631345

  4. Ghrelin Partially Protects Against Cisplatin-Induced Male Murine Gonadal Toxicity in a GHSR-1a-Dependent Manner1

    PubMed Central

    Whirledge, Shannon D.; Garcia, Jose M.; Smith, Roy G.; Lamb, Dolores J.

    2015-01-01

    ABSTRACT The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr−/− mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure. PMID:25631345

  5. Ghrelin inhibits high glucose-induced 16HBE cells apoptosis by regulating Wnt/β-catenin pathway.

    PubMed

    Liu, Xiaoyan; Chen, Dilong; Wu, Zhongjun; Li, Jing; Li, Jianqiang; Zhao, Hui; Liu, Tanzhen

    2016-09-01

    Ghrelin has a protective effect on diabetes and its complications. To expound its probable molecular mechanisms, we investigated the effects of ghrelin on high glucose (HG)-induced cell apoptosis and intracellular signaling pathways in cultured human bronchial epithelial cells (16HBE). In this study, we firstly came to conclusion that HG-induced 16HBE apoptosis was significantly inhibited by co-treatment of ghrelin. The molecular mechanism of ghrelin-induced protective effects for lungs is still not understood. We reported here for the first time that ghrelin can not only eliminate apoptosis of 16HBE, but also regulate the disordered cell cycle caused by HG. We speculated here that ghrelin inhibits the apoptosis of 16HBE by regulating the abnormal cell cycle to some extent. The mechanism may be that ghrelin up-regulates the expression of cyclin D1 via regulating Wnt/β-catenin pathway, which has an intimate relationship with lung diseases. These results suggested the possible role of ghrelin in treating diabetic lung diseases, especially in view of its low toxicity in humans. PMID:27378423

  6. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling

    PubMed Central

    2016-01-01

    Glucocorticoid excess induces apoptosis of islet cells, which may result in diabetes. In this study, we investigated the protective effect of ghrelin on dexamethasone-induced INS-1 cell apoptosis. Our data showed that ghrelin (0.1 μM) inhibited dexamethasone-induced (0.1 μM) apoptosis of INS-1 cells and facilitated cell proliferation. Moreover, ghrelin upregulated Bcl-2 expression, downregulated Bax expression, and decreased caspase-3 activity. The protective effect of ghrelin against dexamethasone-induced INS-1 cell apoptosis was mediated via growth hormone secretagogue receptor 1a. Further studies revealed that ghrelin increased ERK activation and decreased p38MAPK expression after dexamethasone treatment. Ghrelin-mediated protection of dexamethasone-induced apoptosis of INS-1 cells was attenuated using the ERK inhibitor U0126 (10 μM), and cell viability increased using the p38MAPK inhibitor SB203580 (10 μM). In conclusion, ghrelin could protect against dexamethasone-induced INS-1 cell apoptosis, at least partially via GHS-R1a and the signaling pathway of ERK and p38MAPK. PMID:27190513

  7. Ghrelin Is an Essential Factor for Motilin-Induced Gastric Contraction in Suncus murinus.

    PubMed

    Kuroda, Kayuri; Hequing, Huang; Mondal, Anupom; Yoshimura, Makoto; Ito, Kazuma; Mikami, Takashi; Takemi, Shota; Jogahara, Takamichi; Sakata, Ichiro; Sakai, Takafumi

    2015-12-01

    Motilin was discovered in the 1970s as the most important hormone for stimulating strong gastric contractions; however, the mechanisms by which motilin causes gastric contraction are not clearly understood. Here, we determined the coordinated action of motilin and ghrelin on gastric motility during fasted and postprandial contractions by using house musk shrew (Suncus murinus; order: Insectivora, suncus named as the laboratory strain). Motilin-induced gastric contractions at phases I and II of the migrating motor complex were inhibited by pretreatment with (D-Lys(3))-GHRP-6 (6 mg/kg/h), a ghrelin receptor antagonist. Administration of the motilin receptor antagonist MA-2029 (0.1 mg/kg) and/or (D-Lys(3))-GHRP-6 (0.6 mg/kg) at the peak of phase III abolished the spontaneous gastric phase III contractions in vivo. Motilin did not stimulate gastric contractions in the postprandial state. However, in the presence of a low dose of ghrelin, motilin evoked phase III-like gastric contractions even in the postprandial state, and postprandial gastric emptying was accelerated. In addition, pretreatment with (D-Lys(3))-GHRP-6 blocked the motilin-induced gastric contraction in vitro and in vivo, and a γ-aminobutyric acid (GABA) antagonist reversed this block in gastric contraction. These results indicate that blockade of the GABAergic pathway by ghrelin is essential for motilin-induced gastric contraction. PMID:26441238

  8. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis.

    PubMed

    Zhang, Wanzhe; Shu, Liliang

    2016-08-01

    Renal ischemia-reperfusion (I/R) injury can be caused by cardiac surgery, renal vascular obstruction, and kidney transplantation, mainly leading to acute kidney injury (AKI), which is complicated by lack of effective preventative and therapeutic strategies. Ghrelin has recently been reported to possess anti-inflammatory properties in several types of cells; however, little attention has been given to the role of ghrelin in I/R-induced AKI. The aim of this study is to explore the role of ghrelin in I/R-induced AKI. In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell I/R model were successfully constructed. Ghrelin expression was increased significantly in these rat and cell models. After enhancing ghrelin level by injecting exogenous ghrelin into rats or transfecting a ghrelin-pcDNA3.1 vector into renal tubular epithelial cells, we observed that I/R-induced AKI can be ameliorated by ghrelin, as shown by alterations in histology, as well as changes in serum creatinine (SCr) level, cell apoptosis, and the levels of inflammatory factors. Based on the importance of microRNA-21 (miR-21) in renal disease and the modulation effect of ghrelin on miR-21 in gastric epithelial cells, we tested whether miR-21 participates in the protective effect of ghrelin on I/R-induced AKI. Ghrelin could upregulate the PI3K/AKT signaling pathway by increasing the miR-21 level, which led to the protective effect of ghrelin on I/R-induced AKI by inhibiting the inflammatory response and renal tubular epithelial cell apoptosis. Our research identifies that ghrelin can ameliorate I/R-induced AKI by upregulating miR-21, which advances the understanding of mechanisms by which ghrelin ameliorates I/R-induced AKI. PMID:27152763

  9. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide.

    PubMed

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. PMID:27103436

  10. Ghrelin and obestatin inhibit enucleation-induced adrenocortical proliferation in the rat.

    PubMed

    Rucinski, Marcin; Trejter, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Malendowicz, Ludwik K

    2010-05-01

    Studies involving the role of ghrelin (GHREL) in regulating the proliferative activity of various cell types have obtained variable results depending primarily on the experimental model applied. It was recently reported that neither GHREL nor obestatin (OBS) affected the proliferative activity of cultured rat adrenocortical cells. In view of the conflicting results, we investigated the effects of GHREL and OBS on the proliferative activity of rat adrenocortical cells in a model of bilateral enucleation-induced adrenocortical regeneration in the rat. Rats were sacrificed 5 or 8 days after surgery. Twenty-four hours before being sacrificed, the appropriate groups were infused with 3 nmol GHREL or OBS/100 g. The mitotic index was assessed using the stachmokinetic method with vincristine. In comparison with intact rats, expression levels of ppGHREL, BAX, JUN-B and JUN-C genes were notably higher in regenerating adrenals, and neither GHREL nor OBS infusion affected these levels. Expression levels of the GHS-R, GPR39v2 and FOS genes were affected neither by adrenal enucleation nor GHREL or OBS infusion. Expression of only two studied genes, GPR39v1 and EGR1, was regulated by OBS. In the regenerating adrenal glands, GPR39v1 and EGR1 mRNA levels were higher than the levels in intact animals. GHREL infusion had no effect while OBS infusion notably stimulated GPR39v1 mRNA levels in the regenerating adrenal gland and evoked an opposite effect on EGR1 mRNA. OBS administration resulted in a potent decrease in the mitotic index of the studied cells, an effect found at both days 5 and 8 of the experiment. GHREL exerted a similar effect only at day 5 of adrenocortical regeneration. Neither GHREL nor OBS had an effect on blood aldosterone concentrations. GHREL infusion lowered plasma corticosterone concentration at day 5 but not 8 of the experiment, while OBS administration was ineffective. Thus, this study is the first to demonstrate that, in vivo, both GHREL and OBS inhibit the

  11. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1999-01-01

    In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

  12. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17.

    PubMed

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F

    2012-08-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α-converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  13. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  14. REGION-SPECIFIC MECHANISMS FOR TESTOSTERONE-INDUCED FOS IN HAMSTER BRAIN

    PubMed Central

    Nagypál, Anita; Wood, Ruth I.

    2007-01-01

    Hamsters self-administer androgens. Previously, we determined that testosterone (T) activates select steroid- and opiate-sensitive brain regions. Is T-stimulated neuronal activation androgenic? 35 castrated males with physiologic T replacement (n=7/group) were pre-treated with the androgen antagonist flutamide (15 mg/kg sc) or ethanol (0.25 ml), and infused into the lateral ventricle (ICV) for 4h with 40 μg T (TF and TE, respectively) or 40 μl vehicle (VF and VE). To determine if androgens and opiates activate overlapping brain areas, 7 additional males received 20 μg morphine sulfate ICV following ethanol injection (ME). Immediately after ICV infusion, animals were perfused. 60 μm coronal brain slices were stained for Fos. Fos-positive neurons were counted in a 0.3 mm2 area from 5 regions previously shown to express T-induced Fos: the posteromedial bed nucleus of the stria terminalis (BSTPM), posteromedial amygdala (MeP), lateral habenula (LHb), ventral tegmental area, and lateral pontine nucleus. T induced Fos in all areas reported previously (TE vs. VE, p<0.05), except LHb (p>0.05). Morphine induced Fos in all 5 brain regions (ME vs. VE, p<0.05), indicating that androgens and opiates activate overlapping brain regions. Flutamide alone did not induce Fos (VF vs. VE, p>0.05). Moreover, flutamide treatment blocked T-induced Fos expression only in the steroid-sensitive BSTPM, suggesting that androgens mediate neuronal activation in this area (mean±SEM: TF: 68.4±13.2 vs. TE: 137.9±17.6, p<0.05). The absence of flutamide effects on T-induced Fos in the steroid-sensitive MeP (TE: 210.6±50.0 vs. TF: 215.3±28.2, p>0.05) suggests that distinct mechanisms activate Fos in individual androgen-responsive nuclei. PMID:17276422

  15. Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation.

    PubMed

    Brockway, Emma T; Krater, Katherine R; Selva, Joaquín A; Wauson, Shelby E R; Currie, Paul J

    2016-05-01

    Ghrelin administration directly into hypothalamic nuclei, including the arcuate nucleus (ArcN) and the paraventricular nucleus (PVN), alters the expression of stress-related behaviors. In the present study we investigated the effect of feeding status on the ability of ghrelin to induce stress and anxiogenesis. Adult male Sprague Dawley rats were implanted with guide cannula targeting either the ArcN or PVN. In the first experiment we confirmed that ArcN and PVN ghrelin treatment produced anxiety-like behavior as measured using the elevated plus maze (EPM) paradigm. Ghrelin was administered during the early dark cycle. Immediately after microinjections rats were placed in the EPM for 5min. Both ArcN and PVN treatment reduced open arm exploration. The effect was attenuated by pretreatment with the ghrelin 1a receptor antagonist [d-Lys(3)]-GHRP-6. In a separate group of animals ghrelin was injected into either nucleus and rats were returned to their home cages for 60min with free access to food. An additional group of rats was returned to home cages with no food access. After 60min with or without food access all rats were tested in the EPM. Results indicated that food consumption just prior to EPM testing reversed the avoidance of the open arms of the EPM. In contrast, rats injected with ghrelin, placed in their home cage for 60min without food, and subsequently tested in the EPM, exhibited an increased avoidance of the open arms, consistent with stress activation. Overall, our findings demonstrate that ghrelin 1a receptor blockade and feeding status appear to impact the ability of ArcN and PVN ghrelin to elicit stress and anxiety-like behaviors. PMID:27020248

  16. Ghrelin mediates stress-induced food-reward behavior in mice.

    PubMed

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating. PMID:21701068

  17. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling.

    PubMed

    Stevanovic, Darko; Trajkovic, Vladimir; Müller-Lühlhoff, Sabrina; Brandt, Elisabeth; Abplanalp, William; Bumke-Vogt, Christiane; Liehl, Beate; Wiedmer, Petra; Janjetovic, Kristina; Starcevic, Vesna; Pfeiffer, Andreas F H; Al-Hasani, Hadi; Tschöp, Matthias H; Castañeda, Tamara R

    2013-12-01

    Signaling through the mammalian target of rapamycin complex 1 (mTORC1) and its effectors the S6-kinases (S6K) in the hypothalamus is thought to be involved in nutrient sensing and control of food intake. Given the anatomical proximity of this pathway to circuits for the hormone ghrelin, we investigated the potential role of the mTORC1/S6K pathway in mediating the metabolic effects of ghrelin. We found that ghrelin promoted phosphorylation of S6K1 in the mouse hypothalamic cell line N-41 and in the rat hypothalamus after intracerebroventricular administration. Rapamycin, an inhibitor of mTORC1, suppressed ghrelin-induced phosphorylation of hypothalamic S6K1 and increased food intake and insulin in rats. Chronic peripheral administration of ghrelin induced a significant increase in body weight, fat mass and food efficiency in wild-type and S6K2-knockout but not in S6K1-knockout mice. We therefore propose that ghrelin-induced hyperphagia, adiposity and insulin secretion are controlled by a central nervous system involving the mTORC1/S6K1 pathway. PMID:23994018

  18. Fos expression induced by milk ingestion in the caudal brainstem of neonatal rats.

    PubMed

    Morales, Teresa; Aguilar, Leticia; Ramos, Eugenia; Mena, Flavio; Morgan, Caurnel

    2008-11-19

    Prominent Fos expression in the nucleus of the solitary tract (NTS) related to feeding has been reported in the brainstem of adult animals. In this study, we used a Fos-guided immunohistochemical approach to determine the brainstem areas activated specifically in response to milk ingestion in rat pups at two different ages. Rats at 9 or 18 days postpartum were isolated from the mother for a 6-h period, after which they were returned to the mother for a suckling period of either 5 or 90 min and then perfused at 90 min after the beginning of suckling. Control groups were sacrificed before or after the 6-h-deprivation period and showed little or no Fos-ir. In contrast, a 90-min-suckling episode after 6 h of deprivation induced strong Fos-ir in the caudal regions of the NTS and in the spinal nucleus of the trigeminal (SPV). Moderate expression was observed in the rostral NTS and in the nucleus raphé obscurus. In rat pups that suckled for only 5 min, the main area activated was the SPV. Fos immunostaining was detected in only 1% of the catecholaminergic neurons from the NTS after milk ingestion. The experimental design employed here allowed us to distinguish brainstem areas activated by milk ingestion from those activated by suckling action in rat pups. In contrast to adult rats, catecholaminergic neurons from the caudal NTS seem to contribute little to the regulation of feeding at this age. PMID:18823956

  19. Ghrelin reverses experimental diabetic neuropathy in mice

    SciTech Connect

    Kyoraku, Itaru; Shiomi, Kazutaka; Kangawa, Kenji; Nakazato, Masamitsu

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  20. Ghrelin may reduce radiation-induced mucositis and anorexia in head-neck cancer.

    PubMed

    Guney, Yildiz; Ozel Turkcu, Ummuhani; Hicsonmez, Ayse; Nalca Andrieu, Meltem; Kurtman, Cengiz

    2007-01-01

    Body weight loss is common in cancer patients, and is often associated with poor prognosis, it greatly impairs quality of life (QOL). Radiation therapy (RT) is used in head and neck cancers (HNC) either as a primary treatment or as an adjuvant therapy to surgery. Patients with HNC are most susceptible to malnutrition especially due to anorexia, which is aggravated by RT. Multiple pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1beta (IL-1beta), interferon (IFN)-gamma and tumor necrosis factor-alpha(TNF-alpha), have been all associated with the development of both anorexia and oral mucositis. Radiation-induced mucositis occurs in almost all patients, who are treated for HNC, it could also cause weight loss. Ghrelin is a novel 28-amino acid peptide, which up-regulates body weight through appetite control, increase food intake, down-regulate energy expenditure and induces adiposity. Furthermore, ghrelin inhibits pro-inflammatory cytokines such as IL-1alpha, IL-1beta, TNF-alpha which may cause oral mucositis and aneroxia, which are the results of weight loss. Thus weight loss during RT is an early indicator of nutritional decline, we propose that recombinant ghrelin used prophylactically could be useful as an appetite stimulant; and preventive of mucositis because of its anti-inflammatory effect, it might help patients maintain weight over the course of curative RT of the HNC and can improve specific aspects of QOL. This issue warrants further studies. PMID:17030099

  1. Context-Induced Reinstatement of Methamphetamine Seeking Is Associated with Unique Molecular Alterations in Fos-Expressing Dorsolateral Striatum Neurons

    PubMed Central

    Rubio, F. Javier; Liu, Qing-Rong; Li, Xuan; Cruz, Fabio C.; Leão, Rodrigo M.; Warren, Brandon L.; Kambhampati, Sarita; Babin, Klil R.; McPherson, Kylie B.; Cimbro, Raffaello; Bossert, Jennifer M.; Shaham, Yavin

    2015-01-01

    Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons. PMID:25855177

  2. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.

    PubMed

    Briso, Eva M; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F

    2013-09-15

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  3. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos

    PubMed Central

    Briso, Eva M.; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F.

    2013-01-01

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  4. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Ghrelin and gastric acid secretion

    PubMed Central

    Yakabi, Koji; Kawashima, Junichi; Kato, Shingo

    2008-01-01

    Ghrelin, a novel growth hormone-releasing peptide, was originally isolated from rat and human stomach. Ghrelin has been known to increase the secretion of growth hormone (GH), food intake, and body weight gain when administered peripherally or centrally. Ghrelin is also known to stimulate the gastric motility and the secretion of gastric acid. In the previous studies, the action of ghrelin on acid secretion was shown to be as strong as that of histamine and gastrin in in-vivo experiment. In the studies, the mechanism for the action of ghrelin was also investigated. It was shown that vagotomy completely inhibited the action of ghrelin on the secretion of gastric acid suggesting that vagal nerve is involved in the mechanism for the action of ghrelin on acid secretion. As famotidine did not inhibit ghrelin-induced acid secretion in the study by Masuda et al, they concluded that histamine was not involved in the action of ghrelin on acid secretion. However, we have shown that famotidine completely inhibited ghrelin-induced acid secretion and histidine decarboxylase (HDC) mRNA was increased in gastric mucosa by ghrelin injection which is inhibited by vagotomy Our results indicate that histamine is involved in the action of ghrelin on acid secretion. Furthermore synergistic action of gastrin and ghrelin on gastric acid secretion was shown. Although gastrin has important roles in postprandial secretion of gastric acid, ghrelin may be related to acid secretion during fasting period or at night. However, further studies are needed to elucidate the physiological role of ghrelin in acid secretion. PMID:19009648

  6. Ghrelin suppresses the GnRH-induced preovulatory gonadotropin surge in dairy heifers.

    PubMed

    Chouzouris, T M; Dovolou, E; Dafopoulos, K; Georgoulias, P; Vasileiou, N G; Fthenakis, G C; Anifandis, G; Amiridis, G S

    2016-10-01

    Ghrelin, a known growth hormone (GH) secretagogue, alters gonadotropin secretion in many species. Our objectives were to study the effects of ghrelin, on GH, LH, FSH secretion, and on luteal function of the ensuing estrous cycle in cattle. The estrous cycles of eight heifers were synchronized with progesteron releasing intravaginal device, and ovulation was induced with GnRH. Eight animals were treated with 1.5 μg kg(-1) bovine ghrelin (group Ghr, n = 4) or saline (group C, n = 4). Starting with the first ghrelin injection, 13 blood samples were collected over a 4-hour period for the determination of ghrelin, GH, LH, and FSH concentration. Progesterone levels were measured in samples collected every other day after estrus expression. Data were analyzed by repeated measures of ANOVA followed by Bonferroni post hoc testing and t test. In group Ghr, ghrelin concentration increased significantly 15 minutes after the first injection and remained in elevated levels until the 90th minute after the last injection. At the time of third ghrelin injection, GH was significantly higher in the Ghr group compared with C (17.1 ± 1.3 vs. 2.6 ± 0.3 ng mL(-1), P < 0.0001). Similar differences were found for the next three samples collected 15, 30, and 60 minutes later; no difference was evident after 90 minutes. In group Ghr, the area under the curve for LH and FSH were significantly reduced compared with the ones of group C (266 ± 10.3 vs. 331.9 ± 7.3, P = 0.007 and 102.3 ± 2.0 vs. 134.9 ± 5.5, P < 0.005 for LH and FSH respectively). At particular time points the concentration of the two gonadotrophins in group Ghr was significantly lower than those of group C (15, 30, 45, 75, and 90 and 60, 75, 90, 120, and 150 minutes after GnRH administration for LH and FSH respectively). The duration of the following estrous cycle was shorter (P = 0.004) in group Ghr (19.0 ± 0.4 days) compared with C (21.8 ± 0.5 days). In days 4, 6, 8, 10, and 14

  7. Non-photic manipulations induce expression of Fos protein in the suprachiasmatic nucleus and intergeniculate leaflet in the rat.

    PubMed

    Edelstein, K; Amir, S

    1995-09-01

    Expression of Fos protein in the suprachiasmatic nucleus (SCN) and intergeniculate leaflet (IGL) is considered a cellular correlate of light-induced phase-shift of circadian rhythms in rodents. Non-photic stimuli also induce phase shifts, but their effects on Fos expression have not been established. We examined induction of Fos protein in SCN and IGL regions, in response to cage change, intraperitoneal saline injection, and restraint stress. Fos immunoreactivity was observed in SCN and IGL regions, with greater expression observed in IGL during the light phase of the light-dark cycle. Results suggest that cells in SCN and IGL respond to several types of non-photic manipulations and that expression of Fos in these regions is not light-specific. PMID:8535846

  8. Neuronal deletion of ghrelin receptor almost completely prevents diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin signaling has major effects on energy- and glucose-homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in brain and detectable in some peripheral tissues...

  9. Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin

    PubMed Central

    van der Plasse, G; van Zessen, R; Luijendijk, M C M; Erkan, H; Stuber, G D; Ramakers, G M J; Adan, R A H

    2015-01-01

    Background/objectives: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. Subjects/methods: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. Results: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). Conclusions: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling. PMID:26183405

  10. Spatiotemporal analysis of Fos expression associated with cocaine- and PTZ-induced seizures in prenatally cocaine-treated rats.

    PubMed

    Snyder-Keller, A; Keller, R W

    2001-07-01

    We previously reported that prenatal cocaine exposure (40 mg/kg s.c., E10-E20) increased susceptibility to convulsant-induced seizures later in life, with female rats becoming more sensitive to seizures induced by cocaine and pentylenetetrazol (PTZ), and males more sensitive to PTZ-induced seizures (Snyder-Keller and Keller, 1995, 2000). In order to determine the locus of enhanced seizure susceptibility in the brains of prenatally cocaine-treated rats, we examined the distribution and density of Fos-immunoreactive cells after cocaine- and PTZ-induced seizures in mature rats. Subconvulsive cocaine doses induced c-fos in cortical areas as well as densely dopamine-innervated regions such as striatum and nucleus accumbens. Following cocaine-induced seizures, intense c-fos induction was observed in piriform cortex, amygdala, and hippocampus. Quantification of the number of Fos-immunoreactive cells in the brains of prenatally cocaine-treated versus prenatally saline-treated rats revealed differences in piriform cortex and amygdala that were indicative of a lower threshold in prenatally cocaine-treated female rats. Following PTZ-induced seizures, the same pattern of limbic structures were recruited with increasing seizure severity. Only females exhibited changes in the number of Fos-immunoreactive cells as a result of prenatal cocaine treatment. Pretreatment with the noncompetitive NMDA antagonist MK-801 blocked both cocaine- and PTZ-induced seizures, and Fos expression in limbic areas was also blocked. The dopamine D1 antagonist SCH 23390 blocked cocaine-induced seizures and associated c-fos induction, but not PTZ-induced seizures or Fos. Examination of the pattern of Fos expression at 15-20 min postseizure revealed that the initial site of c-fos induction associated with PTZ-induced seizures appeared to be the piriform cortex, whereas cocaine-induced seizures induced early expression in both piriform cortex and lateral amygdala. These findings suggest that neural

  11. Unique gene alterations are induced in FACS-purified Fos-positive neurons activated during cue-induced relapse to heroin seeking

    PubMed Central

    Fanous, Sanya; Guez-Barber, Danielle H; Goldart, Evan M; Schrama, Regina; Theberge, Florence RM; Shaham, Yavin; Hope, Bruce T

    2012-01-01

    Cue-induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non-activated neurons during cue-induced heroin seeking after prolonged withdrawal. We trained rats to self-administer heroin for 10 days (6-h/day) and assessed cue-induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent-activated cell-sorting (FACS) to purify Fos-positive and Fos-negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos-immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos-positive, but not Fos-negative, neurons. In support of these findings, double-label immunohistochemistry indicated substantial co-expression of NPY- and Arc-immunoreactivity in Fos-positive neurons. Our data indicate that cue-induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non-activated neurons. PMID:23113797

  12. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  13. Blockade of ENaCs by Amiloride Induces c-Fos Activation of the Area Postrema

    PubMed Central

    Miller, Rebecca L.; Denny, George O.; Knuepfer, Mark M.; Kleyman, Thomas R.; Jackson, Edwin K.; Salkoff, Lawrence B.; Loewy, Arthur D.

    2015-01-01

    Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2 hours later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO). Tyrosine hydroxylase-immunoreactive (catecholamine) AP neurons were activated, but tryptophan hydroxylase-immunoreactive (serotonin) neurons were unaffected. The AP projects to FoxP2-expressing neurons in the dorsolateral pons which include the pre-locus coeruleus nucleus and external lateral part of the parabrachial nucleus; both cell groups were c-Fos activated following systemic injections of amiloride. In contrast, another AP projection target - the aldosterone-sensitive neurons of the nucleus tractus solitarius which express the enzyme 11-β-hydroxysteriod dehydrogenase type 2 (HSD2) were not activated. As shown here, plasma concentrations of amiloride used in these experiments were near or below the IC50 level for ENaCs. Amiloride did not induce changes in blood pressure, heart rate, or regional vascular resistance, so sensory feedback from the cardiovascular system was probably not a causal factor for the c-Fos activity seen in the CVOs. In summary, amiloride may have a dual effect on sodium homeostasis causing a loss of sodium via the kidney and inhibiting sodium appetite by activating the central satiety pathway arising from the AP. PMID:25557402

  14. Effect of sex chromosome complement on sodium appetite and Fos-immunoreactivity induced by sodium depletion.

    PubMed

    Dadam, Florencia M; Caeiro, Ximena E; Cisternas, Carla D; Macchione, Ana F; Cambiasso, María J; Vivas, Laura

    2014-02-01

    Previous studies indicate a sex chromosome complement (SCC) effect on the angiotensin II-sexually dimorphic hypertensive and bradycardic baroreflex responses. We sought to evaluate whether SCC may differentially modulate sexually dimorphic-induced sodium appetite and specific brain activity due to physiological stimulation of the rennin angiotensin system. For this purpose, we used the "four core genotype" mouse model, in which the effect of gonadal sex and SCC is dissociated, allowing comparisons of sexually dimorphic traits between XX and XY females as well as in XX and XY males. Gonadectomized mice were sodium depleted by furosemide (50 mg/kg) and low-sodium diet treatment; control groups were administered with vehicle and maintained on normal sodium diet. Twenty-one hours later, the mice were divided into two groups: one group was submitted to the water-2% NaCl choice intake test, while the other group was perfused and their brains subjected to the Fos-immunoreactivity (FOS-ir) procedure. Sodium depletion, regardless of SCC (XX or XY), induced a significantly lower sodium and water intake in females than in males, confirming the existence in mice of sexual dimorphism in sodium appetite and the organizational involvement of gonadal steroids. Moreover, our results demonstrate a SCC effect on induced brain FOS-ir, showing increased brain activity in XX-SCC mice at the paraventricular nucleus, nucleus of the solitary tract, and lateral parabrachial nucleus, as well as an XX-SCC augmented effect on sodium depletion-induced brain activity at two circumventricular organs, the subfornical organ and area postrema, nuclei closely involved in fluid and blood pressure homeostasis. PMID:24259464

  15. Overexpression of ΔFosB Is Associated With Attenuated Cocaine-Induced Suppression of Saccharin Intake in Mice

    PubMed Central

    Freet, Christopher S.; Steffen, Cathy; Nestler, Eric J.; Grigson, Patricia S.

    2010-01-01

    Rodents suppress intake of saccharin when it is paired with a drug of abuse (Goudie, Dickins, & Thornton, 1978; Risinger & Boyce, 2002). By the authors’ account, this phenomenon, referred to as reward comparison, is thought to be mediated by anticipation of the rewarding properties of the drug (P. S. Grigson, 1997; P. S. Grigson & C. S. Freet, 2000). Although a great deal has yet to be discovered regarding the neural basis of reward and addiction, it is known that overexpression of ΔFosB is associated with an increase in drug sensitization and incentive. Given this, the authors reasoned that overexpression of ΔFosB should also support greater drug-induced devaluation of a natural reward. To test this hypothesis, NSE-tTA × TetOp-ΔFosB mice (Chen et al., 1998) with normal or overexpressed ΔFosB in the striatum were given access to a saccharin cue and then injected with saline, 10 mg/kg cocaine, or 20 mg/kg cocaine. Contrary to the original prediction, overexpression of ΔFosB was associated with attenuated cocaine-induced suppression of saccharin intake. It is hypothesized that elevation of ΔFosB not only increases the reward value of drug, but the reward value of the saccharin cue as well. PMID:19331462

  16. Ghrelin protects alveolar macrophages against lipopolysaccharide-induced apoptosis through growth hormone secretagogue receptor 1a-dependent c-Jun N-terminal kinase and Wnt/β-catenin signaling and suppresses lung inflammation.

    PubMed

    Li, Bin; Zeng, Mian; He, Wanmei; Huang, Xubin; Luo, Liang; Zhang, Hongwu; Deng, David Y B

    2015-01-01

    Alveolar macrophages (AMs) undergo increased apoptosis during sepsis-induced acute respiratory distress syndrome (ARDS). Ghrelin exhibits an antiapoptotic effect in several cell types and protects against sepsis-induced ARDS in rats; however, the molecular mechanisms underlying this antiapoptotic effect remain poorly understood. In this study, we first examined the antiapoptotic effect of ghrelin on lipopolysaccharide (LPS)-stimulated AMs in vitro. In AMs, GH secretagogue receptor-1a (GHSR-1a), the ghrelin receptor, was expressed, and treatment of AMs with ghrelin markedly reduced LPS-induced apoptosis, mitochondrial transmembrane potential decrease, and cytochrome c release. These effects of ghrelin were mediated by GHSR-1a because a GHSR-1a-targeting small interfering RNA abolished the antiapoptotic action of ghrelin. LPS treatment activated the c-Jun N-terminal kinase (JNK) signaling pathway but inhibited the Wnt/β-catenin pathway. Interestingly, combined LPS-ghrelin treatment reduced JNK activation and increased Wnt/β-catenin activation. Furthermore, like ghrelin treatment, the addition of the JNK inhibitor SP600125 or the glycogen synthase kinase-3β inhibitor SB216763 rescued AMs from apoptosis. We also demonstrated that ghrelin altered the balance of Bcl-2-family proteins and inhibited caspase-3 activity. Next, we investigated whether ghrelin protected against septic ARDS in vivo. Sepsis was induced in male rats by performing cecal ligation and puncture; administration of ghrelin reduced sepsis-induced AMs apoptosis, pulmonary injury, protein concentrations in the bronchoalveolar lavage fluid, the lung neutrophil infiltration, and wet to dry weight ratio. However, administration of a specific ghrelin-receptor antagonist, [D-Lys-3]-GH-releasing peptide-6, abolished the beneficial effects of ghrelin. Collectively our results suggest that ghrelin exerts an antiapoptotic effect on AMs at least partly by inhibiting JNK and activating the Wnt/β-catenin pathway

  17. The Expression Patterns of c-Fos and c-Jun Induced by Different Frequencies of Electroacupuncture in the Brain

    PubMed Central

    Qiu, Zheng-Ying; Ding, Yi; Cui, Lu-ying; Hu, Man-Li; Ding, Ming-Xing

    2015-01-01

    To investigate patterns of c-Fos and c-Jun expression induced by different frequencies of electroacupuncture (EA) in the brain, goats were stimulated by EA of 0, 2, 60, or 100 Hz at a set of “Baihui, Santai, Ergen, and Sanyangluo” points for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos and c-Jun were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed that the pain threshold induced by 60 Hz was 82.2% higher (P < 0.01) than that by 0, 2, or 100 Hz (6.5%, 35.2%, or 40.9%). EA induced increased c-Fos and c-Jun expression in most analgesia-related nuclei and areas in the brain. Sixty Hz EA increased more c-Fos or c-Jun expression than 2 Hz or 100 Hz EA in all the measured nuclei and areas except for the nucleus accumbens, the area septalis lateralis, the caudate nucleus, the nucleus amygdala basalis, and the locus coeruleus, in which c-Fos or c-Jun expressions induced by 60 Hz EA did not differ from those by 2 Hz or 100 Hz EA. It was suggested that 60 Hz EA activated more extensive neural circuits in goats, which may contribute to optimal analgesic effects. PMID:26491460

  18. Ghrelin inhibits AngII -induced expression of TNF-α, IL-8, MCP-1 in human umbilical vein endothelial cells

    PubMed Central

    Deng, Bin; Fang, Fang; Yang, Tianlu; Yu, Zaixin; Zhang, Bin; Xie, Xiumei

    2015-01-01

    Aim: Ghrelin, a gastric peptide, is involved in several metabolic and cardiovascular processes. Emerging evidence indicates the potential involvement of ghrelin in low-grade inflammatory diseases such as atherosclerosis and hypertension. Cytokine-induced inflammation is critical in these pathological states. The growth hormone secretagogue receptor (GHSR) has been identified in blood vessels, so we predict that ghrelin might inhibit proinflammatory responses in human umbilical vein endothelial cells (HUVECs). The aim of this study is to examine the effect of ghrelin on angiotension II (AngII)-induced expression of TNF-α, MCP-1, IL-8 in HUVECs. Method: HUVECs were pretreated with ghrelin, with or without the specific antagonist of GHSR [D-Lys3]-GHRP-6, the selective inhibitor of nuclear factor-kappaB (NF-κB) PDTC, and the selective inhibitor of extracellular signal-regulated kinase (ERK1/2) PD98059. The cells were finally treated with AngII. The expression of TNF-α, MCP-1, IL-8 was examined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The activity of ERK1/2 and NF-κB was analyzed by Western blot. Result: our study showed that ghrelin inhibited AngII -induced expression of IL-8, TNF-α and MCP-1 in the HUVECs via GHSR pathway in concentration- and time-dependent manners. We also found that ghrelin inhibited AngII -induced activation of ERK1/2 and NF-κB. Conclusions: these results suggest that Ghrelin may play novel antiinflammatory and immunoregulatory roles in HUVECs. PMID:25785032

  19. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state. PMID:8501533

  20. Ghrelin family of peptides and gut motility.

    PubMed

    Asakawa, Akihiro; Ataka, Koji; Fujino, Kazunori; Chen, Chih-Yen; Kato, Ikuo; Fujimiya, Mineko; Inui, Akio

    2011-04-01

    Acyl ghrelin, des-acyl ghrelin, and obestatin are three peptides isolated from the gastrointestinal tract and encoded by the same preproghrelin gene. Three ghrelin gene products participate in modulating appetite, adipogenesis, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. We have investigated the effects of ghrelin family of peptides on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats by manometric method. Intracerebroventricular (ICV) and intravenous (IV) administration of acyl ghrelin induced fasted motor activity in the duodenum in fed rats. ICV and IV administration of des-acyl ghrelin disrupted fasted motor activity in the antrum. Changes in gastric motility induced by IV administration of des-acyl ghrelin were antagonized by ICV administration of a corticotropin-releasing factor (CRF) 2 receptor antagonist. IV administration of obestatin decreased the percentage motor index in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats. ICV administration of CRF 1 and 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Ghrelin gene products regulate feeding-associated gastroduodenal motility. Stomach may regulate various functions including gastrointestinal motility via acyl ghrelin, des-acyl ghrelin and obestatin as an endocrine organ. Increasing knowledge of the effects of ghrelin family of peptides on gastrointestinal motility could lead to innovative new therapies for functional gastrointestinal disorders. PMID:21443714

  1. Amphetamine-induced c-fos mRNA expression is altered in rats with neonatal ventral hippocampal damage.

    PubMed

    Lillrank, S M; Lipska, B K; Bachus, S E; Wood, G K; Weinberger, D R

    1996-08-01

    To further characterize the mechanisms underlying enhanced dopamine-related behaviors expressed during adulthood in rats with neonatal excitotoxic ventral hippocampal (VH) damage, we studied the expression of c-fos mRNA in these rats after a single saline or amphetamine (AMPH) (10 mg/kg, i.p.) injection using in situ hybridization. The VH of rat pups was lesioned with ibotenic acid on postnatal day 7 (PD7). At the age of 90 days, rats were challenged with AMPH or saline, and the expression of c-fos mRNA using an oligonucleotide probe was assessed 30, 90, and 180 min later. AMPH significantly increased c-fos mRNA expression in medial prefrontal cortex, piriform cortex, cingulate cortex, septal region, and dorsolateral and ventromedial striatum in control and lesioned rats. However, this response to AMPH was attenuated 30 min after AMPH injection in all of these regions in the lesioned as compared to the sham-operated rats. No significant changes were seen at other time points. These results indicate that the neonatal VH lesion alters time-dependent intracellular signal transduction mechanisms measured by AMPH-induced c-fos mRNA expression in cortical and subcortical brain regions. Changes in c-fos mRNA expression in this putative animal model of schizophrenia may have implications for long-term alterations in cellular phenotype because of altered regulation of certain target genes. PMID:8855514

  2. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor.

    PubMed

    Tagami, Keita; Kashiwase, Yohei; Yokoyama, Akinobu; Nishimura, Hitomi; Miyano, Kanako; Suzuki, Masami; Shiraishi, Seiji; Matoba, Motohiro; Ohe, Yuichiro; Uezono, Yasuhito

    2016-08-01

    The growth hormone secretagogue receptor (GHS-R) belongs to Gαq-coupled G protein-coupled receptor (GPCR) that mediates growth hormone release, food intake, appetite, glucose metabolism and body composition. Ghrelin has been identified as an endogenous ligand for GHS-R, and it is the only orexigenic peptide found in the peripheral organs. Olanzapine, an atypical antipsychotic agent that binds to and inhibits the activation of GPCR for several neurotransmitters, has metabolic side effects such as excessive appetite and weight gain. Recently, studies have revealed that the orexigenic mechanism of olanzapine is mediated via GHS-R signaling, although the precise mechanisms have not been clarified. In this study, we investigated the effect of olanzapine on ghrelin-mediated GHS-R signaling by using an electrical impedance-based receptor biosensor assay system (CellKey™). Olanzapine at concentrations of 10(-7) and 10(-6)mol/L enhanced ghrelin-induced (10(-10)-10(-8)mol/L) GHS-R activation. A Ca(2+) imaging assay revealed that olanzapine (10(-7) and 10(-6)mol/L) enhanced ghrelin (10(-7) M)-induced GHS-R activity. In contrast, haloperidol (an antipsychotic agent) failed to enhance this ghrelin-mediated GHS-R activation, as demonstrated by both the CellKey™ and Ca(2+) imaging assays. Together, these results suggest that olanzapine, but not haloperidol, promotes appetite by enhancing ghrelin-mediated GHS-R signaling. PMID:26775231

  3. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  4. Diet-Induced Obesity and Ghrelin Effects on Pituitary Gonadotrophs: Immunohistomorphometric Study in Male Rats

    PubMed Central

    Ristic, Natasa; Stevanovic, Darko; Nesic, Dejan; Ajdzanovic, Vladimir; Rakocevic, Rastko; Jaric, Ivana; Milosevic, Verica

    2016-01-01

    Objective The close relationship between energy metabolism, nutritional state, and reproductive physiology suggests that nutritional and metabolic disorders can disrupt normal reproductive function and fertility. Considering the importance of leptin and ghrelin effects in regulation of the hypothalamic-pituitary-gonadal axis, the objective of this study was to investigate the influence of obesity and centrally applied ghrelin on immunohistochemical appearance and quantitative morphology of the pituitary follicle-stimulating hormone (FSH) and luteinizing hormone (LH) producing cells in adult male rats. Materials and Methods In this experimental study, animals were given two differ- ent diets: normal-fat (NF) and high-fat (HF), for 4 weeks, corresponding to normal and positive energy balance (n=2×14), respectively. Each group was subsequently divided into two subgroups (n=7) receiving intracerebroventricular (ICV) injections of either ghrelin [G, 1 µg/5 µL phosphate buffered saline (PBS)] or vehicle (5 µL PBS, control group) every 24 hours for five consecutive days. Results Morphometric analyses showed that in HF control group, the percentage of FSH cells per unit volume of total pituitary gland tissue (in μm3), i.e. volume density (Vvc), was increased (P<0.05) by 9.1% in comparison with the NF controls. After ICV treatment with ghrelin, volume (Vc) and volume density (Vvc) of FSH cells in ghrelin+NF (GNF) and ghrelin+HF (GHF) groups remained unchanged in comparison with NF and HF controls. Volume of LH cells in HF control group was increased by 17% (P<0.05), but their Vvc was decreased by 8.3% (P<0.05) in comparison with NF controls. In GNF group, the volume of LH cells increased by 7% (P<0.05), in comparison with the NF controls, but in GHF group, the same parameter remained unchanged when compared with HF controls. The central application of ghrelin de- creased the Vvc of LH cells only in GNF group by 38.9% (P<0.05) in comparison with the NF control animals

  5. Fos Expression in Rat Brain During Depletion-Induced Thirst and Salt Appetite

    NASA Technical Reports Server (NTRS)

    Thunhorst, R. L.; Xu, Z.; Cicha, M. Z.; Zardetto-Smith, A. M.; Johnson, A. K.

    1998-01-01

    The expression of Fos protein (Fos immunoreactivity, Fos-ir) was mapped in the brain of rats subjected to an angiotensin-dependent model of thirst and salt appetite. The physiological state associated with water and sodium ingestion was produced by the concurrent subcutaneous administration of the diuretic furosemide (10 mg/kg) and a low dose of the angiotensin-converting enzyme (ACE) inhibitor captopril (5 mg/kg; Furo/Cap treatment). The animals were killed 2 h posttreatment, and the brains were processed for Fos-ir to assess neural activation. Furo/Cap treatment significantly increased Fos-ir density above baseline levels both in structures of the lamina terminalis and hypothalamus known to mediate the actions of ANG 2 and in hindbrain regions associated with blood volume and pressure regulation. Furo/Cap treatment also typically increased Fos-ir density in these structures above levels observed after administration of furosemide or captopril separately. Fos-ir was reduced to a greater extent in forebrain than in hindbrain areas by a dose of captopril (100 mg/kg sc) known to block the actions of ACE in the brain. The present work provides further evidence that areas of lamina terminalis subserve angiotensin-dependent thirst and salt appetite.

  6. Hypodynamia--hypokinesia induced variations in expression of fos protein in structures related to somatosensory system in the rat.

    PubMed

    Langlet, C; Canu, M H; Viltart, O; Sequeira, H; Falempin, M

    2001-06-29

    There have been many reports describing modifications of the sensory and motor cortex following various types of disuse. Hypodynamia--hypokinesia is characterized by the absence of weight-bearing and by a decrease in motor activity. We have shown a reorganization of the cortical cartography after hypodynamia--hypokinesia. In order to give an anatomical account for this cortical plasticity, we set out to determine whether cerebral and spinal structures exhibited variations of their neuronal activation. For this purpose, immunocytochemical detection of Fos protein was performed in the rat brain and spinal cord. Following stimulation of the sciatic nerve, Fos protein was detected in the primary and secondary somatosensory cortex in control rats and in rats submitted to an episode of 14 days of hypodynamia--hypokinesia. Results showed that the stimulation of the sciatic nerve induced an increase in the number of Fos-immunoreactive neurons in all these structures. Moreover, after hypodynamia--hypokinesia, the number of Fos-immunoreactive neurons was increased in the primary and secondary somatosensory cortex and in the spinal cord. These results provide evidence for a higher activation of cortical cells after hypodynamia--hypokinesia in comparison to controls. These data support the hypothesis that hypodynamia--hypokinesia contributes to the development of functional plasticity. PMID:11423081

  7. Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

    PubMed Central

    Khoshdel, Zahra; Takhshid, Mohammad Ali; Owji, Ali Akbar

    2014-01-01

    Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in conscious rats. Methods: Amylin (0.05 nmoles) or Salmon Calcitonin (0.005 nmoles) was administered intrathecally (i.t.) 10 minutes before the start of the formalin test. Antagonists were injected intrathecally 10 minutes before the administration of either of the peptides. Results: Two hours after formalin stimulation, rats pretreated intrathecally by either Amylin or Salmon Calcitonin, showed lower numbers of c-Fos immunoreactive nuclei in their lumbar spinal cord as compared to rats pretreated with saline. These effects were reversed upon co-administration of either of the Amylin antagonists AC187 or rat amylin8-37, but not rat α-CGRP8-37. A few cells with c-Fos immunoreactivity were found in the lumbar spinal cord of rats two hours after i.t. injection of saline, Amylin and/or Salmon Calcitonin. However, Fos-like immunoreactivity was increased in the lumbar spinal cord two hours after i.t. treatment of either of the antagonists AC187 and rat amylin8-37,when compared to saline treated rats. Conclusion: Both Amylin and Salmon Calcitonin inhibit formalin induced c-Fos expression in the rat lumbar spinal cord when administered intrathecally. Effects of the two peptides were possibly produced by undefined receptors. PMID:25429177

  8. Developmental Changes in Desensitisation of c-Fos Expression Induced by Repeated Maternal Separation in Pre-Weaned Mice

    PubMed Central

    Horii-Hayashi, N; Sasagawa, T; Matsunaga, W; Matsusue, Y; Azuma, C; Nishi, M

    2013-01-01

    Early-life stress has long-lasting effects on neuroendocrine and behaviour in adulthood. Maternal separation (MS) is used as a model of early-life stress and daily repeated MS (RMS) for 3 h during the first two postnatal weeks is widely used in rodent studies. However, it is not fully understood whether early-life animals desensitise/habituate to repeated stress. In the present study, we investigated the effects of daily RMS for 3 h and acute/single time MS (SMS) for 3 h on the plasma corticosterone level and c-Fos expression in the brain in mice at different postnatal ages. Mice were subjected to: (i) RMS from postnatal day (PND) 1 to 14 (RMS14); (ii) RMS from PND14 to 21 (RMS21); (iii) SMS on PND14 (SMS14); and (iv) SMS on PND21 (SMS21). Plasma corticosterone and c-Fos expression were examined on the final day in each experiment. The basal corticosterone levels in RMS14 and RMS21 were equal to those in respective age-matched controls. After the final separation, the levels were significantly increased and were comparable with those after SMS14 and SMS21, respectively. Histological analysis indicated that c-Fos expression significantly increased in many brain regions, including the paraventricular nucleus, prefrontal cortex, hippocampus, and basolateral and medial amygdale in both SMS14 and SMS21 mice. However, c-Fos expression in RMS14 mice significantly increased in many regions, whereas such increases were hardly seen in RMS21 mice. These results indicate that repeated early-life stress neither increases basal corticosterone, nor decreases the magnitude of the corticosterone response during the first three postnatal weeks, although desensitisation of c-Fos expression induced by repeated stress is changed during postnatal development. PMID:22913644

  9. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4

    PubMed Central

    Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  10. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4.

    PubMed

    Delcuratolo, Maria; Fertey, Jasmin; Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  11. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    PubMed Central

    Limtrakul, Porn-ngarm; Anuchapreeda, Songyot; Lipigorngoson, Suwiwek; Dunn, Floyd W

    2001-01-01

    Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin. PMID:11231886

  12. Increased Carbohydrate Induced Ghrelin Secretion in Obese vs. Normal-weight Adolescent Girls

    PubMed Central

    Misra, Madhusmita; Tsai, Patrika M.; Mendes, Nara; Miller, Karen K.; Klibanski, Anne

    2013-01-01

    Orexigenic and anorexigenic pathways mediate food intake and may be affected by meal composition. Our objective was to determine whether changes in levels of active ghrelin and peptide YY (PYY) differ in obese vs. normal-weight adolescent girls following specific macronutrient intake and predict hunger and subsequent food intake. We enrolled 26 subjects: 13 obese and 13 normal-weight girls, 12–18 years old, matched for maturity (as assessed by bone age) and race. Subjects were assigned a high-carbohydrate, high-protein, and high-fat breakfast in random order. Active ghrelin and PYY were assessed for 4 h after breakfast and 1 h after intake of a standardized lunch. Hunger was assessed using a standardized visual analog scale (VAS). No suppression in active ghrelin levels was noted following macronutrient intake in obese or normal-weight girls. Contrary to expectations, active ghrelin increased in obese girls following the high-carbohydrate breakfast, and the percent increase was higher than in controls (P = 0.046). Subsequent food intake at lunch was also higher (P = 0.03). Following the high-fat breakfast, but not other breakfasts, percent increase in PYY was lower (P = 0.01) and subsequent lunch intake higher (P = 0.005) in obese compared with normal-weight girls. In obese adolescents, specific intake of high-carbohydrate and high-fat breakfasts is associated with greater increases in ghrelin, lesser increases in PYY, and higher intake at a subsequent meal than in controls. Changes in anorexigenic and orexigenic hormones in obese vs. normal-weight adolescents following high-carbohydrate and high-fat meals may influence hunger and satiety signals and subsequent food intake. PMID:19325538

  13. Therapeutic effect of ghrelin in experimental autoimmune encephalomyelitis by inhibiting antigen-specific Th1/Th17 responses and inducing regulatory T cells.

    PubMed

    Souza-Moreira, Luciana; Delgado-Maroto, Virginia; Morell, Maria; O'Valle, Francisco; Del Moral, Raimundo G; Gonzalez-Rey, Elena

    2013-05-01

    Ghrelin is an important gastrointestinal hormone that regulates feeding and metabolism. Moreover, ghrelin is produced by immune cells and shows potent anti-inflammatory activities. Here, we investigated its effect in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short systemic treatment with ghrelin after the disease onset reduced clinical severity and incidence of both forms of EAE, which was associated with a decrease in inflammatory infiltrates in spinal cord and in the subsequent demyelination. This therapeutic effect was exerted through the reduction of the autoimmune and inflammatory components of the disease. Ghrelin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, down-regulated various inflammatory mediators, and induced regulatory T cells. In summary, our findings provide a powerful rationale for the assessment of the efficacy of ghrelin as a novel therapeutic approach for treating multiple sclerosis through distinct immunomodulatory mechanisms and further support the concept that the neuroendocrine and immune systems crosstalk to finely tune the final immune response of our body. PMID:23376169

  14. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    PubMed

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  15. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; López-Rodríguez, F; Luppi, P H; Morales, F R; Chase, M H

    1995-07-01

    The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7477901

  16. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats.

    PubMed

    Chawla, Monica K; Penner, Marsha R; Olson, Kathy M; Sutherland, Vicki L; Mittelman-Smith, Melinda A; Barnes, Carol A

    2013-04-01

    The subcellular processes of gene induction and expression in the hippocampus are likely to underlie some of the known age-related impairments in spatial learning and memory. It is well established that immediate-early genes are rapidly and transiently induced in response to neuronal activity and this expression is required for stabilization of durable memories. To examine whether age-related memory impairment might be caused, in part, by differences in the level of cellular activation or subcellular processing, c-fos expression in CA1 pyramidal and dentate gyrus granule cells in the dorsal hippocampus of young and old rats was determined using fluorescence in situ hybridization and reverse transcription polymerase chain reaction. No significant age differences were found in the numbers of pyramidal or granule cells that show c-fos expression; however, c-fos mRNA transcripts were altered in these 2 cell types in aged animals. These findings suggest that though the networks of cells that participate in behavior or seizure-induced activity are largely maintained in aged rats, their RNA transcript levels are altered. This might, in part, contribute to cognitive deficits frequently observed with advancing age. PMID:23158763

  17. Effects of intracerebroventricular dizocilpine (MK801) on dehydration-induced dipsogenic responses, plasma vasopressin and c-fos expression in the rat forebrain.

    PubMed

    Xu, Z; Herbert, J

    1998-02-16

    This study determines the interaction between glutamate receptors and dehydration-induced drinking, vasopressin (AVP) release, plasma osmolality and c-fos expression in the brain of conscious rats. The NMDA receptor antagonist dizocilpine (100 nmol infused into the cerebral ventricles) suppressed drinking following either 22 h water deprivation or intragastric injection of hypertonic saline (1.5 M), attenuated the increased plasma vasopressin induced by dehydration, but had no effects on peripheral hyperosmolality caused by either water deprivation or injections of hypertonic saline. Dizocilpine had no inhibitory effects on feeding after 24 h food deprivation. Dizocilpine also suppressed c-fos expression induced by dehydration in the median preoptic nucleus (MPN), the supraoptic and paraventricular nuclei (SON and PVN), but did not influence c-fos expression in the subfornical organ (SFO). The non-NMDA receptor antagonists CNQX (400 nmol) or DNQX (60 nmol) affected neither the animals' drinking nor c-fos expression induced by dehydration. Double staining showed that suppression of c-fos expression following dizocilpine occurred in the NMDA R1 receptor containing neurons in the hypothalamus. These results suggest that the NMDA-type glutamate receptors may be involved in dehydration induced dipsogenic and neuroendocrinological responses. They complement our earlier findings that dizocilpine also attenuates drinking and c-fos expression following intraventricular infusions of angiotensin II. PMID:9518565

  18. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    SciTech Connect

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro; Kaiya, Hiroyuki; Miyazato, Mikiya . E-mail: a0d201u@cc.miyazaki-u.ac.jp; Date, Yukari; Nakazato, Masamitsu; Kangawa, Kenji; Murakami, Noboru

    2006-11-24

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [{sup 125}I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord.

  19. Ghrelin Prevents Cisplatin-Induced Testicular Damage by Facilitating Repair of DNA Double Strand Breaks Through Activation of p53 in Mice.

    PubMed

    Garcia, Jose M; Chen, Ji-an; Guillory, Bobby; Donehower, Lawrence A; Smith, Roy G; Lamb, Dolores J

    2015-07-01

    Cisplatin administration induces DNA damage resulting in germ cell apoptosis and subsequent testicular atrophy. Although 50 percent of male cancer patients receiving cisplatin-based chemotherapy develop long-term secondary infertility, medical treatment to prevent spermatogenic failure after chemotherapy is not available. Under normal conditions, testicular p53 promotes cell cycle arrest, which allows time for DNA repair and reshuffling during meiosis. However, its role in the setting of cisplatin-induced infertility has not been studied. Ghrelin administration ameliorates the spermatogenic failure that follows cisplatin administration in mice, but the mechanisms mediating these effects have not been well established. The aim of the current study was to characterize the mechanisms of ghrelin and p53 action in the testis after cisplatin-induced testicular damage. Here we show that cisplatin induces germ cell damage through inhibition of p53-dependent DNA repair mechanisms involving gamma-H2AX and ataxia telangiectasia mutated protein kinase. As a result, testicular weight and sperm count and motility were decreased with an associated increase in sperm DNA damage. Ghrelin administration prevented these sequelae by restoring the normal expression of gamma-H2AX, ataxia telangiectasia mutated, and p53, which in turn allows repair of DNA double stranded breaks. In conclusion, these findings indicate that ghrelin has the potential to prevent or diminish infertility caused by cisplatin and other chemotherapeutic agents by restoring p53-dependent DNA repair mechanisms. PMID:26019260

  20. Ghrelin Prevents Cisplatin-Induced Testicular Damage by Facilitating Repair of DNA Double Strand Breaks Through Activation of p53 in Mice1

    PubMed Central

    Garcia, Jose M.; Chen, Ji-an; Guillory, Bobby; Donehower, Lawrence A.; Smith, Roy G.; Lamb, Dolores J.

    2015-01-01

    Cisplatin administration induces DNA damage resulting in germ cell apoptosis and subsequent testicular atrophy. Although 50 percent of male cancer patients receiving cisplatin-based chemotherapy develop long-term secondary infertility, medical treatment to prevent spermatogenic failure after chemotherapy is not available. Under normal conditions, testicular p53 promotes cell cycle arrest, which allows time for DNA repair and reshuffling during meiosis. However, its role in the setting of cisplatin-induced infertility has not been studied. Ghrelin administration ameliorates the spermatogenic failure that follows cisplatin administration in mice, but the mechanisms mediating these effects have not been well established. The aim of the current study was to characterize the mechanisms of ghrelin and p53 action in the testis after cisplatin-induced testicular damage. Here we show that cisplatin induces germ cell damage through inhibition of p53-dependent DNA repair mechanisms involving gamma-H2AX and ataxia telangiectasia mutated protein kinase. As a result, testicular weight and sperm count and motility were decreased with an associated increase in sperm DNA damage. Ghrelin administration prevented these sequelae by restoring the normal expression of gamma-H2AX, ataxia telangiectasia mutated, and p53, which in turn allows repair of DNA double stranded breaks. In conclusion, these findings indicate that ghrelin has the potential to prevent or diminish infertility caused by cisplatin and other chemotherapeutic agents by restoring p53-dependent DNA repair mechanisms. PMID:26019260

  1. AP-1/Fos-TGase2 Axis Mediates Wounding-induced Plasmodium falciparum Killing in Anopheles gambiae*

    PubMed Central

    Nsango, Sandrine E.; Pompon, Julien; Xie, Ting; Rademacher, Annika; Fraiture, Malou; Thoma, Martine; Awono-Ambene, Parfait H.; Moyou, Roger S.; Morlais, Isabelle; Levashina, Elena A.

    2013-01-01

    Anopheline mosquitoes are the only vectors of human malaria worldwide. It is now widely accepted that mosquito immune responses play a crucial role in restricting Plasmodium development within the vector; therefore, further dissection of the molecular mechanisms underlying these processes should inform new vector control strategies urgently needed to roll back the disease. Here, using genome-wide transcriptional profiling, bioinformatics, and functional gene analysis, we identify a new axis of mosquito resistance to monoclonal Plasmodium falciparum infections that includes the AP-1 transcription factor Fos and the transglutaminase 2 (TGase2), a cross-linking enzyme with known roles in wound responses. We demonstrate that Fos regulates induction of TGase2 expression after wounding but does not affect expression of the components of the well characterized complement-like system. Silencing of Fos or of TGase2 aborts the wounding-induced mosquito killing of P. falciparum. These results reveal multiple signaling pathways that are required for efficient Plasmodium killing in Anopheles gambiae. PMID:23592781

  2. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines.

    PubMed

    He, Li; Zang, Aiping; Du, Min; Ma, Dapeng; Yuan, Chuanping; Zhou, Chun; Mu, Jing; Shi, Huanjing; Li, Dapeng; Huang, Xulin; Deng, Qiang; Xiao, Jianhua; Yan, Huimin; Hui, Lijian; Lan, Ke; Xiong, Sidong; Li, Xiaoxia; Huang, Zhong; Xiao, Hui

    2015-06-01

    Although IL-12 plays a critical role in priming Th1 and cytotoxic T lymphocyte (CTL) responses, Toll-like receptor (TLR) signaling only induces low amounts of IL-12 in dendritic cells and macrophages, implying the existence of stringent regulatory mechanisms. In this study, we sought to uncover the mechanisms underlying TLR-induced IL-12 expression and the Th1 response. By systemic screening, we identified a number of protein kinases involved in the regulation of TLRinduced IL-12 expression. In particular, PI3K, ERK, and mTOR play critical roles in the TLR-induced Th1 response by regulating IL-12 and IL-10 production in innate immune cells. Moreover, we identified c-fos as a key molecule that mediates mTOR-regulated IL-12 and IL-10 expression in TLR signaling. Mechanistically, mTOR plays a crucial role in c-fos expression, thereby modulating NFκB binding to promoters of IL-12 and IL-10. By controlling the expression of a special innate gene program, mTOR can specifically regulate the TLR-induced T cell response in vivo. Furthermore, blockade of mTOR by rapamycin efficiently boosted TLR-induced antigen-specific T and B cell responses to HBV and HCV vaccines. Taken together, these results reveal a novel mechanism through which mTOR regulates TLR-induced IL-12 and IL-10 production, contributing new insights for strategies to improve vaccine efficacy. PMID:26122641

  3. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway.

    PubMed

    Hao, Yuhui; Liu, Cong; Huang, Jiawei; Gu, Ying; Li, Hong; Yang, Zhangyou; Liu, Jing; Wang, Weidong; Li, Rong

    2016-01-01

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic-pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway. PMID:26529667

  4. FOS Dark Monitoring

    NASA Astrophysics Data System (ADS)

    Keyes, Charles

    1991-07-01

    Measurements of the instrumental background (dark) will be obtained as internal observations with the FOS. The exposures will be performed in pairs: the first of each pair with REJLIM set to default (no rejection) and the other with REJLIM set at a specified value. This will allow determination of pulse-height distribution of background particle-induced events.

  5. Changes in CREB and deltaFosB are associated with the behavioural sensitization induced by methylenedioxypyrovalerone.

    PubMed

    Buenrostro-Jáuregui, Mario; Ciudad-Roberts, Andres; Moreno, Josep; Muñoz-Villegas, Patricia; López-Arnau, Raúl; Pubill, David; Escubedo, Elena; Camarasa, Jorge

    2016-07-01

    Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone which has recently emerged as a designer drug of abuse. The objective of this study was to investigate the locomotor sensitization induced by MDPV in adolescent mice, and associated neuroplastic changes in the nucleus accumbens and striatum through deltaFosB and CREB expression. Behavioural testing consisted of three phases: Phase I: conditioning regimen with MDPV (0.3 mg/kg/day for five days) or saline; Phase II: resting (11 days); Phase III: challenged with MDPV (0.3 mg/kg), cocaine (10 mg/kg) or saline on day 16 for both groups. Mice repeatedly exposed to MDPV increased locomotor activity by 165-200% following acute MDPV or cocaine administration after an 11-day resting period, showing a MDPV-induced sensitization to itself and to cocaine. An explanation for this phenomenon could be the common mechanism of action between these two psychostimulants. Furthermore, the MDPV challenge resulted in higher levels of phospho-CREB in MDPV-conditioned mice compared with MDPV-naive mice, probably due to an up-regulation of the cAMP pathway. Likewise, MDPV exposure induced a persistent increase in the striatal expression of deltaFosB; the priming dose of MDPV also produced a significant increase in the accumbal expression of this transcription factor. This study constitutes the first evidence that an exposure to a low dose of MDPV during adolescence induces behavioural sensitization and provides a neurobiological basis for a relationship between MDPV and cocaine. We hypothesize that, similar to cocaine, both CREB and deltaFosB play a role in the induction of this behavioural sensitization. PMID:27147595

  6. Ghrelin and ghrelin receptor modulation of psychostimulant action

    PubMed Central

    Wellman, Paul J.; Clifford, P. Shane; Rodriguez, Juan A.

    2013-01-01

    Ghrelin (GHR) is an orexigenic gut peptide that modulates multiple homeostatic functions including gastric emptying, anxiety, stress, memory, feeding, and reinforcement. GHR is known to bind and activate growth-hormone secretagogue receptors (termed GHR-Rs). Of interest to our laboratory has been the assessment of the impact of GHR modulation of the locomotor activation and reward/reinforcement properties of psychostimulants such as cocaine and nicotine. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP) in rats, as does food restriction (FR) which elevates plasma ghrelin levels. Ghrelin enhancement of psychostimulant function may occur owing to a direct action on mesolimbic dopamine function or may reflect an indirect action of ghrelin on glucocorticoid pathways. Genomic or pharmacological ablation of GHR-Rs attenuates the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and blunts the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. Inactivation of ghrelin circuit function in rats by injection of a ghrelin receptor antagonist (e.g., JMV 2959) diminishes the development of nicotine-induced locomotor sensitization. These results suggest a key permissive role for GHR-R activity for the induction of locomotor sensitization to nicotine. Our finding that GHR-R null rats exhibit diminished patterns of responding for intracranial self-stimulation complements an emerging literature implicating central GHR circuits in drug reward/reinforcement. Finally, antagonism of GHR-Rs may represent a smoking cessation modality that not only blocks nicotine-induced reward but that also may limit weight gain after smoking cessation. PMID:24093007

  7. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression1

    PubMed Central

    Silvers, Amy L; Bachelor, Michael A; Bowden, G Timothy

    2003-01-01

    Abstract To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 µM) and SP600125 (62–125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer. PMID:14511403

  8. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  9. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  10. Neural Correlates of Birth: Labor Contractions Induce C-Fos Expression In Newborn Rat Brain

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Daly, M. E.; Baer, L. A.; Hills, E. M.; Conway, G.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    At birth, the newborn mammal must make rapid adaptations to the extrauterine environment to survive. We have previously shown that labor contractions augment the appearance of adaptive responses at birth, viz., postpartum breathing and the onset of suckling. Since neuronal activity has been shown to upregulate the activity of immediate early genes (IEGs) in the brain, we analyzed the neural distribution of c-Fos protein expression in newborn rats using immunohistochemistry. Previous studies have reported a burst of c-Fos mRNA expression in mouse and rat brain at birth however relationships to labor and delivery have not been examined. In the present study, we exposed near-term rat fetuses to elements of the vaginal birth process: 1) Simulated labor contractions. 2) Postpartum cooling (22 deg C). 3) Umbilical cord occlusion. and 4) Stroking to mimic postpartum licking by the dam. Cardinally delivered newborns (VG) were compared with those delivered by cesarean section following either prenatal exposure to compressions (C) [simulated labor contractions], or no compressions (NC) [no labor contractions]. Similar patterns of c-fos activation were observed throughout hypothalamic and thalamic nuclei, hippocampus and cerebral cortex in VG and C newborns that were not apparent in NC newborns. Our results indicate that labor contractions play a role in the induction of widespread neural activation in the newborn brain.

  11. The role of ghrelin in the regulation of glucose homeostasis.

    PubMed

    Alamri, Bader N; Shin, Kyungsoo; Chappe, Valerie; Anini, Younes

    2016-04-01

    Ghrelin is a 28-amino acid (aa) stomach-derived peptide discovered in 1999 as the endogenous ligand for growth hormone secretagogue-receptor (GHS-R). Ghrelin-producing cells constitute a distinct group of endocrine cells dispersed throughout the gastric mucosa and to a lesser extent in the small intestine and the endocrine pancreas. Ghrelin plasma levels rise during fasting and chronic caloric restriction to stimulate food intake and fat storage and to prevent life-threatening falls in blood glucose. Plasma ghrelin levels decrease after a meal is consumed and in conditions of energy surplus (such as obesity). Ghrelin has emerged as a key player in the regulation of appetite and energy homeostasis. Ghrelin achieves these functions through binding the ghrelin receptor GHS-R in appetite-regulating neurons and in peripheral metabolic organs including the endocrine pancreas. Ghrelin levels are negatively correlated with body mass index (BMI) and insulin resistance. In addition, ghrelin secretion is impaired in obesity and insulin resistance. Several studies highlight an important role for ghrelin in glucose homeostasis. Genetic, immunological, and pharmacological blockade of ghrelin signaling resulted in improved glucose tolerance and insulin sensitivity. Furthermore, exogenous ghrelin administration was shown to decrease glucose-induced insulin release and increase glucose level in both humans and rodents. GHS-R was shown to be expressed in pancreatic β-cells and ghrelin suppressed insulin release via a Ca2+-mediated pathway. In this review, we provide a detailed summary of recent advances in the field that focuses on the role of insulin and insulin resistance in the regulation of ghrelin secretion and on the role of ghrelin in glucose-stimulated insulin secretion (GSIS). PMID:27235674

  12. Altered Formalin-Induced Pain and Fos Induction in the Periaqueductal Grey of Preadolescent Rats following Neonatal LPS Exposure

    PubMed Central

    Zouikr, Ihssane; James, Morgan H.; Campbell, Erin J.; Clifton, Vicki L.; Beagley, Kenneth W.; Dayas, Christopher V.; Hodgson, Deborah M.

    2014-01-01

    Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process. PMID:24878577

  13. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    PubMed

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. PMID:23601929

  14. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons.

    PubMed

    Engster, Kim-Marie; Kroczek, Arthur L; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2016-10-01

    As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (p<0.05) and NTS (p<0.05) compared to vehicle, while in the ARC no modulation was observed (p>0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (p<0.05). Moreover, an increase of activated NUCB2/nesfatin-1 immunoreactive neurons that co-expressed oxytocin in the PVN (p<0.05) or tyrosine hydroxylase in the NTS (p<0.05) was observed compared to vehicle. Our results show that peripherally injected bombesin activates NUCB2/nesfatin-1 neurons in the PVN and NTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake. PMID:27396908

  15. Translational research of ghrelin.

    PubMed

    Ueno, Hiroaki; Shiiya, Tomomi; Nakazato, Masamitsu

    2010-07-01

    Gastrointestinal peptides play important roles regulating feeding and energy homeostasis. Most gastrointestinal peptides including glucagon like peptide-1, peptide YY, amylin, and oxytomodulin are anorectic, and only ghrelin is an orexigenic peptide. Ghrelin increases appetite, modulates energy balance, suppresses inflammation, and enhances growth hormone secretion. Given its diversity of functions, ghrelin is expected be an effective therapy for lean patients with cachexia caused by chronic heart failure, chronic respiratory disease, anorexia nervosa, functional dyspepsia, and cancer. Clinical trials have demonstrated that ghrelin effectively increases lean body mass and activity in cachectic patients. Ghrelin interrupts the vicious cycle of the cachectic paradigm through its orexigenic, anabolic, and anti-inflammatory effects, and ghrelin administration may improve the quality of life of cachectic patients. We discuss the significant roles of ghrelin in the pathophysiology of cachectic diseases and the possible clinical applications of ghrelin. PMID:20633140

  16. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    PubMed Central

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M.; Calu, Donna J.; Baumann, Michael H.; Marchant, Nathan J.; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.

    2012-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express green fluorescent protein (GFP) in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5–2 mg/kg) or pellet priming (1–4 non-contingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and non-activated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPAR/NMDAR current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. Together, while ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior. PMID:22723688

  17. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep. PMID:11172778

  18. Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem.

    PubMed

    Erickson, J T; Millhorn, D E

    1994-10-01

    A complete understanding of the neural mechanisms responsible for the chemoreceptor and baroreceptor reflexes requires precise knowledge of the locations and chemical phenotypes of higher-order neurons within these reflex pathways. In the present study, the protein product (Fos) of the c-fos protooncogene was used as a metabolic marker to trace central neural pathways following activation of carotid sinus nerve afferent fibers. In addition, immunohistochemical double-labeling techniques were used to define the chemical phenotypes of activated neurons. Both electrical stimulation of the carotid sinus nerve and physiological stimulation of the carotid bodies by hypoxia induced Fos-like immunoreactivity in catecholaminergic neurons containing tyrosine hydroxylase or phenylethanolamine-N-methyltransferase in the ventrolateral medulla oblongata and, to a lesser degree, in the dorsal vagal complex. Tyrosine hydroxylase/Fos colocalization was also observed in the locus coeruleus and the A5 noradrenergic cell group in pons. Many serotoninergic neurons in nucleus raphe pallidus, nucleus raphe magnus, and along the ventral medullary surface contained Fos-like immunoreactivity. In pons and midbrain, Fos-like immunoreactivity was observed in the lateral parabrachial and Kölliker-Fuse nuclei, the inferior colliculus, the cuneiform nucleus, and in the vicinity of the Edinger-Westphal nucleus, but no catecholaminergic or serotoninergic colocalization was observed in these regions. Although Fos-labeled cells were observed within and lateral to the dorsal raphe nucleus, few were catecholaminergic or serotoninergic. This study further defines a potential central neuroanatomical substrate for the chemoreceptor and/or baroreceptor reflexes. PMID:7814687

  19. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  20. Neural Mechanisms That Underlie Angina-Induced Referred Pain in the Trigeminal Nerve Territory: A c-Fos Study in Rats

    PubMed Central

    Hayashi, Bunsho; Maeda, Masako; Inoue, Tomio

    2013-01-01

    The present study was designed to determine whether the trigeminal sensory nuclear complex (TSNC) is involved in angina-induced referred pain in the trigeminal nerve territory and to identify the peripheral nerve conducting nociceptive signals that are input into the TSNC. Following application of the pain producing substance (PPS) infusion, the number of Fos-labeled cells increased significantly in the subnucleus caudalis (Sp5C) compared with other nuclei in the TSNC. The Fos-labeled cells in the Sp5C disappeared when the left and right cervical vagus nerves were sectioned. Lesion of the C1-C2 spinal segments did not reduce the number of Fos-labeled cells. These results suggest that the nociceptive signals that conduct vagal afferent fibers from the cardiac region are input into the Sp5C and then projected to the thalamus. PMID:27335881

  1. New insights in ghrelin orexigenic effect.

    PubMed

    Diéguez, Carlos; da Boit, Kátia; Novelle, Marta G; Martínez de Morentin, Pablo B; Nogueiras, Rubén; López, Miguel

    2010-01-01

    Ghrelin, a peptide hormone first discovered as the endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is predominantly produced and released into the circulation by ghrelin cells (X/A-like) of the stomach fundus cells. Ghrelin has multiple actions in multiple tissues. In particular, it is the most potent known endogenous orexigenic peptide, and plays a significant role in glucose homeostasis: deletion of the genes encoding ghrelin and/or its receptor prevents high-fat diet from inducing obesity, increases insulin levels, enhances glucose-stimulated insulin secretion and improves peripheral insulin sensitivity. In addition to its already mentioned roles, ghrelin has other activities including stimulation of pituitary hormones secretion, regulation of gastric and pancreatic activity, modulation of fatty acid metabolism via specific control of AMP-activated protein kinase (AMPK), and cardiovascular and hemodynamic activities. In addition, modulation of cartilage and bone homeostasis, sleep and behavioral influences, and modulation of the immune system, as well as effects on cell proliferation, are other relevant actions of ghrelin. In this review, we summarize several aspects of ghrelin effects at hypothalamic level and their implications in the control of food intake and energy balance. PMID:20616512

  2. Fos-like immunoreactivity in rat dorsal raphe nuclei induced by alkaloid extract of Mitragyna speciosa.

    PubMed

    Kumarnsit, Ekkasit; Vongvatcharanon, Uraporn; Keawpradub, Niwat; Intasaro, Pranom

    2007-04-12

    Mitragyna speciosa (MS) has been traditionally used for medicinal purposes especially in southern Thailand. Previously, an alkaloid extract of this plant was demonstrated to mediate antinociception, partly, through the descending serotonergic system. The present study investigated the stimulatory effect of the MS extract on the dorsal raphe nucleus and its antidepressant-like activity. The MS extract containing approximately 60% mitragynine as a major indole alkaloid was used to treat the animals. The stimulatory effect of the MS extract was determined by detecting the expression of the immediate early gene, cfos, in the dorsal raphe nucleus of male Wistar rats. The immunohistochemistry was used to detect Fos protein, the protein product of cfos gene. The present data show that a significant increase in Fos expression was observed following long-term administration of the MS extract (40 mg/kg) for 60 consecutive days. In addition, the antidepressant-like activity of the MS extract was determined by using the forced swimming test (FST) in male mice. The results show that a single injection (either 60 or 90 mg/kg doses) significantly decreased immobility time in the FST. These findings indicate that the MS extract has a stimulatory effect on the dorsal raphe nucleus and an antidepressant-like activity. Stimulation of this brain area has been known to cause antinociception. These findings suggest that the MS extract might produce antinociceptive and/or antidepressive actions partly through activation of the dorsal raphe nucleus. Moreover, the dorsal raphe nucleus may be one of site of MS action in the central nervous system. PMID:17316993

  3. Regional suppression by lesions in the anterior third ventricle of c-fos expression induced by either angiotensin II or hypertonic saline.

    PubMed

    Xu, Z; Herbert, J

    1995-07-01

    Angiotensin II (250 pmol) infused into the cerebral ventricles of male rats induces the expression of c-fos in the subfornical organ, supraoptic and paraventricular nuclei of the hypothalamus, as well as in the lateral parabrachial nucleus, locus coeruleus and the nucleus of the solitary tract in the brainstem. Electrolytic lesions of the anteroventral third ventricle, principally the subcommissural (ventral) median preoptic nucleus, inhibited the dipsogenic response to i.c.v. angiotensin II and also suppressed c-fos expression in supraoptic nucleus, paraventricular nucleus, lateral parabrachial nucleus, locus coeruleus and nucleus of the solitary tract but not in the subfornical organ or dorsal median preoptic nucleus. The stimulating effect of i.c.v. angiotensin II on corticosterone was also reduced. Median preoptic nucleus lesions also suppressed the expression of c-fos following i.v. infusions of 6 micrograms angiotensin II in supraoptic nucleus and paraventricular nucleus but not in subfornical organ, dorsal median preoptic nucleus, lateral parabrachial nucleus, locus coeruleus and nucleus of the solitary tract. Median preoptic nucleus lesions reduced the dipsogenic effects of an intragastric infusion of hypertonic (1.5 M) saline and suppressed c-fos expression in supraoptic nucleus and paraventricular nucleus compared to sham-lesioned rats. However, c-fos expression was unaltered in subfornical organ, dorsal median preoptic nucleus lesions had no effect on the increased corticosterone induced by hypertonic saline. Subfornical organ lesions did not alter dipsogenic responses to i.c.v. angiotensin II, nor was the i.c.v. angiotensin II-induced expression of c-fos suppressed in the basal forebrain. These experiments show that the ventral median preoptic nucleus (but not the subfornical organ), part of the anteroventral third ventricle, is critical for the expression of c-fos in more caudal areas of the brain following i.c.v. angiotensin II. c-fos expression in

  4. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster. PMID:24287379

  5. Myeloid-specific Fos-related antigen-1 regulates cigarette smoke-induced lung inflammation, not emphysema, in mice.

    PubMed

    Vaz, Michelle; Rajasekaran, Subbiah; Potteti, Haranatha R; Reddy, Sekhar P

    2015-07-01

    Heightened lung inflammation is a cardinal feature of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS)-induced macrophage recruitment and activation, accompanied by abnormal secretion of a number of inflammatory cytokines and matrix metalloproteinases, play a major role in the pathophysiology of COPD. The Fos-related antigen-1 (Fra-1) transcription factor differentially regulates several cellular processes that are implicated in COPD, such as inflammation and immune responses, cell proliferation and death, and extracellular remodeling. Although CS stimulates Fra-1 expression in the lung, the precise role of this transcription factor in the regulation of CS-induced lung inflammation in vivo is poorly understood. Here, we report that myeloid-specific Fra-1 signaling is important for CS-induced lung macrophagic inflammatory response. In response to chronic CS exposure, mice with Fra-1 specifically deleted in myeloid cells showed reduced levels of CS-induced lung macrophagic inflammation, accompanied by decreased expression levels of proinflammatory cytokines compared with their wild-type counterparts. Consistent with this result, bone marrow-derived Fra-1-null macrophages treated with CS showed decreased levels of proinflammatory mediators and matrix metalloproteinases. Interestingly, deletion of Fra-1 in myeloid cells did not affect the severity of emphysema. We propose that Fra-1 plays a key role in promoting chronic CS-induced lung macrophagic inflammation in vivo, and that targeting this transcription factor may be useful in dampening persistent lung inflammation in patients with COPD. PMID:25489966

  6. From synapse to gene product: Prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum

    PubMed Central

    Quattrochi, James J.; Bazalakova, Mihaela; Hobson, J. Allan

    2006-01-01

    It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect. PMID:15893601

  7. Ghrelin treatment prevents development of activity based anorexia in mice.

    PubMed

    Legrand, Romain; Lucas, Nicolas; Breton, Jonathan; Azhar, Saïda; do Rego, Jean-Claude; Déchelotte, Pierre; Coëffier, Moïse; Fetissov, Sergueï O

    2016-06-01

    Stimulation of feeding is necessary for treatment of pathological conditions of chronic malnutrition due to anorexia. Ghrelin, a hunger hormone, is one of the candidate for pharmacological treatments of anorexia, but because of its instability in plasma has limited efficacy. We previously showed that plasmatic IgG protect ghrelin from degradation and that IgG from obese subjects and mice may increase ghrelin׳s orexigenic effect. In this study we tested if ghrelin alone or combined with IgG may improve feeding in chronically food-restricted mice with or without physical activity-based anorexia (ABA) induced by free access to a running wheel. Mice received a single daily intraperitoneal injection of ghrelin (1nM) together or not with total IgG (1nM) from obese ob/ob or lean mice before access to food during 8 days of 3h/day feeding time. We found that both ghrelin and ghrelin combined with IgG from obese, but not lean mice, prevented ABA, however, they were not able to diminish body weight loss. Physical activity was lower during the feeding period and was increased shortly after feeding in mice receiving ghrelin together with IgG from obese mice. In food-restricted mice without ABA, ghrelin treatments did not have significant effects on food intake. Thus, this study supports pharmacological use of ghrelin or ghrelin combined with IgG from obese animals for treatment of anorexia accompanied by elevated physical activity. The utility of combining ghrelin with protective IgG should be further determined in animal models of anorexia with unrestricted access to food. PMID:27052473

  8. Ghrelin and reproductive disorders.

    PubMed

    Repaci, Andrea; Gambineri, Alessandra; Pagotto, Uberto; Pasquali, Renato

    2011-06-20

    Ghrelin is an important factor involved in most of the metabolic and hormonal signals which adapt the reproductive functions in conditions of altered energy balance. Moreover, the coordinated role of leptin and ghrelin appears in fact to have a specific role in the regulation of puberty. Systemic action of ghrelin on the reproductive axis involves the control of the hypothalamic-pituitary-gondal axis. In addition, it has been shown that ghrelin may directly act at a gonadal level in both females and males. Available data also demonstrate that sex steroid hormones and gonadotropins may in turn regulate the gonadal effect of ghrelin, as documented by studies performed in females with the polycystic ovary syndrome and in hypogonadal men. Notably, recent studies also confirm a potentially important role for ghrelin in fetal and neonatal energy balance, and specifically in allowing fetal adaptation to an adverse intrauterine environment. PMID:21453749

  9. Peripheral therapeutic ultrasound stimulation alters the distribution of spinal C-fos immunoreactivity induced by early or late phase of inflammation.

    PubMed

    Hsieh, Yueh-Ling

    2008-03-01

    The purpose of this investigation was to examine the central modulated effects of therapeutic ultrasound (US) on neuronal activity in the spinal cord on early and late phases of inflammation. In this study, induction of c-Fos protein, which reflects neuronal activation (particularly inflammatory nociception), was investigated in the lumbar spinal cord with immunohistochemistry. Inflammatory monoarthritis was induced in 20 male Wistar rats (weighing 250-300 g) via intra-articular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Two phases of arthritis, early phase (18 h after adjuvant injection) and late phase (7 d after adjuvant injection), were studied in the rats. Pulsed-mode US (1 MHz, the spatial average temporal average intensity [I(SATA)] = 0.5 W/cm(2), 50% duty cycle) was applied for 5 min. The effects of US and sham treatments against these phases of arthritis were demonstrated by spinal c-Fos-like immunoreactivity (c-Fos-LI). All data were evaluated statistically with the paired t-test or analysis of variance with Bonferroni corrections. c-Fos-LI neurons were abundant (average 264.2 +/- 11.9) in the L3 and L4 neurons of the spinal cord in areas ipsilateral to the CFA-induced arthritic leg in the early phase, but few were present (average 40.4 +/- 4.5) in the late phase in sham-treated animals. Bonferroni corrections to the alpha level were used to check the group differences in spinal c-Fos expression, and significance was reached when p < 0.025. In the early inflammatory phase, US treatment significantly suppressed the increased number of c-Fos-LI neurons associated with CFA-induced arthritis in superficial laminae, nucleus proprius, deep laminae and ventral horn of the spinal cord. However, during the late inflammatory phase, US significantly triggered c-Fos expression in most laminae, particularly in the nucleus proprius, deep laminae and ventral horn of the spinal cord. The results of our study suggest that administration of US

  10. Role of thalamic nuclei in the modulation of Fos expression within the cerebral cortex during hypertonic saline-induced muscle nociception.

    PubMed

    Xiao, Y; Lei, J; Ye, G; Xu, H; You, H-J

    2015-09-24

    It has been proposed that thalamic mediodorsal (MD) and ventromedial (VM) nuclei form thalamic 'nociceptive discriminators' in discrimination of nociceptive afferents, and specifically govern endogenous descending facilitation and inhibition. The present study conducted in rats was to explore the role of thalamic MD and VM nuclei in modulation of cerebral neuronal activities by means of detection of spatiotemporal variations of Fos expression within the cerebral cortex. Following a unilateral intramuscular injection of 5.8% saline into the gastrocnemius muscle, Fos expression within the bilateral, different areas of the cerebral cortex except S2 was significantly increased (P<0.05). Particularly, the increases in Fos expression within the cingulate cortex and the insular cortex occurred at 0.5h, 4h and reached the peak level at 4h, 16h, respectively. Electrolytic lesion of the contralateral thalamic MD and VM nuclei significantly blocked the 5.8% saline intramuscularly induced increases in Fos expression within the bilateral cingulate and insular cortices, respectively. Additionally, the 5.8% saline-induced Fos expression in the cingulate cortex and the insular cortex were dose-dependently attenuated by microinjection of μ-opioid antagonist β-funaltrexamine hydrochloride into the thalamic MD and VM nuclei. It is suggested that (1) the neural circuits of 'thalamic MD nucleus - cingulate cortex' and 'thalamic VM nucleus - insular cortex' form two distinct pathways in the endogenous control of nociception, (2) mirror or contralateral pain is hypothesized to be related to cross-talk of neuronal activities within the bilateral cerebral cortices modulated by μ-opioid receptors within the thalamic MD and VM nuclei. PMID:26189794

  11. Cocaine-induced Fos expression is detectable in the frontal cortex and striatum of rats under isoflurane but not α-chloralose anesthesia: implications for FMRI

    PubMed Central

    Kufahl, Peter R.; Pentkowski, Nathan S.; Heintzelman, Krista; Neisewander, Janet L.

    2009-01-01

    The ability of intravenous cocaine to induce Fos protein expression in anesthetized rats was tested. Two anesthetic regimens commonly used for in vivo FMRI of animals, i.v. α-chloralose and gaseous isoflurane, were studied in separate cohorts. The first experiment included three groups that received the following treatments: saline i.v. and no anesthetic; 2 mg/kg cocaine i.v. and no anesthetic; and 2 mg/kg cocaine i.v. under 36 mg/kg/h α-chloralose anesthesia. The second experiment had a factorial design of four groups that were either nonanesthetized or isoflurane-treated and were either given saline or cocaine (2 mg/kg, i.v.). Anesthetized rats were maintained for 2 h under 2.5–3.5% isoflurane anesthesia, while nonanesthetized rats were kept in an alternative environment for the same time period. Rats were given 2 mg/kg cocaine or saline i.v., 30 min into the test session. Rats were perfused and their brains were processed for Fos immunohistochemistry 90 min after the i.v. treatment. In both experiments, the frontal cortex and striatum of the cocaine-treated nonanesthetized rats expressed Fos in greater amounts than the saline-treated nonanesthetized rats, as expected. The α-chloralose treatment prevented cocaine-induced Fos expression across all eight subregions of the striatum and frontal cortex that were examined. In contrast, isoflurane only partially attenuated Fos expression in the orbital and Cg2 subregions of frontal cortex. These results suggest a strong advantage for using isoflurane, as opposed to α-chloralose, when studying anesthetized rats for in vivo effects of psychostimulants. PMID:19467261

  12. Cocaine-induced Fos expression is detectable in the frontal cortex and striatum of rats under isoflurane but not alpha-chloralose anesthesia: implications for FMRI.

    PubMed

    Kufahl, Peter R; Pentkowski, Nathan S; Heintzelman, Krista; Neisewander, Janet L

    2009-07-30

    The ability of intravenous cocaine to induce Fos protein expression in anesthetized rats was tested. Two anesthetic regimens commonly used for in vivo FMRI of animals, i.v. alpha-chloralose and gaseous isoflurane, were studied in separate cohorts. The first experiment included three groups that received the following treatments: saline i.v. and no anesthetic; 2 mg/kg cocaine i.v. and no anesthetic; and 2mg/kg cocaine i.v. under 36 mg/kg/h alpha-chloralose anesthesia. The second experiment had a factorial design of four groups that were either nonanesthetized or isoflurane-treated and were either given saline or cocaine (2 mg/kg, i.v.). Anesthetized rats were maintained for 2 h under 2.5-3.5% isoflurane anesthesia, while nonanesthetized rats were kept in an alternative environment for the same time period. Rats were given 2 mg/kg cocaine or saline i.v., 30 min into the test session. Rats were perfused and their brains were processed for Fos immunohistochemistry 90 min after the i.v. treatment. In both experiments, the frontal cortex and striatum of the cocaine-treated nonanesthetized rats expressed Fos in greater amounts than the saline-treated nonanesthetized rats, as expected. The alpha-chloralose treatment prevented cocaine-induced Fos expression across all eight subregions of the striatum and frontal cortex that were examined. In contrast, isoflurane only partially attenuated Fos expression in the orbital and Cg2 subregions of frontal cortex. These results suggest a strong advantage for using isoflurane, as opposed to alpha-chloralose, when studying anesthetized rats for in vivo effects of psychostimulants. PMID:19467261

  13. Striatal regulation of ΔFosB, FosB, and cFos during cocaine self-administration and withdrawal.

    PubMed

    Larson, Erin B; Akkentli, Fatih; Edwards, Scott; Graham, Danielle L; Simmons, Diana L; Alibhai, Imran N; Nestler, Eric J; Self, David W

    2010-10-01

    Chronic drug exposure induces alterations in gene expression profiles that are thought to underlie the development of drug addiction. The present study examined regulation of the Fos-family of transcription factors, specifically cFos, FosB, and ΔFosB, in striatal subregions during and after chronic intravenous cocaine administration in self-administering and yoked rats. We found that cFos, FosB, and ΔFosB exhibit regionally and temporally distinct expression patterns, with greater accumulation of ΔFosB protein in the nucleus accumbens (NAc) shell and core after chronic cocaine administration, whereas ΔFosB increases in the caudate-putamen (CPu) remained similar with either acute or chronic administration. In contrast, tolerance developed to cocaine-induced mRNA for ΔFosB in all three striatal subregions with chronic administration. Tolerance also developed to FosB expression, most notably in the NAc shell and CPu. Interestingly, tolerance to cocaine-induced cFos induction was dependent on volitional control of cocaine intake in ventral but not dorsal striatal regions, whereas regulation of FosB and ΔFosB was similar in cocaine self-administering and yoked animals. Thus, ΔFosB-mediated neuroadaptations in the CPu may occur earlier than previously thought with the initiation of intravenous cocaine use and, together with greater accumulation of ΔFosB in the NAc, could contribute to addiction-related increases in cocaine-seeking behavior. PMID:20633205

  14. Ghrelin inhibits oxLDL-induced inflammation in RAW264.7 mouse macrophages through down-regulation of LOX-1 expression via NF-κB signaling pathway.

    PubMed

    Sun, N; Wang, H; Wang, L

    2016-01-01

    Oxidized low-density lipoprotein (oxLDL) is one of the many causes of the initiation and progression of atherosclerosis, which can subsequently promote the uptake of oxLDL by macrophages and lead to inflammation in the blood vessels. In the present study, we evaluated the protective effects of ghrelin on oxLDL-induced RAW264.7 mouse macrophages. Ghrelin was able to inhibit the release of several pro-inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, ghrelin also inhibited the expression of Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in oxLDL treated macrophages. Furthermore, we demonstrated that ghrelin could inhibit the expression of p-IκBα, and the inhibitory effects could be blocked by BAY 117082. Taken together, ghrelin possesses anti-inflammatory effects on oxLDL-induced inflammation in macrophages, suggesting that it can prevent or treat atherosclerosis, and deserves to be further studied and developed to be potent drug for treating atherosclerosis. PMID:26950452

  15. The Role of the Vagus Nerve in the Migrating Motor Complex and Ghrelin- and Motilin-Induced Gastric Contraction in Suncus

    PubMed Central

    Miyano, Yuki; Sakata, Ichiro; Kuroda, Kayuri; Aizawa, Sayaka; Tanaka, Toru; Jogahara, Takamichi; Kurotani, Reiko; Sakai, Takafumi

    2013-01-01

    The upper gastrointestinal (GI) tract undergoes a temporally coordinated cyclic motor pattern known as the migrating motor complex (MMC) in both dogs and humans during the fasted state. Feeding results in replacement of the MMC by a pattern of noncyclic, intermittent contractile activity termed as postprandial contractions. Although the MMC is known to be stimulated by motilin, recent studies have shown that ghrelin, which is from the same peptide family as motilin, is also involved in the regulation of the MMC. In the present study, we investigated the role of the vagus nerve on gastric motility using conscious suncus—a motilin- and ghrelin-producing small animal. During the fasted state, cyclic MMC comprising phases I, II, and III was observed in both sham-operated and vagotomized suncus; however, the duration and motility index (MI) of phase II was significantly decreased in vagotomized animals. Motilin infusion (50 ng·kg−1·min−1 for 10 min) during phase I had induced phase III–like contractions in both sham-operated and vagotomized animals. Ghrelin infusion (0.1, 0.3, 1, 3, or 10 µg·kg−1·min−1 for 10 min) enhanced the amplitude of phase II MMC in sham-operated animals, but not in vagotomized animals. After feeding, phase I was replaced by postprandial contractions, and motilin infusion (50 ng·kg−1·min−1 for 10 min) did not induce phase III–like contractions in sham-operated suncus. However, in vagotomized suncus, feeding did not evoke postprandial contractions, but exogenous motilin injection strongly induced phase III–like contractions, as noted during the phase I period. Thus, the results indicate that ghrelin stimulates phase II of the MMC via the vagus nerve in suncus. Furthermore, the vagus nerve is essential for initiating postprandial contractions, and inhibition of the phase III–like contractions induced by motilin is highly dependent on the vagus nerve. PMID:23724093

  16. The role of the vagus nerve in the migrating motor complex and ghrelin- and motilin-induced gastric contraction in suncus.

    PubMed

    Miyano, Yuki; Sakata, Ichiro; Kuroda, Kayuri; Aizawa, Sayaka; Tanaka, Toru; Jogahara, Takamichi; Kurotani, Reiko; Sakai, Takafumi

    2013-01-01

    The upper gastrointestinal (GI) tract undergoes a temporally coordinated cyclic motor pattern known as the migrating motor complex (MMC) in both dogs and humans during the fasted state. Feeding results in replacement of the MMC by a pattern of noncyclic, intermittent contractile activity termed as postprandial contractions. Although the MMC is known to be stimulated by motilin, recent studies have shown that ghrelin, which is from the same peptide family as motilin, is also involved in the regulation of the MMC. In the present study, we investigated the role of the vagus nerve on gastric motility using conscious suncus-a motilin- and ghrelin-producing small animal. During the fasted state, cyclic MMC comprising phases I, II, and III was observed in both sham-operated and vagotomized suncus; however, the duration and motility index (MI) of phase II was significantly decreased in vagotomized animals. Motilin infusion (50 ng·kg(-1)·min(-1) for 10 min) during phase I had induced phase III-like contractions in both sham-operated and vagotomized animals. Ghrelin infusion (0.1, 0.3, 1, 3, or 10 µg·kg(-1)·min(-1) for 10 min) enhanced the amplitude of phase II MMC in sham-operated animals, but not in vagotomized animals. After feeding, phase I was replaced by postprandial contractions, and motilin infusion (50 ng·kg(-1)·min(-1) for 10 min) did not induce phase III-like contractions in sham-operated suncus. However, in vagotomized suncus, feeding did not evoke postprandial contractions, but exogenous motilin injection strongly induced phase III-like contractions, as noted during the phase I period. Thus, the results indicate that ghrelin stimulates phase II of the MMC via the vagus nerve in suncus. Furthermore, the vagus nerve is essential for initiating postprandial contractions, and inhibition of the phase III-like contractions induced by motilin is highly dependent on the vagus nerve. PMID:23724093

  17. LukS-PV induces differentiation by activating the ERK signaling pathway and c-JUN/c-FOS in human acute myeloid leukemia cells.

    PubMed

    Dai, Chunyang; Zhang, Chengfang; Sun, Xiaoxi; Pan, Qing; Peng, Jing; Shen, Jilong; Ma, Xiaoling

    2016-07-01

    LukS-PV, a component of Panton-Valentine leukocidin, is a pore-forming cytotoxin secreted by Staphylococcus aureus. Here we examined the potential effect of LukS-PV in differentiation of human leukemia cells and the underlying mechanism. We found that LukS-PV could induce differentiation of human acute myeloid leukemia (AML) cells, including AML cell lines and primary AML blasts, as determined by morphological changes, phagocytosis assay and expression of CD14 and CD11b surface antigens. In addition, LukS-PV activated the extracellular signal-regulated kinase (ERK) pathway and significantly upregulated the phosphorylation of c-JUN and c-FOS transcriptional factors in the process of differentiation. Inhibiting ERK pathway activation with U0126 (a MEK1/2 inhibitor) markedly blocked LukS-PV-induced differentiation and decreased the phosphorylation of c-JUN and c-FOS. These findings demonstrate an essential role for the ERK pathway together with c-JUN and c-FOS in the differentiation activity of LukS-PV. Taken together, our data suggest that LukS-PV could be a potential candidate as a differentiation-inducing agent for the therapeutic treatment of AML. PMID:27102414

  18. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    SciTech Connect

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by

  19. Methyl Supplementation Attenuates Cocaine-Seeking Behaviors and Cocaine-Induced c-Fos Activation in a DNA Methylation-Dependent Manner

    PubMed Central

    Wright, Katherine N.; Hollis, Fiona; Duclot, Florian; Dossat, Amanda M.; Strong, Caroline E.; Francis, T. Chase; Mercer, Roger; Feng, Jian; Dietz, David M.; Lobo, Mary Kay; Nestler, Eric J.

    2015-01-01

    Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway. PMID:26063926

  20. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner.

    PubMed

    Wright, Katherine N; Hollis, Fiona; Duclot, Florian; Dossat, Amanda M; Strong, Caroline E; Francis, T Chase; Mercer, Roger; Feng, Jian; Dietz, David M; Lobo, Mary Kay; Nestler, Eric J; Kabbaj, Mohamed

    2015-06-10

    Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway. PMID:26063926

  1. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    PubMed

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. PMID:27131780

  2. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year?

    PubMed Central

    Larson-Meyer, D. Enette; Schueler, Jessica; Kyle, Erin; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2016-01-01

    To determine whether fasting and meal-induced appetite-regulating hormones are altered during lactation and associated with body weight retention after childbearing, we studied 24 exclusively breastfeeding women (BMI = 25.2 ± 3.6 kg/m2) at 4-5 weeks postpartum and 20 never-pregnant controls (BMI = 24.0 ± 3.1 kg/m2). Ghrelin, PYY, GLP-1, and appetite ratings were measured before/and 150 minutes after a standardized breakfast and 60 minutes after an ad libitum lunch. Body weight/composition were measured at 6 and 12 months. Fasting and area under-the-curve responses for appetite-regulating hormones did not differ between lactating and control groups; ghrelinacyl, however, tended to track higher after the standardized breakfast in lactating women and was higher (p < 0.05) after the ad libitum lunch despite a 24% higher energy intake (p < 0.05). By 12 months, lactating women lost 5.3 ± 2.2 kg (n = 18), whereas control women (n = 15) remained weight stable (p = 0.019); fifteen of the lactating women returned to within ±2.0 kg of prepregnancy weight but three retained >6.0 kg. The retainers had greater (p < 0.05) postmeal ghrelin rebound responses following breakfast. Overall these studies do not support the hypothesis that appetite-regulating hormones are altered during lactation and associated with postpartum weight retention. Altered ghrelin responses, however, deserve further exploration. PMID:27313876

  3. Invasion of Normal Human Fibroblasts Induced by v-Fos Is Independent of Proliferation, Immortalization, and the Tumor Suppressors p16INK4a and p53

    PubMed Central

    Scott, Linda A.; Vass, J. Keith; Parkinson, E. Kenneth; Gillespie, David A. F.; Winnie, Joseph N.; Ozanne, Bradford W.

    2004-01-01

    Invasion is generally perceived to be a late event during the progression of human cancer, but to date there are no consistent reports of alterations specifically associated with malignant conversion. We provide evidence that the v-Fos oncogene induces changes in gene expression that render noninvasive normal human diploid fibroblasts highly invasive, without inducing changes in growth factor requirements or anchorage dependence for proliferation. Furthermore, v-Fos-stimulated invasion is independent of the pRb/p16INK4a and p53 tumor suppressor pathways and telomerase. We have performed microarray analysis using Affymetrix GeneChips, and the gene expression profile of v-Fos transformed cells supports its role in the regulation of invasion, independent from proliferation. We also demonstrate that invasion, but not proliferation, is dependent on the activity of the up-regulated epidermal growth factor receptor. Taken together, these results indicate that AP-1-directed invasion could precede deregulated proliferation during tumorigenesis and that sustained activation of AP-1 could be the epigenetic event required for conversion of a benign tumor into a malignant one, thereby explaining why many malignant human tumors present without an obvious premalignant hyperproliferative dysplastic lesion. PMID:14749371

  4. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway.

    PubMed

    Sun, Ning; Wang, Hui; Wang, Lin

    2016-09-01

    The present study aimed to investigate the protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase (iNOS) and inflammation in a mouse model of myocardial ischemia/reperfusion injury (MIRI). In addition, the study aimed to determine its underlying mechanisms. A mouse model of MIRI was used in vivo, in order to ascertain the protective effects of ghrelin on MIRI. Commercial kits were used to measure the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) in MIRI mice. Furthermore, Evan's Blue-triphenyltetrazolium chloride solution was used to analyze the protective effects of ghrelin against infarct size in MIRI mice. The underlying mechanisms were determined by measuring MIRI-induced tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, superoxide dismutase (SOD), glutathione (GSH), GSH-peroxidase (GSH‑PX), malondialdehyde (MDA) and caspase‑3/caspase‑9 activities, and iNOS, high mobility group box 1 (HMGB1), Toll‑like receptor 4 (TLR4) and nuclear factor (NF)‑κB protein expression in MIRI mice. The results demonstrated that MIRI led to an increase in infarct size; CK, LDH, TNF‑α, IL‑6, MDA, caspase‑3 and caspase-9 serum levels; and iNOS protein expression. MIRI resulted in inhibition of SOD, FSH and GSH‑PX levels. Conversely, these alterations were significantly inhibited following treatment with ghrelin. In addition, the protective effects of ghrelin against MIRI suppressed HMGB1, TLR4 and NF‑κB protein expression in MIRI mice. The present study revealed that ghrelin exerted protective effects against oxidative stress, iNOS and inflammation in MIRI mice via the HMGB1/TLR4/NF-κB pathway. PMID:27485280

  5. Ghrelin reduces hepatic mitochondrial fatty acid beta oxidation.

    PubMed

    Rigault, C; Le Borgne, F; Georges, B; Demarquoy, J

    2007-04-01

    Ghrelin is a 28-amino-acid peptide secreted during starvation by gastric cells. Ghrelin physiologically induces food intake and seems to alter lipid and glucid metabolism in several tissues such as adipose tissue and liver. Liver has a key position in lipid metabolism as it allows the metabolic orientation of fatty acids between oxidation and esterification. We investigated the effects of peripheral ghrelin administration on 2 crucial parameters of fatty acid oxidation: the levocarnitine (L-carnitine)-dependent entry of the fatty acids in the mitochondria and the mitochondrial fatty acid oxidation. Ghrelin was either given to rats prior to the hepatocyte preparation and culture or used to treat hepatocytes prepared from control animals. Direct incubation of ghrelin to raw hepatocytes did not induce any change in the studied parameters. In hepatocytes prepared from 3 nmol ghrelin-treated rats, a 44% reduction of the mitochondrial fatty acid oxidation while no alteration of the L-carnitine-related parameters were observed. These results suggested (a) that ghrelin has no direct effect on liver, and (b) that when administrated to a whole organism, ghrelin may alter the lipid metabolism and the energy balance through a marked decrease in liver fatty acid oxidation. PMID:17556859

  6. Expression and colocalization of NMDA receptor and FosB/ΔFosB in sensitive brain regions in rats after chronic morphine exposure.

    PubMed

    Zhang, Qiang; Liu, Qi; Li, Tongzhou; Liu, You; Wang, Lei; Zhang, Zhonghai; Liu, Hongzhi; Hu, Min; Qiao, Yuehua; Niu, Haichen

    2016-02-12

    Research in the last decade demonstrated that the NMDA receptor (NMDAR) has an important role in opiate-induced neural and behavioral plasticity. In addition, increased levels of FosB-like proteins (FosB/ΔFosB) were found to be related to morphine withdrawal behaviors. However, the relationship between NMDAR and FosB/ΔFosB in sensitive brain regions during morphine withdrawal is largely unknown. In this study, we aimed to investigate NMDAR dynamics and FosB/ΔFosB levels in multiple brain regions and whether they are related in sensitive brain regions during morphine abstinence. Quantitative immunohistochemistry was adopted to test NMDAR and FosB/ΔfosB levels during morphine withdrawal in rats. Increased NMDAR and FosB/ΔFosB levels were found in the nucleus accumbens core (AcbC), nucleus accumbens shell (AcbSh), central amygdaloid nucleuscapsular part (CeC), ventral tegmental area (VTA) and cingulate cortex (Cg). Double-immunofluorescence labeling indicated that NMDAR colocalized with Fos/ΔFosB in these five regions. These results suggest that multiple phenotypic regions are mediated by NMDAR and Fos/ΔFosB during morphine withdrawal, such as the motivational (AcbC, AcbSh), limbic (CeC, VTA) and executive (Cg) system pathways, and may be the primary targets of NMDAR and Fos/ΔfosB that impact morphine withdrawal behaviors. PMID:26655477

  7. Masculinization induced by neonatal exposure to PGE2 or estradiol alters c-fos induction by estrous odors in adult rats

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Zup, Susan L.; McCarthy, Margaret M.

    2009-01-01

    Processing of relevant olfactory and pheromonal cues has long been known as an important process necessary for social and sexual behavior in rodents. Several nuclei that receive input from the vomeronasal projection pathway are involved in sexual behavior and show changes in immediate early gene expression after stimulation with a variety of sex-related stimuli. The nuclei in this pathway are sexually dimorphic due to the early patterning events induced by estradiol derived from testicular androgens, which developmentally defeminize and masculinize the brain and adult sexual behavior. Masculinization can be induced independently of estradiol via prostaglandin-E2.(PGE2), and therefore assessed separately from defeminization. Here we examined the effects of brain defeminization and masculinization on neuronal response to sex-related odors using Fos, the protein product of the immediate early gene c-fos, as an indicator of activity. Female rat pups treated with a cyclooxygenase-2 inhibitor, to reduce PGE2, plus estradiol, estradiol alone, and PGE2 alone were exposed to estrous female odor as adults and the resulting Fos expression was examined in the medial amygdala, preoptic area, and ventromedial nucleus of the hypothalamus. Defeminized and/or masculinized females all showed patterns of Fos activity similar to control males and significantly different from control females. These results suggest that early exposure to estradiol and PGE2 do not affect olfaction in females, but switch the activity pattern of sex-related nuclei in females to resemble that of males following exposure to sexually-relevant cues. PMID:18976678

  8. β-glucan reduces exercise-induced stress through downregulation of c-Fos and c-Jun expression in the brains of exhausted rats.

    PubMed

    Hong, Heeok; Kim, Chang-Ju; Kim, Jae-Deung; Seo, Jin-Hee

    2014-05-01

    Immediate-early genes are involved in acute stress responses in the central nervous system. β-glucan stimulates innate immune defenses, exerts an anti-tumor response and increases resistance to a wide variety of types of infection. To date, the effect of β-glucan on the expression of immediate-early genes under stressful conditions has not been elucidated. In the present study, the effects of β-glucan on the expression of the oncogenes c-Fos and c-Jun in the hypothalamus, dentate gyrus and dorsal raphe in rats following exhaustive treadmill running were investigated. Male Sprague Dawley rats were randomly divided into five groups (n=10 in each group) as follows: Control, exercise, exercise and 50 mg/kg β-glucan treatment, exercise and 100 mg/kg β-glucan treatment, and exercise and 200 mg/kg β-glucan treatment. Rats in the β-glucan‑treated groups were administered β-glucan at the respective dose once per day for seven days. Rats in the exercise groups performed treadmill running once per day for six days. On the seventh day of the experiment, the time to exhaustion in response to treadmill running was determined for the exercise groups. The expression of c-Fos and c-Jun in the hypothalamus, dorsal raphe and hippocampus was enhanced by exhaustive treadmill running. Administration of β-glucan resulted in an increase in the time to exhaustion and the suppression of the exercise-induced increment in c-Fos and c-Jun expression. In conclusion, β-glucan may exert an alleviating effect on exercise-induced stress through the suppression of c-Fos and c-Jun expression in the brains of exhausted rats. PMID:24604295

  9. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala

    PubMed Central

    Jensen, Morten; Ratner, Cecilia; Rudenko, Olga; Christiansen, Søren H.; Skov, Louise J.; Hundahl, Cecilie; Woldbye, David P.D.

    2016-01-01

    Background: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has not previously been addressed directly. Methods: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim, and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor overexpression on anxiety-related behavior before and after acute stress and measured the modulation of serotonin receptor expression. Results: We found that ghrelin caused an anxiolytic-like effect in both the open field and elevated plus maze tests. Additionally, it attenuated air-puff–induced stress in the social environment, while the opposite was shown in ghrelin receptor deficient mice. Finally, we found that overexpression of the ghrelin receptor in the basolateral division of the amygdala caused an anxiolytic-like effect and decreased the 5HT1a receptor expression. Conclusions: Ghrelin administration and overexpression of the ghrelin receptor in the amygdala induces anxiolytic-like behavior. Since the ghrelin receptor has high constitutive activity, ligand-independent signaling in vivo may be important for the observed anxiolytic-like effects. The anxiolytic effects seem to be mediated independently from the HPA axis, potentially engaging the central serotonin system. PMID:26578081

  10. Effect of Amniotic-Fluid Ingestion on Vaginal-Cervical-Stimulation-Induced Fos Expression in Female Rats During Estrus

    PubMed Central

    Hoey, Robert F.; Hurley, Seth W.; Daniels, Derek; Kristal, Mark B.

    2011-01-01

    Placental Opioid-Enhancing Factor (POEF) is a substance found in amniotic fluid (AF) that, when ingested, potentiates opioid-mediated, but not non-opioid-mediated, hypoalgesia. Vaginal-cervical stimulation (VCS) produces a stimulus-bound, partially opioid-mediated hypoalgesia that previous research has shown to be potentiated by AF ingestion. To understand the mechanism of opioid enhancement by POEF we investigated the pattern of neural activation after a bout of VCS that produced hypoalgesia, with and without co-administration of AF. Specifically, virgin Long-Evans rats showing vaginal estrus were handled briefly (control) or received VCS (75 g pressure, 1 min), in a pattern that approximated early parturition rather than copulation, using a spring-loaded glass-rod probe. Rats were given an orogastric infusion (0.25 ml) of either AF or 0.9% saline resulting in four groups (VCS or handling; AF or saline). Rats were perfused 90 min after treatment and tissue was processed by immunohistochemistry for Fos. The number of Fos-immunoreactive cells was counted in structures previously shown to express Fos in response to VCS (the medial preoptic area, MPOA; the ventrolateral portion of the ventromedial hypothalamic nucleus, vlVMH; the arcuate nucleus, ARC). We found that this pattern of VCS did not produce a significant increase in Fos expression in the MPOA and vlVMH unless it was paired with AF. VCS produced a significant increase in Fos in the ARC. The interaction of AF and VCS on Fos expression in the MPOA suggests that POEF may enhance vaginal-cervical sensory input at parturition to facilitate sensitization of the MPOA, and presumably facilitate maternal-behavior onset. PMID:21184750

  11. Influence of ghrelin on interdigestive gastrointestinal motility in humans

    PubMed Central

    Tack, J; Depoortere, I; Bisschops, R; Delporte, C; Coulie, B; Meulemans, A; Janssens, J; Peeters, T

    2006-01-01

    Background Recent studies in animals have shown that ghrelin stimulates upper gastrointestinal motility through the vagus and enteric nervous system. The aim of the present study therefore was to simultaneously investigate the effect of administration of ghrelin on upper gastrointestinal motility and to elucidate its mode of action by measuring plasma levels of gastrointestinal hormones in humans. Materials and methods Nine healthy volunteers (four males; aged 22–35 years) underwent combined antroduodenal manometry and proximal stomach barostat study on two separate occasions at least one week apart. Twenty minutes after the occurrence of phase III of the migrating motor complex (MMC), saline or ghrelin 40 μg was administered intravenously over 30 minutes in a double blind, randomised, crossover fashion. Ghrelin, motilin, pancreatic polypeptide, glucagon, and somatostatin were measured by radioimmunoassay in blood samples obtained at 15–30 minute intervals. The influence of ghrelin or saline on MMC phases, hormone levels, and intraballoon volume was compared using paired t test, ANOVA, and χ2 testing. Results Spontaneous phase III occurred in all subjects, with a gastric origin in four. Administration of ghrelin induced a premature phase III (12 (3) minutes, p<0.001; gastric origin in nine, p<0.05), compared with saline (95 (13) minutes, gastric origin in two). Intraballoon volumes before infusion were similar (135 (13) v 119 (13) ml; NS) but ghrelin induced a longlasting decrease in intraballoon volume (184 (31) v 126 (21) ml in the first 60 minutes; p<0.05). Administration of ghrelin increased plasma levels of pancreatic polypeptide and ghrelin but motilin, somatostatin, and glucagon levels were not altered. Conclusions In humans, administration of ghrelin induces a premature gastric phase III of the MMC, which is not mediated through release of motilin. This is accompanied by prolonged increased tone of the proximal stomach. PMID:16216827

  12. Serum inflammatory markers in obese mice: Effect of ghrelin

    PubMed Central

    Khazaei, Majid; Tahergorabi, Zoya

    2015-01-01

    Background: Ghrelin is involved in modulation of food intake and energy homeostasis; however, it may play a role in cardiovascular system and atherosclerosis process. This study aimed to investigate the effect of ghrelin on serum inflammatory markers in control and obese mice. Materials and Methods: Ghrelin (100 mg/kg/day, twice daily) was administered interaperitoneally to control and diet-induced obese mice. After 10 days, blood samples were taken. Results: Results showed that administration of ghrelin did not change serum hsCRP level; however, it reduced serum IL-6 concentration in obese mice (P < 0.05). Conclusion: It seems that the exact role and mechanism of ghrelin in prevention or treatment of atherosclerosis needs more studies. PMID:26322293

  13. Hypovolemic hemorrhage induces Fos expression in the rat hypothalamus: Evidence for involvement of the lateral hypothalamus in the decompensatory phase of hemorrhage.

    PubMed

    Göktalay, G; Millington, W R

    2016-05-13

    This study tested the hypothesis that the hypothalamus participates in the decompensatory phase of hemorrhage by measuring Fos immunoreactivity and by inhibiting neuronal activity in selected hypothalamic nuclei with lidocaine or cobalt chloride. Previously, we reported that inactivation of the arcuate nucleus inhibited, but did not fully prevent, the fall in arterial pressure evoked by hypotensive hemorrhage. Here, we report that hemorrhage (2.2ml/100g body weight over 20min) induced Fos expression in a high percentage of cells in the paraventricular, supraoptic and arcuate nuclei of the hypothalamus as shown previously. Lower densities of Fos immunoreactive cells were also found in the medial preoptic area (mPOA), anterior hypothalamus, lateral hypothalamus (LH), dorsomedial hypothalamus, ventromedial hypothalamus (VMH) and posterior hypothalamus. Bilateral injection of lidocaine (2%; 0.1μl or 0.3μl) or cobalt chloride (5mM; 0.3μl) into the tuberal portion of the LH immediately before hemorrhage was initiated reduced the magnitude of hemorrhagic hypotension and bradycardia significantly. Lidocaine injection into the VMH also attenuated the fall in arterial pressure and heart rate evoked by hemorrhage although inactivation of the mPOA or rostral LH was ineffective. These findings indicate that hemorrhage activates neurons throughout much of the hypothalamus and that a relatively broad area of the hypothalamus, extending from the arcuate nucleus laterally through the caudal VMH and tuberal LH, plays an important role in the decompensatory phase of hemorrhage. PMID:26947128

  14. Regional brain c-fos activation associated with penile erection and other symptoms induced by the spider toxin Tx2-6.

    PubMed

    Troncone, Lanfranco R P; Ravelli, Katherine G; Magnoli, Fabio C; Lebrun, Ivo; Hipolide, Debora C; Raymond, Roger; Nobrega, José N

    2011-08-01

    Brain areas expressing c-fos messenger RNA were mapped by quantitative in situ hybridization after 1-2 h of intoxication with 10 μg/kg Tx2-6, a toxin obtained from the venom of the spider Phoneutria nigriventer. Relative to saline-treated controls, brains from toxin-treated animals showed pronounced c-fos activation in many brain areas, including the supraoptic nucleus, the paraventricular nucleus of the hypothalamus, the motor nucleus of the vagus, area postrema, paraventricular and paratenial nuclei of the thalamus, locus coeruleus, central amydaloid nucleus and the bed nucleus of the stria terminalis. The paraventricular hypothalamus and the bed nucleus of the stria terminalis have been implicated in erectile function in other studies. A possible role for central NO is considered. Acute stress also activates many brain areas activated by Tx2-6 as well as with NOstimulated Fos transcription. Brain areas that appear to be selectively activated by Tx2-6, include the paratenial and paraventricular thalamic nuclei, the bed nucleus of the stria terminalis and the area postrema and the dorsal motor n. of vagus in the medulla. However, direct injections of different doses of the toxin into the paraventricular hypothalamic n. failed to induce penile erection, arguing against CNS involvement in this particular effect. PMID:21684302

  15. Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation.

    PubMed

    Balaban, Carey D; Ogburn, Sarah W; Warshafsky, Susan G; Ahmed, Abdul; Yates, Bill J

    2014-01-01

    Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. PMID:24466215

  16. Molecular evolution of GPCRs: Ghrelin/ghrelin receptors.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2014-06-01

    After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates. PMID:24353285

  17. An Integrative Review on Role and Mechanisms of Ghrelin in Stress, Anxiety and Depression.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2016-01-01

    Ghrelin is orexigenic hormone primarily synthesized by endocrine X/A-like cells of gastric oxyntic mucosa to stimulate appetite and food intake along with regulation of growth hormone and insulin secretion; glucose and lipid metabolism; gastrointestinal motility; blood pressure, heart rate and neurogenesis. Furthermore, peripherally (after crossing the blood brain barrier) as well as centrally synthesized ghrelin (in the hypothalamus) regulates diverse functions of central nervous system including stress-associated behavioral functions. Exposure to stress alters the ghrelin levels and alteration in ghrelin levels significantly affects neuro-endocrinological parameters; metabolism-related physiology, behavior and mood. Studies have shown both anxiolytic and anxiogenic role of ghrelin suggesting its dual role in modulating anxiety-related behavior. However, it is proposed that increase in ghrelin levels during stress condition is an endogenous stress coping behavior and increased ghrelin levels may be required to prevent excessive anxiety. In preclinical and clinical studies, an elevation in ghrelin levels during depression has been correlated with their antidepressant activities. Ghrelin-induced modulation of stress and associated conditions has been linked to alteration in hypothalamic- pituitary-adrenal (HPA) axis; autonomic nervous system (mainly sympathetic nervous system and serotonergic neurotransmission. A reciprocal relationship has been reported between corticotropin-releasing hormone (CRH) and ghrelin as ghrelin increases the release of CRH, ACTH and corticosteroids; while CRH decreases the expression of ghrelin. Similarly, ghrelin increases the serotonin turnover and in turn, serotonin controls ghrelin signaling to modulate anxietyrelated behavior. The present review discusses the dual role of ghrelin in stress and related behavioral disorders along with possible mechanisms. PMID:25981609

  18. [Effects of ketamine and urethane on stimulation-induced c-fos expression in neurons of cat visual cortex].

    PubMed

    Wang, Ke; Zhu, Hui; Chen, Cui-Yun; Li, Peng; Jin, Cai-Hong; Wang, Zi-Lu; Jiang, San; Hua, Tian-Miao

    2013-12-01

    The effects of ketamine and urethane on neuronal activities remain in debate. As a member of immediate early genes family, the expression of c-fos is stimulation dependent and could be treated as an index to evaluate the strength of neural activities. In this study, SABC immunohistochemical techniques were applied to compare the c-fos expression in neurons of the primary visual cortex (V1) of cats and therefore, to evaluate the effects of acute anesthesia with ketamine HCl and uethane on inhibiting neural activities. Our results showed that compared with control cats, there were no significant differences with the average densities of Nissl-stained V1 neurons in each cortical layers of either urethane or ketamine anesthetized cats. In urethane anesthetized cats, neither the average densities nor the immunoreactive intensities of c-fos positive V1 neurons showed significant difference with that of control ones. However, both the average densities and immunoreactive intensities of c-fos positive V1 neurons in ketamine anesthetized cats decreased significantly compared with that of control and urethane anesthetized cats. These results suggested that ketamine has strong inhibitory effects on the activities of visual cortical neurons, whereas urethane did not. PMID:24415690

  19. Role of protein kinase D2 phosphorylation on Tyr in modulation by ghrelin of Helicobacter pylori-induced up-regulation in gastric mucosal matrix metalloproteinase-9 (MMP-9) secretion.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase associated with host reaction to microbial endotoxins and also characterizes gastric mucosal inflammatory response to H. pylori infection. Here, we report on the factors involved in gastric mucosal MMP-9 secretion in response to H. pylori LPS, and the effect of hormone, ghrelin. We show that both the LPS-elicited induction in MMP-9 secretion and also the modulatory influence of ghrelin occur at the level of MMP-9 processing between the endoplasmic reticulum (ER) and Golgi. Further, we demonstrate that the LPS effect is associated with up-regulation in the activation of Arf1, a small GTPase of the ADP-ribosylation factor family, and the recruitment and phosphorylation of protein kinase D2 (PKD2), involved in the secretory cargo processing in the Golgi. Moreover, we reveal that the LPS-induced up-regulation in MMP-9 secretion is reflected in a marked increase in PKCδ-mediated PKD2 phosphorylation on Ser, while the modulatory effect of ghrelin is manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr. Thus, our findings demonstrate the role of Arf1/PKD2 in mediation of H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 secretion and suggest the modulatory mechanism of ghrelin action. PMID:27209313

  20. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis.

    PubMed

    Bakiri, L; Reschke, M O; Gefroh, H A; Idarraga, M H; Polzer, K; Zenz, R; Schett, G; Wagner, E F

    2011-03-31

    Mice lacking c-fos develop osteopetrosis due to a block in osteoclast differentiation. Carboxy-terminal phosphorylation of Fos on serine 374 by ERK1/2 and serine 362 by RSK1/2 regulates Fos stability and transactivation potential in vitro. To assess the physiological relevance of Fos phosphorylation in vivo, serine 362 and/or serine 374 was replaced by alanine (Fos362A, Fos374A and FosAA) or by phospho-mimetic aspartic acid (FosDD). Homozygous mutants were healthy and skeletogenesis was largely unaffected. Fos C-terminal phosphorylation, predominantly on serine 374, was found important for osteoclast differentiation in vitro and affected lipopolysaccharide (LPS)-induced cytokine response in vitro and in vivo. Importantly, skin papilloma development was delayed in FosAA, Fos362A and Rsk2-deficient mice, accelerated in FosDD mice and unaffected in Fos374A mutants. Furthermore, the related Fos protein and putative RSK2 target Fra1 failed to substitute for Fos in papilloma development. This indicates that phosphorylation of serines 362 and 374 exerts context-dependent roles in modulating Fos activity in vivo. Inhibition of Fos C-terminal phosphorylation on serine 362 by targeting RSK2 might be of therapeutic relevance for skin tumours. PMID:21119595

  1. Ghrelin accelerates in vitro maturation of bovine oocytes.

    PubMed

    Dovolou, E; Messinis, I E; Periquesta, E; Dafopoulos, K; Gutierrez-Adan, A; Amiridis, G S

    2014-08-01

    Ghrelin, apart from its metabolic role, is nowadays considered as a basic regulator of reproductive functions of mammals, acting at central and gonadal levels. Here, we investigated for possible direct actions of ghrelin on in vitro maturation of bovine oocytes and for its effects on blastocyst yield and quality. In experiment 1, cumulus oocyte complexes (COCs) were matured in the presence of four different concentrations of ghrelin (0, 200, 800 and 2000 pg/ml). In vitro fertilization and embryo culture were carried out in the absence of ghrelin, and blastocyst formation rates were examined on days 7, 8 and 9. In experiment 2, only the 800 pg/ml dose of ghrelin was used. Four groups of COCs were matured for 18 or 24 h (C18, Ghr18, C24 and Ghr24), and subsequently, they were examined for oocyte nuclear maturation and cumulus layer expansion; blastocysts were produced as in experiment 1. The relative mRNA abundance of various genes related to metabolism, oxidation, developmental competence and apoptosis was examined in snap-frozen cumulus cells, oocytes and day-7 blastocysts. In experiment 1, ghrelin significantly suppressed blastocyst formation rates. In experiment 2, more ghrelin-treated oocytes matured for 18 h reached MII compared with controls, while no difference was observed when maturation lasted for 24 h. At 18 and 24 h, the cumulus layer was more expanded in ghrelin-treated COCs than in the controls. The blastocyst formation rate was higher in Ghr18 (27.7 ± 2.4%) compared with Ghr24 (17.5 ± 2.4%). Differences were detected in various genes' expression, indicating that in the presence of ghrelin, incubation of COCs for 24 h caused over-maturation (induced ageing) of oocytes, but formed blastocysts had a higher hatching rate compared with the controls. We infer that ghrelin exerts a specific and direct role on the oocyte, accelerating its maturational process. PMID:24889518

  2. Autoregulation of fos: the dyad symmetry element as the major target of repression.

    PubMed Central

    König, H; Ponta, H; Rahmsdorf, U; Büscher, M; Schönthal, A; Rahmsdorf, H J; Herrlich, P

    1989-01-01

    Fos and Jun co-operatively repress the fos promoter. Removal of all putative Fos/Jun binding sites from the fos promoter neither obliterates the repression by Fos/Jun in transient cotransfection experiments in NIH3T3 cells nor the turn-off kinetics of serum-induced fos expression in stably transfected NIH3T3 cells. The dyad symmetry element (DSE) suffices to subject a promoter to this type of repression. However, one of the putative Fos/Jun binding sites (-292 to -299 and thus located immediately adjacent to the DSE), determines the very low level of basal expression. Images PMID:2511006

  3. CRF Type 2 Receptors Mediate the Metabolic Effects of Ghrelin in C2C12 cells

    PubMed Central

    Gershon, Eran; Vale, Wylie W

    2014-01-01

    Objective Ghrelin is known to regulate appetite control and cellular metabolism. The Corticotropin-Releasing Factor (CRF) family is also known to regulate energy balance. In this study, we investigated the links between ghrelin and the CRF family in C2C12 cells, a mouse myoblast cell line. Design and methods C2C12 cells were treated with ghrelin in the presence or absence of CRF receptor antagonists and then subjected to different metabolic analyses. Results Ghrelin enhanced glucose uptake by C2C12 cells, induced GLUT4 translocation to the cell surface and decreased RBP4 expression. A CRF-R2 selective antagonist, anti-sauvagine-30, blocked ghrelin-induced glucose uptake, Ghrelin upregulated CRF-R2 but not CRF-R1 levels. Moreover, ghrelin-treated C2C12 cells displayed a cAMP and pERK activation in response to Ucn3, a CRF-R2 specific ligand, but not in response to CRF or stressin, CRF-R1 specific ligands. Ghrelin also induced UCP2 and UCP3 expression, which were blocked by anti-sauvagine-30. Ghrelin did not induce fatty acids uptake by C2C12 cells or ACC expression. Even though C2C12 cells clearly exhibited responses to ghrelin, the known ghrelin receptor, GHSR1a, was not detectable in C2C12 cells. Conclusion Our results suggest that, ghrelin plays a role in regulating muscle glucose and, raise the possibility that suppression of the CRF-R2 pathway might provide benefits in high ghrelin states. PMID:23804489

  4. Cyclin dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway

    PubMed Central

    Peng, Cong; Zeng, Weiqi; Su, Juan; Kuang, Yehong; He, Yijin; Zhao, Shuang; Zhang, Jianglin; Ma, Weiya; Bode, Ann M.; Dong, Zigang; Chen, Xiang

    2015-01-01

    Cyclin dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci formation and knocking down CDK2 expression dramatically decreases EGF-induced cell transformation mediated through the down-regulation of c-fos expression. Interestingly, CDK2 directly phosphorylates ELK4 at Thr194 and Ser387 and regulates ELK4 transcriptional activity, which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is over-expressed in melanoma and knocking down ELK4 or CDK2 expression significantly attenuated the malignant phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-induced cell transformation and the associated signal transduction pathways. This indicates that CDK2 is a useful molecular target for chemoprevention and therapy against skin cancer. PMID:26028036

  5. DC electrical field-induced c-fos expression and growth stimulation in multicellular prostate cancer spheroids.

    PubMed Central

    Sauer, H.; Hescheler, J.; Reis, D.; Diedershagen, H.; Niedermeier, W.; Wartenberg, M.

    1997-01-01

    The effects of electrical direct current (DC) field pulses on c-fos expression, growth kinetics and vitality patterns of multicellular tumour spheroids (MCSs) were studied. Monitoring the membrane potential of MCSs by di-8-ANNEPS staining and confocal microscopy during DC electrical field treatment revealed a hyperpolarization at the anode-facing side and a depolarization at the cathode-facing side. When a single 500 V m(-1) electrical field pulse with a duration of 60 s was applied to MCSs (150-350 microm in diameter) an enhancement of the growth kinetics within a period of 6 days post pulse was observed. Whereas the volume doubling time amounted to 4-5 days in control samples, it was reduced to 1-2 days in electropulsed MCSs. At day 6 post pulse the diameter of the necrotic core was significantly smaller than the control. The critical diameter for the first appearance of central necrosis amounted to 350 +/- 50 microm in the control and 450 +/- 50 microm in the electropulsed MCSs. Coincidentally, the proliferating rim was increased to 107 +/- 11 microm in electropulsed MCSs as compared with 60 +/- 6 microm in the control. The growth stimulation may be mediated by the proto-oncogene c-fos as its expression increased by a factor of 2.5 within 2 h post pulse. c-fos expression declined towards control values within 8 h post pulse. Images Figure 2 Figure 3 Figure 7 PMID:9166941

  6. Abdominal surgery inhibits circulating acyl ghrelin and ghrelin-O-acyltransferase levels in rats: role of the somatostatin receptor subtype 2

    PubMed Central

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Shaikh, Almaas; Lambrecht, Nils W. G.; Rivier, Jean

    2011-01-01

    Clinical studies are evaluating the efficacy of synthetic ghrelin agonists in postoperative ileus management. However, the control of ghrelin secretion under conditions of postoperative gastric ileus is largely unknown. Peripheral somatostatin inhibits ghrelin secretion in animals and humans. We investigated the time course of ghrelin changes postsurgery in fasted rats and whether somatostatin receptor subtype 2 (sst2) signaling is involved. Abdominal surgery (laparotomy and 1-min cecal palpation) induced a rapid and long-lasting decrease in plasma acyl ghrelin levels as shown by the 64, 67, and 59% reduction at 0.5, 2, and 5 h postsurgery, respectively, compared with sham (anesthesia alone for 10 min, P < 0.05). Levels were partly recovered at 7 h and fully restored at 24 h. The percentage of acyl ghrelin reduction was significantly higher than that of desacyl ghrelin at 2 h postsurgery and not at any other time point. This was associated with a 48 and 23% decrease in gastric and plasma ghrelin-O-acyltransferase protein concentrations, respectively (P < 0.001). Ghrelin-positive cells in the oxyntic mucosa expressed sst2a receptor and the sst2 agonist S-346-011 inhibited fasting acyl ghrelin levels by 64 and 77% at 0.5 and 2 h, respectively. The sst2 antagonist S-406-028 prevented the abdominal surgery-induced decreased circulating acyl ghrelin but not the delayed gastric emptying assessed 0.5 h postinjection. These data show that activation of sst2 receptor located on gastric X/A-like cells plays a key role in the rapid inhibition of circulating acyl ghrelin induced by abdominal surgery while not being primarily involved in the early phase of postoperative gastric ileus. PMID:21636529

  7. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease

    PubMed Central

    Karasawa, H.; Pietra, C.; Giuliano, C.; Garcia-Rubio, S.; Xu, X.; Yakabi, S.; Taché, Y.; Wang, L.

    2015-01-01

    Background Constipation and L-dopa-induced gastric dysmotility are common gastrointestinal (GI) symptoms in Parkinson’s disease (PD). We investigate the novel ghrelin agonist, HM01 influence on GI motor dysfunctions in 6-hydroxydopamine (6-OHDA) rats. Methods HM01 pharmacological profiles were determined in vitro and in vivo in rats. We assessed changes in fecal output and water content, and gastric emptying (GE) in 6-OHDA rats treated or not with orogastric (og) HM01 and L-dopa/carbidopa (LD/CD, 20/2 mg kg−1). Fos immunoreactivity (ir) cells in specific brain and lumbosacral spinal cord were quantified. Key results HM01 displayed a high binding affinity to ghrelin receptor (Ki: 1.42 ± 0.36 nM), 4.3±1.0 h half-life and high brain/plasma ratio. 6-OHDA rats had reduced daily fecal output (22%) and water intake (23%) compared to controls. HM01 (3 and 10 mg kg−1) similarly reversed the decreased 4-h fecal weight and water content in 6-OHDA rats. Basal GE was not modified in 6-OHDA rats, however, LD/CD (once or daily for 8 days) delayed GE in 6-OHDA and control rats that was prevented by HM01 (3 mg kg−1 acute or daily before LD/CD). HM01 increased Fos-ir cell number in the area postrema, arcuate nucleus, nucleus tractus solitarius and lumbosacral intermediolateral column of 6-OHDA rats where 6-OHDA had a lowering effect compared to controls. Conclusions & Inferences 6-OHDA rats display constipation- and adipsia-like features of PD and L-dopa-inhibited GE. The new orally active ghrelin agonist, HM01 crosses the blood brain barrier and alleviates these alterations suggesting a potential benefit for PD with GI disorders. PMID:25327342

  8. Novel expression and functional role of ghrelin in chicken ovary.

    PubMed

    Sirotkin, A V; Grossmann, R; María-Peon, M T; Roa, J; Tena-Sempere, M; Klein, S

    2006-09-26

    Ghrelin has recently emerged as pleiotropic regulator of a wide array of endocrine and non-endocrine functions. The former likely includes the control of gonadal function, as expression of ghrelin and its putative receptor, the GH secretagogue receptor type 1a (GHS-R1a), has been described in mammalian gonads, and direct effects of ghrelin in the control of testicular secretion and cell proliferation have been reported. Yet, the expression and/or functional role of ghrelin in gonads from non-mammalian species remain to be analyzed. The present study aimed to evaluate the expression of ghrelin and GHS-R genes in the chicken ovary, and to assess the potential involvement of ghrelin in the direct control of chick ovarian function. To this end, RT-PCR assays for ghrelin and GHS-R1a mRNAs were performed in ovarian tissue, and cultures of chicken ovarian cells were conducted in the presence of increasing doses (1, 10 or 100 ng/ml) of the ghrelin analog, ghrelin 1-18. Our results demonstrate that both ghrelin and GHS-R1a mRNAs are expressed in chick ovarian tissue. Moreover, challenge of ovarian granulosa cells with ghrelin 1-18 was able to induce markers of proliferation (i.e. expression of both PCNA and cyclin), and to modulate markers of apoptosis (i.e. decreased expression of caspase-3, bax, bcl-2 and TUNEL-positive cells). Moreover, ghrelin 1-18 increased the expression of PCNA, cyclin, bax and p53 in cultures of ovarian follicular fragments, where it also stimulated the release of progesterone, estradiol, arginine-vasotocin (AVT) and IGF-I, but not of testosterone. In conclusion, our study provides novel evidence for the gonadal expression of the genes encoding ghrelin and its cognate receptor in a non-mammalian species, i.e. the chicken ovary, and unravels the potential involvement of this newly discovered molecule in the control of key gonadal functions in the chick, such as proliferation, apoptosis, and hormone release. PMID:16891055

  9. Ghrelin maintains the cardiovascular stability in severe sepsis

    PubMed Central

    Wu, Rongqian; Chaung, Wayne W.; Dong, Weifeng; Ji, Youxin; Barrera, Rafael; Nicastro, Jeffrey; Molmenti, Ernesto P.; Coppa, Gene F.; Wang, Ping

    2011-01-01

    Background Cardiovascular dysfunction, characterized by reduced cardiac contractility and depressed endothelium-dependent vascular relaxation, is common in severe sepsis. Although it is known that ghrelin produces beneficial effects following various adverse circulatory conditions, it remains unknown whether ghrelin increases cardiac contractility and improves vascular responsiveness to vasoactive agents in severe sepsis. Methods Male adult rats were subjected to sepsis by cecal ligation and puncture (CLP). At 5 h after CLP, a bolus intravenous injection of 2 nmol ghrelin was followed by a continuous infusion of 12 nmol ghrelin via a primed mini-pump over 15 h. At 20 h after CLP (i.e., severe sepsis), the maximal rates of ventricular pressure increase (+dP/dtmax) and decrease (−dP/dtmax) were determined in vivo. In additional groups of animals, the thoracic aortae were isolated at 20 h after CLP. The aortae were cut into rings, and placed in organ chambers. Norepinephrine (NE) was used to induce vascular contraction. Dose responses for an endothelium-dependent vasodilator, acetylcholine (ACh), and an endothelium-independent vasodilator, nitroglycerine (NTG) were carried out. Results +dP/dtmax and −dP/dtmax decreased significantly at 20 h after CLP. Treatment with ghrelin significantly increased +dP/dtmax and −dP/dtmax by 36% (P<0.05) and 35% (P<0.05), respectively. Moreover, NE-induced vascular contraction and endothelium-dependent (ACh-induced) vascular relaxation decreased significantly at 20 h after CLP. Administration of ghrelin, however, increased NE-induced vascular contraction and ACh-induced vascular relaxation. In contrast, no significant reduction in NTG-induced vascular relaxation was seen in rats with severe sepsis irrespective of ghrelin treatment. Conclusions Ghrelin may be further developed as a useful agent for maintaining cardiovascular stability in severe sepsis. PMID:22459289

  10. Current and potential roles of ghrelin in clinical practice.

    PubMed

    Angelidis, G; Valotassiou, V; Georgoulias, P

    2010-12-01

    Ghrelin is a novel GH-releasing peptide, which has been identified as an endogenous ligand for GH-secretagogue receptor. Ghrelin is mainly secreted by the stomach and plays a critical role in a variety of physiological processes including endocrine, metabolic, cardiovascular, immunological, and other actions. Ghrelin stimulates food intake via hypothalamic neurons and causes a positive energy balance and body weight gain by decreasing fat utilization and promoting adiposity. Given the multiple effects of ghrelin, its potential clinical applications have been evaluated in various conditions. Preliminary trials have shown that it may prove valuable in the management of disease-induced cachexia. Ghrelin may improve the wasting syndrome through GH-dependent or GH-independent effects. Moreover, ghrelin may play a role in the management of disorders of gut motility and obesity. Finally, other potential clinical applications of ghrelin include the treatment of patients with diabetes mellitus, infections, rheumatological diseases or GH deficiency and the diagnosis of this hormonal disorder. PMID:21293171

  11. Ghrelin action in the brain controls adipocyte metabolism

    PubMed Central

    Theander-Carrillo, Claudia; Wiedmer, Petra; Cettour-Rose, Philippe; Nogueiras, Ruben; Perez-Tilve, Diego; Pfluger, Paul; Castaneda, Tamara R.; Muzzin, Patrick; Schürmann, Annette; Szanto, Ildiko; Tschöp, Matthias H.; Rohner-Jeanrenaud, Françoise

    2006-01-01

    Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage–promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase–1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase–1α, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue. PMID:16767221

  12. Inhibition of AP-1 by Sulforaphane Involves Interaction with Cysteine in the cFos DNA-Binding Domain; Implications for Chemoprevention of UVB-Induced Skin Cancer

    PubMed Central

    Dickinson, Sally E.; Melton, Tania F.; Olson, Erik R.; Zhang, Jian; Saboda, Kathylynn; Bowden, G. Timothy

    2009-01-01

    Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables which has been linked to decreased risk of certain cancers. Although the role of SFN in the induction of the transcription factor Nrf2 has been studied extensively, there is also evidence that inhibition of the transcription factor AP-1 may contribute to the chemopreventive properties of this compound. In this study, we show for the first time that SFN is effective at reducing the multiplicity and tumor burden of UVB-induced squamous cell carcinomas (SCCs) in a mouse model utilizing co-treatment with the compound and the carcinogen. We also show that SFN pretreatment is able to reduce the activity of AP-1 luciferase in the skin of transgenic mice after UVB. Chromatin immunoprecipitation analysis verified that a main constituent of the AP-1 dimer, cFos, is inhibited from binding to the AP-1 DNA binding site by SFN. EMSA analysis of nuclear proteins also show that SFN and diamide, both known to react with cysteine amino acids, are effective at inhibiting AP-1 from binding to its response element. Using truncated recombinant cFos and cJun we show that mutation of critical cysteines in the DNA binding domain of these proteins (Cys154 in cFos and Cys272 in cJun) results in loss of sensitivity to both SFN and diamide in EMSA analysis. Together, these data indicate that inhibition of AP-1 activity may be an important molecular mechanism in chemoprevention of SCC by SFN. PMID:19671797

  13. Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems.

    PubMed

    Aldavert-Vera, Laura; Huguet, Gemma; Costa-Miserachs, David; Ortiz, Sandra Pena de; Kádár, Elisabeth; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2013-08-01

    Intracranial self-stimulation (ICSS), a special form of deep brain stimulation in which subjects self-administered electrical stimulation in brain reward areas as the lateral hypothalamus, facilitates learning and memory in a wide variety of tasks. Assuming that ICSS improves learning and memory increasing the activation of memory-related brain areas, the present work examined whether rats receiving an ICSS treatment immediately after the acquisition session of a two-way active avoidance conditioning (TWAA) show both an improved retention and a pattern of increased c-Fos and Nurr1 protein expression in the amygdala, hippocampus, dorsal striatum and/or lateral hypothalamus. The response of both activity-induced IEGs to ICSS was examined not only as markers of neural activation, but because of their reported role in the neural plasticity occurring during learning and memory formation. Results showed that the TWAA conditioning alone increased the expression of the two analysed IEGs in several hippocampal areas, and TWAA retention increased Nurr1 expression in amygdala. ICSS treatment increased the number of c-Fos and Nurr1 positive cells in almost all the brain regions studied when it was measured 70min, but not 48h, after the stimulation. Post-training ICSS treatment, as expected, facilitated the 48h retention of the conditioning. It is noteworthy that in CA3 conditioning and ICSS separately increased c-Fos expression, but this increasing was greater when both, conditioning and ICSS, were combined. Present results suggest that rapid and transient increased expression of these two synaptic plasticity and memory related IEGs in some hippocampal areas, such as CA3, could mediate the facilitative effects of ICSS on learning and memory consolidation. PMID:23624190

  14. Rats showing low and high sensitization of frequency-modulated 50-kHz vocalization response to amphetamine differ in amphetamine-induced brain Fos expression.

    PubMed

    Kaniuga, Ewelina; Taracha, Ewa; Stępień, Tomasz; Wierzba-Bobrowicz, Teresa; Płaźnik, Adam; Chrapusta, Stanisław J

    2016-10-01

    Individuals predisposed to addiction constitute a minority of drug users, in both humans and animal models of the disorder, but there are no established characteristics that would allow identifying them beforehand. Our studies demonstrate that sensitization of rat 50-kHz ultrasonic vocalization (USV) response to amphetamine shows marked inter-individual diversity but substantial intra-individual stability. Low sensitization of the response shows relevance to the acquisition of self-administration of this drug and hence might be of predictive value regarding the risk of addiction. We compared amphetamine-induced Fos expression in 16 brain regions considered important for the development of addiction between rats preselected for low and high sensitization of the response and next given nine daily amphetamine doses followed by a 2-week withdrawal and final amphetamine challenge. Ventral tegmental area and nucleus accumbens shell Fos-positive nuclei counts correlated positively with 50-kHz USV response to the challenge in high-sensitized rats. Compared to those in amphetamine-untreated controls, Fos-positive nuclei counts were significantly and markedly (2-6 times) higher in 12 regions in high-sensitized rats, whereas in low-sensitized rats they were significantly higher in the cingulate cortex and dorsomedial striatum only. The difference in the counts between the latter two subsets reached statistical significance in dorsomedial and dorsolateral striatum and three out of four cortical regions studied. The fact that the diversification was most distinct in dorsal striatum that plays a critical role in the transition from controlled to compulsive drug intake suggests that the USV-based categorization may be related to divergent vulnerability of rats to AMPH addiction. PMID:27507424

  15. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation

    PubMed Central

    Wang, Jian-Da; Cao, Yu-Lan; Li, Qian; Yang, Ya-Ping; Jin, Mengmeng; Chen, Dong; Wang, Fen; Wang, Guang-Hui; Qin, Zheng-Hong; Hu, Li-Fang; Liu, Chun-Feng

    2015-01-01

    Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD. PMID:26649942

  16. Active ghrelin and the postpartum.

    PubMed

    Baker, Jessica H; Pedersen, Cort; Leserman, Jane; Brownley, Kimberly A

    2016-06-01

    Postpartum depression (PPD) occurs in 10-15 % of women. The appetite hormone ghrelin, which fluctuates during pregnancy, is associated with depression in nonpregnant samples. Here, we examine the association between PPD and active ghrelin from pregnancy to postpartum. We additionally examine whether ghrelin changes from pregnancy to postpartum and differs between breastfeeding and non-breastfeeding women. Sixty women who participated in a survey examining PPD and had information in regard to ghrelin concentrations were included in the study. The Edinburgh Postnatal Depression Scale was used to assess symptoms of PPD. Raw ghrelin levels and ghrelin levels adjusted for creatinine were included as outcomes. Women screening positive for PPD at 12 weeks postpartum had higher pregnancy ghrelin concentrations. Ghrelin concentrations significantly decreased from pregnancy to 6 weeks postpartum and this change differed based on pregnancy depression status. Finally, ghrelin levels were lower in women who breastfed compared with women who were bottle-feeding. No significant findings remained once ghrelin levels were adjusted for creatinine. Although results do not suggest an association between PPD and ghrelin after adjusting for creatinine, future research should continue to explore this possibility extending further across the postpartum period with larger sample sizes. PMID:26424410

  17. Hesperidin potentiates ghrelin signaling.

    PubMed

    Suzuki, Hajime; Asakawa, Akihiro; Kawamura, Namiko; Yagi, Takakazu; Inui, Akio

    2014-01-01

    Hesperidin, a flavanone glycoside consisting of the flavone hesperitin bound to the disaccharide rutinose, is found in highly nutritious foods, such as oranges, tangelos, tangerines, grapefruits, and other citrus fruits. Exogenous hesperidin has been shown to influence a wide variety of biological functions, including induction of apoptosis and suppression of proliferation in human cancer cells; inhibition of tumor development in various tissues; and expression of antibacterial, antiviral, and antifungal activities. Previous in vivo studies have revealed that hesperidin may play a role in ghrelin secretion from the stomach through antagonism of the serotonin receptors. Because ghrelin appears to be involved in the pathophysiological mechanisms of several human disorders, hesperidin could be a promising target for the treatment of various diseases. This review addresses studies focused on the orexigenic and prokinetic activities of hesperidin in the context of ghrelin secretion. This article also presents some promising patents of hesperidin. PMID:25176345

  18. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382.

    PubMed

    van Nieuwenhuijzen, P S; McGregor, I S; Chebib, M; Hunt, G E

    2014-09-26

    γ-Hydroxybutyrate (GHB) has a complex array of neural actions that include effects on its own high-affinity GHB receptor, the release of neuroactive steroids, and agonist actions at GABAA and GABAB receptors. We previously reported partial overlap in the c-Fos expression patterns produced by GHB and the GABAB agonist, baclofen in rats. The present study extends these earlier findings by examining the extent to which GHB Fos expression and behavioral sedation are prevented by (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), a GABAB antagonist, and NCS-382, a putative antagonist at the high-affinity GHB receptor. We also compare Fos expression caused by GHB and its precursor γ-butyrolactone (GBL), which is a pro-drug for GHB but lacks the high sodium content of the parent GHB molecule. Both GHB (1,000 mg/kg) and GBL (600 mg/kg) induced rapid sedation in rats that lasted over 90 min and caused similar Fos expression patterns, albeit with GBL causing greater activation of the nucleus accumbens (core and shell) and dentate gyrus (granular layer). Pretreatment with SCH 50911 (100mg/kg) partly reversed the sedative effects of GHB and significantly reduced GHB-induced Fos expression in only four regions: the tenia tecta, lateral habenula, dorsal raphe and laterodorsal tegmental nucleus. NCS-382 (50mg/kg) had no effect on GHB-induced sedation or Fos expression. When given alone, both NCS-382 and SCH 50911 increased Fos expression in the bed nucleus of the stria terminalis, central amygdala, parasubthalamic nucleus and nucleus of the solitary tract. SCH 50911 alone affected the Islands of Calleja and the medial, central and paraventricular thalamic nuclei. Overall, this study shows a surprising lack of reversal of GHB-induced Fos expression by two relevant antagonists, both of which have marked intrinsic actions. This may reflect the limited doses tested but also suggests that GHB Fos expression reflects mechanisms independent of GHB and GABAB receptors. PMID

  19. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2007-07-01

    Ghrelin is well known for its feeding and growth hormone-releasing actions. It may also be involved in sleep regulation; intracerebroventricular administration and hypothalamic microinjections of ghrelin stimulate wakefulness in rats. Hypothalamic ghrelin, together with neuropeptide Y and orexin form a food intake-regulatory circuit. We hypothesized that this circuit also promotes arousal. To further investigate the role of ghrelin in the regulation of sleep-wakefulness, we characterized spontaneous and homeostatic sleep regulation in ghrelin knockout (KO) and wild-type (WT) mice. Both groups of mice exhibited similar diurnal rhythms with more sleep and less wakefulness during the light period. In ghrelin KO mice, spontaneous wakefulness and rapid-eye-movement sleep (REMS) were slightly elevated, and non-rapid-eye-movement sleep (NREMS) was reduced. KO mice had more fragmented NREMS than WT mice, as indicated by the shorter and greater number of NREMS episodes. Six hours of sleep deprivation induced rebound increases in NREMS and REMS and biphasic changes in electroencephalographic slow-wave activity (EEG SWA) in both genotypes. Ghrelin KO mice recovered from NREMS and REMS loss faster, and the delayed reduction in EEG SWA, occurring after sleep loss-enhanced increases in EEG SWA, was shorter-lasting compared with WT mice. These findings suggest that the basic sleep-wake regulatory mechanisms in ghrelin KO mice are not impaired and they are able to mount adequate rebound sleep in response to a homeostatic challenge. It is possible that redundancy in the arousal systems of the brain or activation of compensatory mechanisms during development allow for normal sleep-wake regulation in ghrelin KO mice. PMID:17409264

  20. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  1. Novel cues reinstate cocaine-seeking behavior and induce Fos protein expression as effectively as conditioned cues.

    PubMed

    Bastle, Ryan M; Kufahl, Peter R; Turk, Mari N; Weber, Suzanne M; Pentkowski, Nathan S; Thiel, Kenneth J; Neisewander, Janet L

    2012-08-01

    Cue reinstatement of extinguished cocaine-seeking behavior is a widely used model of cue-elicited craving in abstinent human addicts. This study examined Fos protein expression in response to cocaine cues or to novel cues as a control for activation produced by test novelty. Rats were trained to self-administer cocaine paired with either a light or a tone cue, or received yoked saline and cue presentations, and then underwent daily extinction training. They were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either the cocaine-paired cue or a novel cue (that is, tone for those trained with a light or vice versa). Surprisingly, conditioned and novel cues both reinstated responding and increased Fos similarly in most brain regions. Exceptions included the anterior cingulate, which was sensitive to test cue modality in saline controls and the dorsomedial caudate-putamen, where Fos was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel, and not a familiar, light or tone. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a reinforcement history with cocaine or sucrose, and that both types of cues activate similar brain circuits. Several explanations as to why converging processes may drive drug and novel cue reinforcement and seeking behavior are discussed. PMID:22534624

  2. Novel Cues Reinstate Cocaine-Seeking Behavior and Induce Fos Protein Expression as Effectively as Conditioned Cues

    PubMed Central

    Bastle, Ryan M; Kufahl, Peter R; Turk, Mari N; Weber, Suzanne M; Pentkowski, Nathan S; Thiel, Kenneth J; Neisewander, Janet L

    2012-01-01

    Cue reinstatement of extinguished cocaine-seeking behavior is a widely used model of cue-elicited craving in abstinent human addicts. This study examined Fos protein expression in response to cocaine cues or to novel cues as a control for activation produced by test novelty. Rats were trained to self-administer cocaine paired with either a light or a tone cue, or received yoked saline and cue presentations, and then underwent daily extinction training. They were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either the cocaine-paired cue or a novel cue (that is, tone for those trained with a light or vice versa). Surprisingly, conditioned and novel cues both reinstated responding and increased Fos similarly in most brain regions. Exceptions included the anterior cingulate, which was sensitive to test cue modality in saline controls and the dorsomedial caudate-putamen, where Fos was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel, and not a familiar, light or tone. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a reinforcement history with cocaine or sucrose, and that both types of cues activate similar brain circuits. Several explanations as to why converging processes may drive drug and novel cue reinforcement and seeking behavior are discussed. PMID:22534624

  3. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    SciTech Connect

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S. . E-mail: atarnawski@yahoo.com

    2007-02-09

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling.

  4. DNA bending is induced by a transcription factor that interacts with the human c-FOS and alpha-actin promoters.

    PubMed Central

    Gustafson, T A; Taylor, A; Kedes, L

    1989-01-01

    Conserved sequence elements in the human cardiac and skeletal alpha-actin promoters that contain the CC(A + T-rich)6GG motif have been shown to regulate transcription of these genes. A similar sequence is found in the serum response element of the human c-FOS gene. In this study, we demonstrate that indistinguishable proteins bind to each of five CC(A + T-rich)6GG elements examined in the human cardiac and skeletal alpha-actin promoters and the c-FOS serum response element. Using electrophoretic techniques, we show that these factors induce a stable bend in the DNA upon binding, and the bend center is shown to coincide with the CC(A + T-rich)6GG element. In addition, the ability to bend DNA is retained by a small proteolytic fragment of the protein, suggesting that the DNA-binding domain of the protein is resistant to proteases and is sufficient to bend DNA. Images PMID:2494661

  5. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy

    SciTech Connect

    Inoue, Yoshiyuki; Nakahara, Keiko; Kangawa, Kenji; Murakami, Noboru

    2010-03-12

    Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.

  6. Ghrelin Influences Novelty Seeking Behavior in Rodents and Men

    PubMed Central

    Hansson, Caroline; Shirazi, Rozita H.; Näslund, Jakob; Vogel, Heike; Neuber, Corinna; Holm, Göran; Anckarsäter, Henrik; Dickson, Suzanne L.; Eriksson, Elias; Skibicka, Karolina P.

    2012-01-01

    Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents. PMID:23227170

  7. Correlation of ghrelin concentration and ghrelin, ghrelin-O-acetyltransferase (GOAT) and growth hormone secretagogue receptor 1a mRNAs expression in the proventriculus and brain of the growing chicken.

    PubMed

    Kitazawa, Takio; Hiraga, Takeo; Teraoka, Hiroki; Yaosaka, Noriko; Kaiya, Hiroyuki

    2015-01-01

    To determine mechanisms for age-related decrease of GHS-R1a expression in the chicken proventriculus, changes in mRNA expression of ghrelin and ghrelin-O-acetyltransferase (GOAT) as well as ghrelin concentrations in the proventriculus and plasma were examined in growing chickens. Changes in expression levels of ghrelin, GOAT and GHS-R1a mRNAs were also examined in different brain regions (pituitary, hypothalamus, thalamus, cerebellum, cerebral cortex, olfactory bulb, midbrain and medulla oblongata). Ghrelin concentrations in the proventriculus and plasma increased with aging and reached plateaus at 30-50 days after hatching. High level of ghrelin mRNA decreased at 3 days after hatching, and it became stable at half of the initial level. Expression levels of GHS-R1a and GOAT decreased 3 or 5 days after hatching and became stable at low levels. Significant negative correlations were found between plasma ghrelin and mRNA levels of GOAT and GHS-R1a. Expression levels of ghrelin mRNA were different in the brain regions, but a significant change was not seen with aging. GHS-R1a expression was detected in all brain regions, and age-dependent changes were observed in the pituitary and cerebellum. Different from the proventriculus, the expression of GOAT in the brain increased or did not change with aging. These results suggest that decreased GHS-R1a and GOAT mRNA expression in the proventriculus is due to endogenous ghrelin-induced down-regulation. Expression levels of ghrelin, GOAT and GHS-R1a in the brain were independently regulated from that in the proventriculus, and age-related and region-dependent regulation pattern suggests a local effect of ghrelin system in chicken brain. PMID:25435492

  8. Motilin Stimulates Gastric Acid Secretion in Coordination with Ghrelin in Suncus murinus

    PubMed Central

    Goswami, Chayon; Shimada, Yoshiaki; Yoshimura, Makoto; Mondal, Anupom; Oda, Sen-ichi; Tanaka, Toru; Sakai, Takafumi; Sakata, Ichiro

    2015-01-01

    Motilin and ghrelin constitute a peptide family, and these hormones are important for the regulation of gastrointestinal motility. In this study, we examined the effect of motilin and ghrelin on gastric acid secretion in anesthetized suncus (house musk shrew, Suncus murinus), a ghrelin- and motilin-producing mammal. We first established a gastric lumen-perfusion system in the suncus and confirmed that intravenous (i.v.) administration of histamine (1 mg/kg body weight) stimulated acid secretion. Motilin (0.1, 1.0, and 10 μg/kg BW) stimulated the acid output in a dose-dependent manner in suncus, whereas ghrelin (0.1, 1.0, and 10 μg/kg BW) alone did not induce acid output. Furthermore, in comparison with the vehicle administration, the co-administration of low-dose (1 μg/kg BW) motilin and ghrelin significantly stimulated gastric acid secretion, whereas either motilin (1 μg/kg BW) or ghrelin (1 μg/kg BW) alone did not significantly induce gastric acid secretion. This indicates an additive role of ghrelin in motilin-induced gastric acid secretion. We then investigated the pathways of motilin/motilin and ghrelin-stimulated acid secretion using receptor antagonists. Treatment with YM 022 (a CCK-B receptor antagonist) and atropine (a muscarinic acetylcholine receptor antagonist) had no effect on motilin or motilin-ghrelin co-administration-induced acid output. In contrast, famotidine (a histamine H2 receptor antagonist) completely inhibited motilin-stimulated acid secretion and co-administration of motilin and ghrelin induced gastric acid output. This is the first report demonstrating that motilin stimulates gastric secretion in mammals. Our results also suggest that motilin and co-administration of motilin and ghrelin stimulate gastric acid secretion via the histamine-mediated pathway in suncus. PMID:26115342

  9. Motilin Stimulates Gastric Acid Secretion in Coordination with Ghrelin in Suncus murinus.

    PubMed

    Goswami, Chayon; Shimada, Yoshiaki; Yoshimura, Makoto; Mondal, Anupom; Oda, Sen-ichi; Tanaka, Toru; Sakai, Takafumi; Sakata, Ichiro

    2015-01-01

    Motilin and ghrelin constitute a peptide family, and these hormones are important for the regulation of gastrointestinal motility. In this study, we examined the effect of motilin and ghrelin on gastric acid secretion in anesthetized suncus (house musk shrew, Suncus murinus), a ghrelin- and motilin-producing mammal. We first established a gastric lumen-perfusion system in the suncus and confirmed that intravenous (i.v.) administration of histamine (1 mg/kg body weight) stimulated acid secretion. Motilin (0.1, 1.0, and 10 μg/kg BW) stimulated the acid output in a dose-dependent manner in suncus, whereas ghrelin (0.1, 1.0, and 10 μg/kg BW) alone did not induce acid output. Furthermore, in comparison with the vehicle administration, the co-administration of low-dose (1 μg/kg BW) motilin and ghrelin significantly stimulated gastric acid secretion, whereas either motilin (1 μg/kg BW) or ghrelin (1 μg/kg BW) alone did not significantly induce gastric acid secretion. This indicates an additive role of ghrelin in motilin-induced gastric acid secretion. We then investigated the pathways of motilin/motilin and ghrelin-stimulated acid secretion using receptor antagonists. Treatment with YM 022 (a CCK-B receptor antagonist) and atropine (a muscarinic acetylcholine receptor antagonist) had no effect on motilin or motilin-ghrelin co-administration-induced acid output. In contrast, famotidine (a histamine H2 receptor antagonist) completely inhibited motilin-stimulated acid secretion and co-administration of motilin and ghrelin induced gastric acid output. This is the first report demonstrating that motilin stimulates gastric secretion in mammals. Our results also suggest that motilin and co-administration of motilin and ghrelin stimulate gastric acid secretion via the histamine-mediated pathway in suncus. PMID:26115342

  10. Characterization and regulation of the rat and human ghrelin promoters.

    PubMed

    Wei, Wei; Wang, Guiyun; Qi, Xiang; Englander, Ella W; Greeley, George H

    2005-03-01

    Ghrelin is a recently discovered stomach hormone and endogenous ligand for the GH secretagogue receptor. The aim of these studies is to elucidate molecular mechanisms underlying regulation of the ghrelin gene. Distal and proximal transcription initiation sites are present. A short transcript, a product of the proximal site, showed a more widespread distribution. Two sets of 5'-upstream segments of the rat and human ghrelin genes were cloned and sequenced. Rat promoter segments upstream of the distal site showed highest activity in kidney (COS-7) and stomach (AGS) cells, whereas human promoter segments upstream of the proximal site showed highest activity in AGS and pituitary (GH3) cells in transient transfection assays. For the human, the core promoter spanned -667 to -468 bp, including the noncoding exon 1 and a short 5' sequence of intron 1. For the rat, the core promoter spanned -581 to -469 bp, and inclusion of exon 1 and a short 5'-sequence of intron 1 reduced activity by 67%. Mutation of initiator-like elements in the rat lowered activity by 20-50%, whereas in the human, all activity was abolished. Overexpression of upstream stimulatory factors increased ghrelin core promoter activity. Fasting increases stomach ghrelin expression, glucagon-a fasting-induced hormone, increased ghrelin expression in vivo in rats, and promoter activity by approximately 25-50%. Together, these findings indicate that structural differences between the rat and human ghrelin core promoters may account in part for the differences in their transcriptional regulation. Nonetheless, upstream stimulatory factor and glucagon exert similar effects on regulation of rat and human ghrelin promoters. PMID:15604212

  11. Effect of rhynchophylline on the expression of p-CREB and sc-Fos in triatum and hippocampal CA1 area of methamphetamine-induced conditioned place preference rats.

    PubMed

    Liu, Wei; Peng, Qiu-Xian; Lin, Xiao-Liang; Luo, Chao-Hua; Jiang, Ming-Jin; Mo, Zhi-Xian; Yung, Ken Kin-Lam

    2014-01-01

    To explore the effect of rhynchophylline (Rhy) on the expression of p-CREB and c-Fos in the striatum and hippocampal CA1 area of methamphetamine-induced conditioned place preference (CPP) rat, methamphetamine (2 mg/kg) was injected to rats and the conditioned place preference was observed in these rats treated with or without Rhy. An immunohistochemistry assay was used to determine the expression of p-CREB and c-Fos in the striatum and hippocampal CA1 area. Methamphetamine induced significant behavior alteration in CPP, while after pretreatment with rhynchophylline or ketamine, the time of staying in methamphetamine-paired compartment of rats was significantly reduced. Methamphetamine also increased the number of p-CREB positive cells in the striatum and hippocampal CA1 zone, as well as p-Fos positive cells. However, the compound Rhy could attenuate the effect. These findings show that Rhy can suppress the acquisition of CPP in rats induced by methamphetamine and the action may be related with the reduced expression of p-CREB and p-Fos in the striatum and hippocampus. PMID:24140441

  12. Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats

    PubMed Central

    Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping

    2015-01-01

    Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury. PMID:25671547

  13. Ghrelin attenuates the growth of HO-8910 ovarian cancer cells through the ERK pathway

    PubMed Central

    Bai, R.X.; Wang, W.P.; Zhao, P.W.; Li, C.B.

    2016-01-01

    Ovarian cancer is one of the most common causes of death from gynecologic tumors and is an important public health issue. Ghrelin is a recently discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR). Several studies have identified the protective effects of ghrelin on the mammalian reproductive system. However, little research has been done on the effects of ghrelin on ovarian cancer cells, and the underlying mechanisms of these effects. We sought to understand the potential involvement of mitogen-activated protein kinases (MAPKs) in ghrelin-mediated inhibition of growth of the ovarian line HO-8910. We applied different concentrations of ghrelin and an inhibitor of the ghrelin receptor (D-Lys3-GHRP-6) to HO-8910 cells and observed the growth rate of cells and changes in phosphorylation of the MAPKs ERK1/2, JNK and p38. We discovered that ghrelin-induced apoptosis of HO-8910 cells was though phosphorylated ERK1/2, and that this phosphorylation (as well as p90rsk phosphorylation) was mediated by the GHSR. The ERK1/2 pathway is known to play an essential part in the ghrelin-mediated apoptosis of HO-8910 cells. Hence, our study suggests that ghrelin inhibits the growth of HO-8910 cells primarily through the GHSR/ERK pathway. PMID:26840702

  14. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  15. Exogenous ghrelin regulates proliferation and apoptosis in the hypotrophic gut mucosa of the rat.

    PubMed

    de Segura, Ignacio A Gómez; Vallejo-Cremades, María Teresa; Lomas, Jesús; Sánchez, Miriam F; Caballero, María Isabel; Largo, Carlota; De Miguel, Enrique

    2010-04-01

    Ghrelin is the natural endogenous ligand for growth hormone secretagogue receptors. This peptide regulates energy homeostasis and expenditure and is a potential link between gut absorptive function and growth. We hypothesized that ghrelin may induce a proliferative and antiapoptotic action promoting the recovery of the hypotrophic gut mucosa. Therefore, the aim of the study was to determine the action of exogenous ghrelin following gut mucosal hypotrophia in rats fed an elemental diet. An elemental diet provides readily absorbable simple nutrients and is usually given to patients with absorptive dysfunction. Male Wistar rats (n = 48) were fed the elemental diet for one week to induce mucosal hypotrophy and then treated for another week with systemic ghrelin and pair-fed with either a normoproteic or hyperproteic isocaloric liquid diet. Another group received a standard diet instead of the elemental diet and served as control (normotrophy). The elemental diet induced intestinal hypotrophia characterized by decreased proliferation in the ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored normal levels of proliferation in the ileum and apoptosis in the jejunum, with partial apoptosis restoration in the ileum. Ghrelin levels in plasma and fundus were increased in all groups, although the highest levels were found in rats treated with exogenous ghrelin. Ghrelin administration has a positive effect in the hypotrophic gut, regulating both proliferation and apoptosis towards a physiological balance counteracting the negative changes induced by an elemental diet in the intestines. PMID:20407078

  16. Fos-like protein is induced in neurons of the medulla oblongata after stimulation of the carotid sinus nerve in awake and anesthetized rats.

    PubMed

    Erickson, J T; Millhorn, D E

    1991-12-13

    The protooncogene c-fos is expressed rapidly, transiently and polysynaptically within neurons in response to synaptic activation and voltage-gated calcium entry into the cell. The nuclear protein product of this gene (Fos) is detectable immunohistochemically 20-90 min after cell activation and remains within the nucleus for hours after expression. The present study was undertaken to identify cells within the rat medulla oblongata that express Fos-like protein in response to stimulation of afferent fibers of the carotid sinus nerve (CSN). Direct electrical stimulation of the CSN in anesthetized animals or hypoxic stimulation in either anesthetized or awake animals resulted in a consistent and discrete distribution of Fos-like immunoreactivity (Fos-LI). Fos-LI was observed bilaterally within nucleus tractus solitarius (NTS) and the ventrolateral medulla (VLM), within area postrema and nucleus raphe pallidus, and bilaterally along the ventral medullary surface. Unstimulated animals were devoid of Fos-LI within the medulla oblongata. Furthermore, neither the surgical preparations alone nor the effects of anesthesia could account for the extent of Fos-LI observed. We believe these cells represent second- and higher-order neurons within the baroreceptor and chemoreceptor reflex pathways. PMID:1815818

  17. FOS Gimp Test.

    NASA Astrophysics Data System (ADS)

    Fitch, John

    1991-07-01

    This test is designed to verify all aspects of the GIMP correction mechanism for the FOS. This test will confirm proper commanding of the SI, proper PASS calculation of the GIMP correction deltas and proper polynomial calculation for the NSSC1. It will also confirm proper FSW functioning and proper FOS firmware corrections. The end result should be a completely GIMP corrected series of observations which will allow confirmation of the proper functioning of the GIMP correction mechanism and allow all future observations to be GIMP corrected. This test will be run on both side of the detector and will use only internal sources.

  18. The antagonism of ghrelin alters the appetitive response to learned cues associated with food.

    PubMed

    Dailey, Megan J; Moran, Timothy H; Holland, Peter C; Johnson, Alexander W

    2016-04-15

    The rapid increase in obesity may be partly mediated by an increase in the exposure to cues for food. Food-paired cues play a role in food procurement and intake under conditions of satiety. The mechanism by which this occurs requires characterization, but may involve ghrelin. This orexigenic peptide alters the response to food-paired conditioned stimuli, and neural responses to food images in reward nuclei. Therefore, we tested whether a ghrelin receptor antagonist alters the influence of food-paired cues on the performance of instrumental responses that earn food and the consumption of food itself using tests of Pavlovian-to-instrumental transfer (PIT) and cue potentiated feeding (CPF), respectively. Food-deprived rats received Pavlovian conditioning where an auditory cue was paired with delivery of sucrose solution followed by instrumental conditioning to lever press for sucrose. Following training, rats were given ad libitum access to chow. On test day, rats were injected with the ghrelin receptor antagonist GHRP-6 [D-Lys3] and then tested for PIT or CPF. Disrupting ghrelin signaling enhanced expression of PIT. In addition, GHRP-6 [D-Lys3] impaired the initiation of feeding behavior in CPF without influencing overall intake of sucrose. Finally, in PIT tested rats, enhanced FOS immunoreactivity was revealed following the antagonist in regions thought to underlie PIT; however, the antagonist had no effect on FOS immunoreactivity in CPF tested rats. PMID:26802728

  19. The intestinal lymph fistula model--a novel approach to study ghrelin secretion.

    PubMed

    Tong, Jenny; Tschöp, Matthias H; Aulinger, Benedikt A; Davis, Harold W; Yang, Qing; Liu, Jianhua; Gaylinn, Bruce D; Thorner, Michael O; D'Alessio, David; Tso, Patrick

    2010-03-01

    The orexigenic hormone ghrelin is secreted from the stomach and has been implicated in the regulation of energy and glucose homeostasis. We hypothesized that ghrelin, like other gastrointestinal (GI) hormones, is present in intestinal lymph, and sampling this compartment would provide advantages for studying ghrelin secretion in rodents. Blood and lymph were sampled from catheters in the jugular vein and mesenteric lymph duct before and after intraduodenal (ID) administration of isocaloric Ensure, dextrin, or Liposyn meals or an equal volume of saline in conscious Sprague-Dawley rats. Total ghrelin levels were measured using an established radioimmunoassay. Acyl and des-acyl ghrelin were measured using two-site ELISA. Fasting ghrelin levels in lymph were significantly higher than in plasma (means +/- SE: 3,307.9 +/- 272.9 vs. 2,127.1 +/- 115.0 pg/ml, P = 0.004). Postingestive acyl and des-acyl ghrelin levels were also significantly higher, whereas the ratio of acyl:des-acyl ghrelin was similar in lymph and plasma (0.91 +/- 0.28 vs. 1.20 +/- 0.36, P = 0.76). The principle enzymes responsible for deacylation of ghrelin were lower in lymph than in plasma. Following ID Ensure, maximum ghrelin suppression occurred at 2 h in lymph compared with at 1 h in plasma. The return of suppressed ghrelin levels to baseline was also delayed in lymph. Similarly, dextrin also induced significant suppression of ghrelin (two-way ANOVA: P = 0.02), whereas Liposyn did not (P = 0.32). On the basis of these findings, it appears that intestinal lymph, which includes drainage from the interstitium of the GI mucosa, is enriched in ghrelin. Despite reduced deacylating activity in lymph, there is not a disproportionate amount of acyl ghrelin in this pool. The postprandial dynamics of ghrelin are slower in lymph than plasma, but the magnitude of change is greater. Assessing ghrelin levels in the lymph may be advantageous for studying its secretion and concentrations in the gastric mucosa. PMID

  20. Ghrelin protects infarcted myocardium by induction of autophagy and AMP-activated protein kinase pathway.

    PubMed

    Yuan, Ming-Jie; Kong, Bin; Wang, Tao; Wang, Xin; Huang, He; Maghsoudi, Taneen

    2016-08-01

    The majority of studies have reported that enhancing autophagy in the myocardium is cardioprotective. Here, we tested the hypothesis that ghrelin, a growth hormone-releasing peptide, will protect infarcted myocardium by inducing of autophagy. Myocardial infarction was induced in mice by left coronary artery ligation the surviving mice 24 h after surgical were started on 2 week treatments with one of the following: vehicle, acylated ghrelin(50 mg/kg per day) or acylated ghrelin plus 3-MA(an autophagy inhibitor, 15 mg/kg, per day). We found that ghrelin significantly improved the cardiac function, and autophagy was enhanced by elevated LC3-II/LC-I ratio and mRNA expression of autophagy related protein. In vitro, cultured neonatal rat ventricular cardiomyocytes were subjected to simulate ischemia/reperfusion, 3-MA significantly attenuated ghrelin-induced autophagy, which was associated with activated AMP-activated protein kinase (AMPK) signal pathway. Moreover, ghrelin reduced cell death, and RNAi-mediated knockdown of autophagy protein 5 (Atg5) partly abolished ghrelin's cardioprotective effect. It is the first time to demonstrate that the cardioprotective effect of ghrelin on ischemia myocardium in part through regulating of autophagy signal pathway. PMID:27235554

  1. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  2. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation.

    PubMed

    Ferreira-Marques, Marisa; Aveleira, Célia A; Carmo-Silva, Sara; Botelho, Mariana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-07-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  3. Immediate and prolonged patterns of Agouti-related peptide-(83--132)-induced c-Fos activation in hypothalamic and extrahypothalamic sites.

    PubMed

    Hagan, M M; Benoit, S C; Rushing, P A; Pritchard, L M; Woods, S C; Seeley, R J

    2001-03-01

    Several lines of evidence substantiate the important role of the central nervous system melanocortin 3- and 4-receptor (MC3/4-R) system in the control of food intake and energy balance. Agouti-related peptide (AgRP), an endogenous antagonist of these receptors, produces a robust and unique pattern of increased food intake that lasts up to 7 days after a single injection. Little is known about brain regions that may mediate this powerful effect of AgRP on food intake. To this end we compared c-Fos-like immunoreactivity (c-FLI) in several brain sites of rats injected intracerebroventricularly with 1 nmol AgRP-(83--132) 2 and 24 h before death and compared c-FLI patterns to those induced by another potent orexigenic peptide, neuropeptide Y (NPY). Although both NPY and AgRP induced c-FLI in hypothalamic areas, AgRP also produced increased c-FLI in the accumbens shell and lateral septum. Although NPY elicited no changes in c-FLI 24 h after administration, AgRP induced c-FLI in the accumbens shell, nucleus of the solitary tract, central amygdala, and lateral hypothalamus. These results indicate that an NPY-like hypothalamic circuit mediates the short-term effects of AgRP, but that the unique sustained effect of AgRP on food intake involves a complex circuit of key extrahypothalamic reward and feeding regulatory nuclei. PMID:11181518

  4. Induction of FosB/DeltaFosB in the brain stress system-related structures during morphine dependence and withdrawal.

    PubMed

    Núñez, Cristina; Martín, Fátima; Földes, Anna; Luisa Laorden, M; Kovács, Krisztina J; Victoria Milanés, M

    2010-07-01

    The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) by drugs of abuse. This study was designed to evaluate the possible modifications in FosB/DeltaFosB expression in both hypothalamic and extrahypothalamic brain stress system during morphine dependence and withdrawal. Rats were made dependent on morphine and, on day 8, were injected with saline or naloxone. Using immunohistochemistry and western blot, the expression of FosB/DeltaFosB, tyrosine hydroxylase (TH), corticotropin-releasing factor (CRF) and pro-dynorphin (DYN) was measured in different nuclei from the brain stress system in morphine-dependent rats and after morphine withdrawal. Additionally, we studied the expression of FosB/DeltaFosB in CRF-, TH- and DYN-positive neurons. FosB/DeltaFosB was induced after chronic morphine administration in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), NAc-shell, bed nucleus of the stria terminalis, central amygdala and A(2) noradrenergic part of the nucleus tractus solitarius (NTS-A(2)). Morphine dependence and withdrawal evoked an increase in FosB/DeltaFosB-TH and FosB/DeltaFosB-CRF double labelling in NTS-A(2) and PVN, respectively, besides an increase in TH levels in NTS-A(2) and CRF expression in PVN. These data indicate that neuroadaptation to addictive substances, observed as accumulation of FosB/DeltaFosB, is not limited to the reward circuits but may also manifest in other brain regions, such as the brain stress system, which have been proposed to be directly related to addiction. PMID:20438612

  5. The effect of ingested macronutrients on postprandial ghrelin response: a critical review of existing literature data.

    PubMed

    Koliaki, Chrysi; Kokkinos, Alexander; Tentolouris, Nicholas; Katsilambros, Nicholas

    2010-01-01

    Ghrelin is a powerful orexigenic gut hormone with growth hormone releasing activity. It plays a pivotal role for long-term energy balance and short-term food intake. It is also recognized as a potent signal for meal initiation. Ghrelin levels rise sharply before feeding onset, and are strongly suppressed by food ingestion. Postprandial ghrelin response is totally macronutrient specific in normal weight subjects, but is rather independent of macronutrient composition in obese. In rodents and lean individuals, isoenergetic meals of different macronutrient content suppress ghrelin to a variable extent. Carbohydrate appears to be the most effective macronutrient for ghrelin suppression, because of its rapid absorption and insulin-secreting effect. Protein induces prolonged ghrelin suppression and is considered to be the most satiating macronutrient. Fat, on the other hand, exhibits rather weak and insufficient ghrelin-suppressing capacity. The principal mediators involved in meal-induced ghrelin regulation are glucose, insulin, gastrointestinal hormones released in the postabsorptive phase, vagal activity, gastric emptying rate, and postprandial alterations in intestinal osmolarity. PMID:20798765

  6. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  7. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation.

    PubMed

    Bodosi, B; Gardi, J; Hajdu, I; Szentirmai, E; Obal, F; Krueger, J M

    2004-11-01

    To determine the relationships among plasma ghrelin and leptin concentrations and hypothalamic ghrelin contents, and sleep, cortical brain temperature (Tcrt), and feeding, we determined these parameters in rats in three experimental conditions: in free-feeding rats with normal diurnal rhythms, in rats with feeding restricted to the 12-h light period (RF), and in rats subjected to 5-h of sleep deprivation (SD) at the beginning of the light cycle. Plasma ghrelin and leptin displayed diurnal rhythms with the ghrelin peak preceding and the leptin peak following the major daily feeding peak in hour 1 after dark onset. RF reversed the diurnal rhythm of these hormones and the rhythm of rapid-eye-movement sleep (REMS) and significantly altered the rhythm of Tcrt. In contrast, the duration and intensity of non-REMS (NREMS) were hardly responsive to RF. SD failed to change leptin concentrations, but it promptly stimulated plasma ghrelin and induced eating. SD elicited biphasic variations in the hypothalamic ghrelin contents. SD increased plasma corticosterone, but corticosterone did not seem to influence either leptin or ghrelin. The results suggest a strong relationship between feeding and the diurnal rhythm of leptin and that feeding also fundamentally modulates the diurnal rhythm of ghrelin. The variations in hypothalamic ghrelin contents might be associated with sleep-wake activity in rats, but, unlike the previous observations in humans, obvious links could not be detected between sleep and the diurnal rhythms of plasma concentrations of either ghrelin or leptin in the rat. PMID:15475503

  8. Regulation of oxidative stress and somatostatin, cholecystokinin, apelin gene expressions by ghrelin in stomach of newborn diabetic rats.

    PubMed

    Coskun, Zeynep Mine; Sacan, Ozlem; Karatug, Ayse; Turk, Neslihan; Yanardag, Refiye; Bolkent, Sehnaz; Bolkent, Sema

    2013-09-01

    The aim of the study was to determine whether ghrelin treatment has a protective effect on gene expression and biochemical changes in the stomach of newborn streptozotocin (STZ) induced diabetic rats. In this study, four groups of Wistar rats were used: control, ghrelin control, diabetic and diabetic+ghrelin. The rats were sacrificed after four weeks of treatment for diabetes. The gene expressions of: somatostatin, cholecystokinin, apelin and the altered active caspase-3, active caspase-8, proliferating cell nuclear antigen, were investigated in the pyloric region of the stomach and antioxidant parameters were measured in all the stomach. Although ghrelin treatment to diabetic rats lowered the stomach lipid peroxidation levels, the stomach glutathione levels were increased. Exogenous ghrelin caused an increased activities of stomach catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in diabetic rats. Numbers of somatostatin, cholecystokinin and proliferating cell nuclear antigen immunoreactive cells decreased in the diabetic+ghrelin group compared to the diabetic group. Apelin mRNA expressions were remarkably less in the diabetic+ghrelin rats than in diabetic rats. The results may indicate that ghrelin treatment has a protective effect to some extent on the diabetic rats. This protection is possibly accomplished through the antioxidant activity of ghrelin observed in type 2 diabetes. Consequently exogenous ghrelin may be a candidate for therapeutic treatment of diabetes. PMID:23566555

  9. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice.

    PubMed

    Ku, Jacqueline M; Taher, Mohammadali; Chin, Kai Yee; Barsby, Tom; Austin, Victoria; Wong, Connie H Y; Andrews, Zane B; Spencer, Sarah J; Miller, Alyson A

    2016-09-01

    The major ghrelin forms, acylated ghrelin and des-acylated ghrelin, are novel gastrointestinal hormones. Moreover, emerging evidence indicates that these peptides may have other functions including neuro- and vaso-protection. Here, we investigated whether post-stroke treatment with acylated ghrelin or des-acylated ghrelin could improve functional and histological endpoints of stroke outcome in mice after transient middle cerebral artery occlusion (tMCAo). We found that des-acylated ghrelin (1 mg/kg) improved neurological and functional performance, reduced infarct and swelling, and decreased apoptosis. In addition, it reduced blood-brain barrier (BBB) disruption in vivo and attenuated the hyper-permeability of mouse cerebral microvascular endothelial cells after oxygen glucose deprivation and reoxygenation (OGD + RO). By contrast, acylated ghrelin (1 mg/kg or 5 mg/kg) had no significant effect on these endpoints of stroke outcome. Next we found that des-acylated ghrelin's vasoprotective actions were associated with increased expression of tight junction proteins (occludin and claudin-5), and decreased cell death. Moreover, it attenuated superoxide production, Nox activity and expression of 3-nitrotyrosine. Collectively, these results demonstrate that post-stroke treatment with des-acylated ghrelin, but not acylated ghrelin, protects against ischaemia/reperfusion-induced brain injury and swelling, and BBB disruption, by reducing oxidative and/or nitrosative damage. PMID:27303049

  10. Paradoxical widespread c-Fos expression induced by a GABA agonist in the forebrain of transgenic mice with ectopic expression of the GABA(A) α6 subunit.

    PubMed

    Hellsten, K S; Linden, A-M; Korpi, E R

    2015-05-01

    A GABA-site agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) at 3 mg/kg induces strong anxiolytic response in a transgenic Thy1α6 mouse line ectopically expressing the GABA(A) receptor α6 subunit gene under the Thy-1.2 promoter. Now, we compared brain activation patterns between Thy1α6 and wild-type mice to identify brain structures potentially mediating this anxiolytic response. Acutely efficient anxiolytics such as benzodiazepines typically depress most brain regions while activating specifically neurons within the central extended amygdala. Gaboxadol treatment (3 mg/kg, i.p., 2 h) induced a significant increase in c-Fos expression selectively in many Thy1α6 brain regions including the limbic cortex, anterior olfactory nucleus, septal area and central and basolateral nuclei of amygdala. It failed to activate the lateral part of mediodorsal thalamic nucleus (MDL) in the Thy1α6 mice that was activated in the wild-type mice. Detailed mapping of the α6 subunit mRNA by in situ hybridization revealed expression in the middle layers of the isocortex, olfactory areas, hippocampal formation and basolateral nucleus of amygdala (BLA) in the Thy1α6 forebrain. The ligand autoradiographies (t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) and [(3)H]Ro 15-4513) revealed high levels of pharmacologically active extrasynaptic α6β and α6βγ2 GABA(A) receptors in these same areas. However, c-Fos induction by gaboxadol treatment in Thy1α6 brain was not restricted to areas highly expressing the α6-containing GABA(A) receptors suggesting that indirect pathways lead to the paradoxically widespread activation. Interestingly, the activation pattern by gaboxadol at the dose that is anxiolytic in Thy1α6 mice resembled closely that observed after various fear- and stress-provoking challenges. However, our results are consistent with a recent observation that optogenetic activation of specific neuronal pathways in the extended amygdala mediates anxiolytic

  11. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.

    PubMed

    Szentirmai, Éva; Krueger, James M

    2014-02-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, suppresses circulating levels of proinflammatory cytokines and reduces the severity and mortality of various models of experimental endotoxemia. In the present study, we determined the role of intact ghrelin signaling in LPS-induced sleep, feeding, and thermoregulatory responses in mice. Sleep-wake activity was determined after intraperitoneal, dark onset administration of 0.4, 2 and 10 μg LPS in preproghrelin knockout (KO) and wild-type (WT) mice. In addition, body temperature, motor activity and changes in 24-h food intake and body weight were measured. LPS induced dose-dependent increases in NREMS, and suppressed rapid-eye movement sleep, electroencephalographic slow-wave activity, motor activity, food intake and body weight in both Ppg KO and WT mice. Body temperature changes showed a biphasic pattern with a decrease during the dark period followed by an increase in the light phase. The effects of the low and middle doses of LPS were indistinguishable between the two genotypes. Administration of 10 μg LPS, however, induced significantly larger changes in NREMS and wakefulness amounts, body temperature, food intake and body weight in the Ppg KO mice. These findings support a role for ghrelin as an endogenous modulator of inflammatory responses and a central component of arousal and feeding circuits. PMID:24309634

  12. Meal anticipation potentiates postprandial ghrelin suppression in humans.

    PubMed

    Ott, Volker; Friedrich, Monique; Zemlin, Janna; Lehnert, Hendrik; Schultes, Bernd; Born, Jan; Hallschmid, Manfred

    2012-07-01

    Circulating concentrations of the orexigenic hormone ghrelin show a postprandial decrease in dependence on meal size and composition. Cognitive determinants of postprandial ghrelin suppression in humans are largely unexplored. We assessed the effects of cued meal anticipation on pre- and postprandial concentrations of total plasma ghrelin, pancreatic polypeptide and leptin as well as on markers of glucose metabolism in healthy men. In a between-subject comparison, meal anticipation was induced in 14 fasted men at 08:00 h by the announcement and subsequent presentation of a breakfast buffet. Fifteen fasted control subjects were informed that they would remain fasted until noon. At 10:00 h, both groups were served a rich free-choice breakfast. At 12:00 h, all subjects underwent a snack test assessing casual cookie intake. Circulating concentrations of ghrelin, pancreatic polypeptide, glucose, insulin and leptin were frequently assessed. Preprandial endocrine parameters as well as breakfast intake (all p>0.23) and subsequent snack consumption (p>0.83) were comparable between groups. The postprandial suppression of ghrelin levels observed in both groups was markedly stronger in subjects who had anticipated breakfast intake (p<0.03) while pancreatic polypeptide concentrations did not differ between groups (p>0.56). Results indicate that meal anticipation is a critical determinant of postprandial ghrelin suppression that, as suggested by unaltered pancreatic polypeptide levels, appears to be mediated independent of vagal activation. Our findings highlight the role of subtle cognitive factors in the postprandial regulation of ghrelin secretion, suggesting that neurobehavioral approaches to improved food intake control should take into account meal anticipatory mechanisms. PMID:22094111

  13. Ghrelin receptor agonist GHRP-2 prevents arthritis-induced increase in E3 ubiquitin-ligating enzymes MuRF1 and MAFbx gene expression in skeletal muscle.

    PubMed

    Granado, Miriam; Priego, Teresa; Martín, Ana I; Villanúa, Maria Angeles; López-Calderón, Asunción

    2005-12-01

    Chronic arthritis is a catabolic state associated with an inhibition of the IGF system and a decrease in body weight. Cachexia and muscular wasting is secondary to protein degradation by the ubiquitin-proteasome pathway. The aim of this work was to analyze the effect of adjuvant-induced arthritis on the muscle-specific ubiquitin ligases muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx) as well as on IGF-I and IGF-binding protein-5 (IGFBP-5) gene expression in the skeletal muscle. We also studied whether the synthetic ghrelin receptor agonist, growth hormone releasing peptide-2 (GHRP-2), was able to prevent arthritis-induced changes in the skeletal muscle. Arthritis induced an increase in MuRF1, MAFbx (P < 0.01), and tumor necrosis factor (TNF)-alpha mRNA (P < 0.05) in the skeletal muscle. Arthritis decreased the serum IGF-I and its gene expression in the liver (P < 0.01), whereas it increased IGF-I and IGFBP-5 gene expression in the skeletal muscle (P < 0.01). Administration of GHRP-2 for 8 days prevented the arthritis-induced increase in muscular MuRF1, MAFbx, and TNF-alpha gene expression. GHRP-2 treatment increased the serum concentrations of IGF-I and the IGF-I mRNA in the liver and in the cardiac muscle and decreased muscular IGFBP-5 mRNA both in control and in arthritic rats (P < 0.05). GHRP-2 treatment increased muscular IGF-I mRNA in control rats (P < 0.01), but it did not modify the muscular IGF-I gene expression in arthritic rats. These data indicate that arthritis induces an increase in the activity of the ubiquitin-proteasome proteolytic pathway that is prevented by GHRP-2 administration. The parallel changes in muscular IGFBP-5 and TNF-alpha gene expression with the ubiquitin ligases suggest that they can participate in skeletal muscle alterations during chronic arthritis. PMID:16030067

  14. Attenuating the effect of Ghrelin on memory storage via bilateral reversible inactivation of the basolateral amygdale.

    PubMed

    Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2012-07-01

    Previous studies have shown that Ghrelin increases memory retention. They have also indicated that amygdale is involved in memory storage. The present study examined the role of basolateral amygdala (BLA) in Ghrelin-induced retention improvement, using reversible inactivation of this region with lidocaine. Rats were bilaterally implanted with cannulae at the BLA. One week later, they received intra-BLA injection of lidocaine, saline or Ghrelin with 5 min interval immediately after training. 24-72 h after training, step-through latency (STL) was measured as learning and memory index. The results showed that injection of Ghrelin into the BLA produced a significant enhancement in retention, which was attenuated by injection of lidocaine into BLA. These finding indicate that the BLA is involved in mediating the memory-modulating effect of Ghrelin. PMID:22487248

  15. FOS Target Acquisition Test

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha

    1994-01-01

    FOS onboard target acquisition software capabilities will be verified by this test -- point source binary, point source firmware, point source peak-up, wfpc2 assisted realtime, point source peak-down, taled assisted binary, taled assisted firmware, and nth star binary modes. The primary modes are tested 3 times to determine repeatability. This test is the only test that will verify mode-to-mode acquisition offsets. This test has to be conducted for both the RED and BLUE detectors.

  16. Effect of acute imipramine administration on the pattern of forced swim-induced c-Fos expression in the mouse brain.

    PubMed

    Yanagida, Satoru; Motomura, Keisuke; Ohashi, Ayako; Hiraoka, Kentaro; Miura, Tomofumi; Kanba, Shigenobu

    2016-08-26

    The forced swim test (FST) has been widely used for the preclinical evaluation of antidepressant drugs. Despite considerable differences in the protocol, equivalence of the FST for rats and mice has been rarely questioned. Previous research on the FST for rats revealed that repeated administration of antidepressant drugs attenuates the c-Fos response to swim stress in the hypothalamus and limbic regions. However, few studies have made similar investigations using the FST for mice. In the present study, we explored the mouse brain through immunohistochemistry staining for c-Fos after acute administration of imipramine or saline with or without a subsequent swim session. Imipramine enhanced the c-Fos density in regions of the central extended amygdala, while forced swim stress increased c-Fos expression in some hypothalamic (the ventrolateral preoptic nucleus and dorsomedial nucleus) and brain stem regions, which is consistent with previous reports. In contrast to previous literature with rats, swim stress brought a significant increase in c-Fos expression in the lateral septal nucleus and some other regions in the hypothalamus (the intermediate hypothalamic area, the paraventricular and arcuate nucleus) only in the imipramine-pretreated group, which has not been observed previously. In the arcuate nucleus, double immunostaining revealed that c-Fos was rarely co-expressed with proopiomelanocortin or tyrosine hydroxylase regardless of imipramine treatment. The present results suggest that the activation of several regions in the lateral septum and the hypothalamus underlies antidepressant-like effect in the mouse FST. PMID:27373591

  17. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  18. Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell.

    PubMed

    Vancleef, L; Van Den Broeck, T; Thijs, T; Steensels, S; Briand, L; Tack, J; Depoortere, I

    2015-01-01

    Taste receptors on enteroendocrine cells sense nutrients and transmit signals that control gut hormone release. This study aimed to investigate the amino acid (AA) sensing mechanisms of the ghrelin cell in a gastric ghrelinoma cell line, tissue segments and mice. Peptone and specific classes of amino acids stimulate ghrelin secretion in the ghrelinoma cell line. Sensing of L-Phe occurs via the CaSR, monosodium glutamate via the TAS1R1-TAS1R3 while L-Ala and peptone act via 2 different amino acid taste receptors: CaSR &TAS1R1-TAS1R3 and CaSR &GPRC6A, respectively. The stimulatory effect of peptone on ghrelin release was mimicked ex vivo in gastric but not in jejunal tissue segments, where peptone inhibited ghrelin release. The latter effect could not be blocked by receptor antagonists for CCK, GLP-1 or somatostatin. In vivo, plasma ghrelin levels were reduced both upon intragastric (peptone or L-Phe) or intravenous (L-Phe) administration, indicating that AA- sensing is not polarized and is due to inhibition of ghrelin release from the stomach or duodenum respectively. In conclusion, functional AA taste receptors regulate AA-induced ghrelin release in vitro. The effects differ between stomach and jejunum but these local nutrient sensing mechanisms are overruled in vivo by indirect mechanisms inhibiting ghrelin release. PMID:26510380

  19. Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell

    PubMed Central

    Vancleef, L.; Van Den Broeck, T.; Thijs, T.; Steensels, S.; Briand, L.; Tack, J.; Depoortere, I.

    2015-01-01

    Taste receptors on enteroendocrine cells sense nutrients and transmit signals that control gut hormone release. This study aimed to investigate the amino acid (AA) sensing mechanisms of the ghrelin cell in a gastric ghrelinoma cell line, tissue segments and mice. Peptone and specific classes of amino acids stimulate ghrelin secretion in the ghrelinoma cell line. Sensing of L-Phe occurs via the CaSR, monosodium glutamate via the TAS1R1-TAS1R3 while L-Ala and peptone act via 2 different amino acid taste receptors: CaSR & TAS1R1-TAS1R3 and CaSR & GPRC6A, respectively. The stimulatory effect of peptone on ghrelin release was mimicked ex vivo in gastric but not in jejunal tissue segments, where peptone inhibited ghrelin release. The latter effect could not be blocked by receptor antagonists for CCK, GLP-1 or somatostatin. In vivo, plasma ghrelin levels were reduced both upon intragastric (peptone or L-Phe) or intravenous (L-Phe) administration, indicating that AA- sensing is not polarized and is due to inhibition of ghrelin release from the stomach or duodenum respectively. In conclusion, functional AA taste receptors regulate AA-induced ghrelin release in vitro. The effects differ between stomach and jejunum but these local nutrient sensing mechanisms are overruled in vivo by indirect mechanisms inhibiting ghrelin release. PMID:26510380

  20. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. PMID:26773867

  1. Cortagine infused into the medial prefrontal cortex attenuates predator-induced defensive behaviors and Fos protein production in selective nuclei of the amygdala in male CD1 mice.

    PubMed

    Pentkowski, Nathan S; Tovote, Philip; Zavala, Arturo R; Litvin, Yoav; Blanchard, D Caroline; Spiess, Joachim; Blanchard, Robert J

    2013-08-01

    Corticotropin-releasing factor (CRF) plays an essential role in coordinating the autonomic, endocrine and behavioral responses to stressors. In this study, we investigated the role of CRF within the medial prefrontal cortex (mPFC) in modulating unconditioned defensive behaviors, by examining the effects of microinfusing cortagine a selective type-1 CRF receptor (CRF1) agonist, or acidic-astressin a preferential CRF1 antagonist, into the mPFC in male CD-1 mice exposed to a live predator (rat exposure test--RET). Cortagine microinfusions significantly reduced several indices of defense, including avoidance and freezing, suggesting a specific role for CRF1 within the infralimbic and prelimbic regions of the mPFC in modulating unconditioned behavioral responsivity to a predator. In contrast, microinfusions of acidic-astressin failed to alter defensive behaviors during predator exposure in the RET. Cortagine microinfusions also reduced Fos protein production in the medial, central and basomedial, but not basolateral subnuclei of the amygdala in mice exposed to the rat predatory threat stimulus. These results suggest that CRF1 activation within the mPFC attenuates predator-induced unconditioned anxiety-like defensive behaviors, likely via inhibition of specific amygdalar nuclei. Furthermore, the present findings suggest that the mPFC represents a unique neural region whereby activation of CRF1 produces behavioral effects that contrast with those elicited following systemic administration of CRF1 agonists. PMID:23845323

  2. Protective action of endogenously generated H₂S on hypoxia-induced respiratory suppression and its relation to antioxidation and down-regulation of c-fos mRNA in medullary slices of neonatal rats.

    PubMed

    Pan, Ji-Gang; Zhang, Jie; Zhou, Hua; Chen, Li; Tang, Yu-Hong; Zheng, Yu

    2011-09-15

    We previously reported that exogenous H(2)S played roles in protection of respiratory centers against hypoxic injury in medullary slices of neonatal rats. The protective action of endogenous H(2)S and its relation to antioxidation and down-regulation of c-fos mRNA were investigated in the present study. Perfusion of the slices with l-cysteine (Cys), substrate of cystathionine β-synthase (CBS, H(2)S synthase), could increase frequency of rhythmic respiratory discharge of the hypoglossal rootlets and prevent respiratory suppression induced by hypoxia, whereas perfusion with hydroxylamine (NH(2)OH, inhibitor of CBS) could postpone recovery of respiration from hypoxic inhibition. NH(2)OH also significantly enhanced hypoxia-induced increase in malondialdehyde (MDA) content of the slices. The hypoxia-induced up-regulation of c-fos mRNA could be markedly antagonized by S-adenosyl-l-methionine (SAM, activator of CBS), but greatly increased by NH(2)OH. Neither NH(2)OH, Cys nor SAM had any effect on expression of bcl-2 mRNA in hypoxic medullary slices. These results indicate that endogenously generated H(2)S was involved in protection of the medullary respiratory centers against hypoxic injury partly via antioxidation and down-regulation of c-fos. PMID:21723961

  3. Ginkgo biloba Extract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons.

    PubMed

    Cho, Kyu Suk; Lee, Ian Myungwon; Sim, Seobo; Lee, Eun Joo; Gonzales, Edson Luck; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Kwon, Kyoung Ja; Han, Seol-Heui

    2016-01-01

    EGb 761(®) , a standardized extract of Ginkgo biloba leaves, has antioxidant and antiinflammatory properties in experimental models of neurodegenerative disorders such as stroke and Alzheimer's disease. Tissue plasminogen activator (tPA) acts a neuromodulator and plays a crucial role in the manifestation of neurotoxicity leading to exaggerated neuronal cell death in neurological insult conditions. In this study, we investigated the effects of EGb 761 on the basal and glutamate-induced activity and expression of tPA in rat primary cortical neurons. Under basal condition, EGb 761 inhibited both secreted and cellular tPA activities, without altering tPA mRNA level, as modulated by the activation of p38. Compared with basal condition, EGb 761 inhibited the glutamate-induced up-regulation of tPA mRNA resulting in the normalization of overt tPA activity and expression. c-Fos is a component of AP-1, which plays a critical role in the modulation of tPA expression. Interestingly, EGb 761 inhibited c-Fos nuclear translocation without affecting c-Fos expression in glutamate-induced rat primary cortical neurons. These results demonstrated that EGb 761 can modulate tPA activity under basal and glutamate-stimulated conditions by both translational and transcriptional mechanisms. Thus, EGb 761 could be a potential and effective therapeutic strategy in tPA-excessive neurotoxic conditions. PMID:26478151

  4. Ghrelin Decreases Angiogenesis, HIF-1α and VEGF Protein Levels in Chronic Hypoxia in Lung Tissue of Male Rats

    PubMed Central

    Mirzaei Bavil, Fariba; Alipour, Mohammad Reza; Keyhanmanesh, Rana; Alihemmati, Alireza; Ghiyasi, Rafigheh; Mohaddes, Gisou

    2015-01-01

    Purpose: Hypoxia is a condition of decreased availability of oxygen. When cells are exposed to a low oxygen environment, they impel the hypoxia responses to adapt to new situation. The hypoxia response leads to the activation of various cellular signaling pathways. The aim of this study was to evaluate the effect of ghrelin on angiogenesis, Hypoxia-Inducible-Factor-1α (HIF-1) and Vascular endothelial growth factor (VEGF) levels in normobaric hypoxia situation. Methods: Twenty four animals were divided into 4 groups (n=6): control (C), ghrelin (Gh), hypoxia (H), and hypoxic animals that received ghrelin (H+Gh). Hypoxia (11%) was induced by an Environmental Chamber System GO2 Altitude. Animals in ghrelin groups received a subcutaneous injection of ghrelin (150 μg/kg/day) for 14 days. Results: Our results showed that hypoxia significantly (p<0.05) increased angiogenesis without any significant changes on HIF-1 and VEGF levels, whereas ghrelin significantly (p<0.05) decreased angiogenesis, expression of HIF-1 and VEGF in this condition. Ghrelin administration did not show any significant changes in normal conditions. Conclusion: Ghrelin had no effect on angiogenesis, expression of HIF-1 and VEGF in normal oxygen conditions but it reduced angiogenesis process in lung tissue with reducing the level of HIF and VEGF in hypoxic condition. Therefore, effect of ghrelin on angiogenesis could be related to blood oxygen level. PMID:26504752

  5. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease.

    PubMed

    Bayliss, Jacqueline A; Lemus, Moyra B; Stark, Romana; Santos, Vanessa V; Thompson, Aiysha; Rees, Daniel J; Galic, Sandra; Elsworth, John D; Kemp, Bruce E; Davies, Jeffrey S; Andrews, Zane B

    2016-03-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. PMID:26961958

  6. Inhibition of RANKL-induced osteoclast differentiation through the downregulation of c-Fos and NFATc1 by Eremochloa ophiuroides (centipedegrass) extract.

    PubMed

    Choi, Bo-Yun; Park, Chul-Hong; Na, Yun Hee; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-05-01

    Osteoclasts, derived from hematopoietic stem cells, are specialized macrophages and have a homeostatic role in skeletal modeling and remodeling with bone-forming osteoblasts. However, excessive osteoclast activity induces bone diseases, including osteoporosis, periodontitis and rheumatoid arthritis. Natural substances have received attention as therapeutic drugs in human diseases. In the current study, cells isolated from mouse bone marrow, and a mouse model, were used to determine the effect of centipedegrass extract (CGE) on osteoclasts. Multiple concentrations of CGE were administered to bone marrow cells for 24‑72 hours and, for the in vivo study, mice were treated with CGE for 8 days. The effects of CGE on transcription and translation of osteoclast-associated molecules were then determined using reverse transcription-polymerase chain reaction and immunoblotting, respectively. In the present study it was shown that CGE extracted from Eremochloa ophiuroides (centipedegrass) inhibited receptor activator of nuclear factor κ‑B ligand (RANKL)‑mediated osteoclast differentiation in bone marrow macrophages, without cytotoxicity, in a dose‑dependent manner. CGE decreased the expression levels of osteoclast‑specific genes, including matrix metalloproteinase‑9, osteoclast‑associated immunoglobulin‑like receptor and cathepsin K, however, CGE had no inhibitory effect on the expression levels of mitogen‑activated protein kinases, nuclear factor‑κB and Akt. Furthermore, the protein and RNA levels of RANKL‑induced c‑Fos and nuclear factor of activated T-cell cytoplasmic 1 were suppressed by CGE. These results indicated that CGE may serve as a useful drug in the prevention of bone loss. PMID:27035226

  7. Systemic 5-Bromo-2-Deoxyuridine Induces Conditioned Flavor Aversion and C-Fos in the Visceral Neuraxis

    ERIC Educational Resources Information Center

    Kimbrough, Adam; Kwon, Bumsup; Eckel, Lisa A.; Houpt, Thomas A.

    2011-01-01

    5-bromo-2-deoxyuridine (BrdU) is often used in studies of adult neurogenesis and olfactory learning, but it can also have toxic effects on highly proliferative tissue. We found that pairing Kool-Aid flavors with acute systemic injections of BrdU induced strong conditioned flavor aversions. Intermittent injections during Kool-Aid-glucose…

  8. Lipopolysaccharide differentially decreases plasma acyl and desacyl ghrelin levels in rats: potential role of the circulating ghrelin acylating enzyme GOAT

    PubMed Central

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Reeve, Joseph R.; Taché, Yvette; Lambrecht, Nils W.G.

    2014-01-01

    Bacterial lipopolysaccharide (LPS) in rodents is an established model for studying innate immune responses to gram-negative bacteria and mimicking symptoms of infections including reduced food intake associated with decreased circulating total ghrelin levels. The ghrelin-acylating enzyme, ghrelin-O-acyltransferase (GOAT) involved in the formation of acyl ghrelin (AG) was recently identified. We investigated changes in circulating AG, desacyl ghrelin (DG) and GOAT induced by intraperitoneal LPS (100μg/kg) and associated changes in food intake. Plasma AG and total ghrelin were assessed by radioimmunoassay, GOAT protein by Western blot and mRNA by RT-qPCR. DG was derived from total minus AG. Plasma AG and DG were decreased at 2h, 5h and 7h (p<0.01) post injection compared to vehicle and recovered at 24h. At 2h there was a significantly greater decrease of AG (-53%) than DG (-28%) resulting in a decreased AG/DG ratio (1:5, p <0.01), which thereafter returned to pre-injection values (1:3). This altered ratio was associated with a 38% decrease in plasma GOAT protein compared to vehicle (p <0.001), whereas gastric GOAT protein was slightly increased by 10% (p<0.05). GOAT mRNA expression was unchanged. Food intake was reduced by 58% measured during the 1.5-2h period post LPS injection. Decreased plasma AG and DG preceded the rise in rectal temperature and blood glucose that peaked at 7h. These data indicate that LPS induces a long-lasting reduction of AG and DG levels that may have a bearing with the decrease in food intake. The faster drop in AG than DG within 2h is associated with reduced circulating GOAT. PMID:20599577

  9. Ghrelin protects musculocutaneous tissue from ischemic necrosis by improving microvascular perfusion.

    PubMed

    Rezaeian, F; Wettstein, R; Scheuer, C; Bäumker, K; Bächle, A; Vollmar, B; Menger, M D; Harder, Y

    2012-02-01

    Persistent ischemia in musculocutaneous tissue may lead to wound breakdown and necrosis. The objective of this experimental study was to analyze, whether the gastric peptide ghrelin prevents musculocutaneous tissue from necrosis and to elucidate underlying mechanisms. Thirty-two C57BL/6 mice equipped with a dorsal skinfold chamber containing ischemic musculocutaneous tissue were allocated to four groups: 1) ghrelin; 2) N(ω)-nitro-l-arginine methyl ester (l-NAME); 3) ghrelin and l-NAME; and 4) control. Microcirculation, inflammation, angiogenesis, and tissue survival were assessed by fluorescence microscopy. Inducible and endothelial nitric oxide synthase (iNOS I and eNOS), vascular endothelial growth factor (VEGF), as well as nuclear factor κB (NF-κB) were assessed by Western blot analysis. Ghrelin-treated animals showed an increased expression of iNOS and eNOS in critically perfused tissue compared with controls. This was associated with arteriolar dilation, increased arteriolar perfusion, and a sustained functional capillary density. Ghrelin further upregulated NF-κB and VEGF and induced angiogenesis. Finally, ghrelin reduced microvascular leukocyte-endothelial cell interactions, apoptosis, and overall tissue necrosis (P < 0.05 vs. control). Inhibition of nitric oxide by l-NAME did not affect the anti-inflammatory and angiogenic action of ghrelin but completely blunted the ghrelin-induced tissue protection by abrogating the arteriolar dilation, the improved capillary perfusion, and the increased tissue survival. Ghrelin prevents critically perfused tissue from ischemic necrosis. Tissue protection is the result of a nitric oxide synthase-mediated improvement of the microcirculation but not due to induction of angiogenesis or attenuation of inflammation. This might represent a promising, noninvasive, and clinically applicable approach to protect musculocutaneous tissue from ischemia. PMID:22159999

  10. Thermogenic characterization of ghrelin receptor null mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis....

  11. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    SciTech Connect

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing Liao, Er-Yuan

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  12. Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin: an experimental pilot study.

    PubMed

    Emanuele, Enzo; Altabas, Velimir; Altabas, Karmela; Berardesca, Enzo

    2013-09-01

    The exposure to ultraviolet radiation (UVR) is one of the most important risk factors for skin aging and increases the risk of malignant transformation. Telomere shortening and an altered expression of the proto-oncogene c-FOS are among the key molecular mechanisms associated with photoaging and tumorigenesis. Photolyase from A. nidulans and endonuclease from M. luteus are xenogenic DNA repair enzymes which can reverse the molecular events associated with skin aging and carcinogenosis caused by UVR exposure. Therefore, the purpose of this study was to investigate whether the topical application of preparations containing DNA repair enzymes may prevent UVR-induced acute telomere shortening and FOS gene hyperexpression in human skin biopsies. Twelve volunteers (Fitzpatrick skin types I and II) were enrolled for this experimental study, and six circular areas (10 mm diameter) were marked out on the nonexposed lower back of each participant. One site was left untreated (site 1: negative control), whereas the remaining five sites (designated sites 2-6) were exposed to solar-simulated UVR at 3 times the MED on four consecutive days. Site 2 received UVR only (site 2: positive control), whereas the following products were applied to sites 3-6, respectively: vehicle (moisturizer base cream; applied both 30 minutes before and immediately after each irradiation; site 3); a traditional sunscreen (SS, SPF 50) 30 minutes before irradiation and a vehicle immediately after irradiation (site 4); a SS 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 5); a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 6). Skin biopsies were taken 24 h after the last irradiation. The degree of telomere shortening and c-FOS gene expression were measured in all specimens. Strikingly, the combined use of a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation

  13. Performance in an escape task induces fos-like immunoreactivity in a specific area of the motor cortex of the rat.

    PubMed

    Castro-Alamancos, M A; Borrell, J; García-Segura, L M

    1992-07-01

    The expression of the c-fos proto-oncogene was studied in two different areas of the motor cortex and in the hippocampus of the rat after performance in an escape task in a Skinner box. Performance in this task caused an increase in the number of cells showing fos-like immunoreactivity in layers V and VI of the forelimb motor-sensory cortex with respect to yoked animals which had received the same amount, frequency and duration of aversive stimulation and manipulation as the trained animals. Therefore, this increase is the specific effect of performing the behavioral task. In the hindlimb motor-sensory cortex there were no differences between the trained and the yoked animals in any of the cortical layers. No differences were observed in the dentate gyrus of the hippocampus between trained and yoked animals, while the control animals showed a much lower fos-like immunoreactivity. In conclusion, infragranular layers in the forelimb representation of the primary motor cortex become activated with respect to the expression of fos-like immunoreactivity after performance in an escape task in a Skinner box. This result is consistent with the idea that even in complex structures such as the cerebral cortex, specific trace systems become activated for the performance of complex behavioral tasks. PMID:1407543

  14. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    PubMed

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance. PMID:19363508

  15. Genetic determination of the cellular basis of the ghrelin-dependent bone remodeling

    PubMed Central

    Ma, Chengshan; Fukuda, Toru; Ochi, Hiroki; Sunamura, Satoko; Xu, Cheng; Xu, Ren; Okawa, Atsushi; Takeda, Shu

    2015-01-01

    Objective Bone mass is maintained through a balance of bone formation and resorption. This homeostatic balance is regulated by various systems involving humoral and local factors. The discovery that the anorexigenic hormone leptin regulates bone mass via neuronal pathways revealed that neurons and neuropeptides are intimately involved in bone homeostasis. Ghrelin is a stomach-derived orexigenic hormone that counteracts leptin's action. However, the physiological role of ghrelin in bone homeostasis remains unknown. In this study, through the global knockout of ghrelin receptor (Ghsr) followed by tissue-specific re-expression, we addressed the molecular basis of the action of ghrelin in bone remodeling in vivo. Methods We performed molecular, genetic and cell biological analyses of Ghsr-null mice and Ghsr-null mice with tissue specific Ghsr restoration. Furthermore, we evaluated the molecular mechanism of ghrelin by molecular and cell-based assays. Results Ghsr-null mice showed a low bone mass phenotype with poor bone formation. Restoring the expression of Ghsr specifically in osteoblasts, and not in osteoclasts or the central nervous system, ameliorated bone abnormalities in Ghsr-null mice. Cell-based assays revealed ghrelin induced the phosphorylation of CREB and the expression of Runx2, which in turn accelerated osteoblast differentiation. Conclusions Our data show that ghrelin regulates bone remodeling through Ghsr in osteoblasts by modulating the CREB and Runx2 pathways. PMID:25737953

  16. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience

    PubMed Central

    Nutsch, Victoria L.; Will, Ryan G.; Robison, Christopher L.; Martz, Julia R.; Tobiansky, Daniel J.; Dominguez, Juan M.

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience. PMID:27147996

  17. Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens.

    PubMed

    Venebra-Muñoz, Arturo; Corona-Morales, Aleph; Santiago-García, Juan; Melgarejo-Gutiérrez, Montserrat; Caba, Mario; García-García, Fabio

    2014-06-18

    Environment enrichment conditions have important consequences on subsequent vulnerability to drugs of abuse. The present work examined whether exposure to an enriched environment (EE) decreases oral self-consumption of nicotine. Wistar rats were housed either in a standard environment (SE, four rats per standard cage) or in an EE during 60 days after weaning. EE consisted of eight animals housed in larger cages containing a variety of objects such as boxes, toys, and burrowing material that were changed three times a week. After this period, animals were exposed to nicotine for 3 weeks, where animals chose freely between water and a nicotine solution (0.006% in water). Fluid consumption was evaluated on a daily basis. ΔFosB immunohistochemistry in the prefrontal cortex and nucleus accumbens was also performed. Rats of the EE group consumed less nicotine solution (0.25±0.04 mg/kg/day) than SE rats (0.54±0.05 mg/kg/day). EE increased the number of ΔFos-immunoreactive (ΔFos-ir) cells in the nucleus accumbens core and shell and in the prefrontal cortex, compared with animals in the standard condition. However, rats exposed to nicotine in the SE showed higher ΔFos-ir cells in the nucleus accumbens core and shell than nonexposed rats. Nicotine consumption did not modify ΔFos-ir cells in these brain areas in EE animals. These results support the idea of a possible protective effect of the EE on reward sensitivity and the development of an addictive behavior to nicotine. PMID:24686135

  18. Structure and Physiological Actions of Ghrelin

    PubMed Central

    2013-01-01

    Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin. PMID:24381790

  19. Purification of rat and human ghrelins.

    PubMed

    Kojima, Masayasu; Hosoda, Hiroshi; Kangawa, Kenji

    2012-01-01

    Small synthetic molecules called growth hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through the GHS-R, a G-protein-coupled receptor highly expressed in the hypothalamus and pituitary. Using an orphan receptor strategy with a stable cell line expressing GHS-R, we purified endogenous ligands for GHS-R from rat and human stomach and named it "ghrelin," after a word root (ghre) in Proto-Indo-European languages meaning "grow." Ghrelin is a peptide hormone in which the third amino acid, usually a serine but in some species a threonine, is modified by a fatty acid; this modification is essential for ghrelin's activity. The main active form of rat ghrelin is 28-amino acid peptides with n-octanoyl modification. In rat stomach, a second type of ghrelin peptide was purified, identified as des-Gln14-ghrelin. With the exception of the deletion of Gln14, des-Gln14-ghrelin is identical to ghrelin, retaining the n-octanoic acid modification. Des-Gln14-ghrelin is encoded by an mRNA created by alternative splicing of the ghrelin gene. As in the rat, the major active form of human ghrelin is a 28-amino acid peptide with an n-octanoylated Ser3. However, in human stomach, several minor forms of human ghrelin peptides have been isolated. These can be classified into four groups by the type of acylation observed at Ser3 and into two groups by the amino acids in length. The discovery of ghrelin indicates that the release of GH from the pituitary and appetite stimulation might be regulated by ghrelin derived from the stomach. PMID:22975045

  20. Immunization against active ghrelin using virus-like particles for obesity treatment.

    PubMed

    Andrade, Sara; Pinho, Filipa; Ribeiro, Andreia M; Carreira, Marcos; Casanueva, Felipe F; Roy, Polly; Monteiro, Mariana P

    2013-01-01

    Ghrelin is a gut hormone that stimulates food intake. In physiological conditions, ghrelin plasma levels rise with fasting and decrease after meals. Obese individuals have low fasting ghrelin levels that rise after food restriction, which is pointed out as a reason for the difficulty in maintaining weight loss. Some bariatric surgery procedures prevent rise in ghrelin levels with weight loss and this has been hypothesised to contribute to the long-term success of the treatment. The main goal of this study was to develop a safe and effective anti-ghrelin vaccine for obesity, through the chemical conjugation of ghrelin with a virus like particle, namely NS1 protein tubules from the Bluetongue Virus (BTV) using a hetero-bifunctional cross linker. Male adult C57BL/6 mice, with a normal weight and with diet-induced obesity (DIO), were randomized into six weight matched groups (n=6/group) and each group of mice received three intra-peritoneal injections with two weeks intervals, containing either 75 μg of ghrelin- NS1 immunoconjugate, 75 μg of NS1 or PBS. Our data show that immunized animals present increasing titres of anti-ghrelin antibodies, while their cumulative food intake significantly decreased and energy expenditure was significantly enhanced, although there were no significative changes in body weight.Vaccinated DIO mice also displayed significant decrease of NPY gene expression in the basal hypothalamus reflecting a decrease in central orexigenic signals. This study suggests that this anti-ghrelin vaccine has a positive impact on energy homeostasis and may be an additional therapeutical tool to be used with diet and exercise for obesity treatment. PMID:23859551

  1. Fos-dependent induction of Chk1 protects osteoblasts from replication stress.

    PubMed

    Schulze, Jochen; Lopez-Contreras, Andres J; Uluçkan, Özge; Graña-Castro, Osvaldo; Fernandez-Capetillo, Oscar; Wagner, Erwin F

    2014-01-01

    Stable Fos expression in the osteoblast lineage results in the development of osteosarcomas (OS) in mice, yet the underlying mechanisms are poorly understood. Using a genetic system in which Fos expression can be induced in osteoblasts in a doxycycline-dependent manner and through subsequent RNA sequencing and gene set enrichment analysis, we were able to identify novel transcriptional targets of Fos in osteoblasts. These included a distinct activation of cellular response toward replication stress (RS), exemplified by a Fos-dependent induction of the RS-suppressing Chk1 kinase. Importantly, Fos expression protects osteoblasts from RS and DNA damage likely through upregulation of Chk1 and facilitates transformation by Ras/E1A oncogenes. These data reveal a novel function of Fos in safeguarding genome stability during replication, which is particularly relevant in conditions of oncogene-induced S-phase entry. PMID:24762558

  2. Fos-dependent induction of Chk1 protects osteoblasts from replication stress

    PubMed Central

    Schulze, Jochen; Lopez-Contreras, Andres J; Uluçkan, Özge; Graña-Castro, Osvaldo; Fernandez-Capetillo, Oscar; Wagner, Erwin F

    2014-01-01

    Stable Fos expression in the osteoblast lineage results in the development of osteosarcomas (OS) in mice, yet the underlying mechanisms are poorly understood. Using a genetic system in which Fos expression can be induced in osteoblasts in a doxycycline-dependent manner and through subsequent RNA sequencing and gene set enrichment analysis, we were able to identify novel transcriptional targets of Fos in osteoblasts. These included a distinct activation of cellular response toward replication stress (RS), exemplified by a Fos-dependent induction of the RS-suppressing Chk1 kinase. Importantly, Fos expression protects osteoblasts from RS and DNA damage likely through upregulation of Chk1 and facilitates transformation by Ras/E1A oncogenes. These data reveal a novel function of Fos in safeguarding genome stability during replication, which is particularly relevant in conditions of oncogene-induced S-phase entry. PMID:24762558

  3. Is there an effect of ghrelin/ghrelin analogs on cancer? A systematic review.

    PubMed

    Sever, Sakine; White, Donna L; Garcia, José M

    2016-09-01

    Ghrelin is a hormone with multiple physiologic functions, including promotion of growth hormone release, stimulation of appetite and regulation of energy homeostasis. Treatment with ghrelin/ghrelin-receptor agonists is a prospective therapy for disease-related cachexia and malnutrition. In vitro studies have shown high expression of ghrelin in cancer tissue, although its role including its impact in cancer risk and progression has not been established. We performed a systematic literature review to identify peer-reviewed human or animal in vivo original research studies of ghrelin, ghrelin-receptor agonists, or ghrelin genetic variants and the risk, presence, or growth of cancer using structured searches in PubMed database as well as secondary searches of article reference lists, additional reviews and meta-analyses. Overall, 45 (73.8%) of the 61 studies reviewed, including all 11 involving exogenous ghrelin/ghrelin-receptor agonist treatment, reported either a null (no statistically significant difference) or inverse association of ghrelin/ghrelin-receptor agonists or ghrelin genetic variants with cancer risk, presence or growth; 10 (16.7%) studies reported positive associations; and 6 (10.0%) reported both negative or null and positive associations. Differences in serum ghrelin levels in cancer cases vs controls (typically lower) were reported for some but not all cancers. The majority of in vivo studies showed a null or inverse association of ghrelin with risk and progression of most cancers, suggesting that ghrelin/ghrelin-receptor agonist treatment may have a favorable safety profile to use for cancer cachexia. Additional large-scale prospective clinical trials as well as basic bioscientific research are warranted to further evaluate the safety and benefits of ghrelin treatment in patients with cancer. PMID:27552970

  4. The kinase c-Src and the phosphatase TC45 coordinately regulate c-Fos tyrosine phosphorylation and c-Fos phospholipid synthesis activation capacity.

    PubMed

    Ferrero, G O; Velazquez, F N; Caputto, B L

    2012-07-12

    Our previous work showed that in T98G cells, a human glioblastoma multiforme-derived cell line, the association of c-Fos to the endoplasmic reticulum (ER) and consequently, the capacity of c-Fos to activate phospholipid synthesis, is regulated by the phosphorylation state of tyrosine (tyr) residues #10 and #30 of c-Fos. The small amount of c-Fos present in quiescent cells is tyr-phosphorylated, is dissociated from the ER membranes and does not activate phospholipid synthesis. However, on induction of the cell to re-enter growth, c-Fos expression is rapidly induced, it is found dephosphorylated, associated to ER membranes and activating phospholipid synthesis (Portal et al., 2007). Herein, using in vivo and in vitro experimental strategies, we show that the kinase c-Src is capable of phosphorylating tyr residues of c-Fos whereas the phosphatase TC45 T-cell protein-tyr phosphatase (TC-PTP) dephosphorylates them, thus enabling c-Fos/ER association and activation of phospholipid synthesis. Results also suggest that the regulation of the phosphorylation/dephosphorylation cycle of c-Fos occurs at the TC-PTP level: induction of cells to re-enter growth promotes the translocation of TC45 from a nuclear to a cytoplasmic location concomitant with its activation. Activated TC45 in its turn promotes dephosphorylation of pre-formed c-Fos, enabling cells to rapidly activate phospholipid synthesis to respond to its growth demands. PMID:22105363

  5. Gastric motor effects of ghrelin and growth hormone releasing peptide 6 in diabetic mice with gastroparesis

    PubMed Central

    Qiu, Wen-Cai; Wang, Zhi-Gang; Wang, Wei-Gang; Yan, Jun; Zheng, Qi

    2008-01-01

    AIM: To investigate the potential therapeutic significance of ghrelin and growth hormone releasing peptide 6 (GHRP-6) in diabetic mice with gastric motility disorders. METHODS: A diabetic mouse model was established by intraperitoneal (ip) injection of alloxan. Diabetic mice were injected ip with ghrelin or GHRP-6 (20-200 μg/kg), and the effects on gastric emptying were measured after intragastric application of phenol red. The effect of atropine, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) or D-Lys3-GHRP-6 (a growth hormone secretagogue receptor (GHS-R) antagonist) on the gastroprokinetic effect of ghrelin or GHRP-6 (100 μg/kg) was also investigated. The effects of ghrelin or GHRP-6 (0.01-10 μmol/L) on spontaneous or carbachol-induced contractile amplitude were also investigated in vitro, in gastric fundic circular strips taken from diabetic mice. The presence of growth hormone secretagogue receptor 1a transcripts in the fundic strips of diabetic mice was detected by reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: We established a diabetic mouse model with delayed gastric emptying. Ghrelin and GHRP-6 accelerated gastric emptying in diabetic mice with gastroparesis. In the presence of atropine or L-NAME, which delayed gastric emptying, ghrelin and GHRP-6 (100 μg/kg) failed to accelerate gastric emptying. D-Lys3-GHRP-6 also delayed gastric emptying induced by the GHS-R agonist. Ghrelin and GHRP-6 increased the carbachol-induced contractile amplitude in gastric fundic strips taken from diabetic mice. RT-PCR confirmed the presence of GHS-R mRNA in the strip preparations. CONCLUSION: Ghrelin and GHRP-6 increase gastric emptying in diabetic mice with gastroparesis, perhaps by activating peripheral cholinergic pathways in the enteric nervous system. PMID:18322959

  6. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  7. Small Molecule Screening Identifies Regulators of the Transcription Factor ΔFosB

    PubMed Central

    2012-01-01

    ΔFosB protein accumulates in the striatum in response to chronic administration of drugs of abuse, L-DOPA, or stress, triggering long lasting neural and behavioral changes that underlie aspects of drug addiction, abnormal involuntary movements (dyskinesia), and depression. ΔFosB binds AP-1 DNA consensus sequences found in promoters of many genes and can both repress or activate gene transcription. In the striatum, ΔFosB is thought to dimerize with JunD to form a functional transcription factor, though strikingly JunD does not accumulate in parallel. One explanation is that ΔFosB can recruit different partners, including itself, depending on the neuron type in which it is induced and the chronic stimulus, generating protein complexes with different effects on gene transcription. To develop chemical probes to study ΔFosB, a high-throughput screen was carried out to identify small molecules that modulate ΔFosB function. Two compounds with low micromolar activity, termed C2 and C6, disrupt the binding of ΔFosB to DNA via different mechanisms, and in in vitro assays stimulate ΔFosB-mediated transcription. In cocaine-treated mice, C2 significantly elevates mRNA levels of the AMPA glutamate receptor GluR2 subunit with specificity, a known target gene of ΔFosB that plays a role in drug addiction and endogenous resilience mechanisms. C2 and C6 show different activities against ΔFosB homodimers compared to ΔFosB/JunD heterodimers, suggesting that these compounds can be used as probes to study the contribution of different ΔFosB-containing complexes on the regulation of gene transcription in biological systems and to assess the utility of ΔFosB as a therapeutic target. PMID:22860224

  8. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...

  9. Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    1999-01-01

    Vestibular compensation is a central nervous system process resulting in recovery of functional movement and control following a unilateral vestibular lesion. Small pressure injections of phosphorothioate 20mer oligonucleotides were used to probe the role of the Fos transcription protein during vestibular compensation in the gerbil brainstem. During isoflurane gas anesthesia, antisense probes against the c-fos mRNA sequence were injected into the medial vestibular and prepositus nuclei unilaterally prior to a unilateral surgical labyrinthectomy. Anionic dyes, which did not interact with the oligonucleotides, were used to mark the injection site and help determine the extent of diffusion. The antiFos oligonucleotide injections reduced Fos expression at the injection site in neurons which normally express Fos after the lesion, and also affected circling behavior induced by hemilabyrinthectomy. With both ipsilateral and contralateral medial vestibular and prepositus nuclei injections, less ipsilateral and more contralateral circling was noted in animals injected with antiFos injections as compared to non-injected controls. The degree of change in these behaviors was dependent upon the side of the injection. Histologically, antiFos injections reduced the number of Fos immunolabeled neurons around the injection site, and increased Fos expression contralaterally. The correlation of the number of neurons with Fos expression to turning behavior was stronger for contralateral versus ipsilateral turns, and for neurons in the caudal and ipsilateral sub-regions of the medial vestibular and prepositus nuclei. The results are discussed in terms of neuronal firing activity versus translational activity based on the asymmetrical expression of the Fos inducible transcription factor in the medial vestibular and prepositus nuclei. Although ubiquitous in the brain, transcription factors like Fos can serve localized and specific roles in sensory-specific adaptive stimuli. Antisense

  10. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  11. Pituitary immunoexpression of ghrelin in anorexia nervosa.

    PubMed

    Rotondo, Fabio; Scheithauer, Bernd W; Syro, Luis V; Rotondo, Angelo; Kovacs, Kalman

    2012-12-01

    Ghrelin, an orexigenic hormone, is known to occur in the normal anterior pituitary where its physiologic role is uncertain but may include promotion of appetite. We sought to investigate anticipated differences in adenohypophysial and neurohypophysial ghrelin immunoexpression between normal subjects and patients with anorexia nervosa who had succumbed to complications of the disease. We hypothesized that the glands of anorexia nervosa patients would show relative diminished action in ghrelin content. The study included 12 autopsy-derived pituitaries of anorexia nervosa and 10 control glands. The streptavidin-biotin-peroxidase complex method and double immunohistochemical staining method were used to determine which cell types expressed both ghrelin and adenohypophysial hormones. Nontumorous control pituitaries were also obtained at autopsy. In anorexia nervosa and control adenohypophyses, ghrelin was mainly localized in somatotrophs and to a lesser extent in corticotrophs and gonadotrophs. Ghrelin accumulated within nerve fibers and Herring bodies in the neurohypophysis and pituitary stalk. In the controls, ghrelin expression was apparent in only a few cases. It was mild and only along few nerve fibers. In the adenohypophyses of anorexia nervosa patients, ghrelin was not depleted. It appears that in these patients, ghrelin is transported in excess from the hypothalamic neurohypophysial tract to the neurohypophysis. PMID:22081273

  12. Reversal of novelty-induced hippocampal c-Fos expression in GluA1 subunit-deficient mice by chronic treatment targeting glutamatergic transmission.

    PubMed

    Maksimovic, Milica; Aitta-aho, Teemu; Korpi, Esa R

    2014-12-15

    Malfunction of glutamate transmission is implicated in several neuropsychiatric disorders. Gria1-/- mouse line with knocked-out GluA1 subunits of ionotropic AMPA glutamate receptor displays several behavioural features of schizoaffective disorder. Typically, these mice show hyperactivity provoked by environmental novelty, which is attenuated after 4-week treatment with the standard mood-stabilisers lithium and valproate and the mood-stabilising anticonvulsants topiramate and lamotrigine (Maksimovic, M., Vekovischeva, O.Y., Aitta-Aho, T., Korpi, E.R., 2014. Chronic treatment with mood-stabilizers attenuates abnormal hyperlocomotion of GluA1-subunit deficient mice. PloS One. 9, e100188). Here, we complement our study by treating these mice chronically with perampanel, a novel non-competitive antagonist of AMPA receptors, for 4 weeks at the dose of 60 mg/kg diet, and found reduced locomotor hyperactivity in the Gria1-/- animals, while not affecting the wild-type littermates. To study the cellular mechanism by which chronic treatments with glutamate-modulating mood-stabilizing drugs alleviate this hyperactivity, we used the immediate early gene c-Fos protein expression as a marker of neuronal activity in the brain. Chronic lithium, valproate and topiramate blunted the c-Fos expression especially in the dorsal hippocampus of the Gria1-/- mice, with all of them reducing the number of c-Fos-positive cells in the CA3 region and valproate and topiramate also in the dentate gyrus (DG). Lamotrigine and perampanel treatments had the same effect in the all CA1, CA3 and DG subfields of the dorsal hippocampus of Gria1-/- mice. The results suggest that abnormal (hippocampal) glutamatergic transmission underlies the hyperactive phenotype of the Gria1-/- mice in a novel environment, and based on the efficacies of the present chronic drug treatments, this mouse model may serve as a predictive tool for studying novel mood-stabilisers. PMID:25446922

  13. Methyl Donor Deficiency Affects Fetal Programming of Gastric Ghrelin Cell Organization and Function in the Rat

    PubMed Central

    Bossenmeyer-Pourié, Carine; Blaise, Sébastien; Pourié, Grégory; Tomasetto, Catherine; Audonnet, Sandra; Ortiou, Sandrine; Koziel, Violette; Rio, Marie-Christine; Daval, Jean-Luc; Guéant, Jean-Louis; Beck, Bernard

    2010-01-01

    Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid–Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (−28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth. PMID:19948829

  14. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt.

    PubMed

    Kitazawa, Takio; Shimazaki, Misato; Kikuta, Ayumi; Yaosaka, Noriko; Teraoka, Hiroki; Kaiya, Hiroyuki

    2016-06-01

    Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians. PMID:26704852

  15. Combined Administration of Human Ghrelin and Human Growth Hormone Attenuates Organ Injury and Improves Survival in Aged Septic Rats

    PubMed Central

    Yang, Weng-Lang; Ma, Gaifeng; Zhou, Mian; Aziz, Monowar; Yen, Hao-Ting; Marvropoulos, Spyros A; Ojamaa, Kaie; Wang, Ping

    2016-01-01

    Sepsis is a major healthcare concern, especially in the elderly population. The use of an animal model closely resembling clinical conditions in this population may provide a better prediction in translating bench studies to the bedside. Ghrelin inhibits sympathetic nerve activity and inflammation in young septic animals; however, aged animals become hyporesponsive to ghrelin. In this study, we evaluated the efficacy of combined human ghrelin and growth hormone (GH) for sepsis treatment in the elderly utilizing a clinically relevant animal model of sepsis. Male Fischer 344 rats 22 to 24 months old were subjected to cecal ligation and puncture (CLP). Human ghrelin plus GH or vehicle (normal saline) was administered subcutaneously at 5 h after CLP. At 20 h after CLP, blood and tissue samples were collected for various analyses. Combined treatment attenuated serum levels of lactate, lactate dehydrogenase, creatinine, blood urea nitrogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in aged septic rats. The integrity of the microscopic structure in the lungs, liver and kidneys was well preserved after treatment. Expression of IL-6, TNF-α, macrophage inflammatory protein-2 and keratinocyte-derived chemokine as well as myeloperoxidase activity and caspase-3 activation were significantly reduced in the lungs and liver of treated rats. Moreover, treated rats showed an improvement in cardiovascular function and increased expression of ghrelin receptor and c-fos in the brainstem. Finally, the 10-d survival of aged septic rats was increased from 29% to 64% after combined treatment and was associated with less body weight loss. Our findings warrant the development of combined human ghrelin and GH for sepsis treatment in the geriatric population. PMID:26835699

  16. Ghrelin receptor controls obesity by fat burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence show that brown fat in the body produces heat to burn energy, thus prompting weight loss. Ghrelin is the only known hormone which increases appetite and promotes weight gain. We have reported that mice that lack the receptor which mediates the functions of ghrelin are lean. Our fu...

  17. Characterization of a Novel Ghrelin Cell Reporter Mouse

    PubMed Central

    Sakata, Ichiro; Nakano, Yoshihide; Osborne-Lawrence, Sherri; Rovinsky, Sherry A.; Lee, Charlotte E.; Perello, Mario; Anderson, Jason G.; Coppari, Roberto; Xiao, Guanghua; Lowell, Bradford B.; Elmquist, Joel K.; Zigman, Jeffrey M.

    2009-01-01

    Ghrelin is a hormone that influences many physiological processes and behaviors, such as food intake, insulin and growth hormone release, and a coordinated response to chronic stress. However, little is known about the molecular pathways governing ghrelin release and ghrelin cell function. To better study ghrelin cell physiology, we have generated several transgenic mouse lines expressing humanized Renilla reniformis green fluorescent protein (hrGFP) under the control of the mouse ghrelin promoter. hrGFP expression was especially abundant in the gastric oxyntic mucosa, in a pattern mirroring that of ghrelin immunoreactivity and ghrelin mRNA. hrGFP expression also was observed in the duodenum, but not in the brain, pancreatic islet, or testis. In addition, we used fluorescent activated cell sorting (FACS) to collect and partially characterize highly enriched populations of gastric ghrelin cells. We suggest that these novel ghrelin-hrGFP transgenic mice will serve as useful tools to better understand ghrelin cell physiology. PMID:19361544

  18. Ghrelin attenuates sepsis-associated acute lung injury oxidative stress in rats.

    PubMed

    Zeng, Mian; He, Wanmei; Li, Lijun; Li, Bin; Luo, Liang; Huang, Xubin; Guan, Kaipan; Chen, Weiling

    2015-04-01

    This study investigated the effect of ghrelin on oxidative stress in septic rat lung tissue. Male Sprague-Dawley rats were divided into sham-operation, sepsis, and ghrelin groups. Sepsis was induced by cecal ligation and puncture. Ghrelin was administered intraperitoneally at 3 and 15 h post-operation. Bronchoalveolar lavage was performed to collect alveolar macrophages (AMs). Inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) expression in alveolar macrophages and iNOS protein levels were measured by reverse transcription PCR (RT-PCR) and Western blot. Pulmonary pathology was analyzed and nitrotyrosine expression was examined by immunohistochemistry. Plasma superoxide dismutase (SOD) and lung wet/dry weight were measured. In the sepsis group, iNOS mRNA expression in AMs was 1.33 ± 0.05, 1.44 ± 0.08, and 1.57 ± 0.11 at 6, 12, and 20 h post-surgery, respectively, and were higher compared with the sham-operation group (p<0.05). No increase was observed at longer time points. iNOS mRNA expression in the sepsis group was lower compared with the ghrelin group (2.27 ± 0.37) (p<0.05) at 20 h post-surgery. iNOS protein levels in the ghrelin group (0.87 ± 0.03, p<0.05) were lower than in the sepsis group at 20 h. Ghrelin group pathological scores were lower than in the sepsis group (p<0.05). Plasma SOD was slightly non-significantly decreased in the ghrelin group. No difference was observed in lung wet/dry weight ratios between sepsis and ghrelin groups. iNOS mRNA expression in AMs was elevated between 6 and 20 h after cecal ligation and puncture (CLP), but did not progress. Ghrelin attenuated pulmonary iNOS protein expression and tended to increase plasma SOD activity. Ghrelin suppressed pulmonary nitrosative stress in septic rats, but did not improve lung wet/dry weight ratios. PMID:25037094

  19. Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs.

    PubMed

    Katare, Rajesh; Rawal, Shruti; Munasinghe, Pujika Emani; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Fujii, Yutaka; Dixit, Parul; Umetani, Keiji; Kangawa, Kenji; Shirai, Mikiyasu; Schwenke, Daryl O

    2016-02-01

    Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors. PMID:26672806

  20. Therapeutic potential of ghrelin in restricting-type anorexia nervosa.

    PubMed

    Hotta, Mari; Ohwada, Rina; Akamizu, Takashi; Shibasaki, Tamotsu; Kangawa, Kenji

    2012-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by a decrease in caloric intake and malnutrition. It is associated with a variety of medical morbidities as well as significant mortality. Nutritional support is of paramount importance to prevent impaired quality of life later in life in affected patients. Some patients with restricting-type AN who are fully motivated to gain body weight cannot increase their food intake because of malnutrition-induced gastrointestinal dysfunction. Chronicity of AN prevents participation in social activities and leads to increased medical expenses. Therefore, there is a pressing need for effective appetite-stimulating therapies for patients with AN. Ghrelin is the only orexigenic hormone that can be given intravenously. Intravenous infusion of ghrelin is reported to increase food intake and body weight in healthy subjects as well as in patients with poor nutritional status. Here, we introduce the results of a pilot study that investigated the effects of ghrelin on appetite, energy intake, and nutritional parameters in five patients with restricting-type AN, who are fully motivated to gain body weight but could not increase their food intake because of malnutrition-induced gastrointestinal dysfunction. PMID:22975066

  1. The glucagon-like peptide-1 analog exendin-4 antagonizes the effect of acyl ghrelin on the respiratory exchange ratio.

    PubMed

    Abtahi, Shayan; VanderJagt, Hayley L; Currie, Paul J

    2016-09-01

    The present study investigated the interaction of hypothalamic arcuate nucleus (ArcN) ghrelin and glucagon-like peptide-1 (GLP-1) signaling on metabolic function. Using indirect calorimetry, we first showed that acylated ghrelin, administered into the ArcN, significantly increased the respiratory exchange ratio (RER) in male Sprague-Dawley rats, representing a shift in fuel utilization toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with similar doses of des-acyl ghrelin failed to induce reliable changes in RER. We then examined the ability of exendin-4 (Ex4) to alter acyl ghrelin's energetic effects. Ex4 is a GLP-1 agonist and has been reported previously to suppress food intake in rodent models. Rats were treated with either systemic or direct ArcN Ex4, followed by acyl ghrelin. Our results indicated that both systemic and central injections of Ex4 alone significantly reduced RER and, importantly, Ex4 pretreatment reliably attenuated the impact of ghrelin on RER. Overall, these findings provide compelling evidence that ghrelin and GLP-1 signaling interact in the hypothalamic control of metabolic function. PMID:27454242

  2. Ghrelin signaling in heart remodeling of adult obese mice.

    PubMed

    Lacerda-Miranda, Glauciane; Soares, Vivian M; Vieira, Anatalia K G; Lessa, Juliana G; Rodrigues-Cunha, Alessandra C S; Cortez, Erika; Garcia-Souza, Erica P; Moura, Anibal S

    2012-05-01

    Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), has been suggested to be associated to obesity, insulin secretion, cardiovascular growth and homeostasis. GHS-R has been found in most of the tissues, and among the hormone action it is included the regulation of heart energy metabolism. Therefore, hypernutrition during early life leads to obesity, induces cardiac hypertrophy, compromises myocardial function, inducing heart failure in adulthood. We examined ghrelin signaling process in cardiac remodeling in these obese adult mice. The cardiomyocytes (cmy) of left ventricle were analyzed by light microscopy and stereology, content and phosphorilation of cardiac proteins: ghrelin receptor (growth hormone secretagogue receptor 1a, GHSR-1a), protein kinase B (AKT and pAKT), phosphatidil inositol 3 kinase (PI3K), AMP-activated protein kinase (AMPK and pAMPK) and actin were achieved by Western blotting. GHSR-1a gene expression was analyzed by Real Time-PCR. We observed hyperglycemia and higher liver and visceral fat weight in obese when compared to control group. Obese mice presented a marked increase in heart weight/tibia length, indicating an enlarged heart size or a remodeling process. Obese mice had increased GHSR-1a content and expression in the heart associated to PI3K content and increased AKT content and phosphorylation. In contrast, AMPK content and phosphorylation in heart was not different between experimental groups. Ghrelin plasma levels in obese group were decreased when compared to control group. Our data suggest that remodeled myocardial in adult obese mice overnourished in early life are associated with higher phosphorylation of GHSR-1a, PI3K and AKT but not with AMPK. PMID:22407166

  3. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways.

    PubMed

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P; Taub, Dennis D

    2014-12-20

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  4. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  5. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells

    SciTech Connect

    Riabowol, K.T.; Vosatka, R.J.; Ziff, E.B.; Lamb, N.J.; Feramisco, J.R.

    1988-04-01

    Transcription of the protooncogene c-fos is increased >10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G/sub o/) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, the authors microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, they found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G/sub o/ to G/sub 1/ of the cell cycle, its function is also required during the early G/sub 1/ portion of the cell cycle to allow subsequent DNA synthesis.

  6. A non-peptide oxytocin receptor agonist, WAY-267,464, alleviates novelty-induced hypophagia in mice: insights into changes in c-Fos immunoreactivity.

    PubMed

    Olszewski, Pawel K; Ulrich, Christine; Ling, Nicholas; Allen, Kerry; Levine, Allen S

    2014-09-01

    Anxiety caused by the novelty of food or of the environment where the food is presented leads to suppression of consumption (hyponeophagia) reflected by an increased latency to begin feeding and decreased food intake. Studies suggest that some anxiolytics, mainly benzodiazepines and SSRIs, resolve hyponeophagia. Though the neurohormone oxytocin (OT) affects both anxiety responsiveness and feeding-related homeostasis, the link between OT and hyponeophagia has not been established. The current experiments examined the effect of OT receptor stimulation on hyponeophagia in mice and associated changes in brain activity. We found that the OT receptor agonist, WAY-267,464, at 10 and 30 mg/kg b. wt. IP, reduced the latency to approach food and increased the amount of food eaten in hyponeophagia tests differing in animals' motivation to eat (hunger, reward) and the anxiogenic context of environmental novelty (illumination and type of the cage). This effect was abolished by the pretreatment with the OT receptor antagonist, L-368,899, at 10mg/kg b. wt. The antagonist also suppressed social transmission of preference for novel food. Mice subjected to novelty conditions causing hypophagia showed significant changes in c-Fos immunoreactivity in the hippocampus, lateral septum, cingulate and piriform cortex and in the bed nucleus of the stria terminalis, lateral division, posterolateral part (STLP). The pretreatment with WAY-267,464 restored c-Fos levels in the STLP to values detected in control animals subjected to non-anxiogenic conditions. We conclude that OT plays a role in shaping the magnitude of the novelty stress-provoked hypophagia and the activity of the relevant neural networks. PMID:25038444

  7. Alcohol consumption increases locomotion in an open field and induces Fos-immunoreactivity in reward and approach/withdrawal-related neurocircuitries.

    PubMed

    Wscieklica, Tatiana; de Barros Viana, Milena; Le Sueur Maluf, Luciana; Pouza, Kathlein Cristiny Peres; Spadari, Regina Célia; Céspedes, Isabel Cristina

    2016-02-01

    Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take the drug, loss of control in limiting intake and, eventually, the emergence of a negative emotional state when access to the drug is prevented. Both dopamine and corticotropin-releasing factor (CRF)-mediated systems seem to play important roles in the modulation of alcohol abuse and dependence. The present study investigated the effects of alcohol consumption on anxiety and locomotor parameters and on the activation of dopamine and CRF-innervated brain regions. Male Wistar rats were given a choice of two bottles for 31 days, one containing water and the other a solution of saccharin + alcohol. Control animals only received water and a solution of 0.2% saccharin. On the 31st day, animals were tested in the elevated plus-maze and open field, and euthanized immediately after the behavioral tests. An independent group of animals was treated with ethanol and used to measure blood ethanol concentration. Results showed that alcohol intake did not alter behavioral measurements in the plus-maze, but increased the number of crossings in the open field, an index of locomotor activity. Additionally, alcohol intake increased Fos-immunoreactivity (Fos-ir) in the prefrontal cortex, in the shell region of the nucleus accumbens, in the medial and central amygdala, in the bed nucleus of the stria terminalis, in the septal region, and in the paraventricular and dorsomedial hypothalamus, structures that have been linked to reward and to approach/withdrawal behavior. These observations might be relevant to a better understanding of the behavioral and physiological alterations that follow alcohol consumption. PMID:26786746

  8. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  9. Ghrelin: central and peripheral implications in anorexia nervosa.

    PubMed

    Méquinion, Mathieu; Langlet, Fanny; Zgheib, Sara; Dickson, Suzanne; Dehouck, Bénédicte; Chauveau, Christophe; Viltart, Odile

    2013-01-01

    Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated. PMID:23549309

  10. Ghrelin: Central and Peripheral Implications in Anorexia Nervosa

    PubMed Central

    Méquinion, Mathieu; Langlet, Fanny; Zgheib, Sara; Dickson, Suzanne; Dehouck, Bénédicte; Chauveau, Christophe; Viltart, Odile

    2012-01-01

    Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated. PMID:23549309