Sample records for ghrelin induces fos

  1. Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity

    PubMed Central

    Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic

  2. Anti-ghrelin Spiegelmer inhibits exogenous ghrelin-induced increases in food intake, hoarding, and neural activation, but not food deprivation-induced increases

    PubMed Central

    Teubner, Brett J. W.

    2013-01-01

    Circulating concentrations of the stomach-derived “hunger-peptide” ghrelin increase in direct proportion to the time since the last meal. Exogenous ghrelin also increases food intake in rodents and humans, suggesting ghrelin may increase post-fast ingestive behaviors. Food intake after food deprivation is increased by laboratory rats and mice, but not by humans (despite dogma to the contrary) or by Siberian hamsters; instead, humans and Siberian hamsters increase food hoarding, suggesting the latter as a model of fasting-induced changes in human ingestive behavior. Exogenous ghrelin markedly increases food hoarding by ad libitum-fed Siberian hamsters similarly to that after food deprivation, indicating sufficiency. Here, we tested the necessity of ghrelin to increase food foraging, food hoarding, and food intake, and neural activation [c-Fos immunoreactivity (c-Fos-ir)] using anti-ghrelin Spiegelmer NOX-B11–2 (SPM), an l-oligonucleotide that specifically binds active ghrelin, inhibiting peptide-receptor interaction. SPM blocked exogenous ghrelin-induced increases in food hoarding the first 2 days after injection, and foraging and food intake at 1–2 h and 2–4 h, respectively, and inhibited hypothalamic c-Fos-ir. SPM given every 24 h across 48-h food deprivation inconsistently inhibited food hoarding after refeeding and c-Fos-ir, similarly to inabilities to do so in laboratory rats and mice. These results suggest that ghrelin may not be necessary for food deprivation-induced foraging and hoarding and neural activation. A possible compensatory response, however, may underlie these findings because SPM treatment led to marked increases in circulating ghrelin concentrations. Collectively, these results show that SPM can block exogenous ghrelin-induced ingestive behaviors, but the necessity of ghrelin for food deprivation-induced ingestive behaviors remains unclear. PMID:23804279

  3. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice.

    PubMed

    Pirnik, Z; Bundziková, J; Holubová, M; Pýchová, M; Fehrentz, J A; Martinez, J; Zelezná, B; Maletínská, L; Kiss, A

    2011-11-01

    Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in

  4. Photoperiodic Regulation of the Orexigenic Effects of Ghrelin in Siberian Hamsters

    PubMed Central

    Bradley, Sean P.; Pattullo, Lucia M.; Patel, Priyesh N.; Prendergast, Brian J.

    2010-01-01

    Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short day lengths (SD). These experiments examined whether SD reductions in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake. PMID:20600050

  5. Divergent neuronal circuitries underlying acute orexigenic effects of peripheral or central ghrelin: critical role of brain accessibility

    PubMed Central

    Cabral, Agustina; Valdivia, Spring; Fernandez, Gimena; Reynaldo, Mirta; Perello, Mario

    2014-01-01

    Ghrelin is an octanoylated peptide hormone that potently and rapidly increases food intake. The orexigenic action of ghrelin involves the hypothalamic arcuate nucleus (ARC), which is accessible to plasma ghrelin and expresses high levels of the ghrelin receptor. Local administration of ghrelin in a variety of other brain nuclei also increases food intake. It is currently unclear, however, if these non-ARC ghrelin brain targets are impacted by physiological increases of plasma ghrelin. Thus, the current study was designed to clarify which ghrelin brain targets participate in the short-term orexigenic actions of ghrelin. First, c-Fos induction into mouse brains centrally or peripherally treated with ghrelin was analyzed. It was confirmed that peripherally administered ghrelin dose dependently increases food intake and mainly activates c-Fos in ARC neurons. In contrast, centrally administered ghrelin activates c-Fos in a larger number of brain nuclei. To determine which nuclei are directly accessible to ghrelin, mice were centrally or peripherally injected with a fluorescent ghrelin tracer. It was found that peripherally injected tracer mainly accesses the ARC while centrally injected tracer reaches most brain areas known to express ghrelin receptors. Following that, ghrelin effects in ARC-ablated mice were tested and it was found that these mice failed to increase food intake in response to peripherally administered ghrelin but fully responded to centrally administered ghrelin. ARC-ablated mice showed similar patterns of ghrelin-induced c-Fos expression as seen in control mice with the exception of the ARC, where no c-Fos was found. Thus, peripheral ghrelin mainly accesses the ARC, which is required for the orexigenic effects of the hormone. Central ghrelin accesses a variety of nuclei, which can mediate the orexigenic effects of the hormone even in the absence of an intact ARC. PMID:24888783

  6. A natural variant of obestatin, Q90L, inhibits ghrelin's action on food intake and GH secretion and targets NPY and GHRH neurons in mice.

    PubMed

    Hassouna, Rim; Zizzari, Philippe; Viltart, Odile; Yang, Seung-Kwon; Gardette, Robert; Videau, Catherine; Badoer, Emilio; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons. Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59-77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic transmission onto GHRH neurons. These data support

  7. A Natural Variant of Obestatin, Q90L, Inhibits Ghrelin's Action on Food Intake and GH Secretion and Targets NPY and GHRH Neurons in Mice

    PubMed Central

    Hassouna, Rim; Zizzari, Philippe; Viltart, Odile; Yang, Seung-Kwon; Gardette, Robert; Videau, Catherine; Badoer, Emilio; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    Background Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons. Methodology/Principal findings Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59–77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic

  8. Fourth ventricle injection of ghrelin decreases angiotensin II-induced fluid intake and neuronal activation in the paraventricular nucleus of the hypothalamus.

    PubMed

    Plyler, Kimberly S; Daniels, Derek

    2017-09-01

    Ghrelin acts in the CNS to decrease fluid intake under a variety of dipsogenic and natriorexigenic conditions. Previous studies on this topic, however, focused on the forebrain as a site of action for this effect of ghrelin. Because the hindbrain contains neural substrates that are capable of mediating the well-established orexigenic effects of ghrelin, the current study tested the hypothesis that ghrelin applied to the hindbrain also would affect fluid intake. To this end, water and saline intakes were stimulated by central injection of angiotensin II (AngII) in rats that also received injections of ghrelin (0.5μg/μl) into either the lateral or fourth ventricle. Ghrelin injected into either ventricle reduced both water and 1.8% NaCl intake that was stimulated by AngII. The nature of the intake effect revealed some differences between the injection sites. For example, forebrain application of ghrelin reduced saline intake by a reduction in both the number of licking bursts and the size of each licking burst, but hindbrain application of ghrelin had a more selective effect on burst number. In an attempt to elucidate a brain structure in which hindbrain-administered ghrelin and forebrain-administered AngII interact to cause the ingestive response, we used Fos-immunohistochemistry in rats given the treatments used in the behavioral experiments. Although several brain areas were found to respond to either ghrelin or AngII, of the sites examined, only the paraventricular nucleus of the hypothalamus (PVN) emerged as a potential site of interaction. Specifically, AngII treatment caused expression of Fos in the PVN that was attenuated by concomitant treatment with ghrelin. These experiments provide the novel finding that the hindbrain contains elements that can respond to ghrelin and cause decreases in AngII-induced fluid intake, and that direct actions by ghrelin on forebrain structures is not necessary. Moreover, these studies suggest that the PVN is an important site

  9. Peripheral α2-β1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats

    PubMed Central

    Yakabi, Koji; Harada, Yumi; Takayama, Kiyoshige; Ro, Shoki; Ochiai, Mitsuko; lizuka, Seiichi; Hattori, Tomohisa; Wang, Lixin; Taché, Yvette

    2018-01-01

    Summary The autonomic nervous system (ANS) conveys neuronal input from the brain to the stomach. We investigated mechanisms through which urocortin 1 (UCN1) injected intracerebroventricularly (ICV, 300 pmol/rat) inhibits circulating ghrelin in rats. This was achieved by assessing (1) the induction of c-fos gene expression as a marker of neuronal activation in specific hypothalamic and caudal brainstem regulating ANS; (2) the influence of vagotomy and pharmacological blockade of central and peripheral α- and β-adrenergic receptor (AR) on ICV UCN1 -induced reduction of plasma ghrelin levels (determined by ELISA); and (3) the relevance of this pathway in the feeding response to a fast in rats. UCN1 increased c-fos mRNA expression in key brain sites influencing sympathetic activity namely the hypothalamic paraventricular and ventromedial nuclei, locus coeruleus, nucleus of the solitary tract, and rostral ventrolateral medulla, by 16-, 29-, 6-, 37-, and 13-fold, respectively. In contrast, the dorsal motor nucleus of the vagus had little c-fos mRNA expression and ICV UCN1 induced a similar reduction in acylated ghrelin in the sham-operated (31%) and vagotomized (41%) rats. An intraperitoneal (IP) injection of either a non-selective α- or selective α2-AR antagonist reduced, while a selective α2-AR agonist enhanced ICV UCN1-induced suppression of plasma acylated ghrelin levels. In addition, IP injection of a non-selective β- or selective β1-AR agonist blocked, and selective β1-AR antagonist augmented, the ghrelin response to ICV UCN1. The IP injections of a selective α1- or non-selective β or β2-AR antagonists, or any of the pretreatments given ICV had no effect. ICV UCN1 reduced the 2-h food intake in response to a fast by 80%, and this effect was partially prevented by a selective α2-AR antagonist. These data suggest that ICV UCN1 reduces plasma ghrelin mainly through the brain sympathetic component of the ANS and peripheral AR specifically α2-AR activation

  10. C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum.

    PubMed

    Robertson, G S; Tetzlaff, W; Bedard, A; St-Jean, M; Wigle, N

    1995-07-01

    The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively

  11. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr +/+ mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr -/- mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr -/- mice. In both Ghsr +/+ and Ghsr -/- mice, blocking GABA A receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  12. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  13. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  14. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    PubMed

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Hypothalamic ghrelin signalling mediates olanzapine-induced hyperphagia and weight gain in female rats.

    PubMed

    Zhang, Qingsheng; He, Meng; Deng, Chao; Wang, Hongqin; Lian, Jiamei; Huang, Xu-Feng

    2014-05-01

    Excessive weight gain is a major metabolic side effect of second-generation antipsychotics (SGAs) in the treatment of schizophrenia. Ghrelin is an orexigenic hormone secreted mainly from the stomach, which can induce weight gain and hyperphagia through regulating neuropeptides at the hypothalamus. Accumulating evidence implicates a relationship between ghrelin signalling and SGA-induced hyperphagia and weight gain. We report that olanzapine (a SGA with high weight gain liability) potently and time-dependently up-regulate ghrelin and ghrelin signalling, leading to hyperphagia and weight gain in female Sprague-Dawley rats, an action reversed by i.c.v. injection of a ghrelin receptor (GHS-R1a) antagonist. These findings indicate a crucial role of ghrelin signalling in hyperphagia induced by olanzapine, supporting the notion that GHS-R1a antagonist may be useful for pharmacological treatment of SGA-induced weight gain resulted from hyperphagia.

  16. Ghrelin-induced adiposity is independent of orexigenic effects

    PubMed Central

    Perez-Tilve, Diego; Heppner, Kristy; Kirchner, Henriette; Lockie, Sarah H.; Woods, Stephen C.; Smiley, David L.; Tschöp, Matthias; Pfluger, Paul

    2011-01-01

    Ghrelin is a hormone produced predominantly by the stomach that targets a number of specific areas in the central nervous system to promote a positive energy balance by increasing food intake and energy storage. In that respect, similarities exist with the effects of consuming a high-fat diet (HFD), which also increases caloric intake and the amount of stored calories. We determined whether the effects of ghrelin on feeding and adiposity are influenced by the exposure to an HFD. Chronic intracerebroventricular ghrelin (2.5 nmol/d) increased feeding in lean rats fed a low-fat control diet (CD) [192±5 g (ghrelin+CD) vs. 152±5 g (control i.c.v. saline+CD), P<0.001], but the combination of ghrelin plus HFD did not result in significantly greater hyperphagia [150±7 g (ghrelin+HFD) vs. 136±4 g (saline+HFD)]. Despite failing to increase food intake in rats fed the HFD, ghrelin nonetheless increased adiposity [fat mass increase of 14±2 g (ghrelin+HFD) vs. 1±1 g (saline+HFD), P<0.001] up-regulating the gene expression of lipogenic enzymes in white adipose tissue. Our findings demonstrate that factors associated with high-fat feeding functionally interact with pathways regulating the effect of ghrelin on food intake. We conclude that ghrelin's central effects on nutrient intake and nutrient partitioning can be separated and suggest an opportunity to identify respective independent neuronal pathways.—Perez-Tilve, D., Heppner, K., Kirchner, H., Lockie, S. H., Woods, S. C., Smiley, D. L., Tschöp, M., and Pfluger, P. Ghrelin-induced adiposity is independent of orexigenic effects. PMID:21543764

  17. Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity.

    PubMed

    Al Massadi, Omar; López, Miguel; Tschöp, Matthias; Diéguez, Carlos; Nogueiras, Ruben

    2017-03-01

    Ghrelin is a multifaceted regulator of metabolism. Ghrelin regulates energy balance in the short term via induction of appetite and in the long term via increased body weight and adiposity. Recently, several central pathways modulating the metabolic actions of ghrelin were unmasked, and it was shown to act through different hypothalamic nuclei to induce feeding. Ghrelin also modulates glucose homeostasis, but the central mechanisms responsible for this action have not been studied in detail. Although ghrelin also acts through extrahypothalamic areas to promote feeding, this review specifically dissects hypothalamic control of ghrelin's orexigenic and adipogenic actions and presents current understanding of the intracellular ghrelin orexigenic pathways, including their dependence on other relevant systems implicated in energy balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  19. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    PubMed

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Unique gene alterations are induced in FACS-purified Fos-positive neurons activated during cue-induced relapse to heroin seeking.

    PubMed

    Fanous, Sanya; Guez-Barber, Danielle H; Goldart, Evan M; Schrama, Regina; Theberge, Florence R M; Shaham, Yavin; Hope, Bruce T

    2013-01-01

    Cue-induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non-activated neurons during cue-induced heroin seeking after prolonged withdrawal. We trained rats to self-administer heroin for 10 days (6 h/day) and assessed cue-induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent-activated cell sorting (FACS) to purify Fos-positive and Fos-negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos-immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos-positive, but not Fos-negative, neurons. In support of these findings, double-label immunohistochemistry indicated substantial coexpression of neuropeptide Y (NPY)- and Arc-immunoreactivity in Fos-positive neurons. Our data indicate that cue-induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non-activated neurons. Published 2012. This article is a US Government work and is in the public domain in the USA.

  1. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos

    PubMed Central

    Briso, Eva M.; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F.

    2013-01-01

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  2. Ghrelin expression in human and rat fetal lungs and the effect of ghrelin administration in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge

    2006-04-01

    Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.

  3. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    PubMed

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties. PMID:26713317

  5. Ghrelin mediates stress-induced food-reward behavior in mice.

    PubMed

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  6. Ghrelin enhances cue-induced bar pressing for high fat food.

    PubMed

    St-Onge, Veronique; Watts, Alexander; Abizaid, Alfonso

    2016-02-01

    Ghrelin is an orexigenic hormone produced by the stomach that acts on growth hormone secretagogue receptors (GHSRs) both peripherally and centrally. The presence of GHSRs in the ventral tegmental area (VTA) suggests that ghrelin signaling at this level may increase the incentive value of palatable foods as well as other natural and artificial rewards. The present investigation sought to determine if ghrelin plays a role in relapse to such foods following a period of abstinence. To achieve this, thirty-six male Long Evans rats were trained to press a lever to obtain a high fat chocolate food reward on a fixed ratio schedule of 1. Following an extinction period during which lever presses were not reinforced, rats were implanted with a cannula connected to a minipump that continuously delivered ghrelin, a GHSR antagonist ([d-Lys-3]-GHRP-6), or saline in the VTA for 14days. One week later, food reward-associated cues, food reward priming, and an overnight fast were used to induce reinstatement of the lever pressing response. Our results indicate that intra-VTA ghrelin enhances cue-induced reinstatement of responses for palatable food pellets. To the extent that the reinstatement paradigm is considered a valid model of relapse in humans, this suggests that ghrelin signaling facilitates relapse to preferred foods in response to food cues through GHSR signaling in the VTA. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Protective Effect of Unacylated Ghrelin on Compression-Induced Skeletal Muscle Injury Mediated by SIRT1-Signaling

    PubMed Central

    Ugwu, Felix N.; Yu, Angus P.; Sin, Thomas K.; Tam, Bjorn T.; Lai, Christopher W.; Wong, S. C.; Siu, Parco M.

    2017-01-01

    Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor). Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling. PMID:29225581

  8. The effects of ginsenoside Rb1 on endothelial damage and ghrelin expression induced by hyperhomocysteine.

    PubMed

    Xu, Zhiwei; Lan, Taohua; Wu, Weikang; Wu, Yiling

    2011-01-01

    Studies have indicated that ginsenoside Rb1 and ghrelin could both prevent homocysteine (Hcy)-induced endothelial dysfunction through the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) mechanism. This study investigated whether endogenous ghrelin mediates the endothelial protection of ginsenosidee Rb1 through in vitro and in vivo experiments. Rats were randomized into a control group, a hyperhomocysteine (HHcy) model group with a high methionine diet, a ginsenosides (GS) group, and HHcy plus GS group. Plasma ghrelin was detected by enzyme-linked immunosorbent assay. Aortic rings for control and HHcy groups were treated with ghrelin or not. Endothelium-dependent vasodilatation function was evaluated by the aortic ring assay, and the structural changes were visualized by hematoxylin and eosin staining. Human umbilical vein endothelial cells (HUVECs) were cultured, and the experimental conditions were optimized according to NO production. After treatment, the NO, ghrelin, and von Willebrand factor (vWF) levels in the media were detected and analyzed with linear regression. Ghrelin and eNOS expression were observed by cell immunohistochemical staining. Ghrelin receptor antagonist was used to detect the mechanism of ginsenoside Rb1 on NO production, which was reflected by diacetylated 4,5-diaminofluorescein-2 diacetate fluorescence. In vivo experiments demonstrated that plasma ghrelin levels in the HHcy group were significantly elevated vs controls (P < .05) and were significantly increased in the HHcy plus GS group (P < .01). Compared with control, endothelium-dependent vasodilatation function was greatly reduced in the HHcy group (P < .01), which was significantly increased in HHcy plus ghrelin group compared with HHcy group (P < .01). The arterial walls of HHcy group exhibited characteristic pathologic changes, which were repaired in HHcy plus ghrelin group. In vivo, compared with Hcy (200 μM) group, HUVECs pretreated with ginsenoside Rb1 (10 μM) for 30

  9. d-LSD-induced c-Fos expression occurs in a population of oligodendrocytes in rat prefrontal cortex.

    PubMed

    Reissig, Chad J; Rabin, Richard A; Winter, Jerrold C; Dlugos, Cynthia A

    2008-03-31

    Induction of mRNA or protein for immediate-early genes, such as c-fos, is used to identify brain areas, specific cell types, and neuronal circuits that become activated in response to various stimuli including psychoactive drugs. The objective of the present study was to identify the cell types in the prefrontal cortex in which lysergic acid diethylamide (d-LSD) induces c-Fos expression. Systemic administration of d-LSD resulted in a dose-dependent increase in c-Fos immunoreactivity. Although c-Fos-positive cells were found in all cortical layers, they were most numerous in layers III, IV, and V. d-LSD-induced c-Fos immunoreactivity was found in cells co-labeled with anti-neuron-specific enolase or anti-oligodendrocyte Oligo1. The Oligo1-labeled cells had small, round bodies and nuclear diameters characteristic of oligodendrocytes. Studies using confocal microscopy confirmed colocalization of c-Fos-labeled nuclei in NeuN-labeled neurons. Astrocytes and microglia labeled with glial fibrillary acidic protein antibody and OX-42 antibody, respectively, did not display LSD-induced c-Fos expression. Pyramidal neurons labeled with anti-neurofilament antibody also did not show induction of c-Fos immunoreactivity after systemic d-LSD administration. The present study demonstrates that d-LSD induced expression of c-Fos in the prefrontal cortex occurs in subpopulations of neurons and in oligodendrocytes, but not in pyramidal neurons, astrocytes, and microglia.

  10. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activatedmore » the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.« less

  11. Ghrelin-reactive immunoglobulins and anxiety, depression and stress-induced cortisol response in adolescents. The TRAILS study.

    PubMed

    François, Marie; Schaefer, Johanna M; Bole-Feysot, Christine; Déchelotte, Pierre; Verhulst, Frank C; Fetissov, Sergueï O

    2015-06-03

    Ghrelin, a hunger hormone, has been implicated in the regulation of stress-response, anxiety and depression. Ghrelin-reactive immunoglobulins (Ig) were recently identified in healthy and obese humans showing abilities to increase ghrelin's stability and orexigenic effects. Here we studied if ghrelin-reactive Ig are associated with anxiety and depression and with the stress-induced cortisol response in a general population of adolescents. Furthermore, to test the possible infectious origin of ghrelin-reactive Ig, their levels were compared with serum IgG against common viruses. We measured ghrelin-reactive IgM, IgG and IgA in serum samples of 1199 adolescents from the Dutch TRAILS study and tested their associations with 1) anxiety and depression symptoms assessed with the Youth Self-Report, 2) stress-induced salivary cortisol levels and 3) IgG against human herpesvirus 1, 2, 4 and 6 and Influenza A and B viruses. Ghrelin-reactive IgM and IgG correlated positively with levels of antibodies against Influenza A virus. Ghrelin-reactive IgM correlated negatively with antibodies against Influenza B virus. Ghrelin-reactive IgM correlated positively with anxiety scores in girls and ghrelin-reactive IgG correlated with stress-induced cortisol secretion, but these associations were weak and not significant after correction for multiple testing. These data indicate that production of ghrelin-reactive autoantibodies could be influenced by viral infections. Serum levels of ghrelin-reactive autoantibodies probably do not play a role in regulating anxiety, depression and the stress-response in adolescents from the general population. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice.

    PubMed

    Garcia, Jose M; Scherer, Thomas; Chen, Ji-an; Guillory, Bobby; Nassif, Anriada; Papusha, Victor; Smiechowska, Joanna; Asnicar, Mark; Buettner, Christoph; Smith, Roy G

    2013-09-01

    Cachexia, defined as an involuntary weight loss ≥ 5%, is a serious and dose-limiting side effect of chemotherapy that decreases survival in cancer patients. Alterations in lipid metabolism are thought to cause the lipodystrophy commonly associated with cachexia. Ghrelin has been proposed to ameliorate the alterations in lipid metabolism due to its orexigenic and anabolic properties. However, the mechanisms of action through which ghrelin could potentially ameliorate chemotherapy-associated cachexia have not been elucidated. The objectives of this study were to identify mechanisms by which the chemotherapeutic agent cisplatin alters lipid metabolism and to establish the role of ghrelin in reversing cachexia. Cisplatin-induced weight and fat loss were prevented by ghrelin. Cisplatin increased markers of lipolysis in white adipose tissue (WAT) and of β-oxidation in liver and WAT and suppressed lipogenesis in liver, WAT, and muscle. Ghrelin prevented the imbalance between lipolysis, β-oxidation, and lipogenesis in WAT and muscle. Pair-feeding experiments demonstrated that the effects of cisplatin and ghrelin on lipogenesis, but not on lipolysis and β-oxidation, were due to a reduction in food intake. Thus, ghrelin prevents cisplatin-induced weight and fat loss by restoring adipose tissue functionality. An increase in caloric intake further enhances the anabolic effects of ghrelin.

  13. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1999-01-01

    In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

  14. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress.

    PubMed

    Gastón, M S; Cid, M P; Salvatierra, N A

    2017-03-01

    Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABA A receptor competitive antagonist) but not by diazepam (a GABA A receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABA A receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABA A receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABA A receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Repeated asenapine treatment does not participate in the mild stress induced FosB/ΔFosB expression in the rat hypothalamic paraventricular nucleus neurons.

    PubMed

    Kiss, Alexander; Majercikova, Zuzana

    2017-02-01

    Effect of repeated asenapine (ASE) treatment on FosB/ΔFosB expression was studied in the hypothalamic paraventricular nucleus (PVN) of male rats exposed to chronic mild stress (CMS) for 21days. Our intention was to find out whether repeated ASE treatment for 14days may: 1) induce FosB/ΔFosB expression in the PVN; 2) activate selected PVN neuronal phenotypes, synthesizing oxytocin (OXY), vasopressin (AVP), corticoliberin (CRH) or tyrosine hydroxylase (TH); and 3) interfere with the impact of CMS. Control, ASE, CMS, and CMS+ASE treated groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. From the 7th day of CMS, rats received ASE (0.3mg/kg) or saline (300μl/rat) subcutaneously, twice a day for 14days. They were sacrificed on the day 22nd (16-18h after last treatments). FosB/ΔFosB was visualized with avidin biotin peroxidase complex and OXY, AVP, CRH or TH antibodies by fluorescent dyes. Saline and ASE did not promote FosB/ΔFosB expression in the PVN. CMS and CMS+ASE elicited FosB/ΔFosB-expression in the PVN, whereas, ASE did not augment or attenuate FosB/ΔFosB induction elicited by CMS. FosB/ΔFosB-CRH occurred after CMS and CMS+ASE treatments in the PVN middle sector, while FosB/ΔFosB-AVP and FosB/ΔFosB-OXY after CMS and CMS+ASE treatments in the PVN posterior sector. FosB/ΔFosB-TH colocalization was rare. Larger FosB/ΔFosB profiles, running above the PVN, did not show any colocalizations. The study provides an anatomical/functional knowledge about an unaccented nature of prolonged ASE treatment at the level of PVN and excludes its positive or negative interplay with CMS effect. Data indicate that long-lasting ASE treatment might not act as a stressor acting at the PVN level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats.

    PubMed

    Zhao, Yuxing; Shen, Zhaoxing; Zhang, Dongling; Luo, Huiqiong; Chen, Jinliang; Sun, Yue; Xiao, Qian

    2017-06-01

    Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.

  17. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior

    PubMed Central

    Frenois, François; Moreau, Maïté; Connor, Jason O’; Lawson, Marc; Micon, Charlotte; Lestage, Jacques; Kelley, Keith W.; Dantzer, Robert; Castanon, Nathalie

    2007-01-01

    Proinflammatory cytokines induce both sickness behavior and depression, but their respective neurobiological correlates are still poorly understood. The aim of the present study was therefore to identify in mice the neural substrates of sickness and depressive-like behavior induced by lipopolysaccharide (LPS, 830 μg/kg, intraperitoneal). LPS-induced depressive-like behavior was dissociated from LPS-induced sickness by testing mice either at 6 h (at which time sickness was expected to be maximal) or at 24 h post-LPS (at which time sickness was expected to be minimal and not to bias the measurement of depressive-like behavior). Concurrently, the expression of acute and chronic cellular reactivity markers (c-Fos and FosB/ΔFosB respectively) was mapped by immunohistochemistry at these two time points. In comparison to saline, LPS decreased motor activity in a new cage at 6 but not at 24 h. In contrast, the duration of immobility in the tail suspension test was increased at both 6 and 24 h. This dissociation between decreased motor activity and depressive-like behavior was confirmed at 24 h post-LPS in the forced swim test. LPS also decreased sucrose consumption at 24 and 48 h, despite normal food and water consumption by that time. At 24 h post-LPS, LPS-induced depressive-like behavior was associated with a delayed cellular activity (as assessed by FosB/ΔFosB immunostaining) in specific brain structures, particularly within the extended amygdala, hippocampus and hypothalamus, whereas c-Fos labeling was markedly decreased by that time in all the brain areas at 6 h post-LPS. These results provide the first evidence in favor of a functional dissociation between the brain structures that underlie cytokine-induced sickness behavior and cytokine-induced depressive-like behavior, and provide important cues about the neuroanatomical brain circuits through which cytokines could have an impact on affect. PMID:17482371

  18. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons*

    PubMed Central

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.; Lluís, Carme; Ferré, Sergi

    2016-01-01

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. PMID:27129257

  19. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [{sup 125}I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmedmore » that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord.« less

  20. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear

    PubMed Central

    Meyer, Retsina M.; Burgos-Robles, Anthony; Liu, Elizabeth; Correia, Susana S.; Goosens, Ki A.

    2014-01-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is not a clear relationship between the levels of these hormones and stress-associated mental illnesses such as post-traumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin releasing factor (CRF) or corticosterone. Repeated intra-amygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was increased by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin

  1. Ghrelin did not change coronary angiogenesis in diet-induced obese mice.

    PubMed

    Khazaei, M; Tahergorabi, Z

    2017-02-28

    Ghrelin is a 28 amino acids peptide that initially was recognized as an endogenous ligand for growth hormone secretagogue receptor (GHSR). Recently, a number of studies demonstrated that ghrelin is a cardiovascular hormone with a series cardiovascular effect. The main objective of this study was to investigate the effect of systemic ghrelin administration on angiogenesis in the heart and its correlation with serum leptin levels in normal and diet-induced obese mice. 24 male C57BL/6 mice were randomly divided into four groups: normal diet (ND) or control, ND+ghrelin, high-fat-diet (HFD) or obese and HFD+ghrelin (n=6/group). Obese and control groups received HFD or ND, respectively, for 14 weeks. Then, the ghrelin was injected subcutaneously 100µg/kg twice daily. After 10 days, the animals were sacrificed, blood samples were taken and the hearts were removed. The angiogenic response in the heart was assessed by immunohisochemical staining. HFD significantly increased angiogenesis in the heart expressed as the number of CD31 positive cells than standard diet. Ghrelin did not alter angiogenesis in the heart in both obese and control groups, however, it reduced serum nitric oxide (NO) and leptin levels in obese mice. There was a strong positive correlation between the number of CD31 positive cells and serum leptin concentration (r=0.74). Leptin as an angiogenic factor has a positive correlation with angiogenesis in the heart. Although systemic administration of ghrelin reduced serum leptin and NO levels in obese mice, however, it could not alter coronary angiogenesis.

  2. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.

    PubMed

    Huang, Hui-Jie; Zhu, Xiao-Cang; Han, Qiu-Qin; Wang, Ya-Lin; Yue, Na; Wang, Jing; Yu, Rui; Li, Bing; Wu, Gen-Cheng; Liu, Qiong; Yu, Jin

    2017-05-30

    As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10μg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10μg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Growth Hormone-Releasing Peptide Ghrelin Inhibits Homocysteine-Induced Endothelial Dysfunction in Porcine Coronary Arteries and Human Endothelial Cells

    PubMed Central

    Hedayati, Nasim; Annambhotla, Suman; Jiang, Jun; Wang, Xinwen; Chai, Hong; Lin, Peter H.; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Objective Ghrelin, a novel growth-hormone releasing peptide, is implicated to play a protective role in cardiovascular tissues. However, it is not clear whether ghrelin protects vascular tissues from injury secondary to risk factors such as homocysteine (Hcy). The purpose of this study was to investigate the effect and potential mechanisms of ghrelin on Hcy-induced endothelial dysfunction. Methods Porcine coronary artery rings were incubated for 24 hours with ghrelin (100 ng/mL), Hcy (50 μM), or ghrelin plus Hcy. Endothelial vasomotor function was evaluated using the myograph tension model. The response to thromboxane A2 analog U466419, bradykinin, and sodium nitroprusside (SNP) was analyzed. Endothelial nitric oxide synthase (eNOS) expression was determined using real time PCR and immunohistochemistry staining, and superoxide anion production by lucigenin-enhanced chemiluminescence analysis. Human coronary artery endothelial cells (HCAECs) were treated with different concentrations of Hcy, ghrelin, and/or anti-ghrelin receptor (GHS-R1a) antibody for 24 hours, eNOS protein levels were determined by western blot analysis. Results Maximal contraction with U466419 and endothelium-independent vasorelaxation with SNP were not different among the four groups. However, endothelium-dependent vasorelaxation with bradykinin (10-6M) was significantly reduced by 34% with Hcy compared with controls (P<0.05). Addition of ghrelin to Hcy had a protective effect, with 61.6% relaxation, similar to controls (64.7%). Hcy significantly reduced eNOS expression, while ghrelin co-treatment effectively restored eNOS expression to the control levels. Superoxide anion levels, which were increased by 100% with Hcy, returned to control levels with ghrelin co-treatment. Ghrelin also effectively blocked Hcy-induced decrease of eNOS protein levels in HCAECs in a concentration dependent manner. Anti-ghrelin receptor antibody effectively inhibited ghrelin’s effect. Conclusions Ghrelin has a

  4. Maintaining euglycemia prevents insulin-induced Fos expression in brain autonomic regulatory circuits.

    PubMed

    Ao, Yan; Wu, Shuying; Go, Vay Liang W; Toy, Natalie; Yang, Hong

    2005-08-01

    Insulin-induced hypoglycemia activates neurons in hypothalamic and brain medullary nuclei involved in central autonomic regulation. We investigated whether these central neuronal activations relates to a deficiency of glucose supply. Three groups of non-fasted, conscious rats received intravenous (iv) saline infusion (control), a hyperinsulinemic/hypoglycemic clamp, or a hyperinsulinemic/euglycemic clamp for 120 minutes and then the brains were collected for Fos immunohistochemistry. The number of Fos positive cells significantly increased in the paraventricular nucleus of the hypothalamus (PVN, 191 +/- 63 versus 66 +/- 18), pontine locus coeruleus (LC, 53 +/- 19 versus 5 +/- 2), brain medullary dorsal motor nucleus of the vagus (DMV, 26 +/- 4 versus 1 +/- 0), and nucleus tractus solitarii (NTS, 38 +/- 3 versus 10 +/- 35) in rats with hyperinsulinemic/hypoglycemic clamp compared with the controls. Maintaining blood glucose levels within physiological range by hyperinsulinemic/euglycemic clamp prevented insulin infusion-induced Fos expression in the PVN, DMV, and NTS. The numbers of Fos positive cells in these nuclei were significantly lower (-87%, -75%, and -51%, respectively) than that in the hypoglycemic rats. These results indicate that neuronal activation in hypothalamic and medullary autonomic regulatory nuclei induced by insulin administration is caused by hypoglycemia rather than a direct action of insulin. In addition, certain neurons in the medullary DMV and NTS respond to declines in glucose levels within physiological range.

  5. Protective effects of ghrelin in ventilator-induced lung injury in rats.

    PubMed

    Li, Guang; Liu, Jiao; Xia, Wen-Fang; Zhou, Chen-Liang; Lv, Li-Qiong

    2017-11-01

    Ghrelin has exhibited potent anti-inflammatory effects on various inflammatory diseases. The aim of this study was to investigate the potential effects of ghrelin on a model of ventilator-induced lung injury (VILI) established in rats. Male Sprague-Dawley rats were randomly divided into three groups: low volume ventilation (LV, Vt=8ml/kg) group, a VILI group (Vt=30ml/kg), and a VILI group pretreated with ghrelin (GH+VILI). For the LV group, for the VILI and GH+VILI groups, the same parameters were applied except the tidal volume was increased to 40ml/kg. After 4h of MV, blood gas, lung elastance, and levels of inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and (MIP)-2 and total protein in bronchoalveolar lavage fluid (BALF) were analyzed. Myeloperoxidase (MPO), (TLR)-4, and NF-κB, were detected in lung tissues. Water content (wet-to-dry ratio) and lung morphology were also evaluated. The VILI group had a higher acute lung injury (ALI) score, wet weight to dry ratio, MPO activity, and concentrations of inflammatory mediators (TNF-α, IL-6, IL-1β, and MIP-2) in BALF, as well as higher levels of TLR4 and NF-κB expression than the LV group (P<0.05). All histopathologic ALI, the inflammatory profile, and pulmonary dynamics have been improved by ghrelin pretreatment (P<0.05). Ghrelin pretreatment also decreased TLR4 expression and NF-κB activity compared with the VILI group (P<0.05). Ghrelin pretreatment attenuated VILI in rats by reducing MV-induced pulmonary inflammation and might represent a novel therapeutic candidate for protection against VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Immunomodulatory actions of central ghrelin in diet-induced energy imbalance.

    PubMed

    Stevanovic, Darko; Starcevic, Vesna; Vilimanovich, Urosh; Nesic, Dejan; Vucicevic, Ljubica; Misirkic, Maja; Janjetovic, Kristina; Savic, Emina; Popadic, Dusan; Sudar, Emina; Micic, Dragan; Sumarac-Dumanovic, Mirjana; Trajkovic, Vladimir

    2012-01-01

    We investigated the effects of centrally administered orexigenic hormone ghrelin on energy imbalance-induced inflammation. Rats were subjected for four weeks to three different dietary regimes: normal (standard food), high-fat (standard food with 30% lard) or food-restricted (70%, 50%, 40% and 40% of the expected food intake in 1st, 2nd, 3rd and 4th week, respectively). Compared to normal-weight controls, starved, but not obese rats had significantly higher levels of proinflammatory cytokines (TNF, IL-1β, IFN-γ) in the blood. When compared to normally fed animals, the hearts of starved and obese animals expressed higher levels of mRNAs encoding proinflammatory mediators (TNF, IL-1β, IL-6, IFN-γ, IL-17, IL-12, iNOS), while mRNA levels of the anti-inflammatory TGF-β remained unchanged. Intracerebroventricular (ICV) injection of ghrelin (1 μg/day) for five consecutive days significantly reduced TNF, IL-1β and IFN-γ levels in the blood of starved rats, as well as TNF, IL-17 and IL-12p40 mRNA expression in the hearts of obese rats. Conversely, ICV ghrelin increased the levels of IFN-γ, IL-17, IL-12p35 and IL-12p40 mRNA in the heart tissue of food-restricted animals. This was associated with an increase of immunosuppressive ACTH/corticosterone production in starved animals and a decrease of the immunostimulatory adipokine leptin both in food-restricted and high-fat groups. Ghrelin activated the energy sensor AMP-activated protein kinase (AMPK) in the hypothalamus and inhibited extracellular signal-regulated kinase (ERK) in the hearts of obese, but not starved rats. Therefore, central ghrelin may play a complex role in energy imbalance-induced inflammation by modulating HPA axis, leptin and AMPK/ERK signaling pathways. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons.

    PubMed

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Lluís, Carme; Ferré, Sergi

    2016-06-17

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion.

    PubMed

    Huang, Hsien-Hao; Chen, Liang-Yu; Doong, Ming-Luen; Chang, Shi-Chuan; Chen, Chih-Yen

    2017-01-01

    Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility, and colonic secretion in rats. We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters. ICV injection of O - n -octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h ( P <0.01), enhanced non-nutrient semi-liquid gastric emptying ( P <0.001), increased the geometric center and running percentage of small intestinal transit ( P <0.001), accelerated colonic transit time ( P <0.05), and increased fecal pellet output ( P <0.01) and total fecal weight ( P <0.01). Pretreatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output, and total fecal weight, while higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit ( P <0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time. α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, fecal pellet output, and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.

  9. Ghrelin Partially Protects Against Cisplatin-Induced Male Murine Gonadal Toxicity in a GHSR-1a-Dependent Manner1

    PubMed Central

    Whirledge, Shannon D.; Garcia, Jose M.; Smith, Roy G.; Lamb, Dolores J.

    2015-01-01

    ABSTRACT The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr−/− mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure. PMID:25631345

  10. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass

    PubMed Central

    Uchida, Aki; Zechner, Juliet F.; Mani, Bharath K.; Park, Won-mee; Aguirre, Vincent; Zigman, Jeffrey M.

    2014-01-01

    The current study examined potential mechanisms for altered circulating ghrelin levels observed in diet-induced obesity (DIO) and following weight loss resulting from Roux-en-Y gastric bypass (RYGB). We hypothesized that circulating ghrelin levels were altered in obesity and after weight loss through changes in ghrelin cell responsiveness to physiological cues. We confirmed lower ghrelin levels in DIO mice and demonstrated elevated ghrelin levels in mice 6 weeks post-RYGB. In both DIO and RYGB settings, these changes in ghrelin levels were associated with altered ghrelin cell responsiveness to two key physiological modulators of ghrelin secretion – glucose and norepinephrine. In DIO mice, increases in ghrelin cell density within both the stomach and duodenum and in somatostatin-immunoreactive D cell density in the duodenum were observed. Our findings provide new insights into the regulation of ghrelin secretion and its relation to circulating ghrelin within the contexts of obesity and weight loss. PMID:25353000

  11. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats

    PubMed Central

    Yeh, Chun; Ting, Ching-Heng; Doong, Ming-Luen; Chi, Chin-Wen; Lee, Shou-Dong; Chen, Chih-Yen

    2016-01-01

    Purpose Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated. Methods We examined the differential effects of central O-n-octanoylated ghrelin, des-Gln14-ghrelin, and urocortin 3 on food intake, as well as on charcoal nonnutrient semiliquid gastric emptying in conscious rats that were chronically implanted with intracerebroventricular (ICV) catheters. The functional importance of corticotropin-releasing factor (CRF) receptor 2 in urocortin 3-induced responses was examined by ICV injection of the selective CRF receptor 2 antagonist, astressin2-B. Results ICV infusion of urocortin 3 opposed central acyl ghrelin-elicited hyperphagia via CRF receptor 2 in satiated rats. ICV injection of O-n-octanoylated ghrelin and des-Gln14-ghrelin were equally potent in accelerating gastric emptying in fasted rats, whereas ICV administration of urocortin 3 delayed gastric emptying. In addition, ICV infusion of urocortin 3 counteracted central acyl ghrelin-induced gastroprokinetic effects via CRF receptor 2 pathway. Conclusion ICV-infused urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. Our results clearly showed that enhancing ghrelin and blocking CRF receptor 2 signaling in the brain accelerated gastric emptying, which provided important clues for a new therapeutic avenue in ameliorating anorexia and gastric ileus found in various chronic wasting disorders. PMID:27757017

  12. Ghrelin reverses experimental diabetic neuropathy in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoraku, Itaru; Shiomi, Kazutaka; Kangawa, Kenji

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic micemore » and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.« less

  13. Quantitative Mapping of Cocaine-Induced ΔFosB Expression in the Striatum of Male and Female Rats

    PubMed Central

    Sato, Satoru M.; Wissman, Anne Marie; McCollum, Andrew F.; Woolley, Catherine S.

    2011-01-01

    ΔFosB plays a critical role in drug-induced long-term changes in the brain. In the current study, we evaluated locomotor activity in male and female rats treated with saline or cocaine for 2 weeks and quantitatively mapped ΔFosB expression in the dorsal striatum and nucleus accumbens of each animal by using an anti-FosB antibody that recognizes ΔFosB isoforms preferentially. Behavioral analysis showed that while there was little difference between males and females that sensitized to cocaine, nonsensitizing rats showed a large sex difference. Nonsensitizing males showed low behavioral activation in response to cocaine on the first day of treatment, and their activity remained low. In contrast, nonsensitizing females showed high activation on the first day of treatment and their activity remained high. Western blot and immunohistochemical analyses indicated that basal levels of ΔFosB were higher in the nucleus accumbens than the dorsal striatum, but that the effect of cocaine on ΔFosB was greater in the dorsal striatum. Immunostaining showed that the effect of cocaine in both the dorsal striatum and nucleus accumbens was primarily to increase the intensity of ΔFosB immunoreactivity in individual neurons, rather than to increase the number of cells that express ΔFosB. Detailed mapping of ΔFosB-labeled nuclei showed that basal ΔFosB levels were highest in the medial portion of the dorsal striatum and dorsomedial accumbens, particularly adjacent to the lateral ventricle, whereas the cocaine-induced increase in ΔFosB was most pronounced in the lateral dorsal striatum, where basal ΔFosB expression was lowest. Sex differences in ΔFosB expression were small and independent of cocaine treatment. We discuss implications of the sex difference in locomotor activation and regionally-specific ΔFosB induction by cocaine. PMID:21747956

  14. Ghrelin mediates stress-induced food-reward behavior in mice

    PubMed Central

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M.; Lutter, Michael; Zigman, Jeffrey M.

    2011-01-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense “comfort foods.” Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin’s orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating. PMID:21701068

  15. Effects of 18-methoxycoronaridine on ghrelin-induced increases in sucrose intake and accumbal dopamine overflow in female rats

    PubMed Central

    Taraschenko, Olga D.; Hathaway, Ethan R.; Vincent, Melanie Y.; Glick, Stanley D.

    2013-01-01

    Rationale 18-Methoxycoronaridine (18-MC), a selective antagonist of α3β4 nicotinic receptors, has been previously shown, in rats, to reduce the self-administration of several drugs of abuse, reduce operant responding for sucrose, and prevent the development of sucrose-induced obesity. It has become increasingly apparent that there is a significant overlap between the systems regulating drug reward and food intake, therefore, we investigated whether 18-MC might modulate the effects of ghrelin, one of several orexigenic peptides recently implicated in both feeding and drug reward. Objectives In female Sprague–Dawley rats, we determined whether acute 18-MC treatment would reduce both ghrelin-induced increases in sucrose intake and ghrelin-elicited increases in accumbal dopamine levels. Results Pretreatment with 18-MC (20 mg/kg, i.p.), given prior to the administration of ghrelin (1 µg, lateral ventricle), blocked ghrelin-induced increases in sucrose (5%) intake in a two-bottle open access paradigm. Using in vivo microdialysis, 18-MC (both 20 and 40 mg/kg) prevented ghrelin (2 µg, intraventral tegmental area)-induced increases in extracellular dopamine in the nucleus accumbens. 18-MC had no effect on deposition of fat or on serum levels of glucose, triglycerides, and cholesterol in ghrelin-treated rats. Conclusions The present results suggest that one potential mechanism by which 18-MC exerts its effects on palatable food consumption is via modulation of ghrelin’s effects. PMID:21210086

  16. Delta FosB regulates wheel running.

    PubMed

    Werme, Martin; Messer, Chad; Olson, Lars; Gilden, Lauren; Thorén, Peter; Nestler, Eric J; Brené, Stefan

    2002-09-15

    DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.

  17. A Novel Human Ghrelin Variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase Are Overexpressed in Breast Cancer: Potential Pathophysiological Relevance

    PubMed Central

    Gahete, Manuel D.; Córdoba-Chacón, José; Hergueta-Redondo, Marta; Martínez-Fuentes, Antonio J.; Kineman, Rhonda D.; Moreno-Bueno, Gema

    2011-01-01

    The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer. PMID:21829727

  18. Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bonior, Joanna; Warzecha, Zygmunt; Ceranowicz, Piotr; Gajdosz, Ryszard; Pierzchalski, Piotr; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Trąbka, Rafał; Kuśnierz-Cabala, Beata; Dembiński, Artur; Jaworek, Jolanta

    2017-01-01

    Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect. PMID:28665321

  19. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.

    PubMed

    Omrani, Hasan; Alipour, Mohammad Reza; Farajdokht, Fereshteh; Ebrahimi, Hadi; Mesgari Abbasi, Mehran; Mohaddes, Gisou

    2017-06-01

    Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-α) levels in the brain in a model of chronic systemic hypoxia in rats. Systemic hypoxia was induced by a normobaric hypoxic chamber (O 2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 μg/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 μg/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-α levels were assessed in the serum and brain tissue. Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-α levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

  20. IL-1β directly suppress ghrelin mRNA expression in ghrelin-producing cells.

    PubMed

    Bando, Mika; Iwakura, Hiroshi; Ueda, Yoko; Ariyasu, Hiroyuki; Inaba, Hidefumi; Furukawa, Yasushi; Furuta, Hiroto; Nishi, Masahiro; Akamizu, Takashi

    2017-05-15

    In animal models, ghrelin production is suppressed by LPS administration. To elucidate the detailed molecular mechanisms involved in the phenomenon, we investigated the effects of LPS and LPS-inducible cytokines, including TNF-α, IL-1β, and IL-6, on the expression of ghrelin in the ghrelin-producing cell line MGN3-1. These cells expressed IL-1R, and IL-1β significantly suppressed ghrelin mRNA levels. The suppressive effects of IL-1β were attenuated by knockdown of IKKβ, suggesting the involvement of the NF-κB pathway. These results suggested that IL-1β is a major regulator of ghrelin expression during inflammatory processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, Mamiko; Inageda, Kiyoshi; Matsuoka, Masato, E-mail: matsuoka@research.twmu.ac.jp

    2011-03-15

    We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl{sub 2}, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl{sub 2} exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translationalmore » modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl{sub 2}. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal kinase, and p38-increased after CdCl{sub 2} exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl{sub 2}.« less

  2. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations. Copyright 2002 IBRO

  3. Ghrelin as a Survival Hormone.

    PubMed

    Mani, Bharath K; Zigman, Jeffrey M

    2017-12-01

    Ghrelin administration induces food intake and body weight gain. Based on these actions, the ghrelin system was initially proposed as an antiobesity target. Subsequent studies using genetic mouse models have raised doubts about the role of the endogenous ghrelin system in mediating body weight homeostasis or obesity. However, this is not to say that the endogenous ghrelin system is not important metabolically or otherwise. Here we review an emerging concept in which the endogenous ghrelin system serves an essential function during extreme nutritional and psychological challenges to defend blood glucose, protect body weight, avoid exaggerated depression, and ultimately allow survival. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yuhui; Liu, Cong; Huang, Jiawei

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic–pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU,more » eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway. - Highlights: • Ghrelin suppressed DU-induced apoptosis of MC3T3-E1 cells. • Ghrelin inhibited DU-induced oxidative stress and further p38-MAPK activation. • Ghrelin further suppressed mitochondrial-dependent apoptosis pathway. • The anti-oxidation effect

  5. Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin

    PubMed Central

    Romero-Picó, Amparo; Vázquez, Maria J; González-Touceda, David; Folgueira, Cintia; Skibicka, Karolina P; Alvarez-Crespo, Mayte; Van Gestel, Margriet A; Velásquez, Douglas A; Schwarzer, Christoph; Herzog, Herbert; López, Miguel; Adan, Roger A; Dickson, Suzanne L; Diéguez, Carlos; Nogueiras, Rubén

    2013-01-01

    The opioid system is well recognized as an important regulator of appetite and energy balance. We now hypothesized that the hypothalamic opioid system might modulate the orexigenic effect of ghrelin. Using pharmacological and gene silencing approaches, we demonstrate that ghrelin utilizes a hypothalamic κ-opioid receptor (KOR) pathway to increase food intake in rats. Pharmacological blockade of KOR decreases the acute orexigenic effect of ghrelin. Inhibition of KOR expression in the hypothalamic arcuate nucleus is sufficient to blunt ghrelin-induced food intake. By contrast, the specific inhibition of KOR expression in the ventral tegmental area does not affect central ghrelin-induced feeding. This new pathway is independent of ghrelin-induced AMP-activated protein kinase activation, but modulates the levels of the transcription factors and orexigenic neuropeptides triggered by ghrelin to finally stimulate feeding. Our novel data implicate hypothalamic KOR signaling in the orexigenic action of ghrelin. PMID:23348063

  6. Ghrelin-induced hypothermia: A Physiological basis but no clinical risk

    PubMed Central

    Wiedmer, Petra; Strasser, Florian; Horvath, Tamas L.; Blum, David; DiMarchi, Richard; Lutz, Thomas; Schürmann, Annette; Joost, Hans-Georg; Tschöp, Matthias H.; Tong, Jenny

    2011-01-01

    Ghrelin increases food intake and decreases energy expenditure, promoting a positive energy balance. We observed a single case of serious hypothermia during sustained ghrelin treatment in a male subject, suggesting that ghrelin may play a role in the regulation of body temperature. We therefore investigated the effect of ghrelin treatment on body temperature in rodents and humans under controlled conditions. Intriguingly, we could demonstrate ghrelin binding in axon terminals of the medial preoptic area of the hypothalamus located in the vicinity of cold-sensitive neurons. This localization of ghrelin receptors provides a potential anatomical basis for the regulation of body temperature by ghrelin. However, our follow-up studies also indicated that neither a chronic i.c.v. application of ghrelin in rats, nor a single s.c. injection under cold exposure in mice resulted in a relevant decrease in body core temperature. In addition, a four-hour intravenous ghrelin infusion did not decrease body surface temperature in healthy humans. We concluded that while there is a theoretical molecular basis for ghrelin to modify body temperature in mammals, its magnitude is irrelevant under physiologic circumstances. Hypothermia is not likely to represent a serious risk associated with this agent and pathway. PMID:21513721

  7. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference.

    PubMed

    Jerlhag, Elisabet; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2010-09-01

    Recently we demonstrated that genetic or pharmacological suppression of the central ghrelin signaling system, involving the growth hormone secretagogue receptor 1A (GHS-R1A), lead to a reduced reward profile from alcohol. As the target circuits for ghrelin in the brain include a mesolimbic reward pathway that is intimately associated with reward-seeking behaviour, we sought to determine whether the central ghrelin signaling system is required for reward from drugs of abuse other than alcohol, namely cocaine or amphetamine. We found that amphetamine-as well as cocaine-induced locomotor stimulation and accumbal dopamine release were reduced in mice treated with a GHS-R1A antagonist. Moreover, the ability of these drugs to condition a place preference was also attenuated by the GHS-R1A antagonist. Thus GHS-R1A appears to be required not only for alcohol-induced reward, but also for reward induced by psychostimulant drugs. Our data suggest that the central ghrelin signaling system constitutes a novel potential target for treatment of addictive behaviours such as drug dependence.

  8. Evidence that central pathways that mediate defecation utilize ghrelin receptors but do not require endogenous ghrelin.

    PubMed

    Pustovit, Ruslan V; Callaghan, Brid; Ringuet, Mitchell T; Kerr, Nicole F; Hunne, Billie; Smyth, Ian M; Pietra, Claudio; Furness, John B

    2017-08-01

    In laboratory animals and in human, centrally penetrant ghrelin receptor agonists, given systemically or orally, cause defecation. Animal studies show that the effect is due to activation of ghrelin receptors in the spinal lumbosacral defecation centers. However, it is not known whether there is a physiological role of ghrelin or the ghrelin receptor in the control of defecation. Using immunohistochemistry and immunoassay, we detected and measured ghrelin in the stomach, but were unable to detect ghrelin by either method in the lumbosacral spinal cord, or other regions of the CNS In rats in which the thoracic spinal cord was transected 5 weeks before, the effects of a ghrelin agonist on colorectal propulsion were significantly enhanced, but defecation caused by water avoidance stress (WAS) was reduced. In knockout rats that expressed no ghrelin and in wild-type rats, WAS-induced defecation was reduced by a ghrelin receptor antagonist, to similar extents. We conclude that the ghrelin receptors of the lumbosacral defecation centers have a physiological role in the control of defecation, but that their role is not dependent on ghrelin. This implies that a transmitter other than ghrelin engages the ghrelin receptor or a ghrelin receptor complex. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Ghrelin and the cardiovascular system.

    PubMed

    Tokudome, Takeshi; Kishimoto, Ichiro; Miyazato, Mikiya; Kangawa, Kenj

    2014-01-01

    Ghrelin is a peptide that was originally isolated from the stomach. It exerts potent growth hormone (GH)-releasing and orexigenic activities. Several studies have highlighted the therapeutic benefits of ghrelin for the treatment of cardiovascular disease. In animal models of chronic heart failure, the administration of ghrelin improved cardiac function and remodeling; these findings were replicated in human patients with heart failure. Moreover, in an animal study, ghrelin administration effectively reduced pulmonary hypertension induced by chronic hypoxia. In addition, repeated administration of ghrelin to cachectic patients with chronic obstructive pulmonary disease had positive effects on overall body function, including muscle wasting, functional capacity and sympathetic activity. The administration of ghrelin early after myocardial infarction (MI) reduced fatal arrhythmia and related mortality. In ghrelin-deficient mice, both exogenous and endogenous ghrelin were protective against fatal arrhythmia and promoted remodeling after MI. Although the mechanisms underlying the effects of ghrelin on the cardiovascular system remain unclear, there are indications that its beneficial effects are mediated through both direct physiological actions, including increased GH levels, improved energy balance and direct actions on cardiovascular cells, and regulation of autonomic nervous system activity. Therefore, ghrelin is a promising novel therapeutic agent for cardiovascular disease. © 2014 S. Karger AG, Basel.

  10. Ghrelin signaling in the ventral tegmental area mediates both reward-based feeding and fasting-induced hyperphagia on high-fat diet.

    PubMed

    Wei, X J; Sun, B; Chen, K; Lv, B; Luo, X; Yan, J Q

    2015-08-06

    Ghrelin is a potent orexigenic hormone that acts in the central nervous system to stimulate food intake via the growth hormone secretagogue receptor (GHSR) that is abundantly expressed in the ventral tegmental area (VTA). Not only does ghrelin modulate feeding behavior via a homeostatic mechanism, but numerous studies have identified ghrelin as a key regulator of reward-based hedonic feeding behaviors. Nutritional states influence ghrelin and GHSR expression as well as the behavioral sensitivity to reward-inducing stimuli. In the current study, we examined the role of ghrelin at the VTA level in food intake in two different nutritional states, satiety and hunger, by using a restricted feeding model. In this model, rats were conditioned to a daily 3-h (h) feeding session on standard chow for 10days and a high-fat diet (HFD) was supplied either in the third hour after 2h of chow diet intake, or at the beginning of a daily meal on the test day. We found that intra-VTA microinjection of 1, 2, and 4μg of ghrelin, induced a dose-related increase of 1h of reward-based feeding on HFD in sated rats, as well as a 24-h body weight gain. The overconsumption stimulated by ghrelin could be attenuated by 10μg of direct infusion of the ghrelin receptor antagonist D-Lys3-GHRP-6 into the VTA. Moreover, our data showed that the injection of 1, 2, and 4μg of ghrelin in the VTA, enhanced fasting-induced hyperphagia on HFD in a dose-related manner following a 21-h food restriction as well as a 24-h body weight gain. Conversely, hyperphagia on HFD that is potentiated by ghrelin could be blocked by pretreatment with a 10-μg D-Lys3-GHRP-6 intra-VTA microinjection. Collectively, these data demonstrate that ghrelin signaling at the VTA level mediates both reward-based eating and fasting-induced hyperphagia and provides a primary target for the control of the intake of rewarding food. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Impaired postprandial releases/syntheses of ghrelin and PYY(3-36) and blunted responses to exogenous ghrelin and PYY(3-36) in a rodent model of diet-induced obesity.

    PubMed

    Xu, Junying; McNearney, Terry A; Chen, J D Z

    2011-04-01

    This study investigated the effects of peripheral administration of ghrelin and PYY(3-36) on food intake and plasma and tissue fasting and postprandial ghrelin and PYY(3-36) levels in normal-weight (NW) and diet-induced-obese (DIO) rats. In experiment one, NW and DIO rats received a single intraperitoneal injection of saline, PYY(3-36) or ghrelin; food intake was measured for 4 h. In experiment two, total plasma ghrelin and PYY(3-36), gastric fundus ghrelin, and ascending colon PYY(3-36) were measured either after a 20-h fast or 2 h after refeeding in NW and DIO rats by radioimmunoassay. Compared to the NW rats, findings in the DIO rats revealed: (i) a reduced sensitivity to both the anorectic effect of exogenous PYY(3-36) and the orexigenic effect of exogenous ghrelin; (ii) the postprandial plasma ghrelin levels were significantly higher; and (iii) refeeding decreased endogenous plasma ghrelin levels by 53% in the NW rats and 39% in DIO rats. Refeeding increased the plasma PYY(3-36) level by 58% in the NW rats versus 9% in the DIO rats (P=0.003). Compared with regular rats, DIO rats exhibit blunted responses in food intake to exogenous ghrelin and PYY(3-36). Although endogenous ghrelin and PYY(3-36) in DIO rats are not altered in the fasting state, their responses to food ingestion are blunted in comparison with regular rats. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  12. [Ghrelin: beyond hunger regulation].

    PubMed

    Milke García, Maria del Pilar

    2005-01-01

    Man ingests food to mitigate hunger (mediated by physiological and biochemical signals), satisfy appetite (subjective sensation) and because of psychosocial reasons. Satiation biomarkers (stop feeding) are gastric distention and hormones (CCK, GLP-1) and satiety biomarkers (induce feeding) are food-induced thermogenesis, body temperature, glycaemia and also hormones (insulin, leptin and ghrelin). Oxidative metabolism/body composition, tryptophan/serotonin and proinflammatory cytokines are also implicated on hunger physiology. At the present time, ghrelin is the only known circulating orexigenic with potential on hunger/body weight regulation. It is a neuropeptide (endogenous ligand for the GH secretagogue) recently isolated from the oxyntic mucosa and synthesized mainly in the stomach. Its blood concentration depends on diet, hyperglucemia and adiposity/leptin. It is secreted 1-2 hours preprandially and its concentration decreases drastically during the postprandium. Ghrelin acts on the lateral hypothalamus and theoretically inhibits proinflammatory cytokine secretion and antagonizes leptin. Ghrelin physiologically increases food intake and stimulates adipogenesis, gastrointestinal motility and gastric acid secretion, and has other hormonal and cardiovascular functions. Ghrelin blood concentration is reduced in massive obesity, non-alcoholic steatohepatitis, polycystic ovary syndrome, acromegaly, hypogonadism, ageing, short bowel syndrome and rheumatoid arthritis; and increased in primary or secondary anorexia, starvation, chronic liver disease and celiac disease. Cerebral and peritoneal ghrelin administration (rats) and systemic administration (rats and healthy volunteers, cancer patients or patients on peritoneal dialysis) promotes food consumption and increases adiposity, of utmost importance in the treatment of patients with anorexia.

  13. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    PubMed

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Neurogenic Effects of Ghrelin on the Hippocampus.

    PubMed

    Kim, Chanyang; Kim, Sehee; Park, Seungjoon

    2017-03-08

    Mammalian neurogenesis continues throughout adulthood in the subventricular zone of the lateral ventricle and in the subgranular zone of the dentate gyrus in the hippocampus. It is well known that hippocampal neurogenesis is essential in mediating hippocampus-dependent learning and memory. Ghrelin, a peptide hormone mainly synthesized in the stomach, has been shown to play a major role in the regulation of energy metabolism. A plethora of evidence indicates that ghrelin can also exert important effects on neurogenesis in the hippocampus of the adult brain. The aim of this review is to discuss the current role of ghrelin on the in vivo and in vitro regulation of neurogenesis in the adult hippocampus. We will also discuss the possible role of ghrelin in dietary restriction-induced hippocampal neurogenesis and the link between ghrelin-induced hippocampal neurogenesis and cognitive functions.

  15. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; López-Rodríguez, F; Luppi, P H; Morales, F R; Chase, M H

    1995-07-01

    The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Lactobacillus farciminis treatment attenuates stress-induced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats.

    PubMed

    Ait-Belgnaoui, A; Eutamene, H; Houdeau, E; Bueno, L; Fioramonti, J; Theodorou, V

    2009-05-01

    Abstract Irritable bowel syndrome (IBS), frequently associated with psychological distress, is characterized by hypersensitivity to gut wall distension. Some probiotics are able to alleviate IBS symptoms and reduce visceromotor response to mechanical stimuli in animals. Moreover, we have previously shown that Lactobacillus farciminis treatment abolished the hyperalgesia to colorectal distension (CRD) induced by acute stress. The aims of the present study were to determine whether (i) stress-induced visceral hyperalgesia modifies the expression of Fos, a marker of general neuronal activation, induced by CRD, (ii) this activation can be modulated by L. farciminis treatment. Female rats were treated by L. farciminis and CRD was performed after partial restraint stress (PRS) or sham-PRS. The expression of Fos protein was measured by immunohistochemistry. After CRD or PRS, Fos expression was increased in spinal cord section (S1), nucleus tractus solitarius (NTS), paraventricular nucleus (PVN) of the hypothalamus, and in the medial nucleus of the amygdala (MeA). The combination of both stimuli, PRS and CRD, markedly increased this Fos overexpression in the sacral spinal cord section, PVN and MeA, but not in NTS. By contrast, a pretreatment with L. farciminis significantly reduced the number of Fos positive cells in these area. This study shows that PRS enhances Fos protein expression induced by CRD at the spinal and supraspinal levels in rats. Lactobacillus farciminis treatment inhibited this enhancing effect, suggesting that the antinociceptive effect of this probiotic strain results from a decrease of the stress-induced activation/sensitization of sensory neurons at the spinal and supraspinal level.

  17. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    PubMed

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  18. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.

    PubMed

    Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L

    2014-03-15

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Casein kinase II induces c-fos expression via the serum response element pathway and p67SRF phosphorylation in living fibroblasts.

    PubMed Central

    Gauthier-Rouvière, C; Basset, M; Blanchard, J M; Cavadore, J C; Fernandez, A; Lamb, N J

    1991-01-01

    Elevation of intracellular casein kinase II (CKII) levels through microinjection of purified CKII results in the rapid and transient induction of c-fos in quiescent rat embryo fibroblasts, and activation of quiescent cells by serum is accompanied by the nuclear relocation of endogenous CKII. The induction of c-fos by CKII is inhibited by coinjection of oligonucleotides corresponding to the sequence of the serum response element (SRE) present in the c-fos promoter, indicating that competitive displacement of positive factors from the endogenous c-fos SRE prevents c-fos induction by CKII. Furthermore, the expression of c-fos induced by either CKII injection or serum activation is also inhibited by microinjection of antibodies against the 67 kDa serum response factor (p67SRF) indicating the absolute requirement of p67SRF in this process. Finally, we show the specific phosphorylation of p67SRF in vivo following microinjection of CKII into quiescent cells. Together, these data strongly support that CKII induces c-fos expression through binding/activation of the phosphorylated p67SRF at the SRE sequence. Images PMID:1915270

  20. High ambient temperature increases 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy")-induced Fos expression in a region-specific manner.

    PubMed

    Hargreaves, G A; Hunt, G E; Cornish, J L; McGregor, I S

    2007-03-16

    3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.

  1. A ghrelin receptor agonist is an effective colokinetic in rats with diet-induced constipation.

    PubMed

    Pustovit, R V; Furness, J B; Rivera, L R

    2015-05-01

    Despite constipation being a common problem, the treatments that are available have side effects and are only partly effective. Recent studies show that centrally penetrant ghrelin receptor agonists cause defecation in humans and other species. Here, we describe some features of a rat model of low fiber-induced constipation, and investigate the effectiveness of the ghrelin agonist, capromorelin. Rats were given low-fiber diets for 5 weeks. Their colorectal responsiveness to distension and to a behavioral test, water avoidance and colon histology were compared to those of rats on a standard diet. After the low-fiber diet, distension of the colon produced fewer propulsive contractions, behaviorally induced defecation was reduced, and the lining of the colorectum was inflamed. However, capromorelin was similarly effective in causing defecation in constipated and non-constipated rats. Low-fiber diet in rats produces a constipation phenotype, characterized by reduced responsiveness of the colorectum to distension and to a behavioral stimulus of defecation, water avoidance. The effectiveness of capromorelin suggests that centrally penetrant ghrelin receptor stimulants may be effective in treating constipation. © 2015 John Wiley & Sons Ltd.

  2. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis

    PubMed Central

    Maksud, F.A.N.; Kakehasi, A.M.; Guimarães, M.F.B.R.; Machado, C.J.; Barbosa, A.J.A.

    2017-01-01

    Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA) that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD) in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years). Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008) compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007). However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03). The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide. PMID:28538835

  3. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis.

    PubMed

    Maksud, F A N; Kakehasi, A M; Guimarães, M F B R; Machado, C J; Barbosa, A J A

    2017-05-18

    Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA) that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD) in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years). Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008) compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007). However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03). The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide.

  4. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective

    PubMed Central

    2017-01-01

    Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D). PMID:29082258

  5. The effect of glutamate on ghrelin release in mice.

    PubMed

    Chacrabati, Rakhi; Gong, Zhi; Ikenoya, Chika; Kondo, Daisuke; Zigman, Jeffrey M; Sakai, Takafumi; Sakata, Ichiro

    2017-03-01

    Ghrelin is abundantly produced in the stomach. Here, we found that glutamate decreased ghrelin expression and release in ghrelin-producing cells, and decreased levels of food intake and plasma acyl-ghrelin in mice. Treatment with siRNA of G protein-coupled receptor, family C, group 5, member B (GPRC5B) in ghrelin-producing cell lines completely blocked the effect of glutamate-induced ghrelin suppression. In addition, glutamate inhibited ghrelin release via the extracellular signal-regulated kinase (ERK) activity pathway, and stimulated CREB2 mRNA expression in ghrelin-producing cell lines. These results suggest that glutamate inhibits ghrelin release via ERK-CREB2 pathway. These results suggest that the GPRC5B-ERK-CREB2 pathway is involved in the inhibition of ghrelin expression and secretion in ghrelin cells. © 2017 International Federation for Cell Biology.

  6. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state.

  7. Reduction of Cocaine-Induced Locomotor Effects by Enriched Environment Is Associated with Cell-Specific Accumulation of ΔFosB in Striatal and Cortical Subregions.

    PubMed

    Lafragette, Audrey; Bardo, Michael T; Lardeux, Virginie; Solinas, Marcello; Thiriet, Nathalie

    2017-03-01

    Early exposure to enriched environments has been shown to decrease the locomotor effects induced by repeated injections of cocaine and modify basal and cocaine-induced total protein levels of the transcription factor ΔFosB in the whole striatum of mice. In this study, we aimed at characterizing whether the profile of ΔFosB accumulation induced by enriched environments and cocaine would be similar or different in terms of brain areas and cell type. We used mice expressing the eGFP protein in D1 receptor positive (D1R(+)) neurons to determine whether Δ FosB induced by enriched environment or cocaine injections (5×15 mg/kg) would occur in selective subpopulations of neurons in several subregions of the striatum and prefrontal cortex. We found that: (1) exposure to enriched environment reduces cocaine-induced locomotor activation, confirming our previous findings; (2) exposure to enriched environment by itself increases the accumulation of Δ FosB mostly in D1R(-) cells in the shell part of the nucleus accumbens and dorsal striatum, whereas in the nucleus accumbens core, Δ FosB accumulates in both D1R(+) and D1R(-) neurons; (3) in standard environment mice, cocaine induces accumulation of Δ FosB selectively in D1R(+) cells in the nucleus accumbens, dorsal striatum, and infralimbic cortex; and (4) the effects of enriched environments and cocaine on accumulation of Δ FosB were reciprocally blocked by their combination. Altogether, these results suggest that the enriched environment-induced reduction in behavioral effects of cocaine might result from 2 distinct effects on ΔFosB in striatal medium-sized spiny neurons belonging to the direct and indirect pathways. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  8. Ghrelin

    PubMed Central

    Wu, James T.; Kral, John G.

    2004-01-01

    Objective: Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. Summary Background Data: Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. Methods: Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. Results: Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. Conclusions: The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat

  9. The Ghrelin/GOAT System Regulates Obesity-Induced Inflammation in Male Mice.

    PubMed

    Harvey, Rebecca E; Howard, Victor G; Lemus, Moyra B; Jois, Tara; Andrews, Zane B; Sleeman, Mark W

    2017-07-01

    Ghrelin plays a key role in appetite, energy homeostasis, and glucose regulation. Recent evidence suggests ghrelin suppresses inflammation in obesity; however, whether this is modulated by the acylated and/or des-acylated peptide is unclear. We used mice deficient in acylated ghrelin [ghrelin octanoyl-acyltransferase (GOAT) knockout (KO) mice], wild-type (WT) littermates, and C57BL/6 mice to examine the endogenous and exogenous effects of acyl and des-acyl ghrelin on inflammatory profiles under nonobese and obese conditions. We demonstrate that in the spleen, both ghrelin and GOAT are localized primarily in the red pulp. Importantly, in the thymus, ghrelin was predominantly localized to the medulla, whereas GOAT was found in the cortex, implying differing roles in T cell development. Acute exogenous treatment with acyl/des-acyl ghrelin suppressed macrophage numbers in spleen and thymus in obese mice, whereas only acyl ghrelin increased CD3+ T cells in the thymus in mice fed both chow and a high-fat-diet (HFD). Consistent with this result, macrophages were increased in the spleen of KO mice on a HFD. Whereas there was no difference in CD3+ T cells in the plasma, spleen, or thymus of WT vs KO mice, KO chow and HFD-fed mice displayed decreased leukocytes. Our results suggest that the acylation status affects the anti-inflammatory properties of ghrelin under chow and HFD conditions. Copyright © 2017 Endocrine Society.

  10. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Ghrelin administered spinally increases the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Ghrelin

    USDA-ARS?s Scientific Manuscript database

    The gut hormone ghrelin was discovered in 1999. In the last 15 years, ample data have been generated on ghrelin. Bedsides its hallmark function as an appetite stimulator, ghrelin also has many other important functions. In this review, we discussed ghrelin's functions in learning and memory, gut mov...

  13. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    PubMed

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (P<0.05) in the number of c-Fos-positive cells detected in the anterior cingulate cortex at 1 h, the shell of the nucleus accumbens at 1 and 2 h, the bed nucleus of stria terminalis lateral at 2 h and the paraventricular hypothalamic nucleus at 1, 2 and 4 h following systemic d-LSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  14. Ghrelin promotes thymopoiesis during aging

    PubMed Central

    Dixit, Vishwa Deep; Yang, Hyunwon; Sun, Yuxiang; Weeraratna, Ashani T.; Youm, Yun-Hee; Smith, Roy G.; Taub, Dennis D.

    2007-01-01

    The decline in adaptive immunity, T lymphocyte output, and the contraction of the TCR repertoire with age is largely attributable to thymic involution. The loss of thymic function with age may be due to diminished numbers of progenitors and the loss of critical cytokines and hormones from the thymic microenvironment. We have previously demonstrated that the orexigenic hormone ghrelin is expressed by immune cells and regulates T cell activation and inflammation. Here we report that ghrelin and ghrelin receptor expression within the thymus diminished with progressive aging. Infusion of ghrelin into 14-month-old mice significantly improved the age-associated changes in thymic architecture and thymocyte numbers, increasing recent thymic emigrants and improving TCR diversity of peripheral T cell subsets. Ghrelin-induced thymopoiesis during aging was associated with enhanced early thymocyte progenitors and bone marrow–derived Lin–Sca1+cKit+ cells, while ghrelin- and growth hormone secretagogue receptor–deficient (GHS-R–deficient) mice displayed enhanced age-associated thymic involution. Leptin also enhanced thymopoiesis in aged but not young mice. Our findings demonstrate what we believe to be a novel role for ghrelin and its receptor in thymic biology and suggest a possible therapeutic benefit of harnessing this pathway in the reconstitution of thymic function in immunocompromised subjects. PMID:17823656

  15. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats.

    PubMed

    Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena

    2017-11-01

    An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Essential Role of Growth Hormone and IGF-1 in Therapeutic Effect of Ghrelin in the Course of Acetic Acid-Induced Colitis.

    PubMed

    Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Kuśnierz-Cabala, Beata; Bonior, Joanna; Jaworek, Jolanta; Ambroży, Tadeusz; Gil, Krzysztof; Olszanecki, Rafał; Pihut, Małgorzata; Dembiński, Artur

    2017-05-24

    Previous studies have shown that ghrelin exhibits a protective and therapeutic effect in the gut. The aim of the present study was to examine whether administration of ghrelin affects the course of acetic acid-induced colitis and to determine what is the role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in this effect. In sham-operated or hypophysectomized male Wistar rats, colitis was induced by enema with 1 mL of 3% solution of acetic acid. Saline or ghrelin (given at the dose of 8 nmol/kg/dose) was administered intraperitoneally twice a day. Seven days after colitis induction, rats were anesthetized and the severity of the colitis was assessed. Treatment with ghrelin reduced the area of colonic mucosa damage in pituitary-intact rat. This effect was associated with increase in serum levels of GH and IGF-1. Moreover, administration of ghrelin improved blood flow in colonic mucosa and mucosal cell proliferation, as well as reduced mucosal concentration of proinflammatory interleukin-1β (IL-1β) and activity of myeloperoxidase. Hypophysectomy reduced serum levels of GH and IGF-1 and increased the area of colonic damage in rats with colitis. These effects were associated with additional reduction in mucosal blood follow and DNA synthesis when compared to pituitary-intact rats. Mucosal concentration of IL-1β and mucosal activity of myeloperoxidase were maximally increased. Moreover, in hypophysectomized rats, administration of ghrelin failed to affect serum levels of GH or IGF-1, as well as the healing rate of colitis, mucosal cell proliferation, and mucosal concentration of IL-1β, or activity of myeloperoxidase. We conclude that administration of ghrelin accelerates the healing of the acetic acid-induced colitis. Therapeutic effect of ghrelin in experimental colitis is mainly mediated by the release of endogenous growth hormone and IGF-1.

  17. Central administration of pansomatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats

    PubMed Central

    STENGEL, A.; GOEBEL-STENGEL, M.; WANG, L.; LUCKEY, A.; HU, E.; RIVIER, J.; TACHÉ, Y.

    2011-01-01

    Background Activation of brain somatostatin receptors (sst1-5) with the stable pan-sst1-5 somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. Methods Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. GE of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50 min post surgery. Food intake was monitored for 24h. Key results The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg/rat, i.c.). The selective sst5 agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst1, sst2 or sst4 agonists had no effect. However, the selective sst2 agonist, S-346-011 (1μg/rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys3]-GHRP-6 (0.93 mg/kg, intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. Conclusions & Inferences ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst5. ODT8-SST and the sst2 agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response. PMID:21569179

  18. Obesity Impairs the Action of the Neuroendocrine Ghrelin System

    PubMed Central

    Zigman, Jeffrey M.; Bouret, Sebastien G.; Andrews, Zane B.

    2016-01-01

    Ghrelin is a metabolic hormone that promotes energy conservation by regulating appetite and energy expenditure. Although some studies suggest that antagonizing ghrelin function attenuates body weight gain and glucose intolerance on a high calorie diet, there is little information about the metabolic actions of ghrelin in the obese state. In this review, we discuss the novel concept of obesity-induced central ghrelin resistance in neural circuits regulating behavior, and impaired ghrelin secretion from the stomach. Interestingly, weight loss restores ghrelin secretion and function, and we hypothesize that ghrelin resistance is a mechanism designed to protect a higher body weight set-point established during times of food availability, to maximize energy reserves during a time of food scarcity. PMID:26542050

  19. Evidence Supporting a Role for Constitutive Ghrelin Receptor Signaling in Fasting-Induced Hyperphagia in Male Mice.

    PubMed

    Fernandez, Gimena; Cabral, Agustina; Andreoli, María F; Labarthe, Alexandra; M'Kadmi, Céline; Ramos, Jorge G; Marie, Jacky; Fehrentz, Jean-Alain; Epelbaum, Jacques; Tolle, Virginie; Perello, Mario

    2018-02-01

    Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor highly expressed in the hypothalamus. In vitro studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions, we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were evaluated in ghrelin- or GHSR-deficient mice, only the latter displayed an ∼15% smaller hyperphagia, compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice treated with vehicle, whereas it was unaffected in mice centrally treated with the GHSR antagonists D-Lys3-growth hormone-releasing peptide 6 or JMV2959. Taken together, genetic models and pharmacological results support the notion that constitutive GHSR activity modulates the magnitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR signaling system could affect the set point of daily food intake, independently of plasma ghrelin levels, in situations of negative energy balance. Copyright © 2018 Endocrine Society.

  20. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG.

    PubMed

    Comoli, E; Ribeiro-Barbosa, E R; Canteras, Newton Sabino

    2003-01-06

    Considering the periaqueductal gray's (PAG) general roles in mediating motivational responses, in the present study, we compared the Fos expression pattern in the PAG induced by innate behaviors underlain by opposite motivational drivers, in rats, namely, insect predation and defensive behavior evoked by the confrontation with a live predator (a cat). Exposure to the predator was associated with a striking Fos expression in the PAG, where, at rostral levels, an intense Fos expression was found largely distributed in the dorsomedial and dorsolateral regions, whereas, at caudal levels, Fos-labeled cells tended to be mostly found in the lateral and ventrolateral columns, as well as in the dorsal raphe nucleus. Quite the opposite, insect predation was associated with increased Fos expression predominantly in the rostral two thirds of the lateral PAG, where the majority of the Fos-immunoreactive cells were found at the oculomotor nucleus levels. Remarkably, both exposure to the cat and insect predation upregulated Fos expression in the supraoculomotor region and the laterodorsal tegmental nucleus. Overall, the present results clearly suggest that the PAG activation pattern appears to reflect, at least partly, the animal's motivational status. It is well established that the PAG is critical for the expression of defensive responses, and, considering the present findings, it will be important to investigate how the PAG contributes to the expression of the predatory behavior, as well.

  1. Neuronal deletion of ghrelin receptor almost completely prevents diet-induced obesity

    USDA-ARS?s Scientific Manuscript database

    Ghrelin signaling has major effects on energy- and glucose-homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in brain and detectable in some peripheral tissues...

  2. Ghrelin may reduce radiation-induced mucositis and anorexia in head-neck cancer.

    PubMed

    Guney, Yildiz; Ozel Turkcu, Ummuhani; Hicsonmez, Ayse; Nalca Andrieu, Meltem; Kurtman, Cengiz

    2007-01-01

    Body weight loss is common in cancer patients, and is often associated with poor prognosis, it greatly impairs quality of life (QOL). Radiation therapy (RT) is used in head and neck cancers (HNC) either as a primary treatment or as an adjuvant therapy to surgery. Patients with HNC are most susceptible to malnutrition especially due to anorexia, which is aggravated by RT. Multiple pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1beta (IL-1beta), interferon (IFN)-gamma and tumor necrosis factor-alpha(TNF-alpha), have been all associated with the development of both anorexia and oral mucositis. Radiation-induced mucositis occurs in almost all patients, who are treated for HNC, it could also cause weight loss. Ghrelin is a novel 28-amino acid peptide, which up-regulates body weight through appetite control, increase food intake, down-regulate energy expenditure and induces adiposity. Furthermore, ghrelin inhibits pro-inflammatory cytokines such as IL-1alpha, IL-1beta, TNF-alpha which may cause oral mucositis and aneroxia, which are the results of weight loss. Thus weight loss during RT is an early indicator of nutritional decline, we propose that recombinant ghrelin used prophylactically could be useful as an appetite stimulant; and preventive of mucositis because of its anti-inflammatory effect, it might help patients maintain weight over the course of curative RT of the HNC and can improve specific aspects of QOL. This issue warrants further studies.

  3. Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes.

    PubMed

    Challet, E; Jacob, N; Vuillez, P; Pévet, P; Malan, A

    1997-10-03

    Daily rhythms of pineal melatonin, body temperature, and locomotor activity are synchronized to the light-dark cycle (LD) via a circadian clock located in the suprachiasmatic nuclei (SCN). A timed caloric restriction in rats fed at dawn induces phase-advances and further phase-stabilization of these rhythms, suggesting that the circadian clock can integrate conflicting daily photic and non-photic cues. The present study investigated the daily expression of Fos-like immunoreactivity (Fos-ir) and light pulse-induced Fos-ir in the SCN, the intergeniculate leaflet (IGL) and the paraventricular thalamic nucleus (PVT) in calorie-restricted rats fed 2 h after the onset of light and in controls fed ad libitum. A daily rhythm of Fos-ir in the SCN was confirmed in control rats, with a peak approximately 2 h after lights on. At this time point (i.e. just prior to the feeding time), the level of SCN Fos-ir was lowered in calorie-restricted rats. Concomitantly, IGL Fos-ir was higher in calorie-restricted vs. control rats. In response to a light pulse during darkness, Fos-ir induction was found to be specifically (i.e. phase-dependently) lowered in the SCN and IGL of calorie-restricted rats. Observed changes of Fos-ir in the PVT were possibly related to the wake state of the animals. This study shows that repetitive non-photic cues presented in addition to a LD cycle affect the Fos expression in the circadian timing system.

  4. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling.

    PubMed

    Rivas, Priscila M S; Vechiato, Fernanda M V; Borges, Beatriz C; Rorato, Rodrigo; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2017-07-01

    Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein.

    PubMed Central

    Stein, B; Rahmsdorf, H J; Steffen, A; Litfin, M; Herrlich, P

    1989-01-01

    UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation. Images PMID:2557547

  6. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  7. Ghrelin Induces Leptin Resistance by Activation of Suppressor of Cytokine Signaling 3 Expression in Male Rats: Implications in Satiety Regulation

    PubMed Central

    Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il

    2014-01-01

    The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) –bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior. PMID:25060362

  8. Experience-Dependent Induction of Hippocampal ΔFosB Controls Learning.

    PubMed

    Eagle, Andrew L; Gajewski, Paula A; Yang, Miyoung; Kechner, Megan E; Al Masraf, Basma S; Kennedy, Pamela J; Wang, Hongbing; Mazei-Robison, Michelle S; Robison, Alfred J

    2015-10-07

    The hippocampus (HPC) is known to play an important role in learning, a process dependent on synaptic plasticity; however, the molecular mechanisms underlying this are poorly understood. ΔFosB is a transcription factor that is induced throughout the brain by chronic exposure to drugs, stress, and variety of other stimuli and regulates synaptic plasticity and behavior in other brain regions, including the nucleus accumbens. We show here that ΔFosB is also induced in HPC CA1 and DG subfields by spatial learning and novel environmental exposure. The goal of the current study was to examine the role of ΔFosB in hippocampal-dependent learning and memory and the structural plasticity of HPC synapses. Using viral-mediated gene transfer to silence ΔFosB transcriptional activity by expressing ΔJunD (a negative modulator of ΔFosB transcriptional function) or to overexpress ΔFosB, we demonstrate that HPC ΔFosB regulates learning and memory. Specifically, ΔJunD expression in HPC impaired learning and memory on a battery of hippocampal-dependent tasks in mice. Similarly, general ΔFosB overexpression also impaired learning. ΔJunD expression in HPC did not affect anxiety or natural reward, but ΔFosB overexpression induced anxiogenic behaviors, suggesting that ΔFosB may mediate attentional gating in addition to learning. Finally, we found that overexpression of ΔFosB increases immature dendritic spines on CA1 pyramidal cells, whereas ΔJunD reduced the number of immature and mature spine types, indicating that ΔFosB may exert its behavioral effects through modulation of HPC synaptic function. Together, these results suggest collectively that ΔFosB plays a significant role in HPC cellular morphology and HPC-dependent learning and memory. Consolidation of our explicit memories occurs within the hippocampus, and it is in this brain region that the molecular and cellular processes of learning have been most closely studied. We know that connections between hippocampal

  9. Brain-wide maps of Fos expression during fear learning and recall

    PubMed Central

    Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.

    2017-01-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. PMID:28331016

  10. Administration of exogenous acylated ghrelin or rikkunshito, an endogenous ghrelin enhancer, improves the decrease in postprandial gastric motility in an acute restraint stress mouse model

    PubMed Central

    Nahata, M; Saegusa, Y; Sadakane, C; Yamada, C; Nakagawa, K; Okubo, N; Ohnishi, S; Hattori, T; Sakamoto, N; Takeda, H

    2014-01-01

    Background Physical or psychological stress causes functional disorders in the upper gastrointestinal tract. This study aims to elucidate the ameliorating effect of exogenous acylated ghrelin or rikkunshito, a Kampo medicine which acts as a ghrelin enhancer, on gastric dysfunction during acute restraint stress in mice. Methods Fasted and postprandial motor function of the gastric antrum was wirelessly measured using a strain gauge force transducer and solid gastric emptying was detected in mice exposed to restraint stress. Plasma corticosterone and ghrelin levels were also measured. To clarify the role of ghrelin on gastrointestinal dysfunction in mice exposed to stress, exogenous acylated ghrelin or rikkunshito was administered, then the mice were subjected to restraint stress. Key Results Mice exposed to restraint stress for 60 min exhibited delayed gastric emptying and increased plasma corticosterone levels. Gastric motility was decreased in mice exposed to restraint stress in both fasting and postprandial states. Restraint stress did not cause any change in plasma acylated ghrelin levels, but it significantly increased the plasma des-acyl ghrelin levels. Administration of acylated ghrelin or rikkunshito improved the restraint stress-induced delayed gastric emptying and decreased antral motility. Ameliorating effects of rikkunshito on stress-induced gastric dysfunction were abolished by simultaneous administration of a ghrelin receptor antagonist. Conclusions & Inferences Plasma acylated/des-acyl ghrelin imbalance was observed in acute restraint stress. Supplementation of exogenous acylated ghrelin or enhancement of endogenous ghrelin signaling may be useful in the treatment of decreased gastric function caused by stress. PMID:24684160

  11. Fasting up-regulates ferroportin 1 expression via a Ghrelin/GHSR/MAPK signaling pathway.

    PubMed

    Luo, Qian-Qian; Zhou, Yu-Fu; Chen, Mesona Yung-Jin; Liu, Li; Ma, Juan; Zhang, Meng-Wan; Zhang, Fa-Li; Ke, Ya; Qian, Zhong-Ming

    2018-01-01

    The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft-L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O-acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft-L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft-L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre-treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway. © 2017 Wiley Periodicals, Inc.

  12. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene

    PubMed Central

    He, Haiying; Chen, Changmin; Xie, Yue; Asea, Alexzander; Calderwood, Stuart K.

    2000-01-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation. PMID:11189444

  13. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene.

    PubMed

    He, H; Chen, C; Xie, Y; Asea, A; Calderwood, S K

    2000-11-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation.

  14. Ghrelin: ghrelin as a regulatory Peptide in growth hormone secretion.

    PubMed

    Khatib, Nazli; Gaidhane, Shilpa; Gaidhane, Abhay M; Khatib, Mahanaaz; Simkhada, Padam; Gode, Dilip; Zahiruddin, Quazi Syed

    2014-08-01

    Ghrelin is a type of growth hormone (GH) secretagogue that stimulates the release of GH. It is a first hormone linking gastrointestinal-pituitary axis. This review highlights the interaction of ghrelin with GHRH and somatostatin to regulate the secretion of GH and intends to explore the possible physiological role of the ghrelin-pituitary-GH axis linkage system. Ghrelin is highly conserved among species and is classified into octanoylated (C8:0), decanoylated (C10:0), decenoylated (C10:1) and nonacylated,ghrelin. Acylated ghrelin is the major active form of human ghrelin. The primary production site of ghrelin is the stomach, and it interacts with stomach ghrelin as well as hypothalamic GHRH and somatostatin in the regulation of pituitary GH secretion. Ghrelin stimulate GH release through the GHS receptor to increase intracellular Ca2+ ([Ca2+] levels via IP3 signal transduction pathway. Ghrelin is a specific endogenous ligand for the GHS receptor and provides a definitive proof of the occurance of a GHS-GHS receptor signalling system in the regulation of GH secretion. Studies suggests that ghrelin is a powerful pharmacological agent that exerts a potent, time-dependent stimulation of pulsatile secretion of GH.

  15. Ghrelin-stimulation test in the diagnosis of canine pituitary dwarfism.

    PubMed

    Bhatti, S F M; De Vliegher, S P; Mol, J A; Van Ham, L M L; Kooistra, H S

    2006-08-01

    This study investigated whether ghrelin, a potent releaser of growth hormone (GH) secretion, is a valuable tool in the diagnosis of canine pituitary dwarfism. The effect of intravenous administration of ghrelin on the release of GH and other adenohypophyseal hormones was investigated in German shepherd dogs with congenital combined pituitary hormone deficiency and in healthy Beagles. Analysis of the maximal increment (i.e. difference between pre- and maximal post-ghrelin plasma hormone concentration) indicated that the GH response was significantly lower in the dwarf dogs compared with the healthy dogs. In none of the pituitary dwarfs, the ghrelin-induced plasma GH concentration exceeded 5 microg/l at any time. However, this was also true for 3 healthy dogs. In all dogs, ghrelin administration did not affect the plasma concentrations of ACTH, cortisol, TSH, LH and PRL . Thus, while a ghrelin-induced plasma GH concentration above 5 microg/l excludes GH deficiency, false-negative results may occur.

  16. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    PubMed

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  17. Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.

    PubMed

    Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa

    2017-01-01

    To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human

  18. Ghrelin: Ghrelin as a Regulatory Peptide in Growth Hormone Secretion

    PubMed Central

    Gaidhane, Shilpa; Gaidhane, Abhay M; Khatib, Mahanaaz; Gode, Dilip; Zahiruddin, Quazi Syed

    2014-01-01

    Background: Ghrelin is a type of growth hormone (GH) secretagogue that stimulates the release of GH. It is a first hormone linking gastrointestinal-pituitary axis. Objective: This review highlights the interaction of ghrelin with GHRH and somatostatin to regulate the secretion of GH and intends to explore the possible physiological role of the ghrelin-pituitary-GH axis linkage system. Observation: Ghrelin is highly conserved among species and is classified into octanoylated (C8:0), decanoylated (C10:0), decenoylated (C10:1) and nonacylated,ghrelin. Acylated ghrelin is the major active form of human ghrelin. The primary production site of ghrelin is the stomach, and it interacts with stomach ghrelin as well as hypothalamic GHRH and somatostatin in the regulation of pituitary GH secretion. Ghrelin stimulate GH release through the GHS receptor to increase intracellular Ca2+ ([Ca2+] levels via IP3 signal transduction pathway. Ghrelin is a specific endogenous ligand for the GHS receptor and provides a definitive proof of the occurance of a GHS–GHS receptor signalling system in the regulation of GH secretion. Conclusion: Studies suggests that ghrelin is a powerful pharmacological agent that exerts a potent, time-dependent stimulation of pulsatile secretion of GH. PMID:25302229

  19. Brain-wide maps of Fos expression during fear learning and recall.

    PubMed

    Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M

    2017-04-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.

    PubMed

    Szentirmai, Éva; Krueger, James M

    2014-02-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, suppresses circulating levels of proinflammatory cytokines and reduces the severity and mortality of various models of experimental endotoxemia. In the present study, we determined the role of intact ghrelin signaling in LPS-induced sleep, feeding, and thermoregulatory responses in mice. Sleep-wake activity was determined after intraperitoneal, dark onset administration of 0.4, 2 and 10 μg LPS in preproghrelin knockout (KO) and wild-type (WT) mice. In addition, body temperature, motor activity and changes in 24-h food intake and body weight were measured. LPS induced dose-dependent increases in NREMS, and suppressed rapid-eye movement sleep, electroencephalographic slow-wave activity, motor activity, food intake and body weight in both Ppg KO and WT mice. Body temperature changes showed a biphasic pattern with a decrease during the dark period followed by an increase in the light phase. The effects of the low and middle doses of LPS were indistinguishable between the two genotypes. Administration of 10 μg LPS, however, induced significantly larger changes in NREMS and wakefulness amounts, body temperature, food intake and body weight in the Ppg KO mice. These findings support a role for ghrelin as an endogenous modulator of inflammatory responses and a central component of arousal and feeding circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Role of ghrelin in small intestinal motility following pediatric intracerebral hemorrhage in mice.

    PubMed

    Zan, Jieyu; Song, Lei; Wang, Jiejie; Zou, Rong; Hong, Fei; Zhao, Jinhua; Cheng, Yijun; Xu, Ming

    2017-11-01

    Small intestinal motility (SIM) disorder is a common complication following pediatric intracerebral hemorrhage (ICH), leading to a poor prognosis in patients. Previous studies have shown that ghrelin is involved in SIM in various diseases; however, the role of ghrelin in pediatric ICH‑induced SIM disorder remains to be elucidated. The present study was designed to investigate the association between ghrelin and SIM post‑ICH, and to examine the effect of exogenous ghrelin administration on SIM in vivo. An ICH model was induced in mice by autologous blood infusion. Neurobehavioral deficits were evaluated using a Rotarod test, forelimb placing test, and corner turn test. Intestinal mucosal damage was examined using hematoxylin and eosin staining. SIM was measured using charcoal meal staining. An enzyme‑linked immunosorbent assay was used to evaluate serum levels of ghrelin and nitric oxide (NO). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to determine the levels of inducible nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels. Nω‑nitro‑L‑arginine methyl ester hydrochloride (L‑NAME), L‑arginine, atropine, phentolamine and propranolol were used to manipulate the putative pathways induced by ghrelin. Neurological dysfunction was observed post‑ICH. ICH caused damage to the intestinal mucosa and delayed SIM. Serum levels of ghrelin increased between 3 h and 3 days, peaking at 12 h, and showed a significant negative correlation with SIM post‑ICH. Ghrelin administration dose‑dependently attenua-ted ICH‑induced SIM disorder. Ghrelin also decreased NO levels by downregulating the mRNA and protein expression levels of iNOS, but not those of nNOS or eNOS, post‑ICH. Consistently, the effect was enhanced by L‑NAME and weakened by L‑arginine, respectively. The protective effect of ghrelin was

  2. Fos Expression in Rat Brain During Depletion-Induced Thirst and Salt Appetite

    NASA Technical Reports Server (NTRS)

    Thunhorst, R. L.; Xu, Z.; Cicha, M. Z.; Zardetto-Smith, A. M.; Johnson, A. K.

    1998-01-01

    The expression of Fos protein (Fos immunoreactivity, Fos-ir) was mapped in the brain of rats subjected to an angiotensin-dependent model of thirst and salt appetite. The physiological state associated with water and sodium ingestion was produced by the concurrent subcutaneous administration of the diuretic furosemide (10 mg/kg) and a low dose of the angiotensin-converting enzyme (ACE) inhibitor captopril (5 mg/kg; Furo/Cap treatment). The animals were killed 2 h posttreatment, and the brains were processed for Fos-ir to assess neural activation. Furo/Cap treatment significantly increased Fos-ir density above baseline levels both in structures of the lamina terminalis and hypothalamus known to mediate the actions of ANG 2 and in hindbrain regions associated with blood volume and pressure regulation. Furo/Cap treatment also typically increased Fos-ir density in these structures above levels observed after administration of furosemide or captopril separately. Fos-ir was reduced to a greater extent in forebrain than in hindbrain areas by a dose of captopril (100 mg/kg sc) known to block the actions of ACE in the brain. The present work provides further evidence that areas of lamina terminalis subserve angiotensin-dependent thirst and salt appetite.

  3. Site specific effects of anosmia and cloacal gland anesthesia on Fos expression induced in male quail brain by sexual behavior

    PubMed Central

    Taziaux, Mélanie; Keller, Matthieu; Ball, Gregory F.; Balthazart, Jacques

    2008-01-01

    In rats, expression of the immediate early gene, c-fos observed in the brain following male copulatory behavior relates mostly to the detection of olfactory information originating from the female and to somatosensory feedback from the penis. However, quail, like most birds, are generally considered to have a relatively poorly developed sense of smell. Furthermore, quail have no intromittent organ (e.g., penis). It is therefore intriguing that expression of male copulatory behavior induces in quail and rats a similar pattern of c-fos expression in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BSTM) and parts of the amygdala. We analyzed here by immunocytochemistry Fos expression in the mPOA/BSTM/amygdala of male quail that had been allowed to copulate with a female during standardized tests. Before these tests, some of the males had either their nostrils plugged, or their cloacal area anesthetized, or both. A control group was not exposed to females. These manipulations did not affect frequencies of male sexual behavior and all birds exposed to a female copulated normally. In the mPOA, the increased Fos expression induced by copulation was not affected by the cloacal gland anesthesia but was markedly reduced in subjects deprived of olfactory input. Both manipulations affected copulation-induced Fos expression in the BSTM. No change in Fos expression was observed in the amygdala. Thus immediate early gene expression in the mPOA and BSTM of quail is modulated at least in part by olfactory cues and/or somatosensory stimuli originating from the cloacal gland. Future work should specify the nature of these stimuli and their function in the expression of avian male sexual behavior. PMID:18638505

  4. Ghrelin enhancer, rikkunshito, improves postprandial gastric motor dysfunction in an experimental stress model.

    PubMed

    Harada, Y; Ro, S; Ochiai, M; Hayashi, K; Hosomi, E; Fujitsuka, N; Hattori, T; Yakabi, K

    2015-08-01

    Functional dyspepsia (FD) is one of the most common disorders of gastrointestinal (GI) diseases. However, no curable treatment is available for FD because the detailed mechanism of GI dysfunction in stressed conditions remains unclear. We aimed to clarify the association between endogenous acylated ghrelin signaling and gastric motor dysfunction and explore the possibility of a drug with ghrelin signal-enhancing action for FD treatment. Solid gastric emptying (GE) and plasma acylated ghrelin levels were evaluated in an urocortin1 (UCN1) -induced stress model. To clarify the role of acylated ghrelin on GI dysfunction in the model, exogenous acylated ghrelin, an endogenous ghrelin enhancer, rikkunshito, or an α2 -adrenergic receptor (AR) antagonist was administered. Postprandial motor function was investigated using a strain gauge force transducer in a free-moving condition. Exogenous acylated ghrelin supplementation restored UCN1-induced delayed GE. Alpha2 -AR antagonist and rikkunshito inhibited the reduction in plasma acylated ghrelin and GE in the stress model. The action of rikkunshito on delayed GE was blocked by co-administration of the ghrelin receptor antagonist. UCN1 decreased the amplitude of contraction in the antrum while increasing it in the duodenum. The motility index of the antrum but not the duodenum was significantly reduced by UCN1 treatment, which was improved by acylated ghrelin or rikkunshito. The UCN1-induced gastric motility dysfunction was mediated by abnormal acylated ghrelin dynamics. Supplementation of exogenous acylated ghrelin or enhancement of endogenous acylated ghrelin secretion by rikkunshito may be effective in treating functional GI disorders. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  5. Persistent induction of c-fos and c-jun expression by asbestos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, N.H.; Mossman, B.T.; Janssen, Y.M.

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation ofmore » pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.« less

  6. Neonatal ghrelin programs development of hypothalamic feeding circuits

    PubMed Central

    Steculorum, Sophie M.; Collden, Gustav; Coupe, Berengere; Croizier, Sophie; Lockie, Sarah; Andrews, Zane B.; Jarosch, Florian; Klussmann, Sven; Bouret, Sebastien G.

    2015-01-01

    A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation. PMID:25607843

  7. Ghrelin suppresses the GnRH-induced preovulatory gonadotropin surge in dairy heifers.

    PubMed

    Chouzouris, T M; Dovolou, E; Dafopoulos, K; Georgoulias, P; Vasileiou, N G; Fthenakis, G C; Anifandis, G; Amiridis, G S

    2016-10-01

    Ghrelin, a known growth hormone (GH) secretagogue, alters gonadotropin secretion in many species. Our objectives were to study the effects of ghrelin, on GH, LH, FSH secretion, and on luteal function of the ensuing estrous cycle in cattle. The estrous cycles of eight heifers were synchronized with progesteron releasing intravaginal device, and ovulation was induced with GnRH. Eight animals were treated with 1.5 μg kg(-1) bovine ghrelin (group Ghr, n = 4) or saline (group C, n = 4). Starting with the first ghrelin injection, 13 blood samples were collected over a 4-hour period for the determination of ghrelin, GH, LH, and FSH concentration. Progesterone levels were measured in samples collected every other day after estrus expression. Data were analyzed by repeated measures of ANOVA followed by Bonferroni post hoc testing and t test. In group Ghr, ghrelin concentration increased significantly 15 minutes after the first injection and remained in elevated levels until the 90th minute after the last injection. At the time of third ghrelin injection, GH was significantly higher in the Ghr group compared with C (17.1 ± 1.3 vs. 2.6 ± 0.3 ng mL(-1), P < 0.0001). Similar differences were found for the next three samples collected 15, 30, and 60 minutes later; no difference was evident after 90 minutes. In group Ghr, the area under the curve for LH and FSH were significantly reduced compared with the ones of group C (266 ± 10.3 vs. 331.9 ± 7.3, P = 0.007 and 102.3 ± 2.0 vs. 134.9 ± 5.5, P < 0.005 for LH and FSH respectively). At particular time points the concentration of the two gonadotrophins in group Ghr was significantly lower than those of group C (15, 30, 45, 75, and 90 and 60, 75, 90, 120, and 150 minutes after GnRH administration for LH and FSH respectively). The duration of the following estrous cycle was shorter (P = 0.004) in group Ghr (19.0 ± 0.4 days) compared with C (21.8 ± 0.5 days). In days 4, 6, 8, 10, and 14

  8. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.

    PubMed

    Skibicka, Karolina P; Shirazi, Rozita H; Hansson, Caroline; Dickson, Suzanne L

    2012-03-01

    Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelin's effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelin's action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.

  9. Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice

    PubMed Central

    Lu, Xinping; Zhao, Xilin; Feng, Jianying; Liou, Alice P.; Anthony, Shari; Pechhold, Susanne; Sun, Yuxiang; Lu, Huiyan

    2012-01-01

    Ghrelin is a gastric peptide hormone that controls appetite and energy homeostasis. Plasma ghrelin levels rise before a meal and fall quickly thereafter. Elucidation of the regulation of ghrelin secretion has been hampered by the difficulty of directly interrogating ghrelin cells diffusely scattered within the complex gastric mucosa. Therefore, we generated transgenic mice with ghrelin cell expression of green fluorescent protein (GFP) to enable characterization of ghrelin secretion in a pure population of isolated gastric ghrelin-expressing GFP (Ghr-GFP) cells. Using quantitative RT-PCR and immunofluorescence staining, we detected a high level of expression of the long-chain fatty acid (LCFA) receptor GPR120, while the other LCFA receptor, GPR40, was undetectable. In short-term-cultured pure Ghr-GFP cells, the LCFAs docosadienoic acid, linolenic acid, and palmitoleic acid significantly suppressed ghrelin secretion. The physiological mechanism of LCFA inhibition on ghrelin secretion was studied in mice. Serum ghrelin levels were transiently suppressed after gastric gavage of LCFA-rich lipid in mice with pylorus ligation, indicating that the ghrelin cell may directly sense increased gastric LCFA derived from ingested intraluminal lipids. Meal-induced increase in gastric mucosal LCFA was assessed by measuring the transcripts of markers for tissue uptake of LCFA, lipoprotein lipase (LPL), fatty acid translocase (CD36), glycosylphosphatidylinositol-anchored HDL-binding protein 1, and nuclear fatty acid receptor peroxisome proliferator-activated receptor-γ. Quantitative RT-PCR studies indicate significantly increased mRNA levels of lipoprotein lipase, glycosylphosphatidylinositol-anchored HDL-binding protein 1, and peroxisome proliferator-activated receptor-γ in postprandial gastric mucosa. These results suggest that meal-related increases in gastric mucosal LCFA interact with GPR120 on ghrelin cells to inhibit ghrelin secretion. PMID:22678998

  10. Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa.

    PubMed

    Müller, Timo D; Tschöp, Matthias H; Jarick, Ivonne; Ehrlich, Stefan; Scherag, Susann; Herpertz-Dahlmann, Beate; Zipfel, Stefan; Herzog, Wolfgang; de Zwaan, Martina; Burghardt, Roland; Fleischhaker, Christian; Klampfl, Karin; Wewetzer, Christoph; Herpertz, Stephan; Zeeck, Almut; Tagay, Sefik; Burgmer, Markus; Pfluger, Paul T; Scherag, André; Hebebrand, Johannes; Hinney, Anke

    2011-05-01

    The gastrointestinal peptide hormone ghrelin promotes food intake and increases body weight and adiposity through activation of the growth hormone secretagogue receptor (GHSR1a). To promote its biological action ghrelin is acylated at its serine 3 residue by the recently discovered ghrelin O-acyltransferase (GOAT, a.k.a. membrane-bound O-acyltransferase 4, MBOAT4). Plasma levels of total and acyl-ghrelin are negatively correlated with body-mass-index (BMI); as lower the BMI as higher plasma levels of total and acylated ghrelin and vice versa. Accordingly, plasma levels of total and acyl-ghrelin are elevated in patients with anorexia nervosa (AN) and decline upon weight regain. The importance of the endogenous Goat/ghrelin system in the neuroendocrine adaptation to fasting was recently highlighted by the observation that acyl-ghrelin mediated elevation of growth hormone (GH) release prevents starvation induced hypoglycemia in Goat(-/-) mice. The aim of this study was to test if genetic variation of GOAT is implicated in the etiology of AN. We therefore assessed association of 6 tagging single nucleotide polymorphisms (tagSNPs), which were predicted to cover 96% the common genetic variability of GOAT plus 50 kb of the 5' and 3' flanking region, in 543 German patients with AN and 612 German normal and underweight healthy controls. Based on a recessive mode of inheritance we observed some evidence for association of the G/G genotype at SNP rs10096097 with AN (nominal two-sided p = 0.031). Based on our results we conclude that genetic variation in GOAT might be implicated in the etiology of AN. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. TMJ inflammation increases Fos expression in the nucleus raphe magnus induced by subsequent formalin injection of the masseter or hindpaw of rats.

    PubMed

    Oh, Sang-Hoon; Imbe, Hiroki; Iwai-Liao, Yasutomo

    2006-08-01

    The study was designed to examine the effect of persistent temporomandibular joint (TMJ) inflammation on neuronal activation in the descending pain modulatory system in response to noxious stimulus. Formalin was injected into the left masseter muscle or hindpaw of rats 10 days after injection of the left TMJ with saline or complete Freund's adjuvant (CFA). The results showed that 10-day persistent TMJ inflammation (induced by CFA) alone did not induce a significant increase in Fos-like immunoreactive (Fos-LI) neurons in the rostral ventromedial medulla (RVM) or locus coeruleus (LC), but that formalin injection of the masseter muscle or hindpaw induced a significant increase in Fos-LI neurons in the RVM and LC of rats with and without TMJ inflammation (P < 0.05). However, persistent TMJ inflammation significantly increased Fos-LI neurons in the nucleus raphe magnus (NRM) induced by subsequent formalin injection of the masseter muscle and hindpaw (70.2% increase and 53.8% increase, respectively, over the control TMJ-saline-injected rats; P < 0.05). The results suggest that persistent TMJ inflammation increases neuronal activity, in particularly in the NRM, by the plastic change of the descending pain modulatory system after ipsilateral application of a noxious stimulus to either orofacial area or a spatially remote body area.

  12. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    PubMed

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  13. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: a dissociation of hippocampal Fos from seizure activity

    PubMed Central

    Kadiyala, Sridhar B.; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M.; Jayakumar, Sachidhanand; Herron, Bruce J.; Ferland, Russell J.

    2014-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2’s seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ~85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype

  14. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: A dissociation of hippocampal Fos from seizure activity.

    PubMed

    Kadiyala, Sridhar B; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M; Jayakumar, Sachidhanand; Herron, Bruce J; Ferland, Russell J

    2015-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype

  15. Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury.

    PubMed

    Tabata, Mitsuyasu; Terayama, Ryuji; Maruhama, Kotaro; Iida, Seiji; Sugimoto, Tomosada

    2018-03-01

    In this study, we compared induction of c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal dorsal horn after peripheral nerve injury. We examined the spinal dorsal horn for noxious heat-induced c-Fos and p-ERK protein-like immunoreactive (c-Fos- and p-ERK-IR) neuron profiles after tibial nerve injury. The effect of administration of a MEK 1/2 inhibitor (PD98059) on noxious heat-induced c-Fos expression was also examined after tibial nerve injury. A large number of c-Fos- and p-ERK-IR neuron profiles were induced by noxious heat stimulation to the hindpaw in sham-operated animals. A marked reduction in the number of c-Fos- and p-ERK-IR neuron profiles was observed in the medial 1/3 (tibial territory) of the dorsal horn at 3 and 7 days after nerve injury. Although c-Fos-IR neuron profiles had reappeared by 14 days after injury, the number of p-ERK-IR neuron profiles remained decreased in the tibial territory of the superficial dorsal horn. Double immunofluorescence labeling for c-Fos and p-ERK induced by noxious heat stimulation to the hindpaw at different time points revealed that a large number of c-Fos-IR, but not p-ERK-IR, neuron profiles were distributed in the tibial territory after injury. Although administration of a MEK 1/2 inhibitor to the spinal cord suppressed noxious heat-induced c-Fos expression in the peroneal territory, this treatment did not alter c-Fos induction in the tibial territory after nerve injury. ERK phosphorylation may be involved in c-Fos induction in normal nociceptive responses, but not in exaggerated c-Fos induction after nerve injury.

  16. Ghrelin-Induced Orexigenic Effect in Rats Depends on the Metabolic Status and Is Counteracted by Peripheral CB1 Receptor Antagonism

    PubMed Central

    Alen, Francisco; Crespo, Inmaculada; Ramírez-López, María Teresa; Jagerovic, Nadine; Goya, Pilar; de Fonseca, Fernando Rodríguez; de Heras, Raquel Gómez; Orio, Laura

    2013-01-01

    Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions. PMID:23565287

  17. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID

  18. Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    1999-01-01

    Vestibular compensation is a central nervous system process resulting in recovery of functional movement and control following a unilateral vestibular lesion. Small pressure injections of phosphorothioate 20mer oligonucleotides were used to probe the role of the Fos transcription protein during vestibular compensation in the gerbil brainstem. During isoflurane gas anesthesia, antisense probes against the c-fos mRNA sequence were injected into the medial vestibular and prepositus nuclei unilaterally prior to a unilateral surgical labyrinthectomy. Anionic dyes, which did not interact with the oligonucleotides, were used to mark the injection site and help determine the extent of diffusion. The antiFos oligonucleotide injections reduced Fos expression at the injection site in neurons which normally express Fos after the lesion, and also affected circling behavior induced by hemilabyrinthectomy. With both ipsilateral and contralateral medial vestibular and prepositus nuclei injections, less ipsilateral and more contralateral circling was noted in animals injected with antiFos injections as compared to non-injected controls. The degree of change in these behaviors was dependent upon the side of the injection. Histologically, antiFos injections reduced the number of Fos immunolabeled neurons around the injection site, and increased Fos expression contralaterally. The correlation of the number of neurons with Fos expression to turning behavior was stronger for contralateral versus ipsilateral turns, and for neurons in the caudal and ipsilateral sub-regions of the medial vestibular and prepositus nuclei. The results are discussed in terms of neuronal firing activity versus translational activity based on the asymmetrical expression of the Fos inducible transcription factor in the medial vestibular and prepositus nuclei. Although ubiquitous in the brain, transcription factors like Fos can serve localized and specific roles in sensory-specific adaptive stimuli. Antisense

  19. Maternal odours induce Fos in the main but not the accessory olfactory bulbs of neonatal male and female ferrets.

    PubMed

    Chang, Y M; Kelliher, K R; Baum, M J

    2001-06-01

    Previous research demonstrated that exposing gonadectomized adult ferrets to odours in oestrous female bedding induced nuclear Fos-immunoreactivity (Fos-IR; a marker of neuronal activity) in the main as opposed to the accessory olfactory system in a sexually dimorphic fashion, which was further augmented in both sexes by treatment with testosterone propionate. Ferrets are born in an altricial state and presumably use maternal odour cues to locate the nipples until the eyes open after postnatal (P) day 23. We investigated whether maternal odours augment neuronal Fos preferentially in the main versus accessory olfactory system of neonatal male and female ferret kits. Circulating testosterone levels peak in male ferrets on postnatal day P15, and mothers provide maximal anogenital stimulation (AGS) to males at this same age. Therefore, we assessed the ability of maternal odours to augment Fos-IR in the accessory olfactory bulb (AOB), the main olfactory bulb (MOB) and other forebrain regions of male and female ferret kits on P15 and investigated whether artificial AGS (provided with a paintbrush) would further enhance any effects of maternal odours. After separation from their mothers for 4 h, groups of male and female kits that were placed for 1.5 h with their anaesthetized mother had significantly more Fos-IR cells in the MOB granule cell layer and in the anterior-cortical amygdala, but not in the AOB cell layer, compared to control kits that were left on the heating pad. Artificial AGS failed to amplify these effects of maternal odours. Maternal odours (with or without concurrent AGS) failed to augment neuronal Fos-IR in medial amygdaloid and hypothalamic regions that are activated in adult ferrets by social odours. In neonatal ferrets of both sexes, as in adults, socially relevant odours are detected by the main olfactory epithelium and initially processed by the MOB and the anterior-cortical amygdala. In neonates, unlike adults, medial amygdaloid and hypothalamic

  20. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

    PubMed Central

    Mani, Bharath K.; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna; Hepler, Chelsea; Zigman, Jeffrey M.

    2016-01-01

    Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children. PMID:27548523

  1. Stress does not affect ghrelin secretion in obese and normal weight women.

    PubMed

    Kiessl, Gundula R R; Laessle, Reinhold G

    2017-03-01

    Stress has been supposed to increase appetite. The biological basis of this phenomenon may be a stress-induced alteration of the secretion of GUT peptides such as ghrelin. Stress-induced changes in ghrelin secretion could be a biological basis of overeating and a factor contributing to the development of obesity. Aim of the study was to analyze the effect of acute psychosocial stress on ghrelin secretion in obese and normal weight women. We compared pre- and postprandial plasma ghrelin secretion of 42 obese and 43 normal weight women in a randomized crossover design. Ghrelin and cortisol concentrations were measured and ratings of stress were also recorded in response to a psychological stressor (Trier Social Stress Test, TSST). Ghrelin samples were collected in the fasting state one time before participating in the TSST and one time before a control session. After the TSST, respectively, control session participants had a standardized ad libitum meal. 30 and 60 min after the TSST, respectively, control session preprandial ghrelin was measured again. Obese women showed lower pre- and postprandial release of ghrelin than normal weight controls. Moreover, obese women showed inhibited postprandial decrease of ghrelin secretion. Stress did not affect postprandial ghrelin secretion, but inhibited food intake in all subjects. The present data provide further evidence of altered ghrelin release in obesity. Acute stress did not affect postprandial ghrelin secretion, but inhibited food intake in all subjects. Results are discussed with regard to biological and psychological regulation of hunger and satiety in obesity.

  2. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Nakahara, Keiko; Kangawa, Kenji

    Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continuedmore » after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.« less

  3. Chronic inflammation modulates ghrelin levels in humans and rats.

    PubMed

    Otero, M; Nogueiras, R; Lago, F; Dieguez, C; Gomez-Reino, J J; Gualillo, O

    2004-03-01

    The aim of this work was to investigate whether changes in plasma ghrelin, the recently discovered 28-amino acid gastric hormone that regulates growth hormone (GH) secretion and energy homeostasis, occur during inflammation in adjuvant-induced arthritis (AA) in rats. For completeness, ghrelin plasma levels were measured in rheumatoid arthritis (RA) patients. AA was induced in male Lewis rats using Freund's complete adjuvant. Animals were monitored for weight and food intake, every 2 or 3 days, along all time-course experiments. Plasma ghrelin concentrations in 31 RA patients and 18 healthy controls, as well as in rats, were determined by a specific double-antibody radioimmunoassay. Gastric ghrelin mRNA expression was evaluated by northern blot analysis. Human GH and insulin-like growth factor (IGF)-1 were determined by quantitative chemiluminescence assay. Compared with controls, arthritic rats gained significantly (P < 0.01) less body weight than controls until the end of the study, when a partial recovery occurred. Ghrelin plasma levels were significantly lower at day 7 after arthritis induction than in controls (AA 7 = 91.2 +/- 5.6 pg/ml vs controls = 124.75 +/- 5.9 pg/ml), but they recovered to control levels by day 15. RA patients had ghrelin plasma levels significantly lower than healthy controls (RA = 24.54 +/- 2.57 pg/ml vs 39.01 +/- 4.47 pg/ml of healthy controls; P = 0.0041). In AA, there is a compensatory variation of ghrelin levels that relates to body weight adjustments. Recovery of ghrelin levels in the latter stage suggests an adaptive response and may represent a compensatory mechanism under catabolic conditions. In RA patients, chronic imbalance in ghrelin levels suggests that this gastric hormone may participate, together with other factors, in alterations of metabolic status during inflammatory stress.

  4. The Role of Ghrelin and Ghrelin Signaling in Aging.

    PubMed

    Amitani, Marie; Amitani, Haruka; Cheng, Kai-Chun; Kairupan, Timothy Sean; Sameshima, Nanami; Shimoshikiryo, Ippei; Mizuma, Kimiko; Rokot, Natasya Trivena; Nerome, Yasuhito; Owaki, Tetsuhiro; Asakawa, Akihiro; Inui, Akio

    2017-07-12

    With our aging society, more people hope for a long and healthy life. In recent years, researchers have focused on healthy longevity factors. In particular, calorie restriction delays aging, reduces mortality, and extends life. Ghrelin, which is secreted during fasting, is well known as an orexigenic peptide. Because ghrelin is increased by caloric restriction, ghrelin may play an important role in the mechanism of longevity mediated by calorie restriction. In this review, we will discuss the role of orexigenic peptides with a particular focus on ghrelin. We conclude that the ghrelin-growth hormone secretagogue-R signaling pathway may play an important role in the anti-aging mechanism.

  5. The Role of Ghrelin and Ghrelin Signaling in Aging

    PubMed Central

    Amitani, Haruka; Cheng, Kai-Chun; Kairupan, Timothy Sean; Sameshima, Nanami; Shimoshikiryo, Ippei; Mizuma, Kimiko; Rokot, Natasya Trivena; Nerome, Yasuhito; Owaki, Tetsuhiro; Asakawa, Akihiro; Inui, Akio

    2017-01-01

    With our aging society, more people hope for a long and healthy life. In recent years, researchers have focused on healthy longevity factors. In particular, calorie restriction delays aging, reduces mortality, and extends life. Ghrelin, which is secreted during fasting, is well known as an orexigenic peptide. Because ghrelin is increased by caloric restriction, ghrelin may play an important role in the mechanism of longevity mediated by calorie restriction. In this review, we will discuss the role of orexigenic peptides with a particular focus on ghrelin. We conclude that the ghrelin-growth hormone secretagogue-R signaling pathway may play an important role in the anti-aging mechanism. PMID:28704966

  6. GHRELIN HYPORESPONSIVENESS CONTRIBUTES TO AGING-RELATED HYPERINFLAMMATION IN SEPTIC SHOCK

    PubMed Central

    Wu, Rongqian; Zhou, Mian; Dong, Weifeng; Ji, Youxin; Miksa, Michael; Marini, Corrado P.; Ravikumar, Thanjavur S.; Wang, Ping

    2009-01-01

    Objective To test the hypothesis that hyporesponsiveness to ghrelin due to reduced growth hormone (GH) contributes to the aging-related hyperinflammatory state in sepsis. Summary Background Data Sepsis and septic shock are a serious problem particularly in the geriatric population. Ghrelin is an endogenous ligand for the GH secretagogue receptor 1a (GHSR1a, i.e., ghrelin receptor). The decline in GH with age is directly associated with many adverse changes that occur with aging. However, the role of GH, ghrelin, and GHSR1a in the age-associated vulnerability to sepsis remains unknown. Methods Male Fischer-344 rats (young: 3-months; aged: 24-months) were used. Plasma GH levels, ghrelin receptor expression and neuronal activity in the parasympathostimulatory nuclei of the brain stem in normal young and aged animals were measured. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS, 15 mg/kg BW). Results While LPS-induced release of proinflammatory cytokines from macrophages isolated from aged rats decreased, LPS injection caused an in vivo hyperinflammatory state. GH levels were lower in aged rats, which was associated with lower expression of GHSR1a in the dorsal vagal complex (DVC) and a decrease in parasympathostimulatory neuronal activity. GHSR1a antagonist elevated LPS-induced cytokine release in young rats. GH increased GHSR-1a expression in the DVC in aged rats. Co-administration of ghrelin and GH, but not ghrelin alone or GH alone, markedly reduced cytokine levels and organ injury after endotoxemia in aged rats, which was associated with significantly elevated parasympathostimulatory neuronal activity. Conclusions These findings suggest that the reduced central (brain) responsiveness to ghrelin due to the decreased GH, plays a major role in producing the hyperinflammatory state, resulting in severe organ injuries and high mortality after endotoxemia in aged animals. Ghrelin and GH can be developed as a novel therapy for sepsis in the

  7. Oral ‘hydrogen water' induces neuroprotective ghrelin secretion in mice

    PubMed Central

    Matsumoto, Akio; Yamafuji, Megumi; Tachibana, Tomoko; Nakabeppu, Yusaku; Noda, Mami; Nakaya, Haruaki

    2013-01-01

    The therapeutic potential of molecular hydrogen (H2) is emerging in a number of human diseases and in their animal models, including in particular Parkinson's disease (PD). H2 supplementation of drinking water has been shown to exert disease-modifying effects in PD patients and neuroprotective effects in experimental PD model mice. However, H2 supplementation does not result in detectable changes in striatal H2 levels, indicating an indirect effect. Here we show that H2 supplementation increases gastric expression of mRNA encoding ghrelin, a growth hormone secretagogue, and ghrelin secretion, which are antagonized by the β1-adrenoceptor blocker, atenolol. Strikingly, the neuroprotective effect of H2 water was abolished by either administration of the ghrelin receptor-antagonist, D-Lys3 GHRP-6, or atenolol. Thus, the neuroprotective effect of H2 in PD is mediated by enhanced production of ghrelin. Our findings point to potential, novel strategies for ameliorating pathophysiology in which a protective effect of H2 supplementation has been demonstrated. PMID:24253616

  8. Reduction in total plasma ghrelin levels following catecholamine depletion: relation to bulimic and depressive symptoms.

    PubMed

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2013-09-01

    There is increasing preclinical and clinical evidence of the important role played by the gastric peptide hormone ghrelin in the pathogenesis of symptoms of depression and eating disorders. To investigate the role of ghrelin and its considered counterpart, peptide tyrosine tyrosine (PYY), in the development of bulimic and depressive symptoms induced by catecholamine depletion, we administered the tyrosine hydroxylase inhibitor alpha-methyl-paratyrosine (AMPT) in a randomized, double-blind, placebo-controlled crossover, single-site experimental trial to 29 healthy controls and 20 subjects with fully recovered bulimia nervosa (rBN). We found a decrease between preprandial and postprandial plasma ghrelin levels (p<0.0001) and a postprandial rise in plasma PYY levels (p<0.0001) in both conditions in the entire study population. Plasma ghrelin levels decreased in the entire study population after treatment with AMPT compared to placebo (p<0.006). AMPT-induced changes in plasma ghrelin levels were negatively correlated with AMPT-induced depressive symptoms (p<0.004). Plasma ghrelin and plasma PYY levels were also negatively correlated (p<0.05). We did not observe a difference in ghrelin or PYY response to catecholamine depletion between rBN subjects and healthy controls, and there was no correlation between plasma ghrelin and PYY levels and bulimic symptoms induced by catecholamine depletion. These findings suggest a relationship between catecholamines and ghrelin with depressive symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Is there an effect of ghrelin/ghrelin analogs on cancer? A systematic review

    PubMed Central

    Sever, Sakine; White, Donna L

    2016-01-01

    Ghrelin is a hormone with multiple physiologic functions, including promotion of growth hormone release, stimulation of appetite and regulation of energy homeostasis. Treatment with ghrelin/ghrelin-receptor agonists is a prospective therapy for disease-related cachexia and malnutrition. In vitro studies have shown high expression of ghrelin in cancer tissue, although its role including its impact in cancer risk and progression has not been established. We performed a systematic literature review to identify peer-reviewed human or animal in vivo original research studies of ghrelin, ghrelin-receptor agonists, or ghrelin genetic variants and the risk, presence, or growth of cancer using structured searches in PubMed database as well as secondary searches of article reference lists, additional reviews and meta-analyses. Overall, 45 (73.8%) of the 61 studies reviewed, including all 11 involving exogenous ghrelin/ghrelin-receptor agonist treatment, reported either a null (no statistically significant difference) or inverse association of ghrelin/ghrelin-receptor agonists or ghrelin genetic variants with cancer risk, presence or growth; 10 (16.7%) studies reported positive associations; and 6 (10.0%) reported both negative or null and positive associations. Differences in serum ghrelin levels in cancer cases vs controls (typically lower) were reported for some but not all cancers. The majority of in vivo studies showed a null or inverse association of ghrelin with risk and progression of most cancers, suggesting that ghrelin/ghrelin-receptor agonist treatment may have a favorable safety profile to use for cancer cachexia. Additional large-scale prospective clinical trials as well as basic bioscientific research are warranted to further evaluate the safety and benefits of ghrelin treatment in patients with cancer. PMID:27552970

  10. Light-induced c-Fos expression in the mouse suprachiasmatic nucleus: immunoelectron microscopy reveals co-localization in multiple cell types.

    PubMed

    Castel, M; Belenky, M; Cohen, S; Wagner, S; Schwartz, W J

    1997-09-01

    Although light is known to regulate the level of c-fos gene expression in the suprachiasmatic nucleus (SCN), the site of an endogenous circadian clock, little is known about the identities of the photically activated cells. We used light-microscopic immunocytochemistry and immunoelectron microscopy to detect c-Fos protein in the SCN of Sabra mice exposed to brief nocturnal light pulses at zeitgeber time 15-16. Stimulation with light pulses that saturated the phase-shifting response of the circadian locomotor rhythm revealed an upper limit to the number of photo-inducible c-Fos cells at about one-fifth of the estimated total SCN cell population. This functionally defined set was morphologically and phenotypically heterogeneous. About 24% could be labelled for vasoactive intestinal polypeptide, 13% for vasopressin-neurophysin, and 7% for glial fibrillary acidic protein. The remaining 56% of c-Fos-positive cells were largely of unknown phenotype, although many were presumptive interneurons, some of which were immunoreactive for nitric oxide synthase.

  11. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation.

    PubMed

    Ferreira-Marques, Marisa; Aveleira, Célia A; Carmo-Silva, Sara; Botelho, Mariana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-07-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process.

  12. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  13. Exogenous ghrelin regulates proliferation and apoptosis in the hypotrophic gut mucosa of the rat.

    PubMed

    de Segura, Ignacio A Gómez; Vallejo-Cremades, María Teresa; Lomas, Jesús; Sánchez, Miriam F; Caballero, María Isabel; Largo, Carlota; De Miguel, Enrique

    2010-04-01

    Ghrelin is the natural endogenous ligand for growth hormone secretagogue receptors. This peptide regulates energy homeostasis and expenditure and is a potential link between gut absorptive function and growth. We hypothesized that ghrelin may induce a proliferative and antiapoptotic action promoting the recovery of the hypotrophic gut mucosa. Therefore, the aim of the study was to determine the action of exogenous ghrelin following gut mucosal hypotrophia in rats fed an elemental diet. An elemental diet provides readily absorbable simple nutrients and is usually given to patients with absorptive dysfunction. Male Wistar rats (n = 48) were fed the elemental diet for one week to induce mucosal hypotrophy and then treated for another week with systemic ghrelin and pair-fed with either a normoproteic or hyperproteic isocaloric liquid diet. Another group received a standard diet instead of the elemental diet and served as control (normotrophy). The elemental diet induced intestinal hypotrophia characterized by decreased proliferation in the ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored normal levels of proliferation in the ileum and apoptosis in the jejunum, with partial apoptosis restoration in the ileum. Ghrelin levels in plasma and fundus were increased in all groups, although the highest levels were found in rats treated with exogenous ghrelin. Ghrelin administration has a positive effect in the hypotrophic gut, regulating both proliferation and apoptosis towards a physiological balance counteracting the negative changes induced by an elemental diet in the intestines.

  14. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Aihua; Cheng Guangli; Zhu Genghui

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increasedmore » in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling.« less

  15. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate informationmore » encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was

  16. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    PubMed

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (P<0.01). To our knowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  17. Site and mechanism of the colokinetic action of the ghrelin receptor agonist, HM01.

    PubMed

    Naitou, K; Mamerto, T P; Pustovit, R V; Callaghan, B; Rivera, L R; Chan, A J; Ringuet, M T; Pietra, C; Furness, J B

    2015-12-01

    It has been recently demonstrated that the ghrelin receptor agonist, HM01, caused defecation in rats that were treated to provide a model for the constipation of Parkinson's disease. HM01 significantly increased fecal output and increased Fos activity in neurons of the hypothalamus and hindbrain, but not in the spinal defecation center. Other ghrelin agonists act on the defecation center. Receptor pharmacology was examined in ghrelin receptor (GHSR1a) transfected cells. Anesthetized rats were used to investigate sites and mechanisms of action. HM01 activated rat GHSR1a at nanomolar concentrations and was antagonized by the GHSR1a antagonist, YIL781. HM01, intravenous, was potent to activate propulsive colorectal contractions. This was prevented by pelvic nerve section and by intravenous YIL781, but not by spinal cord section rostral to the defecation centers. Direct intrathecal application of HM01 to the defecation center at spinal level L6-S1 initiated propulsive contractions of the colorectum. HM01 stimulates GHSR1a receptors on neurons in the lumbosacral defecation centers to cause propulsive contractions and emptying of the colorectum. It has greater potency when given systemically, compared with other GHSR1a agonists. © 2015 John Wiley & Sons Ltd.

  18. Estimation of gastric ghrelin-positive cells activity in hyperthyroid rats.

    PubMed

    Dadan, Jacek; Zbucki, Robert L; Sawicki, Bogusław; Winnicka, Maria M

    2008-01-01

    Ghrelin is a peptide of 28 amino acids that transmits appetite related signals from peripheral organs to the brain. The main source of ghrelin is stomach. The regulation of ghrelin secretion is still unknown. The finding that fasting and food intake, respectively increase and decrease the secretion of ghrelin suggests that this hormone may be a bridge connecting somatic growth with energy metabolism and appears to play an important role in the alteration of energy homeostasis and body weight in pathophisiological conditions. The purpose of this study was the evaluation of gastric ghrelin immunoreactivity and ghrelin plasma concentration in male Wistar rats with hyperthyroidism. Experimental model of hyperthyroidism was induced by intraperitoneal injection of levothyroxine at the dose of 80 microg/kg daily over 21 days. At the end of experiment the animals were anaesthetized, blood was taken from abdominal aorta to determinate plasma ghrelin concentration by RIA and then the animals underwent resection of distal part of stomach. Immunohistochemical study were performed using monoclonal specific antybodies against ghrelin. Hyperthyroidism was a reason of increase of gastric mucosal ghrelin - immunoreactivity, accompanied by a significant decreased of ghrelin plasma concentration. Those observations may indicate, that chronic administration of L-thyroxine cause the change of ghrelin plasma concentration in rats, probably via direct influence on gastric X/A-like cells, but this effect is not responsible for hyperphagia associated with hyperthyroidism.

  19. Ghrelin-induced stimulation of colonic propulsion is dependent on hypothalamic neuropeptide Y1- and corticotrophin-releasing factor 1 receptor activation.

    PubMed

    Tebbe, J J; Mronga, S; Tebbe, C G; Ortmann, E; Arnold, R; Schäfer, M K-H

    2005-09-01

    Peptides participating in the hypothalamic control of feeding behaviour are also involved in the central autonomic control of gastrointestinal functions, such as secretion and motility. An anatomical interaction and functional relationship in the central nervous system between the feeding-related peptides neuropeptide Y and ghrelin is well documented. Furthermore, it has been shown that feeding-related peptides can influence digestive function via central corticotrophin-releasing factor (CRF) pathways. In the present study, we investigated the role of ghrelin in the central autonomic control of colonic motility. Furthermore, we addressed the hypothesis that ghrelin is involved in the hypothalamic control of colonic motor function, utilizing central neuropeptide Y receptors and hypothalamic CRF pathways. Ghrelin (0.03, 0.06 and 0.12 nmol) bilaterally microinjected into the paraventricular nucleus (PVN) induced a significant stimulation of colonic propulsion. In particular, the colonic transit time decreased from 312+/-7 min to 198+/-12 min. Microinjection of the neuropeptide Y1 receptor antagonist, BIBP-3226 (200 pmol), or the nonselective CRF receptor antagonist, astressin (30 pmol), into the PVN abolished the stimulatory effect of ghrelin injected into the PVN on colonic transit time, whereas pretreatment with the selective CRF2 receptor, antisauvagine-30 (28 pmol), failed to affect the effect of PVN-ghrelin injection on colonic propulsion. These results suggest that ghrelin can act as central modulator of gastrointestinal motor functions at the level of the PVN via neuropeptide Y1- and CRF1 receptor-dependent mechanisms.

  20. Ghrelin action in the brain controls adipocyte metabolism

    PubMed Central

    Theander-Carrillo, Claudia; Wiedmer, Petra; Cettour-Rose, Philippe; Nogueiras, Ruben; Perez-Tilve, Diego; Pfluger, Paul; Castaneda, Tamara R.; Muzzin, Patrick; Schürmann, Annette; Szanto, Ildiko; Tschöp, Matthias H.; Rohner-Jeanrenaud, Françoise

    2006-01-01

    Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage–promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase–1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase–1α, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue. PMID:16767221

  1. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures.

    PubMed

    Hsieh, T F; Simler, S; Vergnes, M; Gass, P; Marescaux, C; Wiegand, S J; Zimmermann, M; Herdegen, T

    1998-01-01

    The expression of inducible transcription factors was studied following repetitive electroconvulsive seizures (ECS), c-Fos, c-Jun, JunB, and JunD immunoreactivities were investigated following a single (1 x ECS) or repetitive ECS evoked once per day for 4, 5, or 10 days (4 x ECS, 5 x ECS, or 10 x ECS). Animals were killed 3 or 12 h following the last ECS. Three hours after 1 x ECS, c-Fos was expressed throughout the cortex and hippocampus. After 5 x ECS and 10 x ECS, c-Fos was reexpressed in the CA4 area, but was completely absent in the other hippocampal areas and cortex. In these areas, c-Fos became only reinducible when the time lag between two ECS stimuli was 5 days. In contrast to c-Fos, intense JunB expression was inducible in the cortex and hippocampus, but not CA4 subfield, after 1 x ECS, 5 x ECS, and 10 x ECS. Repetitive ECS did not effect c-Jun and JunD expression. In a second model of systemic excitation of the brain, repetitive daily injection of kainic acid for 4 days completely failed to express c-Fos, c-Jun, and JunB after the last application whereas injection of kainic acid once per week did not alter the strong expressions compared to a single application of kainic acid. In order to study the maintenance of c-Fos expression during repetitive seizures, brain-derived neurotrophic factor (BDNF) was applied in parallel for 5 or 10 days via miniosmotic pumps and permanent cannula targeted at the hippocampus or the parietal cortex. Infusion of BDNF completely reinduced c-Fos expression during 5 x ECS or 10 x ECS in the cortex ipsilaterally to the cannula and, to a less extent, also increased the expression of c-Jun and JunB when compared to saline-treated controls. BDNF had no effect on the expression patterns in the hippocampus. ECS with or without BDNF infusion did not change the expression patterns of the constitutive transcription factors ATF-2, CREB, and SRF. These data demonstrate that various transcription factors substantially differ in their

  2. Ghrelin influences novelty seeking behavior in rodents and men.

    PubMed

    Hansson, Caroline; Shirazi, Rozita H; Näslund, Jakob; Vogel, Heike; Neuber, Corinna; Holm, Göran; Anckarsäter, Henrik; Dickson, Suzanne L; Eriksson, Elias; Skibicka, Karolina P

    2012-01-01

    Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents.

  3. Ghrelin Influences Novelty Seeking Behavior in Rodents and Men

    PubMed Central

    Hansson, Caroline; Shirazi, Rozita H.; Näslund, Jakob; Vogel, Heike; Neuber, Corinna; Holm, Göran; Anckarsäter, Henrik; Dickson, Suzanne L.; Eriksson, Elias; Skibicka, Karolina P.

    2012-01-01

    Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents. PMID:23227170

  4. Ghrelin administration suppresses inflammation-associated colorectal carcinogenesis in mice

    PubMed Central

    Kawaguchi, Makiko; Kanemaru, Ai; Fukushima, Tsuyoshi; Yamamoto, Koji; Tanaka, Hiroyuki; Haruyama, Yukihiro; Itoh, Hiroshi; Matsumoto, Nobuhiro; Kangawa, Kenji; Nakazato, Masamitsu; Kataoka, Hiroaki

    2015-01-01

    Ghrelin is a 28-amino-acid peptide that stimulates the release of pituitary growth hormone. Because of its orexigenic effects, ghrelin is being developed as a therapeutic option for postoperative support and treatment of anorexia-cachexia syndrome of cancer patients. However, ghrelin has a multiplicity of physiological functions, and it also affects cell proliferation. Therefore, the effects of ghrelin administration on carcinogenesis and cancer progression in patients susceptible to cancer should be clarified. In this study, we examined the effects of ghrelin on cancer promotion in vivo using murine intestinal carcinogenesis models. Intestinal tumorigenesis was examined to determine the effects of either exogenous ghrelin administration or ghrelin deficiency following deletion of the Ghrl gene. Two murine intestinal tumorigenesis models were used. The first was the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced inflammation-associated colon carcinogenesis model and the second was the ApcMin/+ genetic cancer susceptibility model. In AOM/DSS-treated mice, administration of ghrelin significantly suppressed tumor formation in the colon. In contrast, ghrelin administration did not affect the number of intestinal tumors formed in ApcMin/+ mice. The absence of endogenous ghrelin did not affect the incidence of intestinal tumors in either AOM/DSS-treated mice or ApcMin/+ mice, though tumor size tended to be larger in Ghrl−/− colons in the AOM/DSS model. No tumor-promoting effect was observed by ghrelin administration in either tumorigenesis model. In summary, this study provides in vivo experimental evidence for the usefulness of ghrelin administration in the chemoprevention of inflammation-associated colorectal carcinogenesis and may suggest its safety in patients under colitis-associated cancer susceptibility conditions. PMID:26094822

  5. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles.

    PubMed

    Jang, Hoon; Na, Younghwa; Hong, Kwonho; Lee, Sangho; Moon, Sohyeon; Cho, Minha; Park, Miseon; Lee, Ok-Hee; Chang, Eun Mi; Lee, Dong Ryul; Ko, Jung Jae; Lee, Woo Sik; Choi, Youngsok

    2017-10-01

    Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27 Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27 Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation

    PubMed Central

    Bakiri, Latifa; Hamacher, Rainer; Graña, Osvaldo; Guío-Carrión, Ana; Martinez, Lola; Dienes, Hans P.; Thomsen, Martin K.; Hasenfuss, Sebastian C.

    2017-01-01

    Human hepatocellular carcinomas (HCCs), which arise on a background of chronic liver damage and inflammation, express c-Fos, a component of the AP-1 transcription factor. Using mouse models, we show that hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced HCCs, whereas liver-specific c-Fos expression leads to reversible premalignant hepatocyte transformation and enhanced DEN-carcinogenesis. c-Fos–expressing livers display necrotic foci, immune cell infiltration, and altered hepatocyte morphology. Furthermore, increased proliferation, dedifferentiation, activation of the DNA damage response, and gene signatures of aggressive HCCs are observed. Mechanistically, c-Fos decreases expression and activity of the nuclear receptor LXRα, leading to increased hepatic cholesterol and accumulation of toxic oxysterols and bile acids. The phenotypic consequences of c-Fos expression are partially ameliorated by the anti-inflammatory drug sulindac and largely prevented by statin treatment. An inverse correlation between c-FOS and the LXRα pathway was also observed in human HCC cell lines and datasets. These findings provide a novel link between chronic inflammation and metabolic pathways important in liver cancer. PMID:28356389

  7. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development.

    PubMed

    Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C

    2017-10-01

    The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.

  8. Ghrelin improves vascular autophagy in rats with vascular calcification.

    PubMed

    Xu, Mingming; Liu, Lin; Song, Chenfang; Chen, Wei; Gui, Shuyan

    2017-06-15

    This study aimed to investigate whether ghrelin ameliorated vascular calcification (VC) through improving autophagy. VC model was induced by nicotine plus vitamin D 3 in rats and β-glycerophosphate in vascular smooth muscle cell (VSMC). Calcium deposition was detected by von Kossa staining or alizarin red S staining. ALP activity was also detected. Western blot was used to assess the protein expression. Ghrelin treatment attenuated the elevation of calcium deposition and ALP activity in VC model both in vivo and in vitro. Interesting, the protein levels of autophagy markers, LC3 and beclin1 were significantly upregulated by ghrelin in VC model. An autophagy inhibitor, 3-methyladenine blocks the ameliorative effect of ghrelin on VC. Furthermore, protein expressions of phosphate-AMPK were increased by ghrelin treatment both in calcified aorta and VSMC. The effect of ghrelin on autophagy induction and VC attenuation was prevented by AMPK inhibitor, compound C. Our results suggested that ghrelin improved autophagy through AMPK activation, which was resulted in VC amelioration. These data maybe throw light on prevention and therapy of VC. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ghrelin Pre-treatment Attenuates Local Oxidative Stress and End Organ Damage During Cardiopulmonary Bypass in Anesthetized Rats

    PubMed Central

    Sukumaran, Vijayakumar; Tsuchimochi, Hirotsugu; Fujii, Yutaka; Hosoda, Hiroshi; Kangawa, Kenji; Akiyama, Tsuyoshi; Shirai, Mikiyasu; Tatsumi, Eisuke; Pearson, James T.

    2018-01-01

    Cardiopulmonary bypass (CPB) induced systemic inflammation significantly contributes to the development of postoperative complications, including respiratory failure, myocardial, renal and neurological dysfunction and ultimately can lead to failure of multiple organs. Ghrelin is a small endogenous peptide with wide ranging physiological effects on metabolism and cardiovascular regulation. Herein, we investigated the protective effects of ghrelin against CPB-induced inflammatory reactions, oxidative stress and acute organ damage. Adult male Sprague Dawley rats randomly received vehicle (n = 5) or a bolus of ghrelin (150 μg/kg, sc, n = 5) and were subjected to CPB for 4 h (protocol 1). In separate rats, ghrelin pre-treatment (protocol 2) was compared to two doses of ghrelin (protocol 3) before and after CPB for 2 h followed by recovery for 2 h. Blood samples were taken prior to CPB, and following CPB at 2 h and 4 h. Organ nitrosative stress (3-nitrotyrosine) was measured by Western blotting. CPB induced leukocytosis with increased plasma levels of tumor necrosis factor-α and interleukin-6 indicating a potent inflammatory response. Ghrelin treatment significantly reduced plasma organ damage markers (lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase) and protein levels of 3-nitrotyrosine, particularly in the brain, lung and liver, but only partly suppressed inflammatory cell invasion and did not reduce proinflammatory cytokine production. Ghrelin partially attenuated the CPB-induced elevation of epinephrine and to a lesser extent norepinephrine when compared to the CPB saline group, while dopamine levels were completely suppressed. Ghrelin treatment sustained plasma levels of reduced glutathione and decreased glutathione disulphide when compared to CPB saline rats. These results suggest that even though ghrelin only partially inhibited the large CPB induced increase in catecholamines and organ macrophage infiltration, it reduced oxidative

  10. Ghrelin-induced hippocampal neurogenesis and enhancement of cognitive function are mediated independently of GH/IGF-1 axis: lessons from the spontaneous dwarf rats.

    PubMed

    Li, Endan; Kim, Yumi; Kim, Sehee; Park, Seungjoon

    2013-01-01

    We recently have reported that ghrelin modulates adult hippocampal neurogenesis. However, there is a possibility that the action of ghrelin on hippocampal neurogenesis could be, in part, due to the ability of ghrelin to stimulate the GH/insulin-like growth factor (IGF)-1 axis, where both GH and IGF-1 infusions are known to increase hippocampal neurogenesis. To explore this possibility, we assessed the impact of ghrelin on progenitor cell proliferation and differentiation in the dentate gyrus (DG) of spontaneous dwarf rats (SDRs), a dwarf strain with a mutation of the GH gene resulting in total loss of GH. Double immunohistochemical staining revealed that Ki-67-positive progenitor cells and doublecortin (DCX)-positive neuroblasts in the DG of the SDRs expressed ghrelin receptors. We found that ghrelin treatment in the SDRs significantly increased the number of proliferating cell nuclear antigen- and BrdU-labeled cells in the DG. The number of DCX-labeled cells in the DG of ghrelin-treated SDRs was also significantly increased compared with the vehicle-treated controls. To test whether ghrelin has a direct effect on cognitive performance independently of somatotropic axis, hippocampus-dependent learning and memory were assessed using the Y-maze and novel object recognition (NOR) test in the SDRs. Ghrelin treatment for 4 weeks by subcutaneous osmotic pump significantly increased alternation rates in the Y-maze and exploration time for novel object in the NOR test compared to vehicle-treated controls. Our results indicate that ghrelin-induced adult hippocampal neurogenesis and enhancement of cognitive function are mediated independently of somatotropic axis.

  11. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice.

    PubMed

    Donahue, Rachel J; Muschamp, John W; Russo, Scott J; Nestler, Eric J; Carlezon, William A

    2014-10-01

    Chronic social defeat stress (CSDS) produces persistent behavioral adaptations in mice. In many behavioral assays, it can be difficult to determine if these adaptations reflect core signs of depression. We designed studies to characterize the effects of CSDS on sensitivity to reward because anhedonia (reduced sensitivity to reward) is a defining characteristic of depressive disorders in humans. We also examined the effects of striatal ΔFosB overexpression and the N-methyl-D-aspartate receptor antagonist ketamine, both of which promote resilience, on CSDS-induced alterations in reward function and social interaction. Intracranial self-stimulation (ICSS) was used to quantify CSDS-induced changes in reward function. Mice were implanted with lateral hypothalamic electrodes, and ICSS thresholds were measured after each of 10 daily CSDS sessions and during a 5-day recovery period. We also examined if acute intraperitoneal administration of ketamine (2.5-20 mg/kg) reverses CSDS-induced effects on reward or, in separate mice, social interaction. ICSS thresholds were increased by CSDS, indicating decreases in the rewarding impact of lateral hypothalamic stimulation (anhedonia). This effect was attenuated in mice overexpressing ∆FosB in striatum, consistent with pro-resilient actions of this transcription factor. High, but not low, doses of ketamine administered after completion of the CSDS regimen attenuated social avoidance in defeated mice, although this effect was transient. Ketamine did not block CSDS-induced anhedonia in the ICSS test. This study found that CSDS triggers persistent anhedonia and confirms that ΔFosB overexpression produces stress resilience. The findings of this study also indicate that acute administration of ketamine fails to attenuate CSDS-induced anhedonia despite reducing other depression-related behavioral abnormalities. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Therapeutic action of ghrelin in a mouse model of colitis.

    PubMed

    Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario

    2006-05-01

    Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.

  13. Brain regional differences in social encounter-induced Fos expression in male and female rats after post-weaning social isolation.

    PubMed

    Ahern, Megan; Goodell, Dayton J; Adams, Jessica; Bland, Sondra T

    2016-01-01

    Early life adversity has been related to a number of psychological disorders including mood and other disorders that can manifest as inappropriate or aggressive responses to social challenges. The present study used post-weaning social isolation (PSI) in rats, a model of early life adversity, to examine its effects on Fos protein expression produced by exposure to a novel social encounter. We have previously reported that the social encounter-induced increase in Fos expression in the medial prefrontal cortex observed in group-housed controls (GRP) was attenuated in rats that had experienced PSI. Here we assessed Fos expression in other brain regions thought to be involved in emotion regulation and social behavior. Male and female rats were housed in same-sex groups or in isolation (ISO) for 4 weeks beginning on postnatal day (P) 21 and were exposed to a single 15 min social encounter with a novel same-sex conspecific on P49. Fos positive cells were assessed using immunohistochemistry in 16 regions within the forebrain. Exposure to a novel conspecific increased Fos expression in the forebrain of GRP rats in a region- and sex-specific fashion. This increase was blunted or absent in ISO rats within many regions including cortical regions, thalamus, habenula, dentate gyrus, lateral septum, and basolateral amygdala. In several regions, the increase in Fos was greater in male than in female group housed rats. Negative relationships were observed between social interactions and Fos in some regions. Forebrain hypofunction produced by early-life adversity may be involved in socially inappropriate behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex.

    PubMed

    Mir, Joan Francesc; Zagmutt, Sebastián; Lichtenstein, Mathieu P; García-Villoria, Judit; Weber, Minéia; Gracia, Ana; Fabriàs, Gemma; Casas, Josefina; López, Miguel; Casals, Núria; Ribes, Antònia; Suñol, Cristina; Herrero, Laura; Serra, Dolors

    2018-02-02

    Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.

  15. Stress-related alterations of acyl and desacyl ghrelin circulating levels: mechanisms and functional implications

    PubMed Central

    Stengel, Andreas; Wang, Lixin; Taché, Yvette

    2011-01-01

    Ghrelin is the only known peripherally produced and centrally acting peptide hormone that stimulates food intake and digestive functions. Ghrelin circulates as acylated and desacylated forms and recently the acylating enzyme, ghrelin-O-acyltransferase (GOAT) and the de-acylating enzyme, thioesterase 1/lysophospholipase 1 have been identified adding new layers of complexity to the regulation of ghrelin. Stress is known to alter gastrointestinal motility and food intake and was recently shown to modify circulating ghrelin and GOAT levels with differential responses related to the type of stressors including a reduction induced by physical stressors (abdominal surgery and immunological/endotoxin injection, exercise) and elevation by metabolic (cold exposure, fasting and caloric restriction) and psychological stressors. However, the pathways underlying the alterations of ghrelin under these various stress conditions are still largely to be defined and may relate to stress-associated autonomic changes. There is evidence that alterations of circulating ghrelin may contribute to the neuroendocrine and behavioral responses along with sustaining the energetic requirement needed upon repeated exposure to stressors. A better understanding of these mechanisms will allow targeting components of ghrelin signaling that may improve food intake and gastric motility alterations induced by stress. PMID:21782868

  16. Stress-related alterations of acyl and desacyl ghrelin circulating levels: mechanisms and functional implications.

    PubMed

    Stengel, Andreas; Wang, Lixin; Taché, Yvette

    2011-11-01

    Ghrelin is the only known peripherally produced and centrally acting peptide hormone that stimulates food intake and digestive functions. Ghrelin circulates as acylated and desacylated forms and recently the acylating enzyme, ghrelin-O-acyltransferase (GOAT) and the de-acylating enzyme, thioesterase 1/lysophospholipase 1 have been identified adding new layers of complexity to the regulation of ghrelin. Stress is known to alter gastrointestinal motility and food intake and was recently shown to modify circulating ghrelin and GOAT levels with differential responses related to the type of stressors including a reduction induced by physical stressors (abdominal surgery and immunological/endotoxin injection, exercise) and elevation by metabolic (cold exposure, acute fasting and caloric restriction) and psychological stressors. However, the pathways underlying the alterations of ghrelin under these various stress conditions are still largely to be defined and may relate to stress-associated autonomic changes. There is evidence that alterations of circulating ghrelin may contribute to the neuroendocrine and behavioral responses along with sustaining the energetic requirement needed upon repeated exposure to stressors. A better understanding of these mechanisms will allow targeting components of ghrelin signaling that may improve food intake and gastric motility alterations induced by stress. Published by Elsevier Inc.

  17. Ghrelin treatment prevents development of activity based anorexia in mice.

    PubMed

    Legrand, Romain; Lucas, Nicolas; Breton, Jonathan; Azhar, Saïda; do Rego, Jean-Claude; Déchelotte, Pierre; Coëffier, Moïse; Fetissov, Sergueï O

    2016-06-01

    Stimulation of feeding is necessary for treatment of pathological conditions of chronic malnutrition due to anorexia. Ghrelin, a hunger hormone, is one of the candidate for pharmacological treatments of anorexia, but because of its instability in plasma has limited efficacy. We previously showed that plasmatic IgG protect ghrelin from degradation and that IgG from obese subjects and mice may increase ghrelin׳s orexigenic effect. In this study we tested if ghrelin alone or combined with IgG may improve feeding in chronically food-restricted mice with or without physical activity-based anorexia (ABA) induced by free access to a running wheel. Mice received a single daily intraperitoneal injection of ghrelin (1nM) together or not with total IgG (1nM) from obese ob/ob or lean mice before access to food during 8 days of 3h/day feeding time. We found that both ghrelin and ghrelin combined with IgG from obese, but not lean mice, prevented ABA, however, they were not able to diminish body weight loss. Physical activity was lower during the feeding period and was increased shortly after feeding in mice receiving ghrelin together with IgG from obese mice. In food-restricted mice without ABA, ghrelin treatments did not have significant effects on food intake. Thus, this study supports pharmacological use of ghrelin or ghrelin combined with IgG from obese animals for treatment of anorexia accompanied by elevated physical activity. The utility of combining ghrelin with protective IgG should be further determined in animal models of anorexia with unrestricted access to food. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  18. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin.

    PubMed

    Wang, Qian; Liu, Chen; Uchida, Aki; Chuang, Jen-Chieh; Walker, Angela; Liu, Tiemin; Osborne-Lawrence, Sherri; Mason, Brittany L; Mosher, Christina; Berglund, Eric D; Elmquist, Joel K; Zigman, Jeffrey M

    2014-02-01

    The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreER(T2) transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia.

  19. Ghrelin and motilin receptor agonists: time to introduce bias into drug design.

    PubMed

    Sanger, G J

    2014-02-01

    Ghrelin and motilin receptor agonists increase gastric motility and are attractive drug targets. However, 14 years after the receptors were described (18-24 years since ligands became available) the inactivity of the ghrelin agonist TZP-102 in patients with gastroparesis joins the list of unsuccessful motilin agonists. Fundamental questions must be asked. Pustovit et al., have now shown that the ghrelin agonist ulimorelin evokes prolonged increases in rat colorectal propulsion yet responses to other ghrelin agonists fade. Similarly, different motilin agonists induce short- or long-lasting effects in a cell-dependent manner. Together, these and other data create the hypothesis that the receptors can be induced to preferentially signal ('biased agonism') via particular pathways to evoke different responses with therapeutic advantages/disadvantages. Biased agonism has been demonstrated for ghrelin. Are motilin agonists which cause long-lasting facilitation of human stomach cholinergic function (compared with motilin) biased agonists (e.g., camicinal, under development for patients with gastric hypo-motility)? For ghrelin, additional complications exist because the therapeutic aims/mechanisms of action are uncertain, making it difficult to select the best (biased) agonist. Will ghrelin agonists be useful treatments of nausea and/or as suggested by Pustovit et al., chronic constipation? How does ghrelin increase gastric motility? As gastroparesis symptoms poorly correlate with delayed gastric emptying (yet gastro-prokinetic drugs can provide relief: e.g., low-dose erythromycin), would low doses of ghrelin and motilin agonists relieve symptoms simply by restoring neuromuscular rhythm? These questions on design and functions need addressing if ghrelin and motilin agonists are to reach patients as drugs. © 2014 John Wiley & Sons Ltd.

  20. Plasma ghrelin levels and polymorphisms of ghrelin gene in Chinese obese children and adolescents.

    PubMed

    Zhu, J F; Liang, L; Zou, C C; Fu, J F

    2010-09-01

    To evaluate the role of fasting plasma ghrelin levels [ln(ghrelin)] and polymorphisms of ghrelin gene in Chinese obese children. Genotyping for ghrelin polymorphism was performed in 230 obese and 100 normal weight children. Among them, plasma ghrelin levels were measured in 91 obese and 23 health subjects. (1) Bivariate correlation analysis showed the ln(ghrelin) was inversely correlated with abnormality of glucose metabolism (r = -0.240, P = 0.023). Stepwise multiple regression analysis showed that abnormality of glucose metabolism was an independent determinant of plasma ghrelin levels (P = 0.023). (2) There was no difference in frequency of Leu72Met polymorphisms between obese and control groups (36.09 vs. 41.00%). Ghrelin is associated with obesity in childhood, especially associated with the glucose homeostasis. Lower ghrelin levels might be a result of obesity, but not a cause of obesity. The Leu72Met polymorphism of ghrelin gene is not associated with obesity and metabolic syndrome in Chinese children.

  1. An essential role for DeltaFosB in the nucleus accumbens in morphine action.

    PubMed

    Zachariou, Venetia; Bolanos, Carlos A; Selley, Dana E; Theobald, David; Cassidy, Michael P; Kelz, Max B; Shaw-Lutchman, Tamara; Berton, Olivier; Sim-Selley, Laura J; Dileone, Ralph J; Kumar, Arvind; Nestler, Eric J

    2006-02-01

    The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) and dorsal striatum by the repeated administration of drugs of abuse. Here, we investigated the role of DeltaFosB in the NAc in behavioral responses to opiates. We achieved overexpression of DeltaFosB by using a bitransgenic mouse line that inducibly expresses the protein in the NAc and dorsal striatum and by using viral-mediated gene transfer to specifically express the protein in the NAc. DeltaFosB overexpression in the NAc increased the sensitivity of the mice to the rewarding effects of morphine and led to exacerbated physical dependence, but also reduced their sensitivity to the analgesic effects of morphine and led to faster development of analgesic tolerance. The opioid peptide dynorphin seemed to be one target through which DeltaFosB produced this behavioral phenotype. Together, these experiments demonstrated that DeltaFosB in the NAc, partly through the repression of dynorphin expression, mediates several major features of opiate addiction.

  2. On the functional significance of c-fos induction during the sleep-waking cycle.

    PubMed

    Cirelli, C; Tononi, G

    2000-06-15

    A striking finding in recent years has been that the transition from sleep to waking is accompanied in many brain regions by a widespread activation of c-fos and other immediate-early genes (IEGs). IEGs are induced by various electrical or chemical signals to which neural cells are exposed and their protein products act as transcription factors to regulate the expression of other genes. After a few hours of sleep, the expression of these transcription factors in the brain is absent or restricted to very few cells. However, after a few hours of spontaneous waking or sleep deprivation, the expression of c-fos and other IEGs is high in cerebral cortex, hypothalamus, septum, and several thalamic and brainstem nuclei. While cells expressing c-fos during waking are widely distributed, they represent only a subset of all neurons in any given area. These observations raise several questions: Why is c-fos expressed during waking and not during sleep? Is waking always accompanied by c-fos induction? Which subset of cells express c-fos during waking and why only a subset? Once c-fos has been induced, what are the functional consequences of its activation? In this review, we summarize our current understanding of the meaning of c-fos activation in the brain in relation to the sleep-waking cycle and suggest that c-fos induction in the cerebral cortex during waking might be related to the occurrence of plastic phenomena.

  3. Ghrelin in the pilosebaceous unit: alteration of ghrelin in patients with acne vulgaris.

    PubMed

    Cicek, Demet; Demir, Betul; Erder, Ilker; Kuloglu, Tuncay; Ucer, Ozlem; Aydin, Suleyman; Ucak, Haydar; Dertlioglu, Selma; Kalayci, Mehmet

    2015-01-01

    Ghrelin in the pilosebaceous tissues of human skin and ghrelin levels in patients with acne vulgaris have not yet been investigated. The purpose of this study was to screen ghrelin immunoreactivity by immunohistochemistry in human pilosebaceous tissues of human skin and also to determine the quantities of ghrelin in the serum of the patients with acne vulgaris. 30 patients presenting with acne vulgaris and 30 control subjects participated in this study. Ghrelin levels were determined by enzyme linked immunosorbent assay (ELISA). Human hair follicles and sebaceous glands were immunohistochemically examined. Immunohistochemistry results showed that there is a strong ghrelin immunoreactivity in the hair follicles and sebaceous glands in sections of human skin. The mean serum ghrelin levels (27.58 ・} 15.44 pg/mL) in patients with acne vulgaris was significantly lower than those of controls (35.62・}20.46 pg/mL). Ghrelin produced in hair follicles and sebaceous glands of the skin might participate in the pathogenesis of acne vulgaris and also acne vulgaris in humans might be associated with decreased serum ghrelin.

  4. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and alsomore » prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.« less

  5. The Prokinetic Face of Ghrelin

    PubMed Central

    Sallam, Hanaa S.; Chen, Jiande D. Z.

    2010-01-01

    This review evaluated published data regarding the effects of ghrelin on GI motility using the PubMed database for English articles from 1999 to September 2009. Our strategy was to combine all available information from previous literature, in order to provide a complete structured review on the prokinetic properties of exogenous ghrelin and its potential use for treatment of various GI dysmotility ailments. We classified the literature into two major groups, depending on whether studies were done in health or in disease. We sub-classified the studies into stomach, small intestinal and colon studies, and broke them down further into studies done in vitro, in vivo (animals) and in humans. Further more, the reviewed studies were presented in a chronological order to guide the readers across the scientific advances in the field. The review shows evidences that ghrelin and its (receptor) agonists possess a strong prokinetic potential to serve in the treatment of diabetic, neurogenic or idiopathic gastroparesis and possibly, chemotherapy-associated dyspepsia, postoperative, septic or post-burn ileus, opiate-induced bowel dysfunction and chronic idiopathic constipation. Further research is necessary to close the gap in knowledge about the effect of ghrelin on the human intestines in health and disease. PMID:20721347

  6. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus.

    PubMed

    Murtuza, Mohammad I; Isokawa, Masako

    2018-01-01

    Ghrelin is an appetite-stimulating peptide. Serine 3 on ghrelin must be acylated by octanoate via the enzyme ghrelin-O-acyltransferase (GOAT) for the peptide to bind and activate the cognate receptor, growth hormone secretagogue receptor type 1a (GHSR1a). Interest in GHSR1a increased dramatically when GHSR1a mRNA was demonstrated to be widespread in the brain, including the cortex and hippocampus, indicating that it has multifaceted functions beyond the regulation of metabolism. However, the source of octanoylated ghrelin for GHSR1a in the brain, outside of the hypothalamus, is not well understood. Here, we report the presence of GOAT and its ability to acylate non-octanoylated ghrelin in the hippocampus. GOAT immunoreactivity is aggregated at the base of the dentate granule cell layer in the rat and wild-type mouse. This immunoreactivity was not affected by the pharmacological inhibition of GHSR1a or the metabolic state-dependent fluctuation of systemic ghrelin levels. However, it was absent in the GHSR1a knockout mouse hippocampus, pointing the possibility that the expression of GHSR1a may be a prerequisite for the production of GOAT. Application of fluorescein isothiocyanate (FITC)-conjugated non-octanoylated ghrelin in live hippocampal slice culture (but not in fixed culture or in the presence of GOAT inhibitors) mimicked the binding profile of FITC-conjugated octanoylated ghrelin, suggesting that extracellularly applied non-octanoylated ghrelin was acylated by endogenous GOAT in the live hippocampus while GOAT being mobilized out of neurons. Our results will advance the understanding for the role of endogenous GOAT in the hippocampus and facilitate the search for the source of ghrelin that is intrinsic to the brain. © 2017 International Society for Neurochemistry.

  7. Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia

    PubMed Central

    Knight, W. David; Saxena, Ashwini; Shell, Brent; Nedungadi, T. Prashant; Mifflin, Steven W.

    2013-01-01

    Chronic intermittent hypoxia (CIH) increases mean arterial pressure (MAP) and FosB/ΔFosB staining in central autonomic nuclei. To test the role of the brain renin-angiotensin system (RAS) in CIH hypertension, rats were implanted with intracerebroventricular (icv) cannulae delivering losartan (1 μg/h) or vehicle (VEH) via miniosmotic pumps and telemetry devices for arterial pressure recording. A third group was given the same dose of losartan subcutaneously (sc). Two groups of losartan-treated rats served as normoxic controls. Rats were exposed to CIH or normoxia for 7 days and then euthanized for immunohistochemistry. Intracerebroventricular losartan attenuated CIH-induced increases in arterial pressure during CIH exposure (0800-1600 during the light phase) on days 1, 6, and 7 and each day during the normoxic dark phase. FosB/ΔFosB staining in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), paraventricular nucleus of the hypothalamus (PVN), the rostral ventrolateral medulla (RVLM), and the nucleus of the solitary tract (NTS) was decreased in icv losartan-treated rats. Subcutaneous losartan also reduced CIH hypertension during the last 2 days of CIH and produced bradycardia prior to the effect on blood pressure. Following sc losartan, FosB/ΔFosB staining was reduced only in the OVLT, MnPO, PVN, and NTS. These data indicate that the central and peripheral RAS contribute to CIH-induced hypertension and transcriptional activation of autonomic nuclei and that the contribution of the central RAS is greater during the normoxic dark phase of CIH hypertension. PMID:24026072

  8. Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia.

    PubMed

    Knight, W David; Saxena, Ashwini; Shell, Brent; Nedungadi, T Prashant; Mifflin, Steven W; Cunningham, J Thomas

    2013-11-01

    Chronic intermittent hypoxia (CIH) increases mean arterial pressure (MAP) and FosB/ΔFosB staining in central autonomic nuclei. To test the role of the brain renin-angiotensin system (RAS) in CIH hypertension, rats were implanted with intracerebroventricular (icv) cannulae delivering losartan (1 μg/h) or vehicle (VEH) via miniosmotic pumps and telemetry devices for arterial pressure recording. A third group was given the same dose of losartan subcutaneously (sc). Two groups of losartan-treated rats served as normoxic controls. Rats were exposed to CIH or normoxia for 7 days and then euthanized for immunohistochemistry. Intracerebroventricular losartan attenuated CIH-induced increases in arterial pressure during CIH exposure (0800-1600 during the light phase) on days 1, 6, and 7 and each day during the normoxic dark phase. FosB/ΔFosB staining in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), paraventricular nucleus of the hypothalamus (PVN), the rostral ventrolateral medulla (RVLM), and the nucleus of the solitary tract (NTS) was decreased in icv losartan-treated rats. Subcutaneous losartan also reduced CIH hypertension during the last 2 days of CIH and produced bradycardia prior to the effect on blood pressure. Following sc losartan, FosB/ΔFosB staining was reduced only in the OVLT, MnPO, PVN, and NTS. These data indicate that the central and peripheral RAS contribute to CIH-induced hypertension and transcriptional activation of autonomic nuclei and that the contribution of the central RAS is greater during the normoxic dark phase of CIH hypertension.

  9. Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction.

    PubMed

    Eid, Refaat A; Zaki, Mohamed Samir Ahmed; Al-Shraim, Mubarak; Eleawa, Samy M; El-Kott, Attalla Farag; Al-Hashem, Fahaid H; Eldeen, Muhammad Alaa; Ibrahim, Hoja; Aldera, Hussain; Alkhateeb, Mahmoud A

    2018-05-01

    This study investigated the effect of ghrelin on cardiomyocytes function, apoptosis and ultra-structural alterations of remote myocardium of the left ventricle (LV) of rats, 21 days post myocardial infarction (MI). Rats were divided into 4 groups as a control, a sham-operated rats, a sham-operated+ghrelin, an MI + vehicle and an MI + ghrelin-treated rats. MI was induced by LAD ligation and then rats were recievd a concomitant doe of either normal saline as a vehicle or treated with ghrelin (100 μg/kg S.C., 2x/day) for 21 consecutive days. Ghrelin enhanced myocardial contractility in control rats and reversed the decreases in myocardial contractility and the increases in the serum levels of CK-MB and LDH in MI-induced rats. Additionally, it inhibited the increases in levels of Bax and cleaved caspase 3 and increased those for Bcl-2 in the remote myocardium of rat's LV, post-MI. At ultra-structural level, while ghrelin has no adverse effects on LV myocardium obtained from control or sham-treated rats, ghrelin post-administration to MI-induced rats reduced vascular formation, restored normal microfilaments appearance and organization, preserved mitochondria structure, and prevented mitochondrial swelling, collagen deposition and number of ghost bodies in the remote areas of their LV. Concomitantly, in remote myocardium of MI-induced rats, ghrelin enhanced endoplasmic reticulum intracellular organelles count, decreased number of atrophied nuclei and phagocytes, diminished the irregularity in the nuclear membranes and inhibited chromatin condensation. In conclusion, in addition to the physiological, biochemical and molecular evidence provided, this is the first study that confirms the anti-apoptotic effect of ghrelin in the remote myocardium of the LV during late MI at the level of ultra-structural changes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Long-Term Exercise Is a Potent Trigger for ΔFosB Induction in the Hippocampus along the dorso–ventral Axis

    PubMed Central

    Nishijima, Takeshi; Kawakami, Masashi; Kita, Ichiro

    2013-01-01

    Physical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. In this study, we tested the hypothesis that long-term voluntary wheel running induces ΔFosB expression in the hippocampus, and examined any potential region-specific effects within the hippocampal subfields along the dorso–ventral axis. Male C57BL/6 mice were housed with or without a running wheel for 4 weeks. Long-term wheel running significantly increased FosB/ΔFosB immunoreactivity in all hippocampal regions measured (i.e., in the DG, CA1, and CA3 subfields of both the dorsal and ventral hippocampus). Results confirmed that wheel running induced region-specific expression of FosB/ΔFosB immunoreactivity in the cortex, suggesting that the uniform increase in FosB/ΔFosB within the hippocampus is not a non-specific consequence of running. Western blot data indicated that the increased hippocampal FosB/ΔFosB immunoreactivity was primarily due to increased ΔFosB. These results suggest that long-term physical exercise is a potent trigger for ΔFosB induction throughout the entire hippocampus, which would explain why exercise can improve both dorsal and ventral hippocampus-dependent functions. Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise-induced

  11. Characterization of low active ghrelin ratio in patients with advanced pancreatic cancer.

    PubMed

    Miura, Tomofumi; Mitsunaga, Shuichi; Ikeda, Masafumi; Ohno, Izumi; Takahashi, Hideaki; Suzuki, Hidetaka; Irisawa, Ai; Kuwata, Takeshi; Ochiai, Atsushi

    2018-05-18

    Acyl ghrelin is an orexigenic peptide. Active ghrelin ratio, the ratio of acyl ghrelin to total ghrelin, has an important role in physiological functions and gastrointestinal symptoms. However, low active ghrelin ratio-related characteristics, gastrointestinal symptoms, and chemotherapy-induced gastrointestinal toxicity in patients with advanced pancreatic cancer have not been previously evaluated. The goal of this study was to identify low active ghrelin ratio-related factors in treatment-naïve advanced pancreatic cancer patients. Patients with treatment-naïve advanced pancreatic cancer were eligible for inclusion in this study. Active ghrelin ratio and clinical parameters of patients were prospectively recorded. Factors correlated with low active ghrelin ratio and survival were analyzed. In total, 92 patients were analyzed. Low active ghrelin ratio-related factors were advanced age (P < 0.01), severe appetite loss (P < 0.01), and decreased cholinesterase (P < 0.01). The adverse events of grade 2 or higher anorexia tended to increase in patients with low active ghrelin ratio. However, no differences were found in survival and body composition between low and high active ghrelin ratio groups. Low active ghrelin ratio was related to lack of appetite and low cholinesterase and tended to be related to anorexia grade 2 or higher in patients with treatment-naïve advanced pancreatic cancer.

  12. Ghrelin and NUCB2/Nesfatin-1 expression in unilateral testicular torsion-induced rats with and without N-acetylcysteine.

    PubMed

    Sarac, M; Bakal, U; Tartar, T; Kuloglu, T; Yardim, M; Artas, G; Aydin, S; Kazez, A

    2017-08-15

    Testicular torsion (TT) is a common urological problem in the field of pediatric surgery. The degree and duration of torsion determines the degree of testicular damage; however, its effects on the expression of octanoylated ghrelin and nucleobindin 2 (NUCB2) /nesfatin-1 synthetized from testicular tissue remain unclear. We explored the effects of experimentally induced unilateral TT on serum and contralateral testicular tissue ghrelin and NUCB2/nesfatin-1 levels, and determined whether N-acetyl cysteine (NAS) treatment had any effects on their expression. A total of 42 Wistar Albino strain rats were divided into 7 groups: Group (G) I control, GII sham, GIII 12-hour torsion, GIV 12-hour torsion + detorsion + 100 mg/kg NAS, GV 24-hour torsion, GVI 24-hour torsion + detorsion + 100 mg/kg NAS, and GVII 100 mg/kg NAS. Octanoylated ghrelin and NUCB2/nesfatin-1 concentrations were evaluated in serum using the ELISA method and in testicular tissue with immunohistochemical methods. Immunoreactivity of octanoylated ghrelin significantly increased in GI compared to GIII, GV, and GVI (p<0.05). NUCB2/nesfatin-1 immunoreactivity increased in GV and GVIII relative to GI (p<0.05). In the 12-hour torsion group, a significant decrease in octanoylated ghrelin levels with NAS treatment was observed; however, in the 24-hour torsion group, a significant decrease was not observed. In the 12-hour torsion + NAS treatment group, a significant change was not observed in NUCB2/nesfatin-1 expression. Following 24-hour torsion, an increase in NUCB2/nesfatin-1 levels was observed, and NAS treatment did not reverse this increase. It was determined that increases in the expression of octanoylated ghrelin and NUCB2/nesfatin-1, the latter of which was a result of TT, reflect damage in this tissue. Importantly, NAS treatment could prevent this damage. Thus, there may be a clinical application for the combined use of NAS and octanoylated ghrelin in preventing TT-related infertility.

  13. Receptor-Selective Agonists Induce Emesis and Fos Expression in the Brain and Enteric Nervous System of the Least Shrew (Cryptotis parva)

    PubMed Central

    Ray, Andrew P.; Chebolu, Seetha; Darmani, Nissar A.

    2009-01-01

    Research on the mechanisms of emesis has implicated multiple neurotransmitters via both central (dorsal vagal complex) and peripheral (enteric neurons and enterochromaffin cells) anatomical substrates. Taking advantage of advances in receptor-specific agonists, and utilizing Fos expression as a functional activity marker, this study demonstrates a strong, but incomplete, overlap in anatomical substrates for a variety of emetogens. We used cisplatin and specific agonists to 5-HT3 serotonergic, D2/D3 dopaminergic, and NK1 tachykininergic receptors to induce vomiting in the least shrew (Cryptotis parva), and quantified the resulting Fos expression. The least shrew is a small mammal whose responses to emetic challenges are very similar to its human counterparts. In all cases, the enteric nervous system, nucleus of the solitary tract, and dorsal motor nucleus of the vagus demonstrated significantly increased Fos immunoreactivity (Fos-IR). However, Fos-IR induction was notably absent from the area postrema following the dopaminergic and NK1 receptor-specific agents. Two brain nuclei not usually discussed regarding emesis, the dorsal raphe nucleus and paraventricular thalamic nucleus, also demonstrated increased emesis-related Fos-IR. Taken together, these data suggest the dorsal vagal complex is part of a common pathway for a variety of distinct emetogens, but there are central emetic substrates, both medullary and diencephalic, that can be accessed without directly stimulating the area postrema. PMID:19699757

  14. Ghrelin

    PubMed Central

    Müller, T.D.; Nogueiras, R.; Andermann, M.L.; Andrews, Z.B.; Anker, S.D.; Argente, J.; Batterham, R.L.; Benoit, S.C.; Bowers, C.Y.; Broglio, F.; Casanueva, F.F.; D'Alessio, D.; Depoortere, I.; Geliebter, A.; Ghigo, E.; Cole, P.A.; Cowley, M.; Cummings, D.E.; Dagher, A.; Diano, S.; Dickson, S.L.; Diéguez, C.; Granata, R.; Grill, H.J.; Grove, K.; Habegger, K.M.; Heppner, K.; Heiman, M.L.; Holsen, L.; Holst, B.; Inui, A.; Jansson, J.O.; Kirchner, H.; Korbonits, M.; Laferrère, B.; LeRoux, C.W.; Lopez, M.; Morin, S.; Nakazato, M.; Nass, R.; Perez-Tilve, D.; Pfluger, P.T.; Schwartz, T.W.; Seeley, R.J.; Sleeman, M.; Sun, Y.; Sussel, L.; Tong, J.; Thorner, M.O.; van der Lely, A.J.; van der Ploeg, L.H.T.; Zigman, J.M.; Kojima, M.; Kangawa, K.; Smith, R.G.; Horvath, T.; Tschöp, M.H.

    2015-01-01

    Background The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. Scope of review In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. Major conclusions In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism. PMID:26042199

  15. GHRELIN ACTIVATES HYPOPHYSIOTROPIC CORTICOTROPIN-RELEASING FACTOR NEURONS INDEPENDENTLY OF THE ARCUATE NUCLEUS

    PubMed Central

    Cabral, Agustina; Portiansky, Enrique; Sánchez-Jaramillo, Edith; Zigman, Jeffrey M.; Perello, Mario

    2016-01-01

    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin’s orexigenic action vs. its role as a stress signal are anatomically dissociated. PMID:26874559

  16. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related ΔFosB alterations.

    PubMed

    Morais-Silva, Gessynger; Alves, Gabrielle Cunha; Marin, Marcelo T

    2016-11-01

    Ethanol addiction is a serious public health problem that still needs more effective pharmacological treatment. A key factor in the development and maintenance of this disease is the advent of neuroadaptations in the mesocorticolimbic brain pathway upon chronic ethanol abuse. In general, these neuroadaptations are maladaptive and affect numerous neurotransmitter systems and intracellular molecules. One of these molecules is ΔFosB, a transcription factor that is altered after chronic drug use. Behavioural sensitization is a useful model for the study of the neuroadaptations related to addiction. Recent works have shown a role for the imbalance of glutamatergic neurotransmission in the symptoms found in addicted people. In this sense, the treatment with N-acetylcysteine, a l-cysteine prodrug that acts by restoring extrasynaptic concentrations of glutamate through the activation of cystine-glutamate antiporter, has shown promising results in the treatment of addiction. Thus, an animal model of behavioural sensitization was used to evaluate the effects of N-acetylcysteine treatment in the behavioural and molecular alterations induced by chronic ethanol administration. Swiss mice were subject to 13 days of daily ethanol administration to induce behavioural sensitization. Two hours before each ethanol administration and locomotor activity evaluation, the animals received intraperitoneally N-acetylcysteine injections. Immediately after the last test session, their brains were removed for ΔFosB and cystine-glutamate antiporter quantification. It was found that N-acetylcysteine treatment blocked ethanol-induced behavioural sensitization, the increase of ΔFosB content in the prefrontal cortex, and its reduction in the nucleus accumbens. The results suggest a possible use of N-acetylcysteine in ethanol-related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress.

    PubMed

    Kawakami, Akio; Okada, Nobukazu; Rokkaku, Kumiko; Honda, Kazufumi; Ishibashi, Shun; Onaka, Tatsushi

    2008-09-01

    Metabolic conditions affect hypothalamo-pituitary-adrenal responses to stressful stimuli. Here we examined effects of food deprivation, leptin and ghrelin upon noradrenaline release in the hypothalamic paraventricular nucleus (PVN) and plasma adrenocorticotropic hormone (ACTH) concentrations after stressful stimuli. Food deprivation augmented both noradrenaline release in the PVN and the increase in plasma ACTH concentration following electrical footshocks (FSs). An intracerebroventricular injection of leptin attenuated the increases in hypothalamic noradrenaline release and plasma ACTH concentrations after FSs, while ghrelin augmented these responses. These data suggest that leptin inhibits and ghrelin facilitates neuroendocrine stress responses via noradrenaline release and indicate that a decrease in leptin and an increase in ghrelin release after food deprivation might contribute to augmentation of stress-induced ACTH release in a fasting state.

  18. Differential involvement of 3', 5'-cyclic adenosine monophosphate-dependent protein kinase in regulation of Fos and tyrosine hydroxylase expression in the heart after naloxone induced morphine withdrawal.

    PubMed

    Almela, Pilar; Cerezo, Manuela; González-Cuello, A; Milanés, M Victoria; Laorden, M Luisa

    2007-01-01

    We previously demonstrated that morphine withdrawal induced hyperactivity of the heart by the activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline (NA) turnover and Fos expression. We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibitor of PKA on Fos protein expression, tyrosine hydroxylase (TH) immunoreactivity levels and NA turnover in the left and right ventricle. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity and phospho-CREB (cyclic AMP response element protein) levels were observed in the heart. Moreover, morphine withdrawal induces Fos expression, an enhancement of NA turnover and an increase in the total TH levels. When the selective PKA inhibitor HA-1004 was infused, concomitantly with morphine pellets, it diminished the increase in NA turnover and the total TH levels observed in morphine-withdrawn rats. However, this inhibitor neither modifies the morphine withdrawal induced Fos expression nor the increase of nonphosphorylated TH levels. The present findings indicate that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the cardiac catecholaminergic neurons in response to morphine withdrawal and suggest that Fos is not a target of PKA at heart levels.

  19. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our datamore » demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T

  20. Osteoblasts are target cells for transformation in c-fos transgenic mice

    PubMed Central

    1993-01-01

    We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype. PMID:8335693

  1. Active Ghrelin and the Postpartum

    PubMed Central

    Baker, Jessica H.; Pedersen, Cort; Leserman, Jane; Brownley, Kimberly A.

    2015-01-01

    Purpose Postpartum depression (PPD) occurs in 10%–15% of women. The appetite hormone ghrelin, which fluctuates during pregnancy, is associated with depression in nonpregnant samples. Here, we examine the association between PPD and active ghrelin from pregnancy to postpartum. We additionally examine whether ghrelin changes from pregnancy to postpartum and differs between breastfeeding and non-breastfeeding women. Methods Sixty women participated in a survey examining PPD and had information in regard to ghrelin concentrations were included in the study. The Edinburgh Postnatal Depression Scale was used to assess symptoms of PPD. Raw ghrelin levels and ghrelin levels adjusted for creatinine were included as outcomes. Results Women screening positive for PPD at 12-weeks postpartum had higher pregnancy ghrelin concentrations. Ghrelin concentrations significantly decreased from pregnancy to 6-weeks postpartum and this change differed based on pregnancy depression status. Finally, ghrelin levels were lower in women who breastfed compared with women who were bottle-feeding. No significant findings remained once ghrelin levels were adjusted for creatinine. Conclusions Although results do not suggest an association between PPD and ghrelin after adjusting for creatinine, future research should continue to explore this possibility extending further across the postpartum period with larger sample sizes. PMID:26424410

  2. Stress alters asenapine-induced Fos expression in the Meynert's nucleus: response of adjacent hypocretin and melanin-concentrating hormone neurons in rat.

    PubMed

    Majercikova, Z; Kiss, A

    2016-01-01

    Asenapine (ASE), an atypical antipsychotic drug used in the treatment of schizophrenia, induces Fos expression in forebrain. Effect of ASE on activity of basal nucleus of Meynert (NBM) cells, a part of the striatal-cortical circuits, was studied. We were also interested to reveal whether a chronic unpredictable variable mild stress (CMS) preconditioning might affect the ASE impact. Rats were divided into as follows: controls-vehicle, controls-ASE, stressed-vehicle and stressed-ASE groups. CMS included restrain, social isolation, crowding, swimming and cold applied for 21 days. On the 22nd day, rats were subcutaneously injected with ASE (0.3 mg/kg) or vehicle (saline 300 μl/rat), 90 min prior euthanizing. After transcardial fixation, brains were cut into 30 μm thick coronal sections. Fos protein presence, as indicator of cell activity, was detected by ABC immunohistochemistry. Hypocretin (Hcrt) and melanin-concentrating hormone (MCH) containing cells were visualized with fluorescent dyes. ASE induced significant increase in Fos expression in NBM in both controls and CMS preconditioned rats in comparison with the related vehicle-treated controls. CMS preconditioning, however, significantly lowered the Fos response to ASE in NBM. From Hrct and MCH cells, only Hcrt ones displayed Fos presence in response to ASE. This study demonstrates for the first time that ASE may target a special group of cells occupying NBM, which effect can be modulated by CMS preconditioning. This finding extends a view that ASE impact may extend beyond the classical forebrain target areas common for the action of all antipsychotics and might be helpful in the identification of sites and side effects of its therapeutic actions.

  3. Orexigenic Hormone Ghrelin Attenuates Local and Remote Organ Injury after Intestinal Ischemia-Reperfusion

    PubMed Central

    Wu, Rongqian; Dong, Weifeng; Ji, Youxin; Zhou, Mian; Marini, Corrado P.; Ravikumar, Thanjavur S.; Wang, Ping

    2008-01-01

    Background Gut ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R. Methods and Findings Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin's beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin's beneficial effect after gut I/R. To further confirm that ghrelin's beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I/R injury. Conclusions

  4. Vanadium-induced apoptosis of HaCaT cells is mediated by c-fos and involves nuclear accumulation of clusterin

    PubMed Central

    Markopoulou, Soultana; Kontargiris, Evangelos; Batsi, Christina; Tzavaras, Theodore; Trougakos, Ioannis; Boothman, David A.; Gonos, Efstathios S.; Kolettas, Evangelos

    2016-01-01

    Vanadium exerts a variety of biological effects, including antiproliferative responses through activation of the respective signaling pathways and the generation of reactive oxygen species. As epidermal cells are exposed to environmental insults, human keratinocytes (HaCaT) were used to investigate the mechanism of the antiproliferative effects of vanadyl(IV) sulfate (VOSO4). Treatment of HaCaT cells with VOSO4 inhibited proliferation and induced apoptosis in a dose-dependent manner. Inhibition of proliferation was associated with downregulation of cyclins D1 and E, E2F1, and the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p27Kip1. Induction of apoptosis correlated with upregulation of the c-fos oncoprotein, changes in the expression of clusterin (CLU), an altered ratio of antiapoptotic to proapoptotic Bcl-2 protein family members, and poly(ADP-ribose) poly-merase-1 cleavage. Forced overexpression of c-fos induced apoptosis in HaCaT cells that correlated with secretory CLU downregulation and upregulation of nuclear CLU (nCLU), a pro-death protein. Overexpression of Bcl-2 protected HaCaT cells from vanadium-induced apoptosis, whereas secretory CLU overexpression offered no cytoprotection. In contrast, nCLU sensitized HaCaT cells to apoptosis. Our data suggest that vanadium-mediated apoptosis was promoted by c-fos, leading to alterations in CLU isoform processing and induction of the pro-death nCLU protein. PMID:19531052

  5. Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin

    PubMed Central

    van der Plasse, G; van Zessen, R; Luijendijk, M C M; Erkan, H; Stuber, G D; Ramakers, G M J; Adan, R A H

    2015-01-01

    Background/objectives: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. Subjects/methods: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. Results: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). Conclusions: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling. PMID:26183405

  6. TNF-alpha-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801.

    PubMed

    Emch, G S; Hermann, G E; Rogers, R C

    2001-11-01

    Previous studies have shown that identified neurons of the nucleus of the solitary tract (NST) are excited by the cytokine tumor necrosis factor-alpha (TNF-alpha). Vagal afferent connections with the NST are predominantly glutaminergic. Therefore, we hypothesized that TNF-alpha effects on NST neurons may be via modulation of glutamate neurotransmission. The present study used activation of the immediate early gene product c-Fos as a marker for neuronal activation in the NST. c-Fos expression was evaluated after microinjections of TNF-alpha in the presence or absence of either the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX) or the N-methyl-D- aspartate (NMDA) antagonist MK-801. To assess the specificity of the interaction between TNF-alpha and glutamate, c-Fos expression was also evaluated after injection of oxytocin (OT) (which has a direct excitatory effect in this area of the brain stem) in the presence and absence of NBQX or MK-801. c-Fos labeling was significantly increased in the NST after TNF-alpha exposure. Coinjection of either NBQX or MK-801 with TNF-alpha prevented significant c-Fos induction in the NST. Microinjections of OT also induced significant NST c-Fos elevation, but this expression was unaffected by coinjection of either antagonist with OT. These data lead us to conclude that TNF-alpha activation of NST neurons depends on glutamate and such an interaction is not generalized to all agonists that act on the NST.

  7. Ghrelin is involved in the paracrine communication between neurons and glial cells.

    PubMed

    Avau, B; De Smet, B; Thijs, T; Geuzens, A; Tack, J; Vanden Berghe, P; Depoortere, I

    2013-09-01

    Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons. © 2013 John Wiley & Sons Ltd.

  8. Ghrelin in the human myometrium

    PubMed Central

    2010-01-01

    Background Ghrelin is a 28-amino acid octanolyated peptide, synthesised primarily in the stomach. It stimulates growth hormone release, food intake and exhibits many other diverse effects. Our group have previously determined that ghrelin inhibited human contractility in vitro. The aim of this study therefore, was to investigate the expression of ghrelin, its receptor, the growth hormone secretagogue receptor type 1 (GHS-R1), ghrelin O-acyltransferase (GOAT) which catalyses ghrelin octanoylation, prohormone convertase 1/3 (PC1/3) responsible for pro-ghrelin processing, in human myometrium, during pregnancy prior to labour, during labour and in the non-pregnant state. Modulation of ghrelin and ghrelin receptor expression in cultured myometrial cells was also investigated. Methods mRNA and protein were isolated from human myometrium and the myometrial smooth muscle cell line hTERT-HM; and real-time fluorescence RT-PCR, western blotting and fluorescence microscopy performed. The effects of β-Estradiol and bacterial lipopolysaccharide (LPS) on hTERT-HM gene expression were evaluated by western blotting. Results We have reported for the first time the expression and processing of ghrelin, GHS-R1, GOAT and PC1/3 expression in human myometrium, and also the down-regulation of ghrelin mRNA and protein expression during labour. Furthermore, GHS-R1 protein expression significantly decreased at labour. Myometrial GOAT expression significantly increased during term non-labouring pregnancy in comparison to both non-pregnant and labouring myometrium. Mature PC1/3 protein expression was significantly decreased at term pregnancy and labour in comparison to non-pregnant myometrium. Ghrelin, GHS-R1, GOAT and PC1/3 mRNA and protein expression was also detected in the hTERT-HM cells. Ghrelin protein expression decreased upon LPS treatment in these cells while β-Estradiol treatment increased GHS-R1 expression. Conclusions Ghrelin processing occurred in the human myometrium at term

  9. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic.

    PubMed

    Malnou, Cécile E; Salem, Tamara; Brockly, Frédérique; Wodrich, Harald; Piechaczyk, Marc; Jariel-Encontre, Isabelle

    2007-10-19

    c-Fos proto-oncoprotein forms AP-1 transcription complexes with heterodimerization partners such as c-Jun, JunB, and JunD. Thereby, it controls essential cell functions and exerts tumorigenic actions. The dynamics of c-Fos intracellular distribution is poorly understood. Hence, we have combined genetic, cell biology, and microscopic approaches to investigate this issue. In addition to a previously characterized basic nuclear localization signal (NLS) located within the central DNA-binding domain, we identified a second NLS within the c-Fos N-terminal region. This NLS is non-classic and its activity depends on transportin 1 in vivo. Under conditions of prominent nuclear localization, c-Fos can undergo nucleocytoplasmic shuttling through an active Crm-1 exportin-independent mechanism. Dimerization with the Jun proteins inhibits c-Fos nuclear exit. The strongest effect is observed with c-Jun probably in accordance with the relative stabilities of the different c-Fos:Jun dimers. Retrotransport inhibition is not caused by binding of dimers to DNA and, therefore, is not induced by indirect effects linked to activation of c-Fos target genes. Monomeric, but not dimeric, Jun proteins also shuttle actively. Thus, our work unveils a novel regulation operating on AP-1 by demonstrating that dimerization is crucial, not only for active transcription complex formation, but also for keeping them in the compartment where they exert their transcriptional function.

  10. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia.

    PubMed

    Nagaya, Noritoshi; Kojima, Masakazu; Kangawa, Kenji

    2006-01-01

    Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for GH secretagogue receptor. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. This peptide also stimulates food intake and induces adiposity through GH-independent mechanisms. In addition, ghrelin acts directly on the central nervous system to decrease sympathetic nerve activity. Thus, ghrelin plays important roles for maintaining GH release and energy homeostasis. Repeated administration of ghrelin improves body composition, muscle wasting, functional capacity, and sympathetic augmentation in cachectic patients with heart failure or chronic obstructive pulmonary disease. These results suggest that ghrelin has anti-cachectic effects through GH-dependent and independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of cardiopulmonary-associated cachexia.

  11. Physiological role of ghrelin as revealed by the ghrelin and GOAT knockout mice.

    PubMed

    Kang, Kihwa; Zmuda, Erik; Sleeman, Mark W

    2011-11-01

    Ghrelin is a gastric hormone that has been shown to regulate food intake and energy metabolism. One unique feature of ghrelin is that its activity is regulated post transcriptionally by ghrelin O-acyltransferase (GOAT) through the addition of fatty acid to the serine residue in the N terminal region. Despite much biochemical characterization, to date no other proteins have been shown to be specifically octonylated by GOAT, suggesting a unique matching of the acyl transferase for a single ligand, ghrelin. If this is indeed correct, then genetic deletion of ghrelin or GOAT should produce near identical phenotypes and there should be extensive overlap in expression patterns. This review summarizes the similarities and differences in the phenotypes with the genetic deletion of ghrelin and GOAT in the various knockout mouse lines reported to date. While there is considerable overlap in expression pattern between ghrelin and GOAT, the latter does exhibit some unique tissue expression that could suggest that additional peptides may be acylated and await discovery and characterization. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Repeated methamphetamine administration differentially alters fos expression in caudate-putamen patch and matrix compartments and nucleus accumbens.

    PubMed

    Jedynak, Jakub P; Cameron, Courtney M; Robinson, Terry E

    2012-01-01

    The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization") in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum--the so-called patch/striosome and matrix. In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens). Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.

  13. Regional c-Fos expression induced by peripheral oxytocin administration is prevented by the vasopressin 1A receptor antagonist SR49059.

    PubMed

    Hicks, Callum; Ramos, Linnet; Dampney, Bruno; Baracz, Sarah J; McGregor, Iain S; Hunt, Glenn E

    2016-10-01

    Peripherally administered oxytocin induces a wide range of behavioural and physiological effects that are thought to be mediated by the oxytocin receptor (OTR). However, oxytocin also has considerable affinity for the vasopressin 1A receptor (V 1A R), such that various oxytocinergic effects may in fact be mediated by the V 1A R rather than the OTR. Here we used c-Fos immunohistochemistry to determine the extent to which the regional pattern of neuronal activation produced by peripheral oxytocin involves the V 1A R. Male Wistar rats were administered oxytocin (1mg/kg, IP) alone, or following pre-treatment with the V 1A R antagonist SR49059 (1mg/kg, IP), and were assessed for locomotor activity changes and for c-Fos expression across a number of brain regions. Oxytocin reduced the distance travelled by rats during a 70min test session, and this inhibitory behavioural effect was prevented by SR49059. Consistent with previous reports, oxytocin increased c-Fos expression in a number of brain regions. In several of these regions-the supraoptic and paraventricular (PVN) nuclei of the hypothalamus, locus coeruleus and nucleus of the solitary tract-the c-Fos response was prevented by SR49059 pre-treatment. Notably, SR49059 inhibited the c-Fos activation in oxytocin-synthesising magnocellular neurons in the PVN. However, c-Fos expression in the central amygdala to oxytocin was unaffected by SR49059. The current findings add to an increasing body of research suggesting that many of the functional effects of oxytocin may be V 1A R mediated. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans

    PubMed Central

    Takagi, Kuniko; Legrand, Romain; Asakawa, Akihiro; Amitani, Haruka; François, Marie; Tennoune, Naouel; Coëffier, Moïse; Claeyssens, Sophie; do Rego, Jean-Claude; Déchelotte, Pierre; Inui, Akio; Fetissov, Sergueï O.

    2013-01-01

    Obese individuals often have increased appetite despite normal plasma levels of the main orexigenic hormone ghrelin. Here we show that ghrelin degradation in the plasma is inhibited by ghrelin-reactive IgG immunoglobulins, which display increased binding affinity to ghrelin in obese patients and mice. Co-administration of ghrelin together with IgG from obese individuals, but not with IgG from anorectic or control patients, increases food intake in rats. Similarly, chronic injections of ghrelin together with IgG from ob/ob mice increase food intake, meal frequency and total lean body mass of mice. These data reveal that in both obese humans and mice, IgG with increased affinity for ghrelin enhances ghrelin’s orexigenic effect, which may contribute to increased appetite and overeating. PMID:24158035

  15. Ghrelin Increases GABAergic Transmission and Interacts with Ethanol Actions in the Rat Central Nucleus of the Amygdala

    PubMed Central

    Cruz, Maureen T; Herman, Melissa A; Cote, Dawn M; Ryabinin, Andrey E; Roberto, Marisa

    2013-01-01

    The neural circuitry that processes natural rewards converges with that engaged by addictive drugs. Because of this common neurocircuitry, drugs of abuse have been able to engage the hedonic mechanisms normally associated with the processing of natural rewards. Ghrelin is an orexigenic peptide that stimulates food intake by activating GHS-R1A receptors in the hypothalamus. However, ghrelin also activates GHS-R1A receptors on extrahypothalamic targets that mediate alcohol reward. The central nucleus of the amygdala (CeA) has a critical role in regulating ethanol consumption and the response to ethanol withdrawal. We previously demonstrated that rat CeA GABAergic transmission is enhanced by acute and chronic ethanol treatment. Here, we used quantitative RT-PCR (qRT-PCR) to detect Ghsr mRNA in the CeA and performed electrophysiological recordings to measure ghrelin effects on GABA transmission in this brain region. Furthermore, we examined whether acute or chronic ethanol treatment would alter these electrophysiological effects. Our qRT-PCR studies show the presence of Ghsr mRNA in the CeA. In naive animals, superfusion of ghrelin increased the amplitude of evoked inhibitory postsynaptic potentials (IPSPs) and the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Coapplication of ethanol further increased the ghrelin-induced enhancement of IPSP amplitude, but to a lesser extent than ethanol alone. When applied alone, ethanol significantly increased IPSP amplitude, but this effect was attenuated by the application of ghrelin. In neurons from chronic ethanol-treated (CET) animals, the magnitude of ghrelin-induced increases in IPSP amplitude was not significantly different from that in naive animals, but the ethanol-induced increase in amplitude was abolished. Superfusion of the GHS-R1A antagonists 𝒟-Lys3-GHRP-6 and JMV 3002 decreased evoked IPSP and mIPSC frequency, revealing tonic ghrelin activity in the CeA. 𝒟-Lys3-GHRP-6 and JMV 3002

  16. An Integrative Review on Role and Mechanisms of Ghrelin in Stress, Anxiety and Depression.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2016-01-01

    Ghrelin is orexigenic hormone primarily synthesized by endocrine X/A-like cells of gastric oxyntic mucosa to stimulate appetite and food intake along with regulation of growth hormone and insulin secretion; glucose and lipid metabolism; gastrointestinal motility; blood pressure, heart rate and neurogenesis. Furthermore, peripherally (after crossing the blood brain barrier) as well as centrally synthesized ghrelin (in the hypothalamus) regulates diverse functions of central nervous system including stress-associated behavioral functions. Exposure to stress alters the ghrelin levels and alteration in ghrelin levels significantly affects neuro-endocrinological parameters; metabolism-related physiology, behavior and mood. Studies have shown both anxiolytic and anxiogenic role of ghrelin suggesting its dual role in modulating anxiety-related behavior. However, it is proposed that increase in ghrelin levels during stress condition is an endogenous stress coping behavior and increased ghrelin levels may be required to prevent excessive anxiety. In preclinical and clinical studies, an elevation in ghrelin levels during depression has been correlated with their antidepressant activities. Ghrelin-induced modulation of stress and associated conditions has been linked to alteration in hypothalamic-pituitary-adrenal (HPA) axis; autonomic nervous system (mainly sympathetic nervous system and serotonergic neurotransmission. A reciprocal relationship has been reported between corticotropin-releasing hormone (CRH) and ghrelin as ghrelin increases the release of CRH, ACTH and corticosteroids; while CRH decreases the expression of ghrelin. Similarly, ghrelin increases the serotonin turnover and in turn, serotonin controls ghrelin signaling to modulate anxiety-related behavior. The present review discusses the dual role of ghrelin in stress and related behavioral disorders along with possible mechanisms.

  17. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    PubMed

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  18. Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity.

    PubMed

    Choi, Hong Seok; Kang, Bong Seok; Shim, Jung-Hyun; Cho, Yong-Yeon; Choi, Bu Young; Bode, Ann M; Dong, Zigang

    2008-01-01

    Post-translational modification of histones is critical for gene expression, mitosis, cell growth, apoptosis, and cancer development. Thus, finding protein kinases that are responsible for the phosphorylation of histones at critical sites is considered an important step in understanding the process of histone modification. The serine/threonine kinase Cot is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family. We show here that Cot can phosphorylate histone H3 at Ser-10 in vivo and in vitro, and that the phosphorylation of histone H3 at Ser-10 is required for Cot-induced cell transformation. We found that activated Cot is recruited to the c-fos promoter resulting in increased activator protein-1 (AP-1) transactivation. The formation of the Cot-c-fos promoter complex was also apparent when histone H3 was phosphorylated at Ser-10. Furthermore, the use of dominant negative mutants of histone H3 revealed that Cot was required for phosphorylation of histone H3 at Ser-10 to induce neoplastic cell transformation. These results revealed an important function of Cot as a newly discovered histone H3 kinase. Moreover, the transforming ability of Cot results from the coordinated activation of histone H3, which ultimately converges on the regulation of the transcriptional activity of the c-fos promoter, followed by AP-1 transactivation activity.

  19. Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus.

    PubMed

    Strekalova, T; Zörner, B; Zacher, C; Sadovska, G; Herdegen, T; Gass, P

    2003-02-01

    Using specific polyclonal antisera against c-Fos, JunB, c-Jun and JunD, we tried to identify the candidate transcription factors of the immediate early gene family which may contribute to the molecular processes during contextual memory reconsolidation. For that purpose we analyzed the expression of these proteins in the hippocampus after contextual memory retrieval in a mouse model of fear conditioning. A single exposure to a foot shock of 0.8 mA was sufficient to induce robust contextual fear conditioning in C57BI/6N mice. In these mice context dependent memory retrieval evoked a marked induction of c-Fos and JunB, but not of c-Jun and JunD, in pyramidal CA1 neurons of the dorsal hippocampus. In contrast, mice exposed and re-exposed only to the context, without foot shock, did not show behavioral signs of contextual fear conditioning and exhibited significantly less expression of c-Fos and JunB in CA1 neurons. Mice which received a foot shock but were not re-exposed to the context revealed no immediate early gene induction. These results demonstrate that contextual memory retrieval is associated with de novo synthesis of specific members of the Fos/Jun transcription factor family. Therefore we suggest that these genes may contribute to plasticity and reconsolidation accompanying the retrieval process. The specific activation of CA1 neurons during the retrieval of contextual fear associations supports the postulated concept of a mnemonic role of this hippocampal subsector during the retrieval of contextual informations.

  20. Effects of Wen Dan Tang on insomnia-related anxiety and levels of the brain-gut peptide Ghrelin.

    PubMed

    Wang, Liye; Song, Yuehan; Li, Feng; Liu, Yan; Ma, Jie; Mao, Meng; Wu, Fengzhi; Wu, Ying; Li, Sinai; Guan, Binghe; Liu, Xiaolan

    2014-01-15

    Ghrelin, a brain-gut peptide that induces anxiety and other abnormal emotions, contributes to the effects of insomnia on emotional behavior. In contrast, the traditional Chinese Medicine remedy Wen Dan Tang reduces insomnia-related anxiety, which may perhaps correspond to changes in the brain-gut axis. This suggests a possible relationship between Wen Dan Tang's pharmacological mechanism and the brain-gut axis. Based on this hypothesis, a sleep-deprived rat model was induced and Wen Dan Tang was administered using oral gavage during model establishment. Wen Dan Tang significantly reduced insomnia-related anxiety and prevented Ghrelin level decreases following sleep deprivation, especially in the hypothalamus. Increased expression of Ghrelin receptor mRNA in the hypothalamus was also observed, suggesting that reduced anxiety may be a result of Wen Dan Tang's regulation of Ghrelin-Ghrelin receptors.

  1. Regulation of ghrelin secretion and action.

    PubMed

    Camiña, Jesus P; Carreira, Marcos C; Micic, Dragan; Pombo, Manuel; Kelestimur, Fahrettin; Dieguez, Carlos; Casanueva, Felipe F

    2003-10-01

    The pulsatile release of growth hormone (GH) from anterior pituitary gland is regulated by the interplay of at least two hypothalamic hormones, GH-releasing hormone (GHRH) and somatostatin, via their engagement with specific cell surface receptors on the anterior pituitary somatotroph. Furthermore, release of GH in vivo may also be controlled by a third type of receptor, the growth hormone secretagogue receptor, a G-protein-coupled receptor, called GHS receptor type 1a (GHSR1a), which was identified in the pituitary and the hypothalamus in humans using a nonpeptidyl growth hormone secretagogue (MK-0677). Ghrelin, the endogenous ligand for the GHS-R1a, is a 28-amino-acid peptide isolated from human stomach that is modified by a straight chain octanoyl group covalently linked to Ser3, which is essential for its endocrine activity. This hormone, predominantly expressed and secreted by the stomach, has a dual action on GH secretion and food intake, showing interdependency between these actions. The finding that fasting and food intake, respectively, increase and decrease the secretion of ghrelin suggests that this hormone may be the bridge connecting somatic growth and body composition with energy metabolism, and appears to play a role in the alteration of energy homeostasis and body weight in pathophysiological states such as hypothyroidism and hyperthyroidism. Despite this, little is known about the intracellular signaling through which ghrelin exerts its regulatory actions. Activation of intracellular calcium mobilization is one of the earliest known cellular signals elicited by ghrelin. In HEK- 293 cells expressing the GHS-R1a, ghrelin induces a biphasic cytosolic calcium elevation characterized by a spike phase of the response, which reflects Ins(1,4,5)P3- dependent calcium mobilization of intracellular stores, and a sustained phase of the response, which is due to calcium influx across the plasma membrane triggered by aperture of capacitative calcium channels

  2. Repeated Methamphetamine Administration Differentially Alters Fos Expression in Caudate-Putamen Patch and Matrix Compartments and Nucleus Accumbens

    PubMed Central

    Jedynak, Jakub P.; Cameron, Courtney M.; Robinson, Terry E.

    2012-01-01

    Background The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase (“sensitization”) in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum—the so-called patch/striosome and matrix. Methodology/Principal Findings In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens). Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. Conclusions/Significance These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine. PMID:22514626

  3. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    PubMed

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages.

    PubMed

    Kizaki, Takako; Maegawa, Taketeru; Sakurai, Takuya; Ogasawara, Jun-etsu; Ookawara, Tomomi; Oh-ishi, Shuji; Izawa, Tetsuya; Haga, Shukoh; Ohno, Hideki

    2011-09-30

    Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation.

    PubMed Central

    Cavigelli, M; Dolfi, F; Claret, F X; Karin, M

    1995-01-01

    Growth factors induce c-fos transcription by stimulating phosphorylation of transcription factor TCF/Elk-1, which binds to the serum response element (SRE). Under such conditions Elk-1 could be phosphorylated by the mitogen-activated protein kinases (MAPKs) ERK1 and ERK2. However, c-fos transcription and SRE activity are also induced by stimuli, such as UV irradiation and activation of the protein kinase MEKK1, that cause only an insignificant increase in ERK1/2 activity. However, both of these stimuli strongly activate two other MAPKs, JNK1 and JNK2, and stimulate Elk-1 transcriptional activity and phosphorylation. We find that the JNKs are the predominant Elk-1 activation domain kinases in extracts of UV-irradiated cells and that immunopurified JNK1/2 phosphorylate Elk-1 on the same major sites recognized by ERK1/2, that potentiate its transcriptional activity. Finally, we show that UV irradiation, but not serum or phorbol esters, stimulate translocation of JNK1 to the nucleus. As Elk-1 is most likely phosphorylated while bound to the c-fos promoter, these results suggest that UV irradiation and MEKK1 activation stimulate TCF/Elk-1 activity through JNK activation, while growth factors induce c-fos through ERK activation. Images PMID:8846788

  6. Ghrelin levels in patients with juvenile idiopathic arthritis: relation to anti-tumor necrosis factor treatment and disease activity.

    PubMed

    Karagiozoglou-Lampoudi, Thomais; Trachana, Maria; Agakidis, Charalampos; Pratsidou-Gertsi, Polyxeni; Taparkou, Anna; Lampoudi, Sotiria; Kanakoudi-Tsakalidou, Florentia

    2011-10-01

    Studies in adults with rheumatoid arthritis reported low serum ghrelin that increased following anti-tumor necrosis factor (TNF) infusion. Data on juvenile idiopathic arthritis (JIA) are lacking. The aim of this pilot study was to explore serum ghrelin levels in patients with JIA and the possible association with anti-TNF treatment, disease activity, and nutritional status. Fifty-two patients with JIA (14/52 on anti-TNF treatment) were studied. Juvenile idiopathic arthritis was inactive in 3 of 14 anti-TNF-treated patients and in 11 of 38 non-anti-TNF-treated patients. The nutritional status, energy intake/requirements, appetite, and fasting serum ghrelin levels were assessed. Ghrelin control values were obtained from 50 individuals with minor illness matched for age, sex, and body mass index. Ghrelin levels in patients with JIA were significantly lower than in controls (P < .001, confidence interval [CI] = -101 to -331). Analysis according to anti-TNF treatment and disease activity showed that ghrelin levels were comparable to control values only in 3 patients with anti-TNF-induced remission. Ghrelin in non-anti-TNF-treated patients in remission was low. Multiple regression analysis showed that disease activity (P = .002, CI = -84.16 to -20.01) and anti-TNF treatment (P = .003, CI = -82.51 to -18.33) were significant independent predictors of ghrelin after adjusting for other potential confounders. Ghrelin did not correlate with nutritional status, energy balance, and appetite. Serum ghrelin is low in patients with JIA and is restored to values similar to those in controls following anti-TNF-induced remission. Our study provides evidence that TNF blockade is independently associated with serum ghrelin, which possibly contributes to anti-TNF-induced remission. These preliminary results could form the basis for future research. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Validation of a method for the quantitation of ghrelin and unacylated ghrelin by HPLC.

    PubMed

    Staes, Edith; Rozet, Eric; Ucakar, Bernard; Hubert, Philippe; Préat, Véronique

    2010-02-05

    An HPLC/UV method was first optimized for the separation and quantitation of human acylated and unacylated (or des-acyl) ghrelin from aqueous solutions. This method was validated by an original approach using accuracy profiles based on tolerance intervals for the total error measurement. The concentration range that achieved adequate accuracy extended from 1.85 to 59.30microM and 1.93 to 61.60microM for acylated and unacylated ghrelin, respectively. Then, optimal temperature, pH and buffer for sample storage were determined. Unacylated ghrelin was found to be stable in all conditions tested. At 37 degrees C acylated ghrelin was stable at pH 4 but unstable at pH 7.4, the main degradation product was unacylated ghrelin. Finally, this validated HPLC/UV method was used to evaluate the binding of acylated and unacylated ghrelin to liposomes.

  8. Expression of ghrelin gene in peripheral blood mononuclear cells and plasma ghrelin concentrations in patients with metabolic syndrome.

    PubMed

    Mager, Ursula; Kolehmainen, Marjukka; de Mello, Vanessa D F; Schwab, Ursula; Laaksonen, David E; Rauramaa, Rainer; Gylling, Helena; Atalay, Mustafa; Pulkkinen, Leena; Uusitupa, Matti

    2008-04-01

    We examined the expression of ghrelin and ghrelin receptors in peripheral blood mononuclear cells (PBMCs) and evaluated the effect of weight loss or exercise on plasma ghrelin concentrations in subjects with the metabolic syndrome. Data from 75 overweight/obese subjects randomized to a weight loss, aerobic exercise, resistance exercise or control group for a 33-week intervention period were analysed. The plasma ghrelin concentrations and indices of insulin and glucose metabolism were assessed, and mRNA expression of ghrelin, its receptors and various cytokines in PBMCs was studied using real-time PCR. Ghrelin and GH secretagogue receptor 1b were expressed in PBMCs of subjects with metabolic syndrome. Ghrelin gene expression correlated positively with the expressions of tumour necrosis factor-alpha (P<0.001), interleukin-1beta (P<0.001) and interleukin-6 (P=0.026) during the study, but was not associated with the plasma ghrelin concentration. Genotype-specific ghrelin gene expression in PBMCs was found for the -604G/A and the -501A/C polymorphisms in the ghrelin gene. At baseline, the plasma ghrelin levels were associated with fasting serum insulin concentrations, insulin sensitivity index and high-density lipoprotein cholesterol. However, longitudinally weight, BMI or waist circumference and acute insulin response in i.v. glucose tolerance test were stronger predictors of the ghrelin concentration. Plasma ghrelin did not change over the study period in the weight reduction group, but it tended to decrease in the control group (P=0.050). Ghrelin mRNA expression in PBMCs suggests an autocrine role for ghrelin within an immune microenvironment. Moderate long-term weight loss may prevent a decline in ghrelin concentration over time in individuals with metabolic syndrome.

  9. Fos and FRA protein expression in rat nucleus paragigantocellularis lateralis during different space flight conditions.

    PubMed

    d'Ascanio, Paola; Centini, Claudia; Pompeiano, Maria; Pompeiano, Ottavio; Balaban, Evan

    2002-10-15

    The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes in Fos and Fos-related antigen (FRA) protein expression in the LPGi and related cardiovascular, vasomotor, and respiratory areas. Fos and FRA proteins are induced rapidly by external stimuli and return to basal levels within hours (Fos) or days (FRA) after stimulation. Exposure to a light pulse (LP) 1 h prior to sacrifice led to increased Fos expression in subjects maintained for 2 weeks in constant gravity (either at approximately 0 or 1 G). Within 24 h of a gravitational change (launch or landing), the Fos response to LP was abolished. A significant Fos response was also induced by gravitational stimuli during landing, but not during launch. FRA responses to LP showed a mirror image pattern, with significant responses 24 h after launch and landing, but no responses after 2 weeks at approximately 0 or 1 G. There were no direct FRA responses to gravity changes. The juxtafacial and retrofacial parts of the LPGi, which integrate somatosensory/acoustic and autonomic signals, respectively, also showed gravity-related increases in LP-induced FRA expression 24 h after launch and landing. The neighboring nucleus ambiguus (Amb) showed completely different patterns of Fos and FRA expression, demonstrating the anatomical specificity of these results. Immediate early gene expression in the LPGi and related cardiovascular vasomotor and ventral respiratory areas may be directly regulated by excitatory afferents from vestibular gravity receptors. These structures could play an important role in shaping cardiovascular and respiratory function during adaptation to altered gravitational environments encountered during space flight and after return to earth. Copyright 2002 Elsevier

  10. Regulation of Ghrelin Receptor by Periodontal Bacteria In Vitro and In Vivo.

    PubMed

    Nokhbehsaim, Marjan; Damanaki, Anna; Nogueira, Andressa Vilas Boas; Eick, Sigrun; Memmert, Svenja; Zhou, Xiaoyan; Nanayakkara, Shanika; Götz, Werner; Cirelli, Joni Augusto; Jäger, Andreas; Deschner, James

    2017-01-01

    Ghrelin plays a major role in obesity-related diseases which have been shown to be associated with periodontitis. This study sought to analyze the expression of the functional receptor for ghrelin (GHS-R1a) in periodontal cells and tissues under microbial conditions in vitro and in vivo . The GHS-R1a expression in human periodontal cells challenged with the periodontopathogen Fusobacterium nucleatum , in gingival biopsies from periodontally healthy and diseased individuals, and from rats with and without ligature-induced periodontitis was analyzed by real-time PCR, immunocytochemistry, and immunofluorescence. F. nucleatum induced an initial upregulation and subsequent downregulation of GHS-R1a in periodontal cells. In rat experimental periodontitis, the GHS-R1a expression at periodontitis sites was increased during the early stage of periodontitis, but significantly reduced afterwards, when compared with healthy sites. In human gingival biopsies, periodontally diseased sites showed a significantly lower GHS-R1a expression than the healthy sites. The expression of the functional ghrelin receptor in periodontal cells and tissues is modulated by periodontal bacteria. Due to the downregulation of the functional ghrelin receptor by long-term exposure to periodontal bacteria, the anti-inflammatory actions of ghrelin may be diminished in chronic periodontal infections, which could lead to an enhanced periodontal inflammation and tissue destruction.

  11. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    PubMed

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Inhibitor of Differentiation/DNA Binding 1 (ID1) Inhibits Etoposide-induced Apoptosis in a c-Jun/c-Fos-dependent Manner.

    PubMed

    Zhao, Yahui; Luo, Aiping; Li, Sheng; Zhang, Wei; Chen, Hongyan; Li, Yi; Ding, Fang; Huang, Furong; Liu, Zhihua

    2016-03-25

    ID1 (inhibitor of differentiation/DNA binding 1) acts an important role in metastasis, tumorigenesis, and maintenance of cell viability. It has been shown that the up-regulation of ID1 is correlated with poor prognosis and the resistance to chemotherapy of human cancers. However, the underlying molecular mechanism remains elusive. Here, we determined for the first time that up-regulating ID1 upon etoposide activation was mediated through AP-1 binding sites within theID1promoter and confirmed that ID1 enhanced cell resistance to DNA damage-induced apoptosis in esophageal squamous cell carcinoma cells. Ablation of c-Jun/c-Fos or ID1 expression enhanced etoposide-mediated apoptosis through increasing activity of caspase 3 and PARP cleavage. Moreover, c-Jun/c-Fos and ID1 were positively correlated in human cancers. More importantly, simultaneous high expression of ID1 and c-Jun or c-Fos was correlated with poor survival in cancer patients. Collectively, we demonstrate the importance of c-Jun/c-Fos-ID1 signaling pathway in chemoresistance of esophageal cancer cells and provide considerable insight into understanding the underlying molecular mechanisms in esophageal squamous cell carcinoma cell biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Update on ghrelin biology in birds.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2013-09-01

    Ghrelin is a peptide found in the mucosal layer of the rat stomach that exhibits growth hormone-releasing and appetite-stimulating activities. Since the discovery of ghrelin in chicken in 2002, information on its structure, distribution, function, and receptors has been accumulated, mainly in poultry. Here, we summarize the following findings since 2008 in birds: (1) central ghrelin acts as an anorexigenic neuropeptide, but the effect of peripheral ghrelin differs depending on the chicken strain and light conditions the birds are kept in; (2) central ghrelin inhibits not only food intake but also water drinking, and it may be mediated by urocortin, a member of the corticotropin-releasing factor family; (3) peripheral ghrelin acts as an anti-lipogenic factor in broiler chickens but not in rats; (4) the enzyme involved in ghrelin acylation (ghrelin-O-acyltransferase [GOAT]) has been identified in chickens; (5) dietary lipids are used for ghrelin acylation; (6) des-acyl ghrelin administered alone or with ghrelin does not affect feeding behavior; (7) the existence and physiological function of obestatin must now be carefully examined in birds; (8) other than the growth hormone secretagogue receptors (GHS) R1a and 1b, GHS-R variants not found in mammals have been found in chicken and Japanese quail; and finally (9) little is known about the involvement of the ghrelin system in wild birds and in avian-specific behavior such as brooding and migration. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Direct versus indirect actions of ghrelin on hypothalamic NPY neurons

    PubMed Central

    Sheng, Zhenyu; Routh, Vanessa; Gerzanich, Volodymyr; Simard, J. Marc; Bryan, Joseph

    2017-01-01

    Objectives Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Materials and methods Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Results Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin

  15. Direct versus indirect actions of ghrelin on hypothalamic NPY neurons.

    PubMed

    Hashiguchi, Hiroshi; Sheng, Zhenyu; Routh, Vanessa; Gerzanich, Volodymyr; Simard, J Marc; Bryan, Joseph

    2017-01-01

    Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin activation was unaffected by nifedipine and

  16. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  17. From synapse to gene product: Prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum

    PubMed Central

    Quattrochi, James J.; Bazalakova, Mihaela; Hobson, J. Allan

    2006-01-01

    It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect. PMID:15893601

  18. Anteroventral third ventricle (AV3V) lesions alter c-fos expression induced by salt loading

    NASA Technical Reports Server (NTRS)

    Rocha, M. J.; Beltz, T. G.; Dornelles, R. C.; Johnson, A. K.; Franci, C. R.

    1999-01-01

    Lesion of the anteroventral third-ventricle region (AV3VX) reduced saline consumption. Salt loading in AV3VX rats resulted in reduced but not completely abolished c-fos expression in the supraoptic and paraventricular nuclei. Intrinsic osmosensitivity of the magnocellular neurons, or input from other brain areas, such as the subfornical and median preoptic nuclei, may account for this residual c-fos expression. These regions showed c-fos expression following salt loading. Copyright 1999 Elsevier Science B.V.

  19. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High Fat Diet

    PubMed Central

    McFarlane, Matthew R.; Brown, Michael S.; Goldstein, Joseph L.; Zhao, Tong-Jin

    2014-01-01

    SUMMARY Injection of the peptide hormone ghrelin stimulates food intake in mice and humans. However, mice born without ghrelin demonstrate no significant loss of appetite. This paradox suggests either that compensation develops in mice born without ghrelin or that ghrelin is not essential for appetite control. To distinguish these possibilities, we generated transgenic mice (Ghrl-DTR) that express the diphtheria toxin receptor in ghrelin-secreting cells. Injection of diphtheria toxin in adulthood ablated ghrelin cells and reduced plasma ghrelin by 80-95%. Ghrelin cell-ablated mice exhibited no loss of appetite or body weight and no resistance to a high fat diet. To stimulate food intake in mice by ghrelin injection, we had to raise plasma levels many-fold above normal. Like germline ghrelin-deficient mice, the ghrelin cell-ablated mice developed profound hypoglycemia when subjected to prolonged calorie restriction, confirming that ghrelin acts to maintain blood glucose under famine conditions. PMID:24836560

  20. The Central Sirtuin 1/p53 Pathway Is Essential for the Orexigenic Action of Ghrelin

    PubMed Central

    Velásquez, Douglas A.; Martínez, Gloria; Romero, Amparo; Vázquez, María J.; Boit, Katia D.; Dopeso-Reyes, Iria G.; López, Miguel; Vidal, Anxo; Nogueiras, Ruben; Diéguez, Carlos

    2011-01-01

    OBJECTIVE Ghrelin is a stomach-derived peptide that increases food intake through the activation of hypothalamic AMP-activated protein kinase (AMPK). However, the molecular mechanisms initiated by the activation of the ghrelin receptor, which in turn lead to AMPK activation, remain unclear. Sirtuin 1 (SIRT1) is a deacetylase activated in response to calorie restriction that acts through the tumor suppressor gene p53. We tested the hypothesis that the central SIRT1/p53 pathway might be mediating the orexigenic action of ghrelin. RESEARCH DESIGN AND METHODS SIRT1 inhibitors, such as Ex527 and sirtinol, and AMPK activators, such as AICAR, were administered alongside ghrelin in the brain of rats and mice (wild-type versus p53 knockout [KO]). Their hypothalamic effects on lipid metabolism and changes in transcription factors and neuropeptides were assessed by Western blot and in situ hybridization. RESULTS The central pretreatment with Ex527, a potent SIRT1 inhibitor, blunted the ghrelin-induced food intake in rats. Mice lacking p53, a target of SIRT1 action, failed to respond to ghrelin in feeding behavior. Ghrelin failed to phosphorylate hypothalamic AMPK when rats were pretreated with Ex527, as it did in p53 KO mice. It is noteworthy that the hypothalamic SIRT1/p53 pathway seems to be specific for mediating the orexigenic action of ghrelin, because central administration of AICAR, a potent AMPK activator, increased food intake in p53 KO mice. Finally, blockade of the central SIRT1 pathway did not modify ghrelin-induced growth hormone secretion. CONCLUSIONS Ghrelin specifically triggers a central SIRT1/p53 pathway that is essential for its orexigenic action, but not for the release of growth hormone. PMID:21386086

  1. Functional Implications of Limited Leptin Receptor and Ghrelin Receptor Coexpression in the Brain

    PubMed Central

    Perello, Mario; Scott, Michael M.; Sakata, Ichiro; Lee, Charlotte E.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A.; Elmquist, Joel K.; Zigman, Jeffrey M.

    2012-01-01

    The hormones leptin and ghrelin act in apposition to one another in the regulation of body weight homeostasis. Interestingly, both leptin receptor expression and ghrelin receptor expression have been observed within many of the same nuclei of the central nervous system (CNS), suggesting that these hormones may act on a common population of neurons to produce changes in food intake and energy expenditure. In the present study we explored the extent of this putative direct leptin and ghrelin interaction in the CNS and addressed the question of whether a loss of ghrelin signaling would affect sensitivity to leptin. Using histological mapping of leptin receptor and ghrelin receptor expression, we found that cells containing both leptin receptors and ghrelin receptors are mainly located in the medial part of the hypothalamic arcuate nucleus. In contrast, coexpression was much less extensive elsewhere in the brain. To assess the functional consequences of this observed receptor distribution, we explored the effect of ghrelin receptor deletion on leptin sensitivity. In particular, the responses of ad libitum-fed, diet-induced obese and fasted mice to the anorectic actions of leptin were examined. Surprisingly, we found that deletion of the ghrelin receptor did not affect the sensitivity to exogenously administrated leptin. Thus, we conclude that ghrelin and leptin act largely on distinct neuronal populations and that ghrelin receptor deficiency does not affect sensitivity to the anorexigenic and body weight-lowering actions of leptin. PMID:21674492

  2. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain.

    PubMed

    Perello, Mario; Scott, Michael M; Sakata, Ichiro; Lee, Charlotte E; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A; Elmquist, Joel K; Zigman, Jeffrey M

    2012-02-01

    The hormones leptin and ghrelin act in apposition to one another in the regulation of body weight homeostasis. Interestingly, both leptin receptor expression and ghrelin receptor expression have been observed within many of the same nuclei of the central nervous system (CNS), suggesting that these hormones may act on a common population of neurons to produce changes in food intake and energy expenditure. In the present study we explored the extent of this putative direct leptin and ghrelin interaction in the CNS and addressed the question of whether a loss of ghrelin signaling would affect sensitivity to leptin. Using histological mapping of leptin receptor and ghrelin receptor expression, we found that cells containing both leptin receptors and ghrelin receptors are mainly located in the medial part of the hypothalamic arcuate nucleus. In contrast, coexpression was much less extensive elsewhere in the brain. To assess the functional consequences of this observed receptor distribution, we explored the effect of ghrelin receptor deletion on leptin sensitivity. In particular, the responses of ad libitum-fed, diet-induced obese and fasted mice to the anorectic actions of leptin were examined. Surprisingly, we found that deletion of the ghrelin receptor did not affect the sensitivity to exogenously administrated leptin. Thus, we conclude that ghrelin and leptin act largely on distinct neuronal populations and that ghrelin receptor deficiency does not affect sensitivity to the anorexigenic and body weight-lowering actions of leptin. Copyright © 2011 Wiley-Liss, Inc.

  3. Localization of acyl ghrelin- and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH.

    PubMed

    Mizutani, Makoto; Atsuchi, Kaori; Asakawa, Akihiro; Matsuda, Norifumi; Fujimura, Masaki; Inui, Akio; Kato, Ikuo; Fujimiya, Mineko

    2009-11-01

    Acyl ghrelin has a 28-amino acid sequence with O-n-octanoyl acid modification at the serine 3 position, whereas des-acyl ghrelin has no octanoyl acid modification. Although these peptides exert different physiological functions, no previous studies have shown the different localization of acyl ghrelin and des-acyl ghrelin in the stomach. Here we have developed an antibody specific for des-acyl ghrelin that does not crossreact with acyl ghrelin. Both acyl ghrelin- and des-acyl ghrelin-immunoreactive cells were distributed in the oxyntic and antral mucosa of the rat stomach, with higher density in the antral mucosa than oxyntic mucosa. Immunofluorescence double staining showed that acyl ghrelin- and des-acyl ghrelin-positive reactions overlapped in closed-type round cells, whereas des-acyl ghrelin-positive reaction was found in open-type cells in which acyl ghrelin was negative. Acyl ghrelin-/des-acyl ghrelin-positive closed-type cells contain obestatin; on the other hand, des-acyl ghrelin-positive open-type cells contain somatostatin. We measured the release of acyl ghrelin and des-acyl ghrelin in vascularly perfused rat stomach by ELISA, and the effects of different intragastric pH levels on the release of each peptide were examined. The release of des-acyl ghrelin from the perfused stomach was greater at pH 2 than at pH 4; however, the release of acyl ghrelin was not affected by intragastric pH. The present study demonstrated the differential localization of acyl ghrelin and des-acyl ghrelin in the rat stomach and their different responses to the intragastric pH.

  4. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    PubMed

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance.

  5. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  6. Ghrelin-Related Peptides Exert Protective Effects in the Cerebral Circulation of Male Mice Through a Nonclassical Ghrelin Receptor(s)

    PubMed Central

    Ku, Jacqueline M.; Andrews, Zane B.; Barsby, Tom; Reichenbach, Alex; Lemus, Moyra B.; Drummond, Grant R.; Sleeman, Mark W.; Spencer, Sarah J.; Sobey, Christopher G.

    2015-01-01

    The ghrelin-related peptides, acylated ghrelin, des-acylated ghrelin, and obestatin, are novel gastrointestinal hormones. We firstly investigated whether the ghrelin gene, ghrelin O-acyltransferase, and the ghrelin receptor (GH secretagogue receptor 1a [GHSR1a]) are expressed in mouse cerebral arteries. Secondly, we assessed the cerebrovascular actions of ghrelin-related peptides by examining their effects on vasodilator nitric oxide (NO) and superoxide production. Using RT-PCR, we found the ghrelin gene and ghrelin O-acyltransferase to be expressed at negligible levels in cerebral arteries from male wild-type mice. mRNA expression of GHSR1a was also found to be low in cerebral arteries, and GHSR protein was undetectable in GHSR-enhanced green fluorescent protein mice. We next found that exogenous acylated ghrelin had no effect on the tone of perfused cerebral arteries or superoxide production. By contrast, exogenous des-acylated ghrelin or obestatin elicited powerful vasodilator responses (EC50 < 10 pmol/L) that were abolished by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester. Furthermore, exogenous des-acylated ghrelin suppressed superoxide production in cerebral arteries. Consistent with our GHSR expression data, vasodilator effects of des-acylated ghrelin or obestatin were sustained in the presence of YIL-781 (GHSR1a antagonist) and in arteries from Ghsr-deficient mice. Using ghrelin-deficient (Ghrl−/−) mice, we also found that endogenous production of ghrelin-related peptides regulates NO bioactivity and superoxide levels in the cerebral circulation. Specifically, we show that NO bioactivity was markedly reduced in Ghrl−/− vs wild-type mice, and superoxide levels were elevated. These findings reveal protective actions of exogenous and endogenous ghrelin-related peptides in the cerebral circulation and show the existence of a novel ghrelin receptor(s) in the cerebral endothelium. PMID:25322462

  7. Effect of blonanserin on methamphetamine-induced disruption of latent inhibition and c-Fos expression in rats.

    PubMed

    Kuramashi, Aki; Abe, Hiroshi; Koganemaru, Go; Matsuo, Hisae; Ikeda, Tetsuya; Ebihara, Kosuke; Funahashi, Hideki; Takeda, Ryuichiro; Nishimori, Toshikazu; Ishida, Yasushi

    2013-08-09

    To clarify the psychopharmacological profile of blonanserin, a novel antipsychotic, we examined its effect on the methamphetamine-induced disruption of latent inhibition (LI) and the neural activation related to this effect in rats. To evaluate the LI, we used a conditioned emotional response in which a tone (conditioned stimulus) was paired with a mild foot shock (unconditioned stimulus). This paradigm was presented to rats licking water. Methamphetamine-induced (1.0mg/kg, i.p.) disruption of LI was significantly improved by the administration of a higher dose (3.0mg/kg, i.p.) of blonanserin and tended to be improved by 1.0-mg/kg blonanserin and 0.2-mg/kg haloperidol but not by a lower dose (0.3mg/kg) of blonanserin. Immunohistochemical examination showed blonanserin (3.0mg/kg, i.p.) increased c-Fos expression in the shell area but not in the core area of the nucleus accumbens while methamphetamine (3.0mg/kg, i.p.) produced the opposite expression pattern. Blonanserin also increased the number of c-Fos expressions in the central amygdala nucleus but not in the basolateral amygdala nucleus or the prefrontal cortex. Blonanserin ameliorates the methamphetamine-induced disruption of LI, as other antipsychotics do, and a neuronal activation and/or modulation of neurotransmission in the nucleus accumbens is related to the disruption of LI by methamphetamine and to its amelioration by blonanserin. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Association studies on ghrelin and ghrelin receptor gene polymorphisms with obesity.

    PubMed

    Gueorguiev, Maria; Lecoeur, Cécile; Meyre, David; Benzinou, Michael; Mein, Charles A; Hinney, Anke; Vatin, Vincent; Weill, Jacques; Heude, Barbara; Hebebrand, Johannes; Grossman, Ashley B; Korbonits, Márta; Froguel, Philippe

    2009-04-01

    Ghrelin exerts a stimulatory effect on appetite and regulates energy homeostasis. Ghrelin gene variants have been shown to be associated with metabolic traits, although there is evidence suggesting linkage and association with obesity and the ghrelin receptor (GHSR). We hypothesized that these genes are good candidates for susceptibility to obesity. Direct sequencing identified 12 ghrelin single-nucleotide polymorphisms (SNPs) and 8 GHSR SNPs. The 10 common SNPs were genotyped in 1,275 obese subjects and in 1,059 subjects from a general population cohort of European origin. In the obesity case-control study, the GHSR SNP rs572169 was found to be associated with obesity (P = 0.007 in additive model, P = 0.001 in dominant model, odds ratio (OR) 1.73, 95% confidence interval (1.23-2.44)). The ghrelin variant, g.A265T (rs4684677), showed an association with obesity (P = 0.009, BMI adjusted for age and sex) in obese families. The ghrelin variant, g.A-604G (rs27647), showed an association with insulin levels at 2-h post-oral glucose tolerance test (OGTT) (P = 0.009) in obese families. We found an association between the eating behavior "overeating" and the GHSR SNP rs2232169 (P = 0.02) in obese subjects. However, none of these associations remained significant when corrected for multiple comparisons. Replication of the nominal associations with obesity could not be confirmed in a German genome-wide association (GWA) study for rs4684677 and rs572169 polymorphisms. Our data suggest that common polymorphisms in ghrelin and its receptor genes are not major contributors to the development of polygenic obesity, although common variants may alter body weight and eating behavior and contribute to insulin resistance, in particular in the context of early-onset obesity.

  9. Dynamics of Fos-Jun-NFAT1 complexes

    PubMed Central

    Ramirez-Carrozzi, Vladimir R.; Kerppola, Tom K.

    2001-01-01

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes. PMID:11320240

  10. Dynamics of Fos-Jun-NFAT1 complexes.

    PubMed

    Ramirez-Carrozzi, V R; Kerppola, T K

    2001-04-24

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.

  11. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal.

    PubMed

    Angelino, Elia; Reano, Simone; Bollo, Alessandro; Ferrara, Michele; De Feudis, Marilisa; Sustova, Hana; Agosti, Emanuela; Clerici, Sara; Prodam, Flavia; Tomasetto, Catherine-Laure; Graziani, Andrea; Filigheddu, Nicoletta

    2018-05-30

    Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration. To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl -/- mice upon CTX-induced injury. Although muscles from Ghrl -/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl -/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration. Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.

  12. Ghrelin and cancer progression.

    PubMed

    Lin, Tsung-Chieh; Hsiao, Michael

    2017-08-01

    Ghrelin is a small peptide with 28 amino acids, and has been characterized as the ligand of the growth hormone secretagogue receptor (GHSR). In addition to its original function in stimulating pituitary growth hormone release, ghrelin is multifunctional and plays a role in the regulation of energy balance, gastric acid release, appetite, insulin secretion, gastric motility and the turnover of gastric and intestinal mucosa. The discovery of ghrelin and GHSR expression beyond normal tissues suggests its role other than physiological function. Emerging evidences have revealed ghrelin's function in regulating several processes related to cancer progression, especially in metastasis and proliferation. We further show the relative GHRL and GHSR expression in pan-cancers from The Cancer Genome Atlas (TCGA), suggesting the potential pathological role of the axis in cancers. This review focuses on ghrelin's biological function in cancer progression, and reveals its clinical significance especially the impact on cancer patient outcome. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Ghrelin precursor gene polymorphism and methamphetamine dependence in the Korean population.

    PubMed

    Yoon, Su-Jung; Pae, Chi-Un; Lee, Heejin; Choi, Bomoon; Kim, Tae-Suk; Lyoo, In Kyoon; Kwon, Do-Hoon; Kim, Dai-Jin

    2005-12-01

    Ghrelin is a recently isolated brain-gut peptide that has growth hormone-releasing and appetite-inducing activities. Several recent studies have suggested that ghrelin plays a major role in the pathophysiology of drug-seeking behavior and anxiety. Therefore, we assessed the effect of the ghrelin precursor polymorphism on methamphetamine dependence in the Korean population. One hundred and eighteen patients with methamphetamine dependence, according to the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria, and the 144 healthy controls were enrolled in this study. Genotyping for the ghrelin precursor polymorphism was performed by the polymerase chain reaction-restriction fragment length polymorphism-based technique. The genotypic and allelic distributions of the ghrelin precursor polymorphism in the patients with methamphetamine dependence were not significantly different from those of the control subjects. However, the Met72 carriers were associated with the emotional problems of methamphetamine dependence. The patients with the Met72 allele were more depressed and anxious than the homozygous patients with the wild Leu72 allele. The present study suggests that the ghrelin precursor polymorphism may not confer a susceptibility to the development of methamphetamine dependence in the Korean population. However, the Leu72Met polymorphism could have a potential role in the emotional problems that are associated with this disease.

  14. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    PubMed

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  15. Ghrelin system in alcohol-dependent subjects: role of plasma ghrelin levels in alcohol drinking and craving

    PubMed Central

    Leggio, Lorenzo; Ferrulli, Anna; Cardone, Silvia; Nesci, Antonio; Miceli, Antonio; Malandrino, Noemi; Capristo, Esmeralda; Canestrelli, Benedetta; Monteleone, Palmiero; Kenna, George A.; Swift, Robert M.; Addolorato, Giovanni

    2016-01-01

    Animal studies suggest that the gut-brain peptide ghrelin plays an important role in the neurobiology of alcohol dependence (AD). Human studies show an effect of alcohol on ghrelin levels and a correlation between ghrelin levels and alcohol craving in alcoholics. This investigation consisted of two studies. Study 1 was a 12-week study with alcohol-dependent subjects, where plasma ghrelin determinations were assessed four times (T0-T3) and related to alcohol intake and craving [Penn Alcohol Craving Score (PACS) and Obsessive Compulsive Drinking Scale (OCDS)]. Serum growth hormone (GH) levels and assessment of the nutritional/metabolic status were also performed. Study 2 was a pilot case-control study to assess ghrelin gene polymorphisms (Arg51Gln and Leu72Met) in alcohol-dependent individuals. Study 1 showed no significant differences in ghrelin levels in the whole sample, while there was a statistical difference for ghrelin between non-abstinent and abstinent subjects. Baseline ghrelin levels were significantly and positively correlated with the PACS score at T1 and with all craving scores both at T2 and T3 (PACS, OCDS, obsessive and compulsive OCDS subscores). In Study 2, although there was a higher frequency of the Leu72Met ghrelin gene polymorphism in alcohol-dependent individuals, the distribution between healthy controls and alcohol dependent individuals was not statistically significant. This investigation suggests that ghrelin is potentially able to affect alcohol-seeking behaviors, such as alcohol drinking and craving, representing a new potential neuropharmacological target for AD. PMID:21392177

  16. Ghrelin system in alcohol-dependent subjects: role of plasma ghrelin levels in alcohol drinking and craving.

    PubMed

    Leggio, Lorenzo; Ferrulli, Anna; Cardone, Silvia; Nesci, Antonio; Miceli, Antonio; Malandrino, Noemi; Capristo, Esmeralda; Canestrelli, Benedetta; Monteleone, Palmiero; Kenna, George A; Swift, Robert M; Addolorato, Giovanni

    2012-03-01

    Animal studies suggest that the gut-brain peptide ghrelin plays an important role in the neurobiology of alcohol dependence (AD). Human studies show an effect of alcohol on ghrelin levels and a correlation between ghrelin levels and alcohol craving in alcoholics. This investigation consisted of two studies. Study 1 was a 12-week study with alcohol-dependent subjects, where plasma ghrelin determinations were assessed four times (T0-T3) and related to alcohol intake and craving [Penn Alcohol Craving Score (PACS) and Obsessive Compulsive Drinking Scale (OCDS)]. Serum growth hormone levels and assessment of the nutritional/metabolic status were also performed. Study 2 was a pilot case-control study to assess ghrelin gene polymorphisms (Arg51Gln and Leu72Met) in alcohol-dependent individuals. Study 1 showed no significant differences in ghrelin levels in the whole sample, while there was a statistical difference for ghrelin between non-abstinent and abstinent subjects. Baseline ghrelin levels were significantly and positively correlated with the PACS score at T1 and with all craving scores both at T2 and T3 (PACS, OCDS, obsessive and compulsive OCDS subscores). In Study 2, although there was a higher frequency of the Leu72Met ghrelin gene polymorphism in alcohol-dependent individuals, the distribution between healthy controls and alcohol dependent individuals was not statistically significant. This investigation suggests that ghrelin is potentially able to affect alcohol-seeking behaviors, such as alcohol drinking and craving, representing a new potential neuropharmacological target for AD. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  17. Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.

    PubMed

    Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping

    2015-01-01

    Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.

  18. Ghrelin inhibits proinflammatory responses and prevents cognitive impairment in septic rats.

    PubMed

    Wei, Hua; Cao, Xiaohua; Zeng, Qingwen; Zhang, Fujun; Xue, Qingsheng; Luo, Yan; Lee, Jae-Woo; Yu, Buwei; Feng, Xiaomei

    2015-05-01

    A novel stomach-derived peptide, ghrelin, is down-regulated in sepsis and its IV administration decreases proinflammatory cytokines and mitigates organ injury. In this study, we wanted to investigate the effects of ghrelin on proinflammatory responses and cognitive impairment in septic rats. Prospective, randomized, controlled experiment. Animal basic science laboratory. Sprague-Dawley rats, weighing 250-300 g. Sepsis was induced by cecal ligation and puncture. Animals were randomly divided into four groups: sham, sham + ghrelin, cecal ligation and puncture, and cecal ligation and puncture + ghrelin. Saline was given subcutaneously (30 mL/kg) at 4 and 16 hours after surgery for all rats. Septic rats were treated with ceftriaxone (30 mg/kg) and clindamycin (25 mg/kg) subcutaneously at 4 and 16 hours after surgery. Ghrelin (80 μg/kg) was administrated intraperitoneally 4 and 16 hours after surgery in sham + ghrelin group and cecal ligation and puncture + ghrelin group. The levels of proinflammatory cytokines in hippocampus were measured by enzyme-linked immunosorbent assay, and cleaved caspase-3 was detected by Western blot 24 hours after surgery. Neuronal apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining 48 hours after surgery. Additional animals were monitored to record survival and body weight changes for 10 days after surgery. Survival animals underwent behavioral tasks 10 days after surgery: open-field, novel object recognition, and continuous multiple-trial step-down inhibitory avoidance task. Ghrelin significantly decreased the levels of proinflammatory cytokines and inhibited the activation of caspase-3 in the hippocampus after cecal ligation and puncture. The density of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive apoptotic neurons was significantly lowered by ghrelin. In addition, ghrelin improved the survival rates after cecal ligation and puncture. There were no differences in the

  19. Carbon dioxide in carbonated beverages induces ghrelin release and increased food consumption in male rats: Implications on the onset of obesity.

    PubMed

    Eweis, Dureen Samandar; Abed, Fida; Stiban, Johnny

    The dangerous health risks associated with obesity makes it a very serious public health issue. Numerous studies verified a correlation between the increase in obesity and the parallel increase in soft drink consumption among world populations. The effects of one main component in soft drinks namely the carbon dioxide gas has not been studied thoroughly in any previous research. Male rats were subjected to different categories of drinks and evaluated for over a year. Stomach ex vivo experiments were undertaken to evaluate the amount of ghrelin upon different beverage treatments. Moreover, 20 male students were tested for their ghrelin levels after ingestion of different beverages. Here, we show that rats consuming gaseous beverages over a period of around 1 year gain weight at a faster rate than controls on regular degassed carbonated beverage or tap water. This is due to elevated levels of the hunger hormone ghrelin and thus greater food intake in rats drinking carbonated drinks compared to control rats. Moreover, an increase in liver lipid accumulation of rats treated with gaseous drinks is shown opposed to control rats treated with degassed beverage or tap water. In a parallel study, the levels of ghrelin hormone were increased in 20 healthy human males upon drinking carbonated beverages compared to controls. These results implicate a major role for carbon dioxide gas in soft drinks in inducing weight gain and the onset of obesity via ghrelin release and stimulation of the hunger response in male mammals. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  20. Anorexia in hemodialysis patients: the possible role of des-acyl ghrelin.

    PubMed

    Muscaritoli, Maurizio; Molfino, Alessio; Chiappini, Maria Grazia; Laviano, Alessandro; Ammann, Thomas; Spinsanti, Paola; Melchiorri, Daniela; Inui, Akio; Alegiani, Filippo; Rossi Fanelli, Filippo

    2007-01-01

    Anorexia is frequently found in end-stage renal disease and is a reliable predictor of morbidity and mortality in hemodialysis (HD) patients. The pathogenesis of anorexia is complex and the appetite-modulating hormone ghrelin could be involved. Two forms of circulating ghrelin have been described: acylated ghrelin (<10% of circulating ghrelin) which promotes food intake, and des-acyl ghrelin which induces a negative energy balance. The aim of this cross-sectional study is to clarify whether anorexia and body weight change in HD patients relate to plasma des-acyl ghrelin levels. 34 HD patients and 15 healthy controls were studied. The presence of anorexia was assessed by a questionnaire. Serum des-acyl ghrelin was measured in HD patients and in 15 body mass index-, sex- and age-matched controls by ELISA. Energy intake was assessed by a 3-day dietary diary, and fat-free mass (FFM) was evaluated by body impedance analysis. Data have been statistically analyzed and are presented as mean +/- SD. 14 patients (41%) were found to be anorexic, and 20 patients (59%) non-anorexic. Energy intake (kcal/day) was significantly lower in anorexic than in non-anorexic patients (1,682 +/- 241 vs. 1,972.50 +/- 490; p < 0.05). FFM (%) was lower in anorexic than in non-anorexic patients (65.8 +/- 4.4 vs. 70.9 +/- 8.7; p = 0.05). Plasma des-acyl ghrelin levels (fmol/ml) were significantly higher in HD patients than in controls (214.88 +/- 154.24 vs. 128.93 +/- 51.07; p < 0.05), and in anorexic HD patients than in non-anorexic (301.7 +/- 162.4 vs. 159.1 +/- 115.5; p < 0.01). Anorexia is highly prevalent among HD patients and des-acyl ghrelin could be involved in its pathogenesis. Copyright 2007 S. Karger AG, Basel.

  1. Decreased plasma ghrelin contributes to anorexia following novelty stress.

    PubMed

    Saegusa, Yayoi; Takeda, Hiroshi; Muto, Shuichi; Nakagawa, Koji; Ohnishi, Shunsuke; Sadakane, Chiharu; Nahata, Miwa; Hattori, Tomohisa; Asaka, Masahiro

    2011-10-01

    We hypothesized that anorexia induced by novelty stress caused by exposure to a novel environment may be due to activation of corticotropin-releasing factor (CRF) and subsequently mediated by decreasing peripheral ghrelin concentration via serotonin (5-HT) and melanocortin-4 receptors (MC4R). Each mouse was transferred from group-housed cages to individual cages to establish the novelty stress. We observed the effect of changes in feeding behavior in a novel environment using the method of transferring group-housed mice to individual cages. We investigated the effect of an intracerebroventricular injection of antagonists/agonists of CRF1/2 receptors (CRF1/2Rs), 5-HT(1B)/(2C) receptors (5-HT(1B)/(2C)R), and MC4R to clarify the role of each receptor on the decrease in food intake. Plasma ghrelin levels were also measured. The novelty stress caused a reduction in food intake that was abolished by administering a CRF1R antagonist. Three hours after the novelty stress, appetite reduction was associated with reduced levels of neuropeptide Y/agouti-related peptide mRNA, increased levels of proopiomelanocortin mRNA in the hypothalamus, and a decrease in plasma ghrelin level. Administering a CRF1R antagonist, a 5-HT(1B)/(2C)R antagonist, an MC4R antagonist, exogenous ghrelin, and an enhancer of ghrelin secretion, rikkunshito, resolved the reduction in food intake 3 h after the novelty stress by enhancing circulating ghrelin concentrations. We showed that anorexia during a novelty stress is a process in which CRF1R is activated at the early stage of appetite loss and is subsequently activated by a 5-HT(1B)/(2C)R and MC4R stimulus, leading to decreased peripheral ghrelin concentrations.

  2. Expression of c-Fos in Arcuate Nucleus Induced by Electroacupuncture: relations to neurons containing opioids and glutamate

    PubMed Central

    Guo, Zhi-Ling; Longhurst, John C.

    2007-01-01

    Electroacupuncture (EA) at the Neiguan-Jianshi acupoints (P5-P6, overlying the median nerve) attenuates sympathoexcitatory reflexes probably through affecting the opioid system. The arcuate nucleus (ARC) within hypothalamus is an important brain area that produces opioid peptides. Current physiological studies have demonstrated that the predominant response to EA is excitation in the ARC and that excitatory projections from the ARC to the ventrolateral periaqueductal gray during EA at P5-P6 contribute to inhibition of sympathoexcitatory cardiovascular reflexes. These data imply that ARC neurons activated by EA also may contain excitatory neurotransmitters. Thus, the present study evaluated activation of the ARC induced by EA at P5-P6, in relation to the opioid system and glutamate, by detecting c-Fos, an immediate early gene, opioid peptides and vesicular glutamate transporter 3 (VGLUT3). To enhance detection of perikarya containing the opioid peptides, colchicine (90–100 µg/kg) was administered in cats 28–30 hours before EA or the sham-operated control. EA was performed at P5-P6 for 30 min. Compared to controls (n=5), c-Fos positive cells and neurons double-labeled with c-Fos and β-endorphin, enkephalin or VGLUT3 in the ARC were significantly increased in EA-treated cats (n=6; all P<0.05). Moreover, neurons triple-labeled with c-Fos, β-endorphin and VGLUT3 were noted in this region following EA stimulation, but not in controls. Thus, EA at P5-P6 activates neurons in the ARC, some of which contain opioids as well as glutamate or both. The results imply that EA at P5-P6 has the potential to influence ARC neurons containing multiple neuronal substances that subsequently modulate cardiovascular function. PMID:17662967

  3. The level of circulating octanoate does not predict ghrelin O-acyl transferase (GOAT)-mediated acylation of ghrelin during fasting.

    PubMed

    Nass, Ralf; Nikolayev, Alexander; Liu, Jianhua; Pezzoli, Suzan S; Farhy, Leon S; Patrie, James; Gaylinn, Bruce D; Heiman, Mark; Thorner, Michael O

    2015-01-01

    Acyl-ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin O-acyl transferase (GOAT) attaches an 8-carbon medium-chain fatty acid (MCFA) (octanoate) to serine 3 of ghrelin. This acylation is necessary for the activity of ghrelin. Animal data suggest that MCFAs provide substrate for GOAT and an increase in nutritional octanoate increases acyl-ghrelin. To address the question of the source of substrate for acylation, we studied whether the decline in ghrelin acylation during fasting is associated with a decline in circulating MCFAs. Eight healthy young men (aged 18-28 years, body mass index range, 20.6-26.2 kg/m(2)) had blood drawn every 10 minutes for acyl- and desacyl-ghrelin and every hour for free fatty acids (FFAs) during the last 24 hours of a 61.5-hour fast and during a fed day. FFAs were measured by a highly sensitive liquid chromatography-mass spectroscopy method. Acyl- and desacyl-ghrelin were measured in an in-house assay; the results were published previously. Ghrelin acylation was assessed by the ratio of acyl-ghrelin to total ghrelin. With the exception of MCFAs C8 and C10, all other FFAs, the MCFAs (C6 and C12), and the long-chain fatty acids (C14-C18) significantly increased with fasting (P < .05). There was no significant association between the fold change in ghrelin acylation and circulating FFAs. These results suggest that changes in circulating MCFAs are not linked to the decline in ghrelin acylation during fasting and support the hypothesis that acylation of ghrelin depends at least partially on the availability of gastroluminal MCFAs or the regulation of GOAT activity.

  4. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance

    USDA-ARS?s Scientific Manuscript database

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...

  5. Ghrelin accelerates wound healing in combined radiation and wound injury in mice.

    PubMed

    Liu, Cong; Hao, Yuhui; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Li, Rong

    2017-02-01

    Impaired wound healing caused by radiation happens frequently in clinical practice, and the exact mechanisms remain partly unclear. Various countermeasures have been taken to tackle with this issue. Ghrelin was considered as a potent endogenous growth hormone-releasing peptide, and its role in enhancing wound repair and regeneration was firstly investigated in whole-body irradiated (γ-ray) mice in this study. Collagen deposition and neovascularization were mostly discussed. The results demonstrated that ghrelin administration promoted cutaneous wound healing in irradiated mice, followed with reduced average wound closure time, increased spleen index (SI) and improved haematopoiesis. After isolation and analysis of granulation tissues in combined radiation and wound injury (CRWI) mice treated with and without ghrelin, a phenomenon of increased DNA, hexosamine, nitrate and nitrite synthesis, elevated collagen content and enhanced neovascularization was observed after ghrelin treatment. Western blotting indicated that ghrelin also increased the expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β), both responsible for wound healing. However, previous administration of growth hormone secretagogue receptor 1a (GHS-R1a) blocker blunted these therapeutic effects of ghrelin on CRWI mice. Our results identify ghrelin as a novel peptide that could be used for radiation-induced impaired wound healing. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine.

    PubMed

    Yu, C-H; Chu, S-C; Chen, P-N; Hsieh, Y-S; Kuo, D-Y

    2017-04-01

    Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Ghrelin increases the motivation to eat, but does not alter food palatability

    PubMed Central

    Overduin, Joost; Figlewicz, Dianne P.; Bennett-Jay, Jennifer; Kittleson, Sepideh

    2012-01-01

    Homeostatic eating cannot explain overconsumption of food and pathological weight gain. A more likely factor promoting excessive eating is food reward and its representation in the central nervous system (CNS). The anorectic hormones leptin and insulin reduce food reward and inhibit related CNS reward pathways. Conversely, the orexigenic gastrointestinal hormone ghrelin activates both homeostatic and reward-related neurocircuits. The current studies were conducted to identify in rats the effects of intracerebroventricular ghrelin infusions on two distinct aspects of food reward: hedonic valuation (i.e., “liking”) and the motivation to self-administer (i.e., “wanting”) food. To assess hedonic valuation of liquid food, lick motor patterns were recorded using lickometry. Although ghrelin administration increased energy intake, it did not alter the avidity of licking (initial lick rates or lick-cluster size). Several positive-control conditions ruled out lick-rate ceiling effects. Similarly, when the liquid diet was hedonically devalued with quinine supplementation, ghrelin failed to reverse the quinine-associated reduction of energy intake and avidity of licking. The effects of ghrelin on rats' motivation to eat were assessed using lever pressing to self-administer food in a progressive-ratio paradigm. Ghrelin markedly increased motivation to eat, to levels comparable to or greater than those seen following 24 h of food deprivation. Pretreatment with the dopamine D1 receptor antagonist SCH-23390 eliminated ghrelin-induced increases in lever pressing, without compromising generalized licking motor control, indicating a role for D1 signaling in ghrelin's motivational feeding effects. These results indicate that ghrelin increases the motivation to eat via D1 receptor-dependent mechanisms, without affecting perceived food palatability. PMID:22673784

  8. Neonatal overfeeding disrupts pituitary ghrelin signalling in female rats long-term; Implications for the stress response.

    PubMed

    Sominsky, Luba; Ziko, Ilvana; Spencer, Sarah J

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress are exacerbated in adult female but not male rats made obese due to overfeeding in early life. Ghrelin, traditionally known for its role in energy homeostasis, has been recently recognised for its role in coordinating the HPA responses to stress, particularly by acting directly at the anterior pituitary where the growth hormone secretagogue receptor (GHSR), the receptor for acyl ghrelin, is abundantly expressed. We therefore hypothesised that neonatal overfeeding in female rats would compromise pituitary responsiveness to ghrelin, contributing to a hyperactive central stress responsiveness. Unlike in males where hypothalamic ghrelin signalling is compromised by neonatal overfeeding, there was no effect of early life diet on circulating ghrelin or hypothalamic ghrelin signalling in females, indicating hypothalamic feeding and metabolic ghrelin circuitry remains intact. However, neonatal overfeeding did lead to long-term alterations in the pituitary ghrelin system. The neonatally overfed females had increased neonatal and reduced adult expression of GHSR and ghrelin-O-acyl transferase (GOAT) in the pituitary as well as reduced pituitary responsiveness to exogenous acyl ghrelin-induced adrenocorticotropic hormone (ACTH) release in vitro. These data suggest that neonatal overfeeding dysregulates pituitary ghrelin signalling long-term in females, potentially accounting for the hyper-responsive HPA axis in these animals. These findings have implications for how females may respond to stress throughout life, suggesting the way ghrelin modifies the stress response at the level of the pituitary may be less efficient in the neonatally overfed.

  9. Molecular Cloning of Ghrelin and Characteristics of Ghrelin-Producing Cells in the Gastrointestinal Tract of the Common Marmoset (Callithrix jacchus).

    PubMed

    Takemi, Shota; Sakata, Ichiro; Apu, Auvijit Saha; Tsukahara, Shinji; Yahashi, Satowa; Katsuura, Goro; Iwashige, Fumihiro; Akune, Atsushi; Inui, Akio; Sakai, Takafumi

    2016-10-01

    Ghrelin was first isolated from human and rat as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In the present study, we determined the ghrelin cDNA sequence of the common marmoset (Callithrix jacchus), a small-bodied New World monkey, and investigated the distribution of ghrelin-producing cells in the gastrointestinal tract and localization profiles with somatostatin-producing cells. The marmoset ghrelin cDNA coding region was 354 base pairs, and showed high homology to that in human, rhesus monkey, and mouse. Marmoset ghrelin consists of 28 amino acids, and the N-terminal region is highly conserved as found in other mammalian species. Marmoset preproghrelin and mature ghrelin have 86.3% and 92.9% homology, respectively, to their human counterparts. Quantitative RT-PCR analysis showed that marmoset ghrelin mRNA is highly expressed in the stomach, but it is not detected in other tissues of the gastrointestinal tract. In addition, a large number of ghrelin mRNA-expressing cells and ghrelin-immunopositive cells were detected in the mucosal layer of the stomach, but not in the myenteric plexus. Moreover, all the ghrelin cells examined in the stomach were observed to be closed-type. Double staining showed that somatostatin-immunopositive cells were not co-localized with ghrelin-producing cells; however, a subset of somatostatin-immunopositive cells is directly adjacent to ghrelin-immunopositive cells. These findings suggest that the distribution of ghrelin cells in marmoset differs from that in rodents, and thus the marmoset may be a more useful model for the translational study of ghrelin in primates. In conclusion, we have clarified the expression and cell distribution of ghrelin in marmoset, which may represent a useful model in translational study.

  10. Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats

    PubMed Central

    Jerlhag, Elisabet; Janson, Anna Carin; Waters, Susanna; Engel, Jörgen A.

    2012-01-01

    Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating. PMID:23166710

  11. Differential expression of c-fos following administration of two tremorgenic agents: harmaline and oxotremorine.

    PubMed

    Miwa, H; Nishi, K; Fuwa, T; Mizuno, Y

    2000-08-03

    The regional distribution of c-Fos expression in the brain after the administration of two tremorgenic agents was studied. In both the harmaline- and oxotremorin-treated rats, c-Fos-positive neurons were extensively distributed in the basal ganglia nuclei and the cerebellum. Additionally, in the harmaline-treated rats, numerous c-Fos-positive neurons were also distributed throughout the inferior olivary nucleus. In the oxotremorine-treated rats, while the inferior olive was not involved, c-Fos was strongly expressed in the neurons of the reticular thalamic nucleus, possibly due to the muscarinic effects of oxotremorine. The present study revealed that the inferior olive is selectively activated in the harmaline-administered animals and that the basal ganglia are involved in both harmaline- and oxotremorine-induced tremors.

  12. Ghrelin and gastrointestinal stromal tumors.

    PubMed

    Zhu, Chang-Zhen; Liu, Dong; Kang, Wei-Ming; Yu, Jian-Chun; Ma, Zhi-Qiang; Ye, Xin; Li, Kang

    2017-03-14

    Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs.

  13. Polymorphisms of the ghrelin/obestatin gene and ghrelin levels in Chinese children with short stature.

    PubMed

    Zou, Chao Chun; Huang, Ke; Liang, Li; Zhao, Zheng Yan

    2008-07-01

    To investigate the role of ghrelin and polymorphisms of ghrelin/obestatin gene in children with short stature. A total of 117 GH deficient (GHD) and 81 idiopathic short stature (ISS) children were studied. The controls consisted of 125 age and gender-matched healthy children. The Arg51Gln, Leu72Met and Gln90Leu polymorphisms were genotyped using MassArray and total plasma ghrelin was measured by radioimmunoassay. In this study, the frequency of the Arg51Gln polymorphism was very low (0% in controls and 1.0% in patients). The frequency of the Gln90Leu polymorphism was 1.6% in controls and 0.5% in patients, respectively. Higher frequencies of Leu72Met (34.4% in controls and 39.9% in patients) and Met72Met genotypes (4.0% in controls and 2.0% in patients) were found. The differences in the Arg51Gln, Leu72Met or Gln90Leu genotypes and allele frequencies between patients and controls were not significant. Also, there were no significant differences in the Leu72Met genotypes and allele frequencies between GHD and ISS subgroups. There were no significant differences in clinical characteristics and biochemistry markers (including ghrelin levels) among the different genotypes of Leu72Met. However, plasma ghrelin levels in the GHD group were significantly lower than those of controls (P = 0.001). These results suggest that ghrelin may have a role in GH secretion and controlling growth. Lower ghrelin levels, but not ghrelin/obestatin polymorphism, might contribute to GHD.

  14. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  15. Ghrelin promotes and protects nigrostriatal dopamine function via an UCP2-dependent mitochondrial mechanism

    PubMed Central

    Andrews, Zane B.; Erion, Derek; Beiler, Rudolph; Liu, Zhong-Wu; Abizaid, Alfonso; Zigman, Jeffrey; Elsworth, John D.; Savitt, Joseph M.; DiMarchi, Richard; Tschoep, Matthias; Roth, Robert H.; Gao, Xiao-Bing; Horvath, Tamas L.

    2010-01-01

    Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors (growth hormone secretagogue receptor, GHSR) are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson’s disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, ROS production and biogenesis. Taken together, our data reveals that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. PMID:19906954

  16. Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats.

    PubMed

    Yu, Ching-Han; Chu, Shu-Chen; Chen, Pei-Ni; Hsieh, Yih-Shou; Kuo, Dong-Yih

    2017-06-01

    Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) have been documented to participate in amphetamine (AMPH)-induced appetite suppression. This study investigated whether ghrelin signalling is associated with changes in NPY/POMC-mediated appetite control. Rats were given AMPH daily for four days, and changes in food intake, body weight, plasma ghrelin, hypothalamic NPY, melanocortin 3 receptor (MC3R), ghrelin O-acyltransferase (GOAT), acyl ghrelin (AG) and ghrelin receptor (GHSR1a) were examined and compared. Food intake, body weight and NPY expression decreased, while MC3R expression increased and expressed reciprocally to NPY expression during AMPH treatment. Plasma ghrelin and hypothalamic AG/GOAT/GHSR1a expression decreased on Day 1 and Day 2, which was associated with the positive energy metabolism, and returned to normal levels on Day 3 and Day 4, which was associated with the negative energy metabolism; this expression pattern was similar to that of NPY. Infusion with a GHSR1a antagonist or an NPY antisense into the brain enhanced the decrease in NPY and AG/GOAT/GHSR1a expression and the increase in MC3R expression compared to the AMPH-treated group. Peripheral ghrelin and the central ghrelin system participated in the regulation in AMPH-induced appetite control. These results shed light on the involvement of ghrelin signalling in reciprocal regulation of NPY/POMC-mediated appetite control and may prove useful for the development of anti-obesity drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats

    PubMed Central

    Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping

    2015-01-01

    Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury. PMID:25671547

  18. Association between ghrelin gene (Leu72Met) polymorphism and ghrelin serum level with coronary artery diseases.

    PubMed

    Hedayatizadeh-Omran, Akbar; Rafiei, Alireza; Khajavi, Rezvan; Alizadeh-Navaei, Reza; Mokhberi, Vahid; Moradzadeh, Kambiz

    2014-02-01

    Research shows that ghrelin gene polymorphism has some association with coronary artery diseases (CAD). Due to genetic differences among nations and the high prevalence of CAD, we conducted this study to examine the possible association between the polymorphism of ghrelin gene Leu72Met and CAD among an Iranian population. This case-control study was undertaken with patients who were referred to referral heart center, in 2011, with chest pain or a positive exercise test. Patients with risk factors for heart disease or who were surgery candidates, who underwent angiography and echocardiography, were also included. DNA extractions were performed using a modified salting out method, and the ghrelin region was amplified using polymerase chain reaction. The presence of the Leu72Met polymorphism and the serum levels of ghrelin were determined using the restriction fragment length polymorphism method and the enzyme-linked immunosorbent assay, respectively. The results indicated that in CAD patients, the incidence of heart failure was significantly different between the groups with genotypes CC or AA+CA (p=0.041). Mean serum level of ghrelin in the CAD group was significantly higher than that in the control group (p<0.0001). Additionally, there was a significant relationship between the distribution of ghrelin genotypes and serum levels of ghrelin in both the CAD and control groups (p<0.0001). This study indicates that there was a significant association between heart failure in CAD patients and the presence of the polymorphism, as well as an increase in serum levels of ghrelin associated with genotype distribution such that ghrelin levels have an inverse relationship with the frequency of the CC genotype.

  19. Impact of repeated asenapine treatment on FosB/ΔFosB expression in neurons of the rat central nucleus of the amygdala: colocalization with corticoliberine (CRH) and effect of an unpredictable mild stress preconditioning.

    PubMed

    Majercikova, Z; Kiss, A

    2015-04-01

    FosB/ΔFosB expression in the central amygdalar nucleus (CeA) in response to repeated asenapine (ASE) treatment (an atypical antipsychotic used for the treatment of schizophrenia) was studied in normal rats and rats preconditioned with chronic unpredictable variable mild stress (CMS). The goal of this study was to reveal whether repeated ASE treatment for 14 days may: 1) induce FosB/ΔFosB expression in the amygdala, 2) activate CRH-synthesizing neurons in the CeA, and 3) interfere with 21 days lasting concomitant CMS preconditioning. Four groups of animals were studied: controls and ASE-, CMS-, and CMS+ASE-treated ones. CMS consisted of the restrain, social isolation, crowding, swimming, and cold and lasted 21 days. The ASE and CMS+ASE groups were from the 7th day of the experiment treated with ASE (0.3 mg/kg, subcutaneously - s.c.) twice a day, i.e. together for 14 days. Controls and CMS groups were treated with saline (300 µl/rat, s.c.) twice a day for 14 days. All the animals were sacrificed on the 22nd day, i.e. 16-18 hours after the last treatments. Single FosB/ΔFosB, FosB/ΔFosB colocalizations with CRH, and CRH immunolabeled perikarya were investigated in the CeA using a combined light and fluorescent immunohistochemistry. The distribution aspect of the black FosB/ΔFosB profiles was homogeneous over the whole CeA and no significant differences in the number of FosB/ΔFosB profiles between the individual groups of the rats really occurred. The level of colocalization pattern of FosB/ΔFosB in CRH perikarya was also very similar between the individual groups and in each case it reached approximately 10% of double-labeling. No differences were also seen in the number of CRH immunolabeled perikarya. The density of CRH nerve projections within the CeA was very alike in the individual groups of animals investigated. The study provides a new anatomical/functional finding about the lack of the stimulatory effect of the repeated ASE treatment on the expression of

  20. The Human Experience With Ghrelin Administration

    PubMed Central

    Garin, Margaret C.; Burns, Carrie M.; Kaul, Shailja

    2013-01-01

    Context: Ghrelin is an endogenous stimulator of GH and is implicated in a number of physiological processes. Clinical trials have been performed in a variety of patient populations, but there is no comprehensive review of the beneficial and adverse consequences of ghrelin administration to humans. Evidence Acquisition: PubMed was utilized, and the reference list of each article was screened. We included 121 published articles in which ghrelin was administered to humans. Evidence Synthesis: Ghrelin has been administered as an infusion or a bolus in a variety of doses to 1850 study participants, including healthy participants and patients with obesity, prior gastrectomy, cancer, pituitary disease, diabetes mellitus, eating disorders, and other conditions. There is strong evidence that ghrelin stimulates appetite and increases circulating GH, ACTH, cortisol, prolactin, and glucose across varied patient populations. There is a paucity of evidence regarding the effects of ghrelin on LH, FSH, TSH, insulin, lipolysis, body composition, cardiac function, pulmonary function, the vasculature, and sleep. Adverse effects occurred in 20% of participants, with a predominance of flushing and gastric rumbles and a mild degree of severity. The few serious adverse events occurred in patients with advanced illness and were not clearly attributable to ghrelin. Route of administration may affect the pattern of adverse effects. Conclusions: Existing literature supports the short-term safety of ghrelin administration and its efficacy as an appetite stimulant in diverse patient populations. There is some evidence to suggest that ghrelin has wider ranging therapeutic effects, although these areas require further investigation. PMID:23533240

  1. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    PubMed

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neonatal overfeeding disrupts pituitary ghrelin signalling in female rats long-term; Implications for the stress response

    PubMed Central

    Ziko, Ilvana; Spencer, Sarah J.

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress are exacerbated in adult female but not male rats made obese due to overfeeding in early life. Ghrelin, traditionally known for its role in energy homeostasis, has been recently recognised for its role in coordinating the HPA responses to stress, particularly by acting directly at the anterior pituitary where the growth hormone secretagogue receptor (GHSR), the receptor for acyl ghrelin, is abundantly expressed. We therefore hypothesised that neonatal overfeeding in female rats would compromise pituitary responsiveness to ghrelin, contributing to a hyperactive central stress responsiveness. Unlike in males where hypothalamic ghrelin signalling is compromised by neonatal overfeeding, there was no effect of early life diet on circulating ghrelin or hypothalamic ghrelin signalling in females, indicating hypothalamic feeding and metabolic ghrelin circuitry remains intact. However, neonatal overfeeding did lead to long-term alterations in the pituitary ghrelin system. The neonatally overfed females had increased neonatal and reduced adult expression of GHSR and ghrelin-O-acyl transferase (GOAT) in the pituitary as well as reduced pituitary responsiveness to exogenous acyl ghrelin-induced adrenocorticotropic hormone (ACTH) release in vitro. These data suggest that neonatal overfeeding dysregulates pituitary ghrelin signalling long-term in females, potentially accounting for the hyper-responsive HPA axis in these animals. These findings have implications for how females may respond to stress throughout life, suggesting the way ghrelin modifies the stress response at the level of the pituitary may be less efficient in the neonatally overfed. PMID:28282447

  3. Physiological significance of ghrelin revealed by studies using genetically engineered mouse models with modifications in the ghrelin system.

    PubMed

    Ariyasu, Hiroyuki; Akamizu, Takashi

    2015-01-01

    Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.

  4. Ghrelin and Neurodegenerative Disorders-a Review.

    PubMed

    Shi, Limin; Du, Xixun; Jiang, Hong; Xie, Junxia

    2017-03-01

    Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.

  5. c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury?

    PubMed Central

    Gao, Yong-Jing; Ji, Ru-Rong

    2009-01-01

    c-Fos, the protein of the protooncogene c-fos, has been extensively used as a marker for the activation of nociceptive neurons in the spinal cord for more than twenty years since Hunt et al. first reported that peripheral noxious stimulation to a hind paw of rats leads to a marked induction of c-Fos in superficial and deep dorsal horn neurons in 1987. In 1999, Ji et al. reported that phosphorylated extracellular signal-regulated kinase (pERK) is specifically induced by noxious stimulation in superficial dorsal horn neurons. Accumulating evidence indicates that pERK induction or ERK activation in dorsal horn neurons is essential for the development of central sensitization, increased sensitivity of dorsal horn neurons that is responsible for the generation of persistent pain. Further, molecular mechanisms underlying ERK-mediated central sensitization have been revealed. In contrast, direct evidence for c-Fos-mediated central sensitization is not sufficient. After a noxious stimulus (e.g., capsaicin injection) or tissue injury, c-Fos begins to be induced after 30-60 minutes, whereas pERK can be induced within a minute, which can correlate well with the development of pain hypersensitivity. While c-Fos is often induced in the nuclei of neurons, pERK can be induced in different subcellular structures of neurons such as nuclei, cytoplasma, axons, and dendrites. pERK can even be induced in spinal cord microglia and astrocytes after nerve injury. In summary, both c-Fos and pERK can be used as markers for neuronal activation following noxious stimulation and tissue injury, but pERK is much more dynamic and appears to be a better marker for central sensitization. PMID:19898681

  6. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Associations between ghrelin and ghrelin receptor polymorphisms and cancer in Caucasian populations: a meta-analysis.

    PubMed

    Pabalan, Noel A; Seim, Inge; Jarjanazi, Hamdi; Chopin, Lisa K

    2014-11-07

    There is growing evidence that the ghrelin axis, including ghrelin (GHRL) and its receptor, the growth hormone secretagogue receptor (GHSR), play a role in cancer progression. Ghrelin gene and ghrelin receptor gene polymorphisms have been reported to have a range of effects in cancer, from increased risk, to protection from cancer, or having no association. In this study we aimed to clarify the role of ghrelin and ghrelin receptor polymorphisms in cancer by performing a meta-analysis of published case-control studies. In the overall analysis, homozygous and recessive associations indicated that the minor alleles of rs696217 and rs2075356 GHRL polymorphisms conferred reduced cancer risk (odds ratio [OR] 0.61-0.78). The risk was unchanged for breast cancer patients when analysed separately (OR 0.73-0.83). In contrast, the rs4684677 GHRL and the rs572169 GHSR polymorphisms conferred increased breast cancer risk (OR 1.97-1.98, p = 0.08 and OR 1.42-1.43, p = 0.08, respectively). All dominant and co-dominant effects showed null effects (OR 0.96-1.05), except for the rs572169 co-dominant effect, with borderline increased risk (OR 1.08, p = 0.05). This study suggests that the rs696217 and rs2075356 ghrelin gene (GHRL) polymorphisms may protect carriers against breast cancer, and the rs4684677 GHRL and rs572169 GHSR polymorphisms may increase the risk among carriers. In addition, larger studies are required to confirm these findings.

  8. Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala.

    PubMed

    Lanuza, E; Moncho-Bogani, J; Ledoux, J E

    2008-08-26

    The lateral nucleus of the amygdala (LA) is a site of convergence for auditory (conditioned stimulus) and foot-shock (unconditioned stimulus) inputs during fear conditioning. The auditory pathways to LA are well characterized, but less is known about the pathways through which foot shock is transmitted. Anatomical tracing and physiological recording studies suggest that the posterior intralaminar thalamic nucleus, which projects to LA, receives both auditory and somatosensory inputs. In the present study we examined the expression of the immediate-early gene c-fos in the LA in rats in response to foot-shock stimulation. We then determined the effects of posterior intralaminar thalamic lesions on foot-shock-induced c-Fos expression in the LA. Foot-shock stimulation led to an increase in the density of c-Fos-positive cells in all LA subnuclei in comparison to controls exposed to the conditioning box but not shocked. However, some differences among the dorsolateral, ventrolateral and ventromedial subnuclei were observed. The ventrolateral subnucleus showed a homogeneous activation throughout its antero-posterior extension. In contrast, only the rostral aspect of the ventromedial subnucleus and the central aspect of the dorsolateral subnucleus showed a significant increment in c-Fos expression. The density of c-Fos-labeled cells in all LA subnuclei was also increased in animals placed in the box in comparison to untreated animals. Unilateral electrolytic lesions of the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body reduced foot-shock-induced c-Fos activation in the LA ipsilateral to the lesion. The number of c-Fos labeled cells on the lesioned side was reduced to the levels observed in the animals exposed only to the box. These results indicate that the LA is involved in processing information about the foot-shock unconditioned stimulus and receives this kind of somatosensory information from the posterior intralaminar

  9. Ghrelin at the interface of obesity and reward.

    PubMed

    Schellekens, Harriët; Dinan, Timothy G; Cryan, John F

    2013-01-01

    The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs.

    PubMed

    Katare, Rajesh; Rawal, Shruti; Munasinghe, Pujika Emani; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Fujii, Yutaka; Dixit, Parul; Umetani, Keiji; Kangawa, Kenji; Shirai, Mikiyasu; Schwenke, Daryl O

    2016-02-01

    Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors.

  11. Genetic studies on the ghrelin, growth hormone secretagogue receptor (GHSR) and ghrelin O-acyl transferase (GOAT) genes.

    PubMed

    Liu, Boyang; Garcia, Edwin A; Korbonits, Márta

    2011-11-01

    Ghrelin is a 28 amino acid peptide hormone that is produced both centrally and peripherally. Regulated by the ghrelin O-acyl transferase enzyme, ghrelin exerts its action through the growth hormone secretagogue receptor, and is implicated in a diverse range of physiological processes. These implications have placed the ghrelin signaling pathway at the center of a large number of candidate gene and genome-wide studies which aim to identify the genetic basis of human heterogeneity. In this review we summarize the available data on the genetic variability of ghrelin, its receptor and its regulatory enzyme, and their association with obesity, stature, type 2 diabetes, cardiovascular disease, eating disorders, and reward seeking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Identification of an estrogen response element in the 3'-flanking region of the murine c-fos protooncogene.

    PubMed

    Hyder, S M; Stancel, G M; Nawaz, Z; McDonnell, D P; Loose-Mitchell, D S

    1992-09-05

    We have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyltransferase, linked to regions of mouse c-fos, to identify a specific estrogen response element (ERE) in this protooncogene. This element is located in the untranslated 3'-flanking region of the c-fos gene, 5 kilobases (kb) downstream from the c-fos promoter and 1.5 kb downstream of the poly(A) signal. This element confers estrogen responsiveness to chloramphenicol acetyltransferase reporters linked to both the herpes simplex virus thymidine kinase promoter and the homologous c-fos promoter. Deletion analysis localized the response element to a 200-base pair fragment which contains the element GGTCACCACAGCC that resembles the consensus ERE sequence GGTCACAGTGACC originally identified in Xenopus vitellogenin A2 gene. A synthetic 36-base pair oligodeoxynucleotide containing this c-fos sequence conferred estrogen inducibility to the thymidine kinase promoter. The corresponding sequence also induced reporter activity when present in the c-fos gene fragment 3 kb from the thymidine kinase promoter. Gel-shift experiments demonstrated that synthetic oligonucleotides containing either the consensus ERE or the c-fos element bind human estrogen receptor obtained from a yeast expression system. However, the mobility of the shifted band is faster for the fos-ERE-complex than the consensus ERE complex suggesting that the three-dimensional structure of the protein-DNA complexes is different or that other factors are differentially involved in the two reactions. When the 5'-GGTCA sequence present in the c-fos ERE is mutated to 5'-TTTCA, transcriptional activation and receptor binding activities are both lost. Mutation of the CAGCC-3' element corresponding to the second half-site of the c-fos sequence also led to the loss of receptor binding activity, suggesting that both half-sites of this element are involved in this function. The estrogen induction mediated by either the c-fos or

  13. Ghrelin in obesity, physiological and pharmacological considerations.

    PubMed

    Álvarez-Castro, Paula; Pena, Lara; Cordido, Fernando

    2013-04-01

    The aim of this review is to summarize the physiological and pharmacological aspects of ghrelin. Obesity can be defined as an excess of body fat and is associated with significant disturbances in metabolic and endocrine function. Obesity has become a worldwide epidemic. In obesity there is a decreased growth hormone (GH) secretion, and the altered somatotroph secretion in obesity is functional. Ghrelin is a peptide that has a unique structure with 28 amino-acids and an n-octanoyl ester at its third serine residue, which is essential for its potent stimulatory activity on somatotroph secretion. The pathophysiological mechanism responsible for GH hyposecretion in obesity is probably multifactorial, and there is probably a defect in ghrelin secretion. Ghrelin is the only known circulating orexigenic factor, and has been found to be reduced in obese humans. Ghrelin levels in blood decrease during periods of feeding. Due to its orexigenic and metabolic effects, ghrelin has a potential benefit in antagonizing protein breakdown and weight loss in catabolic conditions such as cancer cachexia, renal and cardiac disease, and age-related frailty. Theoretically ghrelin receptor antagonists could be employed as anti-obesity drugs, blocking the orexigenic signal. By blocking the constitutive receptor activity, inverse agonists of the ghrelin receptor may lower the set-point for hunger, and could be used for the treatment of obesity. In summary, ghrelin secretion is reduced in obesity, and could be partly responsible for GH hyposecretion in obesity, ghrelin antagonist or partial inverse agonists should be considered for the treatment of obesity.

  14. Ghrelin and obestatin levels in rheumatoid arthritis.

    PubMed

    Koca, Suleyman Serdar; Ozgen, Metin; Aydin, Suleyman; Dag, Sait; Evren, Bahri; Isik, Ahmet

    2008-10-01

    Ghrelin is a powerful, endogenous orexigenic peptide. In addition, ghrelin has anti-inflammatory effects, and it has been reported that ghrelin down-regulates pro-inflammatory cytokines, including interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. Obestatin appears to decrease food intake and appetite, and its potential role in inflammation is not yet clear. The aims of this study were to assess total and acylated (active) ghrelin and obestatin serum levels and their relations with inflammatory status in rheumatoid arthritis (RA) patients. Fasting blood samples were obtained from 37 patients with RA, 29 patients with Behçet's disease (BD) and 28 healthy controls (HC). Total ghrelin and obestatin levels were measured by radioimmunoassay and acylated ghrelin was quantified by enzyme-linked immunosorbent assay. Patients with RA had lower total ghrelin, but higher obestatin levels than patients with BD (p<0.05 for both), but when compared with HC group differences were not significant. There was no difference across groups in terms of acylated ghrelin. Total ghrelin level was not correlated with any study parameters in the all groups. Obestatin level correlated with erythrocyte sedimentation rate and DAS-28 in the RA group, the level of IL-6 in the BD group, and with the level of TNF-alpha in the HC group (r=0.400, p<0.05; r=0.412, p<0.05, r=0.543, p<0.01 and r=0.528, p<0.05, respectively). Our results did not show a significant correlation between circulating ghrelin and clinical or laboratory markers of disease activity in RA. Surprisingly, obestatin correlated with some inflammatory markers. So, obestatin seems to be more valuable than ghrelin in the pathogenesis of RA.

  15. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, Jose; Salvatori, Roberto; Castaño, Justo P; Kineman, Rhonda D; Luque, Raul M

    2010-04-12

    Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin's actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.

  16. Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols.

    PubMed

    Serrano, Joan; Casanova-Martí, Àngela; Depoortere, Inge; Blay, Maria Teresa; Terra, Ximena; Pinent, Montserrat; Ardévol, Anna

    2016-12-01

    Grape-seed phenolic compounds have recently been described as satiating agents in rats when administered as a whole phenolic extract (GSPE). This satiating effect may involve the release of satiating gut hormones such as GLP-1, although a short-term increase in the orexigenic hormone ghrelin was also reported. In this study, we investigated the short- and long-term effects of GSPE in rats, focusing on the role of the main grape-seed phenolics in ghrelin secretion. GSPE produced a short-term increase in plasma ghrelin in rats after an acute treatment. A mouse ghrelinoma cell line was used to test the effects of the main pure grape-seed phenolic compounds on ghrelin release. Monomeric flavanols stimulated ghrelin secretion by activating bitter taste receptors. In contrast, gallic acid (GA) and oligomeric flavanols inhibited ghrelin release. The ghrelin-inhibiting effects of GA were confirmed in rats and in rat duodenal segments. One day after the last dose of a subchronic treatment, GSPE decreased plasma ghrelin in rats, ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. The sustained satiating effects of GSPE are related to a long-term decrease in ghrelin expression. GA and oligomeric flavanols play a ghrelin-inhibiting role in this process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation.

    PubMed

    Ons, Sheila; Rotllant, David; Marín-Blasco, Ignacio J; Armario, Antonio

    2010-06-01

    Stress exposure resulted in brain induction of immediate-early genes (IEGs), considered as markers of neuronal activation. Upon repeated exposure to the same stressor, reduction of IEG response (adaptation) has been often observed, but there are important discrepancies in literature that may be in part related to the particular IEG and methodology used. We studied the differential pattern of adaptation of the IEGs c-fos and arc (activity-regulated cytoskeleton-associated protein) after repeated exposure to a severe stressor: immobilization on wooden boards (IMO). Rats repeatedly exposed to IMO showed reduced c-fos mRNA levels in response to acute IMO in most brain areas studied: the medial prefrontal cortex (mPFC), lateral septum (LS), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN) and locus coeruleus. In contrast, the number of neurons showing Fos-like immunoreactivity was only reduced in the MeA and the various subregions of the PVN. IMO-induced increases in arc gene expression were restricted to telencephalic regions and reduced by repeated IMO only in the mPFC. Double-labelling in the LS of IMO-exposed rats revealed that arc was expressed in only one-third of Fos+ neurons, suggesting two populations of Fos+ neurons. These data suggest that c-fos mRNA levels are more affected by repeated IMO than corresponding protein, and that arc gene expression does not reflect adaptation in most brain regions, which may be related to its constitutive expression. Therefore, the choice of a particular IEG and the method of measurement are important for proper interpretation of the impact of chronic repeated stress on brain activation.

  18. The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior

    PubMed Central

    Anderberg, Rozita H; Hansson, Caroline; Fenander, Maya; Richard, Jennifer E; Dickson, Suzanne L; Nissbrandt, Hans; Bergquist, Filip; Skibicka, Karolina P

    2016-01-01

    Impulsivity, defined as impaired decision making, is associated with many psychiatric and behavioral disorders, such as attention-deficit/hyperactivity disorder as well as eating disorders. Recent data indicate that there is a strong positive correlation between food reward behavior and impulsivity, but the mechanisms behind this relationship remain unknown. Here we hypothesize that ghrelin, an orexigenic hormone produced by the stomach and known to increase food reward behavior, also increases impulsivity. In order to assess the impact of ghrelin on impulsivity, rats were trained in three complementary tests of impulsive behavior and choice: differential reinforcement of low rate (DRL), go/no-go, and delay discounting. Ghrelin injection into the lateral ventricle increased impulsive behavior, as indicated by reduced efficiency of performance in the DRL test, and increased lever pressing during the no-go periods of the go/no-go test. Central ghrelin stimulation also increased impulsive choice, as evidenced by the reduced choice for large rewards when delivered with a delay in the delay discounting test. In order to determine whether signaling at the central ghrelin receptors is necessary for maintenance of normal levels of impulsive behavior, DRL performance was assessed following ghrelin receptor blockade with central infusion of a ghrelin receptor antagonist. Central ghrelin receptor blockade reduced impulsive behavior, as reflected by increased efficiency of performance in the DRL task. To further investigate the neurobiological substrate underlying the impulsivity effect of ghrelin, we microinjected ghrelin into the ventral tegmental area, an area harboring dopaminergic cell bodies. Ghrelin receptor stimulation within the VTA was sufficient to increase impulsive behavior. We further evaluated the impact of ghrelin on dopamine-related gene expression and dopamine turnover in brain areas key in impulsive behavior control. This study provides the first

  19. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  20. Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory.

    PubMed

    Harmatz, Elia S; Stone, Lauren; Lim, Seh Hong; Lee, Graham; McGrath, Anna; Gisabella, Barbara; Peng, Xiaoyu; Kosoy, Eliza; Yao, Junmei; Liu, Elizabeth; Machado, Nuno J; Weiner, Veronica S; Slocum, Warren; Cunha, Rodrigo A; Goosens, Ki A

    2017-06-15

    There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. The Ghrelin Signalling System Is Involved in the Consumption of Sweets

    PubMed Central

    Landgren, Sara; Simms, Jeffrey A.; Thelle, Dag S.; Strandhagen, Elisabeth; Bartlett, Selena E.; Engel, Jörgen A.; Jerlhag, Elisabet

    2011-01-01

    The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours. PMID:21448464

  2. The ghrelin signalling system is involved in the consumption of sweets.

    PubMed

    Landgren, Sara; Simms, Jeffrey A; Thelle, Dag S; Strandhagen, Elisabeth; Bartlett, Selena E; Engel, Jörgen A; Jerlhag, Elisabet

    2011-03-23

    The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose-intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours.

  3. Effect of hypergravity on expression of the immediate early gene, c-fos, in central nervous system of medaka (Oryzias latipes)

    NASA Astrophysics Data System (ADS)

    Sayaka, Shimomura-Umemura; Ijiri, Kenichi

    2006-01-01

    Immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brains. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3 g hypergravity by centrifugation. Investigation of c-fos mRNA expression indicated that c-fos mRNA significantly increased 30 min after a start of 3 g exposure. The distribution of its transcripts within the brains was analyzed by an in situ hybridization method. The 3-g treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, nucleus tangentialis, posterior octavu nucleus, and inferior olive. Our results established a method to follow the effect of gravity stimulation, which can be used to investigate gravity perception.

  4. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  5. Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.

    PubMed

    Alexandre, C; Verrier, B

    1991-04-01

    Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.

  6. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    PubMed

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  8. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  9. Thermogenic characterization of ghrelin receptor null mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis....

  10. Ghrelin: much more than a hunger hormone

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  11. Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1-40) administration in mice.

    PubMed

    Santos, V V; Stark, R; Rial, D; Silva, H B; Bayliss, J A; Lemus, M B; Davies, J S; Cunha, R A; Prediger, R D; Andrews, Z B

    2017-05-01

    Ghrelin is a metabolic hormone that has neuroprotective actions in a number of neurological conditions, including Parkinson's disease (PD), stroke and traumatic brain injury. Acyl ghrelin treatment in vivo and in vitro also shows protective capacity in Alzheimer's disease (AD). In the present study, we used ghrelin knockout (KO) and their wild-type littermates to test whether or not endogenous ghrelin is protective in a mouse model of AD, in which human amyloid β peptide 1-40 (Aβ 1-40 ) was injected into the lateral ventricles i.c.v. Recognition memory, using the novel object recognition task, was significantly impaired in ghrelin KO mice and after i.c.v. Aβ 1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Spatial orientation, as assessed by the Y-maze task, was also significantly impaired in ghrelin KO mice and after i.c.v. Aβ 1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Ghrelin KO mice had deficits in olfactory discrimination; however, neither i.c.v. Aβ 1-40 treatment, nor acyl ghrelin injections affected olfactory discrimination. We used stereology to show that ghrelin KO and Aβ 1-40 increased the total number of glial fibrillary acidic protein expressing astrocytes and ionised calcium-binding adapter expressing microglial in the rostral hippocampus. Finally, Aβ 1-40 blocked long-term potentiation induced by high-frequency stimulation and this effect could be acutely blocked with co-administration of acyl ghrelin. Collectively, our studies demonstrate that ghrelin deletion affects memory performance and also that acyl ghrelin treatment may delay the onset of early events of AD. This supports the idea that acyl ghrelin treatment may be therapeutically beneficial with respect to restricting disease progression in AD. © 2017 British Society for Neuroendocrinology.

  12. Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons.

    PubMed

    Wagner, Johanna; Vulinović, Franca; Grünewald, Anne; Unger, Marcus M; Möller, Jens C; Klein, Christine; Michel, Patrick P; Ries, Vincent; Oertel, Wolfgang H; Alvarez-Fischer, Daniel

    2017-12-04

    The polypeptide ghrelin is an endogenous ligand at the growth hormone secretagogue receptor 1a. To ghrelin multiple functions have been ascribed including promotion of gastrointestinal motility. Postprandial ghrelin levels have been reported to be reduced in patients suffering from Parkinson disease (PD). Experimental studies revealed neuroprotective effects of ghrelin in different PD models. The purpose of the present study was (i) to further elucidate the mechanism underlying the neuroprotective action of ghrelin and (ii) to determine whether these effects occur with both the acylated and the unacylated form. The study was conducted in primary mesencephalic cultures treated with mitochondrial complex I and complex II inhibitors. We show that protective effects of ghrelin against complex I inhibition with MPP + were independent of the acylation status of ghrelin, although acylated ghrelin appeared to be more potent. Protection by both forms was also observed when neurons were exposed to the complex II inhibitor 3-NP. Both forms led to higher oxygen consumption rates upon electron transport chain uncoupling, indicating that the two peptides may exert uncoupling effects themselves. We demonstrate that the rescue provided by ghrelin required calcium influx through L-type voltage-gated calcium channels. Whereas the protective effects of acylated ghrelin required receptor binding, effects of the unacylated form remained unaffected by treatment with a ghrelin receptor antagonist. Importantly, inhibition of ghrelin O-acyltransferase failed to reduce the activity of unacylated ghrelin. Overall, our data suggest that both acylated and unacylated ghrelin afford protection to dopamine neurons but through mechanisms that only partially overlap. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Thyroid hormone modulates food intake and glycemia via ghrelin secretion in Zucker fatty rats.

    PubMed

    Patel, K; Joharapurkar, A; Dhanesha, N; Patel, V; Kshirsagar, S; Raval, P; Raval, S; Jain, M R

    2014-10-01

    Hyperthyroidism is known to increase food intake and central administration of thyroid hormone shows acute orexigenic effects in rodents. We investigated whether T3 influences appetite and glucose homeostasis by modulating circulating ghrelin, an important orexigenic hormone, in Zucker fatty rats. The acute anorectic effects of T3 and ghrelin mimetic MK-0677 were studied in rats trained for fasting induced food intake. The serum concentration of T3, ghrelin, glucose, triglycerides, and liver glycogen were estimated. The involvement of sympathetic nervous system was evaluated by conducting similar experiments in vagotomized rats. T3 increased food intake and glucose in rats over 4 h, with increase in serum T3 and decrease in liver glycogen. T3 treatment was associated with increase in serum ghrelin. An additive effect on appetite and glucose was observed when T3 (oral) was administered with central (intracerebroventricular) administration of a ghrelin mimetic, MK-0677. Ghrelin antagonist, compound 8a, antagonized the hyperglycemic and hyperphagic effects of T3. In vagotomized rats, T3 did not show increase in appetite as well as glucose. Serum ghrelin levels were unchanged in these animals after T3 treatment. However, T3 showed increase in serum triglyceride levels indicating its peripheral lipolytic effect, in vagotomized as well as sham treated animals. To conclude, acute orexigenic and hyperglycemic effects of T3 are associated with ghrelin secretion and activity. This effect seems to be mediated via vagus nerves, and is independent of glucoregulatory hormones. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Antinociceptive Effect of Ghrelin in a Rat Model of Irritable Bowel Syndrome Involves TRPV1/Opioid Systems.

    PubMed

    Mao, Yuqing; Li, Zhengyang; Chen, Kan; Yu, Huafang; Zhang, Shaoren; Jiang, Miao; Ma, Yuanhua; Liang, Chunli; Liu, Hongyan; Li, Huanqing; Hua, Qian; Zhou, Hao; Sun, Yonghong; Fan, Xiaoming

    2017-01-01

    Irritable bowel syndrome (IBS), defined as recurrent abdominal pain and changes in bowel habits, seriously affects quality of life and ability to work. Ghrelin is a brain-gut hormone, which has been reported to show antinociceptive effects in peripheral pain. We investigated the effect of ghrelin on visceral hypersensitivity and pain in a rat model of IBS. Maternal deprivation (MD) was used to provide a stress-induced model of IBS in Wistar rats. Colorectal distension (CRD) was used to detect visceral sensitivity, which was evaluated by abdominal withdrawal reflex (AWR) scores. Rats that were confirmed to have visceral hypersensitivity after MD were injected with ghrelin (10 µg/kg) subcutaneously twice a week from weeks 7 to 8. [D-Lys3]-GHRP-6 (100 nmol/L) and naloxone (100 nmol/L) were administered subcutaneously to block growth hormone secretagogue receptor 1α (GHS-R1α) and opioid receptors, respectively. Expression of transient receptor potential vanilloid type 1 (TRPV1) and µ and κ opioid receptors (MOR and KOR) in colon, dorsal root ganglion (DRG) and cerebral cortex tissues were detected by western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical analyses and immunofluorescence. Ghrelin treatment increased expression of opioid receptors and inhibited expression of TRPV1 in colon, dorsal root ganglion (DRG) and cerebral cortex. The antinociceptive effect of ghrelin in the rat model of IBS was partly blocked by both the ghrelin antagonist [D-Lys3]-GHRP-6 and the opioid receptor antagonist naloxone. The results indicate that ghrelin exerted an antinociceptive effect, which was mediated via TRPV1/opioid systems, in IBS-induced visceral hypersensitivity. Ghrelin might potentially be used as a new treatment for IBS. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-1 secretion by enteric neural net in Wistar rat.

    PubMed

    Zhang, Xiyao; Li, Wensong; Li, Ping; Chang, Manli; Huang, Xu; Li, Qiang; Cui, Can

    2014-01-01

    As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.

  16. Regulation of oxidative stress and somatostatin, cholecystokinin, apelin gene expressions by ghrelin in stomach of newborn diabetic rats.

    PubMed

    Coskun, Zeynep Mine; Sacan, Ozlem; Karatug, Ayse; Turk, Neslihan; Yanardag, Refiye; Bolkent, Sehnaz; Bolkent, Sema

    2013-09-01

    The aim of the study was to determine whether ghrelin treatment has a protective effect on gene expression and biochemical changes in the stomach of newborn streptozotocin (STZ) induced diabetic rats. In this study, four groups of Wistar rats were used: control, ghrelin control, diabetic and diabetic+ghrelin. The rats were sacrificed after four weeks of treatment for diabetes. The gene expressions of: somatostatin, cholecystokinin, apelin and the altered active caspase-3, active caspase-8, proliferating cell nuclear antigen, were investigated in the pyloric region of the stomach and antioxidant parameters were measured in all the stomach. Although ghrelin treatment to diabetic rats lowered the stomach lipid peroxidation levels, the stomach glutathione levels were increased. Exogenous ghrelin caused an increased activities of stomach catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in diabetic rats. Numbers of somatostatin, cholecystokinin and proliferating cell nuclear antigen immunoreactive cells decreased in the diabetic+ghrelin group compared to the diabetic group. Apelin mRNA expressions were remarkably less in the diabetic+ghrelin rats than in diabetic rats. The results may indicate that ghrelin treatment has a protective effect to some extent on the diabetic rats. This protection is possibly accomplished through the antioxidant activity of ghrelin observed in type 2 diabetes. Consequently exogenous ghrelin may be a candidate for therapeutic treatment of diabetes. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Immunohistochemical localization of c-fos in the nuclei of the medulla oblongata in relation to asphyxia.

    PubMed

    Nogami, M; Takatsu, A; Endo, N; Ishiyama, I

    1999-01-01

    The immediately early gene product c-fos is known to be induced in neurons under noxious stimuli. Therefore, the immunohistochemistry of c-fos expression in human brains might offer information on the localization of stimulated neurons. In this study, the immunohistochemical localization of c-fos was studied in the neurons of the hypoglossal nucleus (XII), the dorsal motor nucleus of the vagal nerve (X), the nucleus solitarius (Sol), the accessory cuneate nucleus (Cun), the spinal trigeminal nucleus (V) and the inferior olive (Oli) of the human medulla oblongata from forensic autopsy cases. The neurons in the X nucleus showed the highest percentage of positive reactions for c-fos, followed in descending order by the Cun, V, Oli, XII and Sol. The c-fos immunoreactivity in the Cun and X was statistically significantly higher than in the Sol, XII and Oli. Although neurons in the Sol are known to be involved in respiration, there was no statistically significant difference in the c-fos immunoreactivity in the neurons in the Sol between asphyxia and non-asphyxia cases. On the other hand, the percentage of neurons positive for the c-fos immunoreactivity was statistically significantly higher in the Oli of asphyxia cases than of non-asphyxia cases. Our results indicate the difference in the immunoreactivity of c-fos among the nuclei of the human medulla oblongata and that the c-fos immunoreactivity in the Oli might assist the diagnosis of asphyxia.

  18. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet.

    PubMed

    Marchiò, Maddalena; Roli, Laura; Giordano, Carmela; Trenti, Tommaso; Guerra, Azzurra; Biagini, Giuseppe

    2018-03-23

    The gastric hormones ghrelin and des-acyl ghrelin have been found to be altered in patients treated with antiepileptic drugs. However, it is unknown if these hormones could be modified by other antiepileptic treatments, such as the ketogenic diet. Especially, a reduction in ghrelin levels could be relevant in view of the growth retardation observed under ketogenic diet treatment. For this reason we aimed to determine the changes in ghrelin and des-acyl ghrelin plasma levels in children affected by refractory epilepsy and treated with the ketogenic diet up to 90 days. Both peptides were measured by immunoassays in plasma obtained from 16 children. Ghrelin plasma levels were progressively reduced by the ketogenic diet, reaching a minimum corresponding to 42% of basal levels after 90 days of ketogenic diet (P < 0.05, Duncan's test). Des-acyl ghrelin plasma levels were similarly affected, reaching minimal levels at 30 days (65% of basal levels), and maintaining a significant reduction until 90 days after the onset of ketogenic diet (P < 0.01 for both time intervals). No significant changes in growth were observed during the monitored period of ketogenic diet administration. Ghrelin and des-acyl ghrelin are downregulated by the ketogenic diet in children affected by refractory epilepsy. Although no significant changes in growth were observed during the short time period of our investigation, the reduction in ghrelin availability may explain the reported growth retardation found in children treated with the ketogenic diet in the long-term. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Ghrelin and the cardiovascular system.

    PubMed

    Isgaard, Jörgen

    2013-01-01

    Although ghrelin was initially associated with regulation of appetite, the cardiovascular system has also been recognized as a potentially important target for its effects. Moreover, experimental and a limited number of clinical studies suggest a potential role for ghrelin in the treatment of congestive heart failure. So far, reported cardiovascular effects of growth hormone secretagogues and/or ghrelin include lowering of peripheral resistance, either direct at the vascular level and/or by modulating sympathetic nervous activity. Other observed effects indicate possible improvement of contractility and cardioprotective and anti-inflammatory effects both in vivo and in vitro. Taken together, these results offer an interesting perspective on the future where further studies aiming at evaluating a role of growth hormone secretagogues and ghrelin in the treatment of cardiovascular disease are warranted. Copyright © 2013 S. Karger AG, Basel.

  20. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients.

    PubMed

    Huang, Rong; Han, Jing; Tian, Sai; Cai, Rongrong; Sun, Jie; Shen, Yanjue; Wang, Shaohua

    2017-02-28

    People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghrelin levels compared with their healthy-cognition subjects (all p < 0.05). Further logistic regression analysis showed that ghrelin level was one of independent factors for MCI in T2DM patients (p < 0.05). Moreover, partial correlation analysis demonstrated that ghrelin levels were positively associated with the scores of Montreal Cognitive Assessment (r = 0.196, p = 0.041) and Auditory Verbal Learning Test-delayed recall (r = 0.197, p = 0.040) after adjustment for HbA1c, FBG and HOMA-IR, wherein the latter represented episodic memory functions. No significant differences were found for the distributions of genotype and allele of ghrelin rs4684677 polymorphism between MCI and control group. A total of 218 T2DM patients, with 112 patients who satisfied the MCI diagnostic criteria and 106 who exhibited healthy cognition, were enrolled in this study. Demographic characteristics, clinical variables and cognitive performances were extensively assessed. Plasma ghrelin levels and ghrelin rs4684677 polymorphism were also determined. Our results suggest that decreased ghrelin levels are associated with MCI, especially with episodic memory dysfunction in T2DM populations.

  1. Ghrelin and Metabolic Surgery

    PubMed Central

    Pournaras, Dimitrios J.; le Roux, Carel W.

    2010-01-01

    Metabolic surgery is the most effective treatment for morbid obesity. Ghrelin has been implicated to play a role in the success of these procedures. Furthermore, these operations have been used to study the gut-brain axis. This article explores this interaction, reviewing the available data on changes in ghrelin levels after different surgical procedures. PMID:20700402

  2. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system.

    PubMed

    Gil, Germán A; Silvestre, David C; Tomasini, Nicolás; Bussolino, Daniela F; Caputto, Beatriz L

    2012-06-01

    Some 20 years ago c-Fos was identified as a member of the AP-1 family of inducible transcription factors (Angel and Karin in Biochim Biophys Acta 1072:129-157, 1991). More recently, an additional activity was described for this protein: it associates to the endoplasmic reticulum and activates the biosynthesis of phospholipids (Bussolino et al. in FASEB J 15:556-558, 2001), (Gil et al. in Mol Biol Cell 15:1881-1894, 2004), the quantitatively most important components of cellular membranes. This latter activity of c-Fos determines the rate of membrane genesis and consequently of growth in differentiating PC12 cells (Gil et al. in Mol Biol Cell 15:1881-1894, 2004). In addition, it has been shown that c-Fos is over-expressed both in PNS and CNS tumors (Silvestre et al. in PLoS One 5(3):e9544, 2010). Herein, it is shown that c-Fos-activated phospholipid synthesis is required to support membrane genesis during the exacerbated growth characteristic of brain tumor cells. Specifically blocking c-Fos-activated phospholipid synthesis significantly reduces proliferation of tumor cells in culture. Blocking c-Fos expression also prevents tumor progression in mice intra-cranially xeno-grafted human brain tumor cells. In NPcis mice, an animal model of the human disease Neurofibromatosis Type I (Cichowski and Jacks in Cell 104:593-604, 2001), animals spontaneously develop tumors of the PNS and the CNS, provided they express c-Fos (Silvestre et al. in PLoS One 5(3):e9544, 2010). Treatment of PNS tumors with an antisense oligonucleotide that specifically blocks c-Fos expression also blocks tumor growth in vivo. These results disclose cytoplasmic c-Fos as a new target for effectively controlling brain tumor growth.

  3. Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward.

    PubMed

    Schellekens, Harriët; Dinan, Timothy G; Cryan, John F

    2013-08-30

    The gut hormone, ghrelin, is the only known peripherally derived orexigenic signal. It activates its centrally expressed receptor, the growth hormone secretagogue receptor (GHS-R1a), to stimulate food intake. The ghrelin signaling system has recently been suggested to play a key role at the interface of homeostatic control of appetite and the hedonic aspects of food intake, as a critical role for ghrelin in dopaminergic mesolimbic circuits involved in reward signaling has emerged. Moreover, enhanced plasma ghrelin levels are associated with conditions of physiological stress, which may underline the drive to eat calorie-dense "comfort-foods" and signifies a role for ghrelin in stress-induced food reward behaviors. These complex and diverse functionalities of the ghrelinergic system are not yet fully elucidated and likely involve crosstalk with additional signaling systems. Interestingly, accumulating data over the last few years has shown the GHS-R1a receptor to dimerize with several additional G-protein coupled receptors (GPCRs) involved in appetite signaling and reward, including the GHS-R1b receptor, the melanocortin 3 receptor (MC3), dopamine receptors (D1 and D2), and more recently, the serotonin 2C receptor (5-HT2C). GHS-R1a dimerization was shown to affect downstream signaling and receptor trafficking suggesting a potential novel mechanism for fine-tuning GHS-R1a receptor mediated activity. This review summarizes ghrelin's role in food reward and stress and outlines the GHS-R1a dimer pairs identified to date. In addition, the downstream signaling and potential functional consequences of dimerization of the GHS-R1a receptor in appetite and stress-induced food reward behavior are discussed. The existence of multiple GHS-R1a heterodimers has important consequences for future pharmacotherapies as it significantly increases the pharmacological diversity of the GHS-R1a receptor and has the potential to enhance specificity of novel ghrelin-targeted drugs.

  4. Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward

    PubMed Central

    Schellekens, Harriët; Dinan, Timothy G.; Cryan, John F.

    2013-01-01

    The gut hormone, ghrelin, is the only known peripherally derived orexigenic signal. It activates its centrally expressed receptor, the growth hormone secretagogue receptor (GHS-R1a), to stimulate food intake. The ghrelin signaling system has recently been suggested to play a key role at the interface of homeostatic control of appetite and the hedonic aspects of food intake, as a critical role for ghrelin in dopaminergic mesolimbic circuits involved in reward signaling has emerged. Moreover, enhanced plasma ghrelin levels are associated with conditions of physiological stress, which may underline the drive to eat calorie-dense “comfort-foods” and signifies a role for ghrelin in stress-induced food reward behaviors. These complex and diverse functionalities of the ghrelinergic system are not yet fully elucidated and likely involve crosstalk with additional signaling systems. Interestingly, accumulating data over the last few years has shown the GHS-R1a receptor to dimerize with several additional G-protein coupled receptors (GPCRs) involved in appetite signaling and reward, including the GHS-R1b receptor, the melanocortin 3 receptor (MC3), dopamine receptors (D1 and D2), and more recently, the serotonin 2C receptor (5-HT2C). GHS-R1a dimerization was shown to affect downstream signaling and receptor trafficking suggesting a potential novel mechanism for fine-tuning GHS-R1a receptor mediated activity. This review summarizes ghrelin's role in food reward and stress and outlines the GHS-R1a dimer pairs identified to date. In addition, the downstream signaling and potential functional consequences of dimerization of the GHS-R1a receptor in appetite and stress-induced food reward behavior are discussed. The existence of multiple GHS-R1a heterodimers has important consequences for future pharmacotherapies as it significantly increases the pharmacological diversity of the GHS-R1a receptor and has the potential to enhance specificity of novel ghrelin-targeted drugs. PMID

  5. Ghrelin fibers from lateral hypothalamus project to nucleus tractus solitaries and are involved in gastric motility regulation in cisplatin-treated rats.

    PubMed

    Gong, Yanling; Liu, Yang; Liu, Fei; Wang, Shasha; Jin, Hong; Guo, Feifei; Xu, Luo

    2017-03-15

    Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart.

    PubMed

    Mitacchione, Gianfranco; Powers, Jeffrey C; Grifoni, Gino; Woitek, Felix; Lam, Amy; Ly, Lien; Settanni, Fabio; Makarewich, Catherine A; McCormick, Ryan; Trovato, Letizia; Houser, Steven R; Granata, Riccarda; Recchia, Fabio A

    2014-07-01

    The gut-derived hormone ghrelin, especially its acylated form, plays a major role in the regulation of systemic metabolism and exerts also relevant cardioprotective effects; hence, it has been proposed for the treatment of heart failure (HF). We tested the hypothesis that ghrelin can directly modulate cardiac energy substrate metabolism. We used chronically instrumented dogs, 8 with pacing-induced HF and 6 normal controls. Human des-acyl ghrelin [1.2 nmol/kg per hour] was infused intravenously for 15 minutes, followed by washout (rebaseline) and infusion of acyl ghrelin at the same dose. (3)H-oleate and (14)C-glucose were coinfused and arterial and coronary sinus blood sampled to measure cardiac free fatty acid and glucose oxidation and lactate uptake. As expected, cardiac substrate metabolism was profoundly altered in HF because baseline oxidation levels of free fatty acids and glucose were, respectively, >70% lower and >160% higher compared with control. Neither des-acyl ghrelin nor acyl ghrelin significantly affected function and metabolism in normal hearts. However, in HF, des-acyl and acyl ghrelin enhanced myocardial oxygen consumption by 10.2±3.5% and 9.9±3.7%, respectively (P<0.05), and cardiac mechanical efficiency was not significantly altered. This was associated, respectively, with a 41.3±6.7% and 32.5±10.9% increase in free fatty acid oxidation and a 31.3±9.2% and 41.4±8.9% decrease in glucose oxidation (all P<0.05). Acute increases in des-acyl or acyl ghrelin do not interfere with cardiac metabolism in normal dogs, whereas they enhance free fatty acid oxidation and reduce glucose oxidation in HF dogs, thus partially correcting metabolic alterations in HF. This novel mechanism might contribute to the cardioprotective effects of ghrelin in HF. © 2014 American Heart Association, Inc.

  7. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats.

    PubMed

    Borner, Tito; Loi, Laura; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2016-07-01

    The gastric hormone ghrelin positively affects energy balance by increasing food intake and reducing energy expenditure. Ghrelin mimetics are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to characterize the action of the nonpeptidergic ghrelin receptor agonist HM01 on neuronal function, energy homeostasis and muscle mass in healthy rats and to evaluate its possible usefulness for the treatment of CACS in a rat tumor model. Using extracellular single-unit recordings, we tested whether HM01 mimics the effects of ghrelin on neuronal activity in the arcuate nucleus (Arc). Furthermore, we assessed the effect of chronic HM01 treatment on food intake (FI), body weight (BW), lean and fat volumes, and muscle mass in healthy rats. Using a hepatoma model, we investigated the possible beneficial effects of HM01 on tumor-induced anorexia, BW loss, muscle wasting, and metabolic rate. HM01 (10(-7)-10(-6) M) mimicked the effect of ghrelin (10(-8) M) by increasing the firing rate in 76% of Arc neurons. HM01 delivered chronically for 12 days via osmotic minipumps (50 μg/h) increased FI in healthy rats by 24%, paralleled by increased BW, higher fat and lean volumes, and higher muscle mass. Tumor-bearing rats treated with HM01 had 30% higher FI than tumor-bearing controls and were protected against BW loss. HM01 treatment resulted in higher muscle mass and fat mass. Moreover, tumor-bearing rats reduced their metabolic rate following HM01 treatment. Our studies substantiate the possible therapeutic usefulness of ghrelin receptor agonists like HM01 for the treatment of CACS and possibly other forms of disease-related anorexia and cachexia. Copyright © 2016 the American Physiological Society.

  8. Fos metamorphoses: Lessons from mutants in model organisms (Drosophila).

    PubMed

    Alfonso-Gonzalez, Carlos; Riesgo-Escovar, Juan Rafael

    2018-05-10

    The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell

  9. Ablation of ghrelin O-acyltransferase does not improve glucose intolerance or body adiposity in mice on a leptin-deficient ob/ob background.

    PubMed

    Kirchner, Henriette; Heppner, Kristy M; Holland, Jenna; Kabra, Dhiraj; Tschöp, Matthias H; Pfluger, Paul T

    2013-01-01

    Type 2 Diabetes is a global health burden and based on current estimates will become an even larger problem in the future. Developing new strategies to prevent and treat diabetes is a scientific challenge of high priority. The stomach hormone ghrelin has been associated with playing a role in the regulation of glucose homeostasis. However, its precise mechanism and impact on whole glucose metabolism remains to be elucidated. This study aims to clarify the role of the two ghrelin isoforms acyl- and desacyl ghrelin in regulating glucose homeostasis. Therefore ghrelin activating enzyme Ghrelin-O-acyltransferase (GOAT) was ablated in leptin-deficient ob/ob mice to study whether specific acyl ghrelin deficiency or desacyl ghrelin abundance modifies glucose tolerance on a massively obese background. As targeted deletion of acyl ghrelin does not improve glucose homeostasis in our GOAT-ob/ob mouse model we conclude that neither acyl ghrelin nor the increased ratio of desacyl/acyl ghrelin is crucial for controlling glucose homeostasis in the here presented model of massive obesity induced by leptin deficiency.

  10. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  11. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  12. Ghrelin Attenuates Retinal Neuronal Autophagy and Apoptosis in an Experimental Rat Glaucoma Model.

    PubMed

    Zhu, Ke; Zhang, Meng-Lu; Liu, Shu-Ting; Li, Xue-Yan; Zhong, Shu-Min; Li, Fang; Xu, Ge-Zhi; Wang, Zhongfeng; Miao, Yanying

    2017-12-01

    Ghrelin, a natural ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a), may protect retinal neurons against glaucomatous injury. We therefore characterized the underlying mechanism of the ghrelin/GHSR-1a-mediated neuroprotection with a rat chronic intraocular hypertension (COH) model. The rat COH model was produced by blocking episcleral veins. A combination of immunohistochemistry, Western blot, TUNEL assay, and retrograde labeling of retinal ganglion cells (RGCs) was used. Elevation of intraocular pressure induced a significant increase in ghrelin and GHSR-1a expression in retinal cells, including RGCs and Müller cells. Western blot confirmed that the protein levels of ghrelin exhibited a transient upregulation at week 2 after surgery (G2w), while the GHSR-1a protein levels were maintained at high levels from G2w to G4w. In COH retinas, the ratio of LC3-II/LC-I and beclin1, two autophagy-related proteins, were increased from G1w to G4w, and the cleavage product of caspase3, an apoptotic executioner, was detected from G2w to G4w. Intraperitoneal injection of ghrelin significantly increased the number of surviving RGCs; inhibited the changes of LC3-II/LC-I, beclin1, and the cleavage products of caspase3; and reduced the number of TUNEL-positive cells in COH retinas. Ghrelin treatment also reversed the decreased levels of p-Akt and p-mTOR, upregulated GHSR-1a protein levels, and attenuated glial fibrillary acidic protein levels in COH retinas. All these results suggest that ghrelin may provide neuroprotective effect in COH retinas through activating ghrelin/GHSR-1a system, which was mediated by inhibiting retinal autophagy, ganglion cell apoptosis, and Müller cell gliosis.

  13. Plasma Ghrelin Levels and Weight Regain After Roux-en-Y Gastric Bypass Surgery.

    PubMed

    Abu Dayyeh, Barham K; Jirapinyo, Pichamol; Thompson, Christopher C

    2017-04-01

    Ghrelin is a gut hormone that induces hunger, gastric acid secretion, and gastrointestinal motility. A number of studies have previously demonstrated a possible correlation between a decrease in ghrelin level and weight loss after Roux-en-Y gastric bypass (RYGB). This study aimed to assess if there was a relationship between ghrelin level and weight regain after RYGB nadir weight had been achieved. Sixty-three consecutive RYGB patients who were referred for an upper endoscopy were enrolled. Weight and responses to the 21-item Three-Factor Eating Questionnaire (TFEQ-R21) were collected. Ghrelin levels were measured. Upper endoscopy was performed to evaluate pouch length and stoma diameter. Multivariate linear regression was performed to assess an association between ghrelin level, TFEQ-R21 score, pouch length, stoma diameter, and percentage of weight regained. Subjects were 47 ± 10 years old and had a BMI of 38 ± 7.7 kg/m 2 . Out of 63 patients, 76 % had weight regain (gaining of ≥20 % of maximal weight lost after the RYGB) and 24 % did not. Average pouch length was 44 ± 13 mm, stoma diameter 20 ± 6.6 mm, and ghrelin levels 125 ± 99 ng/ml. Ghrelin level was not associated with weight regain (β = 0.17, p = 0.2). GJ stoma diameter was associated with weight regain (β = 0.39, p < 0.01) and the uncontrolled eating domain of the TFEQ-R21 (β = 0.45, p < 0.01). Ghrelin levels do not appear to correlate with weight change after RYGB nadir weight has been achieved. A dilated GJ stoma diameter is a risk factor for weight regain and uncontrolled eating behavior after RYGB.

  14. The Sweetener-Sensing Mechanisms of the Ghrelin Cell

    PubMed Central

    Steensels, Sandra; Vancleef, Laurien; Depoortere, Inge

    2016-01-01

    Carbohydrate administration decreases plasma levels of the ‘hunger hormone’ ghrelin. The ghrelin cell is co-localized with the sweet taste receptor subunit, TAS1R3, and the gustatory G-protein, gustducin, both involved in the sensing of sweeteners by entero-endocrine cells. This study investigated the role of gustducin-mediated sweet taste receptor signaling on ghrelin secretion in a gastric ghrelinoma cell line, tissue segments and mice. The monosaccharide d-glucose and low-intensity sweetener oligofructose (OFS) decreased (p < 0.001) ghrelin secretion while the high-intensity sweetener sucralose increased (p < 0.001) ghrelin secretion in vitro. These effects were not mediated via the sweet taste receptor or glucose transporters (the sodium-dependent glucose cotransporter SGLT-1 and GLUT2). The effect of these compounds was mimicked ex vivo in gastric and jejunal segments from both wild type (WT) and α-gustducin knockout (α-gust−/−) mice. In vivo, the sensing of d-glucose was polarized since intragastric but not intravenous administration of d-glucose decreased (p < 0.05) ghrelin levels in an α-gustducin independent manner which involved inhibition of duodenal ghrelin release. In contrast, neither OFS nor sucralose affected ghrelin secretion in vivo. In conclusion, α-gustducin-mediated sweet taste receptor signaling does not play a functional role in the sensing of carbohydrates, or low- or high-intensity sweeteners by the ghrelin cell. PMID:27941594

  15. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients

    PubMed Central

    Huang, Rong; Han, Jing; Tian, Sai; Cai, Rongrong; Sun, Jie; Shen, Yanjue; Wang, Shaohua

    2017-01-01

    Background and aims People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. Results In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghrelin levels compared with their healthy-cognition subjects (all p < 0.05). Further logistic regression analysis showed that ghrelin level was one of independent factors for MCI in T2DM patients (p < 0.05). Moreover, partial correlation analysis demonstrated that ghrelin levels were positively associated with the scores of Montreal Cognitive Assessment (r = 0.196, p = 0.041) and Auditory Verbal Learning Test-delayed recall (r = 0.197, p = 0.040) after adjustment for HbA1c, FBG and HOMA-IR, wherein the latter represented episodic memory functions. No significant differences were found for the distributions of genotype and allele of ghrelin rs4684677 polymorphism between MCI and control group. Materials and methods A total of 218 T2DM patients, with 112 patients who satisfied the MCI diagnostic criteria and 106 who exhibited healthy cognition, were enrolled in this study. Demographic characteristics, clinical variables and cognitive performances were extensively assessed. Plasma ghrelin levels and ghrelin rs4684677 polymorphism were also determined. Conclusions Our results suggest that decreased ghrelin levels are associated with MCI, especially with episodic memory dysfunction in T2DM populations. PMID:28146431

  16. Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning.

    PubMed

    de Hoz, Livia; Gierej, Dorota; Lioudyno, Victoria; Jaworski, Jacek; Blazejczyk, Magda; Cruces-Solís, Hugo; Beroun, Anna; Lebitko, Tomasz; Nikolaev, Tomasz; Knapska, Ewelina; Nelken, Israel; Kaczmarek, Leszek

    2018-05-01

    The behavioral changes that comprise operant learning are associated with plasticity in early sensory cortices as well as with modulation of gene expression, but the connection between the behavioral, electrophysiological, and molecular changes is only partially understood. We specifically manipulated c-Fos expression, a hallmark of learning-induced synaptic plasticity, in auditory cortex of adult mice using a novel approach based on RNA interference. Locally blocking c-Fos expression caused a specific behavioral deficit in a sound discrimination task, in parallel with decreased cortical experience-dependent plasticity, without affecting baseline excitability or basic auditory processing. Thus, c-Fos-dependent experience-dependent cortical plasticity is necessary for frequency discrimination in an operant behavioral task. Our results connect behavioral, molecular and physiological changes and demonstrate a role of c-Fos in experience-dependent plasticity and learning.

  17. Plasma butyrylcholinesterase regulates ghrelin to control aggression

    PubMed Central

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Parks, Robin J.; Pang, Yuan-Ping; Brimijoin, Stephen

    2015-01-01

    Ongoing mouse studies of a proposed therapy for cocaine abuse based on viral gene transfer of butyrylcholinesterase (BChE) mutated for accelerated cocaine hydrolysis have yielded surprising effects on aggression. Further investigation has linked these effects to a reduction in circulating ghrelin, driven by BChE at levels ∼100-fold above normal. Tests with human BChE showed ready ghrelin hydrolysis at physiologic concentrations, and multiple low-mass molecular dynamics simulations revealed that ghrelin’s first five residues fit sterically and electrostatically into BChE’s active site. Consistent with in vitro results, male BALB/c mice with high plasma BChE after gene transfer exhibited sharply reduced plasma ghrelin. Unexpectedly, such animals fought less, both spontaneously and in a resident/intruder provocation model. One mutant BChE was found to be deficient in ghrelin hydrolysis. BALB/c mice transduced with this variant retained normal plasma ghrelin levels and did not differ from untreated controls in the aggression model. In contrast, C57BL/6 mice with BChE gene deletion exhibited increased ghrelin and fought more readily than wild-type animals. Collectively, these findings indicate that BChE-catalyzed ghrelin hydrolysis influences mouse aggression and social stress, with potential implications for humans. PMID:25646463

  18. The role of GABAergic system on the inhibitory effect of ghrelin on food intake in neonatal chicks.

    PubMed

    Jonaidi, H; Abbassi, L; Yaghoobi, M M; Kaiya, H; Denbow, D M; Kamali, Y; Shojaei, B

    2012-06-27

    Ghrelin is a gut-brain peptide that has a stimulatory effect on food intake in mammals. In contrast, this peptide decreases food intake in neonatal chicks when injected intracerebroventricularly (ICV). In mammals, neuropeptide Y (NPY) mediates the orexigenic effect of ghrelin whereas in chicks it appears that corticotrophin releasing factor (CRF) is partially involved in the inhibitory effect of ghrelin on food intake. Gamma aminobutyric acid (GABA) has a stimulatory effect on food intake in mammals and birds. In this study we investigated whether the anorectic effect of ghrelin is mediated by the GABAergic system. In Experiment 1, 3h-fasted chicks were given an ICV injection of chicken ghrelin and picrotoxin, a GABA(A) receptors antagonist. Picrotoxin decreased food intake compared to the control chicks indicating a stimulatory effect of GABA(A) receptors on food intake. However, picrotoxin did not alter the inhibitory effect of ghrelin on food intake. In Experiment 2, THIP hydrochloride, a GABA(A) receptor agonist, was used in place of picrotoxin. THIP hydrochloride appeared to partially attenuate the decrease in food intake induced by ghrelin at 30 min postinjection. In Experiment 3, the effect of ICV injection of chicken ghrelin on gene expression of glutamate decarboxylase (GAD)(1) and GAD(2), GABA synthesis enzymes in the brain stem including hypothalamus, was investigated. The ICV injection of chicken ghrelin significantly reduced GAD(2) gene expression. These findings suggest that ghrelin may decrease food intake in neonatal chicks by reducing GABA synthesis and thereby GABA release within brain feeding centers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Olfactory memory and maternal behaviour-induced changes in c-fos and zif/268 mRNA expression in the sheep brain.

    PubMed

    Da Costa, A P; Broad, K D; Kendrick, K M

    1997-06-01

    In sheep maternal behaviour and the formation of the selective olfactory, ewe/lamb bond are induced by feedback to the brain from stimulation of the vagina and cervix during parturition. In the present study, we have used in situ hybridization histochemistry to quantify changes in cellular expression of two immediately-early genes, c-fos and zif/268, in order to identify activated brain regions during the induction of maternal behaviour and olfactory bonding as well as regions where plastic changes are occurring during with the formation of the olfactory memory associated with bonding. Three different treatment groups were used. One group gave birth normally, became maternal and were allowed to interact with their lambs for 30 min. A second group received exogenous treatment with oestradiol and progesterone to induce lactation and then received a 5-min period of artificial stimulation of the vagina and cervix (VCS) which reliably induces maternal behaviour but could not interact with lambs. A final control group received exogenous hormone treatment but no VCS or interaction with lambs. Compared to the control group, post-partum animals and animals that had received VCS showed increased c-fos expression in a number of cortical regions (cingulate, entorhinal and somatosensory), the mediodorsal thalamic nucleus and the lateral habenula, the limbic system (bed nucleus of the stria terminalis, lateral septum, medial arnygdala, dentate gyrus and the CA3 region of the hippocampus) and the hypothalamus (medial preoptic area, mediobasal hypothalamus, paraventricular nucleus, supraoptic nucleus and periventricular complex). The group that gave birth and had contact with their lambs for 30 min had significantly enhanced c-fos mRNA expression in the cingulate cortex compared to those receiving VCS and additionally showed significantly increased c-fos mRNA expression in olfactory processing regions (olfactory bulb, piriform cortex and orbitofrontal cortex). Expression of zif

  20. Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity.

    PubMed

    Úbeda-Contreras, Jesús; Marín-Blasco, Ignacio; Nadal, Roser; Armario, Antonio

    2018-06-01

    Regardless of its particular nature, emotional stressors appear to elicit a widespread and roughly similar brain activation pattern as evaluated by c-fos expression. However, their behavioral and physiological consequences may strongly differ. Here we addressed in adult male rats the contribution of the intensity and the particular nature of stressors by comparing, in a set of brain areas, the number of c-fos expressing neurons in response to open-field, cat odor or immobilization on boards (IMO). These are qualitatively different stressors that are known to differ in terms of intensity, as evaluated by biological markers. In the present study, plasma levels of the adrenocorticotropic hormone (ACTH) demonstrated that intensity increases in the following order: open-field, cat odor and IMO. Four different c-fos activation patterns emerged among all areas studied: (i) positive relationship with intensity (posterior-dorsal medial amygdala, dorsomedial hypothalamus, lateral septum ventral and paraventricular nucleus of the hypothalamus), (ii) negative relationship with intensity (cingulate cortex 1, posterior insular cortex, dorsal striatum, nucleus accumbens and some subdivisions of the hippocampal formation); (iii) activation not dependent on the intensity of the stressor (prelimbic and infralimbic cortex and lateral and basolateral amygdala); and (iv) activation specifically associated with cat odor (ventromedial amygdala and ventromedial hypothalamus). Histone 3 phosphorylation at serine 10, another neuronal activation marker, corroborated c-fos results. Summarizing, deepest analysis of the brain activation pattern elicit by emotional stressor indicated that, in spite of activating similar areas, each stressor possess their own brain activation signature, mediated mainly by qualitative aspects but also by intensity.

  1. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating themore » cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.« less

  2. Age-dependent decline in acyl-ghrelin concentrations and reduced association of acyl-ghrelin and growth hormone in healthy older adults.

    PubMed

    Nass, Ralf; Farhy, Leon S; Liu, Jianhua; Pezzoli, Suzan S; Johnson, Michael L; Gaylinn, Bruce D; Thorner, Michael O

    2014-02-01

    Acyl-ghrelin is thought to have both orexigenic effects and to stimulate GH release. A possible cause of the anorexia of aging is an age-dependent decrease in circulating acyl-ghrelin levels. The purpose of the study was to compare acyl-ghrelin and GH concentrations between healthy old and young adults and to examine the relationship of acyl-ghrelin and GH secretion in both age groups. Six healthy older adults (age 62-74 y, body mass index range 20.9-29 kg/m(2)) and eight healthy young men (aged 18-28 y, body mass index range 20.6-26.2 kg/m(2)) had frequent blood samples drawn for hormone measurements every 10 minutes for 24 hours. Ghrelin was measured in an in-house, two-site sandwich ELISA specific for full-length acyl-ghrelin. GH was measured in a sensitive assay (Immulite 2000), and GH peaks were determined by deconvolution analysis. The acyl-ghrelin/GH association was estimated from correlations between amplitudes of individual GH secretory events and the average acyl-ghrelin concentration in the 60-minute interval preceding each GH burst. Twenty-four-hour mean (±SEM) GH (0.48 ± 0.14 vs 2.2 ± 0.3 μg/L, P < .005) and acyl-ghrelin (14.7 ± 2.3 vs 27.8 ± 3.9 pg/mL, P < .05) levels were significantly lower in older adults compared with young adults. Twenty-four-hour cortisol concentrations were higher in the old than the young adults (15.1 ± 1.0 vs 10.6 ± 0.9 μg/dL, respectively, P < .01). The ghrelin/GH association was more than 3-fold lower in the older group compared with the young adults (0.16 ± 0.12 vs 0.69 ± 0.04, P < .001). These results provide further evidence of an age-dependent decline in circulating acyl-ghrelin levels, which might play a role both in the decline of GH and in the anorexia of aging. Our data also suggest that with normal aging, endogenous acyl-ghrelin levels are less tightly linked to GH regulation.

  3. The acute salivary ghrelin response to a psychosocial stress is enhanced in symptomatic patients with bulimia nervosa: a pilot study.

    PubMed

    Monteleone, Palmiero; Tortorella, Alfonso; Scognamiglio, Pasquale; Serino, Ismene; Monteleone, Alessio Maria; Maj, Mario

    2012-01-01

    Stress is a precipitating factor for both binge eating and bulimia nervosa (BN); however, the biological mechanisms through which it may trigger binge eating are poorly understood. There is evidence that the adrenal hormone cortisol and the gastric peptide ghrelin might be involved in stress-induced food ingestion. We hypothesized that symptomatic patients with BN might disclose deranged responses of ghrelin and/or cortisol to stressors and that this could be related to their binge-eating behaviour. Here we investigated salivary cortisol and ghrelin responses to the Trier Social Stress Test (TSST) in 10 women with acute BN and 10 age-matched healthy females. Eating-related psychopathology and behaviours were assessed by self-report measures. No significant differences emerged between bulimic patients and healthy controls in the pre-stress salivary levels of both cortisol and ghrelin. The BN patients displayed normal cortisol but enhanced ghrelin responses to TSST. No significant correlations emerged between stress-induced salivary hormone changes and self-report measures of binge eating. To our knowledge, this is the first study showing deranged salivary ghrelin reactivity to a psychosocial stressor in symptomatic patients with BN. The extent to which this could contribute to the binge-eating behaviour of BN subjects awaits clarification. Copyright © 2012 S. Karger AG, Basel.

  4. Ghrelin and its promoter variant associated with cardiac hypertrophy.

    PubMed

    Ukkola, O; Pääkkö, T; Kesäniemi, Y A

    2012-07-01

    The roles of ghrelin, a peptide hormone that has a role in regulating food intake and energy homeostasis, in the cardiovascular system have not yet been unambiguously established. We evaluated the association between plasma ghrelin concentrations and -501A>C single-nucleotide polymorphism (SNP) in the ghrelin gene 5' flanking area and echocardiographic measurements in 1037 middle-aged subjects. Left ventricular mass index (LVMI) was calculated according to Devereux's method. The ambulatory blood pressure (BP) was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Results suggested that plasma ghrelin was not related to mean ambulatory BP values. However, the highest plasma ghrelin tertile was associated with increased intraventricular septum (P=0.043) and posterior ventricular wall (P=0.002) thicknesses as well as left ventricular mass (P=0.05). After adjustment for age, sex, body mass index and systolic BP, the association persisted between ghrelin tertiles and intraventricular septum (P=0.05) and posterior ventricular wall (P=0.001) thicknesses. The SNP -501A>C polymorphism was associated with LVMI after adjustments for age, sex and systolic BP. In conclusion, ghrelin and its promoter variant are associated with cardiac hypertrophy indexes independent of BP. Positive correlation between ghrelin levels and increased wall thickness parameters may reflect compensatory up-regulation of ghrelin concentrations or direct effects of ghrelin on myocardium. The effects of the SNP seem not to be mediated through its effects on ghrelin plasma levels.

  5. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    PubMed

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  6. c-fos is induced in the hippocampus during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2004-01-01

    c-fos was used to mark regions of enhanced neuronal activity during sexual imprinting, an early learning process by which information about the prospective sexual partner is acquired and consolidated. In the present study, we demonstrate that the hippocampus, already known for its specialized spatial memory capacities in navigating pigeons and in food-storing birds, depicts a selective differential c-fos induction in a situation shown to lead to sexual imprinting, that is, exposing previously isolated male birds to a female for 1 h. c-fos induction is lateralized, the left hippocampus showing more c-fos activity than the right. Our results would indicate a role for the hippocampus in the consolidation process of imprinting, probably in the transfer of information to the other telencephalic areas that show alterations in synaptic connectivity as a result of consolidation of sexual imprinting.

  7. Biological, physiological, and pharmacological aspects of ghrelin.

    PubMed

    Hosoda, Hiroshi; Kojima, Masayasu; Kangawa, Kenji

    2006-01-01

    Ghrelin, identified as an endogenous ligand for the growth hormone secretagogue receptor, functions as a somatotrophic and orexigenic signal from the stomach. Ghrelin has a unique post-translational modification: the hydroxyl group of the third amino acid, usually a serine but in some species a threonine, is esterified by octanoic acid and is essential for ghrelin's biological activities. The secretion of ghrelin increases under conditions of negative energy-balance, such as starvation, cachexia, and anorexia nervosa, whereas its expression decreases under conditions of positive energy-balance such as feeding, hyperglycemia, and obesity. In addition to having a powerful effect on the secretion of growth hormone, ghrelin stimulates food intake and transduces signals to hypothalamic regulatory nuclei that control energy homeostasis. Thus, it is interesting to note that the stomach may play an important role in not only digestion but also pituitary growth hormone release and central feeding regulation. We summarized recent findings on the integration of ghrelin into neuroendocrine networks that regulate food intake, energy balance, gastrointestinal function and growth.

  8. Ghrelin in the CNS: From hunger to a rewarding and memorable meal?

    PubMed Central

    Olszewski, Pawel K.; Schiöth, Helgi B.; Levine, Allen S.

    2008-01-01

    Ghrelin, the endogenous agonist of the growth hormone secretagogue receptor, has been shown to induce robust feeding responses in numerous experimental models. Although ghrelin comes from both peripheral and central sources, its hyperphagic properties, to a large extent, arise from activity at the brain level. The current review focuses on describing central mechanisms through which this peptide affects consumption. We address the issue of whether ghrelin serves just as a signal of energy needs of the organism or – as suggested by the most recent findings -also affects food intake via other feeding-related mechanisms, including reward and memory. Complexity of ghrelin’s role in the regulation of ingestive behavior is discussed by characterizing its influence on consumption, reward and memory as well as by defining its function within the brain circuitry and interplay with other neuropeptides. PMID:18308399

  9. Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat.

    PubMed

    Bossenmeyer-Pourié, Carine; Blaise, Sébastien; Pourié, Grégory; Tomasetto, Catherine; Audonnet, Sandra; Ortiou, Sandrine; Koziel, Violette; Rio, Marie-Christine; Daval, Jean-Luc; Guéant, Jean-Louis; Beck, Bernard

    2010-01-01

    Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid-Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (-28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth.

  10. Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen

    2017-10-10

    The worldwide prevalence of obesity is increasing at an alarming rate but treatment options remain limited. Despite initial success, weight loss by calorie restriction (CR) often fails because of rebound weight gain. Postdieting hyperphagia along with altered hypothalamic neuro-architecture appears to be one direct cause of this undesirable outcome. In response to calorie deficiency the circulating levels of the appetite-promoting hormone, acyl-ghrelin, rise sharply. We hypothesize that proper modulation of acyl-ghrelin and its receptor's sensitivity will favorably impact energy intake and reprogram the body weight set point. Here we applied viral gene transfer of the acyl-ghrelin hydrolyzing enzyme, butyrylcholinesterase (BChE), in a mouse model of diet-induced obesity. Our results confirmed that BChE overexpression decreased circulating acyl-ghrelin levels, suppressed CR-provoked ghrelin signaling, and restored central ghrelin sensitivity. In addition to maintaining healthy body weights, BChE treated mice had modest postdieting food intake and showed normal glucose homeostasis. Spontaneous activity and energy expenditure did not differ significantly between treated and untreated mice after body weight rebound, suggesting that BChE gene transfer did not alter energy expenditure in the long term. These findings indicate that combining BChE treatment with CR could be an effective approach in treating human obesity and aiding lifelong weight management.

  11. Ghrelin and Obesity: Identifying Gaps and Dispelling Myths. A Reappraisal.

    PubMed

    Makris, Marinos C; Alexandrou, Andreas; Papatsoutsos, Efstathios G; Malietzis, George; Tsilimigras, Diamantis I; Guerron, Alfredo D; Moris, Demetrios

    2017-01-01

    The etiology of obesity is complex. Environmental and genetic causes have been implicated in the development of this disease. Ghrelin is a hormone known to stimulate appetite. There are numerous possible actions through which ghrelin exerts its effect in the body: a) Overproduction of ghrelin, b) reduced ghrelin following meals, and c) increased receptor sensitivity to ghrelin action. Sleeve gastrectomy, a bariatric procedure, leads to reduction of ghrelin levels and subsequently to weight loss. However, there are many limitations to measurement of the fasting plasma level of the active form of ghrelin. The establishment of the exact correlation between ghrelin, appetite and obesity could be vital for the fight against obesity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    PubMed Central

    2013-01-01

    Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT

  13. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin.

    PubMed

    Seim, Inge; Jeffery, Penny L; de Amorim, Laura; Walpole, Carina M; Fung, Jenny; Whiteside, Eliza J; Lourie, Rohan; Herington, Adrian C; Chopin, Lisa K

    2013-07-23

    Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell

  14. The Role of ΔFosB in the Medial Preoptic Area: Differential Effects of Mating and Cocaine History

    PubMed Central

    McHenry, Jenna A.; Robison, Christopher L.; Bell, Genevieve A.; Bolaños-Guzmán, Carlos A.; Vialou, Vincent V.; Nestler, Eric J.; Hull, Elaine M.

    2016-01-01

    The transcription factor deltaFosB (ΔFosB) is induced in the nucleus accumbens (NAc) by repeated exposure to drugs of abuse and natural rewards. Less is known about its role in other brain areas. Here, we compared the effects of mating versus cocaine history on induction of ΔFosB in the medial preoptic area (MPOA), an integral site for reproductive behavior, and in the NAc. ΔFosB immunoreactivity (ir) was increased in the MPOA of previously naïve and experienced male rats that mated the day before euthanasia, compared to unmated controls and experienced males with recent mating abstinence. Western immunoblots confirmed that the 35–37-kDa isoform of ΔFosB was increased more in recently mated males. Conversely, previous plus recent cocaine did not increase ΔFosB-ir in the MPOA, despite an increase in the NAc. Next, a viral vector expressing ΔFosB, its dominant negative antagonist ΔJunD, or green fluorescent protein (GFP) control, were microinjected bilaterally into the MPOA. ΔFosB overexpression impaired copulation and promoted female-directed aggression, compared to ΔJunD and control males. These data suggest that ΔFosB in the mPOA is expressed in an experience-dependent manner and affects systems that coordinate mating and aggression. PMID:27657309

  15. Role of Trpv1 and Trpv4 in surgical incision-induced tissue swelling and Fos-like immunoreactivity in the central nervous system of mice.

    PubMed

    Motojima, Yasuhito; Nishimura, Haruki; Ueno, Hiromichi; Sonoda, Satomi; Nishimura, Kazuaki; Tanaka, Kentaro; Saito, Reiko; Yoshimura, Mitsuhiro; Maruyama, Takashi; Matsuura, Takanori; Suzuki, Hitoshi; Kawasaki, Makoto; Ohnishi, Hideo; Sakai, Akinori; Ueta, Yoichi

    2018-06-21

    Pain management remains a major concern regarding the treatment of postoperative patients. Transient receptor potential (TRP) channels are considered to be new therapeutic targets for pain control. We investigated whether the genes Trpv1 and Trpv4 are involved in hind paw swelling caused after surgical incision in mice or in incision-induced Fos-like immunoreactivity (Fos-LI) levels in the central nervous system. Mice were divided into four groups: wild-type (WT) control, WT incision, Trpv1 knockout (Trpv1 -/- ) incision, and Trpv4 knockout (Trpv4 -/- ) incision. Mice were anesthetized, and only those in the incision, and not control, groups received a surgical incision to their right plantar hind paw. Changes in paw diameter and in Fos-LI levels in the dorsal horn of the spinal cord, paraventricular nucleus of the hypothalamus (PVN), paraventricular nucleus of the thalamus, and central amygdala were evaluated 2 h after the incision. There was no significant difference in the paw diameter among groups. In contrast, in laminae I-II of the dorsal horn of the spinal cord and PVN, Fos-LI was significantly higher in all incision groups than in the WT control group. A significant increase in Fos-positive cells was also observed in the dorsal horn laminae III-IV in Trpv1 -/- and Trpv4 -/- incision groups compared with the WT incision group. Our results indicate that surgical incision activates the PVN and that Trpv1 and Trpv4 might be involved in neuronal activity in the dorsal horn laminae III-IV after surgical incision. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Centrally Administered Ghrelin Acutely Influences Food Choice in Rodents

    PubMed Central

    Schéle, Erik; Bake, Tina; Rabasa, Cristina; Dickson, Suzanne L.

    2016-01-01

    We sought to determine whether the orexigenic hormone, ghrelin, is involved in the intrinsic regulation of food choice in rats. Ghrelin would seem suited to serve such a role given that it signals hunger information from the stomach to brain areas important for feeding control, including the hypothalamus and reward system (e.g. ventral tegmental area, VTA). Thus, in rats offered a choice of palatable foods (sucrose pellets and lard) superimposed on regular chow for 2 weeks, we explored whether acute central delivery of ghrelin (intracerebroventricular (ICV) or intra-VTA) is able to redirect their dietary choice. The major unexpected finding is that, in rats with high baseline lard intake, acute ICV ghrelin injection increased their chow intake over 3-fold, relative to vehicle-injected controls, measured at both 3 hr and 6 hr after injection. Similar effects were observed when ghrelin was delivered to the VTA, thereby identifying the VTA as a likely contributing neurobiological substrate for these effects. We also explored food choice after an overnight fast, when endogenous ghrelin levels are elevated, and found similar effects of dietary choice to those described for ghrelin. These effects of fasting on food choice were suppressed in models of suppressed ghrelin signaling (i.e. peripheral injection of a ghrelin receptor antagonist to rats and ghrelin receptor (GHSR) knock-out mice), implicating a role for endogenous ghrelin in the changes in food choice that occur after an overnight fast. Thus, in line with its role as a gut-brain hunger hormone, ghrelin appears to be able to acutely alter food choice, with notable effects to promote “healthy” chow intake, and identify the VTA as a likely contributing neurobiological substrate for these effects. PMID:26925974

  17. Ghrelin in eating disorders.

    PubMed

    Yi, Chun-Xia; Heppner, Kristy; Tschöp, Matthias H

    2011-06-20

    Ghrelin is the only known circulating hormone that acts on peripheral and central targets to increase food intake and promote adiposity. The present review focuses on the possible clinical relevance of ghrelin in the regulation of human feeding behavior in individuals with obesity and other eating disorders such as Prader-Willi syndrome, anorexia nervosa, bulimia nervosa and binge-eating. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA.

    PubMed

    Ons, Sheila; Martí, Octavi; Armario, Antonio

    2004-06-01

    Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.

  19. Ghrelin and obestatin plasma levels and ghrelin/obestatin prepropeptide gene polymorphisms in small for gestational age infants.

    PubMed

    Zhang, Shulian; Zhai, Guanpeng; Zhang, Jinping; Zhou, Jianguo; Chen, Chao

    2014-12-01

    To investigate plasma ghrelin and obestatin levels, and ghrelin/obestatin prepropeptide gene polymorphisms, in sequentially enrolled small for gestational age (SGA) infants. Neonates were sequentially enrolled into this study and were then subdivided into different groups, according to different study aims and availability of study materials. Consequently, plasma ghrelin and obestatin levels were measured in term SGA, term appropriate for gestational age (AGA), term large for gestational age (LGA), preterm SGA and preterm AGA neonates. Levels of both peptides were also measured in AGA infants of different gestational ages, and in term AGA neonates at different days following birth. Three ghrelin/obestatin prepropeptide gene single nucleotide polymorphisms (SNPs), Arg51Gln, Leu72Met, and Gln90Leu, were measured in neonates. The study involved a total cohort of 581 neonates. Out of 150 neonates (30 term AGA, 30 term SGA, 30 term LGA, 30 preterm AGA, and 30 preterm SGA), plasma obestatin levels were significantly higher in term SGA versus term LGA neonates (0.21 ± 0.02 ng/ml versus 0.17 ± 0.01 ng/ml, respectively). Out of a wider cohort, there were no significant differences in genotypes and allele frequencies of Arg51Gln, Leu72Met, and Gln90Leu SNPs between term SGA and AGA neonates, or between preterm SGA and AGA neonates. Ghrelin/obestatin prepropeptide polymorphisms were not found to be associated with SGA status in neonates; however, ghrelin and obestatin levels may be involved in growth and development. Further studies are required to understand the relationship between ghrelin, obestatin and prenatal development. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Sequencing analysis of ghrelin gene 5' flanking region: relations between the sequence variants, fasting plasma total ghrelin concentrations, and body mass index.

    PubMed

    Vartiainen, Johanna; Kesäniemi, Y Antero; Ukkola, Olavi

    2006-10-01

    Ghrelin is a 28-amino-acid peptide with several functions linked to energy metabolism. Low ghrelin plasma concentrations are associated with obesity, hypertension, and type 2 diabetes mellitus, whereas high concentrations reflect states of negative energy balance. Several studies addressing the hormonal and neural regulation of ghrelin gene expression have been carried out, but the role of genetic factors in the regulation of ghrelin plasma levels remains unclear. To elucidate the role of genetic factors in the regulation of ghrelin expression, we screened 1657 nucleotides of the ghrelin gene 5' flanking region (promoter and possible regulatory sites) for new sequential variations from patient samples with low (n = 50) and high (n = 50) fasting plasma total ghrelin concentrations (low- and high-ghrelin groups). Eleven single nucleotide polymorphisms (SNPs), 3 of which were rare variants (allelic frequency less than 1%) were found in our population. The genotype distribution patterns of the SNPs did not differ between the study groups, except for SNP-501A>C (P = .039). In addition, the SNP-01A>C was associated with body mass index (BMI) (P = .018). This variant was studied further in our large and well-defined Oulu Project Elucidating Risk for Atherosclerosis (OPERA) cohort (n = 1045) by the restriction fragment length polymorphism (RFLP) technique. No significant association of SNP-501A>C genotypes with fasting ghrelin plasma concentrations was found in the whole OPERA population. However, the association of this SNP with BMI and with waist circumference reached statistical significance in OPERA (P = .047 and .049, respectively), remaining of borderline significance for BMI after adjustments (P = .055). The results indicate that factors other than the 11 SNPs found in this study in the 5' flanking region of ghrelin gene are the main determinants of ghrelin plasma levels. However, SNP-501 A>C genotype distribution seems to be different in subjects having the highest

  1. Maternal serum ratio of ghrelin to obestatin decreased in preeclampsia.

    PubMed

    Wu, Weiguang; Fan, Xiaobin; Yu, Yuecheng; Wang, Yingchun

    2015-10-01

    Ghrelin, an endogenous for the growth hormone secretagogue receptor, has been shown to participate in blood pressure regulation. Obestatin, encoded by the same gene as ghrelin, is described as a physiological opponent of ghrelin. We hypothesized that ghrelin/obestatin imbalance played a role in the pathogenesis. This study was designed to determine the alterations of ghrelin and obestatin concentrations and ghrelin/obestatin ratio in maternal serum in preeclampsia. This retrospective case-control study included 31 preeclampsia and 31 gestational week-matched normal pregnancies. Ghrelin and obestatin concentrations in maternal serum were determined by radioimmunoassay, and the ghrelin/obestatin ratio was calculated. The ghrelin concentration and ghrelin/obestatin ratio in maternal serum were significantly lower in preeclampsia than in normal pregnancies (214.34±14.27pg/mL vs 251.49±16.15pg/mL, P=0.041, 1.07±0.09 vs 0.82±0.08, P=0.023). The obestatin concentration in maternal serum was significantly higher in preeclampsia than in normal pregnancies (276.35±15.38pg/mL vs 223.53±18.61pg/mL, P=0.019). The systolic blood pressure in preeclampsia was negatively correlated with ghrelin concentration and ghrelin/obestatin ratio (r=-0.549, P=0.003; r=-0.491, P=0.004) and was positively correlated with obestatin concentrations in preeclampsia (r=0.388, P=0.013). The findings of this study suggested disturbance of ghrelin and obestatin in maternal serum in preeclampsia, and ghrelin/obestatin imbalance might play a role in the pathogenesis of preeclampsia. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  2. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function.

    PubMed

    Zheng, Huiyuan; Patterson, Laurel M; Berthoud, Hans-Rudolf

    2005-05-02

    Orexin-expressing neurons in the hypothalamus project throughout the neuraxis and are involved in regulation of the sleep/wake cycle, food intake, and autonomic functions. Here we specifically analyze the anatomical organization of orexin projections to the dorsal vagal complex (DVC) and raphe pallidus and effects on ingestive behavior and autonomic functions of local orexin-A administration in nonanesthetized rats. Retrograde tracing experiments revealed that as many as 20% of hypothalamic orexin neurons project to the DVC, where they form straight varicose axon profiles, some of which are in close anatomical apposition with tyrosine hydroxylase (TH)-, glucagon-like peptide-1-, gamma-aminobutyric acid-, and nitric oxide synthase-immunoreactive neurons in a nonselective manner. Similar contacts were frequently observed with neurons of the nucleus of the solitary tract whose activation by gastrointestinal food stimuli was demonstrated by the expression of nuclear c-Fos immunoreactivity. Orexin-A administration to the fourth ventricle induced significant Fos-expression throughout the DVC compared with saline control injections, with about 20-25% of TH-ir neurons among the stimulated ones. Fourth ventricular orexin injections also significantly stimulated chow and water intake in nonfood-deprived rats. Direct bilateral injections of orexin into the DVC increased intake of palatable high-fat pellets. Orexin-ir fibers also innervated raphe pallidus. Fourth ventricular orexin-A (1 nmol) activated Fos expression in the raphe pallidus and C1/A1 catecholaminergic neurons in the ventral medulla and increased body temperature, heart rate, and locomotor activity. The results confirm that hypothalamomedullary orexin projections are involved in a variety of physiological functions, including ingestive behavior and sympathetic outflow. Copyright 2005 Wiley-Liss, Inc.

  3. Impact of ghrelin on vitreous cytokine levels in an experimental uveitis model

    PubMed Central

    Turgut, Burak; Gül, Fatih Cem; Dağli, Ferda; Ilhan, Nevin; Özgen, Metin

    2013-01-01

    Background The purpose of this study was to investigate the effect of intraperitoneal ghrelin on vitreous levels of interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) and to compare its effects with those of intraperitoneal infliximab in an experimental uveitis model. Methods Twenty-four male rats were assigned to four groups of six rats in each. All the rats, except for those in group 1 (controls), were injected intravitreally with concanavalin A to induce experimental uveitis. Rats in group 2 (sham) were not given any treatment after uveitis was induced. Rats in group 3 were given intraperitoneal infliximab 0.5 mg/100 mL on days 0, 1, 3, 5, and 7 following induction of uveitis on day 14 of the study. Rats in group 4 were given intraperitoneal ghrelin 10 ng/kg/day for 7 days following induction of uveitis. On day 21 of the study, enucleated globes were subjected to histopathologic examination. Vitreous levels of IL-1, IL-6, and TNF-α were measured by enzyme-linked immunosorbent assay. Results Vitreous levels of IL-1, IL-6, and TNF-α were significantly increased in the sham group relative to the control group (P < 0.05), but showed a significant decrease in the group treated with infliximab (P < 0.05). Cytokine levels also decreased in the ghrelin-treated group, but the decrease was not statistically significant (P > 0.05). Conclusion Ghrelin failed to decrease the IL-1, IL-6, and TNF-α levels that play a critical role in the pathogenesis of uveitis. PMID:23341733

  4. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a

    PubMed Central

    Casanueva, Felipe F.; Camiña, Jesus P.; Carreira, Marcos C.; Pazos, Yolanda; Varga, Jozsef L.; Schally, Andrew V.

    2008-01-01

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1–29)NH2 (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of 125I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1–42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control. PMID:19088192

  5. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    PubMed

    Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J

    2013-01-01

    Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential

  6. Relamorelin: A Novel Gastrocolokinetic Synthetic Ghrelin Agonist

    PubMed Central

    Camilleri, Michael; Acosta, Andres

    2015-01-01

    Synthetic ghrelin agonists, predominantly small molecules, are being developed as prokinetic agents that may prove useful in the treatment of gastrointestinal motility disorders. Relamorelin (RM-131) is a pentapeptide synthetic ghrelin analog that activates the growth hormone secretagogue (GHS)-1a (also called the ghrelin) receptor with approximately 6-fold greater potency than natural ghrelin. The ability of relamorelin to stimulate growth hormone (GH) release is comparable to that of native ghrelin. Relamorelin has enhanced efficacy and plasma stability compared to native ghrelin. In this review, we discuss the pharmacokinetics, pharmacodynamics and potential indications for relamorelin. Relamorelin is administered subcutaneously, dosed daily or twice daily. Relamorelin is being studied for the treatment of patients with gastrointestinal motility disorders. Phase IIA pharmacodynamic studies have demonstrated acceleration of gastric emptying in patients with type 1 diabetes mellitus (T1DM) and type 2 DM (T2DM) and upper gastrointestinal symptoms. In a phase IIA study in patients with diabetic gastroparesis, relamorelin accelerated gastric emptying and significantly improved vomiting frequency compared to placebo and improved other symptoms of gastroparesis in a pre-specified subgroup of patients with vomiting at baseline. In patients with chronic idiopathic constipation with defined transit profile at baseline, relamorelin relieved constipation and accelerated colonic transit compared to placebo. These characteristics suggest that this new ghrelin analog shows great promise to relieve patients with upper or lower gastrointestinal motility disorders. PMID:25545036

  7. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  8. Genetic variants of ghrelin in metabolic disorders.

    PubMed

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling

    PubMed Central

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen

    2017-01-01

    The worldwide prevalence of obesity is increasing at an alarming rate but treatment options remain limited. Despite initial success, weight loss by calorie restriction (CR) often fails because of rebound weight gain. Postdieting hyperphagia along with altered hypothalamic neuro-architecture appears to be one direct cause of this undesirable outcome. In response to calorie deficiency the circulating levels of the appetite-promoting hormone, acyl-ghrelin, rise sharply. We hypothesize that proper modulation of acyl-ghrelin and its receptor’s sensitivity will favorably impact energy intake and reprogram the body weight set point. Here we applied viral gene transfer of the acyl-ghrelin hydrolyzing enzyme, butyrylcholinesterase (BChE), in a mouse model of diet-induced obesity. Our results confirmed that BChE overexpression decreased circulating acyl-ghrelin levels, suppressed CR-provoked ghrelin signaling, and restored central ghrelin sensitivity. In addition to maintaining healthy body weights, BChE treated mice had modest postdieting food intake and showed normal glucose homeostasis. Spontaneous activity and energy expenditure did not differ significantly between treated and untreated mice after body weight rebound, suggesting that BChE gene transfer did not alter energy expenditure in the long term. These findings indicate that combining BChE treatment with CR could be an effective approach in treating human obesity and aiding lifelong weight management. PMID:28973869

  10. Ghrelin and cholecystokinin in term and preterm human breast milk.

    PubMed

    Kierson, Jennifer A; Dimatteo, Darlise M; Locke, Robert G; Mackley, Amy B; Spear, Michael L

    2006-08-01

    To determine whether ghrelin and cholecystokinin (CCK) are present in significant quantities in term and preterm human breast milk, and to identify their source. Samples were collected from 10 mothers who delivered term infants and 10 mothers who delivered preterm infants. Estimated fat content was measured. Ghrelin and CCK levels were measured in whole and skim breast milk samples using radioimmunoassays (RIA). Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed using RNA from human mammary epithelial cells (hMECs) and mammary gland with primers specific to ghrelin. The median ghrelin level in whole breast milk was 2125 pg/ml, which is significantly higher than normal plasma levels. There was a direct correlation between whole milk ghrelin levels and estimated milk fat content (r=0.84, p<0.001). Both the mammary gland and hMECs produced ghrelin. While CCK was detected in some samples, levels were insignificant. Infant gestational age, birthweight, maternal age, and maternal pre-pregnancy body mass index did not significantly affect the results. Ghrelin, but not CCK, is present in breast milk. Since the mammary gland produces ghrelin message, and ghrelin levels in breast milk are higher than those found in plasma, we conclude that ghrelin is produced and secreted by the breast.

  11. The role of ghrelin in energy balance regulation in fish.

    PubMed

    Jönsson, Elisabeth

    2013-06-15

    Knowledge about the endocrine regulation of energy balance in fish is of interest for basic as well as aquaculture research. Ghrelin is a peptide hormone that was first identified in fish 10 years ago and has important roles in the control of food intake and metabolism. Both ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), have been found in numerous fish species. Their tissue distributions support the idea that ghrelin has an integrative role in the regulation of energy balance at both the central nervous system level and systemic level. In tilapia and goldfish, ghrelin treatment appears to increase food intake and to stimulate lipogenesis and tissue fat deposition to promote a more positive energy status. In rainbow trout, on the other hand, ghrelin decreases food intake. Goldfish and rainbow trout are the fish species in which the mode of action of ghrelin on food intake has been most thoroughly investigated. The results from these studies indicate that ghrelin alters food intake by acting on well-known appetite signals, such as CRH, NPY and orexin, in the hypothalamus in a species-specific manner. In goldfish, sensory fibres of the vagus nerve convey the signal from gut-derived ghrelin to modulate appetite. The data also indicate that ghrelin may modulate foraging/swimming activity and the perception of food in fish. Results related to the effects of energy status, temperature, and stressors on plasma ghrelin/tissue ghrelin mRNA levels are occasionally inconsistent between short- and long-term studies, between the protein and mRNA, and between species. Recent data also imply a role of ghrelin in carbohydrate metabolism. More functional studies are required to understand the role of ghrelin and its mechanisms of action in the regulation of energy balance among fish. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. [Prostatic inflammation-induced chronic pelvic pain: Roles of substance P and c-fos in the spinal cord].

    PubMed

    Liu, Ying-jia; Song, Guo-hong; Zhang, Chen

    2015-08-01

    To explore the possible pain mechanism of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). The models of CP/CPPS were established in male Wistar rats by the autoimmune method. The paw withdrawal threshold (PWT) was detected using Von Frey filament. The expressions of the substance P and c-fos in the prostate and spinal L5-S2 segments were determined by immunohistochemistry followed by analysis of their correlation with CP/CPPS. Compared with the control rats, the CP/CPPS models showed significantly decreased PWT (P < 0.05), remarkable prostatic inflammation, enlarged scope of lesions, and obvious interstitial lymphocytic infiltration (P < 0.05). Both the expressions of substance P and c-fos were markedly elevated in the prostate and spinal dorsal horn (L5-S2) of the rat models (P < 0.05), but the expression of substance P in the prostate exhibited no correlation with that in the spinal cord (r = 0.099, P = 0.338), nor did that of c-fos (r = 0.027, P = 0.454). The upregulated expressions of substance P and c-fos in the spinal cord L5-S2 sections may be associated with the pain mechanism of CP/CPPS.

  13. Relaxant effect of ghrelin on guinea pig isolated tracheal smooth muscle: role of epithelial NO and PGE2.

    PubMed

    Al-Ayed, Mohammed Saeed Zayed

    2018-06-01

    This study aimed at investigating the potential ghrelin relaxing effect on guinea pig isolated tracheal smooth muscle (TSM). Using an in vitro experimental approach, the physiological role of the airway epithelium on smooth muscle relaxation has been investigated by analyzing the dose-response curves for carbachol- or histamine-induced contractions on epithelium intact versus denuded tracheal tissue. The relaxant effect of ghrelin (5-200 μmol/L) then investigated on carbachol-contracted, non-sensitized, and ovalbumin (OVA)-sensitized guinea pig TSM with an intact or denuded epithelium. The isolated TSMs from identical guinea pigs were incubated in Krebs solution aerated with 95% O 2 and 5% CO 2 through an automated tissue organ bath system (n = 6 for each group). The ghrelin relaxation mechanism was assessed by adding L-NAME, indomethacin, and YIL-781 for GHS-R1 into the tissue chamber. The spasmogens carbachol and histamine have shown a significantly higher contracting effect on epithelium-denuded than in epithelium-intact TSM confirmed by the significantly higher mean pEC50 of both agonists on the epithelium-denuded trachea (p < 0.05). Ghrelin has shown a concentration-dependent relaxing effect on carbachol-contracted TSM (r = 0.96, p = 0.00). The effect was more evident in the intact non-sensitized than in epithelium-denuded or OVA-sensitized groups (p < 0.05). Preincubation with nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) inhibitors has significantly reduced the ghrelin-induced relaxation on epithelium-intact TSM suggesting an epithelium-dependant mechanism. However, GHS-R1a antagonist has also succeeded to reduce ghrelin relaxant effect, which needs further clarification. Ghrelin proved to have a potential TSM relaxant effect possibly through epithelium-dependant mechanisms involving NO and PGE 2 .

  14. Structural determination, distribution, and physiological actions of ghrelin in the guinea pig.

    PubMed

    Okuhara, Yuji; Kaiya, Hiroyuki; Teraoka, Hiroki; Kitazawa, Takio

    2018-01-01

    We identified guinea pig ghrelin (gp-ghrelin), and examined its distribution and physiological actions in the guinea-pig. Gp-ghrelin is a 28-amino acid peptide (GASFR SPEHH SAQQR KESRK LPAKI QPR); seven amino acids are different from that of rat ghrelin at positions 2, 5, 10, 11, 19, 21, and 25, which include the conserved region known in mammals. The third serine residue is mainly modified by n-decanoyl acid. Both gp-ghrelin and rat ghrelin increased intracellular Ca 2+ concentration of HEK293 cells expressing guinea pig growth hormone secretagogue receptor 1a (GHS-R1a), and the affinity of gp-ghrelin was slightly higher than that of rat ghrelin. In addition, gp-ghrelin was also effective in CHO cells expressing rat GHS-R1a with similar affinity to that of rat ghrelin. Gp-ghrelin mRNA was predominantly expressed in the stomach, whereas the expression levels in other organs was low. High levels of GHS-R1a mRNA expression were observed in the pituitary, medulla oblongata, and kidney, while medium levels were noted in the thalamus, pons, olfactory bulb, and heart. Immunohistochemistry identified gp-ghrelin-immunopositive cells in the gastric mucosa and pancreas. Intraperitoneal injection of gp-ghrelin increased food intake in the guinea pig. Gp-ghrelin did not cause any mechanical responses in isolated gastrointestinal smooth muscles in vitro, similar to rat ghrelin. In conclusion, the N-terminal structures that are conserved in mammals were different in gp-ghrelin. Moreover, the functional characteristics of gp-ghrelin, other than its distribution, were dissimilar from those in other Rodentia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Serum ghrelin levels in patients with Behcet’s disease

    PubMed Central

    Erden, Ilker; Demir, Betül; Cicek, Demet; Dertlioğlu, Selma Bakar; Aydin, Suleyman; Ozturk, Savas

    2016-01-01

    Introduction Behcet’s disease (BD) is a chronic, relapsing, systemic vasculitis of unknown etiology. Aim To measure serum ghrelin levels in BD patients and healthy controls and to investigate its association with metabolic syndrome (MetS). Material and methods Thirty BD patients and 30 healthy individuals were enrolled in the study. Ghrelin levels were measured in blood samples using ELISA. Results The mean serum ghrelin level in BD patients (28.57 ±14.04) was significantly lower compared to healthy controls (40.72 ±23.21) (p = 0.01). The mean serum ghrelin level in BD patients who had MetS (24.18 ±12.73) was lower compared to BD patients who did not have MetS (30.77 ±14.45), but this difference was not significant (p > 0.05). Conclusions Ghrelin levels were lower in BD patients compared to healthy controls. There was no association between reduced ghrelin levels and MetS; however, there was a negative correlation between ghrelin levels and disease activity. PMID:28035223

  16. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    USDA-ARS?s Scientific Manuscript database

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  17. Induction of c-Fos immunoreactivity in the amygdala of mice expressing anxiety-like behavior after local perfusion of veratrine in the prelimbic medial prefrontal cortex.

    PubMed

    Yamada, Misa; Saitoh, Akiyoshi; Ohashi, Masanori; Suzuki, Satoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2015-08-01

    Local perfusion of the sodium channel activator veratrine in mouse prelimbic medial prefrontal cortex (PL) induced c-Fos immunoreactivity in the sub-regions of amygdala. Co-perfusion of the NMDA receptor antagonist MK-801 diminished the c-Fos expression. Significant correlations were observed between c-Fos immunoreactivity and behavioral measures in the open-field test. The PL stimulation activates a neural network projecting to the amygdala via NMDA receptor-mediated glutamatergic neurotransmission. Anxiety-like behavior induced after the PL stimulation may be partly mediated through the activation of amygdala.

  18. Therapeutic Potential of Targeting the Ghrelin Pathway.

    PubMed

    Colldén, Gustav; Tschöp, Matthias H; Müller, Timo D

    2017-04-11

    Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems' metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.

  19. Therapeutic Potential of Targeting the Ghrelin Pathway

    PubMed Central

    Colldén, Gustav; Tschöp, Matthias H.; Müller, Timo D.

    2017-01-01

    Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome. PMID:28398233

  20. Male song quality modulates c-Fos expression in the auditory forebrain of the female canary

    PubMed Central

    Monbureau, Marie; Barker, Jennifer M.; Leboucher, Gérard; Balthazart, Jacques

    2015-01-01

    In canaries, specific phrases of male song (sexy songs, SS) that are difficult to produce are especially attractive for females. Females exposed to SS produce more copulation displays and deposit more testosterone into their eggs than females exposed to non-sexy songs (NS). Increased expression of the immediate early genes c-Fos or zenk (a.k.a. egr-1) has been observed in the auditory forebrain of female songbirds hearing attractive songs. C-Fos immunoreactive (Fos-ir) cell numbers were quantified here in the brain of female canaries that had been collected 30 min after they had been exposed for 60 min to the playback of SS or NS or control white noise. Fos-ir cell numbers increased in the caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM) of SS birds as compared to controls. Song playback (pooled SS and NS) also tended to increase average Fos-ir cell numbers in the mediobasal hypothalamus (MBH) but this effect did not reach full statistical significance. At the individual level, Fos expression in CMM was correlated with its expression in NCM and in MBH but also with the frequency of calls that females produced in response to the playbacks. These data thus indicate that male songs of different qualities induce a differential metabolic activation of NCM and CMM. The correlation between activation of auditory regions and of the MBH might reflect the link between auditory stimulation and changes in behavior and reproductive physiology. PMID:25846435

  1. Amygdala c-Fos induction corresponds to unconditioned and conditioned aversive stimuli but not to freezing.

    PubMed

    Holahan, Matthew R; White, Norman M

    2004-06-04

    These experiments examined the relationship between freezing and c-Fos expression in the amygdala. In Experiment 1 freezing was elevated during a period immediately following shock in rats that remained in the shock context, but not in rats that were moved to a different, neutral context. The two groups showed equally elevated c-Fos levels in both the central (CeA) and lateral (LA) nuclei. In Experiment 2 rats were shocked in one compartment (paired) and not shocked in another, distinct compartment (unpaired). Rats re-exposed to the paired compartment 24h later froze more than rats exposed to the unpaired compartment, and rats in both groups froze more than un-shocked rats. c-Fos protein expression in CeA, LA and basolateral (BLA) nucleus was elevated in the rats exposed to the paired compartment but not in rats exposed to the unpaired compartment. Thus, c-Fos expression was induced by exposure to both unconditioned and conditioned stimuli, although it is unclear if the same cell population was activated in both cases. Neither case of c-Fos expression coincided with the occurrence of freezing. c-Fos expression may represent neural activity in LA and CeA produced by exposure to unconditioned cues and activity in BLA, LA and CeA produced by conditioned cues. This activity may contribute to an aversive affective state (or "fear"). Behaviors promoted by this state, such as freezing, may be mediated in other brain areas, or by other neurons in the amygdala.

  2. Ghrelin receptor regulates adipose tissue inflammation in aging.

    PubMed

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  3. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  4. Patterns of FOS protein induction in singing female starlings

    PubMed Central

    Riters, Lauren V.

    2013-01-01

    Females of many songbird species produce song, but information about the neural correlates of singing behavior is limited in this sex. Although well studied in males, activity in premotor song control regions and social behavior regions has not been examined in females during song production. Here, we examined the immediate early gene protein product FOS in both song control and social behavior brain regions after female starlings defending nest boxes responded to an unfamiliar female in a naturalistic setting. We found that females that sang in response to the intruder had much higher numbers of fos-immunoreactive neurons (fos-ir) in the vocal control regions HVC, the robust nucleus of the arcopallium (RA), and the dorsomedial part of the nucleus intercollicularis (DM of the ICo). In HVC, fos-ir correlated positively with song length. In RA, DM and Area X, fos-ir correlated positively with number of songs produced. In social behavior regions, singers showed higher fos-ir in the nucleus taeniae of the amygdala, the dorsal part of the bed nucleus of the stria terminalis, and the ventromedial hypothalamus than non-singers. Overall, patterns of fos-ir in song control regions in females were similar to those reported for males, but differences in fos-ir were identified in social behavior regions. These differences may reflect a distinct role for brain regions involved in social behavior in female song, or they may reflect differences in the social function of female and male song. PMID:23022365

  5. N-octanoylated ghrelin peptide inhibits bovine oocyte meiotic resumption.

    PubMed

    Xu, X L; Bai, J H; Feng, T; Xiao, L L; Song, Y Q; Xiao, Y X; Liu, Y

    2018-07-01

    Studies have shown that ghrelin plays an important role in the mammalian reproductive system, including the central, gonadal levels, and also during in vitro maturation of oocytes; however, the functions of ghrelin in bovine oocyte meiosis require further investigation. We aimed to evaluate the effects of an n-octanoylated ghrelin peptide on oocyte meiotic resumption and the developmental competence of mature oocytes in vitro. design: The expression of GHRL (encoding ghrelin) mRNA and its receptor (the growth hormone secretagogue receptor, GHSR) in the cumulus-oocyte complex (COCs), denuded oocytes (DOs), and cumulus cells (CCs) was assessed using quantitative real-time reverse transcription PCR (qRT-PCR), and the effects of the n-octanoylated ghrelin peptide on meiotic resumption were studied at four different doses (0, 10, 50, and 100 ng/mL) in a 6 h culture system. qRT-PCR analysis showed that GHRL and GHSR mRNAs were expressed in all tested samples; however, GHRL was predominantly expressed in DOs, and GHSR was predominantly expressed in CCs. Germinal vesicle breakdown was inhibited significantly by 50 ng/mL ghrelin compared with that in the negative control (P < 0.05). Further studies showed that n-octanoylated ghrelin increased the levels of cAMP and cGMP in the CCs and DOs, which inhibited the meiotic resumption of bovine oocytes. And the inhibitory role in the developmental competence of mature oocytes were also included, ghrelin could significantly improve the cleavage rate (P < 0.05) and blastocyst rate (P < 0.05). N-octanoylated ghrelin maintained bovine oocytes meiotic arrest and further improved their developmental competence; therefore, n-octanoylated ghrelin could be considered as a potential pharmaceutical inhibitor of meiosis for the in vitro maturation of bovine oocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The ghrelin/obestatin balance in the physiological and pathological control of growth hormone secretion, body composition and food intake.

    PubMed

    Hassouna, R; Zizzari, P; Tolle, V

    2010-07-01

    Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. Ghrelin is an orexigenic and adipogenic peptide and a potent growth hormone secretagogue (GHS) modified by the enzyme ghrelin-O-acyl-transferase to bind and activate its receptor, the GHS-R. The ghrelin/GHS-R pathway is complex and the effects of ghrelin on GH secretion, adiposity and food intake appear to be relayed by distinct mechanisms involving different transduction signals and constitutive activity for the GH-R, different cofactors as modulators of endogenous ghrelin signalling and/or alternative ghrelin receptors. The discovery of obestatin in 2005 brought an additional level of complexity to this fascinating system. Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, but its effect on food intake and its ability to activate GPR39 are still controversial. Although several teams failed to reproduce the anorexigenic actions of obestatin, this peptide has been shown to antagonise GH secretion and food intake induced by ghrelin and could be an interesting pharmacological tool to counteract the actions of ghrelin. Ghrelin and obestatin immunoreactivities are recovered in the blood with an ultradian pulsatility and their concentrations in plasma vary with the nutritional status of the body. It is still a matter of debate whether both hormones are regulated by independent mechanisms and whether obestatin is a physiologically relevant peptide. Nevertheless, a significant number of studies show that the ghrelin/obestatin ratio is modified in anorexia nervosa and obesity. This suggests that the ghrelin/obestatin balance could be essential to adapt the body's response to nutritional challenges. Although measuring ghrelin and obestatin in plasma is challenging because many forms of the peptides circulate, more sensitive and selective assays to detect the different preproghrelin

  7. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin.

    PubMed

    Frago, Laura M; Chowen, Julie A

    2017-03-02

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin's actions within the brain.

  8. Treatment of TBI and Concomitant Hemorrhage with Ghrelin

    DTIC Science & Technology

    2010-07-01

    TITLE: Treatment of TBI and concomitant hemorrhage with ghrelin PRINCIPAL INVESTIGATOR: Rongqian Wu...TITLE AND SUBTITLE Treatment of TBI and concomitant hemorrhage with ghrelin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...would be a powerful tool to improve outcome after brain injury. Ghrelin is a ‘gut-brain’ hormone mostly produced by the stomach. In this project, we

  9. Ghrelin: Central and Peripheral Implications in Anorexia Nervosa

    PubMed Central

    Méquinion, Mathieu; Langlet, Fanny; Zgheib, Sara; Dickson, Suzanne; Dehouck, Bénédicte; Chauveau, Christophe; Viltart, Odile

    2012-01-01

    Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated. PMID:23549309

  10. The role of the central ghrelin system in reward from food and chemical drugs.

    PubMed

    Dickson, Suzanne L; Egecioglu, Emil; Landgren, Sara; Skibicka, Karolina P; Engel, Jörgen A; Jerlhag, Elisabet

    2011-06-20

    Here we review recent advances that identify a role for the central ghrelin signalling system in reward from both natural rewards (such as food) and artificial rewards (that include alcohol and drugs of abuse). Whereas ghrelin emerged as a stomach-derived hormone involved in energy balance, hunger and meal initiation via hypothalamic circuits, it now seems clear that it also has a role in motivated reward-driven behaviours via activation of the so-called "cholinergic-dopaminergic reward link". This reward link comprises a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens together with a cholinergic input, arising primarily from the laterodorsal tegmental area. Ghrelin administration into the VTA or LDTg activates the "cholinergic-dopaminergic" reward link, suggesting that ghrelin may increase the incentive value of motivated behaviours such as reward-seeking behaviour ("wanting" or "incentive motivation"). Further, direct injection of ghrelin into the brain ventricles or into the VTA increases the consumption of rewarding foods as well as alcohol in mice and rats. Studies in rodents show beneficial effects of ghrelin receptor (GHS-R1A) antagonists to suppress the intake of palatable food, to reduce preference for caloric foods, to suppress food reward and motivated behaviour for food. They have also been shown to reduce alcohol consumption, suppress reward induced by alcohol, cocaine and amphetamine. Furthermore, variations in the GHS-R1A and pro-ghrelin genes have been associated with high alcohol consumption, smoking and increased weight gain in alcohol dependent individuals as well as with bulimia nervosa and obesity. Thus, the central ghrelin signalling system interfaces neurobiological circuits involved in reward from food as well as chemical drugs; agents that directly or indirectly suppress this system emerge as potential candidate drugs for suppressing problematic over-eating that leads to obesity as well as for the

  11. Ghrelin plasma levels in patients with idiopathic short stature.

    PubMed

    Iñiguez, Germán; Román, Rossana; Youlton, Ronald; Cassorla, Fernando; Mericq, Verónica

    2011-02-01

    Novel molecular insights have suggested that ghrelin may be involved in the pathogenesis of some forms of short stature. Recently, growth hormone secretagogue receptor (GHSR) mutations that segregate with short stature have been reported. To study plasma ghrelin levels in prepubertal patients with idiopathic short stature (ISS). Fasting total plasma ghrelin levels (radioimmunoassay) in 41 prepubertal patients with ISS (18 females, age 7.9 ± 0.5 years) compared with 42 age- and sex-matched controls (27 females, age 8.0 ± 0.3 years) with normal height. In a subset of 28 patients, the ghrelin receptor was sequenced. ISS patients exhibited a higher level of ghrelin (1,458 ± 137 vs. 935 ± 55 pg/ml, p < 0.01) and similar IGF-I levels (-0.66 ± 1.29 vs. -0.32 ± 0.78 SDS) compared to controls. Ten patients with ISS had ghrelin levels greater than +2 SDS compared to controls. These patients did not differ in height, BMI or IGF-I SDS compared to ISS patients with ghrelin levels within the normal range. Molecular analysis of GHSR did not show any mutations, but showed some polymorphisms. These results suggest that in ISS patients, short stature does not appear to be frequently caused by abnormalities in ghrelin signaling. Copyright © 2010 S. Karger AG, Basel.

  12. The role of ghrelin and ghrelin-receptor gene variants and promoter activity in type 2 diabetes.

    PubMed

    Garcia, Edwin A; King, Peter; Sidhu, Kally; Ohgusu, Hideko; Walley, Andrew; Lecoeur, Cecile; Gueorguiev, Maria; Khalaf, Sahira; Davies, Derek; Grossman, Ashley B; Kojima, Masayasu; Petersenn, Stephan; Froguel, Phillipe; Korbonits, Márta

    2009-08-01

    Ghrelin and its receptor play an important role in glucose metabolism and energy homeostasis, and therefore they are functional candidates for genes carrying susceptibility alleles for type 2 diabetes. We assessed common genetic variation of the ghrelin (GHRL; five single nucleotide polymorphisms (SNP)) and the ghrelin-receptor (GHSR) genes (four SNPs) in 610 Caucasian patients with type 2 diabetes and 820 controls. In addition, promoter reporter assays were conducted to model the regulatory regions of both genes. Neither GHRL nor GHSR gene SNPs were associated with type 2 diabetes. One of the ghrelin haplotypes showed a marginal protective role in type 2 diabetes. We observed profound differences in the regulation of the GHRL gene according to promoter sequence variants. There are three different GHRL promoter haplotypes represented in the studied cohort causing up to 45% difference in the level of gene expression, while the promoter region of GHSR gene is primarily represented by a single haplotype. The GHRL and GHSR gene variants are not associated with type 2 diabetes, although GHRL promoter variants have significantly different activities.

  13. Ghrelin for the management of cachexia associated with cancer.

    PubMed

    Khatib, Mahalaqua Nazli; Shankar, Anuraj H; Kirubakaran, Richard; Gaidhane, Abhay; Gaidhane, Shilpa; Simkhada, Padam; Quazi Syed, Zahiruddin

    2018-02-28

    Cancer sufferers are amongst the most malnourished of all the patient groups. Studies have shown that ghrelin, a gut hormone can be a potential therapeutic agent for cachexia (wasting syndrome) associated with cancer. A variety of mechanisms of action of ghrelin in people with cancer cachexia have been proposed. However, safety and efficacy of ghrelin for cancer-associated cachexia have not been systematically reviewed. The aim of this review was to assess whether ghrelin is associated with better food intake, body composition and survival than other options for adults with cancer cachexia. To assess the efficacy and safety of ghrelin in improving food intake, body composition and survival in people with cachexia associated with cancer. We searched CENTRAL, MEDLINE and Embase without language restrictions up to July 2017. We also searched for ongoing studies in trials registers, performed handsearching, checked bibliographic references of relevant articles and contacted authors and experts in the field to seek potentially relevant research. We applied no restrictions on language, date, or publication status. We included randomised controlled (parallel-group or cross-over) trials comparing ghrelin (any formulation or route of administration) with placebo or an active comparator in adults (aged 18 years and over) who met any of the international criteria for cancer cachexia. Two review authors independently assessed studies for eligibility. Two review authors then extracted data and assessed the risk of bias for individual studies using standard Cochrane methodology. For dichotomous variables, we planned to calculate risk ratio with 95% confidence intervals (CI) and for continuous data, we planned to calculate mean differences (MD) with 95% CI. We assessed the evidence using GRADE and created 'Summary of findings' tables. We screened 926 individual references and identified three studies that satisfied the inclusion criteria. Fifty-nine participants (37 men and 22

  14. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O.

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA andmore » DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.« less

  15. Development of ghrelin resistance in a cancer cachexia rat model using human gastric cancer-derived 85As2 cells and the palliative effects of the Kampo medicine rikkunshito on the model

    PubMed Central

    Sawada, Yumi; Hashimoto, Hirofumi; Yoshimura, Mitsuhiro; Ohbuchi, Katsuya; Sudo, Yuka; Suzuki, Masami; Miyano, Kanako; Shiraishi, Seiji; Higami, Yoshikazu; Yanagihara, Kazuyoshi; Hattori, Tomohisa; Kase, Yoshio; Ueta, Yoichi; Uezono, Yasuhito

    2017-01-01

    Cancer cachexia (CC) is a multifactorial disease characterized by decreased food intake and loss of body weight due to reduced musculature with or without loss of fat mass. Patients with gastric cancer have a high incidence of cachexia. We previously established a novel CC rat model induced by human gastric cancer-derived 85As2 cells in order to examine the pathophysiology of CC and identify potential therapeutics. In patients with CC, anorexia is often observed, despite elevation of ghrelin, suggesting that ghrelin resistance may develop in these patients. In this study, we aimed to clarify the occurrence of ghrelin resistance in CC rats accompanied by anorexia and we investigated whether rikkunshito (RKT), a traditional Japanese Kampo medicine that potentiates ghrelin signaling, ameliorated CC-related anorexia through alleviation of ghrelin resistance. 85As2-tumor-bearing rats developed severe CC symptoms, including anorexia and loss of body weight/musculature, with the latter symptoms being greater in cachectic rats than in non-tumor-bearing or pair-fed rats. CC rats showed poor responses to intraperitoneal injection of ghrelin. In CC rats, plasma ghrelin levels were elevated and hypothalamic anorexigenic peptide mRNA levels were decreased, whereas hypothalamic growth hormone secretagogue receptor (GHS-R) mRNA was not affected. In vitro, RKT directly enhanced ghrelin-induced GHS-R activation. RKT administrated orally for 7 days partly alleviated the poor response to ghrelin and ameliorated anorexia without affecting the elevation of plasma ghrelin levels in CC rats. The expression of hypothalamic orexigenic neuropeptide Y mRNA but not hypothalamic GHS-R mRNA was increased by RKT. Thus, the 85As2 cell-induced CC rat model developed ghrelin resistance, possibly contributing to anorexia and body weight loss. The mechanism through which RKT ameliorated anorexia in the CC rat model may involve alleviation of ghrelin resistance by enhancement of ghrelin signaling

  16. Relationship between gut and sepsis: Role of ghrelin

    PubMed Central

    Das, Undurti N

    2011-01-01

    Ghrelin is a growth hormone secretagogue produced by the gut, and is expressed in the hypothalamus and other tissues as well. Ghrelin not only plays an important role in the regulation of appetite, energy balance and glucose homeostasis, but also shows anti-bacterial activity, suppresses pro-inflammatory cytokine production and restores gut barrier function. In experimental animals, ghrelin has shown significant beneficial actions in preventing mortality from sepsis. In the critically ill, corticosteroid insufficiency as a result of dysfunction of the hypothalamic-pituitary-adrenal axis is known to occur. It is therefore possible that both gut and hypothalamus play an important role in the pathogenesis of sepsis by virtue of their ability to produce ghrelin, which, in turn, could be a protective phenomenon to suppress inflammation. It remains to be seen whether ghrelin and its analogues are of benefit in treating patients with sepsis. PMID:21537444

  17. Neural Correlates of Birth: Labor Contractions Induce C-Fos Expression In Newborn Rat Brain

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Daly, M. E.; Baer, L. A.; Hills, E. M.; Conway, G.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    At birth, the newborn mammal must make rapid adaptations to the extrauterine environment to survive. We have previously shown that labor contractions augment the appearance of adaptive responses at birth, viz., postpartum breathing and the onset of suckling. Since neuronal activity has been shown to upregulate the activity of immediate early genes (IEGs) in the brain, we analyzed the neural distribution of c-Fos protein expression in newborn rats using immunohistochemistry. Previous studies have reported a burst of c-Fos mRNA expression in mouse and rat brain at birth however relationships to labor and delivery have not been examined. In the present study, we exposed near-term rat fetuses to elements of the vaginal birth process: 1) Simulated labor contractions. 2) Postpartum cooling (22 deg C). 3) Umbilical cord occlusion. and 4) Stroking to mimic postpartum licking by the dam. Cardinally delivered newborns (VG) were compared with those delivered by cesarean section following either prenatal exposure to compressions (C) [simulated labor contractions], or no compressions (NC) [no labor contractions]. Similar patterns of c-fos activation were observed throughout hypothalamic and thalamic nuclei, hippocampus and cerebral cortex in VG and C newborns that were not apparent in NC newborns. Our results indicate that labor contractions play a role in the induction of widespread neural activation in the newborn brain.

  18. Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress.

    PubMed

    Haghparast, Abbas; Fatahi, Zahra; Alamdary, Shabnam Zeighamy; Reisi, Zahra; Khodagholi, Fariba

    2014-03-01

    ERK pathway plays a critical role in the cellular adaptive responses to environmental changes. Stressful conditions can induce the activation of activate ERK, and its downstream targets, CREB and c-fos, in neural cells. Exposure to opioids has the same effect. In this study, we investigated the effects of morphine-induced conditioned place preference (CPP) on p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the mesocorticolimbic dopaminergic system including the nucleus accumbens (NAc), amygdala (AMY), striatum (Str), and prefrontal cortex (PFC).Our aim was to determine if acute and subchronic stress would affect these alterations. Male Wistar rats were divided into two saline- and morphine-treated groups. Each group contained of control, acute stress, and subchronic stress subgroups. The CPP procedure was performed for all of the rats. We dissected out the NAc, AMY, Str, and PFC regions and measured the mentioned ratios and c-fos level by Western blot analysis. The results revealed that in saline-treated animals, all factors enhanced significantly after performing acute and subchronic stress while there was an exception in p-ERK/ERK ratio in the Str and PFC; the changes were not significant during acute stress. Conditioning score decreased after applying the subchronic but not acute stress. In morphine-treated animals, all factors were increased after application of acute and subchronic stress, and conditioning scores also decreased after stress. Our findings suggest that in saline- or morphine-treated animals, acute and subchronic stress increases p-ERK, p-CREB, and c-fos levels in the mesocorticolimbic system. It has been shown that morphine induces the enhancement of the mentioned factors; on the other hand, our result demonstrates that stress can amplify these changes.

  19. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells

    PubMed Central

    Sakata, Ichiro; Park, Won-Mee; Walker, Angela K.; Piper, Paul K.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri

    2012-01-01

    The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain. PMID:22414807

  20. Exercise Training Modifies Ghrelin and Adiponectin Concentrations and Is Related to Inflammation in Older Adults

    PubMed Central

    Carrillo, Andres E.; Timmerman, Kyle L.; Jennings, Kristofer; Coen, Paul M.; Pence, Brandt D.; Flynn, Michael G.

    2014-01-01

    The purpose of this study was to observe exercise training–induced effects on adiponectin, leptin, and ghrelin. Twenty-nine older, healthy participants were classified as physically active (comparison group: N = 15, 70.9±1.2 years) or physically inactive (exercise group: N = 14, 70.5±1.4 years). Exercise group participants completed 12 weeks of combined aerobic and resistance exercise training, whereas comparison group participants maintained their current level of exercise and served as a physically active comparison group. Monocyte phenotype, as well as serum ghrelin, leptin, adiponectin, and soluble tumor necrosis factor receptor II were analyzed prior to and following the 12-week period. Ghrelin and adiponectin increased 47% and 55%, respectively, in exercise group participants following exercise training. Percent change in ghrelin (post and pre) was negatively correlated with the percent change in CD14+CD16+ monocytes (post and pre) in exercise group participants. Despite no changes in body mass, these data contribute to evidence for the anti-inflammatory effects of exercise. PMID:24013674

  1. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    PubMed

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  2. Ghrelin and Eating Disorders

    PubMed Central

    Atalayer, Deniz; Gibson, Charlisa; Konopacka, Alexandra; Geliebter, Allan

    2012-01-01

    There is growing evidence supporting a multifactorial etiology that includes genetic, neurochemical, and physiological components for eating disorders above and beyond the more conventional theories based on psychological and sociocultural factors. Ghrelin is one of the key gut signals associated with appetite, and the only known circulating hormone that triggers a positive energy balance by stimulating food intake. This review summarizes recent findings and several conflicting reports on ghrelin in eating disorders. Understanding these findings and inconsistencies may help in developing new methods to prevent and treat patients with these disorders. PMID:22960103

  3. Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression.

    PubMed

    Kraus, Dominik; Reckenbeil, Jan; Wenghoefer, Matthias; Stark, Helmut; Frentzen, Matthias; Allam, Jean-Pierre; Novak, Natalija; Frede, Stilla; Götz, Werner; Probstmeier, Rainer; Meyer, Rainer; Winter, Jochen

    2016-03-01

    In our study, ghrelin was investigated with respect to its capacity on proliferative effects and molecular correlations on oral tumor cells. The presence of all molecular components of the ghrelin system, i.e., ghrelin and its receptors, was analyzed and could be detected using real-time PCR and immunohistochemistry. To examine cellular effects caused by ghrelin and to clarify downstream-regulatory mechanisms, two different oral tumor cell lines (BHY and HN) were used in cell culture experiments. Stimulation of either cell line with ghrelin led to a significantly increased proliferation. Signal transduction occurred through phosphorylation of GSK-3β and nuclear translocation of β-catenin. This effect could be inhibited by blocking protein kinase A. Glucose transporter1 (GLUT1), as an important factor for delivering sufficient amounts of glucose to tumor cells having high requirements for this carbohydrate (Warburg effect) was up-regulated by exogenous and endogenous ghrelin. Silencing intracellular ghrelin concentrations using siRNA led to a significant decreased expression of GLUT1 and proliferation. In conclusion, our study describes the role for the appetite-stimulating peptide hormone ghrelin in oral cancer proliferation under the particular aspect of glucose uptake: (1) tumor cells are a source of ghrelin. (2) Ghrelin affects tumor cell proliferation through autocrine and/or paracrine activity. (3) Ghrelin modulates GLUT1 expression and thus indirectly enhances tumor cell proliferation. These findings are of major relevance, because glucose uptake is assumed to be a promising target for cancer treatment.

  4. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.

    PubMed

    Mahbod, Parinaz; Smith, Eric P; Fitzgerald, Maureen E; Morano, Rachel L; Packard, Benjamin A; Ghosal, Sriparna; Scheimann, Jessie R; Perez-Tilve, Diego; Herman, James P; Tong, Jenny

    2018-01-01

    Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent. Copyright © 2018 Endocrine Society.

  5. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    PubMed

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  6. Treatment of TBI and Concomitant Hemorrhage with Ghrelin

    DTIC Science & Technology

    2011-07-01

    Hemorrhage with Ghrelin PRINCIPAL INVESTIGATOR: Rongqian Wu CONTRACTING ORGANIZATION: The Feinstein Institute for Medical Research...Concomitant Hemorrhage with Ghrelin 5b. GRANT NUMBER W81XWH-09-1-0400 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Rongqian Wu...concomitantly due to multiple injuries. In this project, we determined the long-term effect of ghrelin , a ‘gut-brain’ hormone, in a highly military

  7. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans.

    PubMed

    McGavigan, A K; O'Hara, H C; Amin, A; Kinsey-Jones, J; Spreckley, E; Alamshah, A; Agahi, A; Banks, K; France, R; Hyberg, G; Wong, C; Bewick, G A; Gardiner, J V; Lehmann, A; Martin, N M; Ghatei, M A; Bloom, S R; Murphy, K G

    2015-03-01

    High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.

  9. l-cysteine suppresses ghrelin and reduces appetite in rodents and humans

    PubMed Central

    McGavigan, A K; O'Hara, H C; Amin, A; Kinsey-Jones, J; Spreckley, E; Alamshah, A; Agahi, A; Banks, K; France, R; Hyberg, G; Wong, C; Bewick, G A; Gardiner, J V; Lehmann, A; Martin, N M; Ghatei, M A; Bloom, S R; Murphy, K G

    2015-01-01

    Background: High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. Methods: We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. Results: l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. Conclusions: Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety. PMID:25219528

  10. Ghrelin and PYY levels in adolescents with severe obesity: effects of weight loss induced by long-term exercise training and modified food habits.

    PubMed

    Gueugnon, Carine; Mougin, Fabienne; Nguyen, Nhu Uyen; Bouhaddi, Malika; Nicolet-Guénat, Marie; Dumoulin, Gilles

    2012-05-01

    This study investigated (a) changes in ghrelin and peptide YY (PYY) concentrations during a weight reduction programme and (b) baseline ghrelin and PYY levels as predictors of weight loss in 32 severely obese adolescents (BMI z score = 4.1). Subjects spent an academic year in an institution for childhood obesity. Fasting ghrelin and PYY, leptin, insulin levels and insulin resistance were measured at baseline (month 0) and during the programme (months 3, 6, 9). In addition, 15 normal-weight teenagers served as reference for the baseline assessments. At baseline, obese teenagers had lower ghrelin and PYY concentrations than normal-weight adolescents (P < 0.05). Moreover, they showed significantly higher leptin, insulin levels and homeostasis model assessment (HOMA) (P < 0.0001). During the lifestyle modification, there was a significant decrease in body weight among obese teenagers, associated with an increase in ghrelin (apparent from month 6; P < 0.05), a decrease in leptin (from month 3; P < 0.05) and a decrease in insulin and HOMA (from month 3; P < 0.0001), without any significant change in PYY. Anthropometrical changes were correlated neither with baseline ghrelin levels nor with changes in ghrelin and PYY after the lifestyle modification. However, higher baseline PYY tended to correlate with greater anthropometrical changes (P < 0.1). In adolescents with severe obesity, a long-term combination of supervised aerobic exercises and a balanced diet led to weight reduction and increased ghrelin concentrations, without any change in PYY concentrations. Moreover, baseline PYY concentrations might be considered as predictors of weight loss.

  11. Short-term secretory regulation of ghrelin during growth hormone provocative tests in prepubertal children with various growth hormone secretory capacities.

    PubMed

    Matsuoka, Hisafumi; Hosoda, Hiroshi; Sugawara, Hisae; Iwama, Saika; Kim, Hye Sook; Kangawa, Kenji; Sugihara, Shigetaka

    2005-01-01

    Ghrelin is a novel gastric peptide which stimulates GH secretion and has been demonstrated to have orexigenic and adipogenic properties. Insulin is a physiological and dynamic modulator of plasma ghrelin, and insulinemia possibly mediates the effect of the nutritional state on the plasma concentrations of ghrelin in adults. No data on the regulation of GH secretion by ghrelin have so far been reported, nor has the possible influence of hypoglycemia on the plasma ghrelin levels in children been reported. Provocative studies were performed using a variety of stimuli, including insulin-induced hypoglycemia, and glucagon, arginine and L-dopa loading. We studied a group of 27 children with short stature being investigated for GH deficiency (10 F, 17 M; age 4-14 years; height SDS -0.92 to -3.27); the subjects were instructed to fast overnight, and the following morning, the relationships among the plasma ghrelin, GH and glucose levels were investigated by determining the plasma ghrelin profiles during those provocative tests. Using a new method for determining the two types of ghrelin, samples were obtained for determination of the plasma ghrelin, serum glucose and serum GH levels after the administration of the aforementioned stimulating agents. All the four stimuli caused a significant decrease in the circulating C- and N-ghrelin levels with a nadir at +30 min, with the exception of the N-ghrelin level following the L-dopa loading. During the same period, the plasma GH level increased following insulin, arginine and L-dopa loading, and the plasma glucose level increased significantly following glucagon loading. In the arginine and L-dopa load connected, a significant correlation was observed between the 30-min change in the serum GH level and the 30-min change in the plasma C-ghrelin level. In the multiple regression analysis to explain the 30-min change in the plasma level of C-ghrelin, the baseline plasma level of C-ghrelin (basal), height and % overweight were the

  12. Changes in plasma ghrelin and leptin levels in patients with peptic ulcer and gastritis following eradication of Helicobacter pylori infection.

    PubMed

    Kasai, Chika; Sugimoto, Kazushi; Moritani, Isao; Tanaka, Junichiro; Oya, Yumi; Inoue, Hidekazu; Tameda, Masahiko; Shiraki, Katsuya; Ito, Masaaki; Takei, Yoshiyuki; Takase, Kojiro

    2016-10-04

    Helicobacter pylori (H. pylori) infection and eradication therapy have been known to influence gastric ghrelin and leptin secretion, which may lead to weight gain. However, the exact relationship between plasma ghrelin/leptin levels and H. pylori infection has remained controversial. The aim of this study was to investigate plasma ghrelin and leptin levels in H. pylori-positive and -negative patients, to compare the two levels of the hormones before and after H. pylori eradication, and to examine the correlation between body mass index (BMI) and active ghrelin or leptin levels, as well as that between atrophic pattern and active ghrelin or leptin levels. Seventy-two H. pylori-positive patients who underwent upper gastrointestinal endoscopy, 46 diagnosed as having peptic ulcer and 26 as atrophic gastritis, were enrolled. Control samples were obtained from 15 healthy H. pylori-negative volunteers. The extent of atrophic change of the gastric mucosa was assessed endoscopically. Body weight was measured and blood was collected before and 12 weeks after H. pylori eradication therapy. Blood samples were taken between 8 and 10 AM after an overnight fast. Plasma ghrelin levels were significantly lower in H. pylori-positive patients than in H. pylori-negative patients. In particular, plasma active ghrelin levels were significantly lower in patients with gastritis compared with patients with peptic ulcer. Plasma ghrelin levels decreased after H. pylori eradication in both peptic ulcer and gastritis patients, while plasma leptin levels increased only in peptic ulcer patients. Plasma leptin levels and BMI were positively correlated, and active ghrelin levels and atrophic pattern were weakly negatively correlated in peptic ulcer patients. H. pylori infection and eradication therapy may affect circulating ghrelin/leptin levels. This finding suggests a relationship between gastric mucosal injury induced by H. pylori infection and changes in plasma ghrelin and leptin levels.

  13. Surviving starvation: essential role of the ghrelin-growth hormone axis.

    PubMed

    Goldstein, J L; Zhao, T-j; Li, R L; Sherbet, D P; Liang, G; Brown, M S

    2011-01-01

    After brief starvation, vertebrates maintain blood glucose by releasing fatty acids from adipose tissue. The fatty acids provide energy for gluconeogenesis in liver and are taken up by muscle, sparing glucose. After prolonged starvation, fat stores are depleted, yet blood glucose can be maintained at levels sufficient to preserve life. Using a new mouse model, we demonstrate that survival after prolonged starvation requires ghrelin, an octanoylated peptide hormone that stimulates growth hormone (GH) secretion. We studied wild-type mice and mice lacking ghrelin as a result of knockout of GOAT, the enzyme that attaches octanoate to ghrelin. Mice were fed 40% of their normal intake for 7 d. Fat stores in both lines of mice became depleted after 4 d. On day 7, mice were fasted for 23 h. In wild-type mice, ghrelin and GH rose massively, and blood sugar was maintained at ~60 mg/dL. In Goat(-/-) mice, ghrelin was undetectable and GH failed to rise appropriately. Blood sugar declined to ~20 mg/dL, and the animals were moribund. Infusion of ghrelin or GH prevented hypoglycemia. Our results support the following sequence: (1) Starvation lowers blood glucose; (2) glucose-sensing neurons respond by activating sympathetic neurons; (3) norepinephrine, released in the stomach, stimulates ghrelin secretion; (4) ghrelin releases GH, which maintains blood glucose. Thus, ghrelin lies at the center of a hormonal response that permits mice to survive an acute fast superimposed on chronic starvation.

  14. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor.

    PubMed

    Figueiredo, Helmer F; Bruestle, Amy; Bodie, Bryan; Dolgas, Charles M; Herman, James P

    2003-10-01

    The medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity. Thus, groups of mPFC-lesioned and sham-operated rats were restrained for 20 min or exposed to ether fumes for 2 min. In both cases, the animals were killed at 40 min from the onset of stress. Interestingly, bilateral lesions of the mPFC significantly enhanced c-fos mRNA expression in the hypothalamic paraventricular nucleus of restrained animals, an effect that was paralleled by potentiation of circulating ACTH concentrations in these animals. On the other hand, lesions of the mPFC did not affect neither PVN c-fos mRNA expression nor plasma ACTH concentrations in animals exposed to ether. Lesions of the mPFC also enhanced c-fos activation in the medial amygdala following restraint, but not following ether exposure. Additional regions whose activity was affected by mPFC lesions or stressor differences included the ventrolateral division of the bed nucleus of the stria terminalis, CA3 hippocampus, piriform cortex, and dorsal endopiriform nucleus. Expression of c-fos mRNA was nearly absent in the central amygdala of all stressed animals, regardless of lesion. Furthermore, prefrontal cortex lesions did not change stress-induction levels of c-fos in the CA1 hippocampus, dentate gyrus, anteromedial division of the bed nucleus of the stria terminalis, lateral septum, and claustrum. Taken together, this study indicates that the medial prefrontal cortex differentially regulates cellular activation of specific stress-related brain regions, thus exerting stressor-dependent inhibition of the HPA axis.

  15. Lacto-ghrestatin, a novel bovine milk-derived peptide, suppresses ghrelin secretion.

    PubMed

    Aoki, Hayato; Nakato, Junya; Mizushige, Takafumi; Iwakura, Hiroshi; Sato, Masaru; Suzuki, Hideyuki; Kanamoto, Ryuhei; Ohinata, Kousaku

    2017-07-01

    Ghrelin, an endogenous peptide isolated from the stomach, is known to stimulate food intake after peripheral administration. We found that the enzymatic digest of β-lactoglobulin decreases ghrelin secretion from the ghrelin-producing cell line MGN3-1. The peptides present in the digest were comprehensively analyzed using the nanoLC-OrbitrapMS. Among them, we identified that the nonapeptide LIVTQTMKG, corresponding to β-lactoglobulin(1-9), suppresses ghrelin secretion from MGN3-1 cells. We named LIVTQTMKG 'lacto-ghrestatin'. We found that lacto-ghrestatin decreases intracellular cAMP levels and mRNA expression levels of ghrelin production-related genes in MGN3-1 cells. Orally administered lacto-ghrestatin decreases plasma ghrelin levels and food intake in fasted mice. Lacto-ghrestatin is the first food-derived peptide to suppress ghrelin secretion in vitro and in vivo. © 2017 Federation of European Biochemical Societies.

  16. Methamphetamine-induced sensitization differentially alters pCREB and DeltaFosB throughout the limbic circuit of the mammalian brain.

    PubMed

    McDaid, John; Graham, Martin P; Napier, T Celeste

    2006-12-01

    Enhancements in behavior that accompany repeated, intermittent administration of abused drugs (sensitization) endure long after drug administration has ceased. Such persistence reflects changes in intracellular signaling cascades and associated gene transcription factors in brain regions that are engaged by abused drugs. This process is not characterized for the most potent psychomotor stimulant, methamphetamine. Using motor behavior as an index of brain state in rats, we verified that five once-daily injections of 2.5 mg/kg methamphetamine induced behavioral sensitization that was demonstrated (expressed) 3 and 14 days later. Using immunoblot procedures, limbic brain regions implicated in behavioral sensitization were assayed for extracellular signal-regulated kinase and its phosphorylated form (pERK/ERK, a signal transduction kinase), cAMP response element binding protein and its phosphorylated form (pCREB/CREB, a constitutively expressed transcriptional regulator), and DeltaFosB (a long-lasting transcription factor). pERK, ERK, and CREB levels were not changed for any region assayed. In the ventral tegmental area, pCREB and DeltaFosB also were not changed. pCREB (activated CREB) was elevated in the frontal cortex at 3 days withdrawal, but not at 14 days. pCREB levels were decreased at 14 days withdrawal in the nucleus accumbens and ventral pallidum. Accumbal and pallidal levels of DeltaFosB were increased at 3 days withdrawal, and this increase persisted to 14 days in the pallidum. Thus, only the ventral pallidum showed changes in molecular processes that consistently correlated with motor sensitization, revealing that this region may be associated with this enduring behavioral phenotype initiated by methamphetamine. The present findings expand our understanding of the neuroanatomical and molecular substrates that may play a role in the persistence of druginduced sensitization.

  17. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat

    PubMed Central

    Lemarié, Fanny; Beauchamp, Erwan; Dayot, Stéphanie; Duby, Cécile; Legrand, Philippe; Rioux, Vincent

    2015-01-01

    Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i) growth hormone (GH) secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1) was measured (ii) adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption. PMID:26196391

  18. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas.

    PubMed

    Granata, Riccarda; Baragli, Alessandra; Settanni, Fabio; Scarlatti, Francesca; Ghigo, Ezio

    2010-09-01

    The ghrelin gene peptides include acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob). AG, mainly produced by the stomach, exerts its central and peripheral effects through the GH secretagogue receptor type 1a (GHS-R1a). UAG, although devoid of GHS-R1a-binding affinity, is an active peptide, sharing with AG many effects through an unknown receptor. Ob was discovered as the G-protein-coupled receptor 39 (GPR39) ligand; however, its physiological actions remain unclear. The endocrine pancreas is necessary for glucose homeostasis maintenance. AG, UAG, and Ob are expressed in both human and rodent pancreatic islets from fetal to adult life, and the pancreas is the major source of ghrelin in the perinatal period. GHS-R1a and GPR39 expression has been shown in beta-cells and islets, as well as specific binding sites for AG, UAG, and Ob. Ghrelin colocalizes with glucagon in alpha-islet cells, but is also uniquely expressed in epsilon-islet cells, suggesting a role in islet function and development. Indeed, AG, UAG, and Ob regulate insulin secretion in beta-cells and isolated islets, promote beta-cell proliferation and survival, inhibit beta-cell and human islet cell apoptosis, and modulate the expression of genes that are essential in pancreatic islet cell biology. They even induce beta-cell regeneration and prevent diabetes in streptozotocin-treated neonatal rats. The receptor(s) mediating their effects are not fully characterized, and a signaling crosstalk has been suggested. The present review summarizes the newest findings on AG, UAG, and Ob expression in pancreatic islets and the role of these peptides on beta-cell development, survival, and function.

  19. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone.

    PubMed

    Kokkinos, Alexander; Mourouzis, Iordanis; Kyriaki, Despoina; Pantos, Constantinos; Katsilambros, Nicholas; Cokkinos, Dennis V

    2007-08-01

    Thyroid hormone plays a critical role in energy homeostasis through mechanisms, which are not fully understood. In the present study, we investigated possible alterations of important energy regulators such as leptin, adiponectin, and ghrelin in relation to changes in thyroid hormones. Thyroid hormone (250 microg/kg) was administered in male Wistar rats for 2 weeks (THYR), while hypothyroidism (HYPO) was induced by propylthiouracil administration (0.05% in drinking water) for 3 weeks. Untreated animals served as controls (NORM). Leptin and adiponectin were measured in plasma by ELISA, while total ghrelin was measured with RIA. Body weight was significantly reduced both in THYR and HYPO rats, while food intake was significantly increased in THYR and decreased in HYPO. This response was associated with various changes in leptin, adiponectin, and ghrelin in plasma. In fact, in THYR rats, leptin levels (mean +/- SEM) were 240 +/- 55 pg/ml as compared to 819 +/- 70 pg/ml in untreated rats (P < 0.05), while no changes were observed in ghrelin and adiponectin. In HYPO rats, leptin levels were 1400 +/- 200 pg/ml vs. 819 +/- 70 pg/ml in untreated rats (P < 0.05), while ghrelin and adiponectin were significantly increased in HYPO rats as compared to untreated rats (P < 0.05). Furthermore, T(3) and T(4) levels were inversely correlated to leptin (P = 0.014), while ghrelin and adiponectin were inversely correlated to weight changes (P = 0.05 and P = 0.03, respectively). In conclusion, leptin seems mainly to be involved in the thyroid hormone effects on energy homeostasis. Ghrelin and adiponectin may serve a compensatory physiological role in hypothyroidism.

  20. Catechin supplemented in a FOS diet induces weight loss by altering cecal microbiota and gene expression of colonic epithelial cells.

    PubMed

    Luo, Jianming; Han, Lulu; Liu, Liu; Gao, Lijuan; Xue, Bin; Wang, Yong; Ou, Shiyi; Miller, Michael; Peng, Xichun

    2018-05-23

    Our previous study showed that catechin controlled rats' body weights and changed gut microbiota composition when supplemented into a high-fructo-oligosaccharide (FOS) diet. This experiment is devised to further confirm the relationship between specific bacteria in the colon and body weight gain, and to investigate how specific bacteria impact body weight by changing the expression of colonic epithelial cells. Forty obese rats were divided into four groups: three catechin-supplemented groups with a high-FOS diet (100, 400, and 700 mg kg-1 d-1 catechin, orally administered) and one group with a high-FOS diet only. Food consumption and body weights were recorded each week. After one month of treatment, rats' cecal content and colonic epithelial cells were individually collected and analyzed with MiSeq and gene expression profiling techniques, respectively. Results identified some specific bacteria at the genus level-including the increased Parabacteroides sp., Prevotella sp., Robinsoniella sp., [Ruminococcus], Phascolarctobacterium sp. and an unknown genus of YS2, and the decreased Lachnospira sp., Oscillospira sp., Ruminococcus sp., an unknown genus of Peptococcaceae and an unknown genus of Clostridiales in rats' cecum-and eight genes-including one downregulated Pla2g2a and seven upregulated genes: Apoa1, Apoa4, Aabr07073400.1, Fabp4, Pik3r5, Dgat2 and Ptgs2 of colonic epithelial cells-that were due to the consumption of catechin. Consequently, various biological functions in connection with energy metabolism in colonic epithelial cells were altered, including fat digestion and absorption and the regulation of lipolysis in adipocytes. In conclusion, catechin induces host weight loss by altering gut microbiota and gene expression and function in colonic epithelial cells.

  1. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    PubMed

    Prior, Larissa J; Davern, Pamela J; Burke, Sandra L; Lim, Kyungjoon; Armitage, James A; Head, Geoffrey A

    2014-02-01

    Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (P<0.05) but had 64% greater fat pad mass (P=0.015). Mean arterial pressure, heart rate, and renal sympathetic nerve activity at 4 months of age were 7%, 7%, and 24% greater, respectively (P<0.001), in m-HFD compared with maternal normal fat diet rabbits, and the renal sympathetic nerve activity response to airjet stress was enhanced in the m-HFD group. m-HFD offspring had markedly elevated pressor and renal sympathetic nerve activity responses to intracerebroventricular leptin (5-100 µg) and enhanced sympathetic responses to intracerebroventricular ghrelin (1-5 nmol). In contrast, there was resistance to the anorexic effects of intracerebroventricular leptin and less neuronal activation as detected by Fos immunohistochemistry in the arcuate (-57%; P<0.001) and paraventricular (-37%; P<0.05) nuclei of the hypothalamus in m-HFD offspring compared with maternal normal fat diet rabbits. We conclude that offspring from mothers consuming an HFD exhibit an adverse cardiovascular profile in adulthood because of altered central hypothalamic sensitivity to leptin and ghrelin.

  2. Jejunal administration of glucose enhances acyl ghrelin suppression in obese humans

    PubMed Central

    Sidani, Reem M.; Garcia, Anna E.; Antoun, Joseph; Isbell, James M.; Abumrad, Naji N.

    2016-01-01

    Ghrelin is a gastric hormone that stimulates hunger and worsens glucose metabolism. Circulating ghrelin is decreased after Roux-en-Y gastric bypass (RYGB) surgery; however, the mechanism(s) underlying this change is unknown. We tested the hypothesis that jejunal nutrient exposure plays a significant role in ghrelin suppression after RYGB. Feeding tubes were placed in the stomach or jejunum in 13 obese subjects to simulate pre-RYGB or post-RYGB glucose exposure to the gastrointestinal (GI) tract, respectively, without the confounding effects of caloric restriction, weight loss, and surgical stress. On separate study days, the plasma glucose curves obtained with either gastric or jejunal administration of glucose were replicated with intravenous (iv) infusions of glucose. These “isoglycemic clamps” enabled us to determine the contribution of the GI tract and postabsorptive plasma glucose to acyl ghrelin suppression. Plasma acyl ghrelin levels were suppressed to a greater degree with jejunal glucose administration compared with gastric glucose administration (P < 0.05). Jejunal administration of glucose also resulted in a greater suppression of acyl ghrelin than the corresponding isoglycemic glucose infusion (P ≤ 0.01). However, gastric and isoglycemic iv glucose infusions resulted in similar degrees of acyl ghrelin suppression (P > 0.05). Direct exposure of the proximal jejunum to glucose increases acyl ghrelin suppression independent of circulating glucose levels. The enhanced suppression of acyl ghrelin after RYGB may be due to a nutrient-initiated signal in the jejunum that regulates ghrelin secretion. PMID:27279247

  3. Ghrelin-mediated sympathoinhibition and suppression of inflammation in sepsis

    PubMed Central

    Cheyuo, Cletus; Jacob, Asha

    2012-01-01

    Sepsis, a systemic inflammatory response to infection, continues to carry a high mortality despite advances in critical care medicine. Elevated sympathetic nerve activity in sepsis has been shown to contribute to early hepatocellular dysfunction and subsequently multiple organ failure, resulting in a poor prognosis, especially in the elderly. Thus, suppression of sympathetic nerve activity represents a novel therapeutic option for sepsis. Ghrelin is a 28-amino acid peptide shown to inhibit sympathetic nerve activity and inflammation in animal models of tissue injury. Age-related ghrelin hyporesponsiveness has also been shown to exacerbate sepsis. However, the mechanistic relationship between ghrelin-mediated sympathoinhibition and suppression of inflammation remains poorly understood. This review assesses the therapeutic potential of ghrelin in sepsis in the context of the neuroanatomical and molecular basis of ghrelin-mediated suppression of inflammation through inhibition of central sympathetic outflow. PMID:22068604

  4. The obestatin/ghrelin ratio and ghrelin genetics in adult celiac patients before and after a gluten-free diet, in irritable bowel syndrome patients and healthy individuals.

    PubMed

    Russo, Francesco; Chimienti, Guglielmina; Linsalata, Michele; Clemente, Caterina; Orlando, Antonella; Riezzo, Giuseppe

    2017-02-01

    Ghrelin levels and obestatin/ghrelin ratio have been proposed as activity markers in ulcerative colitis, but no data are available in celiac disease (CD) and irritable bowel syndrome (IBS). Our aims were as follows: (a) to assess obestatin and ghrelin concentrations in adult active CD patients, diarrhea-predominant IBS (IBS-d), and healthy controls (HC) in relation to intestinal permeability; (b) to evaluate the ghrelin-obestatin profile in CD patients after a 1-year gluten-free diet (GFD); and (c) to establish the impact of ghrelin genetics. The study included 31 CD patients, 28 IBS-d patients, and 19 HC. Intestinal permeability, assayed by high-performance liquid chromatography determination of urinary lactulose (La)/mannitol (Ma), and circulating concentrations of obestatin, ghrelin, and their ratio were evaluated at enrollment and after GFD. The ghrelin single nucleotide polymorphisms Arg51Gln (rs34911341), Leu72Met (rs696217), and Gln90Leu (rs4684677) were analyzed. Intestinal permeability was impaired in CD patients and ameliorated after GFD. Ghrelin was significantly (P=0.048) higher and the obestatin/ghrelin ratio was significantly (P=0.034) lower in CD patients compared with both IBS-d and HC, and GFD reduced the peptide levels, but without reaching the concentrations in HC. Significant differences (P<0.05) were found in the Leu72Met polymorphism among groups, with the reduction of the GT genotype and the T allele in both CD and IBS-d patients compared with HC. Intestinal permeability is altered in CD, but not in IBS-d patients, and ghrelin levels increase in CD patients as observed in other inflammatory conditions. Moreover, a role for ghrelin genetics is hypothesized in sustaining the many pathogenetic components of these different pathologies, but with a similar symptom profile.

  5. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin

    PubMed Central

    Frago, Laura M.; Chowen, Julie A.

    2017-01-01

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin’s actions within the brain. PMID:28257088

  6. The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression.

    PubMed

    Ferrara, Patrizia; Andermarcher, Elisabetta; Bossis, Guillaume; Acquaviva, Claire; Brockly, Frédérique; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2003-03-13

    c-fos gene is expressed constitutively in a number of tissues as well as in certain tumor cells and is inducible, in general rapidly and transiently, in virtually all other cell types by a variety of stimuli. Its protein product, c-Fos, is a short-lived transcription factor that heterodimerizes with various protein partners within the AP-1 transcription complex via leucine zipper/leucine zipper interactions for binding to specific DNA sequences. It is mostly, if not exclusively, degraded by the proteasome. To localize the determinant(s) responsible for its instability, we have conducted a genetic analysis in which the half-lives of c-Fos mutants and chimeras made with the stable EGFP reporter protein were compared under two experimental conditions taken as example of continous and inducible expression. Those were constitutive expression in asynchronously growing Balb/C 3T3 mouse embryo fibroblasts and transient induction in the same cells undergoing the G0/G1 phase transition upon stimulation by serum. Our work shows that c-Fos is degraded faster in synchronous- than in asynchronous cells. This difference in turnover is primarily accounted for by several mechanisms. First, in asynchronous cells, a unique C-terminal destabilizer is active whereas, in serum-stimulated cells two destabilizers located at both extremities of the protein are functional. Second, heterodimerization and/or binding to DNA accelerates protein degradation only during the G0/G1 phase transition. Adding another level of complexity to turnover control, phosphorylation at serines 362 and 374, which are c-Fos phosphorylation sites largely modified during the G0/G1 phase transition, stabilizes c-Fos much more efficiently in asynchronous than in serum-stimulated cells. In both cases, the reduced degradation rate is due to inhibition of the activity of the C-terminal destabilizer. However, in serum-stimulated cells, this effect is partially masked by the activation of the N-terminal destabilizer and

  7. Low subjective socioeconomic status stimulates orexigenic hormone ghrelin - A randomised trial.

    PubMed

    Sim, A Y; Lim, E X; Leow, M K; Cheon, B K

    2018-03-01

    Recent evidence suggests that lower perceived socioeconomic status is linked to increased appetite and intake of greater calories. Yet, whether insecurity of socioeconomic resources directly influences regulatory systems of appetite and energy intake is not known. Considering psychological states, mindsets and beliefs have shown to meaningfully affect physiological responses to food, the present study tested the hypothesis that low subjective socioeconomic status (SSS) will have a direct influence on physiological responses, such as appetite-related hormones (ghrelin, pancreatic polypeptide and insulin). Forty-eight healthy males were randomly (crossover, counterbalanced) assigned, to two experimental conditions where participants were either experimentally induced to feel low SSS or not (control; CON). Feelings of low SSS resulted in an increase in active ghrelin (an orexigenic hormone) following the SSS manipulation compared with baseline, while no change in active ghrelin was observed in CON. Furthermore, participants reported lower fullness and satiety following low SSS compared with CON. Our findings demonstrate that SSS may influence hunger regulation and appetite, and suggest that physiological systems regulating energy balance (i.e. caloric resources) may also be sensitive to perceived deprivation or imbalances in critical non-food resources (socioeconomic resources). Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The oncogenic role of the In1-ghrelin splicing variant in prostate cancer aggressiveness.

    PubMed

    Hormaechea-Agulla, Daniel; Gahete, Manuel D; Jiménez-Vacas, Juan M; Gómez-Gómez, Enrique; Ibáñez-Costa, Alejandro; L-López, Fernando; Rivero-Cortés, Esther; Sarmento-Cabral, André; Valero-Rosa, José; Carrasco-Valiente, Julia; Sánchez-Sánchez, Rafael; Ortega-Salas, Rosa; Moreno, María M; Tsomaia, Natia; Swanson, Steve M; Culler, Michael D; Requena, María J; Castaño, Justo P; Luque, Raúl M

    2017-08-29

    The Ghrelin-system is a complex, pleiotropic family composed of several peptides, including native-ghrelin and its In1-ghrelin splicing variant, and receptors (GHSR 1a/b), which are dysregulated in various endocrine-related tumors, where they associate to pathophysiological features, but the presence, functional role, and mechanisms of actions of In1-ghrelin splicing variant in prostate-cancer (PCa), is completely unexplored. Herein, we aimed to determine the presence of key ghrelin-system components (native-ghrelin, In1-ghrelin, GHSR1a/1b) and their potential pathophysiological role in prostate cancer (PCa). In1-ghrelin and native-ghrelin expression was evaluated by qPCR in prostate tissues from patients with high PCa-risk (n = 52; fresh-tumoral biopsies), and healthy-prostates (n = 12; from cystoprostatectomies) and correlated with clinical parameters using Spearman-test. In addition, In1-ghrelin and native-ghrelin was measured in plasma from an additional cohort of PCa-patients with different risk levels (n = 30) and control-healthy patients (n = 20). In vivo functional (proliferation/migration) and mechanistic (gene expression/signaling-pathways) assays were performed in PCa-cell lines in response to In1-ghrelin and native-ghrelin treatment, overexpression and/or silencing. Finally, tumor progression was monitored in nude-mice injected with PCa-cells overexpressing In1-ghrelin, native-ghrelin and empty vector (control). In1-ghrelin, but not native-ghrelin, was overexpressed in high-risk PCa-samples compared to normal-prostate (NP), and this expression correlated with that of PSA. Conversely, GHSR1a/1b expression was virtually absent. Remarkably, plasmatic In1-ghrelin, but not native-ghrelin, levels were also higher in PCa-patients compared to healthy-controls. Furthermore, In1-ghrelin treatment/overexpression, and to a much lesser extent native-ghrelin, increased aggressiveness features (cell-proliferation, migration and PSA secretion) of NP and PCa

  9. Clinical application of ghrelin for chronic respiratory failure.

    PubMed

    Matsumoto, Nobuhiro; Tsubouchi, Hironobu; Imazu, Yoshifumi; Arimura, Yasuji; Yanagi, Shigehisa; Iiboshi, Hirotoshi; Nakazato, Masamitsu

    2017-01-01

    Chronic respiratory failure, which is often caused by chronic obstructive pulmonary disease, chronic lower respiratory tract infection, or interstitial pneumonia, often leads to cachexia with disease progression. Patients who have chronic respiratory failure with cachexia exhibit increased morbidity. Although cachectic status is an important clinical problem, there are no effective therapies for cachexia. Ghrelin has various effects, including increasing food intake, attenuating sympathetic nerve activity, inhibiting inflammation, increasing cardiac output, and controlling fat utilization. These effects of ghrelin are ideal targets for the treatment of severely wasting chronic respiratory disease. In a few clinical studies, including a small randomized controlled trial, ghrelin administration to cachectic patients with chronic respiratory failure improved exercise tolerance, dyspnea, and appetite. The patients in these studies gained muscle mass and weight. In another study of chronic lower respiratory tract infection with cachexia, ghrelin suppressed airway inflammation by decreasing neutrophil accumulation in the airway, resulting in improvements in oxygenation and exercise tolerance. Although further clinical investigations are needed to clarify its usefulness, ghrelin is expected to become a novel therapy for cachectic patients with chronic respiratory failure.

  10. Gonadotropin-releasing hormone (GnRH) agonist triptorelin inhibits estradiol-induced serum response element (SRE) activation and c-fos expression in human endometrial, ovarian and breast cancer cells.

    PubMed

    Gründker, Carsten; Günthert, Andreas R; Hellriegel, Martin; Emons, Günter

    2004-11-01

    The majority of human endometrial (>80%), ovarian (>80%) and breast (>50%) cancers express GnRH receptors. Their spontaneous and epidermal growth-factor-induced proliferation is dose- and time-dependently reduced by treatment with GnRH and its agonists. In this study, we demonstrate that the GnRH agonist triptorelin inhibits estradiol (E2)-induced cancer cell proliferation. The proliferation of quiescent estrogen receptor alpha (ER alpha)-/ER beta-positive, but not of ER alpha-negative/ER beta-positive endometrial, ovarian and breast cancer cell lines, was significantly stimulated (P<0.001) (ANOVA) after treatment with E2 (10(-8) M). This effect was time- and dose-dependently antagonized by simultaneous treatment with triptorelin. The inhibitory effect was maximal at 10(-5) M concentration of triptorelin (P<0.001). In addition, we could show that, in ER alpha-/ER beta-positive cell lines, E2 induces activation of serum response element (SRE) and expression of the immediate early-response gene c-fos. These effects were blocked by triptorelin (P<0.001). E2-induced activation of estrogen-response element (ERE) was not affected by triptorelin. The transcriptional activation of SRE by E2 is due to ER alpha activation of the mitogen-activated protein kinase (MAPK) pathway. This pathway is impeded by GnRH, resulting in a reduction of E2-induced SRE activation and, in consequence, a reduction of E2-induced c-fos expression. This causes downregulation of E2-induced cancer cell proliferation.

  11. Plasma ghrelin levels during exercise - effects of intensity and duration.

    PubMed

    Erdmann, Johannes; Tahbaz, Rana; Lippl, Florian; Wagenpfeil, Stefan; Schusdziarra, Volker

    2007-10-04

    Ghrelin, a recently discovered hormone of gastric origin has been shown to stimulate appetite and food intake. In man it is considered to play a role in energy homeostasis and regulation of somatropic function. As exercise affects hunger/satiety sensations and food intake, at least under some experimental conditions, we investigated the effect of exercise intensity and duration on ghrelin release and subsequent ad libitum food intake in normal weight subjects. Bicycle exercise on an ergometer for 30 min at 50 W which was below the aerob-anaerobic threshold led to an increase of ghrelin which remained unchanged during the higher intensity at 100 W. Respective hunger/satiety ratings and subsequent food intake and postprandial ghrelin suppression were identical and not different from controls. In a second group 7 subjects cycled at 50 W for 30, 60 and 120 min, respectively. Ghrelin concentrations rose significantly by 50-70 pg/ml above baseline for the respective period of exercise. While postexercise premeal ghrelin levels were not significantly different subsequent food intake after 120 min of cycling was significantly greater compared to control, 30 min and 60 min exercise, respectively. The present data suggest that low rather than high-intensity exercise stimulates ghrelin levels independent of exercise duration. Stimulation of food intake during prolonged exercise is most likely not due to changes of ghrelin.

  12. Polymorphisms for ghrelin with consequences on satiety and metabolic alterations.

    PubMed

    Perret, Jason; De Vriese, Carine; Delporte, Christine

    2014-07-01

    To understand the current trend of ghrelin genetic variations on the control of satiety, eating behaviours, obesity, and metabolic alterations, and its development over the last 18 months. Several polymorphisms of the ghrelin gene, its receptor gene and ghrelin's acylating enzyme, ghrelin O-acyl transferase, have been identified and studied over the last decade in relation to control of satiety, obesity, eating behaviours, metabolic syndrome, glucose homeostasis, and type 2 diabetes. However, the effects described are either small or nonsignificant and often subjected to contradictory conclusions between studies. In the last 18 months, several of these areas of investigations have been revisited under more controlled conditions or have been subjected to meta-analysis. The effects of ghrelin gene polymorphism, is a complex area of investigation, due to ghrelin's interplay with a host of various factors part of an integrative network. However, taken together, results suggest that there are no or nonsignificant effects of the common genetic variants. A better understanding of the network, probably by a systems biology type approach, will be necessary to assign the exact role played by gene polymorphism of the component of the ghrelin axis.

  13. Ghrelin attenuates vascular calcification in diabetic patients with amputation.

    PubMed

    Xu, Suining; Ye, Fei; Li, Lihua; Yan, Jinchuan; Bao, Zhengyang; Sun, Zhen; Xu, Liangjie; Zhu, Jie; Wang, Zhongqun

    2017-07-01

    Vascular calcification is established to be a critical factor in diabetes mellitus, which causes cardiovascular and amputation complication of diabetic patients. OPG/RANKL/RANK axis serves as a regulatory role in vascular calcification. Ghrelin, an endogenous ligand of growth hormone secretagogue receptor (GHSR), has been reported to exhibit potent cardiovascular protective effects. However, the role of ghrelin in the regulation of diabetic vascular calcification is still elusive. Here, we reported the role of ghrelin and its relationship with OPG/RANKL/RANK system in patients with diabetic foot amputation. In vivo and in vitro investigations were performed. Sixty type 2 diabetic patients with foot amputation were enrolled in vivo investigation, and they were divided into three groups through Doppler ultrasound: mild stenosis group (n=20), moderate stenosis group (n=20), and severe stenosis/occlusion group (n=20). Morphological analysis results showed diffused calcium depositions in the anterior tibial artery of diabetic amputees. Compared with the mild and moderate stenosis group, the severe stenosis/occlusion group had more spotty calcium depositions in atherosclerotic plaques. Western blot analysis indicated the expressions of osteoprotegerin (OPG) and ghrelin were downregulated, while the expression of receptor activator of nuclear factor kappa B ligand (RANKL) was upregulated with the vascular stenosis aggravation. Pearson correlation analysis revealed a negative correlation between calcium content and ghrelin levels (r=-0.58, P<0.001), as well as the ghrelin levels and sRANKL levels (r=-0.57, P<0.001). Meanwhile, OPG levels were positively correlated with ghrelin levels (r=0.63, P<0.001). From in vitro investigation, we found that the high-glucose (HG), high-lipid (HL), and β-glycerophosphate (β-GP) considerably increased the total calcium content, ALP activity, and expression of osteogenic markers in vascular smooth muscle cells (VSMCs). Ghrelin blunted

  14. Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men.

    PubMed

    Broom, David R; Miyashita, Masashi; Wasse, Lucy K; Pulsford, Richard; King, James A; Thackray, Alice E; Stensel, David J

    2017-03-01

    Acute exercise transiently suppresses the orexigenic gut hormone acylated ghrelin, but the extent to which exercise intensity and duration determine this response is not fully understood. The effects of manipulating exercise intensity and duration on acylated ghrelin concentrations and hunger were examined in two experiments. In experiment one, nine healthy males completed three, 4-h conditions (control, moderate-intensity running (MOD) and vigorous-intensity running (VIG)), with an energy expenditure of ~2.5 MJ induced in both MOD (55-min running at 52% peak oxygen uptake (V.O 2peak )) and VIG (36-min running at 75% V.O 2peak ). In experiment two, nine healthy males completed three, 9-h conditions (control, 45-min running (EX45) and 90-min running (EX90)). Exercise was performed at 70% V.O 2peak In both experiments, participants consumed standardised meals, and acylated ghrelin concentrations and hunger were quantified at predetermined intervals. In experiment one, delta acylated ghrelin concentrations were lower than control in MOD (ES = 0.44, P = 0.01) and VIG (ES = 0.98, P < 0.001); VIG was lower than MOD (ES = 0.54, P = 0.003). Hunger ratings were similar across the conditions (P = 0.35). In experiment two, delta acylated ghrelin concentrations were lower than control in EX45 (ES = 0.77, P < 0.001) and EX90 (ES = 0.68, P < 0.001); EX45 and EX90 were similar (ES = 0.09, P = 0.55). Hunger ratings were lower than control in EX45 (ES = 0.20, P = 0.01) and EX90 (ES = 0.27, P = 0.001); EX45 and EX90 were similar (ES = 0.07, P = 0.34). Hunger and delta acylated ghrelin concentrations remained suppressed at 1.5 h in EX90 but not EX45. In conclusion, exercise intensity, and to a lesser extent duration, are determinants of the acylated ghrelin response to acute exercise. © 2017 Society for Endocrinology.

  15. Conditioned Fear Inhibits c-fos mRNA Expression in the Central Extended Amygdala

    PubMed Central

    Day, Heidi E.W.; Kryskow, Elisa M.; Nyhuis, Tara J.; Herlihy, Lauren; Campeau, Serge

    2008-01-01

    We have shown previously that unconditioned stressors inhibit neurons of the lateral/capsular division of the central nucleus of the amygdala (CEAl/c) and oval division of the bed nucleus of the stria terminalis (BSTov), which form part of the central extended amygdala. The current study investigated whether conditioned fear inhibits c-fos mRNA expression in these regions. Male rats were trained either to associate a visual stimulus (light) with footshock or were exposed to the light alone. After training, animals were replaced in the apparatus, and 2 hours later injected remotely, via a catheter, with amphetamine (2 mg/kg i.p.), to induce c-fos mRNA and allow inhibition of expression to be measured. The rats were then presented with 15 visual stimuli over a 30 minute period. As expected, fear conditioned animals that were not injected with amphetamine, had extremely low levels of c-fos mRNA in the central extended amygdala. In contrast, animals that were trained with the light alone (no fear conditioning) and were injected with amphetamine had high levels of c-fos mRNA in the CEAl/c and BSTov. Animals that underwent fear-conditioning, and were re-exposed to the conditioned stimulus after amphetamine injection had significantly reduced levels of c-fos mRNA in both the BSTov and CEAl/c, compared to the non-conditioned animals. These data suggest that conditioned fear can inhibit neurons of the central extended amygdala. Because these neurons are GABAergic, and project to the medial CEA (an amygdaloid output region), this may be a novel mechanism whereby conditioned fear potentiates amygdaloid output. PMID:18634767

  16. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt.

    PubMed

    Kitazawa, Takio; Shimazaki, Misato; Kikuta, Ayumi; Yaosaka, Noriko; Teraoka, Hiroki; Kaiya, Hiroyuki

    2016-06-01

    Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models

    PubMed Central

    Uchida, Aki; Zigman, Jeffrey M.; Perelló, Mario

    2013-01-01

    Ghrelin is an octanoylated peptide hormone, produced by endocrine cells of the stomach, which acts in the brain to increase food intake and body weight. Our understanding of the mechanisms underlying ghrelin's effects on eating behaviors has been greatly improved by the generation and study of several genetically manipulated mouse models. These models include mice overexpressing ghrelin and also mice with genetic deletion of ghrelin, the ghrelin receptor [the growth hormone secretagogue receptor (GHSR)] or the enzyme that post-translationally modifies ghrelin [ghrelin O-acyltransferase (GOAT)]. In addition, a GHSR-null mouse model in which GHSR transcription is globally blocked but can be cell-specifically reactivated in a Cre recombinase-mediated fashion has been generated. Here, we summarize findings obtained with these genetically manipulated mice, with the aim to highlight the significance of the ghrelin system in the regulation of both homeostatic and hedonic eating, including that occurring in the setting of chronic psychosocial stress. PMID:23882175

  18. Serum ghrelin in female patients with rheumatoid arthritis during treatment with infliximab.

    PubMed

    Magiera, Michal; Kopec-Medrek, Magdalena; Widuchowska, Małgorzata; Kotulska, Anna; Dziewit, Tomasz; Ziaja, Damian; Kucharz, Eugene J; Logiewa-Bazger, Beata; Mazur, Wlodzimierz

    2013-06-01

    Ghrelin is a gastric hormone that posses multiple functions, including induction of growth hormone release, regulation of proinflammatory cytokines and control of food intake and energy homeostasis. A few reports on serum ghrelin level in chronic inflammatory states revealed contradictory results. The study was undertaken to determine ghrelin in patients with rheumatoid arthritis receiving infliximab, a TNF-α blocking agent. Serum ghrelin was determined in 18 female rheumatoid patients before the treatment with infliximab, 1 week after the first infusion and after 53 weeks of medication and compared with 15 age-matched healthy women. Serum ghrelin level was shown to be increased in the patients. A decrease in serum ghrelin level was found after the first infusion of infliximab and similarly decreased ghrelin level but still higher than in the control was shown in the 53rd week of medication. The obtained results suggest that ghrelin level is related to inflammation, and its serum level in patients with severe rheumatoid arthritis behaves similarly to acute-phase reactants.

  19. Differential effect of protein and fat on plasma ghrelin levels in man.

    PubMed

    Erdmann, Johannes; Lippl, Florian; Schusdziarra, Volker

    2003-11-15

    Ghrelin, a gastric hormone that stimulates food intake is decreased after ingestion of carbohydrate-rich meals. The acute effect of fat- and protein-rich meals on plasma ghrelin levels is still unknown. Accordingly, plasma ghrelin levels were determined in 10 healthy volunteers after ingestion of the three macronutrients and during vagal stimulation by modified sham feeding and following gastric distension with a highly viscous guar solution. After a solid carbohydrate-rich test meal ghrelin levels fell from 559+/-59.3 pg/ml to a nadir of 449+/-47.4 pg/ml within 60 min (p<0.05). Following an oral glucose load (75 g in 300 ml water), a similar decrease was observed (p<0.05). A fat-rich meal also decreased plasma ghrelin levels (p<0.05) leading to a nadir towards the end of the study period at 180 min. Protein intake, however, stimulated plasma ghrelin levels from 449+/-68.1 to a plateau of 520 pg/ml (p<0.05). There was no significant change of ghrelin levels after modified sham feeding or gastric distension. In conclusion, the decrease of ghrelin levels after fat ingestion shows a different time pattern compared to carbohydrate, while protein ingestion stimulated ghrelin levels. This suggests that different and as yet unknown mechanisms contribute to the regulation of postprandial ghrelin release in man depending on the ingested macronutrients. Cephalic-vagal and intragastric neural mechanisms most likely do not contribute to the postprandial regulation of ghrelin secretion.

  20. Fasting plasma total ghrelin concentrations in monozygotic twins discordant for obesity.

    PubMed

    Leskelä, Piia; Ukkola, Olavi; Vartiainen, Johanna; Rönnemaa, Tapani; Kaprio, Jaakko; Bouchard, Claude; Kesäniemi, Y Antero

    2009-02-01

    Ghrelin is a hormone that is involved in the regulation of food intake. Neuronal, endocrine, and genetic factors have been shown to regulate plasma ghrelin levels; but the determinants of fasting ghrelin concentrations are not yet fully understood. The main aim was to explore the roles of adiposity and genetic differences in determining fasting plasma total ghrelin levels. We measured total ghrelin levels in a population of 23 monozygotic twin pairs discordant for obesity. In addition, 2 variants of ghrelin gene, namely, Arg51Gln and Leu72Met, were genotyped in 3 populations of monozygotic twin pairs: 23 obesity-discordant, 43 lean-concordant, and 46 obesity-concordant twin pairs. In discordant twins, lean co-twins had higher fasting plasma total ghrelin levels (950 pg/mL, SD = 328 pg/mL) than obese twins (720 pg/mL, SD = 143 pg/mL; P = .003). Arg51Gln-polymorphism of the ghrelin gene was equally distributed between the twin groups. However, there were significant differences in genotype frequencies at the Leu72Met polymorphism between the discordant and obese-concordant groups (P = .003) and between the discordant and lean-concordant groups (P = .011), but not between the 2 concordant groups. In the discordant group, there were fewer Met carriers (4%) than among the obese (17%) or the lean-concordant groups (15%). Plasma total ghrelin levels are affected by acquired obesity independent of genetic background. The Leu72 allele is particularly common among monozygotic twins discordant for obesity, suggesting that this ghrelin allele is more permissive in the regulation of energy balance. The ghrelin gene may thus play a role in the regulation of variability of body weight, such that Leu72 allele carriers are more prone to weight variability in response to environmental factors.

  1. Production of ghrelin by the stomach of patients with gastric cancer.

    PubMed

    Kizaki, Junya; Aoyagi, Keishiro; Sato, Takahiro; Kojima, Masayasu; Shirouzu, Kazuo

    2014-01-01

    Poor nutrition and weight loss are important factors contributing to poor quality of life (QOL) after gastrectomy in patients with gastric cancer. Ghrelin is a hormone produced by the stomach that, plays a role in appetite increase and fat storage. The present study aims to clarify the location of ghrelin mRNA in the stomach, changes in blood ghrelin concentrations after gastrectomy and whether or not they are associated with the reconstruction method in patients with gastric cancer. We collected seven normal mucosa samples from different parts of six totally resected stomachs with gastric cancer. We extracted RNA from the normal mucosa, synthesized cDNA from total RNA (1 μg), and then quantified ghrelin mRNA using quantitative real-time polymerase chain reaction (Q-PCR). Ghrelin blood concentrations were measured using enzyme-linked immunosorbent assay (ELISA) kits in 74 patients with gastric cancer (total gastrectomy (TG), n=23; distal gastrectomy (DG), n=30; proximal gastrectomy (PG), n=11; pylorus preserving gastrectomy (PPG), n=10). In order, the ghrelin gene was expressed most frequently in the gastric body, followed by the fornix, cardia, antrum and pylorus ring. Blood ghrelin concentrations after surgery similarly changed in all groups. The average blood ghrelin concentrations were significantly higher in the DG and PPG groups than in the TG group on postoperative days (POD) 1, 7, 30, 90 and 180. However, blood ghrelin concentrations did not significantly differ between the DG and TG groups on POD 270 and 360. Cells that produce ghrelin are supposed to be located mostly in the fundic gland of the stomach. We speculate that the production of ghrelin from other organs increases from around nine months after total gastrectomy. Therefore, evaluating the nutritional status and the weight of patients at nine months after total gastrectomy is important to help these patients improve their QOL.

  2. Seabream ghrelin: cDNA cloning, genomic organization and promoter studies.

    PubMed

    Yeung, Chung-Man; Chan, Chi-Bun; Woo, Norman Y S; Cheng, Christopher H K

    2006-05-01

    Recent studies have indicated that ghrelin stimulates growth hormone release from the pituitary via the growth hormone secretagogue receptor (GHSR). We have previously isolated two GHSR subtypes from the pituitary of the black seabream Acanthopagrus schlegeli. In the present study, we have cloned and characterized ghrelin from the same fish species at both the cDNA and gene levels. The full-length seabream ghrelin cDNA, isolated from sea-bream stomach using a novel approach by exploiting a single conserved region in the coding region, was found to encode a prepropeptide of 107 amino acids, with the predicted mature ghrelin peptide consisting of 20 amino acids (GSSFLSPSQKPQNRGKSSRV). Embedded in this full-length cDNA is a putative fish orthologue of the recently reported mammalian obestatin peptide. The ghrelin gene in black seabream, obtained by genomic PCR, was found to encompass four exons and three introns, possessing the same structural organization as in tilapia and goldfish, but different from that in rainbow trout. In addition, a 2230-bp 5'-flanking region of the seabream ghrelin gene was obtained by genome walking. Sequence analysis revealed that, as in the case of the human ghrelin gene, there is neither a GC box nor a CAAT box present in the isolated 5'-flanking region. However, a number of putative transcription factor-binding sites different from the human counterpart were found in the 5'-flanking region of the seabream ghrelin gene, suggesting that different cis- and trans-acting elements are involved in controlling their gene expression. Functional activity of this 5'-flanking region was examined by cloning it into the pGL3-Basic vector upstream of the luciferase reporter gene and transfected into various cell lines. Positive promoter activity could only be recorded in the colon-derived Caco-2 cells, suggesting that the cloned 5'-flanking region represents the functional promoter of the seabream ghrelin gene, which exhibits tissue-specific promoter

  3. Genetic manipulation of the ghrelin signaling system in male mice reveals bone compartment specificity of acylated and unacylated ghrelin in the regulation of bone remodeling

    USDA-ARS?s Scientific Manuscript database

    Ghrelin receptor-deficient (Ghsr-/-) mice that lack acylated ghrelin (AG) signaling retain a metabolic response to unacylated ghrelin (UAG). Recently, we showed that Ghsr-deficiency affects bone metabolism. The aim of this study was to further establish the impact of AG and UAG on bone metabolism. W...

  4. Tissue distribution and effects of fasting and obesity on the ghrelin axis in mice.

    PubMed

    Morash, Michael G; Gagnon, Jeffrey; Nelson, Stephanie; Anini, Younes

    2010-08-09

    Ghrelin is a 28 amino acid peptide hormone derived from the 117 amino acid proghrelin, following cleavage by proprotein convertase 1 (PC1). In this study, we comprehensively assessed the tissue distribution and the effect of fasting and obesity on preproghrelin, Exon-4D, PC1 and GOAT expression and proghrelin-derived peptide (PGDP) secretion. The stomach was the major source of preproghrelin expression and PDGPs, followed by the small intestine. The remaining peripheral tissues (including the brain and pancreas) contained negligible expression levels. We detected obestatin in all stomach proghrelin cells, however, 22% of proghrelin cells in the small intestine did not express obestatin. There were strain differences in ghrelin secretion in response to fasting between CD1 and C57BL/6 mice. After a 24 hour-fast, CD1 mice had increased plasma levels of total ghrelin and obestatin with no change in preproghrelin mRNA or PGDP tissues levels. C57BL/6 mice showed a different response to a 24 hour-fast having increased proghrelin mRNA expression, stomach acylated ghrelin peptide and no change in plasma obestatin in C57BL/6 mice. In obese mice (ob/ob and diet-induced obesity (DIO)) there was a significant increase in preproghrelin mRNA levels while tissue and plasma PGDP levels were significantly reduced. Fasting did not affect PGDP in obese mice. Obese models displayed differences in GOAT expression, which was elevated in DIO mice, but reduced in ob/ob mice. We did not find co-localization of the leptin receptor in ghrelin expressing stomach cells, ruling out a direct effect of leptin on stomach ghrelin synthesis and secretion. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    PubMed Central

    Kim, Yeon Soo; Lee, Joon Seong; Lee, Tae Hee; Cho, Joo Young; Kim, Jin Oh; Kim, Wan Jung; Kim, Hyun Gun; Jeon, Seong Ran; Jeong, Hoe Su

    2012-01-01

    AIM: To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia. METHODS: Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study. The functional dyspepsia patients were each diagnosed based on the Rome III criteria. Eligible patients completed a questionnaire concerning the severity of 10 symptoms. Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal. RESULTS: There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia. However, in patients with functional dyspepsia, there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r = -0.427, P = 0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r = 0.428, P =0.047). Additionally, there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r = -0.522, P = 0.013). Interestingly, two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal. CONCLUSION: Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia. PMID:22611317

  6. Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference.

    PubMed

    Landgren, Sara; Engel, Jörgen A; Hyytiä, Petri; Zetterberg, Henrik; Blennow, Kaj; Jerlhag, Elisabet

    2011-08-01

    The mechanisms involved in alcohol use disorder, a chronic relapsing brain disorder, are complex and involve various signalling systems in the brain. Recently, the orexigenic peptide ghrelin was shown to be required for alcohol-induced reward, an effect mediated via ghrelin receptors, GHS-R1A, at the level of the cholinergic-dopaminergic reward link. Moreover, ghrelin increases and GHR-R1A antagonists reduce moderate alcohol consumption in mice, and a single nucleotide polymorphism in the GHS-R1A gene has been associated with high alcohol consumption in humans. Therefore, GHS-R1A gene expression and alcohol intake were investigated in high, AA (Alko, Alcohol), versus low, ANA (Alko, Non-Alcohol), alcohol consuming rats as well as in Wistar rats. In the AA and ANA rats plasma ghrelin levels were also measured. GHS-R1A gene expression was increased in AA compared to ANA rats in nucleus accumbens, ventral tegmental area, amygdala, prefrontal cortex and hippocampus. A similar trend was observed in the ventral tegmental area of Wistar rats consuming high amounts of alcohol. Furthermore, the AA rats had significantly smaller reduction of plasma ghrelin levels over time, after several weeks of alcohol exposure, than had the ANA rats. The present study provides further evidence for that the ghrelin signalling system, in particular at the level of the mesocortocolimbic dopamine system, is involved in alcohol consumption, and thus possibly contributes to alcohol use disorder. Therefore the GHS-R1A may constitute a novel candidate for development of new treatment strategies for alcohol dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Ghrelin receptor controls obesity by fat burning

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence show that brown fat in the body produces heat to burn energy, thus prompting weight loss. Ghrelin is the only known hormone which increases appetite and promotes weight gain. We have reported that mice that lack the receptor which mediates the functions of ghrelin are lean. Our fu...

  8. Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence

    PubMed Central

    Gomez, Juan L.; Cunningham, Christopher L.; Finn, Deborah A.; Young, Emily A.; Helpenstell, Lily K.; Schuette, Lindsey M.; Fidler, Tara L.; Kosten, Therese A.; Ryabinin, Andrey E.

    2015-01-01

    An effort has been mounted to understand the mechanisms of alcohol dependence in a way that may allow for greater efficacy in treatment. It has long been suggested that drugs of abuse seize fundamental reward pathways and disrupt homeostasis to produce compulsive drug seeking behaviors. Ghrelin, an endogenous hormone that affects hunger state and release of growth hormone, has been shown to increased alcohol intake following administration, while antagonists decrease intake. Using rodent models of dependence, the current study examined the effects of two ghrelin receptor antagonists, [DLys3]-GHRP-6 (DLys) and JMV2959, on dependence-induced alcohol self-administration. In two experiments adult male C57BL/6J mice and Wistar rats were made dependent via intermittent ethanol vapor exposure. In another experiment, adult male C57BL/6J mice were made dependent using the intragastric alcohol consumption (IGAC) procedure. Ghrelin receptor antagonists were given prior to voluntary ethanol drinking. Ghrelin antagonists reduced ethanol intake, preference, and operant self-administration of ethanol and sucrose across these models, but did not decrease food consumption in mice. In experiments 1 and 2, voluntary drinking was reduced by ghrelin receptor antagonists, however this reduction did not persist across days. Despite the transient effects to ghrelin antagonists, the drugs had renewed effectiveness following a break in administration as seen in experiment 1. The results show the ghrelin system as a potential target for studies of alcohol abuse. Further research is needed to determine the central mechanisms of these drugs and their influence on addiction in order to design effective pharmacotherapies. PMID:26051399

  9. Total and acylated ghrelin in liver cirrhosis: correlation with clinical and nutritional status.

    PubMed

    El-Shehaby, Amal M; Obaia, Eman M; Alwakil, Sahar S; Hiekal, Ahmed A

    2010-07-01

    The pathogenesis of anorexia in cirrhotic patients is complex and the appetite-modulating hormone ghrelin could be involved. Acylated ghrelin is the biologically active form that modifies insulin sensitivity and body composition. The aim of the present study was to compare acylated and total ghrelin concentration in patients with liver cirrhosis and to investigate the possible relationship between ghrelin and clinical and nutritional parameters. Sixty patients with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twenty healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls. Fasting levels of total, acylated ghrelin, leptin, TNF-alpha and insulin were measured in all subjects, in addition, clinical and nutrition parameters were assessed. In cirrhotic patients, plasma levels of both acylated and total ghrelin were significantly higher than those in the controls. The mean plasma acylated ghrelin levels were significantly higher in Child C cirrhosis compared to Child A and B. Ghrelin (total and acylated) were negatively correlated with leptin in cirrhotic patients confirming the fact that leptin acts as a physiological counterpart of ghrelin. Nutritional and metabolic abnormalities in cirrhotic patients may be dependent on the changes in the ghrelin/leptin systems, mainly the acylated form of ghrelin.

  10. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    PubMed Central

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  11. Assessments of plasma ghrelin levels in the early stages of parkinson's disease.

    PubMed

    Song, Ning; Wang, Weiwei; Jia, Fengjv; Du, Xixun; Xie, Anmu; He, Qing; Shen, Xiaoli; Zhang, Jing; Rogers, Jack T; Xie, Junxia; Jiang, Hong

    2017-10-01

    Gastrointestinal symptoms are early events in Parkinson's disease (PD). The gastrointestinal hormone ghrelin was neuroprotective in the nigrostriatal dopamine system. The objective of this study was to assess ghrelin levels in the early stages of PD. Plasma was collected in the fasting state in 291 PD patients in stages 1-3 and 303 age- and sex-matched healthy controls. Additional samples were taken in the glucose response test to assess nutrition-related ghrelin levels in 20 PD patients and 20 healthy controls. The enzyme-linked immunosorbent assay was used to measure total and active plasma ghrelin levels. We reported that total and active plasma ghrelin levels were decreased in PD, although there was no difference across progressive PD stages. Postprandial ghrelin suppression and preprandial peak responses were both attenuated in PD. Plasma ghrelin levels were decreased in PD; however, this event might be irrelevant to PD progression. Ghrelin responses to meals were also impaired in PD. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  12. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    PubMed Central

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-01-01

    Background and Objectives: High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. Subjects/Methods: We investigated the metabolic consequences of mice fed a (a) regular diet, (b) ‘Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80+CD11c+ macrophages and anti-inflammatory F4/80+CD11c− macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. Results: We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing ‘Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to ‘Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Conclusion: Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose

  13. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance.

    PubMed

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-12-23

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. We investigated the metabolic consequences of mice fed a (a) regular diet, (b) 'Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80(+)CD11c(+) macrophages and anti-inflammatory F4/80(+)CD11c(-) macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing 'Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to 'Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose inflammation and insulin resistance, suggesting that GHS

  14. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters.

    PubMed

    Luque, Raul M; Sampedro-Nuñez, Miguel; Gahete, Manuel D; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D; Castaño, Justo P; Marazuela, Mónica

    2015-08-14

    Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value.

  15. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters

    PubMed Central

    Gahete, Manuel D.; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D.; Castaño, Justo P.; Marazuela, Mónica

    2015-01-01

    Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value. PMID:26124083

  16. Seasonal and parity effects on ghrelin levels throughout the estrous cycle in dairy cows.

    PubMed

    Honig, Hen; Ofer, Lior; Elbaz, Michal; Kaim, Moshe; Shinder, Dima; Gershon, Eran

    2016-09-01

    In dairy cows, heat stress depresses appetite, leading to decreased food intake, a negative energy balance, and modifies ghrelin levels. Ghrelin is a gut-brain peptide with two major forms: acylated, with an O-n-octanoylated serine in position 3, and nonacylated. To date, the effect of heat stress and estrous cycle on ghrelin secretion in dairy cows has not been studied. We characterized ghrelin secretion during the estrous cycle in each, the winter and the summer seasons. We further examined the effects of parity on ghrelin secretion. Blood was collected from 10 primiparous or multiparous Israeli-Holstein dairy cows throughout the estrous cycle, in both, the hot and cold seasons. The levels of acylated and total ghrelin were measured in the blood samples. We found that both acylated and total ghrelin levels during heat stress were lower than their respective levels in the winter in both, primiparous and multiparous cows. No differences in acylated and total ghrelin levels were found between primiparous and multiparous cows in both seasons. We further found that in multiparous but not primiparous cows acylated ghrelin secretion oscillated during the estrous cycle in both seasons. Its levels peaked on the last days of the first follicular wave and on the days before and during ovulation. Interestingly, we found that elevated acylated ghrelin levels correlated with conception success and increased total ghrelin levels were associated with successful conception from first insemination. Our data is the first to demonstrate seasonal variation in ghrelin secretion. This study provides evidence for the yet unfamiliar link between heat stress, ghrelin and fertility. Increased circulating acylated ghrelin may contribute to improved fertility in dairy cows. It further raises the possibility of a link between ghrelin levels and successful inseminations. Further research is required to determine the effects of ghrelin on dairy cow performance. Copyright © 2016 Elsevier Inc

  17. Expression of Serum Retinol Binding Protein and Transthyretin within Mouse Gastric Ghrelin Cells

    PubMed Central

    Walker, Angela K.; Gong, Zhi; Park, Won-Mee

    2013-01-01

    Ghrelin is an orexigenic peptide hormone produced mainly by a distinct group of dispersed endocrine cells located within the gastric oxyntic mucosa. Besides secreted gene products derived from the preproghrelin gene, which include acyl-ghrelin, desacyl-ghrelin and obestatin, ghrelin cells also synthesize the secreted protein nesfatin-1. The main goal of the current study was to identify other proteins secreted from ghrelin cells. An initial gene chip screen using mRNAs derived from highly enriched pools of mouse gastric ghrelin cells demonstrated high levels of serum retinol-binding protein (RBP4) and transthyretin (TTR), both of which are known to circulate in the bloodstream bound to each other. This high expression was confirmed by quantitative RT-PCR using as template mRNA derived from the enriched gastric ghrelin cell pools and from two ghrelin-producing cell lines (SG-1 and PG-1). RBP4 protein also was shown to be secreted into the culture medium of ghrelin cell lines. Neither acute nor chronic caloric restriction had a significant effect on RBP4 mRNA levels within stomachs of C57BL/6J mice, although both manipulations significantly decreased stomach TTR mRNA levels. In vitro studies using PG-1 cells showed no effect on RBP4 release of octanoic acid, epinephrine or norepinephrine, all of which are known to act directly on ghrelin cells to stimulate ghrelin secretion. These data provide new insights into ghrelin cell physiology, and given the known functions of RBP4 and TTR, support an emerging role for the ghrelin cell in blood glucose handling and metabolism. PMID:23840311

  18. Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy.

    PubMed

    Cardona Cano, Sebastian; Merkestein, Myrte; Skibicka, Karolina P; Dickson, Suzanne L; Adan, Roger A H

    2012-04-01

    Ghrelin is the only known circulating orexigenic hormone. It increases food intake by interacting with hypothalamic and brainstem circuits involved in energy balance, as well as reward-related brain areas. A heightened gut-brain ghrelin axis is an emerging feature of certain eating disorders such as anorexia nervosa and Prader-Willi syndrome. In common obesity, ghrelin levels are lowered, whereas post-meal ghrelin levels remain higher than in lean individuals. Agents that interfere with ghrelin signalling have therapeutic potential for eating disorders, including obesity. However, most of these drugs are only in the preclinical phase of development. Data obtained so far suggest that ghrelin agonists may have potential in the treatment of anorexia nervosa, while ghrelin antagonists seem promising for other eating disorders such as obesity and Prader-Willi syndrome. However, large clinical trials are needed to evaluate the efficacy and safety of these drugs.

  19. Acute food deprivation enhances fear extinction but inhibits long-term depression in the lateral amygdala via ghrelin signaling.

    PubMed

    Huang, Chiung-Chun; Chou, Dylan; Yeh, Che-Ming; Hsu, Kuei-Sen

    2016-02-01

    Fear memory-encoding thalamic input synapses to the lateral amygdala (T-LA) exhibit dynamic efficacy changes that are tightly correlated with fear memory strength. Previous studies have shown that auditory fear conditioning involves strengthening of synaptic strength, and conversely, fear extinction training leads to T-LA synaptic weakening and occlusion of long-term depression (LTD) induction. These findings suggest that the mechanisms governing LTD at T-LA synapses may determine the behavioral outcomes of extinction training. Here, we explored this hypothesis by implementing food deprivation (FD) stress in mice to determine its effects on fear extinction and LTD induction at T-LA synapses. We found that FD increased plasma acylated ghrelin levels and enhanced fear extinction and its retention. Augmentation of fear extinction by FD was blocked by pretreatment with growth hormone secretagogue receptor type-1a antagonist D-Lys(3)-GHRP-6, suggesting an involvement of ghrelin signaling. Confirming previous findings, two distinct forms of LTD coexist at thalamic inputs to LA pyramidal neurons that can be induced by low-frequency stimulation (LFS) or paired-pulse LFS (PP-LFS) paired with postsynaptic depolarization, respectively. Unexpectedly, we found that FD impaired the induction of PP-LFS- and group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG)-induced LTD, but not LFS-induced LTD. Ghrelin mimicked the effects of FD to impair the induction of PP-LFS- and DHPG-induced LTD at T-LA synapses, which were blocked by co-application of D-Lys(3)-GHRP-6. The sensitivity of synaptic transmission to 1-naphthyl acetyl spermine was not altered by either FD or ghrelin treatment. These results highlight distinct features of fear extinction and LTD at T-LA synapses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Four-hour infusion of hydrocortisone does not suppress the nocturnal increase of circulating acyl- or desacyl-ghrelin concentrations in healthy young adults.

    PubMed

    Nass, Ralf; Liu, Jianhua; Patrie, James; Pezzoli, Suzan S; Farhy, Leon S; Gaylinn, Bruce D; Thorner, Michael O

    2014-09-01

    Ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin is found in the circulation in two forms: acyl- and desacyl-ghrelin. Acyl- and desacyl-ghrelin concentrations increase at night, when cortisol concentrations are low. Acute ghrelin administration increases ACTH and cortisol concentrations and a feedback loop between the ghrelin and ACTH-cortisol axis has been postulated. A previous study showed that exogenously induced hypercortisolism for 5 days decreased plasma ghrelin concentrations. The objective of the study was to determine whether a 4-hour infusion of hydrocortisone given at a time of low endogenous cortisol concentrations (11:00 pm to 3:00 am) acutely suppresses acyl- and desacyl-ghrelin. Eight healthy young men aged (mean ± SD) 21.5 ± 2.7 years with a body mass index of 22.4 ± 2.5 kg/m(2) were studied in a single-blind, placebo-controlled study during two separate overnight admissions on the Clinical Research Unit. The volunteers received either a 4-hour (11:00 pm to 3:00 am) infusion of hydrocortisone or a saline infusion. The hydrocortisone infusion rate was 0.3 mg/kg·h for the initial 3 minutes, 0.24 mg/kg·h for 9 minutes, and then 0.135 mg/kg·h until the end of the infusion. Plasma acyl- and desacyl-ghrelin concentrations (in-house two site sandwich assay) and ACTH, cortisol, insulin, GH, and glucose levels were measured every 10 minutes for 16 hours (5:00 pm to 9:00 am). The mean differences (lower 95% limit; upper 95% limit) between the saline infusion and hydrocortisone infusion for acyl- and desacyl-ghrelin concentrations were not significantly different from zero. The infusion period (11:00 pm to 3:00 am) was as follows: acyl-ghrelin, 0.22 (-7.39; 7.83) (P = 1.00); desacyl-ghrelin, -3.36 (-17.66; 10.95) (P = 1.00). The postinfusion period (3:00-7:00 am) was as follows: acyl-ghrelin, 8.68 (1.07; 16.28); (P = .056); desacyl-ghrelin, 8.75 (-5.56; 23.05) (P = .403). A short-term increase in circulating cortisol concentrations

  1. Four-Hour Infusion of Hydrocortisone Does Not Suppress the Nocturnal Increase of Circulating Acyl- or Desacyl-Ghrelin Concentrations in Healthy Young Adults

    PubMed Central

    Liu, Jianhua; Patrie, James; Pezzoli, Suzan S.; Farhy, Leon S.; Gaylinn, Bruce D.; Thorner, Michael O.

    2014-01-01

    Background: Ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin is found in the circulation in two forms: acyl- and desacyl-ghrelin. Acyl- and desacyl-ghrelin concentrations increase at night, when cortisol concentrations are low. Acute ghrelin administration increases ACTH and cortisol concentrations and a feedback loop between the ghrelin and ACTH-cortisol axis has been postulated. A previous study showed that exogenously induced hypercortisolism for 5 days decreased plasma ghrelin concentrations. Objective: The objective of the study was to determine whether a 4-hour infusion of hydrocortisone given at a time of low endogenous cortisol concentrations (11:00 pm to 3:00 am) acutely suppresses acyl- and desacyl-ghrelin. Methods: Eight healthy young men aged (mean ± SD) 21.5 ± 2.7 years with a body mass index of 22.4 ± 2.5 kg/m2 were studied in a single-blind, placebo-controlled study during two separate overnight admissions on the Clinical Research Unit. The volunteers received either a 4-hour (11:00 pm to 3:00 am) infusion of hydrocortisone or a saline infusion. The hydrocortisone infusion rate was 0.3 mg/kg·h for the initial 3 minutes, 0.24 mg/kg·h for 9 minutes, and then 0.135 mg/kg·h until the end of the infusion. Plasma acyl- and desacyl-ghrelin concentrations (in-house two site sandwich assay) and ACTH, cortisol, insulin, GH, and glucose levels were measured every 10 minutes for 16 hours (5:00 pm to 9:00 am). Results: The mean differences (lower 95% limit; upper 95% limit) between the saline infusion and hydrocortisone infusion for acyl- and desacyl-ghrelin concentrations were not significantly different from zero. The infusion period (11:00 pm to 3:00 am) was as follows: acyl-ghrelin, 0.22 (−7.39; 7.83) (P = 1.00); desacyl-ghrelin, −3.36 (−17.66; 10.95) (P = 1.00). The postinfusion period (3:00–7:00 am) was as follows: acyl-ghrelin, 8.68 (1.07; 16.28); (P = .056); desacyl-ghrelin, 8.75 (−5.56; 23.05) (P = .403). Conclusions

  2. Relationship between ghrelin levels, alcohol craving, and nutritional status in current alcoholic patients.

    PubMed

    Addolorato, Giovanni; Capristo, Esmeralda; Leggio, Lorenzo; Ferrulli, Anna; Abenavoli, Ludovico; Malandrino, Noemi; Farnetti, Sara; Domenicali, Marco; D'Angelo, Cristina; Vonghia, Luisa; Mirijello, Antonio; Cardone, Silvia; Gasbarrini, Giovanni

    2006-11-01

    Ghrelin is a peptide produced mainly by the gut and hypothalamus. Ghrelin is able to stimulate food-seeking behavior. Alcohol-craving and food-seeking behavior could share common neural circuits. Ghrelin is related to nutritional status, but few data are available in alcoholic patients on the relationship between ghrelin and nutritional disorders. Plasma ghrelin was evaluated in 15 current alcoholic male patients compared with 15 healthy male volunteers. Craving was evaluated by the Obsessive-Compulsive Drinking Scale. Body composition was assessed by dual-energy X-ray absorptiometry. Energy substrate utilization was evaluated by indirect calorimetry. Ghrelin was significantly reduced in alcohol-dependent patients with respect to healthy subjects (p=0.0278). A significant positive correlation was found between ghrelin and craving (r=0.55; p=0.034). A preferential utilization of lipids as an energy substrate with a reduction of the fat mass (p=0.01) and an increase of the free fat mass (p=0.0091) was found in alcoholic patients. Within our sample showing low ghrelin levels probably related to the impaired nutritional status; patients with higher levels of ghrelin showed higher levels of alcohol craving. These preliminary data indicate that ghrelin could be implicated in the neurobiological mechanisms of alcohol craving, other than a hormone influenced by the nutritional status.

  3. Ghrelin: an emerging player in the regulation of reproduction in non-mammalian vertebrates.

    PubMed

    Unniappan, Suraj

    2010-07-01

    The endocrine regulation of vertebrate reproduction is achieved by the coordinated actions of multiple endocrine factors mainly produced from the brain, pituitary, and gonads. In addition to these, several other tissues including the fat and gut produce factors that have reproductive effects. Ghrelin is one such gut/brain hormone with species-specific effects in the regulation of mammalian reproduction. Recent studies have shown that ghrelin and ghrelin receptor mRNAs, and protein are expressed in the ovary and testis of mammals, indicating a direct effect for ghrelin in the control of reproduction. Ghrelin regulates mammalian reproduction by modulating hormone secretion from the brain and pituitary, and by acting directly on the gonads to influence reproductive tissue development and steroid hormone release. Based on the studies reported so far, ghrelin seems to have a predominantly inhibitory role on mammalian reproduction. The presence of ghrelin and ghrelin receptor has been found in the brain, pituitary and gonads of several non-mammalian vertebrates. In contrast to mammals, ghrelin seems to have a stimulatory role in the regulation of non-mammalian reproduction. The main objective of this review is to do a perspective analysis of the comparative aspects of ghrelin regulation of reproduction. (c) 2009 Elsevier Inc. All rights reserved.

  4. Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species.

    PubMed

    Jurado, Juan; Fuentes-Almagro, Carlos A; Prieto-Alamo, María J; Pueyo, Carmen

    2007-09-21

    Alternative splicing is a widespread mechanism of gene expression regulation. Previous analyses based on conventional RT-PCR reported the presence of an unspliced c-fos transcript in several mammalian systems. Compared to the well-defined knowledge on the alternative splicing of fosB, the physiological relevance of the unspliced c-fos transcript in regulating c-fos expression remains largely unknown. This work aimed to investigate the functional significance of the alternative splicing c-fos pre-mRNA. A set of primers was designed to demonstrate that, whereas introns 1 and 2 are regularly spliced from primary c-fos transcript, intron 3 remains unspliced in part of total transcript molecules. Here, the two species are referred to as c-fos-2 (+ intron 3) and spliced c-fos (- intron 3) transcripts. Then, we used a quantitatively rigorous approach based on real-time PCR to provide, for the first time, the actual steady-state copy numbers of the two c-fos transcripts. We tested how the mouse-organ context and mouse-gestational age, the synthesis and turnover rates of the investigated transcripts, and the serum stimulation of quiescent cells modulate their absolute-expression profiles. Intron 3 generates an in-frame premature termination codon that predicts the synthesis of a truncated c-Fos protein. This prediction was evaluated by immunoaffinity chromatography purification of c-Fos proteins. We demonstrate that: (i) The c-fos-2 transcript is ubiquitously synthesized either in vivo or in vitro, in amounts that are higher or similar to those of mRNAs coding for other Fos family members, like FosB, DeltaFosB, Fra-1 or Fra-2. (ii) Intron 3 confers to c-fos-2 an outstanding destabilizing effect of about 6-fold. (iii) Major determinant of c-fos-2 steady-state levels in cultured cells is its remarkably high rate of synthesis. (iv) Rapid changes in the synthesis and/or degradation rates of both c-fos transcripts in serum-stimulated cells give rise to rapid and transient

  5. [Ghrelin: a gastric hormone at the crossroad between growth and appetite regulation].

    PubMed

    Labarthe, Alexandra; Tolle, Virginie

    2016-01-01

    Ghrelin is a 28 amino acid peptide hormone synthesized within the gastrointestinal tract. Initially identified as the endogenous ligand of the GHS-R1a (Growth Hormone Secretagogue Receptor 1a), ghrelin is a powerful stimulator of growth hormone (GH) secretion. At the crossroad between nutrition, growth and long-term energy metabolism, ghrelin also plays a unique role as the first identified gastric hormone increasing appetite and adiposity. However, the role of the ghrelin/GHS-R system in the physiology of growth, feeding behaviour and energy homeostasis needs to be better understood. Utilization of pharmacological tools and complementary animal models with deficiency in preproghrelin, ghrelin-O-acyl-transferase (GOAT - the enzyme that acylates ghrelin -) or GHS-R in situations of chronic undernutrition or high fat diet gives a more precise overview of the role of ghrelin in the pathophysiology of eating and metabolic disorders. © Société de Biologie, 2017.

  6. Ghrelin concentrations in Prader-Willi syndrome (PWS) infants and children: changes during development.

    PubMed

    Haqq, Andrea M; Grambow, Steven C; Muehlbauer, Michael; Newgard, Christopher B; Svetkey, Laura P; Carrel, Aaron L; Yanovski, Jack A; Purnell, Jonathan Q; Freemark, Michael

    2008-12-01

    Prader-Willi syndrome (PWS) is associated with failure to thrive in infancy and progressive hyperphagia and obesity in childhood. This progressive weight gain is associated with hyperghrelinaemia and increased insulin sensitivity. The role of ghrelin excess in the pathogenesis of obesity is unclear. To determine if high ghrelin levels precede the onset of obesity in young PWS children. A cross-sectional study of 33 infants with PWS and 28 healthy control subjects (C). Fasting ghrelin and other satiety hormones were measured. Median total serum ghrelin in young children with PWS trended higher, but did not differ significantly from those in C of similar age, weight-for-age z-score and sex. However, there was more variability in ghrelin concentrations of young PWS. Eleven of 33 PWS subjects had ghrelin levels greater than the 95th percentile for ghrelin values in the C subjects (> 2871 pg/ml). Six of the PWS subjects with high ghrelin levels had weight-for-age z-scores < 0. Ghrelin concentrations in PWS and C infants exceeded those in older children. In youngsters with PWS, leptin was higher, suggesting a relative excess of fat to lean body mass and plasma adiponectin was increased. Young infants with PWS who have not yet developed hyperphagia or obesity have median fasting ghrelin levels similar to controls. However, a subset (33%) of young PWS is hyperghrelinaemic; approximately one-half of those with hyperghrelinaemia have BMI z-score < 0. The age-related decline in ghrelin is blunted in PWS.

  7. Ghrelin receptor regulates adipose tissue inflammation in aging

    USDA-ARS?s Scientific Manuscript database

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  8. Endogenous peptide profile for elucidating biosynthetic processing of the ghrelin precursor.

    PubMed

    Tsuchiya, Takashi; Iwakura, Hiroshi; Minamino, Naoto; Kangawa, Kenji; Sasaki, Kazuki

    2017-09-02

    Ghrelin is an orexigenic peptide primarily produced by gastric endocrine cells. The biosynthetic cleavage site of ghrelin has been well documented, but how its downstream region undergoes proteolytic processing remains poorly explored. Here, we provide the first snapshot of endogenous peptides from the ghrelin precursor by profiling the secretopeptidome of cultured mouse ghrelin-producing cells during exocytosis. Mapping of MS/MS sequenced peptides to the precursor highlighted three atypical monobasic processing sites, including the established C-terminus of ghrelin and the N-terminal cleavage site for obestatin, a putative 23-amino-acid C-terminally amidated peptide. However, we found that mouse obestatin does not occur in the form originally reported, but that a different amidation site is used to generate a shorter peptide. These data can be extended to study and characterize the precursor-derived peptides located downstream of ghrelin in different biological contexts. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intrathecal treatment with MK-801 suppresses thermal nociceptive responses and prevents c-fos immunoreactivity induced in rat lumbar spinal cord neurons.

    PubMed

    Huang, W; Simpson, R K

    1999-09-01

    Sensitization of the second order neurons in the spinal dorsal horn after somatic noxious stimuli is partly mediated by the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor. These neurons also express c-Fos immunoreactivity in response to the somatic noxious stimuli. The present study assessed the influence of intrathecal pre-treatment with MK-801, a non-competitive antagonist of NMDA receptor, on thermal sensitization following peripheral noxious heat stimulation. In addition, the influence of MK-801 on c-Fos immunoreactivity in the rat lumbar spinal cord neurons after the peripheral noxious heat was examined. Sprague-Dawley rats were subject to intrathecal catheterization and administration of MK-801 or saline before and after noxious heat (52 degrees C) stimulation of rat hindpaws. Thermal sensitization was tested after MK-801 (0.1 mumol 10 microliters-1). Fos-like immunoreactivity was evaluated 2 h after noxious stimulation in a separate group of animals. MK-801 significantly increased the thermal withdrawal threshold by 60% following noxious heat stimulation and reduced c-Fos immunoreactivity in the second order neurons by 70% in the dorsal horn. The study suggests that glutamate plays a pivotal role in the thermal nociceptive pathway and indicates that the NMDA receptor is necessary to maintain normal thermal sensitization, possibly by regulating c-fos gene expression in second order neurons.

  10. Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.

    PubMed

    Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K

    2014-06-01

    Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.

  11. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway.

    PubMed

    Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong

    2014-11-26

    Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.

  12. The role of ghrelin in anorexia-cachexia syndromes.

    PubMed

    Guillory, Bobby; Splenser, Andres; Garcia, Jose

    2013-01-01

    Anorexia, sarcopenia, and cachexia are common complications of many chronic conditions including cancer, rheumatoid arthritis, HIV infection, aging, and chronic lung, heart, or kidney disease. Currently, there is no effective treatment for muscle atrophy or wasting conditions although they typically take a significant toll on the quality of life of patients and are associated with poor prognosis and decreased survival. Ghrelin affects multiple key pathways in the regulation of body weight, body composition, and appetite in the setting of cachexia that may lead to an increase in appetite and growth hormone secretion and a reduction in energy expenditure and inflammation. The net effect is increased lean body mass and fat mass preservation. In this chapter, we review the mechanisms of action of ghrelin and present the available data in animal models and human trials using ghrelin or ghrelin mimetics in different settings of cachexia. Copyright © 2013 Published by Elsevier Inc. Published by Elsevier Science & Technology.. All rights reserved.

  13. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year?

    PubMed Central

    Larson-Meyer, D. Enette; Schueler, Jessica; Kyle, Erin; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2016-01-01

    To determine whether fasting and meal-induced appetite-regulating hormones are altered during lactation and associated with body weight retention after childbearing, we studied 24 exclusively breastfeeding women (BMI = 25.2 ± 3.6 kg/m2) at 4-5 weeks postpartum and 20 never-pregnant controls (BMI = 24.0 ± 3.1 kg/m2). Ghrelin, PYY, GLP-1, and appetite ratings were measured before/and 150 minutes after a standardized breakfast and 60 minutes after an ad libitum lunch. Body weight/composition were measured at 6 and 12 months. Fasting and area under-the-curve responses for appetite-regulating hormones did not differ between lactating and control groups; ghrelinacyl, however, tended to track higher after the standardized breakfast in lactating women and was higher (p < 0.05) after the ad libitum lunch despite a 24% higher energy intake (p < 0.05). By 12 months, lactating women lost 5.3 ± 2.2 kg (n = 18), whereas control women (n = 15) remained weight stable (p = 0.019); fifteen of the lactating women returned to within ±2.0 kg of prepregnancy weight but three retained >6.0 kg. The retainers had greater (p < 0.05) postmeal ghrelin rebound responses following breakfast. Overall these studies do not support the hypothesis that appetite-regulating hormones are altered during lactation and associated with postpartum weight retention. Altered ghrelin responses, however, deserve further exploration. PMID:27313876

  14. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development.

    PubMed

    Li, Xi; He, Jiangyan; Hu, Wei; Yin, Zhan

    2009-06-01

    Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.

  15. The promise of ghrelin antagonism in obesity treatment.

    PubMed

    Helmling, Steffen; Jarosch, Florian; Klussmann, Sven

    2006-01-01

    According to the World Health Organization, 300 million people are clinically obese worldwide. As a major risk factor in the development of life-threatening diseases such as diabetes, cardiovascular disease and certain cancers, obesity is quickly evolving into a serious public health threat on a global scale. This alarming situation calls for the development of effective treatments, including pharmacological intervention. Many biotechnology and pharmaceutical companies have embarked on the endeavor to develop safe new therapeutics for weight loss and durable weight management. Much progress has been made to improve our understanding of the regulation of energy homeostasis, but this knowledge has not yet translated into new medicines. However, it has led to the identification of molecules that promise to be highly interesting targets for therapeutic intervention. One such molecule is the enteric hormone ghrelin. Ghrelin was identified in 1999 as the endogenous ligand for the growth hormone secretagogue-receptor 1a (GHS-R1a). Soon after its discovery ghrelin was shown to increase food intake, downregulate energy expenditure and conserve body fat, causing weight gain and adipogenesis. Unsurprisingly, these findings placed ghrelin and its receptor on the radar screens of many medical researchers in academia and the pharmaceutical industry. The resulting attention has led to a steadily growing body of evidence in support of ghrelin antagonism as a potential means to ameliorate obesity. But the causes for obesity are manifold, and skepticism about the utility of this approach remains. The current review summarizes the arguments for and against ghrelin as a potential antiobesity target and discusses recent pharmaceutical developments to interfere with this exciting pathway. 2006 Prous Science. All rights reserved.

  16. Ghrelin clearance is reduced at the late stage of polymicrobial sepsis.

    PubMed

    Wu, Rongqian; Zhou, Mian; Cui, Xiaoxuan; Simms, H Hank; Wang, Ping

    2003-11-01

    The cardiovascular response to sepsis is characterized by an early, hyperdynamic phase followed by a late, hypodynamic phase. Ghrelin, a newly-identified endogenous ligand for growth hormone secretagogue receptor (i.e., ghrelin receptor), was recently demonstrated to be a potent vasoactive peptide in addition to its effects on growth hormone release and energy homeostasis. We have shown that ghrelin (via its receptor) may play an important role in regulating cardiovascular responses in the progression of polymicrobial sepsis. However, it remains unknown whether the clearance of this peptide is altered in sepsis. To determine this, male adult rats were injected with 125I-ghrelin through the jugular vein at 5 or 20 h after cecal ligation and puncture (CLP, i.e., sepsis model) or sham operation. The blood sample was collected every 2 min for 30 min for determining half-life (t1/2). Tissue samples (i.e., kidneys, liver, brain, heart, lungs, spleen, stomach, small intestine, large intestine, skin and muscle) were then harvested. The radioactivities of samples were counted. The results indicate that 125I-ghrelin's t1/2 and its distribution were not significantly altered in early sepsis (5 h after CLP). However, the t1/2 increased significantly in late sepsis (20 h after CLP). Tissue distribution of 125I-ghrelin was far greater in the kidneys than in any other tissues tested in both sham and septic animals. Moreover, the kidneys and liver had significantly less radioactive uptake at 20 h after CLP, but the radioactivity in blood was much higher at the same time point. There were no significant changes in 125I-ghrelin distribution in other organs at the late stage of sepsis. These results indicate that the kidneys are the primary site of ghrelin clearance, which is significantly diminished in late sepsis. In addition, the liver also plays a role in the clearance of ghrelin, which was also reduced in late sepsis. The decreased clearance of ghrelin by the kidneys and liver

  17. Meal timing and composition influence ghrelin levels, appetite scores and weight loss maintenance in overweight and obese adults.

    PubMed

    Jakubowicz, Daniela; Froy, Oren; Wainstein, Julio; Boaz, Mona

    2012-03-10

    Although dietary restriction often results in initial weight loss, the majority of obese dieters fail to maintain their reduced weight. Diet-induced weight loss results in compensatory increase of hunger, craving and decreased ghrelin suppression that encourage weight regain. A high protein and carbohydrate breakfast may overcome these compensatory changes and prevent obesity relapse. In this study 193 obese (BMI 32.2±1.0kg/m(2)), sedentary non diabetic adult men and women (47±7years) were randomized to a low carbohydrate breakfast (LCb) or an isocaloric diet with high carbohydrate and protein breakfast (HCPb). Anthropometric measures were assessed every 4weeks. Fasting glucose, insulin, ghrelin, lipids, craving scores and breakfast meal challenge assessing hunger, satiety, insulin and ghrelin responses, were performed at baseline, after a Diet Intervention Period (Week 16) and after a Follow-up Period (Week 32). At Week 16, groups exhibited similar weight loss: 15.1±1.9kg in LCb group vs. 13.5±2.3kg in HCPb group, p=0.11. From Week 16 to Week 32, LCb group regained 11.6±2.6kg, while the HCPb group lost additional 6.9±1.7kg. Ghrelin levels were reduced after breakfast by 45.2% and 29.5% following the HCPb and LCb, respectively. Satiety was significantly improved and hunger and craving scores significantly reduced in the HCPb group vs. the LCb group. A high carbohydrate and protein breakfast may prevent weight regain by reducing diet-induced compensatory changes in hunger, cravings and ghrelin suppression. To achieve long-term weight loss, meal timing and macronutrient composition must counteract these compensatory mechanisms which encourage weight regain after weight loss. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  19. Association of A-604G ghrelin gene polymorphism and serum ghrelin levels with the risk of obesity in a mexican population.

    PubMed

    Llamas-Covarrubias, Iris Monserrat; Llamas-Covarrubias, Mara Anaís; Martinez-López, Erika; Zepeda-Carrillo, Eloy Alfonso; Rivera-León, Edgar Alfonso; Palmeros-Sánchez, Beatriz; Alcalá-Zermeño, Juan Luis; Sánchez-Enríquez, Sergio

    2017-07-01

    Obesity is a metabolic disorder that has a multifactorial etiology and affects millions of people worldwide. Ghrelin, a hormone coded by the GHRL gene, plays a role in human body composition and appetite. Single nucleotide polymorphisms (SNPs) of the GHRL gene have been associated with obesity and metabolic disorders. To evaluate the association of A-604G SNP of GHRL promoter region with serum ghrelin levels and the risk of obesity in a Mexican population. Two hundred and fifty individuals were enrolled and classified as obese or control subjects (CS) according to BMI. DNA samples, anthropometric measurements and biochemical parameters were obtained from all subjects. The A-604G SNP was genotyped using PCR-RFLPs technique. Ghrelin levels were measured using a commercial enzyme immunoassay. The G/G genotype was more frequent among obese individuals (p < 0.0001) when compared to CS. The G/A genotype and A allele were associated with protection against obesity (OR 0.29, p < 0.0001; OR 0.39, p < 0.0001 respectively), the A allele remained significant after adjusting for age and gender (OR: 0.25, p < 0.0001). Serum ghrelin levels were higher in obese patients (p = 0.004) than in CS, however, significance was lost after adjustment for age (p = 0.088). The G/G genotype was associated with higher levels of serum ghrelin (p = 0.02) independently of the effect of age. The G/G genotype of the A-604G SNP in the GHRL gene is associated with altered serum ghrelin levels and obesity. The A allele was also associated with protection against obesity in this study.

  20. Do growth hormone-releasing peptides act as ghrelin secretagogues?

    PubMed

    Ahnfelt-Rønne, I; Nowak, J; Olsen, U B

    2001-02-01

    NN703 is an orally active and selective growth hormone secretagogue (GHS) that was derived from growth hormone-releasing peptide-1(GHRP-1) via ipamorelin by a peptidomimetic approach and has now entered into phase II clinical trials. When the disposition in rats of NN703 and GHRP-6 was studied using whole-body autoradiography following administration of an iv dose of radiolabeled material, we found that a substantial amount of these secretagogues accumulate in the glandular part of the stomach. Because this is the site of synthesis and secretion of ghrelin, the endogenous GHS, we investigated the effect of resection of the gastrointestinal (GI) tract on growth hormone (GH) release induced by GHRP-6. This procedure significantly attenuated the GH secretion response by 60-70%. By contrast, the effect of GH-releasing hormone on GH release was not inhibited. The binding of GHRPs to the glandular part of the stomach and the blunted GH response to GHRP-6 following resection of the GI tract suggest a role for ghrelin as a mediator of part of the GH-releasing effect of GHRPs.

  1. Interpersonal stressors predict ghrelin and leptin levels in women.

    PubMed

    Jaremka, Lisa M; Belury, Martha A; Andridge, Rebecca R; Malarkey, William B; Glaser, Ronald; Christian, Lisa; Emery, Charles F; Kiecolt-Glaser, Janice K

    2014-10-01

    Stressful events enhance risk for weight gain and adiposity. Ghrelin and leptin, two hormones that are implicated in appetite regulation, may link stressful events to weight gain; a number of rodent studies suggest that stressors increase ghrelin production. The present study investigated the links among daily stressors, ghrelin and leptin, and dietary intake in humans. Women (n=50) completed three study appointments that were scheduled at least 2 weeks apart. At each visit, women arrived fasting and ate a standardized breakfast and lunch. Blood samples were collected 45min after each meal. Women completed a self-report version of the Daily Inventory of Stressful Events (DISE) at each appointment. Two composites were created from the DISE data, reflecting the number of stressors that did and did not involve interpersonal tension. Women who experienced more stressors involving interpersonal tension had higher ghrelin and lower leptin levels than those who experienced fewer interpersonal stressors. Furthermore, women who experienced more interpersonal stressors had a diet that was higher in calories, fat, carbohydrates, protein, sugar, sodium, and fiber, and marginally higher in cholesterol, vegetables (but not fruits), vitamin A, and vitamin C. Stressors that did not involve interpersonal tension were unrelated to ghrelin and leptin levels or any of the dietary components examined. These data suggest that ghrelin and leptin may link daily interpersonal stressors to weight gain and obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Interpersonal Stressors Predict Ghrelin and Leptin Levels in Women

    PubMed Central

    Jaremka, Lisa M.; Belury, Martha A.; Andridge, Rebecca R.; Malarkey, William B.; Glaser, Ronald; Christian, Lisa; Emery, Charles F.; Kiecolt-Glaser, Janice K.

    2014-01-01

    Objective Stressful events enhance risk for weight gain and adiposity. Ghrelin and leptin, two hormones that are implicated in appetite regulation, may link stressful events to weight gain; a number of rodent studies suggest that stressors increase ghrelin production. The present study investigated the links among daily stressors, ghrelin and leptin, and dietary intake in humans. Method Women (N = 50) completed three study appointments that were scheduled at least 2 weeks apart. At each visit, women arrived fasting and ate a standardized breakfast and lunch. Blood samples were collected 45 minutes after each meal. Women completed a self-report version of the Daily Inventory of Stressful Events (DISE) at each appointment. Two composites were created from the DISE data, reflecting the number of stressors that did and did not involve interpersonal tension. Results Women who experienced more stressors involving interpersonal tension had higher ghrelin and lower leptin levels than those who experienced fewer interpersonal stressors. Furthermore, women who experienced more interpersonal stressors had a diet that was higher in calories, fat, carbohydrates, protein, sugar, sodium, and fiber, and marginally higher in cholesterol, vegetables (but not fruits), vitamin A, and vitamin C. Stressors that did not involve interpersonal tension were unrelated to ghrelin and leptin levels or any of the dietary components examined. Conclusions These data suggest that ghrelin and leptin may link daily interpersonal stressors to weight gain and obesity. PMID:25032903

  3. Loneliness predicts postprandial ghrelin and hunger in women.

    PubMed

    Jaremka, Lisa M; Fagundes, Christopher P; Peng, Juan; Belury, Martha A; Andridge, Rebecca R; Malarkey, William B; Kiecolt-Glaser, Janice K

    2015-04-01

    Loneliness is strongly linked to poor health. Recent research suggests that appetite dysregulation provides one potential pathway through which loneliness and other forms of social disconnection influence health. Obesity may alter the link between loneliness and appetite-relevant hormones, one unexplored possibility. We examined the relationships between loneliness and both postmeal ghrelin and hunger, and tested whether these links differed for people with a higher versus lower body mass index (BMI; kg/m(2)). During this double-blind randomized crossover study, women (N=42) ate a high saturated fat meal at the beginning of one full-day visit and a high oleic sunflower oil meal at the beginning of the other. Loneliness was assessed once with a commonly used loneliness questionnaire. Ghrelin was sampled before the meal and postmeal at 2 and 7h. Self-reported hunger was measured before the meal, immediately postmeal, and then 2, 4, and 7h later. Lonelier women had larger postprandial ghrelin and hunger increases compared with less lonely women, but only among participants with a lower BMI. Loneliness and postprandial ghrelin and hunger were unrelated among participants with a higher BMI. These effects were consistent across both meals. These data suggest that ghrelin, an important appetite-regulation hormone, and hunger may link loneliness to weight gain and its corresponding negative health effects among non-obese people. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Loneliness Predicts Postprandial Ghrelin and Hunger in Women

    PubMed Central

    Jaremka, Lisa M.; Fagundes, Christopher P.; Peng, Juan; Belury, Martha A.; Andridge, Rebecca R.; Malarkey, William B.; Kiecolt-Glaser, Janice K.

    2015-01-01

    Loneliness is strongly linked to poor health. Recent research suggests that appetite dysregulation provides one potential pathway through which loneliness and other forms of social disconnection influence health. Obesity may alter the link between loneliness and appetite-relevant hormones, one unexplored possibility. We examined the relationships between loneliness and both post-meal ghrelin and hunger, and tested whether these links differed for people with a higher versus lower body mass index (BMI; kg/m2). During this double-blind randomized crossover study, women (N = 42) ate a high saturated fat meal at the beginning of one full-day visit and a high oleic sunflower oil meal at the beginning of the other. Loneliness was assessed once with a commonly used loneliness questionnaire. Ghrelin was sampled before the meal and post-meal at 2 and 7 hours. Self-reported hunger was measured before the meal, immediately post-meal, and then 2, 4, and 7 hours later. Lonelier women had larger postprandial ghrelin and hunger increases compared with less lonely women, but only among participants with a lower BMI. Loneliness and postprandial ghrelin and hunger were unrelated among participants with a higher BMI. These effects were consistent across both meals. These data suggest that ghrelin, an important appetite-regulation hormone, and hunger may link loneliness to weight gain and its corresponding negative health effects among non-obese people. PMID:25725426

  5. The suppression of ghrelin signaling mitigates age-associated thermogenic impairment

    PubMed Central

    Bongmba, Odelia Y. N.; Ma, Xiaojun; Zhu, Xiongwei; Sheikh-Hamad, David; Sun, Yuxiang

    2014-01-01

    Aging is associated with severe thermogenic impairment, which contributes to obesity and diabetes in aging. We previously reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), attenuates age-associated obesity and insulin resistance. Ghrelin and obestatin are derived from the same preproghrelin gene. Here we showed that in brown adipocytes, ghrelin decreases the expression of thermogenic regulator but obestatin increases it, thus showing the opposite effects. We also found that during aging, plasma ghrelin and GHS-R expression in brown adipose tissue (BAT) are increased, but plasma obestatin is unchanged. Increased plasma ghrelin and unchanged obestatin during aging may lead to an imbalance of thermogenic regulation, which may in turn exacerbate thermogenic impairment in aging. Moreover, we found that GHS-R ablation activates thermogenic signaling, enhances insulin activation, increases mitochondrial biogenesis, and improves mitochondrial dynamics of BAT. In addition, we detected increased norepinephrine in the circulation, and observed that GHS-R knockdown in brown adipocytes directly stimulates thermogenic activity, suggesting that GHS-R regulates thermogenesis via both central and peripheral mechanisms. Collectively, our studies demonstrate that ghrelin signaling is an important thermogenic regulator in aging. Antagonists of GHS-R may serve as unique anti-obesity agents, combating obesity by activating thermogenesis. PMID:25543537

  6. Preventive role of social interaction for cocaine conditioned place preference: correlation with FosB/DeltaFosB and pCREB expression in rat mesocorticolimbic areas

    PubMed Central

    El Rawas, Rana; Klement, Sabine; Salti, Ahmad; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    The worsening of drug abuse by drug-associated social interaction is a well-studied phenomenon. In contrast, the molecular mechanisms of the beneficial effect of social interaction, if offered as a mutually exclusive choice to drugs of abuse, are under-investigated. In a rat place preference conditioning (CPP) paradigm, four 15 min episodes of social interaction with a gender- and weight-matched male early-adult conspecific inhibited cocaine-induced reinstatement of cocaine CPP, a model of relapse. These protective effects of social interaction were paralleled by a reduced activation, as assessed by Zif268 expression, in brain areas known to play pivotal roles in drug-seeking behavior. Here we show that social interaction during extinction of cocaine CPP also reduced cocaine-CPP-stimulated FosB expression in the nucleus accumbens shell and core. In addition, social interaction during cocaine CPP extinction increased pCREB (cAMP response element binding protein) expression in the nucleus accumbens shell and the cingulate cortex area 1 (Cg1). Our results show that FosB and pCREB may be implicated in the protective effect of social interaction against cocaine-induced reinstatement of CPP. Thus, social interaction, if offered in a context that is clearly distinct from the previously drug-associated one, may profoundly inhibit relapse to cocaine addiction. PMID:22403532

  7. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    USDA-ARS?s Scientific Manuscript database

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  8. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

    PubMed

    Nutsch, Victoria L; Will, Ryan G; Robison, Christopher L; Martz, Julia R; Tobiansky, Daniel J; Dominguez, Juan M

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  9. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner.

    PubMed

    Perello, Mario; Sakata, Ichiro; Birnbaum, Shari; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A; Woloszyn, Jakub; Yanagisawa, Masashi; Lutter, Michael; Zigman, Jeffrey M

    2010-05-01

    Ghrelin is a potent orexigenic hormone that likely impacts eating via several mechanisms. Here, we hypothesized that ghrelin can regulate extra homeostatic, hedonic aspects of eating behavior. In the current study, we assessed the effects of different pharmacological, physiological, and genetic models of increased ghrelin and/or ghrelin-signaling blockade on two classic behavioral tests of reward behavior: conditioned place preference (CPP) and operant conditioning. Using both CPP and operant conditioning, we found that ghrelin enhanced the rewarding value of high-fat diet (HFD) when administered to ad lib-fed mice. Conversely, wild-type mice treated with ghrelin receptor antagonist and ghrelin receptor-null mice both failed to show CPP to HFD normally observed under calorie restriction. Interestingly, neither pharmacologic nor genetic blockade of ghrelin signaling inhibited the body weight homeostasis-related, compensatory hyperphagia associated with chronic calorie restriction. Also, ghrelin's effects on HFD reward were blocked in orexin-deficient mice and wild-type mice treated with an orexin 1 receptor antagonist. Our results demonstrate an obligatory role for ghrelin in certain rewarding aspects of eating that is separate from eating associated with body weight homeostasis and that requires the presence of intact orexin signaling. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Therapeutic effect of exogenous ghrelin in the healing of gingival ulcers is mediated by the release of endogenous growth hormone and insulin-like growth factor-1.

    PubMed

    Cieszkowski, J; Warzecha, Z; Ceranowicz, P; Ceranowicz, D; Kusnierz-Cabala, B; Pedziwiatr, M; Dembinski, M; Ambrozy, T; Kaczmarzyk, T; Pihut, M; Wieckiewicz, M; Olszanecki, R; Dembinski, A

    2017-08-01

    Ghrelin, an acylated 28-amino acid polypeptide, was primary isolated from the stomach, and the stomach is a main source of circulating ghrelin. Ghrelin strongly and dose-dependently stimulates release of growth hormone from the anterior pituitary, as well as increases food intake and fat deposition. Previous studies showed that ghrelin exhibits protective and therapeutic effect in different parts of the gastrointestinal system, including the oral cavity. The aim of present study was to examine the role of growth hormone and insulin-like growth factor-1 (IGF-1) in the healing of gingival ulcers. Studies were performed on rats with the intact pituitary gland and hypophysectomized rats. In anesthetized rats, chronic ulcers of the gum were induced by acetic acid. Rats were treated intraperitoneally twice a day with saline or ghrelin (4, 8 or 16 nmol/kg/dose) for six days. In pituitary-intact rats, administration of ghrelin significantly increased serum concentration of growth hormone and IGF-1 and this effect was associated with a significant increase in the healing rate of gingival ulcers. Moreover, treatment with ghrelin increased mucosal blood flow and DNA synthesis in the gum, while a local inflammation was decreased what was observed as a reduction in mucosal concentration of pro-inflammatory interleukin-1β. Hypophysectomy decreased serum level of growth hormone below a detection limit; whereas serum concentration of IGF-1 was reduced by 90%. On the other hand, removal of the pituitary gland was without any significant effect on the healing rate of gingival ulcers or on the ulcer-induced increase in DNA synthesis and concentration of pro-inflammatory interleukin-1β in gingival mucosa. Administration of ghrelin failed to affect serum level of growth hormone and IGF-1 in hypophysectomized rats, and was without any effect on the healing rate of gingival ulcers, mucosal blood flow, DNA synthesis or concentration of interleukin-1β in gingival mucosa. Neither

  11. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    PubMed

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ghrelin and obestatin in thyroid gland - immunohistochemical expression in nodular goiter, papillary and medullary cancer.

    PubMed

    Gurgul, Edyta; Kasprzak, Aldona; Blaszczyk, Agata; Biczysko, Maciej; Surdyk-Zasada, Joanna; Seraszek-Jaros, Agnieszka; Ruchala, Marek

    2015-01-01

    Previous studies analyzing ghrelin and obestatin expression in thyroid gland tissue are not unanimous and are mostly related to ghrelin. The role of ghrelin and obestatin in the thyroid gland appears very interesting due to their probable involvement in cell proliferation. Furthermore, since the thyroid gland is associated with the maintenance of energy balance, the relationship between ghrelin, obestatin and thyroid function is worthy of consideration. The aim of the study was to assess ghrelin and obestatin immunocytochemical expression in nodular goiter (NG), papillary cancer (PTC) and medullary cancer (MTC). Analyzed samples included 9 cases of NG, 8 cases of PTC and 11 cases of MTC. The analysis of ghrelin and obestatin expression was performed by use of the immunohistochemical (IHC) EnVision system and evaluated with filter HSV software (quantitative morphometric analysis). Quantitative ghrelin expression in MTC cells was higher than in NG (p = 0.013) and correlated negatively with the size of the tumor (r= -0.829, p < 0.05). We did not observe any differences in ghrelin expression neither between MTC and PTC nor between NG and PTC. Obestatin immunoexpression pattern in all analyzed specimens was irregular and poorly accented. The strongest immunoreactivity for obestatin was demonstrated in NG. In MTC obestatin expression was significantly weaker than in NG and PTC (p < 0.05 in both cases). In NG the intensity of obestatin immunostaining was significantly higher than that of ghrelin (p = 0.03). Conversely, ghrelin expression in MTC was definitely more evident than obestatin immunoreactivity (p < 0.01). There was no statistically significant difference between ghrelin and obestatin expression in PTC. No correlations were detected between reciprocal tissue expressions of ghrelin and obestatin in the analyzed specimens of NG, PTC or MTC. The differences between ghrelin expression in NG and MTC suggest that ghrelin may be involved in thyroid cell proliferation

  13. A link between FTO, ghrelin, and impaired brain food-cue responsivity

    PubMed Central

    Karra, Efthimia; O’Daly, Owen G.; Choudhury, Agharul I.; Yousseif, Ahmed; Millership, Steven; Neary, Marianne T.; Scott, William R.; Chandarana, Keval; Manning, Sean; Hess, Martin E.; Iwakura, Hiroshi; Akamizu, Takashi; Millet, Queensta; Gelegen, Cigdem; Drew, Megan E.; Rahman, Sofia; Emmanuel, Julian J.; Williams, Steven C.R.; Rüther, Ulrich U.; Brüning, Jens C.; Withers, Dominic J.; Zelaya, Fernando O.; Batterham, Rachel L.

    2013-01-01

    Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO “obesity-risk” rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans. PMID:23867619

  14. A link between FTO, ghrelin, and impaired brain food-cue responsivity.

    PubMed

    Karra, Efthimia; O'Daly, Owen G; Choudhury, Agharul I; Yousseif, Ahmed; Millership, Steven; Neary, Marianne T; Scott, William R; Chandarana, Keval; Manning, Sean; Hess, Martin E; Iwakura, Hiroshi; Akamizu, Takashi; Millet, Queensta; Gelegen, Cigdem; Drew, Megan E; Rahman, Sofia; Emmanuel, Julian J; Williams, Steven C R; Rüther, Ulrich U; Brüning, Jens C; Withers, Dominic J; Zelaya, Fernando O; Batterham, Rachel L

    2013-08-01

    Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO "obesity-risk" rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans.

  15. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone.

    PubMed

    Granata, Riccarda; Isgaard, Jörgen; Alloatti, Giuseppe; Ghigo, Ezio

    2011-05-01

    In 1976, small peptide growth hormone secretagogues (GHSs) were discovered and found to promote growth hormone (GH) release from the pituitary. The GHS receptor (GHS-R) was subsequently cloned, and its endogenous ligand ghrelin was later isolated from the stomach. Ghrelin is a 28-amino acid peptide, whose acylation is essential for binding to GHS-R type 1a and for the endocrine functions, including stimulation of GH secretion and subsequent food intake. Unacylated ghrelin, the other ghrelin form, although devoid of GHS-R binding is an active peptide, sharing many peripheral effects with acylated ghrelin (AG). The ghrelin system is broadly expressed in myocardial tissues, where it exerts different functions. Indeed, ghrelin inhibits cardiomyocyte and endothelial cell apoptosis, and improves left ventricular (LV) function during ischemia-reperfusion (I/R) injury. In rats with heart failure (HF), ghrelin improves LV dysfunction and attenuates the development of cardiac cachexia. Similarly, ghrelin exerts vasodilatory effects in humans, improves cardiac function and decreases systemic vascular resistance in patients with chronic HF. Obestatin is a recently identified ghrelin gene peptide. The physiological role of obestatin and its binding to the putative GPR39 receptor are still unclear, although protective effects have been demonstrated in the pancreas and heart. Similarly to AG, the hypothalamic peptide growth hormone-releasing hormone (GHRH) stimulates GH release from the pituitary, through binding to the GHRH-receptor. Besides its proliferative effects in different cell types, at the cardiovascular level GHRH inhibits cardiomyocyte apoptosis, and reduces infarct size in both isolated rat heart after I/R and in vivo after myocardial infarction. Therefore, both ghrelin and GHRH exert cardioprotective effects, which make them candidate targets for therapeutic intervention in cardiovascular dysfunctions.

  16. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features.

    PubMed

    Ibáñez-Costa, Alejandro; Gahete, Manuel D; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D; Dieguez, Carlos; Castaño, Justo P; Luque, Raúl M

    2015-03-04

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas compared with normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24-72 h) increased GH and ACTH secretion, Ca(2+) and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors.

  17. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features

    PubMed Central

    Ibáñez-Costa, Alejandro; Gahete, Manuel D.; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A.; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A.; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D.; Dieguez, Carlos; Castaño, Justo P.; Luque, Raúl M.

    2015-01-01

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors. PMID:25737012

  18. Identification of a ghrelin-like peptide in two species of shark, Sphyrna lewini and Carcharhinus melanopterus.

    PubMed

    Kawakoshi, Akatsuki; Kaiya, Hiroyuki; Riley, Larry G; Hirano, Tetsuya; Grau, E Gordon; Miyazato, Mikiya; Hosoda, Hiroshi; Kangawa, Kenji

    2007-05-01

    In this study, we identified a ghrelin-like peptide (ghrelin-LP) in two elasmobranchs. The peptide, isoforms and cDNA encoding its precursor were isolated from the stomach of two sharks, the hammerhead (HH) shark (Sphyrna lewini) and the black-tip reef (BTR) shark (Carcharhinus melanopterus). The ghrelin-LP isolated from each shark was found to be 25 amino acids in length and exhibit high sequence homology with each other; only three amino acids were different. As has been shown in tetrapod and teleost fish ghrelins, shark ghrelin-LPs possess two forms that are distinguished by having the third serine residue (Ser) acylated by either octanoic or decanoic acid. The N-terminal four residues (GVSF), known as the active core of ghrelin, are not identical to those of other species (GSSF). Nevertheless, shark ghrelin-LP elevated Ca(2+) levels in CHO cell line expressing the growth hormone secretagogue receptor (GHS-R). Unlike teleosts ghrelin's, shark ghrelin-LPs are not amidated at the C-terminus. Messenger RNA of ghrelin-LP in the HH shark was predominantly expressed in the stomach as seen in other species, followed by the brain, intestine, gill, heart and liver. The nucleotide sequence of the ghrelin-LP gene in the HH shark was characterized to compare organization of the ghrelin gene with those in other species. The size of the HH ghrelin-LP gene was 8541 bp, two to ten times larger than that of other species studied to date. The HH ghrelin-LP gene is composed of five exons and four introns, which is the same as ghrelin genes in mammals, chicken and rainbow trout. In conclusion, the shark ghrelin-LPs identified in this study exhibit many characteristics for ghrelin in terms of peptide modifications, GHS-R activation, tissue distribution, and gene organization; however, it is necessary to further clarify their biological properties such as growth hormone-releasing or orexigenic activity before designating these peptides as ghrelin.

  19. Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content.

    PubMed

    Disse, Emmanuel; Bussier, Anne-Lise; Veyrat-Durebex, Christelle; Deblon, Nicolas; Pfluger, Paul T; Tschöp, Matthias H; Laville, Martine; Rohner-Jeanrenaud, Françoise

    2010-09-01

    Ghrelin is one of the most potent orexigens known to date. While the prevailing view is that ghrelin participates in the homeostatic control of feeding, the question arose as to whether consummatory responses evoked by this compound could be related to search for reward. We therefore attempted to delineate the involvement of ghrelin in the modulation of non-caloric but highly rewarding consumption. We tested the effect of intraperitoneally injected ghrelin on the acceptance and preference for a 0.3% saccharin solution using single bottle tests and free-choice preference test procedures in C57BL6/J mice, as well as in mice lacking the ghrelin receptor (GHSR1a -/-) and their wild-type (WT) littermates. In the single bottle tests, peripheral ghrelin consistently increased the consumption of saccharin, independently of availability of caloric food. In the free-choice preference test procedures, ghrelin increased the preference for saccharin in WT mice, while it did had not effect in GHSR1a -/-animals, indicating that the ghrelin receptor pathway is necessary to mediate this parameter. Peripheral ghrelin enhances intake and preference for a sweet food, regardless of whether the food has caloric content. This effect, mediated through the ghrelin receptor pathway, may serve as additional enhancers of energy intake. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Intravenous lipid infusion and total plasma fatty acids positively modulate plasma acylated ghrelin in vivo.

    PubMed

    Barazzoni, R; Gortan Cappellari, G; Semolic, A; Ius, M; Dore, F; Giacca, M; Zanetti, M; Vinci, P; Guarnieri, G

    2017-06-01

    Ghrelin is a gastric orexigenic hormone whose activating acylation plays a relevant role in the regulation of energy balance. Nutritional modulators of ghrelin acylation and plasma acylated ghrelin (AG) concentration remain however largely undefined. We aimed at investigating whether circulating free fatty acids (FFA) contribute to regulate plasma AG and its ratio (AG/TG) to total hormone (TG). Plasma FFA, TG, AG and AG/TG were measured in a primary outpatient care setting in a community-based population cohort of 850 individuals (age 54 ± 10 years, M/F: 408/442) from the North-East Italy MoMa study. 150-min intravenous lipid infusions in rodents (10% lipids, 600 μl/h) were used to investigate the potential causal role of FFA in the regulation of plasma ghrelin profile. Plasma FFA were associated positively with AG and AG/TG while negatively with TG (P < 0.01). Associations between FFA, AG and AG/TG remained statistically significant (P < 0.02) in multiple regression analysis including HOMA insulin resistance and metabolic confounders, and both AG and AG/TG but not TG increased through plasma FFA quartiles (P < 0.01). Consistent with these findings, intravenous lipid infusion with plasma FFA elevation caused elevations of AG and AG/TG (P < 0.05) with no TG modifications. The current findings demonstrate a novel role for circulating FFA availability to up-regulate plasma AG, which could involve FFA-induced stimulation of ghrelin acylation. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.