Science.gov

Sample records for ghz resonant mode

  1. Mode selection and resonator design studies of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    In this paper, the mode selection procedure leading to the design and the cavity resonator design studies of a 95 GHz, 100 kW, CW Gyrotron will be presented, such a gyrotron will be used for specific ECRH/ECRIS applications. In this course all the suitable modes with design constraints within the limits of design goals are considered and finally the TE{sub 10.4} mode is chosen as the operating mode which is suitable for the design. Design constraints are carefully investigated, and starting currents are computed. (author)

  2. Microwave cavity piezo-opto-mechanical resonators based on film thickness modes operating beyond 10 GHz

    NASA Astrophysics Data System (ADS)

    Han, Xu; Tang, Hong

    Micromechanical resonators, which support and confine microwave frequency phonons on a scale comparable to optical wavelength, provide a valuable intermediate platform facilitating interactions among electrical, optical, and mechanical domains. High-frequency mechanical resonances ease the refrigeration conditions for reaching quantum mechanical ground state and also hold promise for practical device applications. However, efficient actuation of the highly stiff mechanical motions above gigahertz frequencies remains a challenging task. Here, we demonstrate a high-performance piezo-opto-mechanical resonator operating at 10.4 GHz by exploiting the acoustic thickness mode of an aluminum nitride micro-disk. In contrast to the in-plane mechanical modes, the thickness mode can be easily scaled to high frequencies with low mechanical and optical dissipations. A high f . Q product of 1 . 9 ×1013 ?Hz is achieved in ambient air at room temperature. Moreover, strong piezo-electro-mechanical coupling can be achieved by coupling the thickness mode with a microwave resonator, making it possible for coherent signal conversion. The thickness mode-based piezo-opto-mechanical resonators can be expected to serve as essential elements for advanced hybrid information networks.

  3. Harmonic mode locking of a Nd:BEL laser using a 20-GHz dielectric resonator/optical modulator.

    PubMed

    Godil, A A; Hou, A S; Auld, B A; Bloom, D M

    1991-11-15

    A 20-GHz dielectric-resonator/optical modulator is developed and used as an FM mode locker at the 84th harmonic of a conventional 238-MHz diode-pumped Nd:BEL laser cavity. Depending on the mode-locker drive frequency, two distinct regimes of mode locking were observed: 2.9-ps pulses at a repetition rate of 238 MHz and 3.9-ps pulses at a repetition rate of 20 GHz. These are to our knowledge the shortest pulses ever reported for active mode locking of a Nd laser. PMID:19784133

  4. 110 GHz hybrid mode-locked fiber laser with enhanced extinction ratio based on nonlinear silicon-on-insulator micro-ring-resonator (SOI MRR)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hsu, Yung; Chow, Chi-Wai; Yang, Ling-Gang; Yeh, Chien-Hung; Lai, Yin-Chieh; Tsang, Hon-Ki

    2016-03-01

    We propose and experimentally demonstrate a new 110 GHz high-repetition-rate hybrid mode-locked fiber laser using a silicon-on-insulator microring-resonator (SOI MRR) acting as the optical nonlinear element and optical comb filter simultaneously. By incorporating a phase modulator (PM) that is electrically driven at a fraction of the harmonic frequency, an enhanced extinction ratio (ER) of the optical pulses can be produced. The ER of the optical pulse train increases from 3 dB to 10 dB. As the PM is only electrically driven by the signal at a fraction of the harmonic frequency, in this case 22 GHz (110 GHz/5 GHz), a low bandwidth PM and driving circuit can be used. The mode-locked pulse width and the 3 dB spectral bandwidth of the proposed mode-locked fiber laser are measured, showing that the optical pulses are nearly transform limited. Moreover, stability evaluation for an hour is performed, showing that the proposed laser can achieve stable mode-locking without the need for optical feedback or any other stabilization mechanism.

  5. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    SciTech Connect

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-10-15

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  6. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications. PMID:20040430

  7. GHz spurious mode free AlN lamb wave resonator with high figure of merit using one dimensional phononic crystal tethers

    NASA Astrophysics Data System (ADS)

    Wu, Guoqiang; Zhu, Yao; Merugu, Srinivas; Wang, Nan; Sun, Chengliang; Gu, Yuandong

    2016-07-01

    This letter reports a spurious mode free GHz aluminum nitride (AlN) lamb wave resonator (LWR) towards high figure of merit (FOM). One dimensional gourd-shape phononic crystal (PnC) tether with large phononic bandgaps is employed to reduce the acoustic energy dissipation into the substrate. The periodic PnC tethers are based on a 1 μm-thick AlN layer with 0.26 μm-thick Mo layer on top. A clean spectrum over a wide frequency range is obtained from the measurement, which indicates a wide-band suppression of spurious modes. Experimental results demonstrate that the fabricated AlN LWR has an insertion loss of 5.2 dB and a loaded quality factor (Q) of 1893 at 1.02 GHz measured in air. An impressive ratio of the resistance at parallel resonance (Rp) to the resistance at series resonance (Rs) of 49.8 dB is obtained, which is an indication of high FOM for LWR. The high Rp to Rs ratio is one of the most important parameters to design a radio frequency filter with steep roll-off.

  8. Dielectric properties of oil sands at 2.45 GHz with TE1,0,11 mode determined by a rectangular cavity resonator.

    PubMed

    Erdogan, Levent; Akyel, Cevdet; Ghannouchi, Fadhel M

    2011-01-01

    Oil obtained from oil sands resources constitute an important portion of the oil industry in Canada. Extraction of the bitumen from oil sands is very crucial process because of its cost and environmental impact. Microwave energy applicators by heating oil sands at microwave frequencies can be an excellent alternative to extract bitumen with the advantages of being potentially cost-effective and environmentally friendly method of extraction. In order to design and manufacture a microwave energy applicator, its dielectric properties must be known. In this study, as the first part of our ultimate microwave energy applicator project, in advance, the complex permittivity of oil sands was measured by using rectangular cavity resonator, designed and fabricated in Ecole Polytechnique de Montréal laboratories, at 2.45 GHz with TE1,0,1 mode. The accuracy of the permittivity measurement results obtained with the developed system was verified against those obtained using a commercial open-ended probe system as well the values of well known materials documented in open literature. Since there is no study found in the literature about the complex permittivity values of oil sands at 2.45 GHz, the present study would be of great help and important guide for those who plan to design and manufacture microwave energy applicators in order to extract the bitumen from the oil sands. PMID:24427869

  9. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  10. Design of tunable GHz-frequency optomechanical crystal resonators.

    PubMed

    Pfeifer, Hannes; Paraïso, Taofiq; Zang, Leyun; Painter, Oskar

    2016-05-30

    We present a silicon optomechanical nanobeam design with a dynamically tunable acoustic mode at 10.2 GHz. The resonance frequency can be shifted by 90 kHz/V2 with an on-chip capacitor that was optimized to exert forces up to 1 µN at 10 V operation voltage. Optical resonance frequencies around 190 THz with Q-factors up to 2.2 × 106 place the structure in the well-resolved sideband regime with vacuum optomechanical coupling rates up to g0/2π = 353 kHz. Tuning can be used, for instance, to overcome variation in the device-to-device acoustic resonance frequency due to fabrication errors, paving the way for optomechanical circuits consisting of arrays of optomechanical cavities. PMID:27410069

  11. A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER

    SciTech Connect

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77 GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q – U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.

  12. A 77-118 GHz Resonance-free Septum Polarizer

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77 GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q - U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.

  13. The self-started 10 GHz harmonic mode-locking of a hybrid weak-resonant-cavity laser diode and fiber ring link

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ju; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-06-01

    A self-started harmonic mode-locking of a hybrid weak-resonant-cavity Fabry-Perot laser diode and fiber ring link is demonstrated to serve as a pulsed optical for future 10 Gb s-1 RZ data transmission. Beginning with the optical injection-locking rate equation describing the optoelectronic oscillator structure, the pulsewidth formula in the active mode-locking theory is modified and illuminates the shortening of the pulsewidth as a function of the optical feedback ratio and the microwave power gain. The pulsewidth is narrower with the higher optical injection power and the higher microwave power gain because of the gain saturation of the laser diode and the increase of the modulation depth. The lowest jitter and pulsewidth of the pulse train are 0.9 ps and 20 ps, respectively. With the higher microwave power gain, the SNR and ER are improved up to 10.2 dB and 13.8 dB, respectively, due to the enhancement of the peak power and the elimination of the residual carrier. Under the optimized operation condition, the pulsed optical carrier can be externally encoded at 10 Gbit/s for RZ-OOK data transmission.

  14. Force detected electron spin resonance at 94 GHz.

    PubMed

    Cruickshank, Paul A S; Smith, Graham M

    2007-01-01

    Force detected electron spin resonance (FDESR) detects the presence of unpaired electrons in a sample by measuring the change in force on a mechanical resonator as the magnetization of the sample is modulated under magnetic resonance conditions. The magnetization is coupled to the resonator via a magnetic field gradient. It has been used to both detect and image distributions of electron spins, and it offers both extremely high absolute sensitivity and high spatial imaging resolution. However, compared to conventional induction mode ESR the technique also has a comparatively poor concentration sensitivity and it introduces complications in interpreting and combining both spectroscopy and imaging. One method to improve both sensitivity and spectral resolution is to operate in high magnetic fields in order to increase the sample magnetization and g-factor resolution. In this article we present FDESR measurements on the organic conductor (fluoranthene)(2)PF(6) at 3.2 T, with a corresponding millimeter-wave frequency of 93.5 GHz, which we believe are the highest field results for FDESR reported in the literature to date. A magnet-on-cantilever approach was used, with a high-anisotropy microwave ferrite as the gradient source and employing cyclic saturation to modulate the magnetization at the cantilever fundamental frequency. PMID:17503940

  15. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF. PMID:26931932

  16. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  17. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  18. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL.

    PubMed

    Guo, J W; Sun, L; Niu, X J; Zhang, X Z; Lu, W; Zhang, W H; Feng, Y C; Zhao, H W

    2016-02-01

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE01 mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE01-HE11 mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE01-HE11 converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper. PMID:26931926

  19. Electromagnetic resonant modes of dielectric sphere bilayers

    SciTech Connect

    Andueza, A. Pérez-Conde, J.; Sevilla, J.

    2015-05-28

    Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10–25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.

  20. Electromagnetic resonant modes of dielectric sphere bilayers

    NASA Astrophysics Data System (ADS)

    Andueza, A.; Pérez-Conde, J.; Sevilla, J.

    2015-05-01

    Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10-25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.

  1. 1/f frequency noise of 2-GHZ high-Q thin-film sapphire resonators.

    PubMed

    Ferre-Pikal, E S; Delgado Arámburo, M C; Walls, F L; Lakin, K M

    2001-03-01

    We present experimental results on intrinsic 1/f frequency modulation (FM) noise in high-overtone thin-film sapphire resonators that operate at 2 GHz. The resonators exhibit several high-Q resonant modes approximately 100 kHz apart, which repeat every 13 MHz. A loaded Q of approximately 20,000 was estimated from the phase response. The results show that the FM noise of the resonators varied between Sy (10 Hz) = -202 dB relative (rel) to 1/Hz and -210 dB rel to 1/Hz. The equivalent phase modulation (PM) noise of an oscillator using these resonators (assuming a noiseless amplifier) would range from [symbol: see text](10 Hz) = -39 to -47 dBc/Hz. PMID:11370364

  2. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  3. Design of an induction linac driven CARM (Cyclotron Auto Resonance Maser) oscillator at 250 GHz

    SciTech Connect

    Caplan, M.; Kulke, B.

    1990-01-24

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE{sub 11} mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 {mu}m corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs.

  4. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    SciTech Connect

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations.

  5. A 250-GHz CARM (Cyclotron Auto Resonance Maser) oscillator experiment driven by an induction linac

    SciTech Connect

    Caplan, M.; Kulke, B.; Bubp, D.G. ); McDermott, D.; Luhmann, N. )

    1990-09-14

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE{sub 11} mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%).

  6. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  7. Graded-index whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor)

    2005-01-01

    Whispering gallery mode optical resonators which have spatially-graded refractive indices. In one implementation, the refractive index spatially increases with a distance from an exterior surface of such a resonator towards an interior of the resonator to produce substantially equal spectral separations for different whispering gallery modes. An optical coupler may be used with such a resonator to provide proper optical coupling.

  8. Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators.

    PubMed

    Aslam, Nabeel; Pfender, Matthias; Stöhr, Rainer; Neumann, Philipp; Scheffler, Marc; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Wrachtrup, Jörg

    2015-06-01

    Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g., electrical or optical readout). Here, we explore the frequency range up to 90 GHz, with magnetic fields of up to ≈3 T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular 60-90 GHz (E-band) waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators, enhance MW fields by spatial and spectral confinement with a MW efficiency of 1.36 mT/√W. We utilize single nitrogen vacancy (NV) centers as hosts for optically accessible spins and show that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout, the (14)N nuclear spin shows second-long longitudinal relaxation times. PMID:26133855

  9. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  10. A quasioptical resonant-tunneling-diode oscillator operating above 200 GHz

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Molvar, K. M.; Calawa, A. R.; Manfra, M. J.

    1992-01-01

    We have fabricated and characterized a quasioptically stabilized resonant-tunneling-diode (RTD) oscillator having attractive performance characteristics for application as a radiometric local oscillator. The fundamental frequency of the oscillator is tunable from about 200 to 215 GHz, the instantaneous linewidth is between 10 and 20 kHz, and the output power across the tuning band is about 50 micro-W. The narrow linewidth and fine tuning of the frequency are made possible by a scanning semiconfocal open cavity which acts as the high-Q resonator for the oscillator. The cavity is compact, portable, and insensitive to vibration and temperature variation. The total dc power consumption (RTD plus bias supply) is only 10 mW. The present oscillator provides the highest power obtained to date from an RTD above 200 GHz. We attribute this partly to the use of the quasioptical resonator, but primarily to the quality of the RTD. It is fabricated from the In(0.53)Ga(0.47)As/AlAs materials system, which historically has yielded the best overall resonant-tunneling characteristics of any material system. The RTD active area is 4 sq microns, and the room-temperature peak current density and peak-to-valley current ratio are 2.5x10(exp 5) A cm(exp -2) and 9, respectively. The RTD is mounted in a WR-3 standard-height rectangular waveguide and is contacted across the waveguide by a fine wire that protrudes through a via hole in a Si3N4 'honeycomb' overlayer. We estimate that the theoretical maximum frequency of oscillation of this RTD is approximately 1.1 THz, and that scaled-down versions of the same quasioptical oscillator design should operate in a fundamental mode up to frequencies of at least 500 GHz.

  11. 3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks

    SciTech Connect

    Artieda, Alvaro; Muralt, Paul

    2011-06-27

    Triple layer SiO{sub 2}/AlN/SiO{sub 2} composite thin film bulk acoustic wave resonators (TFBARs) were studied for applications in atomic clocks. The TFBAR's were tuned to 3.4 GHz, corresponding to half the hyperfine splitting of the ground state of rubidium {sup 87}Rb atoms. The quality factor (Q) was equal to 2300 and the temperature coefficient of the resonance frequency f{sub r} amounted to 1.5 ppm/K. A figure of merit Qf{sub r} of {approx} 0.8 x 10{sup 13} Hz and a thickness mode coupling factor of 1% were reached. Such figures are ideal for frequency sources in an oscillator circuit that tracks the optical signal in atomic clocks.

  12. Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes.

    PubMed

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2011-07-18

    We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices. PMID:21934760

  13. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; Soderstrom, J. R.

    1991-01-01

    Oscillations have been obtained at frequencies from 100 to 712 GHz in InAs/AlSb double-barrier resonant-tunneling diodes at room temperature. The measured power density at 360 GHz was 90 W/sq cm, which is 50 times that generated by GaAs/AlAs diodes at essentially the same frequency. The oscillation at 712 GHz represents the highest frequency reported to date from a solid-state electronic oscillator at room temperature.

  14. Using Whispering-Gallery-Mode Resonators for Refractometry

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of

  15. Microelectromechanical filter formed from parallel-connected lattice networks of contour-mode resonators

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H; Ziaei-Moayyed, Maryam

    2013-07-30

    A microelectromechanical (MEM) filter is disclosed which has a plurality of lattice networks formed on a substrate and electrically connected together in parallel. Each lattice network has a series resonant frequency and a shunt resonant frequency provided by one or more contour-mode resonators in the lattice network. Different types of contour-mode resonators including single input, single output resonators, differential resonators, balun resonators, and ring resonators can be used in MEM filter. The MEM filter can have a center frequency in the range of 10 MHz-10 GHz, with a filter bandwidth of up to about 1% when all of the lattice networks have the same series resonant frequency and the same shunt resonant frequency. The filter bandwidth can be increased up to about 5% by using unique series and shunt resonant frequencies for the lattice networks.

  16. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source.

    PubMed

    Uchiyama, A; Ozeki, K; Higurashi, Y; Kidera, M; Komiyama, M; Nakagawa, T

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation. PMID:26931940

  17. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  18. DUAL FREQUENCY RESONATOR FOR 1.2 GHZ EPR/16.2 MHZ NMR CO-IMAGING

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Caia, George L.; Sun, Ziqi; Zweier, Jay L.

    2010-01-01

    The development of a dual frequency resonator that enables both EPR and proton NMR imaging within the same resonator, magnet and gradient system is described. A novel design allows the same resonator to perform both EPR and proton NMR operation without moving resonator cables or switches. The resonator is capable of working at frequencies of 16.18 MHz for proton NMR and 1.2 GHz for EPR and is optimized for isolated rat heart experiments, measuring 22 mm in inner diameter and 19 mm in length. In EPR mode, the resonator functions as a one loop two gap resonator, electrically coupled through a half wavelength inverter. In NMR mode, it functions a single turn coil. Using the same loop for both modalities maximizes filling factor at both frequencies. Placing the tuning and switching controls away from the resonator prevents any inadvertent movement that would cause errors of EPR and NMR co-imaging registration. The resonator enabled good quality EPR and proton MRI of isolated rat hearts with precise registration. PMID:20434379

  19. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power. PMID:22380155

  20. Mode splitting effect in FEMs with oversized Bragg resonators

    NASA Astrophysics Data System (ADS)

    Peskov, N. Yu.; Kaminsky, A. K.; Kuzikov, S. V.; Perelstein, E. A.; Sedykh, S. N.; Sergeev, A. S.

    2016-07-01

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and "cold" microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  1. 200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE.

    PubMed

    Lin, Gong-Ru; Cheng, Tzu-Kang; Chi, Yu-Chieh; Lin, Gong-Cheng; Wang, Hai-Lin; Lin, Yi-Hong

    2009-09-28

    In a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) based DWDM-PON system with an array-waveguide-grating (AWG) channelized amplified spontaneous emission (ASE) source located at remote node, we study the effect of AWG filter bandwidth on the transmission performances of the 1.25-Gbit/s directly modulated WRC-FPLD transmitter under the AWG channelized ASE injection-locking. With AWG filters of two different channel spacings at 50 and 200 GHz, several characteristic parameters such as interfered reflection, relatively intensity noise, crosstalk reduction, side-mode-suppressing ratio and power penalty of BER effect of the WRC-FPLD transmitted data are compared. The 200-GHz AWG filtered ASE injection minimizes the noises of WRC-FPLD based ONU transmitter, improving the power penalty of upstream data by -1.6 dB at BER of 10(-12). In contrast, the 50-GHz AWG channelized ASE injection fails to promote better BER but increases the power penalty by + 1.5 dB under back-to-back transmission. A theoretical modeling elucidates that the BER degradation up to 4 orders of magnitude between two injection cases is mainly attributed to the reduction on ASE injection linewidth, since which concurrently degrades the signal-to-noise and extinction ratios of the transmitted data stream. PMID:19907560

  2. Spherical-sapphire-based whispering gallery mode resonator thermometer

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Fernicola, V.

    2012-09-01

    A novel microwave whispering gallery mode (WGM) resonator based on a spherical sapphire crystal was developed at INRIM and its use as a thermometer was tested. The temperature dependence of the WGM frequencies was studied and the most promising resonance near to 13.6 GHz, with a loaded quality factor as large as 82 000, was carefully investigated. Its potential use in thermometry was evaluated through a study of its main metrological characteristics, such as the temperature sensitivity, the frequency stability, the repeatability, and the resolution at several temperatures over the temperature range -40 °C to 85 °C. Finally, the INRIM spherical sapphire thermometer was compared with the NIST SWGT, a dielectric thermometer based on a cylindrical sapphire resonator [V. B. Braginsky, V. S. Ilchenko, and Kh. S. Bagdassarov, Phys. Lett. A 120(3), 300 (1987), 10.1016/0375-9601(87)90676-1].

  3. Spherical-sapphire-based whispering gallery mode resonator thermometer.

    PubMed

    Yu, Lili; Fernicola, V

    2012-09-01

    A novel microwave whispering gallery mode (WGM) resonator based on a spherical sapphire crystal was developed at INRIM and its use as a thermometer was tested. The temperature dependence of the WGM frequencies was studied and the most promising resonance near to 13.6 GHz, with a loaded quality factor as large as 82 000, was carefully investigated. Its potential use in thermometry was evaluated through a study of its main metrological characteristics, such as the temperature sensitivity, the frequency stability, the repeatability, and the resolution at several temperatures over the temperature range -40 °C to 85 °C. Finally, the INRIM spherical sapphire thermometer was compared with the NIST SWGT, a dielectric thermometer based on a cylindrical sapphire resonator [V. B. Braginsky, V. S. Ilchenko, and Kh. S. Bagdassarov, Phys. Lett. A 120(3), 300 (1987)]. PMID:23020404

  4. Nonlinear mode coupling in whispering-gallery-mode resonators

    NASA Astrophysics Data System (ADS)

    D'Aguanno, Giuseppe; Menyuk, Curtis R.

    2016-04-01

    We present a first-principles derivation of the coupled nonlinear Schrödinger equations that govern the interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode resonator. We find regions of modulational instability and the existence of trains of bright solitons in both the normal and the anomalous dispersion regime.

  5. Efficient Output Mode Converter for 30 GHz Gyroklystron at IAP

    NASA Astrophysics Data System (ADS)

    Kuzikov, Sergey V.; Plotkin, Mikhail E.; Zaitsev, Nikolay I.

    2010-02-01

    An output mode converter for Ka-band multi-MW gyroklystron in the Institute of Applied Physics (IAP) operating in the TE53 mode is suggested. Two variants of the converter, aimed for different applications, are presented: the TE53 to TE01 mode converter with power output along the device axis and the TE53 mode to Gaussian wavebeam quasi-optical converter with a visor. The suggested designs include the built-in electron beam collector. The converters were designed using a new synthesis algorithm, which implies iterative improvement of the waveguide wall shape in order to achieve high efficiency. The calculation results were proven by HFSS simulation and low-power tests of one version of the converter.

  6. Electroelastic effect of thickness mode langasite resonators.

    PubMed

    Zhang, Haifeng; Turner, Joseph A; Yang, Jiashi; Kosinski, John A

    2007-10-01

    Langasite is a very promising material for resonators due to its good temperature behavior and high piezoelectric coupling, low acoustic loss, and high Q factor. The biasing effect for langasite resonators is crucial for resonator design. In this article, the resonant frequency shift of a thickness-mode langasite resonator is analyzed with respect to a direct current (DC) electric field applied in the thickness direction. The vibration modes of a thin langasite plate fully coated with an electrode are analyzed. The analysis is based on the theory for small fields superposed on a bias in electroelastic bodies and the first-order perturbation integral theory. The electroelastic effect of the resonator is analyzed by both analytical and finite-element methods. The complete set of nonlinear elastic, piezoelectric, dielectric permeability, and electrostrictive constants of langasite is used in the theoretical and numerical analysis. The sensitivity of electroelastic effect to nonlinear material constants is analyzed. PMID:18019250

  7. Triad mode resonant interactions in suspended cables

    NASA Astrophysics Data System (ADS)

    Guo, TieDing; Kang, HouJun; Wang, LianHua; Zhao, YueYu

    2016-03-01

    A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.

  8. A quasioptical resonant-tunneling-diode oscillator operating above 200 GHz

    SciTech Connect

    Brown, E.R.; Parker, C.D.; Calawa, A.R.; Manfra, M.J.; Molvar, K.M. . Lincoln Lab.)

    1993-08-01

    A quasioptical resonant-tunneling-diode oscillator is demonstrated at frequencies above 200 GHz. The oscillator is stabilized by a semiconfocal open cavity. The maximum output power and the linewidth are approximately 50 [mu]W and 20 kHz, respectively, at a fundamental frequency of 210 GHz. By varying the cavity length, the oscillator frequency can be adjusted over a 0.4 GHz range in a repetitive manner. This behavior is explained by analogy with laser oscillators. The quasioptical RTD oscillator is well suited as a local oscillator for low-power radiometric mixers.

  9. Mode Profiles in Waveguide-Coupled Resonators

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Cameron, Tom; Saw, John C. B.; Kim, Yoonkee

    1993-01-01

    Surface acoustic wave (SAW) waveguide-coupled resonators are of considerable interest for narrow-band filter applications, though to date there has been very little published on the acoustic details of their operation. As in any resonator, one must fully understand its mode structure and herein we study the SAW mode profiles in these devices. Transverse mode profiles in the resonant cavity of the device were measured at various frequencies of interest using a knife-edge laser probe. In addition we predict the mode profiles for the device structure by two independent methods. One is a stack-matrix approach adapted from integrated optics and the other is a conventional analytical eigenmode analysis of the Helmholtz equation. Both modeling techniques are in good agreement with the measured results.

  10. Engineered circuit QED with dense resonant modes

    NASA Astrophysics Data System (ADS)

    Wilhelm, Frank; Egger, Daniel

    2013-03-01

    In circuit quantum electrodynamics even in the ultrastrong coupling regime, strong quasi-resonant interaction typically involves only one mode of the resonator as the mode spacing is comparable to the frequency of the mode. We are going to present an engineered hybrid transmission line consisting of a left-handed and a right-handed portion that has a low-frequency van-Hove singularity hence showing a dense mode spectrum at an experimentally accessible point. This gives rise to strong multi-mode coupling and can be utilized in multiple ways to create strongly correlated microwave photons. Supported by DARPA through the QuEST program and by NSERC Discovery grants

  11. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    SciTech Connect

    Choi, E.M.; Marchewka, C.D.; Mastovsky, I.; Sirigiri, J.R.; Shapiro, M.A.; Temkin, R.J.

    2006-02-15

    A new result from a 110 GHz gyrotron at MIT is reported with an output power of 1.67 MW and an efficiency of 42% when operated at 97 kV and 41 A for 3 {mu}s pulses in the TE{sub 22,6} mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43 MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE{sub 19,7} mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110 GHz gyrotron.

  12. On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Saleh, Khaldoun; Coillet, Aurélien; Henriet, Rémi; Salzenstein, Patrice; Larger, Laurent; Chembo, Yanne K.

    2014-03-01

    We investigate the phase noise performance of an optoelectronic oscillator based on a calcium fluoride high quality factor whispering gallery mode optical resonator (WGMR). In the oscillator setup, a particular attention is given to the stabilization of the laser lightwave onto an optical resonance of the WGMR. Once the laser is stabilized, different resonant optical modes are characterized in the microwave domain. Afterwards, phase noise spectra of different oscillations at different modes of the WGMR are measured. Phase noise levels below -93 dBc/Hz and around -90 dBc/Hz at 10 kHz offset frequency from 6.35 GHz and 12.7 GHz carriers are respectively obtained.

  13. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Nakamura, T; Furuse, M; Hitobo, T; Uchida, T; Muramatsu, M; Kato, Y

    2016-02-01

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5-6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating. PMID:26931948

  14. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Asaji, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Uchida, T.; Muramatsu, M.; Kato, Y.

    2016-02-01

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5-6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  15. Microwave mode structure of superconducting metamaterial resonators

    NASA Astrophysics Data System (ADS)

    Wang, Haozhi; Rouxinol, Francisco; Lahaye, Matthew; Plourde, Britton

    2015-03-01

    Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit novel behavior compared to resonators made from conventional distributed transmission lines. By engineering the parameters and configurations of the lumped elements composing the unit cell of such a metamaterial resonator, one can generate spectra with wide stop-bands as well as pass-bands with dense microwave modes. If the metamaterials are fabricated from superconducting traces, the losses can be low enough to allow for these dense modes to be resolved and potentially coupled to quantum systems, such as superconducting qubits. We will present our low-temperature measurements of a variety of superconducting metamaterial resonators and we will compare these with numerical simulations of the microwave properties.

  16. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD

    SciTech Connect

    Ogasawara, S.; Kubo, S.; Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Takita, Y.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Tatematsu, Y.; Saito, T.; Minami, R.; Kariya, T.; Imai, T.

    2012-10-15

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE{sub 17,6} mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE{sub 18,6} mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

  17. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD.

    PubMed

    Ogasawara, S; Kubo, S; Nishiura, M; Tatematsu, Y; Saito, T; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahashi, H; Ito, S; Takita, Y; Kobayashi, S; Mizuno, Y; Okada, K; Minami, R; Kariya, T; Imai, T

    2012-10-01

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE(17,6) mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE(18,6) mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation. PMID:23126903

  18. Resonant cavity modes in gallium oxide microwires

    NASA Astrophysics Data System (ADS)

    López, Iñaki; Nogales, Emilio; Méndez, Bianchi; Piqueras, Javier

    2012-06-01

    Fabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the 4T2-4A2 transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires.

  19. Discovery of Bragg confined hybrid modes with high Q factor in a hollow dielectric resonator

    NASA Astrophysics Data System (ADS)

    le Floch, Jean-Michel; Tobar, Michael E.; Mouneyrac, David; Cros, Dominique; Krupka, Jerzy

    2007-10-01

    The authors report on observation of Bragg confined mode in a hollow cylindrical dielectric cavity. A resonance was observed at 13.4GHz with an unloaded Q factor of order 2×105, which is more than a factor of 6 above the dielectric loss limit. Previously, such modes have only been realized from pure transverse electric modes with no azimuthal variations and only the Eϕ component. From rigorous numeric simulations, it is shown that the mode is a hybrid mode with nonzero azimuthal variations and with dominant Er and Eϕ electric field components and Hz magnetic field component.

  20. A 20 GHz, high efficiency dual mode TWT for the ACTS program. [Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Muennemann, Frank; Dombro, Louis; Long, Jin

    1986-01-01

    The development of a 50 W/10 W dual mode K-band downlink TWT is examined, and its performance is evaluated. The designs of the electron gun, RF circuit, and collector for the TWT, which is enclosed in a capsule, are described. It is observed that the high power mode (HPM) power output is at 50 GHz and the low power mode (LPM) output is at 12 GHz; the saturated gain is 52.5 dB for HPM and 3 dB for LPM; the AM-PM is 4.2 dB; the HPM dc power output is 104 W; and the LPM dc output is 42 W; and the efficiency is 45 percent for the HPM and 28.6 percent for the LPM.

  1. Near- infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Lagatsky, A. A.; Zhang, Z. Y.; Zhou, K. J.; Wang, Q.; Hogg, R. A.; Pradeesh, K.; Rafailov, E. U.; Resan, B.; Oehler, A. E. H.; Weingarten, K. J.; Sibbett, W.; Brown, C. T. A.; Shepherd, D. P.

    2014-02-01

    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power.

  2. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.

    PubMed

    Patel, Mihir S; Yong, Yook-Kong

    2009-05-01

    Theoretical analyses and designs of high-Q, quartz thin film resonators are presented. The resonators operate at an ultra-high frequency of 3.4 GHz for application to high-frequency timing devices such as cesium chip-scale atomic clocks. The frequency spectra for the 3.4-GHz thin film quartz resonators, which serve as design aids in selecting the resonator dimensions/configurations for simple electrodes, and ring electrode mesa designs are presented here for the first time. The thin film aluminum electrodes are found to play a major role in the resonators because the electrodes are only one third the thickness and mass of the active areas of the plate resonator. Hence, in addition to the material properties of quartz, the elastic, viscoelastic, and thermal properties of the electrodes are included in the models. The frequency-temperature behavior is obtained for the best resonator designs. To improve the frequency-temperature behavior of the resonators, new quartz cuts are proposed to compensate for the thermal stresses caused by the aluminum electrodes and the mounting supports. Frequency response analyses are performed to determine the Q-factor, motional resistance, capacitance ratio, and other figures of merit. The resonators have Q's of about 3800, resistance of about 1300 to 1400 ohms, and capacitance ratios of 1100 to 2800. PMID:19473909

  3. Microwave Photonics Systems Based on Whispering-gallery-mode Resonators

    PubMed Central

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.

    2013-01-01

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358

  4. Microwave photonics systems based on whispering-gallery-mode resonators.

    PubMed

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-01-01

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358

  5. Mode Orientation Control For Sapphire Dielectric Ring Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John; Prata, Aluizio

    1996-01-01

    Small sapphire tuning wedge used in technique for solving mode-purity problem associated with sapphire dielectric-ring resonator part of cryogenic microwave frequency discriminator. Breaks quasi-degeneracy of two modes and allows selective coupling to just one mode. Wedge mounted on axle entering resonator cavity and rotated while resonator cryogenically operating in vacuum. Furthermore, axle moved vertically to tune resonant frequency.

  6. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  7. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer. PMID:26052678

  8. Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG.

    PubMed

    Liu, S; Lu, D; Zhang, R; Zhao, L; Wang, W; Broeke, R; Ji, C

    2016-05-01

    We report a monolithically integrated synchronized four wavelength channel mode-locked semiconductor laser chip based on arrayed waveguide grating and fabricated in the InP material system. Device fabrication was completed in a multiproject wafer foundry run on the Joint European Platform for Photonic Integration of Components and Circuits. The integrated photonic chip demonstrated 5th harmonic electrical hybrid mode-locking operation with four 400 GHz spacing wavelength channels and synchronized to a 12.7 GHz RF clock, for nearly transform-limited optical pulse trains from a single output waveguide. A low timing jitter of 0.349 ps, and RF frequency locking range of ~50 MHz were also achieved. PMID:27137587

  9. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance.

    PubMed

    Torrezan, Antonio C; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J; Barnes, Alexander B; Griffin, Robert G

    2010-06-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE(11,2) and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE(11,2,q). The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  10. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance.

    PubMed

    Torrezan, Antonio C; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J; Griffin, Robert G; Barnes, Alexander B

    2010-06-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  11. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  12. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  13. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    SciTech Connect

    Lin, Guoping Diallo, Souleymane; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K.

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  14. Transverse distribution of beam current oscillations of a 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Toivanen, V; Komppula, J; Kalvas, T; Koivisto, H

    2014-02-01

    The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation "modes" often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation "mode," with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The results help to explain differences observed between the two oscillation modes in terms of the transport efficiency through the JYFL K-130 cyclotron. The dependence of the oscillation pattern on ion source parameters is a strong indication that the mechanisms driving the fluctuations are plasma effects. PMID:24593488

  15. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Lyneis, C. Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.; Plaum, B.; Thuillier, T.

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  16. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Lyneis, C.; Benitez, J.; Hodgkinson, A.; Plaum, B.; Strohmeier, M.; Thuillier, T.; Todd, D.

    2014-02-01

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE01 circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE10 mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE01-HE11 mode conversion system has been built to test launching HE11 microwave power into the plasma chamber. The HE11 mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long "snake" converts the TE01 mode to the TE11 mode. Second, a corrugated circular waveguide excites the HE11 mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  17. Aptasensors Based on Whispering Gallery Mode Resonators.

    PubMed

    Nunzi Conti, Gualtiero; Berneschi, Simome; Soria, Silvia

    2016-01-01

    In this paper, we review the literature on optical evanescent field sensing in resonant cavities where aptamers are used as biochemical receptors. The combined advantages of highly sensitive whispering gallery mode resonator (WGMR)-based transducers, and of the unique properties of aptamers make this approach extremely interesting in the medical field, where there is a particularly high need for devices able to provide real time diagnosis for cancer, infectious diseases, or strokes. However, despite the superior performances of aptamers compared to antibodies and WGMR to other evanescent sensors, there is not much literature combining both types of receptors and transducers. Up to now, the WGMR that have been used are silica microspheres and silicon oxynitride (SiON) ring resonators. PMID:27438861

  18. Quantum statistics of overlapping modes in open resonators

    SciTech Connect

    Hackenbroich, Gregor; Viviescas, Carlos; Haake, Fritz

    2003-12-01

    We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes. Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator dynamics may be used as a starting point for a quantum theory of random lasers.

  19. Ferromagnetic resonance and resonance modes in kagome lattices: From an open to a closed kagome structure

    NASA Astrophysics Data System (ADS)

    Dubowik, J.; Kuświk, P.; Matczak, M.; Bednarski, W.; Stobiecki, F.; Aleshkevych, P.; Szymczak, H.; Kisielewski, M.; Kisielewski, J.

    2016-06-01

    We present ferromagnetic resonance (FMR) investigations of 20 nm thick permalloy (Ni80Fe20 ) elements (width W =200 nm, length L =470 nm, period a =500 nm) arranged in open and closed artificial kagome lattices. The measurements were done at 9.4 and 34 GHz to ensure a saturated or near-saturated magnetic state of the kagome structures. The FMR data are analyzed in the framework of an analytical macrospin model which grasps the essential features of the bulk and edge modes at these microwave frequencies and is in agreement with the results of micromagnetic simulations. Polar plots of the resonance fields versus the field angle made by the direction of the magnetic field with respect to the main symmetry directions of the kagome lattice are compared with the results of the analytical model. The measured FMR spectra with a sixfold rotational symmetry qualitatively reproduce the structure expected from the theory. Magnetic dipolar interactions between the elements of the kagome lattices result in the mixing of edge and bulklike excitations at 9.4 GHz and in a systematic deviation from the model, especially for the closed kagome lattice.

  20. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.

    PubMed

    Merrer, Pierre-Henri; Saleh, Khaldoun; Llopis, Olivier; Berneschi, Simone; Cosi, Franco; Conti, Gualtiero Nunzi

    2012-07-10

    Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with -94 dBc/Hz phase noise at 10 kHz offset. PMID:22781250

  1. Detecting light in whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Mohageg, Makan (Inventor); Le, Thanh M. (Inventor)

    2012-01-01

    An optical device including a whispering gallery mode (WGM) optical resonator configured to support one or more whispering gallery modes; and a photodetector optically coupled to an exterior surface of the optical resonator to receive evanescent light from the optical resonator to detect light inside the optical resonator.

  2. 2.4 GHz CMOS power amplifier with mode-locking structure to enhance gain.

    PubMed

    Lee, Changhyun; Park, Changkun

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm(2). PMID:25045755

  3. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  4. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  5. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Loew, T.; Todd, D. S.; Virostek, S.; Tarvainen, O.

    2006-03-01

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p μA of Kr17+(260 e μA), 12 p μA of Xe20+ (240 e μA of Xe20+), and 8 p μA of U28+(230 e μA). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e μA of Xe27+ and 245 e μA of Bi29+, while for the higher charge states 15 e μA of Xe34+, 15 e μA of Bi41+, and 0.5 e μA of Bi50+ could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  6. Cavity-resonator-integrated guided-mode resonance filters

    NASA Astrophysics Data System (ADS)

    Ura, Shogo; Kintaka, Kenji; Inoue, Junichi; Nishio, Kenzo; Awatsuji, Yasuhiro

    2013-03-01

    A cavity-resonator-integrated guided-mode-resonance filter (CRIGF) consisting of a grating coupler (GC) and a pair of distributed-Bragg-reflectors (DBRs) on a thin-film dielectric waveguide is reviewed. The CRIGF has been recently proposed by the authors to provide a narrow-band reflection spectrum for an incident wave of a small beam width from the free space. A newly developed analysis model for device design with performance simulation is introduced. Curved gratings are utilized to construct a resonator for a small-aperture CRIGF. Design, fabrication and characterization of CRIGFs of 10 μm aperture are described with a resonance wavelength of 850 nm. A Ge:SiO2 guiding core layer was deposited on a SiO2 glass substrate, and GC and DBRs were formed by the electron-beam direct writing lithography. A normal polarization-dependent CRIGF is shown with a obtained narrowband reflection spectrum of 0.2 nm full width at half maximum. A crossed-CRIGF is also discussed to eliminate the polarization dependence. It is successfully demonstrated that measured reflection spectra for TE and TM incident beams were well coincident with each other.

  7. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    PubMed Central

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  8. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-06-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, ‑85 dBm and ‑110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10‑3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications.

  9. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode.

    PubMed

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, -85 dBm and -110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz(2/3). This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10(-3 )and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  10. Design and fabrication of 5 GHz band pass filter using circle-type HTS bulk resonator

    NASA Astrophysics Data System (ADS)

    Saito, A.; Teshima, H.; Ono, S.; Hirano, H.; Hirano, S.; Ohshima, S.

    2007-10-01

    We designed and fabricated a transmit band pass filter (BPF) using circle-type high temperature superconductor (HTS) bulk resonators. A Dy-Ba-Cu-O bulk was fabricated using a modified quench and melt growth (QMG) process and cut into specimens of 8.40 and 8.44 mm in diameter and 0.5 mm thick for use as the HTS bulk resonators. A three-pole stripline (SL) BPF was designed based on a Chebyshev function and the frequency response and electromagnetic field of the filter were simulated using a three-dimensional electromagnetic field simulator. From the results of the simulation, the center frequency, bandwidth, insertion loss, and ripple of the designed filter were 4.97 GHz, 100 MHz, 0.03 dB, and 0.048 dB, respectively. In the experimental results on the actual fabricated filter, the filtering response was clearly observed; however, the center frequency of 5.46 GHz was higher than that of the simulation. The simulated maximum surface current in the resonators of the SL filter was approximately 86% smaller than that of a conventional hairpin filter. Furthermore, the measured response of the Dy-Ba-Cu-O bulk filter at an input power of 20 dBm was almost the same as that at 0 dBm. These results mean that an SL filter using a Dy-Ba-Cu-O bulk resonator may be practicable as a high-power transmit BPF.

  11. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    PubMed Central

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  12. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    PubMed

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  13. Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression

    NASA Astrophysics Data System (ADS)

    Ulm, Thorsten; Harth, Florian; Klehr, Andreas; Erbert, Götz; L'huillier, Johannes

    2012-06-01

    We compared the performance of DQW and TQW edge-emitters in a passively mode-locked 1GHz MOPA system at 1075 nm wavelength. Passive mode-locking is induced by applying a reverse DC voltage to the absorber section. The average power is increased up to 0.9Wby a single-stripe pre-amplifier and a tapered amplifier. After compensation of the quadratic chirp in a grating compressor we achieved a pulse duration of 342 fs. We found that the oscillator gain current and the absorber bias voltage have significant impact on the pulse duration. Both parameters were used to optimize the MOPA system with respect to the shortest pulse length after compression.

  14. Searching for inflationary B modes: can dust emission properties be extrapolated from 350 GHz to 150 GHz?

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Pavlidou, Vasiliki

    2015-07-01

    Recent Planck results have shown that radiation from the cosmic microwave background passes through foregrounds in which aligned dust grains produce polarized dust emission, even in regions of the sky with the lowest level of dust emission. One of the most commonly used ways to remove the dust foreground is to extrapolate the polarized dust emission signal from frequencies where it dominates (e.g. ˜350 GHz) to frequencies commonly targeted by cosmic microwave background experiments (e.g. ˜150 GHz). In this Letter, we describe an interstellar medium effect that can lead to decorrelation of the dust emission polarization pattern between different frequencies due to multiple contributions along the line of sight. Using a simple 2-cloud model we show that there are two conditions under which this decorrelation can be large: (a) the ratio of polarized intensities between the two clouds changes between the two frequencies; (b) the magnetic fields between the two clouds contributing along a line of sight are significantly misaligned. In such cases, the 350 GHz polarized sky map is not predictive of that at 150 GHz. We propose a possible correction for this effect, using information from optopolarimetric surveys of dichroicly absorbed starlight.

  15. Hyperparametric effects in a whispering-gallery mode rutile dielectric resonator at liquid helium temperatures

    SciTech Connect

    Nand, Nitin R.; Goryachev, Maxim; Floch, Jean-Michel le; Creedon, Daniel L.; Tobar, Michael E.

    2014-10-07

    We report the first observation of low power drive level sensitivity, hyperparametric amplification, and single-mode hyperparametric oscillations in a dielectric rutile whispering-gallery mode resonator at 4.2 K. The latter gives rise to a comb of sidebands at 19.756 GHz. Whereas, most frequency combs in the literature have been observed in optical systems using an ensemble of equally spaced modes in microresonators or fibers, the present work represents generation of a frequency comb using only a single-mode. The experimental observations are explained by an additional 1/2 degree-of-freedom originating from an intrinsic material nonlinearity at optical frequencies, which affects the microwave properties due to the extremely low loss of rutile. Using a model based on lumped circuits, we demonstrate that the resonance between the photonic and material 1/2 degree-of-freedom, is responsible for the hyperparametric energy transfer in the system.

  16. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    NASA Astrophysics Data System (ADS)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  17. Resonator modes in high gain free electron lasers

    SciTech Connect

    Xie, Ming ); Deacon, D.A.G. ); Madey, J.M.J. . Dept. of Physics)

    1989-10-01

    When the gain in a free electron laser is high enough to produce optical guiding, the resonator mode distorts and loses its forward-backward symmetry. We show that the resonator mode in a high gain FEL can be easily constructed using the mode expansion technique taken separately in the interaction and the free-space regions. We propose design strategies to achieve maximal gain and optimal mode quality, and discuss the stability of the optimized mode. 11 refs., 4 figs.

  18. Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion

    SciTech Connect

    Ken L. Telschow

    2004-07-01

    A laser acoustic imaging microscope has been developed that measures acoustic motion with high spatial resolution without scanning. Images are recorded at normal video frame rates and heterodyne principles are used to allow operation at any frequency from Hz to GHz. Fourier transformation of the acoustic amplitude and phase displacement images provides a direct quantitative determination of excited mode wavenumbers at any frequency. Results are presented at frequencies near the first longitudinal thickness mode (~ 900 MHz) demonstrating simultaneous excitation of lateral modes with nonzero wavenumbers in an electrically driven AlN thin film acoustic resonator. Images combined at several frequencies form a direct visualization of lateral mode dispersion relations for the device under test allowing mode identification and a direct measure of specific lateral mode properties. Discussion and analysis of the results are presented in comparison with plate wave modeling of these devices taking account for material anisotropy and multilayer films.

  19. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Ohnishi, J.; Higurashi, Y.; Nakagawa, T.

    2016-02-01

    We have been developing a high-temperature oven using UO2 in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO2 was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO2 and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS.

  20. A broadband ferromagnetic resonance spectrometer to measure thin films up to 70 GHz.

    PubMed

    Harward, I; O'Keevan, T; Hutchison, A; Zagorodnii, V; Celinski, Z

    2011-09-01

    We report the development of a broadband ferromagnetic resonance (FMR) system operating in the frequency range from 10 MHz to 70 GHz using a closed-cycle He refrigeration system for measurements of thin films and micron/nano structures. The system is capable of carrying out measurements in frequency and field domain. Using two coplanar waveguides, it is capable of simultaneously measuring two samples in the out of plane and in plane FMR geometries. The system operates in the temperature range of 27-350 K and is sensitive to less than one atomic monolayer of a single crystal Fe film. PMID:21974627

  1. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well. PMID:18315101

  2. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.

    PubMed

    Boudot, R; Li, M D; Giordano, V; Rolland, N; Rolland, P A; Vincent, P

    2011-03-01

    This paper describes a 4.596 GHz frequency synthesis based on a 2.1 GHz solid mounted resonator (SMR) voltage-controlled oscillator (VCO). The SMR oscillator presents a chip size lower than 2 mm(2), a power consumption of 18.2 mW, and exhibits a phase noise of -89 dBc/Hz and -131 dBc/Hz at 2 kHz and 100 kHz offset frequencies, respectively. The VCO temperature-frequency dependence is measured to be -14 ppm∕°C over a range of -20°C to 60°C. From this source, a low noise frequency synthesizer is developed to generate a 4.596 GHz signal (half of the Cs atom hyperfine transition frequency) with a phase noise of -81 dBc/Hz and -120 dBc/Hz at 2 kHz and 100 kHz from the carrier. The frequency synthesis output is used as a local oscillator in a Cs vapor microcell-based compact atomic clock. Preliminary results are reported and discussed. To the authors knowledge, this is the first development of a SMR-oscillator-based frequency synthesizer for miniature atomic clocks applications. PMID:21456775

  3. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  4. Dual-Band Dual-Mode Substrate Integrated Waveguide Filters with Independently Reconfigurable TE101 Resonant Mode

    PubMed Central

    Wu, Yongle; Chen, Yuqing; Jiao, Lingxiao; Liu, Yuanan; Ghassemlooy, Zabih

    2016-01-01

    A novel perturbation approach using additional metalized via-holes for implementation of the dual-band or wide-band dual-mode substrate integrated waveguide (SIW) filters is proposed in this paper. The independent perturbation on the first resonant mode TE101 can be constructed by applying the proposed perturbation approach, whereas the second resonant mode TE102 is not affected. Thus, new kinds of dual-band or wide-band dual-mode SIW filters with a fixed or an independently reconfigurable low-frequency band have been directly achieved. In order to experimentally verify the proposed design method, four two-cavity dual-band SIW filters, which have different numbers of perturbation via-holes in each cavity, and a two-cavity dual-band SIW filter, which includes four via-holes and eight reconfigurable states in each cavity, are designed and experimentally assessed. The measured results indicate that the available frequency-ratio range from 1 to 1.3 can be realized by using four two-cavity dual-band SIW filters. The center frequency of the first band can be tuned from 4.61 GHz to 5.24 GHz, whereas the center frequency of the second one is fixed at around 6.18 GHz for the two-cavity dual-band SIW filter with four reconfigurable states via-holes. All the simulated and measured results show an acceptable agreement with the predicted data. PMID:27561687

  5. Dual-Band Dual-Mode Substrate Integrated Waveguide Filters with Independently Reconfigurable TE101 Resonant Mode.

    PubMed

    Wu, Yongle; Chen, Yuqing; Jiao, Lingxiao; Liu, Yuanan; Ghassemlooy, Zabih

    2016-01-01

    A novel perturbation approach using additional metalized via-holes for implementation of the dual-band or wide-band dual-mode substrate integrated waveguide (SIW) filters is proposed in this paper. The independent perturbation on the first resonant mode TE101 can be constructed by applying the proposed perturbation approach, whereas the second resonant mode TE102 is not affected. Thus, new kinds of dual-band or wide-band dual-mode SIW filters with a fixed or an independently reconfigurable low-frequency band have been directly achieved. In order to experimentally verify the proposed design method, four two-cavity dual-band SIW filters, which have different numbers of perturbation via-holes in each cavity, and a two-cavity dual-band SIW filter, which includes four via-holes and eight reconfigurable states in each cavity, are designed and experimentally assessed. The measured results indicate that the available frequency-ratio range from 1 to 1.3 can be realized by using four two-cavity dual-band SIW filters. The center frequency of the first band can be tuned from 4.61 GHz to 5.24 GHz, whereas the center frequency of the second one is fixed at around 6.18 GHz for the two-cavity dual-band SIW filter with four reconfigurable states via-holes. All the simulated and measured results show an acceptable agreement with the predicted data. PMID:27561687

  6. High-Order Tunable Filters Based on a Chain of Coupled Crystalline Whispering Gallery-Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.; Maleki, Lute

    2005-01-01

    We demonstrate experimentally a tunable third-order optical filter fabricated from the three voltage-controlled lithium niobate whispering gallery-mode resonators. The filter operates at 1550 nm with 30-MHz bandwidth and can be electrooptically tuned by 12 GHz in the linear regime with approximately 80-MHz/V tuning rate. With this filter, we have demonstrated 6-dB fiber-to-fiber insertion loss and 30-ns tuning speed, limited by the resonator buildup time.

  7. A fully integrated multi-band ED-mode pHEMT VCO using variable transformer and switched resonator

    NASA Astrophysics Data System (ADS)

    Ke, Po-Yu; Chiu, Hsien-Chin; Fu, Jeffrey S.

    2012-06-01

    A systematic approach to the design of a reconfigurable LC-coupled voltage-controlled oscillator (VCO) is proposed in this article. The focus is on the choice of the reactive elements of the resonance tank which are most suitable to switch to the desired oscillation frequencies. The optimum Q of the tank will be determined by the selected component. We report a 0.5-µm enhancement-depletion (ED) mode pHEMT (HEMT, high-electron mobility transistor) multiple-frequency VCO, and the generation of multiple frequencies are achieved using switched resonator topology. LC-tank circuit is built by square transformers. By careful selection of the reactive elements, evenly distributed results showed at each designed band. The multi-band ED-mode pHEMT VCO showed the output power of -4.7 dBm for 2 GHz band, -6.67 dBm for 3.86 GHz band and -5.9 dBm for 4.5 GHz band, respectively. The phase noises at 1 MHz offset frequency from carrier were -112.8 dBc/Hz for 2 GHz, -105 dBc/Hz for 3.86 GHz and -103.3 dBc/Hz for 4.5 GHz, respectively. The total chip size is only 1.17 × 0.83 mm2.

  8. Free-electron maser with high-selectivity Bragg resonator using coupled propagating and trapped modes

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.

    2010-10-01

    A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.

  9. Numerical study of the start-up scenario of a 670 GHz gyrotron operation at TE31,8 mode

    NASA Astrophysics Data System (ADS)

    Pu, Ruifeng; Sinitsyn, Oleksandr; Nusinovich, Gregory; Ireap Team

    2011-10-01

    In order to develop a system to detect concealed radioactive materials, we are designing a 670 GHz gyrotron with sufficient power to cause breakdown in the air. Design studies of the cavity and the magnetron injection gun (MIG) of this gyrotron had already been presented. We concluded study of simple start-up regime for this 670GHz gyrotron operating at TE31,8 mode and found that at the fundamental cyclotron harmonics, the operating mode can be excited and the competitor modes will be suppressed. Currently we are studying gyrotron operating on the second cyclotron harmonics using the same electron gun. Preliminary studies show that if the higher harmonics mode is excited first, it will suppress competitors of the fundamental mode. Using available MIG data, we are performing numerical simulation using MAGY. The results of these simulations can be illustrative for our future experiments, and the results of the study will be presented at the conference. Supported by ONR.

  10. Rarefying Spectra of Whispering-Gallery-Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitri; Iltchenko, Vladimir; Maleki, Lute

    2007-01-01

    A method of cleaning the mode spectra of whispering-gallery-mode (WGM) optical resonators has been devised to make such resonators more suitable for use as narrow-band optical filters. The method applies, more specifically, to millimeter- sized whispering-gallery-mode optical resonators that are made of crystalline electro-optical materials and have ultrahigh values of the resonance quality factor (Q). The mode spectrum of such a resonator is typically dense, consisting of closely spaced families of modes; as such, the spectrum is not well suited for narrow-band filtering, in which there is a need for strong rejection of side modes. Cleaning as used here signifies rarefying the spectrum so that what remains consists mostly of a single desired family of modes or, at worst, a few mode families that are more widely spaced in frequency than are the mode families in the original, non-rarefied spectrum. The spectrum-cleaning method exploits the fact that various WGM mode families occupy various positions near the equator at the rim of a resonator disk. In this method, a damper in the form of a prism or other polished piece of material having an index of refraction greater than that of the resonator material is placed in contact with the rim of the resonator at such a position that the Qs of most or all of the undesired mode families are greatly reduced while the Q of the desired mode family is reduced by only a tolerably small amount. In an alternative method that has been considered, the mode spectrum would be cleaned through special design of the shape of the rim, but fabrication of the rim in a special shape is a complicated task. The advantage of the present method, relative to the alternative method, is that special shaping of the rim is not necessary and the damping prism can be emplaced after the resonator has been fabricated.

  11. Cryogenic 36-45 GHz InP Low-Noise Amplifier MMIC's with Improved Noise Temperature by Eliminating Parasitic Parallel-Plate Modes

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroshi; Shimizu, Takashi; Ohno, Takeshi; Hirachi, Yasutake; Kawaguchi, Noriyuki

    2012-08-01

    This paper describes cryogenic 36-45 GHz InP low-noise amplifier monolithic microwave integrated circuits (MMIC's) with an improved noise temperature by eliminating parasitic parallel-plate resonance modes. These MMIC's are used for a Radio Astronomical receiver, which needs the ultimate super low-noise and wide-band frequency characteristics, such as those in ALMA Band 1. The MMIC chips were designed in the coplanar waveguide (CPW), and mounted to the AlN substrate with a flip-chip assembly, which was promising compared to wire bonding. The flip-chip assemblies, however, are prone to cause the parasitic parallel plate resonance mode (PPM). The relationship between the S-parameters and the PPM was investigated by using a 3D-electromagnetic simulation of the simple transmission-line test-chip with the same chip size as that of the actual MMIC. In order to eliminate the PPM, additional bumps were mounted on the simple transmission-line test-chip, and the effect of these bumps was confirmed by the simulation. These results obtained from the simple transmission-line test-chip were applied to an actual MMIC chip assembly. The MMIC assembled with the additional bumps had no abnormality in the measured S-parameters, and the PPM had been eliminated up to 65 GHz. Moreover, the stability factor, K, became more than 2.4 over 36-45 GHz. This InP low-noise amplifier MMIC exhibited a gain of 15 dB and a noise temperature of 180-240 K at room temperature in the frequency range of 36-45 GHz. When cooled to 28 K, a gain of 17 dB and a noise temperature of 22-35 K were obtained at a power consumption of 4.7 mW over 36-45 GHz. A high-gain amplifier module consisting of two cascaded chips, exhibited a gain of 27-30 dB and a noise temperature of 25-30 K at the ambient temperature of 22 K in the frequency range of 41-45 GHz.

  12. Structural resonance and mode of flutter of hummingbird tail feathers.

    PubMed

    Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O

    2013-09-15

    Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string. PMID:23737565

  13. Low power low phase noise phase locked loop frequency synthesizer with fast locking mode for 2.4 GHz applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Feng, Peng; Liu, Liyuan; Wu, Nanjian

    2014-01-01

    We designed a low power low phase noise phase locked loop (PLL) frequency synthesizer for 2.4 GHz wireless communication applications. Current reusing technique and triple-well NMOS transistors are applied to reduce power consumption and improve phase noise performance of the voltage controlled oscillator (VCO), respectively. The synthesizer has a fast locking mode that uses frequency presetting technique to greatly shorten the locking time. The synthesizer was implemented in 0.18 µm CMOS process. The chip core area is 1.49 mm2. Measured results show that the output frequency tuning range is 2.16-2.55 GHz. The phase noise is -124.18 dBc/Hz at 1 MHz from a 2.4 GHz carrier. The power consumption is 4.98 mW and the locking time in fast locking mode is about 4 µs.

  14. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research. PMID:26931931

  15. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  16. Resonant Modes in a 1.6 Cells RF Gun

    NASA Astrophysics Data System (ADS)

    Ferrario, Massimo; Ronsivalle, Concetta

    2007-09-01

    The SPARC photoinjector RF gun consists in the BNL/SLAC/UCLA 1.6 cell structure designed to resonate at 2856 MHz in the π mode. It will be demonstrated by a numerical modelization based on SUPERFISH code combined with the LC-circuit analysis that the two oscillating modes of the system usually indicated as 0-mode and π-mode (the operating mode) are in reality a π/3-mode-like and a π-mode-like. The consequences on the definition of the coupling coefficient and on the use of mode-separation based RF measurements are described.

  17. Resonant Modes in a 1.6 Cells RF Gun

    NASA Astrophysics Data System (ADS)

    Ferrario, Massimo; Ronsivalle, Concetta

    The SPARC photoinjector RF gun consists in the BNL/SLAC/UCLA 1.6 cell structure designed to resonate at 2856 MHz in the π mode. It will be demonstrated by a numerical modelization based on SUPERFISH code combined with the LC-circuit analysis that the two oscillating modes of the system usually indicated as 0-mode and π-mode (the operating mode) are in reality a π/3-mode-like and a π-mode-like. The consequences on the definition of the coupling coefficient and on the use of mode-separation based RF measurements are described.

  18. Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator.

    PubMed

    Wang, Yue; Zhang, Kun; Zhou, Song; Wu, Yi-Hui; Chi, Ming-Bo; Hao, Peng

    2016-04-15

    Whispering-gallery-mode (WGM) optical resonators are ideal systems for achieving electromagnetically induced transparency-like phenomenon. Here, we experimentally demonstrate that one or more transparent windows can be achieved with coupled-mode induced transparency (CMIT) in a single bottle WGM resonator due to the bottle's dense mode spectra and tunable resonant frequencies. This device offers an approach for multi-channel all-optical switching devices and sensitivity-enhanced WGM-based sensors. PMID:27082355

  19. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source.

    PubMed

    Ohnishi, J; Higurashi, Y; Nakagawa, T

    2016-02-01

    We have been developing a high-temperature oven using UO2 in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO2 was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO2 and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS. PMID:26931927

  20. Whispering gallery mode resonators based on radiation-sensitive materials

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Handley, Timothy A. (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators formed of radiation-sensitive materials to allow for permanent tuning of their resonance frequencies in a controlled manner. Two WGM resonators may be cascaded to form a composite filter to produce a second order filter function where at least one WGM resonator is formed a radiation-sensitive material to allow for proper control in the overlap of the two filter functions.

  1. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  2. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: Off-resonant and resonant cases

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  3. Nanoliter liquid characterization by open whispering-gallery mode dielectric resonators at millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Shaforost, E. N.; Klein, N.; Vitusevich, S. A.; Offenhäusser, A.; Barannik, A. A.

    2008-10-01

    We present an approach for identification and concentration determination of liquids of pico to nanoliter volumes at a frequency of 35 GHz based on a whispering-gallery mode (WGM) dielectric resonator technique. A quasioptical coupling scheme based on dielectric image waveguides was employed to excite high-Q running wave WGMs with uniform azimuthal field distribution in cylindrical sapphire disks with quality factors up to 4×105 at room temperature. Measurement of the liquid induced changes in the resonator quality factor and resonance frequency has been performed for droplets down to 90 pl volume spotted at different positions on the surface of the sapphire disk. We have employed our method for concentration determination of ethanol, glucose, and albumin dissolved in water. Solutions with concentration values well below 10% could be clearly separated from pure water. Our method is promising for the characterization of biological liquids.

  4. Opto-acoustic phenomena in whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guoping; Chembo, Yanne K.

    2016-01-01

    Optical whispering gallery mode resonators are important platforms to enhance and study various nonlinear frequency conversion processes. Stimulated Brillouin scattering is one of the strongest nonlinear effects, and can be successfully investigated using these platforms. In this article, we study the phenomenon of stimulated Brillouin scattering using a crystalline disk resonator. A fast scanning ringdown spectroscopy technique is used to characterize the optical modes featuring quality factors of the order of one billion at telecom wavelengths. The mW scale threshold power in a centimeter disk resonator is observed and found to be strongly dependent on the gap between the resonator and the prism coupler.

  5. 250-GHz electron spin resonance studies of polarity gradients along the aliphatic chains in phospholipid membranes.

    PubMed Central

    Earle, K. A.; Moscicki, J. K.; Ge, M.; Budil, D. E.; Freed, J. H.

    1994-01-01

    Rigid-limit 250-GHz electron spin resonance (FIR-ESR) spectra have been studied for a series of phosphatidylcholine spin labels (n-PC, where n = 5, 7, 10, 12, 16) in pure lipid dispersions of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as well as dispersions of DPPC containing the peptide gramicidin A (GA) in a 1:1 molar ratio. The enhanced g-tensor resolution of 250-GHz ESR for these spin labels permitted a careful study of the nitroxide g-tensor as a function of spin probe location and membrane composition. In particular, as the spin label is displaced from the polar head group, Azz decreases and gxx increases as they assume values typical of a nonpolar environment, appropriate for the hydrophobic alkyl chains in the case of pure lipid dispersions. The field shifts of spectral features due to changes in gxx are an order of magnitude larger than those from changes in Azz. The magnetic tensor parameters measured in the presence of GA were characteristic of a polar environment and showed only a very weak dependence of Azz and gxx on label position. These results demonstrate the significant influence of GA on the local polarity along the lipid molecule, and may reflect increased penetration of water into the alkyl chain region of the lipid in the presence of GA. The spectra from the pure lipid dispersions also exhibit a broad background signal that is most significant for 7-, 10-, and 12-PC, and is more pronounced in DPPC than in POPC. It is attributed to spin probe aggregation yielding spin exchange narrowing. The addition of GA to DPPC essentially suppressed the broad background signal observed in pure DPPC dispersions. PMID:7518705

  6. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  7. Tapping mode quartz crystal resonator based scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Seo, Yongho; Jhe, Wonho

    2005-01-01

    We have built a high-speed, tapping mode scanning force microscope using a high frequency quartz crystal resonator. In our design, a cantilever tip was attached to the end of an optical fiber which was glued to a thickness shear mode, AT-cut quartz crystal resonator so as to vibrate in the longitudinal direction. This design allows the microscope to be operated in tapping mode with the flexibility of shear mode operation, which leads to an expected improvement of image quality. Furthermore, combining this geometry with an optical microscope leads to the possibility of commercial applications.

  8. Shear mode coupling and tilted grain growth of A1N thin films in BAW resonators.

    PubMed

    Martin, Fabrice; Jan, Marc-Etienne; Rey-Mermet, Samuel; Belgacem, Brahim; Su, Dong; Cantoni, Marco; Muralt, Paul

    2006-07-01

    Polycrystalline A1N thin films were deposited by RF reactive magnetron sputtering on Pt(111)/Ti electrode films. The substrates were tilted by an angle ranging from 40 degrees to 70 degrees with respect to the target normal. A low deposition temperature and a high sputter gas pressure were found ideal for tilted growth. The resulting grain tilt angle amounts to about half the substrate tilt angle. For coupling evaluation, 5 GHz solidly mounted resonator structures have been realized. The tilted grain A1N films exhibited a permittivity in the 9.5-10.5 range and loss tangent of 0.3%. Two shear modes as well as the longitudinal mode could be clearly identified. The coupling coefficient k2(eff) of the fundamental thickness shear mode (TS0) was found to be about 0.5%, which is compatible with a c-axis tilt of about 6 degrees. PMID:16889341

  9. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode crystalline resonaors, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics.

  10. On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators

    NASA Astrophysics Data System (ADS)

    Endo, A.; Sfiligoj, C.; Yates, S. J. C.; Baselmans, J. J. A.; Thoen, D. J.; Javadzadeh, S. M. H.; van der Werf, P. P.; Baryshev, A. M.; Klapwijk, T. M.

    2013-07-01

    We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer, using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiNx/NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz, two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.

  11. Optical rogue waves in whispering-gallery-mode resonators

    NASA Astrophysics Data System (ADS)

    Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.

  12. Continuous spectrum of modes for optical micro-sphere resonators

    NASA Astrophysics Data System (ADS)

    Nooramin, Amir Saman; Shahabadi, Mahmoud

    2016-09-01

    This paper presents an improved modal analysis for the spherical dielectric resonator. This is commonly carried out by assuming an outgoing spherical Hankel function for the region surrounding the dielectric sphere. It will be shown that this assumption is incomplete and cannot lead to the entire spectrum of resonance frequencies. Following an analytical formulation, we prove that, like cylindrical resonators, the only choice for the outer region of the dielectric sphere can be a proper linear combination of an inward and an outward traveling wave. Starting from this formulation, we determine the complete spectrum of the resonance frequencies and the associated mode fields. In this analysis, the continuous spectrum of resonance frequencies is introduced and the properties of radiation modes are studied in detail. The proposed analytical formulation is thereafter employed to calculate the quality factor of the resonator due to radiation and dielectric loss.

  13. Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator.

    PubMed

    Fescenko, I; Alnis, J; Schliesser, A; Wang, C Y; Kippenberg, T J; Hänsch, T W

    2012-08-13

    Frequency stabilization of a diode laser locked to a whispering gallery mode (WGM) reference resonator made of a MgF2 single crystal is demonstrated. The strong thermal dependence of the difference frequency between two orthogonally polarized TE an TM modes (dual-mode frequency) of the optically anisotropic crystal material allows sensitive measurement of the resonator's temperature within the optical mode volume. This dual-mode signal was used as feedback for self-referenced temperature stabilization to nanokelvin precision, resulting in frequency stability of 0.3 MHz/h at 972 nm, which was measured by comparing with an independent ultrastable laser. PMID:23038559

  14. Heterodyne laser-Doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2 GHz

    NASA Astrophysics Data System (ADS)

    Rembe, Christian; Boedecker, Sebastian; Dräbenstedt, Alexander; Pudewills, Fred; Siegmund, Georg

    2008-06-01

    Several new applications for optical ultra-high frequency (UHF) measurements have been evolved during the last decade by advancements in ultra-sonic filters and actuators as well as by the progress in micro- and nanotechnology. These new applications require new testing methods. Laser-based, non-influencing optical testing is the best choice. In this paper we present a laser-Doppler vibrometer for vibration measurements at frequencies up to 1.2 GHz. The frequency-shifter in the heterodyne interferometer is a slow-shear-mode Bragg cell. The light source in the interferometer is a green DPSS (diode pumped solid state) laser. At this wavelength the highest possible frequency shift between zero and first diffraction order is a few MHz above 300 MHz for a slow shear-mode Bragg cell and, therefore, the highest possible bandwidth of the laser-Doppler vibrometer should usually be around 300 MHz. A new optical arrangement and a novel signal processing of the digitized photo-detector signal is employed to expand the bandwidth to 1.2 GHz. We describe the utilized techniques and present the characterization of the new ultra-high-frequency (UHF) vibrometer. An example measurement on a surface acoustic wave (SAW) resonator oscillating at 262 MHz is also demonstrated. The light-power of the measurement beam can be switched on rapidly by a trigger signal to avoid thermal influences on the sample.

  15. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  16. 11-13 GHz electron cyclotron resonance plasma source using cylindrically comb-shaped magnetic-field configuration for broad ion-beam processing

    SciTech Connect

    Asaji, Toyohisa; Kato, Yushi; Sato, Fuminobu; Iida, Toshiyuki; Saito, Junji

    2006-11-15

    An electron cyclotron resonance (ECR) plasma source for broad ion-beam processing has been upgraded by a cylindrically comb-shaped magnetic-field configuration and 11-13 GHz frequency microwaves. A pair of comb-shaped magnets surrounds a large-bore discharge chamber. The magnetic field well confines plasmas with suppressing diffusion toward the axial direction of the cylindrical chamber. The magnetic field is constructed with a multipole and two quasiring permanent magnets. The plasma density clearly increases as compared with that in a simple multipole magnetic-field configuration. The frequency of microwaves output from the traveling-wave tube amplifier can be easily changed with an input signal source. The plasma density for 13 GHz is higher than that for 11 GHz. The maximum plasma density has reached approximately 10{sup 18} m{sup -3} at a microwave power of only 350 W and a pressure of 1.0 Pa. The enhancement of plasma generation by second-harmonic resonance and microwave modes has been investigated. The plasma density and the electron temperature are raised around the second-harmonic resonance zone. And then, the ion saturation current is periodically increased with varying the position of the plate tuner. The distance between the peaks is nearly equal to half of the free-space wavelength of microwave. The efficiency of ECR has been improved by using the comb-shaped magnetic field and raising microwave frequency, and then the high-density plasma source has been accomplished at low microwave power.

  17. Implementation of an operator intervention system for remote control of the RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Furukawa, K.; Higurashi, Y.; Nakagawa, T.

    2014-02-01

    The control system for the RIKEN 28 GHz superconducting electron cyclotron resonance ion source (28 GHz SC-ECRIS) consists of a distributed control system based on the experimental physics and industrial control system. To maintain the beam quality for the long beam-service time at the radioactive isotope beam factory, beam tuning to prevent subtle changes in the 28 GHz SC-ECRIS conditions is required. Once this is achieved, it should then be possible to check conditions and operate the ion source at any time. We have designed a web-based operational interface to remotely control the ion source, but for access and control from several locations, suitable access security, policies, and methods are required. We thus implemented an operator intervention system that makes it possible to safely access the network externally with the permission of on-site accelerator operators in the control room.

  18. Recent development of RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Higurashi, Y.; Ohnishi, J.; Ozeki, K.; Kidera, M.; Nakagawa, T.

    2014-02-01

    Over the past two years, we have tried to improve the performance of the RIKEN superconducting electron cyclotron resonance ion source using several methods. For the production of U vapor, we chose the sputtering method because it is possible to install a large amount of material inside the plasma chamber and thus achieve long-term operation without a break, although it is assumed that the beam intensity is weaker than in the oven technique. We also used an aluminum chamber instead of a stainless steel one. Using these methods, we successfully produced ˜180 eμA of U35+ and ˜230 eμA of U33+ at the injected radio frequency (RF) power of ˜4 kW (28 GHz). Very recently, to further increase the beam intensity of U35+, we have started to develop a high temperature oven and have successfully produced a highly charged U ion beam. In this contribution, we report on the beam intensity of highly charged U ions as a function of various parameters (RF power and sputtering voltage) and discuss the effects of these parameters on the beam stability in detail.

  19. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  20. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator.

    PubMed

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project. PMID:26931935

  1. STRUCTURE OF THE INNER JET OF OJ287 FROM VLBA DATA AT 15 GHz IN SUPER-RESOLUTION MODE

    SciTech Connect

    Tateyama, Claudio E.

    2013-04-01

    In this work we show the results obtained from the Very Long Baseline Array data at 15 GHz of OJ287 in super-resolution mode. The data showed a jet configuration in the form of a 'fork' where superluminal components emerge via stationary components at the northwest and the southeast close to the core to form parallel trajectories along the southwest direction in the plane of sky. This agrees with a source structure of an extended, broad morphology of OJ287.

  2. Single-Mode WGM Resonators Fabricated by Diamond Turning

    NASA Technical Reports Server (NTRS)

    Grudinin, Ivan; Maleki, Lute; Savchenkov, Anatoliy; Matsko, Andrewy; Strekalov, Dmitry; Iltchenko, Vladimir

    2008-01-01

    A diamond turning process has made possible a significant advance in the art of whispering-gallery-mode (WGM) optical resonators. By use of this process, it is possible to fashion crystalline materials into WGM resonators that have ultrahigh resonance quality factors (high Q values), are compact (ranging in size from millimeters down to tens of microns), and support single electromagnetic modes. This development combines and extends the developments reported in "Few- Mode Whispering-Gallery-Mode Resonators" (NPO-41256), NASA Tech Briefs, Vol. 30, No. 1 (January 2006), page 16a and "Fabrication of Submillimeter Axisymmetric Optical Components" (NPO-42056), NASA Tech Briefs, Vol. 31, No. 5 (May 2007), page 10a. To recapitulate from the first cited prior article: A WGM resonator of this special type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod and acts as a circumferential waveguide. If the depth and width of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and the rod material adjacent to it support a single, circumferentially propagating mode or family of modes. To recapitulate from the second cited prior article: A major step in the fabrication of a WGM resonator of this special type is diamond turning or computer numerically controlled machining of a rod of a suitable transparent crystalline material on an ultrahigh-precision lathe. During the rotation of a spindle in which the rod is mounted, a diamond tool is used to cut the rod. A computer program is used to control stepping motors that move the diamond tool, thereby controlling the shape cut by the tool. Because the shape can be controlled via software, it is possible to choose a shape designed to optimize a resonator spectrum, including, if desired, to limit the resonator to supporting a single mode

  3. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber.

    PubMed

    Koo, Joonhoi; Park, June; Lee, Junsu; Jhon, Young Min; Lee, Ju Han

    2016-05-16

    We experimentally demonstrate the use of a bulk-like, MoSe2-based saturable absorber (SA) as a passive harmonic mode-locker for the production of femtosecond pulses from a fiber laser at a repetition rate of 3.27 GHz. By incorporating a bulk-like, MoSe2/PVA-composite-deposited side-polished fiber as an SA within an erbium-doped-fiber-ring cavity, mode-locked pulses with a temporal width of 737 fs to 798 fs can be readily obtained at various harmonic frequencies. The fundamental resonance frequency and the maximum harmonic-resonance frequency are 15.38 MHz and 3.27 GHz (212th harmonic), respectively. The temporal and spectral characteristics of the output pulses are systematically investigated as a function of the pump power. The output pulses exhibited Gaussian-temporal shapes irrespective of the harmonic order, and even when their spectra possessed hyperbolic-secant shapes. The saturable absorption and harmonic-mode-locking performance of our prepared SA are compared with those of previously demonstrated SAs that are based on other transition metal dichalcogenides (TMDs). To the best of the authors' knowledge, the repetition rate of 3.27 GHz is the highest frequency that has ever been demonstrated regarding the production of femtosecond pulses from a fiber laser that is based on SA-induced passive harmonic mode-locking. PMID:27409880

  4. Acoustic wave flow sensor using quartz thickness shear mode resonator.

    PubMed

    Qin, Lifeng; Zeng, Zijing; Cheng, Hongbin; Wang, Qing-Ming

    2009-09-01

    A quartz thickness shear mode (TSM) bulk acoustic wave resonator was used for in situ and real-time detection of liquid flow rate in this study. A special flow chamber made of 2 parallel acrylic plates was designed for flow measurement. The flow chamber has a rectangular flow channel, 2 flow reservoirs for stabilizing the fluid flow, a sensor mounting port for resonator holding, one inlet port, and one outlet port for pipe connection. A 5-MHz TSM quartz resonator was edge-bonded to the sensor mounting port with one side exposed to the flowing liquid and other side exposed to air. The electrical impedance spectra of the quartz resonator at different volumetric flow rate conditions were measured by an impedance analyzer for the extraction of the resonant frequency through a data-fitting method. The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shifts were found to be around 920, 3572, 5947, 8228, and 10,300 Hz for flow rate variation from 0 to 3000 mL/min, which had a corresponding Reynolds number change from 0 to 822. The resonant frequency shifts of different modes are found to be quadratic with flow rate, which is attributed to the nonlinear effect of quartz resonator due to the effective normal pressure imposing on the resonator sensor by the flowing fluid. The results indicate that quartz TSM resonators can be used for flow sensors with characteristics of simplicity, fast response, and good repeatability. PMID:19811997

  5. SINGLE LOOP - MULTI GAP RESONATOR FOR WHOLE BODY EPR IMAGING OF MICE AT 1.2 GHZ

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Wasowicz, Tomasz; Caia, George L.; Zweier, Jay L.

    2009-01-01

    For whole body EPR imaging of small animals, typically low frequencies of 250–750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16 gap resonator with inner diameter of 43 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B1 field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz. PMID:17625940

  6. Large mode-volume, large beta, photonic crystal laser resonator

    SciTech Connect

    Dezfouli, Mohsen Kamandar; Dignam, Marc M.

    2014-12-15

    We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

  7. Parametric strong mode-coupling in carbon nanotube mechanical resonators.

    PubMed

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-21

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. PMID:27447924

  8. Phase Matching of Diverse Modes in a WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Mohageg, Makan; Maleki, Lute

    2008-01-01

    Phase matching of diverse electromagnetic modes (specifically, coexisting optical and microwave modes) in a whispering-gallery-mode (WGM) resonator has been predicted theoretically and verified experimentally. Such phase matching is necessary for storage of microwave/terahertz and optical electromagnetic energy in the same resonator, as needed for exploitation of nonlinear optical phenomena. WGM resonators are used in research on nonlinear optical phenomena at low optical intensities and as a basis for design and fabrication of novel optical devices. Examples of nonlinear optical phenomena recently demonstrated in WGM resonators include low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations. The present findings regarding phase matching were made in research on low-threshold, strongly nondegenerate parametric oscillations in lithium niobate WGM resonators. The principle of operation of such an oscillator is rooted in two previously observed phenomena: (1) stimulated Raman scattering by polaritons in lithium niobate and (2) phase matching of nonlinear optical processes via geometrical confinement of light. The oscillator is partly similar to terahertz oscillators based on lithium niobate crystals, the key difference being that a novel geometrical configuration of this oscillator supports oscillation in the regime. The high resonance quality factors (Q values) typical of WGM resonators make it possible to achieve oscillation at a threshold signal level much lower than that in a non-WGM-resonator lithium niobate crystal.

  9. Transverse mode selection in laser resonators using volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Anderson, Brian; Venus, George; Ott, Daniel; Divliansky, Ivan; Dawson, Jay W.; Drachenberg, Derrek R.; Messerly, Mike J.; Pax, Paul H.; Tassano, John B.; Glebov, Leonid

    2014-06-01

    Power scaling of high power laser resonators is limited due to several nonlinear effects. Scaling to larger mode areas can offset these effects at the cost of decreased beam quality, limiting the brightness that can be achieved from the multi-mode system. In order to improve the brightness from such multi-mode systems, we present a method of transverse mode selection utilizing volume Bragg gratings (VBGs) as an angular filter, allowing for high beam quality from large mode area laser resonators. An overview of transverse mode selection using VBGs is given, with theoretical models showing the effect of the angular selectivity of transmitting VBGs on the resonator modes. Applications of this ideology to the design of laser resonators, with cavity designs and experimental results presented for three types of multimode solid state lasers: a Nd:YVO4 laser with 1 cm cavity length and 0.8 mm diameter beam with an M2 of 1.1, a multimode diode with diffraction limited far field divergence in the slow axis, and a ribbon fiber laser with 13 cores showing M2 improved from 11.3 to 1.5.

  10. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    NASA Astrophysics Data System (ADS)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  11. Permanent matching of coupled optical bottle resonators with better than 0.16  GHz precision.

    PubMed

    Toropov, N A; Sumetsky, M

    2016-05-15

    The fabrication precision is one of the most critical challenges to the creation of practical photonic circuits composed of coupled high Q-factor microresonators. While very accurate transient tuning of microresonators based on local heating has been reported, the record precision of permanent resonance positioning achieved by post-processing is still within 1 and 5 GHz. Here we demonstrate two coupled bottle microresonators fabricated at the fiber surface with resonances that are matched with a better than 0.16 GHz precision. This corresponds to a better than 0.17 Å precision in the effective fiber radius variation. The achieved fabrication precision is only limited by the resolution of our optical spectrum analyzer and can be potentially improved by an order of magnitude. PMID:27176982

  12. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  13. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Chen, Liang

    2015-12-01

    We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry-Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8-1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

  14. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.

    PubMed

    Chen, Guijia; Wu, Rongxing; Wang, Ji; Du, Jianke; Yang, Jiashi

    2012-04-01

    We study straight-crested waves and vibration modes with variations along the x(3) direction only in an AT-cut quartz plate resonator near the operating frequency of the fundamental thickness-shear mode. Mindlin's two-dimensional equations for anisotropic crystal plates are used. Dispersion relations and frequency spectra of the five relevant waves are obtained. It is found that, to avoid unwanted couplings between the resonator operating mode and other undesirable modes, in addition to certain known values of the plate length/thickness ratio that need to be avoided, an additional series of discrete values of the plate length/thickness ratio also must be excluded. PMID:22547292

  15. Full-Field Imaging of GHz Film Bulk Acoustic Resonator Motion

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, J. D.

    2003-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by using dynamic holography with photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed that is capable of operation at gigahertz frequency and micron length scales. Both acoustic amplitude and phase are recorded, allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies of 800-900 MHz, illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric-to-acoustic coupling of these devices and their performance. Images of 256 /spl times/ 240 pixels are recorded at 18 fps rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level at each pixel calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  16. Collective modes in a uniform Fermi gas with Feshbach resonances

    SciTech Connect

    Huang, Beibing; Wan, Shaolong

    2007-05-15

    The collective modes in a uniform fermionic atomic gas with Feshbach resonance are investigated with the path integral method in the frame of a fermion-boson model Hamiltonian. We mainly concentrated on the long-wavelength and low-frequency limits at T=0 K and got an analytical expression for the collective modes across the whole BCS-Bose-Einstein condensate (BEC) crossover. We completely recover the Anderson-Bogoliubov modes in the BCS limit and the Bogoliubov modes of the bosonic systems in the BEC limit. The numerical results show that there exists a continuous interpolation for sound velocity between BCS and BEC limits.

  17. Mode switching in a gyrotron with azimuthally corrugated resonator.

    PubMed

    Nusinovich, G S; Sinitsyn, O V; Antonsen, T M

    2007-05-18

    The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown that such a gyrotron can be easily switched from one mode to another. When the switching is done with the repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators. PMID:17677705

  18. Mode Switching in a Gyrotron with Azimuthally Corrugated Resonator

    SciTech Connect

    Nusinovich, G. S.; Sinitsyn, O. V.; Antonsen, T. M. Jr.

    2007-05-18

    The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown that such a gyrotron can be easily switched from one mode to another. When the switching is done with the repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators.

  19. Mode competition and mode control in free electron lasers with one and two dimensional Bragg resonators

    SciTech Connect

    Yu, P.N.; Ginzburg, N.S.; Sergeev, A.S.

    1995-12-31

    In the report we present a time domain approach to the theory of FELs with one and two dimensional Bragg resonators. It is demonstrated that traditional 1-D Bragg resonators provide possibilities for effective longitudinal mode control. In particular, simulation of the FEL realized in the joint experiment of JINR (Dybna) and IAP (N. Novgord) confirms achievement of the single mode operating regime with high efficiency of about 20%. However, 1-D Bragg resonators lose their selectivity as the transverse size of the system is increased. We simulate mode competition in FELs with coaxial 1-D Bragg resonators and observe a progressively more complicated azimuthal mode competition pattern as the perimeter of the resonator is increased. At the same time, using 2-D Bragg resonators for the same electron beam and microwave system perimeter gives very fast establishment of the single frequency regime with an azimuthally symmetric operating mode. Therefore, FELs utilising 2-D Bragg resonators with coaxial and planar geometry may be considered as attractive sources of high power spatially coherent radiation in the mm and sub-mm wave bands.

  20. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  1. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion. PMID:24229289

  2. Resonant mode controllers for launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Schreiner, Ken E.; Roth, Mary Ellen

    1992-01-01

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  3. Nonlinear normal modes modal interactions and isolated resonance curves

    DOE PAGESBeta

    Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less

  4. Nonlinear normal modes modal interactions and isolated resonance curves

    SciTech Connect

    Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.

  5. High-order momentum modes by resonant superradiant scattering

    SciTech Connect

    Zhou Xiaoji; Fu Jiageng; Chen Xuzong

    2009-12-15

    The spatial and time evolutions of superradiant scattering are studied theoretically for a weak pump beam with different frequency components traveling along the long axis of an elongated Bose-Einstein condensate. Resulting from the analysis for mode competition between the different resonant channels and the local depletion of the spatial distribution in the superradiant Rayleigh scattering, a method of getting a large number of high-order forward modes by resonant frequency components of the pump beam is provided, which is beneficial to a lager momentum transfer in atom manipulation for the atom interferometry and atomic optics.

  6. Symmetry and resonant modes in platonic grating stacks

    NASA Astrophysics Data System (ADS)

    Haslinger, S. G.; Movchan, A. B.; Movchan, N. V.; McPhedran, R. C.

    2014-04-01

    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered elasto-dynamically inhibited transmission (EDIT) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  7. KIC 8164262: A Heartbeat Star with a Resonantly Excited Mode

    NASA Astrophysics Data System (ADS)

    Hambleton, Kelly Marie; Kurtz, Donald Wayne; thompson, susan; Fuller, Jim

    2015-08-01

    With the advent of high precision photometry from the Kepler satellite, a new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccentric ellipsoidal variables that undergo strong tidal interactions at the time of closest approach, when the stars are almost in contact. The consequence of these interactions is not only the deformation and mutual irradiation of the stars at periastron, but in many of these objects (~20%) we observe tidally induced pulsations. Tidally induced pulsations are pulsations driven by the tidal forcing of the binary star companion. They can be easily distinguished from other pulsations as they occur at precise multiples of the orbital frequency. Moreover, we have identified several objects where the tidally excited modes are undergoing resonance. This occurs when the tidal forces are in resonance with an eigenfrequency of one of the stellar components. In this paper we present KIC 8164262, a prime example of a heartbeat star with a resonantly excited mode. We provide the results of spectral modelling combined with extensive binary light and radial velocity curve modelling, generated using PHOEBE and MCMC. We further discuss why resonant locking, which has been theorised as the mechanism that keeps a system in resonance, is likely acting on this system. Finally, we describe the theoretical implications of tidally induced and resonantly excited modes, and their effects on binary star evolution.

  8. Comparison of shear flow formation between resonant and non-resonant resistive interchange modes

    NASA Astrophysics Data System (ADS)

    Unemura, T.; Hamaguchi, S.; Wakatani, M.

    1999-11-01

    It is known that the poloidal shear flow is produced from the nonlinear resistive interchange modes(A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59) 1581 (1987)(B.A. Carreras and V. E. Lynch, Phys. Fluids B 5) 1795 (1993). Since the non-resonant resistive modes also become unstable(K. Ichiguchi, Y. Nakamura and M. Wakatani, Nucl. Fusion 31) 2073 (1991), the nonlinear behavior is compared between the resonant and non-resonant modes from the point of view of poloidal flow formation. For understanding the difference, we studied single helicity (m,n)=(3,2) mode in a cylindrical geometry.Rotational transform profile, ι(r), was changed. First, we assumed ι(r)=0.51+0.39r^2, and increased ι(0). This change represents a finite beta effect in currentless stellarators. When the resonant surface exists with ι(r_s)=2/3, the poloidal flow are created near the resonant surface. And, in the case when no resonant surface exists but ι_min ~ 2/3, the non-resonant (3,2) mode grows and poloidal shear flow is also generated; however, the magnitude decreases sharply with the increase of ι_min.

  9. Theory of anisotropic whispering-gallery-mode resonators

    SciTech Connect

    Ornigotti, Marco

    2011-07-15

    An analytic solution for a uniaxial spherical resonator is presented using the method of Debye potentials. This serves as a starting point for the calculation of whispering gallery modes (WGMs) in such a resonator. Suitable approximations for the radial functions are discussed in order to best characterize WGMs. The characteristic equation and its asymptotic expansion for the anisotropic case is also discussed, and an analytic formula with a precision of the order O[{nu}{sup -1}] is also given. Our careful treatment of both boundary conditions and asymptotic expansions makes the present work a particularly suitable platform for a quantum theory of whispering gallery resonators.

  10. CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells.

    PubMed

    Akhtar, W; Schnegg, A; Veber, S; Meier, C; Fehr, M; Lips, K

    2015-08-01

    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263GHz and resonance fields between 0 and 12T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5K and 90K was studied by in operando 263GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states. PMID:26112328

  11. Efficient second harmonic generation in a metamaterial with two resonant modes coupled through two varactor diodes

    NASA Astrophysics Data System (ADS)

    Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao

    2012-01-01

    We present an effective method to generate second harmonic (SH) waves using nonlinear metamaterial composed of coupled split ring resonators (CSRRs) with varactor (variable capacitance) diodes. The CSRR structure has two resonant modes: a symmetric mode that resonates at the fundamental frequency and an anti-symmetric mode that resonates at the SH frequency. Resonant fundamental waves in the symmetric mode generate resonant SH waves in the anti-symmetric mode. The double resonance contributes to effective SH radiation. In the experiment, we observe 19.6 dB enhancement in the SH radiation in comparison with the nonlinear metamaterial that resonates only for the fundamental waves.

  12. Polarization characteristics of the Schumann resonance modes in Tomsk

    NASA Astrophysics Data System (ADS)

    Kolesnik, S. A.; Kolmakov, A. A.; Nedosekov, D. A.

    2015-11-01

    The article describes the experimentally determined distribution of ellipticity coefficient for the first three modes of the Schumann resonances (SR) for different seasons in 2014. Established the presence of seasonal variation of the frequency of occurrence for different types of polarization of the first three modes SR. It is shown that the frequency of occurrence of elliptical polarization for different modes of SR is about 70-80%. Circular polarization - a very rare event, the frequency of its occurrence is less than 1% for every season of the year.

  13. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.

    PubMed

    Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M

    2012-07-20

    The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate. PMID:22861892

  14. A Ka-band TM{sub 02} mode relativistic backward wave oscillator with cascaded resonators

    SciTech Connect

    Teng, Yan; Cao, Yinbin; Song, Zhimin; Ye, Hu; Shi, Yanchao; Chen, Changhua; Sun, Jun

    2014-12-15

    By combining the Cerenkov-type generator with the cascaded resonators, this paper proposes a Ka-band relativistic backward wave oscillator operating under the guide magnetic field 1.0 T with high power handling capability and high conversion efficiency. It is found that TM{sub 02} can be selected as the operation mode in order to increase the power handling capability and provide sufficient coupling with the electron beam. In slow wave structure (SWS), ripples composed of semicircle on top of the rectangle enhance the wave-beam interaction and decrease the intensity of the electric field on the metallic surface. Taking advantage of the resonator cascades, the output power and the conversion efficiency are promoted greatly. The front cascaded resonators efficiently prevent the power generated in SWS from leaking into the diode region, and quicken the startup of the oscillation due to the premodulation of the beam. However, the post cascade slightly postpones the startup because of the further energy extraction from the electron beam. The numerical simulation shows that generation with power 514 MW and efficiency 41% is obtained under the diode voltage 520 kV and current 2.4 kA. And the microwave with the pure frequency spectrum of 29.35 GHz radiates in the pure TM{sub 01} mode.

  15. A Ka-band TM02 mode relativistic backward wave oscillator with cascaded resonators

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Cao, Yinbin; Song, Zhimin; Ye, Hu; Shi, Yanchao; Chen, Changhua; Sun, Jun

    2014-12-01

    By combining the Cerenkov-type generator with the cascaded resonators, this paper proposes a Ka-band relativistic backward wave oscillator operating under the guide magnetic field 1.0 T with high power handling capability and high conversion efficiency. It is found that TM02 can be selected as the operation mode in order to increase the power handling capability and provide sufficient coupling with the electron beam. In slow wave structure (SWS), ripples composed of semicircle on top of the rectangle enhance the wave-beam interaction and decrease the intensity of the electric field on the metallic surface. Taking advantage of the resonator cascades, the output power and the conversion efficiency are promoted greatly. The front cascaded resonators efficiently prevent the power generated in SWS from leaking into the diode region, and quicken the startup of the oscillation due to the premodulation of the beam. However, the post cascade slightly postpones the startup because of the further energy extraction from the electron beam. The numerical simulation shows that generation with power 514 MW and efficiency 41% is obtained under the diode voltage 520 kV and current 2.4 kA. And the microwave with the pure frequency spectrum of 29.35 GHz radiates in the pure TM01 mode.

  16. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro

    2014-03-01

    The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.

  17. High-Q BBO whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guoping; Fürst, Josef U.; Strekalov, Dmitry V.; Grudinin, Ivan S.; Yu, Nan

    2013-02-01

    We report an investigation on optical whispering gallery mode (WGM) resonators made from non z-cut beta barium borate (BBO) crystals. We first fabricated high quality (Q) factor WGM resonators made of an angle-cut BBO crystal. Q factors of 1×108 level have been demonstrated at various wavelengths including UV. They led to new upper bounds for the absorption coefficients of BBO at 1560 nm, 980 nm and 370 nm. We observed only one set of ordinarily polarized WGMs with polarization rotating along the resonator circumference. We also fabricated xy-cut BBO WGM resonators, in which the optic axis is parallel to the resonator plane. In that case, two WGM families with different polarization exist, one with constant the other with oscillatory phase velocity. This enables a novel way of broadband phase matching in WGM resonators with cyclic gain. We experimentally demonstrated efficient second harmonic generation (SHG) to a wide harmonic wavelength range from 780 nm at near infrared to 317 nm in UV. It is also the first reported direct UV SHG in a high-Q WGM resonator. This work lays a foundation for further investigations of WGM properties of non-z cut birefringent resonators and their applications in nonlinear optics.

  18. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  19. Strongly coupled modes in a weakly driven micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Venstra, Warner J.; van Leeuwen, Ronald; van der Zant, Herre S. J.

    2012-12-01

    We demonstrate a strong coupling between the flexural vibration modes of a clamped-clamped micromechanical resonator vibrating at low amplitudes. This coupling enables the direct measurement of the frequency response via amplitude- and phase modulation schemes using the fundamental mode as a mechanical detector. In the linear regime, a frequency shift of 0.8 Hz is observed for a mode with a line width of 5.8 Hz in vacuum. The measured response is well-described by the analytical model based on the Euler-Bernoulli beam including tension. Calculations predict an upper limit for the room-temperature Q-factor of 4.5×105 for our top-down fabricated micromechanical beam resonators.

  20. On the Jet Regurgitant Mode of a Resonant Tube

    NASA Astrophysics Data System (ADS)

    CHANG, S.-M.; LEE, S.

    2001-09-01

    A conceptual model simplifying the Hartmann-Sprenger tube is suggested and investigated to decouple the regurgitant mode of non-linear physics. In spite of notable difference originating from the complicated flow phenomenon, the resonant behavior of this problem is shown to be dependent primarily on wavelength of resonant wave and depth of the tube. Four main parameters are selected and studied numerically in the present paper: forcing frequency, oscillatory amplitude of the Mach number, distance from oscillatory station to the entry of tube, and tube depth. A resonant motion could be induced by forcing a sinusoidal variation of flow Mach number at the resonance frequency, which supplies vibrational energy to the harmonic system generating compressible waves.

  1. HIGH POWER TEST OF A 3.9 GHZ 5-CELL DEFLECTING-MODE CAVITY IN A CRYOGENIC OPERATION

    SciTech Connect

    Shin, Young-Min; Church, Michael

    2013-11-24

    A 3.9 GHz deflecting mode (S, TM110) cavity has been long used for six-dimensional phase-space beam manipulation tests [1-5] at the A0 Photo-Injector Lab (16 MeV) in Fermilab and their extended applications with vacuum cryomodules are currently planned at the Advanced Superconducting Test Accelerator (ASTA) user facility (> 50 MeV). Despite the successful test results, the cavity, however, demonstrated limited RF performance during liquid nitrogen (LN2) ambient operation that was inferior to theoretical prediction. We have been performing full analysis of the designed cavity by analytic calculation and comprehensive system simulation analysis to solve complex thermodynamics and mechanical stresses. The re-assembled cryomodule is currently under the test with a 50 kW klystron at the Fermilab A0 beamline, which will benchmark the modeling analysis. The test result will be used to design vacuum cryomodules for the 3.9 GHz deflecting mode cavity that will be employed at the ASTA facility for beam diagnostics and phase-space control.

  2. The effect of magnetopause motion on fast mode resonance

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Welling, D.; Viall, N. M.; Moldwin, M. B.; Ridley, A.

    2014-10-01

    The Earth's magnetosphere supports several types of ultralow frequency (ULF) waves. These include fast mode resonance (FMR): cavity modes, waveguide modes, and tunneling modes/virtual resonance. The magnetopause, often treated as the outer boundary for cavity/waveguide modes in the dayside magnetosphere, is not stationary. A rapidly changing outer boundary condition—e.g., due to rapid magnetopause motion—is not favorable for FMR generation and may explain the sparseness of FMR observations in the outer magnetosphere. We examine how magnetopause motion affects the dayside magnetosphere's ability to sustain FMR with idealized Space Weather Modeling Framework (SWMF) simulations using the BATS-R-US global magnetohydrodynamic (MHD) code coupled with the Ridley Ionosphere Model (RIM). We present observations of FMR in BATS-R-US, reproducing results from other global MHD codes. We further show that FMR is present for a wide range of solar wind conditions, even during periods with large and rapid magnetopause displacements. We compare our simulation results to FMR observations in the dayside magnetosphere, finding that FMR occurrence does not depend on solar wind dynamic pressure, which can be used as a proxy for dynamic pressure fluctuations and magnetopause perturbations. Our results demonstrate that other explanations besides a nonstationary magnetopause—such as the inability to detect FMR in the presence of other ULF wave modes with large amplitudes—are required to explain the rarity of FMR observations in the outer magnetosphere.

  3. Plate mode propagation losses in solidly mounted resonators.

    PubMed

    Thalmayr, Florian; Hashimoto, Ken-Ya; Omori, Tatsuya; Yamaguchi, Masatsune

    2010-12-01

    This paper investigates the acoustic losses of propagating eigenmodes through the acoustic mirror of a solidly mounted resonator (SMR) to clarify how resonator properties are influenced by reflection coefficients for the thickness shear (TS) wave as well as that for the thickness extensional (TE) wave. To this end, we analyze the effective acoustic admittance for several test structures with different mirror properties. Leaky modes are distinguished from plate-like modes and the propagation losses are quantified by calculating mode quality factors. The dependence of the propagation properties of leaky eigenmodes is compared with the mirror properties in terms of bulk wave transmission coefficients obtained by the one-dimensional Mason¿s model. It is shown that the TE-like main mode couples with TS-like spurious modes, which then influence the leaky loss of the main mode as well. The coupling strength is strongly frequency-dependent and drastically changes with the mirror design. This result explains previous experimental results reported on SMR design. PMID:21156381

  4. Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz

    NASA Astrophysics Data System (ADS)

    Ohmichi, E.; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T.; Ohta, H.

    2016-07-01

    In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn2+ impurities(˜0.2%) in MgO.

  5. Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz.

    PubMed

    Ohmichi, E; Tokuda, Y; Tabuse, R; Tsubokura, D; Okamoto, T; Ohta, H

    2016-07-01

    In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn(2+) impurities(∼0.2%) in MgO. PMID:27475568

  6. Design study of a 17.3 GHz electron cyclotron resonance (ECR) ion source at Louvain-la-Neuve

    SciTech Connect

    Standaert, L. Davin, F.; Loiselet, M.

    2014-02-15

    The Cyclotron Resources Center of the Louvain-la-Neuve University is developing a new electron cyclotron resonance ion source to increase the energy of the accelerated beam by injection of higher charge state ions into the cyclotron. The design of the source is based on a 17.3 GHz frequency and classical coils to produce the axial field. The field reaches 2 T at the injection side and 1.2 T at extraction. The total power consumption for the coils is limited to 80 kW. The design features of the source are presented.

  7. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper. PMID:26931953

  8. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  9. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.

    PubMed

    Zhang, Qing; Wen, Xinglin; Li, Guangyuan; Ruan, Qifeng; Wang, Jianfang; Xiong, Qihua

    2013-12-23

    Plasmonic Fano resonance, enabled by the weak interaction between a bright super-radiant and a subradiant resonance mode, not only is fundamentally interesting, but also exhibits potential applications ranging from extraordinary optical transmission to biosensing. Here, we demonstrate strong Fano resonances in split-ring resonators/disk (SRR/D) nanocavities. The high-order magnetic modes are observed in SRRs by polarization-resolved transmission spectroscopy. When a disk is centered within the SRRs, multiple high-order magnetic modes are coupled to a broad electric dipole mode of SRR/D, leading to significant Fano resonance spectral features in near-IR regime. The strength and line shape of the Fano resonances are tuned through varying the SRR split-angle and interparticle distance between SRR and disk. Finite-difference-time-domain (FDTD) simulations are conducted to understand the coupling mechanism, and the results show good agreement with experimental data. Furthermore, the coupled structure gives a sensitivity of ∼282 nm/RIU with a figure of merit ∼4. PMID:24215162

  10. Resonant modes of optical cavities with phase-conjugate mirrors.

    PubMed

    Bélanger, P A; Hardy, A; Siegman, A E

    1980-02-15

    The lowest-order self-consistent Gaussian transverse modes are derived, also the resonant frequencies of an optical resonator formed by conventional paraxial optical components plus a phase-conjugate mirror (PCM) on one end. The conventional optical elements are described by an over-all ABCD matrix. Cavities with purely real elements (no aperturing) have a continuous set of self-reproducing Gaussian modes described by a semicircular locus in the 1/q plane for one round trip; all Gaussian beams are self-reproducing after two round trips. Complex ABCD matrices, such as are produced by Gaussian aperturing in the cavity, lead to unique self-consistent perturbation-stable Gaussian modes. The resonant frequency spectrum of a PCM cavity consists of a central resonance at the driving frequency omega(0) of the PCM element, independent of the cavity length L, plus half-axial sidebands spaced by Deltaomega(ax) = 2pi(c/4L), with phase and amplitude constraints on each pair of upper and lower sidebands. PMID:20216900

  11. Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Goossens, M.; Verth, G.; Fedun, V.; Van Doorsselaere, T.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  12. Experimental observation of localized modes in a dielectric square resonator.

    PubMed

    Bittner, S; Bogomolny, E; Dietz, B; Miski-Oglu, M; Richter, A

    2013-12-01

    We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum representation of the measured field distributions shows that all resonant modes are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model was developed. It shows excellent agreement with all but a single class of measured field distributions that will be treated separately. PMID:24483530

  13. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    NASA Astrophysics Data System (ADS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-08-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein-Gordon, Fermi-Pasta-Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation.

  14. Trapped-mode resonances in asymmetric terahertz subwavelength structures

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhou, Qingli; Shi, Yulei; Li, Chenyu; Zhang, Cunlin

    2016-07-01

    We demonstrate that the trapped-mode resonance with Fano-shaped spectrum can be induced in terahertz metamaterial with asymmetric double-bar structure. Spacing between two bars permits the tuning of resonant position and lineshape in a controlled manner, showing an anomalous increased coupling strength with spacing. The steep phase change around transparency region indicates slow-light effect proved by the retrieved group delays. Simulated results verify the coupling that exists between the bars of the same unit cell and those of the neighbouring cells. Our simplified structure offers the potential application in terahertz modulators and slow-light devices.

  15. Thickness shear mode (TSM) resonators used for biosensing

    NASA Astrophysics Data System (ADS)

    Bailey, Claude A.; Fiebor, Ben; Yen, Wei; Vodyanoy, Vitaly; Cernosek, Richard W.; Chin, Bryan A.

    2002-02-01

    The Auburn University Detection and Food Safety Center has demonstrated real-time biosensor for the detection of Salmonella typimhurium, consisting of a thickness shear-mode (TSM) quartz resonator with antibodies immobilized in a Langmuir-Blodgett surface film. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Theoretical frequency shifts for unpolished TSM resonators predicted by the Sauerbrey equation are much smaller than experimentally measured frequency shift. The Salmonella detector operates in a liquid environment. The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media were studied as a function of temperature (0 to 50 degree(s)C). The chicken exudate samples with varying fat content show coagulation occurring at temperatures above 35 degree(s)C. Kinematic viscosity test were performed with buffer solutions containing varying quantities of Salmonella bacteria. Since the TSM resonators only entrain a boundary layer of fluid near the surface, they do not respond to these background viscous property changes. Bilk viscosity increases when bacteria concentrations are high. This paper describes investigations of TSM resonator surface acoustic interactions - mass, fluid viscosity, and viscoelasticity - that affect the sensor.

  16. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGESBeta

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; et al

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  17. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    NASA Astrophysics Data System (ADS)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  18. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  19. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    PubMed Central

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  20. Liquid-phase chemical sensing using lateral mode resonant cantilevers.

    PubMed

    Beardslee, L A; Demirci, K S; Luzinova, Y; Mizaikoff, B; Heinrich, S M; Josse, F; Brand, O

    2010-09-15

    Liquid-phase operation of resonant cantilevers vibrating in an out-of-plane flexural mode has to date been limited by the considerable fluid damping and the resulting low quality factors (Q factors). To reduce fluid damping in liquids and to improve the detection limit for liquid-phase sensing applications, resonant cantilever transducers vibrating in their in-plane rather than their out-of-plane flexural resonant mode have been fabricated and shown to have Q factors up to 67 in water (up to 4300 in air). In the present work, resonant cantilevers, thermally excited in an in-plane flexural mode, are investigated and applied as sensors for volatile organic compounds in water. The cantilevers are fabricated using a complementary metal oxide semiconductor (CMOS) compatible fabrication process based on bulk micromachining. The devices were coated with chemically sensitive polymers allowing for analyte sorption into the polymer. Poly(isobutylene) (PIB) and poly(ethylene-co-propylene) (EPCO) were investigated as sensitive layers with seven different analytes screened with PIB and 12 analytes tested with EPCO. Analyte concentrations in the range of 1-100 ppm have been measured in the present experiments, and detection limits in the parts per billion concentration range have been estimated for the polymer-coated cantilevers exposed to volatile organics in water. These results demonstrate significantly improved sensing properties in liquids and indicate the potential of cantilever-type mass-sensitive chemical sensors operating in their in-plane rather than out-of-plane flexural modes. PMID:20715842

  1. Are Resonant Helioseimic Modes Excited by Solar Flares?

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2016-05-01

    We critically examine reports that flares have been observed to excite resonant p-modes by:-looking in detail at the results of the ring-diagram analysis in terms of duty cycle and center-to-limb variation of ring-diagram power.-applying the same analysis to the Halloween flare using GONG and MDI data.-assessing the stability in terms of oscillation power of both instruments.

  2. Two-mode model for metal-dielectric guided-mode resonance filters.

    PubMed

    Tuambilangana, Christelle; Pardo, Fabrice; Sakat, Emilie; Bouchon, Patrick; Pelouard, Jean-Luc; Haïdar, Riad

    2015-12-14

    Symmetric metal-dielectric guided-mode resonators (GMR) can operate as infrared band-pass filters, thanks to high-transmission resonant peaks and good rejection ratio. Starting from matrix formalism, we show that the behavior of the system can be described by a two-mode model. This model reduces to a scalar formula and the GMR is described as the combination of two independent Fabry-Perot resonators. The formalism has then been applied to the case of asymmetric GMR, in order to restore the properties of the symmetric system. This result allows designing GMR-on-substrate as efficient as free-standing systems, the same high transmission maximum value and high quality factor being conserved. PMID:26698960

  3. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  4. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance. PMID:24246950

  5. Analysis of thickness modes of contoured doubly rotated, quartz resonators.

    PubMed

    EerNisse, E P

    2001-09-01

    It is the intent of this work to provide a working resource for calculating all three mode families of a doubly rotated, contoured quartz resonator. It is shown that the theoretical development of Stevens and Tiersten [1] can be used for this purpose. Their approach uses a transformation of the mechanical displacement vector to the eigenvector triad of the pure thickness solution. The solution methodology here reorganizes the transformation matrix Q in their formulation to calculate the other two mode families. Calculations compare well with experimental results for the three mode families of an SC-cut crystal and an FC-cut crystal and with published calculations for the SBTC-cut mode family with major displacement along the x3 blank axis. The key constants for the SC-cut are presented for workers to use in the future. In addition, the equations of motion and boundary conditions are derived for the two additional mode families using assumptions parallel to those used by Stevens and Tiersten [1]. Calculations with these equations are presented for completeness to support the present conclusions by showing the equivalence of either simply reorganizing the Q matrix or using separate equations for each of the three mode families. PMID:11570760

  6. Design and evaluation of a 1.1-GHz surface coil resonator for electron paramagnetic resonance-based tooth dosimetry.

    PubMed

    Sugawara, Hirotaka; Hirata, Hiroshi; Petryakov, Sergey; Lesniewski, Piotr; Williams, Benjamin B; Flood, Ann Barry; Swartz, Harold M

    2014-06-01

    This paper describes an optimized design of a surface coil resonator for in vivo electron paramagnetic resonance (EPR)-based tooth dosimetry. Using the optimized resonator, dose estimates with the standard error of the mean of approximately 0.5 Gy were achieved with irradiated human teeth. The product of the quality factor and the filling factor of the resonator was computed as an index of relative signal intensity in EPR tooth dosimetry by the use of 3-D electromagnetic wave simulator and radio frequency circuit design environment (ANSYS HFSS and Designer). To verify the simulated results of the signal intensity in our numerical model of the resonator and a tooth sample, we experimentally measured the radiation-induced signals from an irradiated tooth with an optimally designed resonator. In addition to the optimization of the resonator design, we demonstrated the improvement of the stability of EPR spectra by decontamination of the surface coil resonator using an HCl solution, confirming that contamination of small magnetic particles on the silver wire of the surface coil had degraded the stability of the EPR spectral baseline. PMID:24845300

  7. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber.

    PubMed

    Luo, Zhi-Chao; Liu, Meng; Liu, Hao; Zheng, Xu-Wu; Luo, Ai-Ping; Zhao, Chu-Jun; Zhang, Han; Wen, Shuang-Chun; Xu, Wen-Cheng

    2013-12-15

    We report on the generation of passive harmonic mode locking of a fiber laser using a microfiber-based topological insulator (TI) Bi(2)Te(3) saturable absorber (SA). The optical deposition method was employed to fabricate the microfiber-based TISA. By virtue of the excellent nonlinear optical property of the proposed TISA, the fiber laser could operate at the pulse repetition rate of 2.04 GHz under a pump power of 126 mW, corresponding to the 418th harmonic of fundamental repetition frequency. The results demonstrate that the microfiber-based TI photonic device can operate as both the high nonlinear optical component and the SA in fiber lasers, and could also find other applications in the related fields of photonics. PMID:24322220

  8. High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser

    NASA Astrophysics Data System (ADS)

    Luo, Daping; Li, Wenxue; Liu, Yang; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Zeng, Heping

    2016-08-01

    We demonstrate 1 GHz, 75 W, 65 fs pulse generation through chirped-pulse and self-similar amplification of a second-harmonic mode-locked Yb fiber oscillator. To confirm the experimental results of a chirped-pulse pre-amplifier, a theoretically calculative model is designed to simulate gain narrowing in the amplification. Specifically, the Kelly sidebands generated by a seed laser experience similar evolution under both conditions. The grism-based self-similar amplifier together with a high-efficiency grating compressor contribute to high-power ultrashort pulses whose spectra are efficiently broadened to a maximum 10 dB bandwidth of 56 nm with a center wavelength of 1032.2 nm owing to self-phase modulation in a gain fiber.

  9. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    SciTech Connect

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.; Kristensen, Anders

    2014-08-18

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media.

  10. Investigations of 2.9-GHz Resonant Microwave-Sensitive Ag/MgO/Ge/Ag Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Khanfar, H. K.

    2013-12-01

    In this work, a resonant microwave-sensitive tunneling diode has been designed and investigated. The device, which is composed of a magnesium oxide (MgO) layer on an amorphous germanium (Ge) thin film, was characterized by means of temperature-dependent current ( I)-voltage ( V), room-temperature differential resistance ( R)-voltage, and capacitance ( C)-voltage characteristics. The device resonating signal was also tested and evaluated at 2.9 GHz. The I- V curves reflected weak temperature dependence and a wide tunneling region with peak-to-valley current ratio of ˜1.1. The negative differential resistance region shifts toward lower biasing voltages as temperature increases. The true operational limit of the device was determined as 350 K. A novel response of the measured R- V and C- V to the incident alternating-current (ac) signal was observed at 300 K. Particularly, the response to a 100-MHz signal power ranging from the standard Bluetooth limit to the maximum output power of third-generation mobile phones reflects a wide range of tunability with discrete switching property at particular power limits. In addition, when the tunnel device was implanted as an amplifier for a 2.90-GHz resonating signal of the power of wireless local-area network (LAN) levels, signal gain of 80% with signal quality factor of 4.6 × 104 was registered. These remarkable properties make devices based on MgO-Ge interfaces suitable as electronic circuit elements for microwave applications, bias- and time-dependent electronic switches, and central processing unit (CPU) clocks.

  11. Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb.

    PubMed

    Diddams, S A; Kirchner, M; Fortier, T; Braje, D; Weiner, A M; Hollberg, L

    2009-03-01

    We use a Fabry-Perot cavity to optically filter the output of a Ti:sapphire frequency comb to integer multiples of the original 1 GHz mode spacing. This effectively increases the pulse repetition rate, which is useful for several applications. In the case of low-noise microwave signal generation, such filtering leads to improved linearity of the high-speed photodiodes that detect the mode-locked laser pulse train. The result is significantly improved signal-to-noise ratio at the 10 GHz harmonic with the potential for a shot-noise limited single sideband phase noise floor near -168 dBc/Hz. PMID:19259170

  12. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  13. Optical whispering-gallery mode resonators for applications in optical communication and frequency control

    NASA Astrophysics Data System (ADS)

    Grutter, Karen Esther

    High quality factor (Q) optical whispering gallery mode resonators are a key component in many on-chip optical systems, such as delay lines, modulators, and add-drop filters. They are also a convenient, compact structure for studying optomechanical interactions on-chip. In all these applications, optical Q is an important factor for high performance. For optomechanical reference oscillators in particular, high mechanical Q is also necessary. Previously, optical microresonators have been made in a wide variety of materials, but it has proven challenging to demonstrate high optical Q and high mechanical Q in a single, integrated device. This work demonstrates a new technique for achieving high optical Q on chip, a fully-integrated tunable filter with ultra-narrow minimum bandwidth, and the effect of material choice and device design on optical Q, mechanical Q and phase noise in microring optomechanical oscillators. To achieve a high optical Q, phosphosilicate glass (PSG) is studied as a resonator material. The low melting point of PSG enables wafer-scale reflow, which reduces sidewall roughness without significantly changing lithographically-defined dimensions. With this process, optical Qs up to 1.5 x 10. 7 are achieved, overten times higher than typical silicon optical resonators. These high-Q PSG resonators are then integrated with MEMS-actuated waveguides in a tunable-bandwidth filter. Due to the high Q of the PSG resonator, this device has a best-to-date minimum bandwidth of 0.8 GHz, with a tuning range of 0.8 to 8.5GHz. Finally, microring optomechanical oscillators (OMOs) in PSG, stoichiometric silicon nitride, and silicon are fabricated, and their performance is compared after characterization via a tapered optical fiber in vacuum. The silicon nitride device has the best performance, with a mechanical Q of more than 1 x 10. 4and record-breaking OMO phase noise of -102 dBc/Hz at a 1 kHz offset from a 72 MHz carrier.

  14. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  15. Development of a high-temperature oven for the 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Ohnishi, J. Higurashi, Y.; Kidera, M.; Ozeki, K.; Nakagawa, T.

    2014-02-15

    We have been developing the 28 GHz ECR ion source in order to accelerate high-intensity uranium beams at the RIKEN RI-beam Factory. Although we have generated U{sup 35+} beams by the sputtering method thus far, we began developing a high-temperature oven with the aim of increasing and stabilizing the beams. Because the oven method uses UO{sub 2}, a crucible must be heated to a temperature higher than 2000 °C to supply an appropriate amount of UO{sub 2} vapor to the ECR plasma. Our high-temperature oven uses a tungsten crucible joule-heated with DC current of approximately 450 A. Its inside dimensions are ϕ11 mm × 13.5 mm. Since the crucible is placed in a magnetic field of approximately 3 T, it is subject to a magnetic force of approximately 40 N. Therefore, we used ANSYS to carefully design the crucible, which was manufactured by machining a tungsten rod. We could raise the oven up to 1900 °C in the first off-line test. Subsequently, UO{sub 2} was loaded into the crucible, and the oven was installed in the 28 GHz ECR ion source and was tested. As a result, a U{sup 35+} beam current of 150 μA was extracted successfully at a RF power of approximately 3 kW.

  16. Selective mode coupling in microring resonators for single mode semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir

    Single mode semiconductor laser diodes have many applications in optical communications, metrology and sensing. Edge-emitting single mode lasers commonly use distributed feedback structures, or narrowband reflectors such as distributed Bragg reflectors (DBRs) and sampled grating distributed Bragg reflectors (SGDBRs). Compact, narrowband reflectors with high reflectivities are of interest to replace the commonly used DBRs and SGDBRs. This thesis presents our work on the simulation, design, fabrication, and characterization of devices operating based on the coupling of degenerate modes of a microring resonator, and investigation of the possibility of using them for improving the performance of laser diodes. In particular, we demonstrate a new type of compact, narrowband, on-chip reflector realized by selectively coupling degenerate modes of a microring resonator. For the simulation and design of reflective microring resonators, a fast and accurate analysis method is required. Conventional numerical methods for solving Maxwell's equations such as the finite difference time domain and the finite element method (FEM) provide accurate results but are computationally intense and are not suitable for the design of large 3D structures. We formulated a set of coupled mode equations that, combined with 2D FEM simulations, can provide a fast and accurate tool for the modeling and design of reflective microrings. We developed fabrication processing recipes and fabricated passive reflective microrings on silicon substrates with a silicon nitride core and silicon dioxide cladding. Narrowband single wavelength reflectors were realized which are 70 times smaller than a conventional DBR with the same bandwidth. Compared to the conventional DBR, they have faster roll-off, and no side modes. The smaller footprint saves real estate, reduces tuning power and makes these devices attractive as in-line mirrors for low threshold narrow linewidth laser diodes. Self-heating caused by material

  17. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring.

    PubMed

    Peng, Guo-Hsuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2008-08-18

    A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common- multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz. PMID:18711579

  18. A temperature sensor based on a whispering gallery mode resonator

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fernicola, V.

    2013-09-01

    This paper deals with a microwave temperature sensor based on a whispering gallery mode (WGM) resonator whose dielectric medium is a cylindrical sapphire crystal. The performance as temperature sensor were investigated a three WGMs resonant frequencies over the temperature range from -40 °C to 85 °C. It was found that the quality factor for these WGMs can be in excess of 1.7ṡ105, potentially enabling high-resolution measurements. The temperature repeatability, stability, hysteresis, frequency-vs-temperature sensitivity of the WGM temperature sensor are reported. Moreover, two sapphires, which have the same nominal characteristics, were investigated in order to assess the system reproducibility and the results reported.

  19. Method of fabricating a whispering gallery mode resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matkso, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Maleki, Lute (Inventor)

    2011-01-01

    A method of fabricating a whispering gallery mode resonator (WGMR) is provided. The WGMR can be fabricated from a particular material, annealed, and then polished. The WGMR can be repeatedly annealed and then polished. The repeated polishing of the WGMR can be carried out using an abrasive slurry. The abrasive slurry can have a predetermined, constant grain size. Each subsequent polishing of the WGMR can use an abrasive slurry having a grain size that is smaller than the grain size of the abrasive slurry of the previous polishing iteration.

  20. Guided-mode resonant polarization-controlled tunable color filters.

    PubMed

    Uddin, Mohammad Jalal; Khaleque, Tanzina; Magnusson, Robert

    2014-05-19

    We demonstrate efficient guided-mode resonant polarization-controlled tunable color filters. The devices consist of subwavelength gratings that are partially etched into a thin silicon-nitride film deposited on a glass substrate. Two color filters with grating periods of 300 nm and 370 nm are designed and fabricated. The 300-nm device exhibits green and blue colors and the 370-nm device generates red and yellow colors for TE and TM polarization, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies exceeding 90% for TE polarization and 80% for TM polarization. The devices may find application in displays, image sensors, and biomedical imaging technologies. PMID:24921349

  1. Structured interfaces for flexural waves - trapped modes and transmission resonances

    NASA Astrophysics Data System (ADS)

    Haslinger, S. G.; McPhedran, R. C.; Movchan, N. V.; Movchan, A. B.

    2013-07-01

    The article combines the analytical models of scattering and Bloch waves for a stack of periodic gratings in an infinite elastic plate. The waves represent flexural deflections of the plate governed by a fourth-order partial differential equation. The emphasis is on the analysis of trapped modes and transmission resonances for different configurations of the grating stack and physical parameters of the flexural waves. Special attention is given to the phenomenon of Elasto-Dynamically Inhibited Transmission (EDIT). The analytical model is supplemented with comprehensive numerical examples.

  2. Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators

    SciTech Connect

    Lei, Fuchuan; Peng, Bo; Özdemir, Şahin Kaya Yang, Lan; Long, Gui Lu

    2014-09-08

    We report Fano-like asymmetric resonances modulated by optical gain in a whispering-gallery-mode resonator fabricated from erbium-doped silica. A time-dependent gain profile leads to dynamically varying sharp asymmetric resonances with features similar to Fano resonances. Depending on the scan speed of the frequency of the probe laser and the pump-probe power ratio, transmission spectra of the active microcavity exhibit a resonance dip, a resonance peak, or a Fano-like resonance.

  3. A circuit model for the hybrid resonance modes of paired SRR metamaterials.

    PubMed

    Poo, Yin; Wu, Rui-xin; Liu, Min; Wang, Ling

    2014-01-27

    To better understand the resonance modes caused by the interelement couplings in the building block of metamaterials, we propose a circuit model for the hybrid resonance modes of paired split ring resonators. The model identifies the electromagnetic coupling between the paired rings by electric and magnetic coupling networks and well explains the variation of hybrid resonance modes with respect to the distance and the twist angle between the rings. The predictions of our model are further proved by experiments. PMID:24515201

  4. Protein-modified shear mode film bulk acoustic resonator for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Liu, Weihui; Xu, Yan; Chen, Da; Li, Dehua; Zhang, Luyin

    2014-09-01

    In this paper, we present a shear mode film bulk acoustic biosensor based on micro-electromechanical technology. The film bulk acoustic biosensor is a diaphragmatic structure consisting of a lateral field excited ZnO piezoelectric film piezoelectric stack built on an Si3N4 membrane. The device works at near 1.6 GHz with Q factors of 579 in water and 428 in glycerol. A frequency shift of 5.4 MHz and a small decline in the amplitude are found for the measurements in glycerol compared with those in water because of the viscous damping derived from the adjacent glycerol. For bio-sensing demonstration, the resonator was modified with biotin molecule to detect protein-ligand interactions in real-time and in situ. The resonant frequency of the biotin-modified device drops rapidly and gradually reaches equilibrium when exposed to the streptavidin solution due to the biotin-streptavidin interaction. The proposed film bulk acoustic biosensor shows promising applications for disease diagnostics, prognosis, and drug discovery.

  5. Supermode suppression to below -130 dBc/Hz in a 10 GHz harmonically mode-locked external sigma cavity semiconductor laser.

    PubMed

    Yilmaz, Tolga; Depriest, C; Delfyett, P; Etemad, S; Braun, A; Abeles, J

    2003-05-01

    We demonstrate supermode suppression to levels below -125 dBc/Hz and -132 dBc/Hz using Fabry-Perot etalons with finesse values of 180 and 650, respectively, for a 10 GHz harmonically mode-locked external sigma cavity semiconductor laser. The laser was hybridly mode-locked using direct electrical modulation in a compact package without the need for an external modulator. PMID:19465973

  6. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    SciTech Connect

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  7. Reservoir Engineering of Two-mode Correlations in Mechanical Resonators

    NASA Astrophysics Data System (ADS)

    Chang, Laura; Patil, Yogesh Sharad; Chakram, Srivatsan; Vengalattore, Mukund

    2015-05-01

    Nonlinear mechanical interactions in the quantum limit enable the manipulation and control of phonons in a manner akin to quantum optics in nonlinear media. We demonstrate, for the first time, strong quantum-compatible multimode nonlinearities in a low-loss mechanical resonator that is amenable to ground state optomechanical cooling, room temperature quantum control and quantum limited detection. These nonlinearities arise from substrate-mediated interactions between distinct modes of the resonator. We develop a model for this nonlinearity that accurately describes the experimental observations over three orders of magnitude in dynamic range, demonstrating the robustness and fidelity of the engineered nonlinear interactions. We use this nonlinearity to realize a mechanical nondegenerate parametric amplifier, and use it to demonstrate two-mode thermomechanical noise squeezing. Our work opens new opportunities for nonlinear approaches to quantum metrology, transduction between optical and phononic fields, and the quantum manipulation of phononic degrees of freedom. This work is supported by the DARPA QuASAR program through a grant from the ARO and an NSF INSPIRE award.

  8. Ultrasonic resonant modes of piezoelectric balloons under internal pressure.

    PubMed

    Denham, Lori Vidal; Rice, David A

    2012-09-01

    Properties of a piezoelectric polymeric angioplasty balloon that may decrease the problems of acute closure and restenosis are evaluated in this study. Polyvinylidene difluoride (PVDF), a piezoelectric and pyroelectric polymer, has sufficient strength to serve as a standard angioplasty balloon as well as functioning as an ultrasonic transmitter and/or receiver. These properties enable potential therapeutic applications using ultrasound such as plaque ablation and sonotherapy as well as vulnerable plaque diagnosis using thermography. This study investigates the resonant structure of the PVDF balloon catheter in the frequency range 5-100 kHz. Vibrations of the piezoelectric balloon are modeled using cylindrical shell theory and compared with the observed modal frequencies of PVDF cylinders with and without internal pressure. Modal frequencies are determined by measuring the near-field pressure response of the PVDF cylinders using a high frequency microphone. A rich nodal structure is observed between 5 and 100 kHz with peak relative amplitudes measured between 42 and 45 kHz. Higher order modes for cylinders with 9 μm and 28 μm wall thickness increase in frequency as the internal pressure is increased. Experimental measurements confirm theoretical models that predict both pressure-dependent and pressure-independent resonant frequencies. Frequencies of pressure-dependent modes are calculated within 2.2% of measured values at high pressure. PMID:22978865

  9. Cancellation of environmental effects in resonant mass sensors based on resonance mode and effective mass

    SciTech Connect

    Naeli, Kianoush; Brand, Oliver

    2009-06-15

    A novel technique is developed to cancel the effect of environmental parameters, e.g., temperature and humidity, in resonant mass sensing. Utilizing a single resonator, the environmental cancellation is achieved by monitoring a pair of resonant overtones and the effective sensed mass in those overtones. As an eminent advantage, especially compared to dual-mode temperature compensation techniques, the presented technique eliminates any need for previously measured look-up tables or fitting the measurement data. We show that a resonant cantilever beam is an appropriate platform for applying this technique, and derive an analytical expression to relate the actual and effective sensed masses on a cantilever beam. Thereby, it is shown that in applying the presented technique successfully, the effective sensed masses must not be the same in the investigated pair of resonance overtones. To prove the feasibility of the proposed technique, flexural resonance frequencies of a silicon cantilever are measured before and after loading with a strip of photoresist. Applying the presented technique shows significant reductions in influence of environmental parameters, with the temperature and humidity coefficients of frequency being improved from -19.5 to 0.2 ppm deg. C{sup -1} and from 0.7 to -0.03 ppm %RH{sup -1}, respectively.

  10. Upgrade Of The TH1506B 118 GHz Gyrotron Using Modeing Tools

    SciTech Connect

    Darbos, C.; Bouquey, F.; Lambert, R.; Magne, R.; Traisnel, E.; Prinz, H. O.; Thumm, M.; Hogge, J. P.; Lievin, C.

    2007-09-28

    The first TH1506B prototype showing problems of overheating and spurious oscillations, a new modified gyrotron was built. During the tests, the extwo peaks, which was never predicted by simulations. Various low evel tests were performed on the mode converter with different shapes for the launcher but without real improvement. Besides measurements, the use of a new software Surf3D[l] showed that the problem mainly comes from the 3rd mirror whose curvature is too high and not well taken nto account by the calculation. This analysis software is based on ntegral equations and the complete 3D modelling alowed to determine a new profile for the 3rd mirror. An aluminium model of a new mirror was manufactured and thorough low level tests made at FZK showed that there was no double peak.The next step would consist in building a gyrotron based on this new design, to confirm the simulation and to valdate it for long pulses.

  11. Raman-assisted Rabi resonances in two-mode cavity QED

    SciTech Connect

    Gruenwald, P.; Singh, S. K.; Vogel, W.

    2011-06-15

    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.

  12. A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; DeBoer, David R.

    1994-01-01

    The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.

  13. Cavity-resonator-integrated guided-mode resonance band-stop reflector.

    PubMed

    Ura, Shogo; Nakata, Masahiro; Yanagida, Kenichi; Inoue, Junichi; Kintaka, Kenji

    2016-06-27

    A cavity-resonator-integrated guided-mode resonance filter (CRIGF) consists of a grating coupler inside a pair of distributed Bragg reflectors. A combination of a CRIGF with a high-reflection substrate can provide a new type of a band-stop reflector with a small aperture for a vertically incident wave from air. A narrow stopband was theoretically predicted and experimentally demonstrated. It was quantitatively shown that reflection spectra depended on optical-buffer-layer thickness. The reflector of 10-μm aperture was fabricated and characterized. The extinction ratio in reflectance was measured to be lower than -20 dB at a resonance wavelength. The bandwidth at -3 dB was 0.15 nm. PMID:27410663

  14. Backscattering analysis in optical micro-resonators with mode splitting based on COMSOL

    NASA Astrophysics Data System (ADS)

    Yang, Zhaohua; Huo, Jiayan; Yang, Xu

    2015-10-01

    Rayleigh backscattering noise, which is one of the reasons that limit the sensitivity, has been deemed as noise in traditional resonant optic gyroscopes. However Rayleigh backscattering noise is one of the incentives of mode splitting phenomenon in high-Q resonators. Regarding the change of the resonance frequency of the resonator caused by the scattering signal as a measurement, we can use mode splitting to measure temperature, size of nanoparticle, etc. Light is confined by total internal reflection in whispering gallery mode (WGM) optical resonators, which is characterized by high-Q factors and small mode volumes. With regards to this, we propose a sensing mechanism based on mode splitting in high-Q WGM optical resonators. It is possible for us to measure the angular velocity of carrier according to the changes in the resonant frequencies of the two splitting modes. We propose the Miniature resonant optic gyroscope based on mode splitting (MROG-MS) with WGM resonators in the paper. Considering the Sagnac effect, mode splitting in high quality optical micro-resonators, and the rotation-induced impact on backscattering process, we modify the equations of motion that describe mode splitting, derive the explicit expression of angular rate versus the splitting amount, and verify the sensing mechanism by the simulation based on COMSOL. Furthermore, after monitoring the transmission spectra at different number of scattering particles, the simulation shows that mode splitting phenomenon resulted by single particle is more suitable for angular velocity measurement.

  15. Mode-coupling mechanisms of resonant transmission filters.

    PubMed

    Niraula, Manoj; Yoon, Jae Woong; Magnusson, Robert

    2014-10-20

    We study theoretically modal properties and parametric dependence of guided-mode resonance bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. The three device classes show high-performance bandpass filter profiles with broad, flat low-transmission sidebands accommodating sharp transmission peaks with their efficiencies approaching 100% with appropriate blending of multiple guided modes. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. These modal compositions produce various widths of sidebands ranging from ~30 nm to ~2100 nm and transmission peak-linewidths ranging from ~1 pm to ~10 nm. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. The design principle is applicable to various optical elements such as high-power optical filters, low-noise label-free biochemical sensor templates, and high-density display pixels. PMID:25401615

  16. Narrowband Mid-infrared reflectance filters using guided mode resonance

    PubMed Central

    Kodali, Anil K.; Schulmerich, Matthew; Ip, Jason; Yen, Gary; Cunningham, Brian T.; Bhargava, Rohit

    2010-01-01

    There is a need to develop mid-infrared (IR) spectrometers for applications in which the absorbance of only a few vibrational mode (optical) frequencies needs to be recorded; unfortunately, there are limited alternatives for the same. The key requirement is the development of a means to access discretely a small set of spectral positions from the wideband thermal sources commonly used for spectroscopy. We present here the theory, design and practical realization of a new class of filters in the mid-infrared (IR) spectral regions based on using guided mode resonances (GMR) for narrowband optical reflection. A simple, periodic surface-relief configuration is chosen to enable both a spectral response and facile fabrication. A theoretical model based on rigorous coupled wave analysis is developed, incorporating anomalous dispersion of filter materials in the mid-IR spectral region. As a proof-of-principle demonstration, a set of four filters for a spectral region around the C-H stretching mode (2600–3000 cm−1) are fabricated and responses compared to theory. The reflectance spectra were well-predicted by the developed theory and results were found to be sensitive to the angle of incidence and dispersion characteristics of the material. In summary, the work reported here forms the basis for a rational design of filters that can prove useful for IR absorption spectroscopy. PMID:20527738

  17. Vibrational modes of ultrathin carbon nanomembrane mechanical resonators

    SciTech Connect

    Zhang, Xianghui E-mail: elke.scheer@uni-konstanz.de; Angelova, Polina; Gölzhäuser, Armin; Waitz, Reimar; Yang, Fan; Lutz, Carolin; Scheer, Elke E-mail: elke.scheer@uni-konstanz.de

    2015-02-09

    We report measurements of vibrational mode shapes of mechanical resonators made from ultrathin carbon nanomembranes (CNMs) with a thickness of approximately 1 nm. CNMs are prepared from electron irradiation induced cross-linking of aromatic self-assembled monolayers and the variation of membrane thickness and/or density can be achieved by varying the precursor molecule. Single- and triple-layer freestanding CNMs were made by transferring them onto Si substrates with square/rectangular orifices. The vibration of the membrane was actuated by applying a sinusoidal voltage to a piezoelectric disk on which the sample was glued. The vibrational mode shapes were visualized with an imaging Mirau interferometer using a stroboscopic light source. Several mode shapes of a square membrane can be readily identified and their dynamic behavior can be well described by linear response theory of a membrane with negligible bending rigidity. By applying Fourier transformations to the time-dependent surface profiles, the dispersion relation of the transverse membrane waves can be obtained and its linear behavior verifies the membrane model. By comparing the dispersion relation to an analytical model, the static stress of the membranes was determined and found to be caused by the fabrication process.

  18. Guided mode resonance enabled ultra-compact Germanium photodetector for 1.55 μm detection.

    PubMed

    Zhu, Alexander Yutong; Zhu, Shiyang; Lo, Guo-Qiang

    2014-02-10

    We propose a novel technique of enhancing the photodetection capabilities of ultrathin Ge films for normally incident light at 1.55 μm through the guided mode resonance (GMR) phenomenon. Specifically, by suitably patterning the surface of a Ge thin film, it is possible to excite guided modes which are subsequently coupled to free space radiative modes, resulting in spectral resonances that possess locally enhanced near fields with a large spatial extent. Absorption is found to be enhanced by over an order of magnitude over a pristine Ge film of equal thickness. Furthermore, attenuation of incident light for such a structure occurs over very few grating periods, resulting in significantly enhanced theoretical 3 dB bandwidth-efficiency products of ~58 GHz. The nature of the enhancement mechanism also produces spectrally narrow resonances (FWHM ~30 nm) that are polarization sensitive and exhibit excellent angular tolerance. Finally, the proposed device architecture is fully compatible with existing Si infrastructure and current CMOS fabrication processes. PMID:24663517

  19. Improving the frequency stability of microwave oscillators by utilizing the dual-mode sapphire-loaded cavity resonator

    NASA Astrophysics Data System (ADS)

    Tobar, Michael E.; Ivanov, Eugene N.; Locke, Clayton R.; Hartnett, John G.; Cros, Dominique

    2002-08-01

    The design and experimental testing of a novel control circuit to stabilize the temperature of a sapphire-loaded cavity whispering gallery resonator-oscillator and improve its medium-term frequency stability is presented. Finite-element software was used to predict frequencies and quality factors of WGE7,0,0 and the WGH9,0,0 modes near 9 GHz, and separated in frequency by approximately 80 MHz. Calculations show that the novel temperature control circuits from the difference frequency can result in a frequency stability of better than one part in 1013 at 270 K. Also, we present details on the best way to couple orthogonally to two modes of similar frequency but different polarization.

  20. Development of a new superconducting Electron Cyclotron Resonance Ion Source for operations up to 18 GHz at LBNL.

    PubMed

    Xie, D Z; Benitez, J Y; Caspi, S; Hodgkinson, A; Lyneis, C M; Phair, L W; Prestemon, S O; Strohmeier, M M; Thuillier, T P; Todd, D S

    2014-02-01

    A new superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is under development at LBNL to harness the winding techniques of a closed-loop sextupole coil for the next generation ECRIS and to enhance the capability of the 88-in. cyclotron facility. The proposed ECRIS will use a superconducting closed-loop sextupole coil to produce the radial field and a substantial portion of the axial field. The field strengths of the injection, central and extraction regions are adjusted by a three solenoids outside the closed-loop sextupole coil. In addition to maintaining the typical ECRIS magnetic field configuration, this new source will also be able to produce a dustpan-like minimum-B field to explore possible ECRIS performance enhancement. The dustpan-like minimum-B field configuration has about the same strengths for the maximum axial field at the injection region and the maximum radial pole fields at the plasma chamber walls but it can be substantially lower at the extraction region. The dustpan-like minimum-B will have a field maximum Bmax ≥ 2.6 T for operations up to 18 GHz with a ratio of Bmax/Bres ≥ 4 and higher ratios for lower frequencies. The field maxima of this new source can reach over 3 T both at the injection and the plasma chamber walls which could also support operation at 28 GHz. The source will be built of cryogen-free with the magnets directly cooled by cryo-coolers to simplify the cryostat structure. The source design features will be presented and discussed. PMID:24593501

  1. Edge localized mode control with an edge resonant magnetic perturbation

    SciTech Connect

    Moyer, R.A.; Boedo, J.A.; Rudakov, D.L.; Evans, T.E.; Osborne, T.H.; Gohil, P.; Groebner, R.J.; Jackson, G.L.; La Haye, R.J.; Leonard, A.W.; Schaffer, M.J.; Snyder, P.B.; West, W.P.; Thomas, P.R.; Becoulet, M.; Harris, J.; Finken, K.-H.; Doyle, E.J.; Rhodes, T.L.; Wang, G.

    2005-05-15

    A low amplitude ({delta}b{sub r}/B{sub T}=1 part in 5000) edge resonant magnetic field perturbation with toroidal mode number n=3 and poloidal mode numbers between 8 and 15 has been used to suppress most large type I edge localized modes (ELMs) without degrading core plasma confinement. ELMs have been suppressed for periods of up to 8.6 energy confinement times when the edge safety factor q{sub 95} is between 3.5 and 4. The large ELMs are replaced by packets of events (possibly type II ELMs) with small amplitude, narrow radial extent, and a higher level of magnetic field and density fluctuations, creating a duty cycle with long 'active' intervals of high transport and short 'quiet' intervals of low transport. The increased transport associated with these events is less impulsive and slows the recovery of the pedestal profiles to the values reached just before the large ELMs without the n=3 perturbation. Changing the toroidal phase of the perturbation by 60 deg. with respect to the best ELM suppression case reduces the ELM amplitude and frequency by factors of 2-3 in the divertor, produces a more stochastic response in the H-mode pedestal profiles, and displays similar increases in small scale events, although significant numbers of large ELMs survive. In contrast to the best ELM suppression case where the type I ELMs are also suppressed on the outboard midplane, the midplane recycling increases until individual ELMs are no longer discernable. The ELM response depends on the toroidal phase of the applied perturbation because intrinsic error fields make the target plasma nonaxisymmetric, and suggests that at least some of the variation in ELM behavior in a single device or among different devices is due to differences in the intrinsic error fields in these devices. These results indicate that ELMs can be suppressed by small edge resonant magnetic field perturbations. Extrapolation to next-step burning plasma devices will require extending the regime of operation to

  2. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  3. Dispersion analysis of whispering gallery mode microbubble resonators.

    PubMed

    Riesen, Nicolas; Zhang, Wen Qi; Monro, Tanya M

    2016-04-18

    This paper examines the opportunities existing for engineering dispersion in non-silica whispering gallery mode microbubble resonators, for applications such as optical frequency comb generation. More specifically, the zero dispersion wavelength is analyzed as a function of microbubble diameter and wall thickness for several different material groups such as highly-nonlinear soft glasses, polymers and crystalline materials. The zero dispersion wavelength is shown to be highly-tunable by changing the thickness of the shell. Using certain materials it is shown that dispersion equalization can be realized at interesting wavelengths such as deep within the visible or mid-infrared, opening up new possibilities for optical frequency comb generation. This study represents the first extensive analysis of the prospects of using non-silica microbubbles for nonlinear optics. PMID:27137317

  4. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  5. Brillouin lasing with a CaF2 whispering gallery mode resonator.

    PubMed

    Grudinin, Ivan S; Matsko, Andrey B; Maleki, Lute

    2009-01-30

    Stimulated Brillouin scattering with both pump and Stokes beams in resonance with whispering gallery modes of an ultrahigh Q calcium fluoride resonator is demonstrated for the first time. The resonator is pumped with 1064 nm light and has 3 muW Brillouin lasing threshold. The scattering is observed due to the unique morphology of the resonator reducing the phase mismatch between the optical modes and the hypersound wave. PMID:19257418

  6. Recondensation performance of liquid helium cryostat for a 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Choi, Seyong; Lee, Byoung-Seob; Park, Jin Yong; Ok, Jung-Woo; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Kim, Byoung-Chul

    2014-02-01

    Cryostat performance is essential for the stable operation of a superconducting magnet. A closed-cycle liquid helium cryostat was adopted for use for a superconducting electron cyclotron resonance (ECR) ion source by recondensing liquid helium vapor. The goal was to maintain the liquid helium filled reservoir at a constant level without transferring any liquid helium during the normal operation of the ECR ion source. To accomplish this, Gifford-McMahon (GM) refrigerators, which have two cold heads, were installed on the top of the cryostat. The cooling power of the GM cryocooler is 1.5 W at the second stage and 50 W at the first stage. Each stage was connected to the liquid helium reservoir, a radiation shield including high-Tc current lead, and related items. Before commissioning the ECR ion source, a preliminary evaluation of the recondensation performance was carried out with the magnet in partial operation. The design of the cryostat, its fabrication, and the experimental results are reported.

  7. High-frequency electromagnetic properties of soft magnetic Nd2Co17 micron flakes fractured along c crystal plane with natural resonance frequency exceeding 10 GHz

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbo; Wang, Peng; Ma, Tianyong; Wang, Ying; Qiao, Liang; Wang, Tao

    2016-02-01

    Planar anisotropy Nd2Co17 flakes fractured along c crystal plane were fabricated by surfactant-assisted high-energy ball milling technique. The magnetic flakes have a diameter range of 5-20 μm and a typical thickness of approximately 120 nm. The frequency dependence of complex permeability of Nd2Co17 epoxy resin composite has been investigated in the frequency range of 0.1-18 GHz. The measurement results show that the natural resonance frequency reaches 12.5 GHz while the initial permeability survives up to 2.26. The superior high frequency properties come from the large out-of-plane anisotropy field and the flake structure fractured along the c crystal plane of Nd2Co17. The planar anisotropic Nd2Co17 flakes have significant potential applications in the high-frequency devices working in the frequency beyond 10 GHz.

  8. Experimental demonstration of brighter sodium resonant scattering with 1.7 GHz sideband repumping for long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Lihang; Zhang, Shaopeng; Hua, Weihong; Wang, Hongyan; Ning, Yu; Xu, Xiaojun

    2014-08-01

    Adaptive Optics (AO) based on artificial beacons is the key to achieve high resolution images from large ground-based telescopes. Long pulsed lasers are preferable to create sodium laser guide stars (LGS) as they allow for Rayleigh blanking. However, these lasers may increase the effective light intensity irradiated at the sodium layer, which may lead to transition saturation, and then decline the normalized return flux efficiency. The return flux might be boosted by optical repumping, which could make full use of the advantages of optical pumping without trapping the atoms to the F=1 ground state. In this paper, we study the optical repumping effect by using a small scale long pulsed sodium laser developed in Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, whose pulse format may be pretty suitable for large telescopes. An electro-optic phase modulator is used to produce 1.713 GHz sidebands from the D2a center wavelength with the fraction of 20%. As for a vacuum sodium cell at the temperature of 40°C, when the effective laser intensity increases from 4.53×102 W/m2 to 6.99×105 W/ m2, resonant fluorescence with and without repumping is measured. The result illustrates that the resonant scattering brightness with repumping can be as over 3 times as without it when the light intensity changes between 4.53×102 W/m2 to 5 ×104 W/ m2. The saturated phenomenon is also observed. This gives direct evidence that repumping could improve the performance of sodium laser guide stars based on TIPC long pulsed lasers. To our knowledge, this is the first experimental demonstration of the repumping effect with the TIPC type long pulsed laser in laboratory.

  9. Whispering gallery mode resonators for frequency metrology applications

    NASA Astrophysics Data System (ADS)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  10. High power pulsed magnicon at 34-GHz

    SciTech Connect

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L.

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  11. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully. PMID:20192353

  12. A new 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) for the heavy ion accelerator facility ATLAS

    SciTech Connect

    Schlapp, M.; Pardo, R.C.; Vondrasek, R.C.; Billquist, P.J.; Szczech, J.

    1997-11-01

    A 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) has been designed and built at Argonne National Laboratory. The source is a modification of the AECR at Berkeley and incorporates the latest results from ECR developments to produce intense beams of highly charged ions, including an improved magnetic confinement of the plasma electrons with an axial mirror ratio of 3.5. The aluminum plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donates additional electrons to the plasma, making use of the large secondary electron yield from aluminum oxide. The source is capable of ECR plasma heating using two different frequencies simultaneously to increase the electron energy gain for the production of high charge states. The main design goal is to produce several e{mu}A of at least {sup 238}U{sup 35+} in order to accelerate the beam to coulomb-barrier energies without further stripping. First charge state distributions for gaseous elements have been measured and 210 e{mu}A {sup 16}O{sup 7+} has been achieved. A normalized 90% emittance from 0.1 to 0.2 {pi} mm{sm_bullet}mrad for krypton and oxygen beam has been found.

  13. High-frequency (95 GHz) electron paramagnetic resonance study of the photoinduced charge transfer in conjugated polymer-fullerene composites

    NASA Astrophysics Data System (ADS)

    Ceuster, J. De; Goovaerts, E.; Bouwen, A.; Hummelen, J. C.; Dyakonov, V.

    2001-11-01

    Light-induced electron paramagnetic resonance (LEPR) measurements are reported in composites of poly(2-methoxy-5-(3-,7-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a soluble derivative of C60. Under illumination of the sample, two paramagnetic species are formed due to photoinduced charge transfer between conjugated polymer and fullerene. One is the positive polaron P+ on the polymer backbone and the other is the radical anion on the methanofullerene. Using high-frequency (95 GHz) LEPR it was possible to separate these two contributions to the spectrum on the basis of their g factors, and moreover to resolve the g anisotropy for both radicals. The positive polaron on the conjugated polymer chain possesses axial symmetry with g values g||=2.0034(1) and g⊥=2.0024(1). EPR on low doped polymer gave extra proof for the assignment to the positive polaron. The negatively charged methanofullerene has a lower, rhombic symmetry with gx=2.0003(1), gy=2.0001(1), and gz=1.9982(1). Different spin-lattice relaxation of both species gives rise to a rapid passage effect for the positive polaron spectrum.

  14. Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser

    NASA Astrophysics Data System (ADS)

    Müller, J.; Hauck, J.; Shen, B.; Romero-García, S.; Islamova, E.; Sharif Azadeh, S.; Joshi, S.; Chimot, N.; Moscoso-Mártir, A.; Merget, F.; Lelarge, F.; Witzens, J.

    2015-03-01

    We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.

  15. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  16. Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence.

    PubMed

    Ding, P; Liang, E J; Zhang, L; Zhou, Q; Yuan, Y X

    2009-01-01

    Compared to metallic composite metamaterials of double split-ring resonators with wires, double-ring resonators without additional wires are simple to engineer. In this paper, we have numerically studied the transmittance of double split- and closed-ring resonators at normal-to-plane incidence and identified their fundamental resonance modes. It is found that the antisymmetric and symmetric resonance modes originate from the out-of-phase and in-phase oscillations of surface charges in the neighboring legs of the double-ring resonators, respectively. The coupling of the antiparallel induced currents in the neighboring legs gives rise to magnetic resonance and consequently negative permeability of the antisymmetric mode. The negative refraction transmission of the double-ring resonators at normal-to-plane incidence is verified by dispersion curve and wedge-shaped model simulations. Our study provides a route to negative refraction metamaterial design by using the antisymmetric resonance mode of the simple double-ring structure at normal-to-plane incidence which is of particular importance for the terahertz and infrared domain. PMID:19257157

  17. High power (130 mW) 40 GHz 1.55 μm mode-locked distributed Bragg reflector lasers with integrated optical amplifiers.

    PubMed

    Akbar, Jehan; Hou, Lianping; Haji, Mohsin; Strain, Michael J; Marsh, John H; Bryce, A Catrina; Kelly, Anthony E

    2012-02-01

    High output power 40 GHz 1.55 μm passively mode-locked surface-etched distributed Bragg reflector (DBR) lasers with monolithically integrated semiconductor optical amplifiers are reported. These are based on an optimized AlGaInAs/InP epitaxial structure with a three quantum well active layer and an optical trap layer. The device produces near transform limited Gaussian pulses with a pulse duration of 3.3 ps. An average output power during mode-locked operation of 130 mW was achieved with a corresponding peak power of >1 W. PMID:22297347

  18. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    SciTech Connect

    Fountaine, Katherine T.; Whitney, William S.; Atwater, Harry A.

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  19. Measurement of Resonant Frequencies and Modes of Freestanding Nanoparticle Monolayers

    NASA Astrophysics Data System (ADS)

    Kanjanaboos, Pongsakorn; Lin, Xiao-Min; Jaeger, Heinrich; Guest, Jeffrey

    2012-02-01

    We recently showed that freestanding membranes of ligated nanoparticles can be assembled in a one-step drying-mediated process [1]. These 10nm thin membranes can stretch over holes up to 100 microns in diameter and are supported by a substrate only along their outer edge, thereby freely suspending of the order of 100 million close-packed particles [2]. Previous work has focused on quasi-static mechanical properties [1-3]. Here we present the first investigation of the full dynamic response of freely suspended nanoparticle membranes, utilizing a high frequency laser interferometer with picometer sensitivity. This instrument allows us to rapidly measure the dynamical properties of freestanding nanoparticle monolayers for the first time including resonant frequencies, quality factors, and images of different modes.[4pt] [1] Klara E. Mueggenburg et al., ``Elastic membranes of close-packed nanoparticle arrays,'' Nature Materials 6, 656-660 (2007). [0pt] [2] Jinbo He et al., ``Fabrication and Mechanical properties of large-scale freestanding nanoparticle membranes,'' Small 6, 1449-1456 (2010).[0pt] [3] Pongsakorn Kanjanaboos et al., ``Strain Patterning and Direct Measurement of Poisson's Ratio in Nanoparticle Monolayer Sheets,'' Nano Letters 11, 2567-2571 (2011).

  20. Protein-based flexible whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  1. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    SciTech Connect

    Cortazar, O. D.

    2012-10-15

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 {mu}s are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  2. Geometry Dependent Evolution of the Resonant Mode in ZnO Elongated Hexagonal Microcavity

    PubMed Central

    Dong, Hongxing; Liu, Yang; Sun, Shulin; Li, Jingzhou; Zhan, Jinxin; Chen, Zhanghai; Zhang, Long

    2016-01-01

    We have developed a novel but simple approach to obtain ZnO microcombs with parallelogram stems and elongated hexagonal branches. We found that the present elongated hexagonal microcavity exhibited quite different features for its optical resonant modes due to the broken hexagonal symmetry. The resonant mode evolution of such microcavity was investigated systemically by using a spatially resolved spectroscopic technique. Theoretical analyses based on the plane wave mode and FEM simulations agreed well with the experimental results. We believe that our research allows us to have a deeper understanding of the controllable growth of novel optical cavities and the shape-dependent optical resonant modes. PMID:26763937

  3. Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Westra, H. J. R.; Karabacak, D. M.; Brongersma, S. H.; Crego-Calama, M.; van der Zant, H. S. J.; Venstra, W. J.

    2011-10-01

    The interactions between parametrically- and directly-driven vibration modes of a clamped-clamped beam resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First, the parametric amplification and oscillation of a single mode are analyzed by the power and phase dependence below and above the threshold for parametric oscillation. Then, the motion of a parametrically-driven mode is detected by the induced change in resonance frequency in another mode of the same resonator. The resonance frequency shift is the result of the nonlinear coupling between the modes by the displacement-induced tension in the beam. These nonlinear modal interactions result in the quadratic relation between the resonance frequency of one mode and the amplitude of another mode. The amplitude of a parametrically-oscillating mode depends on the square root of the pump frequency. Combining these dependencies yields a linear relation between the resonance frequency of the directly-driven mode and the frequency of the parametrically-oscillating mode.

  4. On the fundamental mode of the optical resonator with toroidal mirrors

    SciTech Connect

    Serednyakov, S.S.; Vinokurov, N.A.

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  5. In-fiber whispering gallery mode resonator fabricated by femtosecond laser micromaching

    NASA Astrophysics Data System (ADS)

    Shi, Leilei; Zhu, Tao; Huang, Dongmei; Liu, Min; Deng, Ming; Huang, Wei

    2015-07-01

    An in-fiber whispering gallery mode resonator fabricated by femtosecond laser micromaching is demonstrated. The cylinder resonator cavity is fabricated by scanning the D-fiber cladding with infrared femtosecond pulses along a cylindrical trace with radius of 25μm and height of 20μm. Quality factor on the order of 103 is achieved by smoothing the cavity surface with ultrasonic cleaner, which is mainly limited by the surface roughness of hundreds nanometers. Resonant characteristics and polarization dependence of the proposed resonator is also studied in detail. Our method takes a step forward to the integration of whispering gallery mode resonators.

  6. Coherences of transmon qubits embedded in superconducting whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Minev, Z. K.; Serniak, K.; Pop, Ioan; Leghtas, Z.; Sliwa, K.; Frunzio, L.; Schoelkopf, R.; Devoret, Michel

    2015-03-01

    We describe the design and measurement of a planar uperconducting two-resonator one-qubit device. The two resonators are realized in a hardware-efficient way by the differential modes of a superconducting whispering gallery mode resonator [APL 103, 142604]. This device forms an integrated basis for a quantum memory [New J. Phys. 16, 045014 2014]. Work supported by: IARPA, ARO, and ONR.

  7. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    NASA Astrophysics Data System (ADS)

    Kumar, A. V. Praveen

    2016-03-01

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  8. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    PubMed

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  9. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    NASA Astrophysics Data System (ADS)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  10. Study of BL Lac VLBA Data at 8 and 15 GHz in a Super-resolution Mode

    NASA Astrophysics Data System (ADS)

    Tateyama, Claudio E.

    2009-11-01

    In this work, we show Very Long Baseline Array data at 8 GHz (RRFID) and 15 GHz (MOJAVE) of BL Lac from 1995 to 2007 by examining the structure in the maps given by the CLEAN-point components (represented by a restoring beam of 0.1 mas). The CLEAN-point maps show a well-ordered train of individual points in the inner core jet. The result shows a narrow elongated stationary component at about 1.5 mas from the core which was interpreted as superposition of trailing components. The inner core-jet structure shows ballistic motion and a precessing ejection nozzle period of 26 years.

  11. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  12. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    SciTech Connect

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  13. Onset and Saturation of a Non-resonant Internal Mode in NSTX and Implications For AT Modes in ITER

    SciTech Connect

    J.A. Breslau, M.S. Chance, J. Chen, G.Y. Fu, S,. Gerhardt, N. Gorelenkov, S.C. Jardin and J. Manickam

    2011-08-01

    Motivated by experimental observations of apparently triggerless tearing modes, we have performed linear and nonlinear MHD analysis showing that a non-resonant mode with toroidal mode number n = 1 can develop in the National Spherical Torus eXperiment (NSTX) at moderate normalized βN when the shear is low and the central safety factor q0 is close to but greater than one. This mode, which is related to previously identified ‘infernal’ modes, will saturate and persist, and can develop poloidal mode number m = 2 magnetic islands in agreement with experiments. We have also extended this analysis by performing a free-boundary transport simulation of an entire discharge and showing that, with reasonable assumptions, we can predict the time of mode onset. __________________________________________________

  14. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    PubMed Central

    Zhang, Yongmeng; Wu, Yulie; Wu, Xuezhong; Xi, Xiang; Wang, Jianqiu

    2015-01-01

    Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes. PMID:25602269

  15. Room temperature sputtering of inclined c-axis ZnO for shear mode solidly mounted resonators

    NASA Astrophysics Data System (ADS)

    Rughoobur, G.; DeMiguel-Ramos, M.; Mirea, T.; Clement, M.; Olivares, J.; Díaz-Durán, B.; Sangrador, J.; Miele, I.; Milne, W. I.; Iborra, E.; Flewitt, A. J.

    2016-01-01

    ZnO films with a c-axis significantly inclined away from the surface normal were grown by a remote plasma sputtering technique at room temperature. The films were used to make solidly mounted resonators (SMRs) operating in shear mode at a resonant frequency of 1.35 GHz. Control of the ZnO microstructure was achieved using a polycrystalline AlN seed layer which can be added on top of a sputtered acoustic mirror to give a complete SMR device. The ZnO was reactively sputtered in an atmosphere of argon and oxygen from a zinc target. The c-axis of the ZnO was estimated to be at an angle of ˜45° to the surface normal. SMRs were measured to have quality factors (Q) of up to 140 and effective electromechanical coupling coefficients of up to 2.2% in air. Although an inclined c-axis can be achieved with direct growth onto the acoustic mirror, it is shown that the AlN seed layer provides higher coupling coefficients and narrower inclination angular distribution. The responses of the devices in liquids of different viscosities (acetone, water, and AZ5214E photoresist) were measured. The shear mode Q decreased by 45% in acetone, 72% in water, and 92% in AZ5214E.

  16. Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots

    NASA Technical Reports Server (NTRS)

    Scheuer, M. A.; Thomas, J. H.

    1981-01-01

    Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.

  17. Mode-splitting cloning in birefringent fiber Bragg grating ring resonators.

    PubMed

    Campanella, C E; Malara, P; Campanella, C M; Giove, F; Dunai, M; Passaro, V M N; Gagliardi, G

    2016-06-15

    In this Letter, we report the theoretical model and the experimental evidence of a mode-splitting cloning effect due to the resonant coupling between modes having different polarizations in weakly birefringent fiber Bragg grating (FBG) ring resonators. This modal coupling depends on the fiber birefringence and the FBG reflectivity. In the ideal case of the absence of birefringence, a single split-mode resonant structure can be observed in the resonator transmission spectrum due to the degeneracy removal of the two counter-propagating modes. In the presence of FBG birefringence, a secondary split doublet resulting in a clone of the initial one is generated. The described effect can be exploited for spectroscopic-sensing applications based on more complex split-mode dynamics. PMID:27304260

  18. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  19. Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Zhao, Zhenyu; Zhao, Hongwei; Peng, Wei; He, Xiaoyong; Shi, Wangzhou

    2015-07-01

    A teeter-totter effect of terahertz (THz) resonant modes in C-shaped complementary split-ring resonators (CSRRs) is observed. The dual resonant mode transmission enhancement was investigated using THz time-domain spectroscopy. The intensity of the lower-frequency resonance modes increases monotonically with the CSSR gap width, which is accompanied by a monotonic decrease in the intensity of the higher-frequency resonance modes. The origin of the dual resonant modes is numerically explained by the electromagnetic energy density distribution and surface current analysis. The inductive-capacitive resonance dominates the lower frequency mode, while the dipole oscillation dominates the higher frequency mode. By tuning the gap of the CSRR, an equilibrant transmittance of above dual resonance modes can be designed. This teeter-totter effect promises a possible application of CSSRs as potential dual-bandpass filters in the THz-region.

  20. Resonance-mode effect on microcantilever mass-sensing performance in air.

    PubMed

    Xia, Xiaoyuan; Li, Xinxin

    2008-07-01

    This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance. PMID:18681721

  1. Resonance-mode effect on microcantilever mass-sensing performance in air

    SciTech Connect

    Xia Xiaoyuan; Li Xinxin

    2008-07-15

    This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance.

  2. An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Back, L. H.; Roschke, E. J.; Pathasarathy, S. P.

    1976-01-01

    Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows.

  3. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  4. Multi-scale nonlinear effects in whispering-gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guoping; Diallo, Souleymane; Chembo, Yanne K.

    2016-03-01

    Whispering gallery mode resonators have been the focus of many research works in recent years. They allow to study the light-matter interactions induced by the confinement of photons in nonlinear media. In particular, Brillouin Raman and Kerr nonlinearities excite the resonator at the lattice, molecular and electronic scale. This difference in spatial scales give to whispering gallery-mode resonators the potential to be central photonic components in microwave photonics, quantum optics and optoelectronics. We discuss in this communication some of the key challenges that have to be met for the understanding of Kerr, Raman and Brillouin interactions that can take place in these resonators.

  5. Planar modes free piezoelectric resonators using a phononic crystal with holes.

    PubMed

    Aragón, J L; Quintero-Torres, R; Domínguez-Juárez, J L; Iglesias, E; Ronda, S; Montero de Espinosa, F

    2016-09-01

    By using the principles behind phononic crystals, a periodic array of circular holes made along the polarization thickness direction of piezoceramic resonators are used to stop the planar resonances around the thickness mode band. In this way, a piezoceramic resonator adequate for operation in the thickness mode with an in phase vibration surface is obtained, independently of its lateral shape. Laser vibrometry, electric impedance tests and finite element models are used to corroborate the performances of different resonators made with this procedure. This method can be useful in power ultrasonic devices, physiotherapy and other external medical power ultrasound applications where piston-like vibration in a narrow band is required. PMID:27387418

  6. Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators.

    PubMed

    Bjurström, Johan; Wingqvist, Gunilla; Katardjiev, Ilia

    2006-11-01

    A method for the deposition of thin piezoelectric aluminum nitride (AlN) films with a nonzero c-axis mean tilt has been developed. The deposition is done in a standard reactive magnetron sputter deposition system without any hardware modifications. In essence, the method consists of a two-stage deposition process. The resulting film has a distinct tilted texture with the mean tilt of the c-axis varying roughly in the interval 28 to 32 degrees over the radius of the wafer excluding a small exclusion zone at the center of the latter. The mean tilt angle distribution over the wafer has a circular symmetry. A membrane-type shear mode thickness-excited thin film bulk acoustic resonator together with a micro-fluidic transport system has been subsequently fabricated using the two stage AlN deposition as well as standard bulk micro machining of Si. The resonator consisted of a 2-microm-thick AlN film with 200nm-thick Al top and bottom electrodes. The resonator was characterized with a network analyzer when operating in both air and water. The shear mode resonance frequency was about 1.6 GHz, the extracted device Q around 350, and the electromechanical coupling kt2 2% when the resonator was operated in air, whereas the latter two dropped down to 150 and 1.8%, respectively, when the resonator was operated in pure water. PMID:17091844

  7. Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system

    SciTech Connect

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-10-15

    Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.

  8. High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure.

    PubMed

    Hashimoto, Ken-ya; Sato, Shuhei; Teshigahara, Akihiko; Nakamura, Takuya; Kano, Kazuhiko

    2013-03-01

    This paper describes application of Sc-doped AlN (ScAlN) to wideband SAW devices in the 1 to 3 GHz range. First, it is shown theoretically that large SAW velocity and electromechanical coupling factor are simultaneously achievable when the ScAlN film is combined with a base substrate with extremely high acoustic wave velocities, such as diamond and SiC. Next, SAW delay lines are fabricated on the ScAlN/6H-SiC structure, and reasonable agreement between the theory and experiment is obtained. Finally, one-port SAW resonators are fabricated on the structure, and it is shown that high-performance is achievable in the 1 to 3 GHz range by use of the structure. PMID:23475930

  9. All-silica, large mode area, single mode photonic bandgap fibre with Fabry-Perot resonant structures

    NASA Astrophysics Data System (ADS)

    Várallyay, Zoltán; Kovács, Péter

    2016-03-01

    All-silica, photonic crystal fibres consisting of a low index, silica core surrounded by higher index inclusions embedded in a silica matrix to form a photonic bandgap cladding were numerically analysed. The aim of the investigations was to modify the guiding properties of the fibre by introducing resonant structural entities. These structural modifications are realised by altering the refractive index of certain high index inclusions in the photonic crystal cladding resulting in mode coupling between the core mode and the mode propagated in the modified index region. This results in an increased effective core area of the fundamental core mode and consequently decreased nonlinearity as well as modified effective index compared to the effective index of the unmodified structure and resonant dispersion profile that can be used for pulse compression or optical delay purposes.

  10. Resonance structure and mode transition of quarter-wave ULF pulsations around the dawn terminator

    NASA Astrophysics Data System (ADS)

    Obana, Yuki; Waters, Colin L.; Sciffer, Murray D.; Menk, Frederick W.; Lysak, Robert L.; Shiokawa, Kazuo; Hurst, Anthony W.; Petersen, Tanja

    2015-06-01

    Quarter-wave modes are standing shear Alfvén waves supported along geomagnetic field lines in space. They are predicted to be generated when the ionosphere has very different conductance between the north compared with the south ionosphere. Our previous observation reported that the resonant frequency is sometimes very low around the dawn terminator and suggested these were due to quarter-wave modes. In this paper, we examine the resonance structure that provides further evidence of the presence of quarter-wave modes. Data from three magnetometers in New Zealand were analyzed. Four events are discussed which show extraordinarily low eigenfrequencies, wide resonance widths, and strong damping when the ionosphere above New Zealand was in darkness while the conjugate northern hemisphere ionosphere was sunlit. Later in the morning, the eigenfrequencies and resonance widths changed to normal daytime values. The wide resonance width and the strong damping of the quarter-wave modes arise from strong energy dissipation in the dark side ionosphere. One event exhibited field line resonance structure continuously through a transition from very low frequency to the normal daytime values. The frequency change began when the dawn terminator passed over New Zealand and finished 1 h later when the ratio of the interhemispheric ionospheric conductances decreased and reached ~5. These observations are strong evidence of the presence of quarter-wave modes and mode conversion from quarter- to half-wave resonances. These experimental results were compared with the ULF wave fields obtained from a 2.5-dimensional simulation model.

  11. A Dual-Mode Bandpass Filter with Multiple Controllable Transmission-Zeros Using T-Shaped Stub-Loaded Resonators

    PubMed Central

    Yao, Zh.; Wang, C.; Kim, N. Y.

    2014-01-01

    A dual-mode broadband bandpass filter (BPF) with multiple controllable transmission-zeros using T-shaped stub-loaded resonators (TSSLRs) is presented. Due to the symmetrical plane, the odd-even-mode theory can be adopted to characterize the BPF. The proposed filter consists of a dual-mode TSSLR and two modified feed-lines, which introduce two capacitive and inductive source-load (S-L) couplings. Five controllable transmission zeros (TZs) can be achieved for the high selectivity and the wide stopband because of the tunable amount of coupling capacitance and inductance. The center frequency of the proposed BPF is 5.8 GHz, with a 3 dB fraction bandwidth of 8.9%. The measured insertion and return losses are 1.75 and 28.18 dB, respectively. A compact size and second harmonic frequency suppression can be obtained by the proposed BPF with S-L couplings. PMID:24688406

  12. Effect of flexural modes on squeeze film damping in MEMS cantilever resonators

    NASA Astrophysics Data System (ADS)

    Pandey, Ashok Kumar; Pratap, Rudra

    2007-12-01

    We present an analytical model that gives the values of squeeze film damping and spring coefficients for MEMS cantilever resonators taking into account the effect of flexural modes of the resonator. We use the exact mode shapes of a 2D cantilever plate to solve for pressure in the squeeze film and then derive the equivalent damping and spring coefficient relations from the back force calculations. The relations thus obtained can be used for any flexural mode of vibration of the resonators. We validate the analytical formulae by comparing the results with numerical simulations carried out using coupled finite element analysis in ANSYS, as well as experimentally measured values from MEMS cantilever resonators of various sizes vibrating in different modes. The analytically predicted values of damping are, in the worst case, within less than 10% of the values obtained experimentally or numerically. We also compare the results with previously reported analytical formulae based on approximate flexural mode shapes and show that the current results give much better estimates of the squeeze film damping. From the analytical model presented here, we find that the squeeze film damping drops by 84% from the first mode to the second mode in a cantilever resonator, thus improving the quality factor by a factor of 6 to 7. This result has significant implications in using cantilever resonators for mass detection where a significant increase in the quality factor is obtained by using a vacuum.

  13. Fundamental mode rectangular waveguide system for electron-cyclotron resonant heating (ECRH) for tandem mirror experiment-upgrade (TMX-U)

    SciTech Connect

    Rubert, R.R.; Felker, B.; Stallard, B.W.; Williams, C.W.

    1983-12-01

    We present a brief history of TMX-U's electron cyclotron resonant heating (ECRH) progress. We emphasize the 2-year performance of the system, which is composed of four 200-kW pulsed gyrotrons operated at 28 GHz. This system uses WR42 waveguide inside the vacuum vessel, and includes barrier windows, twists, elbows, and antennas, as well as custom-formed waveguides. Outside the TMX-U vessel are directional couplers, detectors, elbows, and waveguide bends in WR42 rectangular waveguide. An arc detector, mode filter, eight-arm mode converter, and water load in the 2.5-in. circular waveguide are attached directly to the gyrotron. Other specific areas discussed include the operational performance of the TMX-U pulsed gyrotrons, windows and component arcing, alignment, mode generation, and extreme temperature variations. Solutions for a number of these problems are described.

  14. Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)

    2005-01-01

    Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.

  15. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    PubMed

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity. PMID:25353549

  16. Center mode of a doubly resonant optical periodic structure

    NASA Astrophysics Data System (ADS)

    Alagappan, G.; Png, C. E.

    2016-07-01

    An optical periodic structure with a single spatial resonance exhibits a stopband. When a second spatial resonance very close to the first one is added, the resulting doubly resonant structure exhibits a Gaussian enveloped, high quality factor transmission state right at the center of the original stopband. Using a slowly varying envelope approximation, we describe the optical characteristics of this transmission state analytically. The transmission state exists despite an optical structure of low refractive index contrast, and has potential applications in nano-optics, and photonics.

  17. Predicting substrate resonance mode frequency shifts using conductive, through-substrate vias

    NASA Astrophysics Data System (ADS)

    Murray, Conal E.; Abraham, D. W.

    2016-02-01

    Through-substrate-vias (TSVs) provide conduction paths to allow for three-dimensional integration of microelectronic structures. It is also known that metallic TSVs can be used to suppress resonance modes within dielectric substrates by altering the propagation of electromagnetic waves. Numerical analyses of transmission through substrates containing metallic TSVs revealed that although resonance modes of the composite structure are shifted to higher frequencies, these frequencies are not solely dictated by the TSV periodicity. Simulations show that hybrid modes are formed through a convolution of the original substrate modes and a long-wavelength mode analogous to that found in a two-dimensional photonic crystal. An analytical formula is proposed that provides a simple relation between the intrinsic substrate mode frequencies and the long-wavelength mode that scales with the ratio of TSV radius to its periodicity.

  18. Analysis of lossy mode resonances on thin-film coated cladding removed plastic fiber.

    PubMed

    Corres, Jesús M; Del Villar, Ignacio; Arregui, Francisco J; Matias, Ignacio R

    2015-11-01

    In this work, the modal transition induced by lossy mode resonances has been analyzed as a function of wavelength for thin-film coated cladding removed fibers. The wavelength dependence of the modal structure allows us to explain the resonance phenomenon. The numerical data obtained were calculated with a method based on the exact calculation of core modes. Theoretical simulations have been compared with experimental results showing good agreement. PMID:26512470

  19. Note: Effect of hot liner in producing 40,48Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-01

    In order to produce a high-intensity and stable 48Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material (48Ca), we introduced the "hot liner" method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the 48Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  20. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the “hot liner” method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  1. White-Light Whispering Gallery Mode Optical Resonator System and Method

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  2. Mode coupling in superconducting parallel plate resonator in a cavity with outer conductive enclosure

    SciTech Connect

    Gao, F.; Klein, M.V.; Kruse, J.; Feng, M.

    1996-06-01

    The authors have carefully studied the mode coupling effect from analysis of the measured microwave scattering parameters of superconducting films using a parallel-plate-resonator technique. Due to its high resolution and simplicity, this technique has been widely employed to identify the quality of high-{Tc} superconducting films by measuring the resonance bandwidth, from which the microwave surface resistance is directly derived. To minimize the radiation loss, the resonator is usually housed in a conductive cavity. Using this method, they observe that a number of strong ``cavity`` modes due to the test enclosure fall around the lowest TM mode of the superconducting resonator and that a strong interaction between these two types of resonant modes occurs when their eigenfrequencies are close, causing a significant distortion or a strong antiresonance for the resonator mode. To describe this effect, a coupled harmonic-oscillator model is proposed. They suggest that the interaction arises from a phase interference or a linear coupling among the individual oscillators. The model fits very well the observed Fano-type asymmetric or antiresonant features, and thus can be used to extract the intrinsic Q of the superconducting resonator.

  3. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    SciTech Connect

    Zhang, Kewei Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  4. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Baboi, Nicoleta; Jones, Roger M.

    2014-01-01

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  5. 6-GHz, Kerr-lens mode-locked Yb:Lu2O3 ceramic laser for comb-resolved broadband spectroscopy.

    PubMed

    Endo, Mamoru; Ozawa, Akira; Kobayashi, Yohei

    2013-11-01

    A laser diode (LD)-pumped, 6-GHz repetition rate, ytterbium (Yb)-doped Lu2O3 ceramic Kerr-lens mode-locked laser is described. A bow-tie ring cavity enabled the generation of femtosecond pulses centered at a wavelength of 1076 nm with an average power of 10 mW. The pulse duration after an amplifier was 161 fs whereas the transform-limited pulse duration directly from the oscillator was 148 fs. The repetition frequency was sufficiently high for each longitudinal mode to be spectrally resolved by a commercially available optical spectrum analyzer. The developed laser was successfully applied to the absorption spectroscopy of metastable helium4 and demonstrated the suitability of the system as a source for comb-resolved broadband spectroscopy. PMID:24177130

  6. 10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser

    NASA Astrophysics Data System (ADS)

    Tang, W. W.; Fok, M.; Shu, Chester

    2006-03-01

    Widely-tunable picosecond pulses have been generated from a harmonically mode-locked semiconductor optical amplifier (SOA) ring laser with a center wavelength spanning from 1491 to 1588 nm. An intra-cavity birefringence loop mirror filter is used to define a 1.6 nm comb that governs the wavelength spacing of the tunable output pulses. The filter also serves to control the spectral gain profile of the laser cavity and thus extends the tuning range. By exploiting the spectral shift of the SOA gain with different amount of optical feedback, the output can be obtained over a wid wavelength range. Applying mode-locking together with the dispersion tuning approach, 10 GHz picosecond pulses have been successfully generated over a tuning range of 97 nm.

  7. High-power diode-directly-pumped tenth-order harmonic mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate

    NASA Astrophysics Data System (ADS)

    Li, F.-Q.; Zong, N.; Han, L.; Tian, C.-Y.; Bo, Y.; Peng, Q.-J.; Cui, D.-F.; Xu, Z.-Y.

    2011-02-01

    A high-efficiency high-power diode-directly-pumped tenth-order harmonic mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate was first demonstrated. The maximum output power was 10.4 W with optical-optical efficiency of 41.8% and slope efficiency of 78.1%, respectively, the pulse width was about 30 ps at the output power of 9.6 W. Based on the large third-order nonlinearity of Nd:YVO4, the tenth-order harmonic mode-locked pulses were induced by the intensity-dependent Kerr effect and the cooperative action of counter-propagating pulses colliding in the laser crystal for a colliding-pulse-modelocking-like cavity. The pulses were further modulated by a semiconductor saturable absorber mirror.

  8. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    NASA Astrophysics Data System (ADS)

    Xu, Ningning; Singh, Ranjan; Zhang, Weili

    2016-07-01

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching. We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.

  9. Linear and nonlinear behavior of crystalline optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrate strong nonlinear behavior of high-Q whispering gallery mode (WGM) resonators made out of various crystals adn devices based on the resonators. The maximum WGM optical Q-fact or achieved at room temperature exceeds 2X10 to the tenth power.

  10. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  11. Design of 132 GHz gyrotron with 3 GHz tunability for 200 MHz DNP/NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Sinha, Ashok Kumar

    2015-01-01

    A complete design of 132 GHz gyrotron for 200 MHz DNP-NMR spectroscopy application is presented in this article. The design is performed considering a frequency tunability range of 3 GHz and output power around 100 W. A smooth frequency tunability is achieved via the excitation of TE03p modes (p = 1-6) through the variation of cavity magnetic field. The start oscillation current calculation is performed to estimate the required magnetic field for each TE03p mode. Cold cavity analysis and beam-wave interaction computation are carried out for the estimation of quality factor, resonant frequency corresponding to each TE03p mode, axial electric field profile and output power. Other important components of gyrotron such as magnetron injection gun, non-linear taper and RF window are also designed considering the smooth frequency tunability a main design parameter.

  12. Resonance modes in coplanar lines with integrated Josephson circuits

    NASA Astrophysics Data System (ADS)

    Shvetsov, A. V.; Satanin, A. M.; Mironov, V. A.; Il'ichev, E.

    2013-11-01

    The propagation of microwave radiation in co-planar superconducting lines with Josephson circuits (microresonators) of various configurations is investigated. It is shown that dips in the frequency dependence of the transmission power of the waveguide line modes are associated with local modes of the circuit. The dependencies of shape and position of the dips on an external magnetic field and applied power are found. The calculation results can be used for developing modern cryoelectronic microwave superconducting devices.

  13. Superradiance in an undulator in dual resonance mode

    NASA Astrophysics Data System (ADS)

    Bogdankevich, L. S.; Gelkhviidze, L. K.; Ivanov, V. S.; Krementsov, S. I.; Rayzer, M. D.; Rukhadze, A. A.; Fedotov, A. V.

    1986-01-01

    The emission of a relativistic electron beam in a linearly polarized undulator magnetic field is investigated experimentally and theoretically. The Terek-I high current accelerator was employed as the electron beam injector. A spatially periodic magnetic field was formed by a system of copper rings within the external pulse magnetic field. The resonance conditions for the longitudinal and transverse components of the magnetic field are investigated. Current transmission is found to be strongly dependent on the angle between the axis of the undulator and the axis of the solenoid. A system of equations is derived for the movement of a relativistic electron in the magnetic field of the undulator. The experimentally observed values of the resonant longitudinal magnetic field, the width of the resonant region, the transverse velocity of the electrons, and the radiation line width are explained analytically.

  14. Nonlinear interaction of two trapped-mode resonances in a bilayer fish-scale metamaterial

    NASA Astrophysics Data System (ADS)

    Tuz, Vladimir R.; Novitsky, Denis V.; Mladyonov, Pavel L.; Prosvirnin, Sergey L.; Novitsky, Andrey V.

    2014-09-01

    We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.

  15. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.

    PubMed

    Zhu, Jun; Chen, Weiqiu; Yang, Jiashi

    2013-04-01

    We study straight-crested waves and vibration modes with spatial variations along the x3 direction only in an AT-cut quartz plate resonator. The equations of anisotropic elasticity are used. Dispersion relations for face-shear and thickness-twist waves in unbounded plates are plotted. Frequency spectra are obtained for face-shear and thickness-twist vibrations of finite plates in which these modes are coupled by boundary conditions. Most importantly, our analysis produces the frequency spectra for overtone modes which do not seem to have been obtained before for x3-dependent modes. Numerical results for third- and fifth-overtone AT-cut quartz resonators are presented, showing that higher-order overtone modes are associated with more mode couplings. PMID:23549548

  16. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    Biri, S.; Kitagawa, A.; Muramatsu, M.; Drentje, A. G.; Rácz, R.; Yano, K.; Kato, Y.; Sasaki, N.; Takasugi, W.

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  17. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    SciTech Connect

    Biri, S.; Rácz, R.; Sasaki, N.; Takasugi, W.

    2014-02-15

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1–18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1–18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  18. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences.

    PubMed

    Biri, S; Kitagawa, A; Muramatsu, M; Drentje, A G; Rácz, R; Yano, K; Kato, Y; Sasaki, N; Takasugi, W

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode. PMID:24593510

  19. Optically controlled low-power on-off mode resonant tunneling oscillator with a heterojunction phototransistor switch.

    PubMed

    Lee, Kiwon; Park, Jaehong; Lee, Jooseok; Yang, Kyounghoon

    2015-03-15

    We report an optically controlled low-power on-off mode oscillator based on a resonant tunneling diode (RTD) that is monolithically integrated with a heterojunction phototransistor (HPT) optical switch. In order to achieve a low-power operation at a wavelength of 1.55 μm an InP-based quantum-effect tunneling diode is used for microwave signal generation based on a unique negative differential conductance (NDC) characteristic of the RTD at a low applied voltage. In addition, the high-gain HPT is used for converting incident optical data to an electrical data signal. The fabricated on-off mode oscillator shows a low-power consumption of 5 mW and a high-data-rate of 1  Gb/s at an oscillation frequency of 4.7 GHz. A good energy efficiency of 5  pJ/bit has been obtained due to the low DC power consumption along with high-data-rate performance of the RTD-based optoelectronic integration scheme. PMID:25768172

  20. Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator.

    PubMed

    Wang, Wenjun; Wu, Rongxing; Wang, Ji; Du, Jianke; Yang, Jiashi

    2013-06-01

    We study free vibrations of an elliptical crystal resonator of AT-cut quartz with an optimal ratio between the semi-major and semi-minor axes as defined by Mindlin. The resonator is contoured with a quadratic thickness variation. The scalar equation for thickness-shear modes in an AT-cut quartz plate by Tiersten and Smythe is used. Analytical solutions for the frequencies and modes to the scalar equation are obtained using a power series expansion that converges rapidly. The frequencies and modes are exact in the sense that they can satisfy the scalar differential equation and the free edge condition to any desired accuracy. They are simple and can be used conveniently for further studies on other effects on frequencies and modes of contoured resonators. PMID:25004481

  1. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes

    NASA Astrophysics Data System (ADS)

    Song, Qinghai; Ge, Li; Wiersig, Jan; Cao, Hui

    2013-08-01

    The recent progresses in single crystalline wide bandgap hexagonal disk have stimulated intense research attention on pursuing ultraviolet (UV) laser diodes with low thresholds. While whispering-gallery modes based UV lasers have been successfully obtained in GaN, ZnO nanorods, and nanopillars, the reported thresholds are still very high, due to the low-quality (Q) factors of the hexagonal resonances. Here we demonstrate resonances whose Q factors can be more than two orders of magnitude higher than the hexagonal modes, promising the reduction of the energy consumption. The key to our finding is the avoided resonance crossing between superscar states along two sets of nearly degenerated triangle orbits, which leads to the formation of hexagram modes. The mode couplings suppress the field distributions at the corners and the deviations from triangle orbits simultaneously and therefore enhance the Q factors significantly.

  2. An MHD simulation study of the poloidal mode field line resonance in the Earth's dipole magnetosphere

    NASA Technical Reports Server (NTRS)

    Ding, D. Q.; Denton, . E.; Hudson, M. K.; Lysak, R. L.

    1995-01-01

    The poloidal mode field line resonance in the Earth's dipole magnetic field is investigated using cold plasma ideal MHD simulations in dipole geometry. In order to excite the poloidal mode resonance, we use either an initial or a continuous velocity perturbation to drive the system. The perturbation is localized at magnetic shell L = 7 with plasma flow in the radial direction (electric field component in the azimuthal direction). It is found that with the initial perturbation alone, no polodial mode resonance can be obtained and the initially localized perturbation spreads out across all magnetic L shells. With the continuous perturbation, oscillating near the poloidal resonance frequency, a global-scale poloidal cavity mode can be obtained. For the first time, a localized guided poloidal mode resonance is obtained when a radial component of electric field is added to the initial perturbation such that the curl of the electric field is everywhere perpendicular to the background dipole magnetic field. During the localized poloidal resonance, plasma vortices parallel/antiparallel to the background dipole magnetic field B(sub 0). This circular flow, elongated radially, results in twisting of magnetic field flux tubes, which, in turn, leads to the slowdown of the circular plasma flow and reversal of the plasma vortices. The energy associated with the localized poloidal resonance is conserved as it shifts back and forth between the oscillating plasma vortices and the alternately twisted magnetic flux tubes. In the simulations the eigenfunctions associated with the localized poloidal resonance are grid-scale singular functions. This result indicates that ideal MHD is inadequate to describe the underlying problem and nonideal MHD effects are needed for mode broadening.

  3. In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining.

    PubMed

    Shi, Leilei; Zhu, Tao; Huang, Dongmei; Liu, Min; Deng, Ming; Huang, Wei

    2015-08-15

    An in-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining is demonstrated. The cylinder resonator cavity is fabricated by scanning the D-fiber cladding with infrared femtosecond pulses along a cylindrical trace with a radius of 25 μm and height of 20 μm. Quality factor on the order of 10(3) is achieved by smoothing the cavity surface with an ultrasonic cleaner, which is mainly limited by the surface roughness of several hundred nanometers. Resonant characteristics and polarization dependence of the proposed resonator are also studied in detail. Our method takes a step forward in the integration of whispering-gallery-mode resonators. PMID:26274656

  4. Coherent coupling of molecular resonators with a microcavity mode

    PubMed Central

    Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T. W.

    2015-01-01

    The optical hybridization of the electronic states in strongly coupled molecule–cavity systems have revealed unique properties, such as lasing, room temperature polariton condensation and the modification of excited electronic landscapes involved in molecular isomerization. Here we show that molecular vibrational modes of the electronic ground state can also be coherently coupled with a microcavity mode at room temperature, given the low vibrational thermal occupation factors associated with molecular vibrations, and the collective coupling of a large ensemble of molecules immersed within the cavity-mode volume. This enables the enhancement of the collective Rabi-exchange rate with respect to the single-oscillator coupling strength. The possibility of inducing large shifts in the vibrational frequency of selected molecular bonds should have immediate consequences for chemistry. PMID:25583259

  5. Demonstration of polarization mode selection and coupling efficiency of optofluidic ring resonator lasers.

    PubMed

    Zhang, Yuanxian; Meng, Weidong; Yang, Hongyue; Chu, Yufei; Pu, Xiaoyun

    2015-11-01

    We demonstrate the polarization mode selection and the dependence of coupling efficiency on polarization state of pump light for an optofluidic ring resonator (OFRR) laser. An optical fiber is chosen to serve as the ring resonator and surrounded by rhodamine 6G dye solution of lower refractive index as the fluidic gain medium. When the ring resonator is pumped by a linearly s-polarized laser, the emitted whispering gallery mode (WGM) lasing is of parallel polarization (TM mode), while p-polarized laser excitation generates a vertically polarized lasing emission (TE mode), both TM and TE mode lasing emission coexist simultaneously if the ring resonator is pumped by the s- and p-mixed polarized light. Further investigation reveals that the lasing intensity of the TM mode is approximately twice that of the TE mode for the same pump energy density, meaning an obvious difference of coupling efficiency on the polarization state of pump light; the experimental results of coupling efficiency are well explained by an induced dipole model. PMID:26512529

  6. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  7. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    PubMed

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators. PMID:26698452

  8. Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator

    PubMed Central

    Lee, Aram; Mills, Thomas; Xu, Yong

    2015-01-01

    We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing. PMID:25837078

  9. Exploring the Frequency Stability Limits of Whispering Gallery Mode Resonators for Metrological Applications

    NASA Technical Reports Server (NTRS)

    Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan

    2012-01-01

    Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.

  10. Calculation of the spectrum of whispering gallery modes in cylindrical resonators with perturbed boundary conditions

    NASA Astrophysics Data System (ADS)

    Dontsov, A. A.; Monakhov, A. M.; Averkiev, Nikita S.

    2013-05-01

    The spectrum of whispering gallery modes for resonators with a small deformation of the boundary is calculated analytically. Cylindrical resonators with two different cross sections (segment close to a circle and segment close to a semicircle) are considered. The calculation is performed for resonators with metal boundaries, but the obtained result is a good approximation for dielectric resonators as well. The applicability limits of the found expressions for the spectra are analysed. It is shown that the spectra calculated using the obtained expressions coincide well with computer-calculated spectra. The perturbation-induces changes in the field distribution are qualitatively studied using numerical simulation.

  11. Calculation of the spectrum of whispering gallery modes in cylindrical resonators with perturbed boundary conditions

    SciTech Connect

    Dontsov, A A; Monakhov, A M; Averkiev, Nikita S

    2013-05-31

    The spectrum of whispering gallery modes for resonators with a small deformation of the boundary is calculated analytically. Cylindrical resonators with two different cross sections (segment close to a circle and segment close to a semicircle) are considered. The calculation is performed for resonators with metal boundaries, but the obtained result is a good approximation for dielectric resonators as well. The applicability limits of the found expressions for the spectra are analysed. It is shown that the spectra calculated using the obtained expressions coincide well with computer-calculated spectra. The perturbation-induces changes in the field distribution are qualitatively studied using numerical simulation. (semiconductor lasers. physics and technology)

  12. Gyroharmonic Conversion at 11.4 GHz

    NASA Astrophysics Data System (ADS)

    Lapointe, M. A.; Wang, Changbiao; Yoder, R. B.; Ganguly, A. K.; Wang, Mei; Hirshfield, J. L.

    1997-11-01

    First results on the generation of 11.4 GHz microwaves by gyroharmonic conversion are presented. A helical rotating beam is prepared in a 2.857 GHz cyclotron autoresonant accelerator (CARA(M.A. LaPointe, R.B. Yoder, Changbiao Wang, A.K. Ganguly and J.L. Hirshfield, Phys. Rev. Lett. 76), 2718 (1996); J.L. Hirshfield, M.A. LaPointe, A.K. Ganguly, R.B. Yoder and Changbiao Wang, Phys. Plasmas 3, 2163 (1996).). The resulting 27A, 190 kV beam is injected into a cavity whose TE_411 mode is resonant at the 4th harmonic of the CARA drive frequency. With an appropriate magnetic field profile, power at 11.428 GHz has been observed. The spectrum at the 4th harmonic has a FWHM of 400 kHz, the Fourier limit for a 3 μsec pulse. Calorimeter measurements give an 11.4 GHz power level of about 300 kW, more than 20 dB above the nearest competing mode (TE_311). These results are compared with theory, especially regarding spreads in beam guiding center and axial velocity.

  13. Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner.

    PubMed

    Webb, A G

    2012-03-01

    MRI represents a unique method to visualize directly different resonant modes of arbitrarily-shaped dielectric resonators in the radiofrequency spectrum via construction of resonators filled with distilled, deionized water which has a low conductivity and high relative permittivity. The required dimensions, particularly for higher order modes, are large and so a high field whole-body MRI system is needed to visualize these modes. In this study, using a simple cylindrical geometry, many higher order modes were identified and confirmed using electromagnetic simulations. In addition, coupled modes between more than one resonator were investigated, with possible future applications including direct visualization of fields in metamaterials. PMID:22341210

  14. Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner

    NASA Astrophysics Data System (ADS)

    Webb, A. G.

    2012-03-01

    MRI represents a unique method to visualize directly different resonant modes of arbitrarily-shaped dielectric resonators in the radiofrequency spectrum via construction of resonators filled with distilled, deionized water which has a low conductivity and high relative permittivity. The required dimensions, particularly for higher order modes, are large and so a high field whole-body MRI system is needed to visualize these modes. In this study, using a simple cylindrical geometry, many higher order modes were identified and confirmed using electromagnetic simulations. In addition, coupled modes between more than one resonator were investigated, with possible future applications including direct visualization of fields in metamaterials.

  15. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    SciTech Connect

    Megía-Macías, A.; Vizcaíno-de-Julián, A.; Cortázar, O. D.

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  16. Patterned FeNi soft magnetic strips film with tunable resonance frequency from 1 to 10.6 GHz.

    PubMed

    Ren, Yong; Li, Xinxi; Wang, Yan; Ren, Jiankun; Zhang, Yan; Dai, Bo; Yan, Haiyang; Sun, Guangai; Peng, Shuming

    2016-01-01

    Soft magnetic films with a wide-range tunable ferromagnetic resonance frequency are suitable for miniaturization and multifunctionalization of microwave integrated circuits. Fabrication of these films for high-frequency applications is usually complicated and difficult. We demonstrate a simple method to fabricate patterned FeNi soft magnetic strip films by magnetron sputtering and photolithography. Films prepared by this method exhibits a tunable in-plane uniaxial magnetic anisotropy (IPUMA) for different strip widths and gaps. As the strip widths changing from 500 to 2 μm, the IPUMA field increases monotonically from 2.2 to 576 Oe and resonance frequency from 1 to 10.6 GHz(which covers four microwave bands, including the L,S,C and X bands) respectively. This ultra-wide-range adjustability of resonance frequency can be attributed to shape anisotropy of strips. Considering that FeNi alloy has relatively low magnetocrystalline anisotropy, so a wider adjustable range of resonance frequency could be obtained using materials with stronger magnetocrystalline anisotropy. PMID:27561328

  17. Patterned FeNi soft magnetic strips film with tunable resonance frequency from 1 to 10.6 GHz

    PubMed Central

    Ren, Yong; Li, Xinxi; Wang, Yan; Ren, Jiankun; Zhang, Yan; Dai, Bo; Yan, Haiyang; Sun, Guangai; Peng, Shuming

    2016-01-01

    Soft magnetic films with a wide-range tunable ferromagnetic resonance frequency are suitable for miniaturization and multifunctionalization of microwave integrated circuits. Fabrication of these films for high-frequency applications is usually complicated and difficult. We demonstrate a simple method to fabricate patterned FeNi soft magnetic strip films by magnetron sputtering and photolithography. Films prepared by this method exhibits a tunable in-plane uniaxial magnetic anisotropy (IPUMA) for different strip widths and gaps. As the strip widths changing from 500 to 2 μm, the IPUMA field increases monotonically from 2.2 to 576 Oe and resonance frequency from 1 to 10.6 GHz(which covers four microwave bands, including the L,S,C and X bands) respectively. This ultra-wide-range adjustability of resonance frequency can be attributed to shape anisotropy of strips. Considering that FeNi alloy has relatively low magnetocrystalline anisotropy, so a wider adjustable range of resonance frequency could be obtained using materials with stronger magnetocrystalline anisotropy. PMID:27561328

  18. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz electron cyclotron resonance plasma reactor.

    PubMed

    Megía-Macías, A; Cortázar, O D; Vizcaíno-de-Julián, A

    2014-03-01

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor. PMID:24689578

  19. A Rossby whistle: A resonant basin mode observed in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Joanne; Hibbert, Angela; Boening, Carmen; Oram, James

    2016-07-01

    We show that an important source of coastal sea level variability around the Caribbean Sea is a resonant basin mode. The mode consists of a baroclinic Rossby wave which propagates westward across the basin and is rapidly returned to the east along the southern boundary as coastal shelf waves. Almost two wavelengths of the Rossby wave fit across the basin, and it has a period of 120 days. The porous boundary of the Caribbean Sea results in this mode exciting a mass exchange with the wider ocean, leading to a dominant mode of bottom pressure variability which is almost uniform over the Grenada, Venezuela, and Colombia basins and has a sharp spectral peak at 120 day period. As the Rossby waves have been shown to be excited by instability of the Caribbean Current, this resonant mode is dynamically equivalent to the operation of a whistle.

  20. How Natural Evaporation Temporally Self-Tunes an Oscillating Sessile Droplet To Resonate at Different Modes.

    PubMed

    Sanyal, Apratim; Basu, Saptarshi

    2016-05-17

    We report the dynamics and underlying physics of evaporation driven transitions and autotuning of oscillation modes in sessile droplets subject to substrate perturbations. We have shown that evaporation controls temporal transition of the oscillation mode with a spatially downward shift of nodes (surface locations with zero displacement) toward the three-phase contact line. We have explained the physical mechanism using two parameters: the first quantifies evaporation driven tuning for resonance detection, and the second parameter characterizes mode lifetime which is found to be governed by evaporation dynamics. It is desirable to achieve autotuning of the oscillation modes in sessile droplets that essentially self-evolves in a spatiotemporal manner with continued evaporation. The insights suggest control of mode resonances is possible, which in turn will allow precision manipulations at droplet scale crucial for many applications such as surface patterning and others. PMID:27120412

  1. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes.

    PubMed

    Uebel, Patrick; Günendi, Mehmet C; Frosz, Michael H; Ahmed, Goran; Edavalath, Nitin N; Ménard, Jean-Michel; Russell, Philip St J

    2016-05-01

    We report a hollow-core photonic crystal fiber that is engineered so as to strongly suppress higher-order modes, i.e., to provide robust LP01 single-mode guidance in all the wavelength ranges where the fiber guides with low loss. Encircling the core is a single ring of nontouching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes. We show that the resulting modal filtering effect depends on only one dimensionless shape parameter, akin to the well-known d/Λ parameter for endlessly single-mode solid-core PCF. Fabricated fibers show higher-order mode losses some ∼100 higher than for the LP01 mode, with LP01 losses <0.2  dB/m in the near-infrared and a spectral flatness ∼1  dB over a >110  THz bandwidth. PMID:27128049

  2. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  3. Selective enhancement of individual cantilever high resonance modes.

    PubMed

    Penedo, Marcos; Hormeño, Silvia; Prieto, Patricia; Alvaro, Raquel; Anguita, José; Briones, Fernando; Luna, Mónica

    2015-12-01

    Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga(+) ion implantation in the specific areas of the magnetic material. PMID:26559931

  4. Selective enhancement of individual cantilever high resonance modes

    NASA Astrophysics Data System (ADS)

    Penedo, Marcos; Hormeño, Silvia; Prieto, Patricia; Alvaro, Raquel; Anguita, José; Briones, Fernando; Luna, Mónica

    2015-12-01

    Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga+ ion implantation in the specific areas of the magnetic material.

  5. Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator

    NASA Astrophysics Data System (ADS)

    Labadze, G.; Dukalski, M.; Blanter, Ya. M.

    2016-08-01

    We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classically, the behavior of the non-driven mode is reminiscent of that of a parametrically driven linear oscillator: it exhibits a threshold behavior, with the amplitude of this mode below the threshold being exactly zero. Quantum-mechanically, we were able to access the dynamics of this mode below the classical parametric threshold. We show that whereas the mean displacement of this mode is still zero, the mean squared displacement is finite and at the threshold corresponds to the occupation number of 1/2. This finite displacement of the non-driven mode can serve as an experimentally verifiable quantum signature of quantum motion.

  6. High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Torres, F. A.; Meng, P.; Ju, L.; Zhao, C.; Blair, D. G.; Liu, K.-Y.; Chao, S.; Martyniuk, M.; Roch-Jeune, I.; Flaminio, R.; Michel, C.

    2013-07-01

    Milligram-scale resonators have been shown to be suitable for the creation of 3-mode optoacoustic parametric amplifiers, based on a phenomena first predicted for advanced gravitational-wave detectors. To achieve practical optoacoustic parametric devices, high quality factor resonators are required. We present millimetre-scale silicon resonators designed to exhibit a torsional vibration mode with a frequency in the 105-106 Hz range, for observation of 3-mode optoacoustic interactions in a compact table-top system. Our design incorporates an isolation stage and minimizes the acoustic loss from optical coating. We observe a quality factor of 7.5 × 105 for a mode frequency of 401.5 kHz, at room temperature and pressure of 10-3 Pa. We confirmed the mode shape by mapping the amplitude response across the resonator and comparing to finite element modelling. This study contributes to the development of 3-mode optoacoustic parametric amplifiers for use in novel high-sensitivity signal transducers and quantum measurement experiments.

  7. 140-GHz gyrotron experiments based on a confocal cavity

    SciTech Connect

    Hu, W.; Shapiro, M.A.; Kreischer, K.E.; Temkin, R.J.

    1998-06-01

    The authors have designed and experimentally demonstrated the operation of a novel quasioptical gyrotron oscillator based on an overmoded confocal waveguide cavity. This cavity effectively suppresses undesired modes, and therefore has extremely low mode density. Stable single-mode, single-frequency operation was achieved in the TE06 mode at 136 GHz. A peak RF output power of 66 kW, corresponding to an efficiency of 18%, was measured. By varying the cavity magnetic field, high-power generation was observed at 136 GHz in the TE{sub 06} mode and at 114 GHz in the TE{sub 05} mode. These frequencies correspond to the high Q modes of the confocal resonator. The low Q modes were either weak or not observed. In this paper, the authors will review the design procedure for this cavity and present experimental data verifying its effectiveness in reducing the number of modes that can be excited. The confocal waveguide could also be used in high-power, gyro-TWT amplifiers to provide greater operating stability and bandwidth, especially in an overmoded waveguide structure.

  8. The Rossby whistle: A resonant basin mode in the Caribbean Sea.

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher W.; Williams, Joanne; Hibbert, Angela; Boening, Carmen; Oram, James

    2016-04-01

    We present a a leaky, resonant Rossby basin mode in the Caribbean Sea, excited by instability of the Caribbean Current. The mode is seen at the surface as westward-propagating Rossby waves with period 120 days, but it is most distinctive in ocean bottom pressure where it is seen in both observations and in a wide variety of ocean models. This bottom pressure mode is a product of the leakiness of the basin, which allows for mass exchange with the surrounding ocean. The mode is found to dominate sea level variability on parts of the South American coast.

  9. Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Al-Naib, Ibraheem; Singh, Ranjan; Rockstuhl, Carsten; Lederer, Falk; Delprat, Sebastien; Rocheleau, David; Chaker, Mohamed; Ozaki, Tsuneyuki; Morandotti, Roberto

    2012-08-01

    We propose a mirrored arrangement of asymmetric single split ring resonators (ASRs) that dramatically enhances the quality factor of the inductive-capacitive resonance. In a regular non-mirrored arrangement, the surface current modes are all oriented in phase. Hence, light scattered by individual ASRs interferes constructively. In contrast, the proposed configuration sustains surface currents that are oppositely oriented for neighboring ASRs, in turn leading to the cancellation of the net dipole moment accompanied by destructive interference of the scattered fields. The proposed arrangement holds promise to suppress radiation losses in terahertz, microwave and infrared plasmonic metamaterials.

  10. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Laulainen, Janne; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2016-02-01

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  11. Experimental Study of a Frequency Doubling, 70 GHz Gyroklystron

    NASA Astrophysics Data System (ADS)

    Walter, Mark; Nusinovich, Gregory; Lawson, Wes; Granatstein, Victor; Miller, Thomas; Levush, Baruch; Danly, Bruce

    2000-10-01

    Interest is on the rise for frequency doubling designs for production of high power mm-waves in advanced radar applications. Initial experimental results will be presented for our frequency doubling, second harmonic, 70 GHz gyroklystron. The circuit has been designed based on the electron gun, input coupler, and input cavity used in previous experiments at the Naval Research Laboratory (NRL) performed at 35 GHz. The input cavity is driven by a 35 GHz driver and operates in the TE011 mode at the fundamental cyclotron resonance, while the buncher, penultimate, and output cavity operate in the TE021 mode at twice the signal frequency at the second cyclotron harmonic. The suite of codes developed at NRL - MAGYKL, CASCADE, and QPB were used to design the circuit. These codes predict an output power of 130 kW, with an efficiency of 23

  12. On the resonant generation of breaking, mode-2 solitary-like waves

    NASA Astrophysics Data System (ADS)

    Stastna, M.; Peltier, R.

    2004-05-01

    The weakly nonlinear theory of the resonant generation of internal solitary waves by temporally varying background currents over small amplitude topography (i.e as recently discussed by Wang and Redekopp, Dyn. Atm. Oceans, vol. 33, pg. 263) shows no preference for mode-1 waves over higher mode waves. In this talk we discuss numerical modeling efforts we have undertaken to resonantly generate mode-2 solitary-like waves. After briefly reviewing the reasons why mode-2 waves cannot, in general, be truly solitary we show examples of mode-2 wave generation for a stratification typical of the coastal ocean. We demonstrate that for certain physically reasonable situations the energy lost to a mode-1 tail is of secondary importance, when compared to the changes in the wave shape due to the existence of a highly active core. We discuss diagnostics based on weakly nonlinear theory that can be employed to diagnose whether a given situation (stratification and background current) can reasonably be expected to yield resonantly generated mode-2 solitary-like waves.

  13. Hybrid whispering gallery mode/plasmonic chain ring resonators for biosensing

    NASA Astrophysics Data System (ADS)

    Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Arnold, Stephen; Goddard, Lynford L.

    2014-12-01

    We analyze the physics of hybrid whispering gallery mode resonators formed by arranging a periodic array of epitopes (i.e., gold nano-shells covering silica nano-spheres) around the equator of a silica microsphere. When the epitopes are located at the antinodes of the field of the whispering gallery mode, we find that the field localization properties near the epitopes change drastically as the radius of the epitopes is varied due to the existence of distinct coupling regions of the hybrid resonator. We investigated the application of such resonators for biosensing by calculating the resonance wavelength shift caused by a binding event of a single Thyroglobulin cancer marker protein to the surface of an epitope in the chain.

  14. Trapped thickness-shear modes in a contoured, partially electroded AT-cut quartz resonator

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Fan, Cuiying; Zhao, Minghao; Yang, Jiashi

    2015-01-01

    We perform a theoretical analysis of a contoured crystal plate resonator with nonuniform thickness. The resonator is made from AT-cut quartz and is partially electroded in the central region. Based on the variational formulation established in a previous paper and the Ritz method with trigonometric functions as basis functions, free vibration resonant frequencies and thickness-shear modes trapped in the central electroded region are obtained. The effect of the curvature of the contour is examined. It is also found that the classical frequency prediction given by Tiersten et al. in 1996 from an approximate analysis has an inaccuracy of the order of 40 parts per million for the fundamental mode, significant in resonator design and application.

  15. Selective excitation of high-Q resonant modes in a bottle/quasi-cylindrical microresonator

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Jin, Xueying; Wang, Keyi

    2016-08-01

    We fabricate a bottle/quasi-cylindrical microresonator by using a fusion splicer. This method does not require a real-time control of the translation stages and can easily fabricate a resonator with expected size and shape. Selective excitation of whispering gallery modes (WGMs) in the resonator is realized with a fiber taper coupled at various positions of the resonator along the bottle axis. Most importantly, we obtain a clean and regular spectrum with very high quality factor (Q) modes up to 3.1×107 in the quasi-cylindrical region of the resonator. Moreover, we package the coupling system into a whole device that can be moved freely. The vibration performance tests of the packaged device show that the coupling system with the taper coupled at the quasi-cylindrical region has a remarkable anti-vibration ability. The portability and robustness of the device make it attractive in practical applications.

  16. Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.

    1989-01-01

    The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.

  17. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet

    SciTech Connect

    Kimura, Daiju Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11–13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  18. Fabrication of transmon qubits embedded in superconducting whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Serniak, K.; Minev, Z. K.; Pop, I. M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2015-03-01

    Superconducting whispering gallery mode resonators (WGMRs) can confine up to 98% of two high quality modes in lossless vacuum [APL 103, 142604]. We have fabricated new WGMR-based devices using standard lithography techniques and in which transmon qubits were integrated. The advantages of this transmon-resonator configuration are i) the possibility to perform a targeted study of thin-film quality factor across different methods and steps of fabrication and ii) precise control of the Hamiltonian parameters. Work supported by: IARPA, ARO, and ONR.

  19. Design of guided-mode resonance mirrors for short laser cavities.

    PubMed

    Kondo, Tomohiro; Ura, Shogo; Magnusson, Robert

    2015-08-01

    A guided-mode resonance mirror (GMRM) consists of a waveguide grating integrated on an optical buffer layer on a high-reflection substrate. An incident free-space wave at the resonance wavelength is once coupled by the grating to a guided mode and coupled again by the same grating back to free space. The reflection characteristics of a GMRM are numerically calculated and theoretically analyzed. It is predicted that notch filtering or flat reflection spectra are obtained depending on the optical buffer layer thickness. Design of short cavities using a GMRM is discussed for potential application in surface-mount packaging of diode lasers onto a photonic circuit board. PMID:26367288

  20. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate. PMID:27607837

  1. Air-mode photonic crystal ring resonator on silicon-on-insulator.

    PubMed

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials. PMID:26818430

  2. Air-mode photonic crystal ring resonator on silicon-on-insulator

    PubMed Central

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials. PMID:26818430

  3. Air-mode photonic crystal ring resonator on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials.

  4. Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Sete, Eyob A.; Liu, W. M.

    2015-12-01

    We study the classically driven two-level system with its center-of-mass motion vibrating in a harmonic trap and coupled to the photons in a two-mode cavity. The first mode is resonant to the driving field and an electronic transition. The second mode is off-resonant, forming a vibrational-assisted Raman transition. Using an exact numerical method, we investigate the quantum dynamics of the light emitted by the atom and the cavity modes. We analyze and compare the corresponding atomic and intracavity photon spectra for a range of the driving laser field and the cavity coupling strengths. The results provide better understanding of the effects of the laser field and atom-cavity coupling strengths on quantum interference effects and photon blockade, particularly the Mollow's triplet and the Autler-Townes splitting in the good and bad cavity limits.

  5. Frequency stabilization and transverse mode discrimination in injection-seeded unstable resonator TEA CO2 lasers

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.

    1987-01-01

    Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.

  6. Integration of microsphere resonators with bioassay fluidics for whispering gallery mode imaging.

    PubMed

    Kim, Daniel C; Armendariz, Kevin P; Dunn, Robert C

    2013-06-01

    Whispering gallery mode resonators are small, radially symmetric dielectrics that trap light through continuous total internal reflection. The resonant condition at which light is efficiently confined within the structure is linked with refractive index, which has led to the development of sensitive label-free sensing schemes based on whispering gallery mode resonators. One resonator design uses inexpensive high index glass microspheres that offer intrinsically superior optical characteristics, but have proven difficult to multiplex and integrate with the fluidics for sample delivery and fluid exchange necessary for assay development. Recently, we introduced a fluorescence imaging approach that enables large scale multiplexing with microsphere resonators, thus removing one obstacle for assay development. Here we report an approach for microsphere immobilization that overcomes limitations arising from their integration with fluidic delivery. The approach is an adaptation of a calcium-assisted glass bonding method originally developed for microfluidic glass chip fabrication. Microspheres bonded to glass using this technique are shown to be stable with respect to fluid flow and show no detectable loss in optical performance. Measured Q-factors, for example, remain unchanged following sphere bonding to the substrate. The stability of the immobilized resonators is further demonstrated by transferring lipid films onto the immobilized spheres using the Langmuir-Blodgett technique. Bilayers of DOPC doped with GM1 were transferred onto immobilized resonators to detect the binding of cholera toxin to GM1. Binding curves generated from shifts in the whispering gallery mode resonance result in a measured Kd of 1.5 × 10(-11) with a limit of detection of 3.3 pM. These results are discussed in terms of future assay development using microsphere resonators. PMID:23615457

  7. Electrically driven flexural resonant modes in symmetrically electroded X-cut and Z-cut quartz discs.

    PubMed

    Chen, P J

    1988-01-01

    While it is well known that flexural mechanical resonant modes can be electrically driven in specimens of quartz and other piezoelectric materials by the judicious choice of electrode patterns, specific experimental data, based on simultaneous interferometric observations of opposite surface points, are presented to show that symmetrically electroded X-cut and Z-cut quartz discs exhibit flexural resonant modes of quite large amplitudes. These resonances are not accompanied by detectable electrical disturbances in the AC-drive circuits. The existence of these modes is demonstrated for an X-cut quartz disc, and specific resonant modes of a Z-cut quartz disc are characterized in detail. PMID:18290131

  8. Resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned at notches

    NASA Astrophysics Data System (ADS)

    Metaxas, Peter J.; Albert, Maximilian; Lequeux, Steven; Cros, Vincent; Grollier, Julie; Bortolotti, Paolo; Anane, Abdelmadjid; Fangohr, Hans

    2016-02-01

    We study resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode's sensitivity to notches depends strongly on the mode's characteristics. For example, the frequencies of modes that involve lateral motion of the wall are the most sensitive to changes in the notch intrusion depth, especially at the narrow, more strongly confined end of the domain wall. In contrast, the breathing mode, whose dynamics are concentrated away from the notches is relatively insensitive to changes in the notches' sizes. We also demonstrate a sharp drop in the translational mode's frequency towards zero when approaching depinning which is confirmed, using a harmonic oscillator model, to be consistent with a reduction in the local slope of the notch-induced confining potential at its edge.

  9. Rotation and conversion of transmission mode based on a rotatable elliptical core ring resonator

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao

    2016-06-01

    A compact plasmonic waveguide system consisting of a rotating elliptical core ring (ECR) coupled two metal-insulator-metal (MIM) waveguides is proposed. Influences of the eccentricity and rotation angle of the elliptical core on the transmission characteristics are studied in detail, by using Finite-Difference Time-Domain (FDTD) method. Compared with circular core in ring resonator, the elliptical core will lead to the asymmetric field distributions of intrinsic mode. Based on this, a 1×2 splitter is designed, in which the beam-splitting ratio can be adjusted by changing the eccentricity of the elliptical core. In addition, we find that the intrinsic mode of ECR rotate with elliptical core and gradually convert to its orthogonal mode. Separation of the pair orthogonal modes increases with growth of the eccentricity of the elliptical core. And, the higher order intrinsic mode corresponds to the shorter rotation angle of mode conversion.

  10. Interaction between a low-frequency electrostatic mode and resonant magnetic perturbations in MAST

    NASA Astrophysics Data System (ADS)

    Robinson, J. R.; Hnat, B.; Dura, P.; Kirk, A.; Tamain, P.; the MAST Team

    2012-10-01

    A strong ≈10 kHz mode is detected in both potential and density fluctuations of the edge plasma of the MAST tokamak using a reciprocating probe. The mode is radially localized, with outer limit ≈2 cm inside the separatrix, and is affected on application of resonant magnetic perturbations generated by external coils. A shift in frequency with plasma rotation is found, and a rapid suppression of the mode is observed when it can couple to the imposed n = 3 magnetic perturbations in the rotating frame. Non-linear coupling to high wave number turbulence is evident, and an increase in power of turbulence fluctuations is seen after suppression. These observations are then interpreted in the context of known low-frequency plasma modes present in the toroidal configuration. A possibility that the observed mode is a geodesic acoustic mode is considered and motivated by observations.

  11. Finite element computations of resonant modes for small magnetic particles

    NASA Astrophysics Data System (ADS)

    Forestiere, C.; d'Aquino, M.; Miano, G.; Serpico, C.

    2009-04-01

    The oscillations of a chain of ferromagnetic nanoparticles around a saturated spatially uniform equilibrium are analyzed by solving the linearized Landau-Lifshitz-Gilbert (LLG) equation. The linearized LLG equation is recast in the form of a generalized eigenvalue problem for suitable self-adjoint operators connected to the micromagnetic effective field, which accounts for exchange, magnetostatic, anisotropy, and Zeeman interactions. The generalized eigenvalue problem is solved numerically by the finite element method, which allows one to treat accurately complex geometries and preserves the structural properties of the continuum problem. The natural frequencies and the spatial distribution of the mode amplitudes are computed for chains composed of several nanoparticles (sphere and ellipsoid). The effects of the interaction between the nanoparticles and the limit of validity of the point dipole approximation are discussed.

  12. Simulation study on transverse mode of laser resonator

    NASA Astrophysics Data System (ADS)

    Zou, H.; Zhou, L. F.; Yang, Z.

    2015-08-01

    Simulation study of the stability lateral field distribution for a variety of shapes parallel-plane cavity with the Fox-Li numerical iterative method is conducted in this paper, which gives the optical field amplitude distribution and phase distribution after iterating any number of times. After calculation and simulation, we find that the strip cavity needs 245 times iterations to produce a stable field conditions, while rectangular and circular cavity need 103 and 114 times under the same condition. Finally, the user interface for simulating the field distribution of a common parallel-plane cavity is designed, which is conducive to the understanding and extensive application of the theory of laser transverse mode.

  13. Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Dumeige, Yannick; Féron, Patrice

    2006-12-01

    We propose a coupled modes analysis of second-harmonic generation in microdisk resonators. We demonstrate that whispering gallery modes can be used to obtain a combination of modal and geometrical quasi-phase-matching (without domain inversion) to obtain efficient conversion in isotropic and nonferroelectric materials such as III-V semiconductor compounds. Finally we use an analytical model to describe the coupling between a bus waveguide and the nonlinear microdisk to achieve an optimization scheme for practical configuration.

  14. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  15. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  16. Whispering-gallery-mode resonance sensor for dielectric sensing of drug tablets

    NASA Astrophysics Data System (ADS)

    Neshat, Mohammad; Chen, Huanyu; Gigoyan, Suren; Saeedkia, Daryoosh; Safavi-Naeini, Safieddin

    2010-01-01

    We propose, for the first time, the application of whispering gallery mode (WGM) perturbation technique in dielectric analysis of disk shape pharmaceutical tablets. Based on WGM resonance, a low-cost high sensitivity sensor in milllimeter-wave frequency range is presented. A comprehensive sensitivity analysis was performed to show that a change in the order of 10-4 in the sample permittivity can be detected by the proposed sensor. The results of various experiments carried out on drug tablets are reported to demonstrate the potential multifunctional capabilities of the sensor in moisture sensing, counterfeit drug detection and contamination screening. Analytically, two sample placement configurations, i.e. a tablet placed on top of a dielectric disk resonator and inside a dielectric ring resonator, have been studied to predict the resonance frequency and Q-factor of the combined sample-resonator structure. The accuracy of the analytical model was tested against full-wave simulations and experimental data.

  17. Accurate Analysis and Computer Aided Design of Microstrip Dual Mode Resonators and Filters.

    NASA Astrophysics Data System (ADS)

    Grounds, Preston Whitfield, III

    1995-01-01

    Microstrip structures are of interest due to their many applications in microwave circuit design. Their small size and ease of connection to both passive and active components make them well suited for use in systems where size and space is at a premium. These include satellite communication systems, radar systems, satellite navigation systems, cellular phones and many others. In general, space is always a premium for any mobile system. Microstrip resonators find particular application in oscillators and filters. In typical filters each microstrip patch corresponds to one resonator. However, when dual mode patches are employed, each patch acts as two resonators and therefore reduces the amount of space required to build the filter. This dissertation focuses on the accurate electromagnetic analysis of the components of planar dual mode filters. Highly accurate analyses are required so that the resonator to resonator coupling and the resonator to input/output can be predicted with precision. Hence, filters can be built with a minimum of design iterations and tuning. The analysis used herein is an integral equation formulation in the spectral domain. The analysis is done in the spectral domain since the Green's function can be derived in closed form, and the spatial domain convolution becomes a simple product. The resulting set of equations is solved using the Method of Moments with Galerkin's procedure. The electromagnetic analysis is applied to range of problems including unloaded dual mode patches, dual mode patches coupled to microstrip feedlines, and complete filter structures. At each step calculated results are compared to measured results and good agreement is found. The calculated results are also compared to results from the circuit analysis program HP EESOF^{ rm TM} and again good agreement is found. A dual mode elliptic filter is built and good performance is obtained.

  18. Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates

    NASA Technical Reports Server (NTRS)

    To, H. Y.; Valco, G. J.; Bhasin, K. B.

    1993-01-01

    YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.

  19. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    SciTech Connect

    Mrózek, M. Rudnicki, D. S.; Gawlik, W.; Mlynarczyk, J.

    2015-07-06

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves.

  20. MRI Mode Programming for Safe Magnetic Resonance Imaging in Patients With a Magnetic Resonance Conditional Cardiac Device.

    PubMed

    Nakai, Toshiko; Kurokawa, Sayaka; Ikeya, Yukitoshi; Iso, Kazuki; Takahashi, Keiko; Sasaki, Naoko; Ashino, Sonoko; Okubo, Kimie; Okumura, Yasuo; Kunimoto, Satoshi; Watanabe, Ichiro; Hirayama, Atsushi

    2016-01-01

    Although diagnostically indispensable, magnetic resonance imaging (MRI) has been, until recently, contraindicated in patients with an implantable cardiac device. MR conditional cardiac devices are now widely used, but the mode programming needed for safe MRI has yet to be established. We reviewed the details of 41 MRI examinations of patients with a MR conditional device. There were no associated adverse events. However, in 3 cases, paced beats competed with the patient's own beats during the MRI examination. We describe 2 of the 3 specific cases because they illustrate these potentially risky situations: a case in which the intrinsic heart rate increased and another in which atrial fibrillation occurred. Safe MRI in patients with an MR conditional device necessitates detailed MRI mode programming. The MRI pacing mode should be carefully and individually selected. PMID:26973263

  1. Evidence of Resonant Mode Coupling in the Hot B Subdwarf Star KIC 10139564

    NASA Astrophysics Data System (ADS)

    Zong, W.; Charpinet, S.; Vauclair, G.

    2015-09-01

    The Kepler spacecraft provides new opportinuties to observe long term frequency and amplitude modulations of oscillation modes in pulsating stars. We analyzed more than three years of uninterrupted data obtained with this instrument on the hot B subdwarf (sdB) star KIC 10139564 and found clear signatures of nonlinear resonant mode coupling affecting several multiplets. The observed periodic frequency and amplitude modulations may allow for new asteroseismic diagnostics, providing in particular ways to measure linear growth rates of pulsation modes in hot subdwarf stars for the first time.

  2. Utilizing resonant magnetic perturbations to enhance neoclassical tearing mode stabilization by rf current

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Zhang, Xiaodong; Yu, Qingquan; Wu, Bin; Zhu, Sizheng; Wang, Jinfang; Zhang, Yang; Wang, Xiaojing

    2015-09-01

    A new method to stabilize the rotating neoclassical tearing mode (NTM) by using both the rf current drive and the static resonant magnetic perturbation (RMP) is investigated. When a non-uniform mode rotation is induced by the RMP, the stabilization of NTM by the rf current is found to be enhanced if the RMP phase has a half period difference from that of the rf wave deposition along the helical angle. The required rf current for mode stabilization is reduced by about one third if an appropriate RMP amplitude is applied.

  3. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    PubMed

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers. PMID:26907071

  4. Resonance effects in dielectric beads of coaxial connectors

    NASA Astrophysics Data System (ADS)

    Olbrich, G.

    1984-08-01

    A resonator model for calculating H(11) resonance mode frequencies of coaxial connectors is presented. Theoretical results are compared with measurement results obtained with original beads as well as with enlarged connector models. Operational frequencies and bead resonance frequencies for various connector types are given for applications up to 40 GHz.

  5. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  6. The influence of phase-locking on internal resonance from a nonlinear normal mode perspective

    NASA Astrophysics Data System (ADS)

    Hill, T. L.; Neild, S. A.; Cammarano, A.; Wagg, D. J.

    2016-09-01

    When a nonlinear system is expressed in terms of the modes of the equivalent linear system, the nonlinearity often leads to modal coupling terms between the linear modes. In this paper it is shown that, for a system to exhibit an internal resonance between modes, a particular type of nonlinear coupling term is required. Such terms impose a phase condition between linear modes, and hence are denoted phase-locking terms. The effect of additional modes that are not coupled via phase-locking terms is then investigated by considering the backbone curves of the system. Using the example of a two-mode model of a taut horizontal cable, the backbone curves are derived for both the case where phase-locked coupling terms exist, and where there are no phase-locked coupling terms. Following this, an analytical method for determining stability is used to show that phase-locking terms are required for internal resonance to occur. Finally, the effect of non-phase-locked modes is investigated and it is shown that they lead to a stiffening of the system. Using the cable example, a physical interpretation of this is provided.

  7. Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Resonant bending-mode response

    NASA Astrophysics Data System (ADS)

    Krantz, Matthias C.; Gerken, Martina

    2013-05-01

    Resonant bending-mode magnetoelectric (ME) coefficients of magnetostrictive-piezoelectric multilayer cantilevers are calculated analytically using a model developed for arbitrary multilayers on a substrate. Without quality factor effects the ME coefficient maxima in the four-dimensional parameter space of layer numbers, layer sequences, piezoelectric volume fractions, and substrate thicknesses are found to be essentially constant for nonzero substrate thickness. Global maxima occur for bilayers without substrates. Vanishing magnetoelectric response regions result from voltage cancellation in piezoelectric layers or absence of bending-mode excitation. They are determined by the neutral plane position in the multilayer stack. With Q-factor effects dominated by viscous air damping ME coefficients strongly increase with cantilever thickness primarily due to increasing resonance frequencies. The results yield a layer specific prediction of ME coefficients, resonance frequencies, and Q-factors in arbitrary multilayers and thus distinction of linear-coupling and Q-factor effects from exchange interaction, interface, or nonlinear ME effects.

  8. Dark and bright mode hybridization: From electric to magnetic Fano resonances

    NASA Astrophysics Data System (ADS)

    Panaro, S.; De Angelis, F.; Toma, A.

    2016-01-01

    The excitation of plasmonic Fano resonances leads to a dual advantage in nano-photonics, in terms of local field enhancement and far-field spectral selectivity. Nevertheless, a remarkable challenge related to the hybridization between bright and dark plasmonic modes, i.e. between the two elements cooperating to the Fano resonance generation, consists in the sub-wavelength activation of dark modes via near-field channel. In this regard, strongly coupled plasmonic nano-assemblies are ideal systems providing a highly efficient way towards their excitation. Here, we analyze two trimer nano-architectures supporting respectively electric and magnetic Fano resonances. The different approaches employed for describing the two systems highlighted the role that the near-field coupling and the LSPs de-phasing separately play in the Fano hybridization phenomena.

  9. Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes.

    PubMed

    Zhou, Di; Wang, Xiaoyu; Jing, Xiaodong; Sun, Xiaofeng

    2016-08-01

    This paper describes analytical and experimental studies conducted to investigate the acoustic properties of axially non-uniform multiple cavity resonance liner for absorbing higher-order duct modes. A three-dimensional analytical model is proposed based upon transfer element method. The model is assessed by making a comparison with results of a liner performance experiment concerning higher-order modes propagation, and the agreement is good. According to the present results, it is found that the performance of multiple cavity resonance liner is related to the incident sound waves. Moreover, an analysis of the corresponding response of liner perforated panel-cavity system is performed, in which the features of resonance frequency and dissipation of the system under grazing or oblique incidence condition are revealed. The conclusions can be extended to typical non-locally reacting liners with single large back-cavity, and it would be beneficial for future non-locally reacting liner design to some extent. PMID:27586753

  10. Enhanced visibility of two-mode thermal squeezed states via degenerate parametric amplification and resonance

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Okamoto, H.; Yamaguchi, H.

    2016-08-01

    Two-mode squeezed states, generated via non-degenerate parametric down-conversion, are invariably revealed via their entangled vacuum or correlated thermal fluctuations. Here, two-mode thermal squeezed states, generated in an electromechanical system, are made bright by means of degenerate parametric amplification of their constituent modes to the point where they are almost perfect, even when seeded from low intensity non-degenerate parametric down-conversion. More dramatically, activating the degenerate parametric resonances of the underlying modes yields perfect correlations which can be resolved via the coordinated switching of their phase bi-stable vibrations, without recourse to monitoring their thermal fluctuations. This ability to enhance the two-mode squeezed states and to decipher them without needing to observe their intrinsic noise is supported by both analytical and numerical modelling and it suggests that the technical constraints to making this phenomenon more widely available can be dramatically relaxed.

  11. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, S. Y.; Tang, C. J.

    2016-05-01

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  12. Stable single-mode operation of surface-emitting terahertz lasers with graded photonic heterostructure resonators

    NASA Astrophysics Data System (ADS)

    Xu, Gangyi; Halioua, Yacine; Moumdji, Souad; Colombelli, Raffaele; Beere, Harvey E.; Ritchie, David A.

    2013-06-01

    Graded photonic heterostructures (GPH) can be regarded as energy wells for photons. We show that judicious engineering of such photonic wells, obtained by tailoring the grading and the slit width of the GPH resonator, allows one to ensure spectrally single-mode emission on the fundamental symmetric mode in the whole lasing dynamical range of terahertz quantum cascade lasers. Furthermore, the radiative character of the symmetric mode leads to single-mode emission with mW output power in continuous-wave operation, as well as to single-lobed far-field beam patterns. A careful combination of theoretical analysis and experimental observations reveals that the results stem from interplay between mode competition and spatial hole burning effects.

  13. Measurement and reliability issues in resonant mode cantilever for bio-sensing application in fluid medium

    NASA Astrophysics Data System (ADS)

    Kathel, G.; Shajahan, M. S.; Bhadra, P.; Prabhakar, A.; Chadha, A.; Bhattacharya, E.

    2016-09-01

    Cantilevers immersed in liquid experience viscous damping and hydrodynamic loading. We report on the use of such cantilevers, operating in the dynamic mode with, (i) frequency sweeping and (ii) phase locked loop methods. The solution to reliability issues such as random drift in the resonant peak values, and interference of spurious modes in the resonance frequency spectrum, are explained based on the actuation signal provided and laser spot size. The laser beam spot size and its position on the cantilever were found to have an important role, on the output signal and resonance frequency. We describe a method to distinguish the normal modes from the spurious modes for a cantilever. Uncertainties in the measurements define the lower limit of mass detection (m min). The minimum detection limits of the two measurement methods are investigated by measuring salt adsorption from phosphate buffer solution, as an example, a mass of 14 pg was measured using the 14th transverse mode of a 500~μ m  ×  100 μm  ×  1 μm silicon cantilever. The optimized measurement was used to study the interaction between antibody and antigen.

  14. Demonstration and characterization of distributed multiparticle-induced mode splitting in a microsphere resonator

    NASA Astrophysics Data System (ADS)

    Jin, Xueying; Dong, Yongchao; Wang, Keyi

    2016-03-01

    Recently introduced mode splitting (MS) in whispering gallery mode resonators (WGMRs) has been widely investigated as a highly sensitive sensing scheme. However, distributed multiparticle-induced MS has not been achieved experimentally up to date. Here, we demonstrate and characterize the multiparticle-induced MS where the sizes of detected particles are in a log-normal distribution using a microsphere resonator. We experimentally confirm that the total linewidth broadening is proportional to the number of adsorbed particles. The signal is immune to the angular positions of particles as well as the thermal fluctuations, which exhibits a more robust mechanism. Moreover, the proposed MS mechanism works equally well even under the unresolvable condition. Observation of mode splitting induced by distributed multiparticles provides a new way for concentration detection of nanoparticles in combustion, traffic exhaust and ambient atmosphere.

  15. Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator

    NASA Astrophysics Data System (ADS)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.; Lassen, M.; Andersen, U. L.; Marquardt, C.; Leuchs, G.

    2010-04-01

    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering-gallery-mode resonator made of lithium niobate. A conversion efficiency of 9% is achieved at 30μW in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost 2 orders of magnitude lower than the state-of-the-art value. This suggests an application of our frequency doubler as a source of nonclassical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering-gallery-mode resonator provides the relative conversion efficiencies for frequency doubling in various modes.

  16. Intensity Ratio of Resonant Raman Modes for (n , m) Enriched Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Piao, Yanmei; Simpson, Jeffrey; Streit, Jason; Ao, Geyou; Fagan, Jeffrey; Hight Walker, Angela

    Relative intensities of resonant Raman spectral features, specifically the radial breathing mode (RBM) and G modes, of eleven, chirality-enriched, single-wall carbon nanotube (SWCNT) species were established under second-order optical transition excitation. The results demonstrate a significantly under-recognized complexity in the evaluation of Raman spectra for the assignment of (n , m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of the RBM to G modes and can result in misleading interpretations. Furthermore, we report five additional values for chirality dependent G+ and G- Raman peak positions and intensities, supporting accuracy in literature values, and extending the available data to cover more of the small diameter regime by including the first (5,4) second-order, resonance Raman spectra. Together, the Raman spectral library is demonstrated to be sufficient for decoupling multiple species via a spectral fitting process, and enable fundamental characterization even in mixed chiral population samples.

  17. Internal Mode Structure of Resonant Field Amplification in DIII-D

    NASA Astrophysics Data System (ADS)

    Lanctot, M. J.; Navratil, G.; Reimerdes, H.; Bogatu, I. N.; in, Y.; Chu, M. S.; Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.; Turnbull, A. D.; Liu, Y. Q.; Okabayashi, M.; Solomon, W. M.

    2008-11-01

    The sensitivity of high-β plasmas to error fields is caused by a paramagnetic plasma response to error fields with a topology that is resonant with the structure of weakly-damped resistive wall modes (RWM), a phenomenon referred to as resonant field amplification (RFA) [1]. The RFA has been driven in DIII-D H-mode plasmas by applying slowly-rotating, low-n magnetic fields with a set of 12 coils located inside the vacuum vessel. Measurements of the RFA mode structure have been obtained using a pair of soft x-ray photodiode cameras. A virtual diagnostic has been developed to compare the measurements to the eigenfunctions for the free boundary external kink and the RWM, which were calculated using the stability codes GATO and MARS-F. Details of the analysis will be presented. 6pt [1] A.H. Boozer, Phys. Rev. Lett. 86, 5059 (2001).

  18. The g-tensor of the flavin cofactor in (6-4) photolyase: a 360 GHz/12.8 T electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Schnegg, A.; Kay, C. W. M.; Schleicher, E.; Hitomi, K.; Todo, T.; Möbius, K.; Weber, S.

    2006-05-01

    The g-tensor of the neutral radical form of the flavin adenine dinucleotide cofactor FADH• of (6-4) photolyase from Xenopus laevis has been determined by very high-magnetic-field/high-microwave-frequency electron-paramagnetic resonance (EPR) performed at 360 GHz/12.8 T. Due to the high spectral resolution the anisotropy of the g-tensor could be fully resolved in the frozen-solution continuous-wave EPR spectrum. By least square fittings of spectral simulations to experimental data, the principal values of the g-tensor have been established: gX = 2.00433(5), gY = 2.00368(5), gZ = 2.00218(7). A comparison of very high-field EPR data and proton and deuteron electron-nuclear double resonance measurements yielded precise information concerning the orientation of the g-tensor with respect to the molecular frame. This data allowed a comparison to be made between the principal values of the g-tensors of the FADH• cofactors of photolyases involved in the repair of two different DNA lesions: the cyclobutane pyrimidine dimer (CPD) and the (6-4) photoproduct. It was found that gX and gZ are similar in both enzymes, whereas the gY component is slightly larger in (6-4) photolyase. This result clearly shows the sensitivity of the g-tensor to subtle differences in the protein environment experienced by the flavin.

  19. Quantum noise and mode nonorthogonality in non-Hermitian PT-symmetric optical resonators

    SciTech Connect

    Yoo, Gwangsu; Sim, H.-S.; Schomerus, Henning

    2011-12-15

    PT-symmetric optical resonators combine absorbing regions with active, amplifying regions. The latter are the source of radiation generated via spontaneous and stimulated emission, which embodies quantum noise and can result in lasing. We calculate the frequency-resolved output radiation intensity of such systems and relate it to a suitable measure of excess noise and mode nonorthogonality. The line shape differs depending on whether the emission lines are isolated (as for weakly amplifying, almost-Hermitian systems) or overlapping (as for the almost-degenerate resonances in the vicinity of exceptional points associated with spontaneous PT-symmetry breaking). The calculations are carried out in the scattering input-output formalism, and are illustrated for a quasi-one-dimensional resonator setup. In our derivations, we also consider the more general case of a resonator in which the amplifying and absorbing regions are not related by symmetry.

  20. A new resonant based measurement method for squeeze mode yield stress of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Shah, Kruti; Choi, Seung-Bok

    2014-10-01

    A new approach to measure the field-dependent yield stress of magnetorheological (MR) fluids in squeeze mode using the resonance concept is proposed. The measurement system is designed using the piezolaminated cantilever beam coupled with an electromagnetic coil based MR fluid squeezing setup. The cantilever beam is maintained at resonance using simple closed-loop electronics. The magnetic field produced by the coil changes the viscosity of MR fluids and produces an additional stiffness to the resonating cantilever beam. The shift in resonant frequency due to the change in viscosity of the MR fluid is measured, and the shift in frequency is analytically related to the yield stress. Two types of MR fluids based on sphere and plate iron particles are used to demonstrate the effectiveness of the proposed measurement system.

  1. Self-similar pulse-shape mode for femtosecond pulse propagation in medium with resonant nonlinearity

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Zakharova, Irina G.; Konar, Swapan

    2014-05-01

    We investigate the mode of laser pulse propagation in homogeneous medium with resonant nonlinearity, at which the shape of pulse is self-similar one along some distance of propagation. We take into account a laser pulse frequency detuning from resonant frequency. Both types of sign for frequency detuning are considered. This results in appearance of a refractive index grating which induced self-action of a laser pulse. I certain cases we develop analytical solution of corresponding nonlinear eigenfunction problem of laser pulse propagation in medium for multi-photon resonance. This solution is confirmed by computer simulation of an eigenfunction problem for Schrödinger equation with considered nonlinearity. Using computer simulation, one shows a validity of existence of such kind of laser pulse propagation in a medium with resonant nonlinear response.

  2. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  3. Magnetostatic spin wave modes in trilayer nanowire arrays probed using ferromagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Adeyeye, A. O.

    2016-08-01

    We investigate the spin wave modes in asymmetric trilayer [N i80F e20(10 nm ) /Cu (tCu) /N i80F e20(30 nm ) ] nanowire structures as a function of the Cu thickness (tCu) in the range from 0 to 20 nm using perpendicular ferromagnetic resonance (pFMR) spectroscopy. For tCu=0 nm , corresponding to the 40 nm thick single layer N i80F e20 nanowires, both the fundamental and first order modes are observed in the saturation region. However, for the trilayer structures, two additional modes, which are the fundamental and first order optical modes, are observed. We also found that the resonance fields of these modes are markedly sensitive to the Cu thickness due to the competing effects of interlayer exchange coupling and magnetostatic dipolar coupling. When the tCu≥10 nm , the fundamental optical mode is more pronounced. Our experimental results are in quantitative agreement with the dynamic micromagnetic simulations.

  4. Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements

    NASA Astrophysics Data System (ADS)

    Davis, Timothy; Edstrand, Adam; Alvi, Farrukh; Cattafesta, Louis; Yorita, Daisuke; Asai, Keisuke

    2015-05-01

    At given nozzle to plate spacings, the flow field of high-speed impinging jets is known to be characterized by a resonance phenomenon. Large coherent structures that convect downstream and impinge on the surface create strong acoustic waves that interact with the inherently unstable shear layer at the nozzle exit. This feedback mechanism, driven by the coherent structures in the jet shear layer, can either be axisymmetric or helical in nature. Fast-response pressure-sensitive paint (PSP) is applied to the impingement surface to map the unsteady pressure distribution associated with these resonant modes. Phase-averaged results acquired at several kHz are obtained using a flush mounted unsteady pressure transducer on the impingement plate as a reference signal. Tests are conducted on a Mach 1.5 jet at nozzle to plate spacings of . The resulting phase-averaged distribution reveals dramatically different flow fields at the corresponding impingement heights. The existence of a purely axisymmetric mode with a frequency of 6.3 kHz is identified at and is characterized by concentric rings of higher/lower pressure that propagate radially with increasing phase. Two simultaneous modes are observed at with one being a dominant symmetric mode at 7.1 kHz and the second a sub-dominant helical mode at 4.3 kHz. Complimentary phase-conditioned Schlieren images are also obtained visualizing the flow structures associated with each mode and are consistent with the PSP results.

  5. Optimal orientations of LiTaO3 for application in plate mode resonators

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2015-07-01

    Optimal cuts of LiTaO3 for application in plate mode resonators were found via rigorous numerical investigations of zero- and higher-order plate modes propagating parallel or normal to the X-axis in rotated Y-cuts of LiTaO3; the plates were tested with a periodic metal grating on top of the plate and metal electrode present or absent on the plate bottom. In some cuts, high electromechanical coupling coefficients up to 20% could be combined with low or even zero temperature coefficients of frequency (TCF). Other cuts ensured moderate coupling of 12%-14% and low TCF in addition to high velocity of a higher-order plate mode up to 20 000 m/s. Metallization of a plate bottom helped to enhance coupling of certain modes. Interaction of a plate mode with electrodes of an interdigital transducer or with periodic metal gratings used for its excitation and reflection in resonators is illustrated by examples of dispersion plots. The nature of the analyzed modes was studied via visualization of the mechanical displacements accompanying wave propagation.

  6. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  7. Analysis of light propagation in slotted resonator based systems via coupled-mode theory.

    PubMed

    Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt

    2011-04-25

    Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties. PMID:21643116

  8. Assessing the merits of resonant magnetic perturbations with different toroidal mode numbers for controlling edge localised modes

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Kirk, A.; Akers, R. J.; Ham, C. J.; Harrison, J. R.; Hawke, J.; Liu, Y. Q.; McClements, K. G.; Pamela, S.; Saarelma, S.; Scannell, R.; Thornton, A. J.; The MAST Team

    2014-12-01

    An increase in ELM frequency has been demonstrated in MAST by applying resonant magnetic perturbations (RMPs) with toroidal mode number, nRMP = 2, 3, 4, 6. It has been observed that the mitigated ELM frequency increases with the amplitude of the applied field provided it is above a critical threshold. This threshold value depends on the mode number of the RMP, with higher nRMP having a larger critical value. For the same ELM frequency, the reduction in the peak heat load on the divertor plates is approximately the same for all RMP configurations. The RMPs give rise to perturbations to the plasma shape, with lobe structures occurring due to the tangled magnetic fields near the X-point, and corrugations of the plasma boundary at the midplane. The X-point lobe length increases linearly with the applied field when above a threshold, with RMPs of higher toroidal mode number giving rise to longer lobes for the same applied resonant field. Similarly, the midplane displacements increase with the applied field strength, though the corrugation amplitude is less dependent upon the RMP configuration. For all nRMP, the RMPs result in enhanced particle transport and a reduction in the pedestal pressure gradient caused by an increased pedestal width, which is found to be consistent with a decrease in the critical pressure at which infinite-n ballooning modes are driven unstable in non-axisymmetric plasmas. The plasma rotation braking is strongest for lowest nRMP whilst the degradation of access to H-mode resultant from the application of RMPs are non-monotonic in nRMP, with the optimal case for both occurring for nRMP = 4. Whilst there are advantages and disadvantages for all RMP configurations, the configurations found to be optimised in terms of pedestal degradation, access to H-mode, plasma rotation and distortion to the plasma configuration in MAST are nRMP = 3 or 4, consistent with the configurations anticipated for use in ITER.

  9. A method of suppressing mode competition in a coaxial localized-defect Bragg resonator operating in a higher-order mode

    SciTech Connect

    Lai Yingxin; Yang Lei; Zhang Shichang

    2011-06-15

    A coaxial localized-defect Bragg resonator has potential applications in high-power CARM oscillators. When it operates at sub-terahertz and terahertz frequencies, a higher-order mode is always required so as to get enough large geometry size. Analysis shows that higher-order mode operation may cause undesired mode competition due to the localized defect coupling the operating mode with its neighboring modes. A simple but efficient method is presented to solve the mode competition problem, where Hamming windowing-function distribution is separately applied to both sides of the localized defect.

  10. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  11. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator.

    PubMed

    Sun, F; Dong, X; Zou, J; Dykman, M I; Chan, H B

    2016-01-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion. PMID:27576597

  12. Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs

    NASA Technical Reports Server (NTRS)

    Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia

    1997-01-01

    Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].

  13. Effect of functionalization and charging on resonance energy and radial breathing modes of metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Öberg, S.; Adjizian, J.-J.; Erbahar, D.; Rio, J.; Humbert, B.; Dossot, M.; Soldatov, A.; Lefrant, S.; Mevellec, J.-Y.; Briddon, P.; Rayson, M. J.; Ewels, C. P.

    2016-01-01

    While changes in resonant Raman scattering measurements are commonly used to measure the effect of chemical functionalization on single-walled carbon nanotubes, the precise effects of functionalization on these spectra have yet to be clearly identified. In this density functional theory study, we explore the effects of functionalization on both the nanotube resonance energy and frequency shifts in radial breathing mode. Charge transfer effects cause a shift in the first Van Hove singularity spacings, and hence resonance excitation energy, and lead to a decrease in the radial breathing mode frequency, notably when the Fermi level decreases. By varying stochastically the effective mass of carbon atoms in the tube, we simulate the mass effect of functionalization on breathing mode frequency. Finally, full density functional calculations are performed for different nanotubes with varying functional group distribution and concentration using fluorination and hydrogenation, allowing us to determine overall effect on radial breathing mode and charge transfer. The results concur well with experiment, and we discuss the importance when using Raman spectroscopy to interpret experimental functionalization treatments.

  14. η collective mode as A1 g Raman resonance in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Montiel, X.; Kloss, T.; Pépin, C.; Benhabib, S.; Gallais, Y.; Sacuto, A.

    2016-01-01

    We discuss the possible existence of a spin singlet excitation with charge ±2 (η mode) originating the A1 g Raman resonance in cuprate superconductors. This η mode relates the d -wave superconducting singlet pairing channel to a d -wave charge channel. We show that the η boson forms a particle-particle bound state below the 2 Δ threshold of the particle-hole continuum where Δ is the maximum d -wave gap. Within a generalized random phase approximation and Bethe-Salpeter approximation study, we find that this mode has energies similar to the resonance observed with inelastic neutron scattering below the superconducting (SC) coherent peak at 2 Δ in various SC cuprate compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2 Δ peak in the A1 g symmetry. Since the η mode sits in the S =0 channel, it may be observable via Raman, x-ray, or electron energy loss spectroscopy probes.

  15. Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime

    SciTech Connect

    Huang, Wenlong; Zhu, Ping

    2015-03-15

    We demonstrate in theory that tearing mode locking and magnetic island suppression by resonant magnetic perturbations (RMPs) can correspond to different states of a same dynamic system governed by the torque balance and the nonlinear island evolution in the Rutherford regime. In particular, mode locking corresponds to the exact steady state of this system. A new exact analytic solution has been obtained for such a steady state, which quantifies the dependence of the locked mode island width on RMP amplitude in different plasma regimes. Furthermore, two different branches of mode locking have been revealed with the new analytic solution and the branch with suppressed island width turns out to be unstable in general. On the other hand, the system also admits stable states of island suppression achieved through the RMP modulation of tearing mode rotational frequency. When the RMP amplitude is above a certain threshold, the island suppression is transient until the tearing mode eventually gets locked. When the RMP amplitude is below the mode locking threshold, the island can be suppressed in a steady state on time-average, along with transient oscillations in rotational frequency and island width due to the absence of mode locking.

  16. BICEP2/Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array

    NASA Astrophysics Data System (ADS)

    BICEP2 and Keck Array Collaborations; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Dowell, C. D.; Dvorkin, C.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Harrison, S.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hristov, V. V.; Hui, H.; Irwin, K. D.; Karkare, K. S.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Mason, P.; Megerian, K. G.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Reintsema, C. D.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Willmert, J.; Wong, C. L.; Yoon, K. W.

    2015-10-01

    The Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 250,000 μK-2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.

  17. BICEP2 / Keck Array V: Measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array

    DOE PAGESBeta

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; et al

    2015-09-29

    Here, the Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectralmore » difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 250,000 μK–2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less

  18. Modulational instability and resonant wave modes act on the metastability of oscillator chains.

    PubMed

    Gross, Torsten; Hennig, Dirk; Schimansky-Geier, Lutz

    2014-09-01

    We describe the emergence and interactions of breather modes and resonant wave modes within a two-dimensional ringlike oscillator chain in a microcanonical situation. Our analytical results identify different dynamical regimes characterized by the potential dominance of either type of mode. The chain is initially placed in a metastable state, which it can leave by passing over the brim of the applied Mexican-hat-like potential. We elucidate the influence of the different wave modes on the mean-first passage time. A central finding is that also in this complex potential landscape a fast noise-free escape scenario solely relying on nonlinear cooperative effects is accomplishable even in a low-energy setting. PMID:25314516

  19. The resonant absorption of p-modes by sunspots with twisted magnetic fields

    NASA Technical Reports Server (NTRS)

    Chitre, S. M.; Davila, Joseph M.

    1991-01-01

    A simplified inhomogeneous sunspot model with an axial current (twisted magnetic field) is considered. The absorption of incoming acoustic modes in a narrow resonance layer inside the sunspot flux tube is investigated, and the energy loss is estimated. For nonaxisymmetric modes the results are consistent with previous calculations. However, contrary to previous work, it is demonstrated that the existence of an azimuthal component of the magnetic field can lead to significant absorption of even the axisymmetric modes. If the absorption rate calculated in this paper is used in conjunction with the observed wavelength dependence of the absorption coefficient, it is found that the sunspot flux tube must have significant twist in the subsurface layers. Furthermore, the presence of twist in the magnetic field leads to a natural explanation for the observed dependence on m, the azimuthal wave mode number, and the magnitude of the absorption coefficient can be accounted for in a self-consistent way.

  20. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    SciTech Connect

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  1. Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria

    SciTech Connect

    King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; Turnbull, A. D.

    2015-12-17

    Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that these kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.

  2. Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria

    DOE PAGESBeta

    King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; et al

    2015-12-17

    Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that thesemore » kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.« less

  3. Long wave infrared tunable filter based on guided mode resonant effect

    NASA Astrophysics Data System (ADS)

    Mirotznik, Mark S.; Gupta, Neelam; McElhiney, Morgan; Carey, Victoria

    2016-05-01

    We describe here a tunable long wave infrared (LWIR) band filter based on the guided mode resonant filter (GMRF) effect. The device consists of a subwavelength dielectric grating sandwiched between planar layers of contrasting dielectric materials. Using a rigorous electromagnetic design and analysis method we demonstrate how a strong narrow band reflectance can be induced. Moreover, the resonant wavelength can be easily tuned over the entire 8-12 micron band by mechanically tilting the device with respect to the optical axis. Simulation and experimental results are presented demonstrating the effectiveness of the device.

  4. Non-resonant destabilization of (1/1) internal kink mode by suprathermal electron pressure

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Sugiyama, L.; Shiraiwa, S.; Irby, J.; Granetz, R.; Parker, R.; Baek, S. G.; Faust, I.; Wallace, G.; Gates, D. A.; Gorelenkov, N.; Mumgaard, R.; Scott, S.; Bertelli, N.; Gao, C.; Greenwald, M.; Hubbard, A.; Hughes, J.; Marmar, E.; Phillips, P. E.; Rice, J. E.; Rowan, W. L.; Wilson, R.; Wolfe, S.; Wukitch, S.

    2015-05-01

    New experimental observations are reported on the structure and dynamics of short-lived periodic (1, 1) "fishbone"-like oscillations that appear during radio frequency heating and current-drive experiments in tokamak plasmas. For the first time, measurements can directly relate changes in the high energy electrons to the mode onset, saturation, and damping. In the relatively high collisionality of Alcator C-Mod with lower hybrid current drive, the instability appears to be destabilized by the non-resonant suprathermal electron pressure—rather than by wave-particle resonance, rotates toroidally with the plasma and grows independently of the (1, 1) sawtooth crash driven by the thermal plasma pressure.

  5. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    SciTech Connect

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  6. Modes of a laser resonator with a retroreflecting corner cube mirror.

    PubMed

    Zhou, G; Alfrey, A J; Casperson, L W

    1982-05-01

    The self-consistent integral equation for the field distribution of the resonant modes in a resonator with a tilted retroreflecting corner cube mirror is solved. The corner cube acts like a convex lens with radius of curvature -L cot(2)theta in the rotation direction (L is the cavity length and theta the rotation angle) and like a flat plane in the direction of the rotation axis. The field distribution can be described in terms of Hermite-Gaussian functions, and these results have been confirmed experimentally using an Ar-ion laser. The equivalent beam matrix for a reflecting corner cube is also found. PMID:20389914

  7. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  8. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  9. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  10. Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances.

    PubMed

    Li, Ying Lia; Millen, James; Barker, P F

    2016-01-25

    We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3 pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micron-diameter taper, whereas a piezo stack is used to damp the motion of the much larger (up to 180 μm in diameter), heavier (up to 1.5 × 10(-7) kg) and stiffer microsphere-cantilever. In each feedback scheme multiple mechanical modes of each oscillator can be cooled, and mode temperatures below 10 K are reached for the dominant mode, consistent with limits determined by the measurement noise of our system. This represents stabilization on the picometer level and is the first demonstration of using WGM resonances to cool the mechanical modes of both the WGM resonator and its coupling waveguide. PMID:26832520

  11. Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes

    PubMed Central

    Mehl, James B.

    2007-01-01

    The boundary-shape formalism of Morse and Ingard is applied to the acoustic modes of a deformed spherical resonator (quasisphere) with rigid boundaries. For boundary shapes described by r = a [1 − ε ℱ(θ, ϕ)], where ε is a small scale parameter and ℱ is a function of order unity, the frequency perturbation is calculated to order ε2. The formal results apply to acoustic modes whose angular dependence is designated by the indices ℓ and m. Specific examples are worked out for the radial (ℓ = 0) and triplet (ℓ = 1) modes, for prolate and oblate spheroids, and for triaxial ellipsoids. The exact eigenvalues for the spheroids, and eigenvalue determined with finite-element calculations, are shown to agree with perturbation theory through terms of order ε2. This work is an extension of the author’s previous papers on the acoustic eigenfrequencies of deformed spherical resonators, which were limited to the second-order perturbation for radial modes [J. Acoust. Soc. Am. 71, 1109-1113 (1982)] and the first order-perturbation for arbitrary modes [J. Acoust. Soc. Am. 79, 278–285 (1986)]. PMID:27110463

  12. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  13. Defect mode suppression in a photonic crystal structure with a resonance nanocomposite layer

    SciTech Connect

    Moiseev, Sergey G; Ostatochnikov, Vladimir A; Sementsov, Dmitrii I

    2012-06-30

    This paper examines the key features of the transmission and reflection spectra of a one-dimensional photonic crystal structure in which a nanocomposite layer is sandwiched between dielectric Bragg mirrors. Two orthogonal polarisations of an incident wave correspond to different plasmon resonance frequencies of the nanocomposite. If one of the plasmon frequencies coincides with the defect mode frequency in one of the photonic bandgaps, complete suppression of the defect mode in the transmission spectrum is possible, which makes the spectra of such structures polarisation-sensitive.

  14. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.; Menyuk, Curtis R.

    2013-05-01

    We demonstrate that frequency (Kerr) comb generation in whispering-gallery-mode resonators can be modeled by a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatiotemporal model allows us to explore pulse formation in which a large number of modes interact cooperatively. Pulse formation is shown to play a critical role in comb generation, and we find conditions under which single pulses (dissipative solitons) and multiple pulses (rolls) form. We show that a broadband comb is the spectral signature of a dissipative soliton, and we also show that these solitons can be obtained by using a weak anomalous dispersion and subcritical pumping.

  15. Temporal coupled-mode theory model for resonant near-field thermophotovoltaics

    SciTech Connect

    Karalis, Aristeidis; Joannopoulos, J. D.

    2015-10-05

    A temporal Coupled-Mode Theory model is developed to predict performance of resonant near-field ThermoPhotoVoltaic systems, which typically requires numerically intensive calculations. It is formulated for both orthogonal and non-orthogonal (coupled) modes and includes load-voltage dependencies and non-idealities, such as background absorption and radiation losses. Its good accuracy is confirmed by comparing with exact transfer-matrix calculations for two simple planar systems: a plasmonic emitter across a bulk semiconductor absorber and a metal-backed thin-film semiconductor emitter across an identical absorber.

  16. Tunable resonance transmission modes in hybrid heterostructures based on porous silicon

    PubMed Central

    2012-01-01

    In this work, we report the experimental results and theoretical analysis of strong localization of resonance transmission modes generated by hybrid periodic/quasiperiodic heterostructures (HHs) based on porous silicon. The HHs are formed by stacking a quasiperiodic Fibonacci (FN) substructure between two distributed Bragg reflectors (DBRs). FN substructure defines the number of strong localized modes that can be tunable at any given wavelength and be unfolded when a partial periodicity condition is imposed. These structures show interesting properties for biomaterials research, biosensor applications and basic studies of adsorption of organic molecules. We also demonstrate the sensitivity of HHs to material infiltration. PMID:22793498

  17. Coupling of two counterpropagating modes in nonlinear split-ring resonators' chain

    NASA Astrophysics Data System (ADS)

    Cui, Wei-na; Lu, Wen; Li, Hong-xia; Sun, Min; Zhu, Yong-yuan

    2016-05-01

    The two coupled counterpropagating nonlinear magnetoinductive wave modes are analyzed theoretically in split ring resonator chain with Kerr nonlinear interaction. Starting from a general nonlinear lattice equation based on a quasi-discreteness approach we derive two coupled nonlinear Schrödinger equations governing the evolution of the slowly varying envelopes of these modes. It is shown that this system supports backward- and forward-propagating vector solitons of the bright-bright and dark-dark type through a cross-phase modulation.

  18. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  19. Ray-mode analysis of complex resonances of an open cavity

    NASA Astrophysics Data System (ADS)

    Heyman, Ehud; Friedlander, Gershon; Felsen, Leopold B.

    1989-05-01

    An important class of targets involves open-ended enclosures with exterior-interior coupling. If the interior has waveguide-like properties, modal expansions can model the wave phenomena there, while ray methods can be utilized to account for multiple diffraction at the aperture edges, and for wave interactions aound the exterior boundary. By self-consistent ray-mode coupling in a hybrid format, it is possible to construct a global resonance equation whose solutions yield the complex resonant frequencies for the composite object. The conglomerate of these full resonances can be better understood by consideration of more easily determined partial resonances, which account for the dominant wave interactions in various frequency intervals. Such partial resonances can be generated by ignoring intermode coupling, external low-Q interactions, etc. These concepts are illustrated here on the prototype configuration of a finite-length plane parallel perfectly conducting waveguide, which is open at one end and terminated at the other. Emphasis is on the lower-order resonances where wavelengths are comparable to critical target dimensions.

  20. Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors

    NASA Astrophysics Data System (ADS)

    Long, Yongbing; Li, Yuanxing; Shen, Liang; Liang, Wenyue; Deng, Haidong; Xu, Haitao

    2016-08-01

    Dually guided-mode-resonant graphene perfect absorbers are numerically proposed by placing graphene grips on dielectric subwavelength grating that is backed by one-dimensional photonic crystals (1DPCs). By optimizing parameters of the grating, perfect absorption with a narrow bandwith of 1.1 nm is achieved at a wavelength of 632.8 nm. The perfect absorption is attributed to the dual excitation of the guided-mode resonance of both the grating and the 1DPCs. When this type of absorber is used in refractive index sensors, the figure of merit reaches as high as 124, a value much higher than that of the sensors based on metal perfect absorbers. In addition, it is observed that a slight change of the refractive index in the surrounding environment causes large intensity variation of reflection at a fixed wavelength; accordingly, high index sensitivity is achieved for the sensors.

  1. Analysis of modes in an unstable strip laser resonator. Master's thesis

    SciTech Connect

    Rowley, J.E.

    1980-12-01

    The mode eigenvalue equation for an unstable strip laser resonator is developed from scalar diffraction theory. The field distributions are expressed as a series and the integral is then evaluated using a first order approximation to the method of stationary phase. The resulting approximate closed form is rearranged to form an eingenvalue polynomial, the roots of which are the mode eigenvalues. Eigenfunction expressions are then developed using second order approximation to the method of stationary phase. Modifications to these expressions are then made to account for the presence of uniform gain in the resonator. The results of a computer program using the derived expressions are presented. Comparisons to previously published results are made for the bare cavity case, and results for the loaded cavity case follow.

  2. A Polarization Control System for Intensity-Resolved Guided Mode Resonance Sensors

    PubMed Central

    Lin, Sheng-Fu; Chang, Fu-Chen; Chen, Zhi-Heng; Wang, Chih-Ming; Yang, Tsung-Hsun; Chen, Wen-Yih; Chang, Jenq-Yang

    2014-01-01

    In this study, a polarization-control setup for intensity-resolved guided mode resonance sensors is proposed and demonstrated experimentally. The experimental results are in good agreement with the simulation data based on rigorous coupled wave approach calculations. The proposed intensity-resolved measurement setup transfers polarization ellipses, which are produced from guided mode resonance to a linear polarization state under a buffer solution condition, and then suppresses the signals to dark using a polarization-control set. Hence, any changes in the refractive index results in an increase in the intensity signals. Furthermore, no wavelength-resolved or angular-resolved measurement is needed in this scheme. According to the experimental results, a wide linear detection range of 0.014 refractive index units is achieved and the limit of detection is 1.62E-4 RIU. PMID:24625743

  3. Resonant oscillation modes of sympathetically cooled ions in a radio-frequency trap

    SciTech Connect

    Hasegawa, Taro; Shimizu, Tadao

    2002-12-01

    Sympathetic cooling of Ca{sup +}, Zn{sup +}, Sr{sup +}, Ba{sup +}, and Yb{sup +} as guest ions with laser-cooled {sup 24}Mg{sup +} as host ions in a rf ion trap is carried out, and resonant frequencies of their motion in the trap potential are measured. Various oscillation modes of the sympathetically cooled ions are observed. The resonant frequency of the oscillation mode is different from the frequency of either the collective oscillation frequency of the trapped ions or the oscillation frequency of each ion without host ions. This difference is well explained by a theoretical model in which coupled equations of motion of the host ion cloud with a single guest ion are considered.

  4. High gain selective amplification in whispering gallery mode resonators: analysis by cavity ring down method

    NASA Astrophysics Data System (ADS)

    Féron, P.; Rasoloniaina, A.; Huet, V.; Le Cren, E.; Trebaol, S.; Nunzi Conti, G.; Serier-Brault, H.; Mortier, M.; Dumeige, Y.

    2013-03-01

    We study both theoretically and experimentally the dispersive properties of single whispering gallery mode resonators. We present a simple experimental protocol which allows us to obtain in detail its coupling regime and thus their dispersive properties. We demonstrate a compact optical amplifier with a gain up to 20dB in an Erbium doped fluoride microsphere of 135μm in diameter coupled via a tapered fiber. The model is also applied to analyze the dynamic behavior of the modal coupling between two degenerate resonances of the same cavity. In particular, this can be used to describe the coupling of counterpropagating whispering gallery modes (WGM) by Rayleigh scattering. The theory is successfully compared to experiments carried out in silica microspheres

  5. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    SciTech Connect

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  6. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    SciTech Connect

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.

  7. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-11-01

    In this study, we examined the plasmon response for both metallic and metallodielectric nanoantennas composed of four gold (Au) triangles in a quadrumer orientation. Tailoring an artificial metallic quad-triangles nanoantenna, it is shown that the structure is able to support pronounced plasmon and Fano resonances in the visible spectrum. Using plasmon transmutation effect, we showed that the plasmonic response of the proposed cluster can be enhanced with the placement of carbon nanoparticles in the offset gaps between the proximal triangles. It is verified that this structural modification gives rise to formation of new collective magnetic antibonding (dark) plasmon modes. Excitation of these subradiant dark modes leads to formation of narrower and deeper Fano resonances in the spectral response of the metallodielectric nanoantenna. To investigate the practical applications of the metallodielectric structure, we immersed the nano-assembly in various liquids with different refractive indices to define its sensitivity to the environmental perturbation as a plasmonic biological sensor.

  8. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  9. Coupling n-level Atoms with l-modes of Quantised Light in a Resonator

    NASA Astrophysics Data System (ADS)

    Castaños, O.; Cordero, S.; Nahmad-Achar, E.; López-Peña, R.

    2016-03-01

    We study the quantum phase transitions associated to the Hamiltonian of a system of n-level atoms interacting with l modes of electromagnetic radiation in a resonator. The quantum phase diagrams are determined in analytic form by means of a variational procedure where the test function is constructed in terms of a tensorial product of coherent states describing the matter and the radiation field. We demonstrate that the system can be reduced to a set of Dicke models.

  10. Transverse-mode astigmatism in a diode-pumped unstable resonator Nd:YVO(4) laser.

    PubMed

    Cheng, Y J; Fanning, C G; Siegman, A E

    1997-02-20

    We have observed a sizable astigmatism in the output beam from a diode-pumped unstable resonator Nd:YVO(4) laser operating in a single polarization and a single-longitudinal and transverse mode. The anisotropic index of refraction of the vanadate crystal has been identified as the source of this astigmatism. A theoretical prediction of the eigenmode astigmatism based on this index anisotropy is consistent with our experimental measurements. PMID:18250780

  11. Silica hollow bottle resonators for use as whispering gallery mode based chemical sensors

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan-Ionut; Bui, Khoa V.; Rosenberger, A. T.

    2015-12-01

    A simple three-step method for making silica hollow bottle resonators (HBRs) was developed. This procedure is advantageous because it uses commercially available materials, is cost effective, and is easy to implement. Additionally, the use of these HBRs as whispering gallery mode based chemical sensors is demonstrated by preliminary absorption sensing results in the near infrared (1580-1660 nm) using a trace gas (CH4) in air at atmospheric pressure and a dye (SDA2072) in methanol solution.

  12. Experimental study of a megawatt 200--300 GHz gyrotron oscillator

    SciTech Connect

    Grimm, T.L.; Kreischer, K.E.; Temkin, R.J. )

    1993-11-01

    A detailed experimental study is presented of a pulsed megawatt gyrotron oscillator operating in the 200--300 GHz range, whose design is consistent with continuous operation for electron cyclotron resonance heating (ECRH) of fusion plasmas. Two different radii beams produced by magnetron injection guns (MIG's) were used to excite the cylindrical waveguide cavity. The emission was found experimentally to be single mode, single frequency with a single rotation, which can be mode converted for transmission. The highest power reached with the larger radius electron beam was 1.2 MW at 230 GHz in the TE[sub 34,6] mode with an efficiency of 20% and beam parameters of 59 A and 100 kV. The highest power reached with the smaller radius electron beam was 0.78 MW at 280 GHz in the TE[sub 25,13] mode with an efficiency of 17% and beam parameters of 51 A and 92 kV. The smaller radius beam gave a peak efficiency of 18% at 0.72 MW, 290 GHz in the TE[sub 25,14] mode. Efficiencies obtained in this experiment are about half that of less highly overmoded gyrotrons. Analysis of the experiment suggests that the low efficiency is primarily caused by azimuthal mode competition, in agreement with multimode theory for a tapered cavity. These experimental results show that megawatt power levels can be generated in continuous wave (cw) gyrotron oscillators at 200--300 GHz with efficiencies approaching 20%.

  13. Stability of particle propulsion by waveguide modes in the regimes where resonant states are formed

    NASA Astrophysics Data System (ADS)

    Maslov, A. V.

    2015-09-01

    Optical forces acting on dielectric particles inside waveguides are studied. The investigation is carried out within the framework of the two-dimensional model: a cylinder inside a parallel-plate waveguide with perfect metal walls. It is shown that although the appearance of resonant states can lead to a significant increase of backscattering and, therefore, the propelling force, the transverse force can either keep the particle in the location of the efficient propulsion or push it away. The propulsion and trapping regimes are related to the change of the resonant wavelength with particle location. Besides the geometrical and material parameters, the polarization of the incident mode is shown to significantly affect the particle dynamics. The relation of the resonant-state formation and Wood's anomalies in periodic gratings is also discussed.

  14. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    NASA Astrophysics Data System (ADS)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  15. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor.

    PubMed

    Lin, Guoping; Diallo, Souleymane; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2014-10-15

    We demonstrate a monolithic optical whispering-gallery-mode resonator fabricated with barium fluoride (BaF₂) with an ultra-high quality (Q) factor above 10⁹ at 1550 nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of 2 nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion Q-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of 3. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high-energy particle scintillation detection utilizing monolithic BaF₂ resonators potentially becomes feasible. PMID:25361142

  16. Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals.

    PubMed

    Asoubar, Daniel; Zhang, Site; Wyrowski, Frank

    2015-06-01

    Birefringence effects can have a significant influence on the polarization state as well as on the transversal mode structure of laser resonators. This work introduces a flexible, fast and fully vectorial algorithm for the analysis of resonators containing homogeneous, anisotropic optical components. It is based on a generalization of the Fox and Li algorithm by field tracing, enabling the calculation of the dominant transversal resonator eigenmode. For the simulation of light propagation through the anisotropic media, a fast Fourier Transformation (FFT) based angular spectrum of plane waves approach is introduced. Besides birefringence effects, this technique includes intra-crystal diffraction and interface refraction at crystal surfaces. The combination with numerically efficient eigenvalue solvers, namely vector extrapolation methods, ensures the fast convergence of the method. Furthermore a numerical example is presented which is in good agreement to experimental measurements. PMID:26072756

  17. Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators.

    PubMed

    Liu, Xiao-Fei; Lei, Fuchuan; Gao, Ming; Yang, Xu; Wang, Chuan; Özdemir, Şahin Kaya; Yang, Lan; Long, Gui-Lu

    2016-05-01

    Precise control of resonance features in microcavities is of significant importance both for researches and applications. By exploiting gain provided by the doped rare earth ions or Raman gain, this can be achieved through changing the pump. Here we propose and experimentally show that by using gain competition, one can also control the evolution of resonance for the probe signal while the pump is kept unchanged. The transition of Lorentz peak, Fano-like resonance and Lorentz dip can be observed from the transmission spectra of the probe signal through tuning the auxiliary control signal. The theory based on coupled-mode theory and laser rate equations by setting the optical gains as time-dependent was constructed. This method can be used in the precise control of transmission spectra and the coupling regime between the waveguide and microcavities. PMID:27137568

  18. Nonlinear mode coupling and internal resonances in MoS{sub 2} nanoelectromechanical system

    SciTech Connect

    Samanta, C.; Yasasvi Gangavarapu, P. R.; Naik, A. K.

    2015-10-26

    Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS{sub 2} for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS{sub 2} resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances.

  19. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    PubMed Central

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  20. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields.

    PubMed

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  1. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  2. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  3. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  4. Microring resonator composed of vertical slot waveguides with minimum polarization mode dispersion over a wide spectral range.

    PubMed

    Fu, Po-Han; Chiang, Tsung-Yu; Cheng, Nai-Chia; Ma, Yao-Feng; Huang, Ding-Wei

    2016-05-01

    This paper proposes the design of a vertical slot waveguide-based optical ring resonator on a silicon photonic platform with minimized polarization mode dispersion (PMD) in the presence of waveguide dispersion over a wide band. Slot waveguides provide more degrees of freedom in the design, thereby achieving the minimum PMD over the communication wavelengths. The minimum PMD leads to nearly identical accumulated phase in the optical ring resonator for quasi-TE and TM modes, and thus the resonant wavelength mismatch between the quasi-TE and TM modes can be minimized from 1510 to 1590 nm. PMID:27140380

  5. Studying Kittel-like modes in a 3D YIG disk using Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fani Sani, Fatemeh; Losby, Joseph; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    We report a study of ferrimagnetic resonance in a mesoscopic, single-crystalline YIG disk using torque-mixing magnetic resonance spectroscopy (TMRS). The Kittel model for magnetic resonance is a touchstone in measuring fundamental magnetic properties for magnetic films, which does not significantly depend on the film size. In 3D structures, ladders of confined resonance modes are observed, and these can exhibit the non-monotonic evolution of frequency with field familiar from Kittel modes. TMRS is a tool uniquely suited for observing this physics in individual 3D structures, on account of its combination of high sensitivity and broadband capability coupled with fine frequency resolution.

  6. Plasmonic mode interferences and Fano resonances in Metal-Insulator- Metal nanostructured interface

    PubMed Central

    Nicolas, Rana; Lévêque, Gaëtan; Marae-Djouda, Joseph; Montay, Guillame; Madi, Yazid; Plain, Jérôme; Herro, Ziad; Kazan, Michel; Adam, Pierre-Michel; Maurer, Thomas

    2015-01-01

    Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range. PMID:26399425

  7. Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface.

    PubMed

    Nicolas, Rana; Lévêque, Gaëtan; Marae-Djouda, Joseph; Montay, Guillame; Madi, Yazid; Plain, Jérôme; Herro, Ziad; Kazan, Michel; Adam, Pierre-Michel; Maurer, Thomas

    2015-01-01

    Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range. PMID:26399425

  8. Plasmonic mode interferences and Fano resonances in Metal-Insulator- Metal nanostructured interface

    NASA Astrophysics Data System (ADS)

    Nicolas, Rana; Lévêque, Gaëtan; Marae-Djouda, Joseph; Montay, Guillame; Madi, Yazid; Plain, Jérôme; Herro, Ziad; Kazan, Michel; Adam, Pierre-Michel; Maurer, Thomas

    2015-09-01

    Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range.

  9. Effect of guided resonance modes on emission from GaN core-shell nanorod arrays

    NASA Astrophysics Data System (ADS)

    Anderson, P. Duke; Lin, Chenxi; Povinelli, Michelle L.

    2014-12-01

    We model the process of incoherent emission from quantum wells in GaN core-shell nanorod arrays using finite-difference time-domain simulations. We find that high-intensity features in the emitted field correspond to guided resonance modes near the -point of the photonic band structure. We identify one -point mode whose electric field intensity profile is ideal for core-shell nanorod array geometries. Using this mode, we are able to simultaneously enhance the radiative recombination rate and extraction efficiency relative to an in-filled slab. We determine the conditions on radiative and nonradiative recombination rates for which the nanorod array has a higher internal and external quantum efficiency than a reference slab. We present one nanorod array geometry where the external quantum efficiency is enhanced up to a factor of 25.

  10. Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy

    PubMed Central

    Cai, Wei; Yao, Nan

    2016-01-01

    Understanding the mechanism of charge generation, distribution, and transfer between surfaces is very important for energy harvesting applications based on triboelectric effect. Here, we demonstrate dynamic nanotriboelectrification with torsional resonance (TR) mode atomic force microscopy (AFM). Experiments on rubbing the sample surface using TR mode for the generation of triboelectric charges and in-situ characterization of the charge distribution using scanning Kelvin probe microcopy (SKPM) were performed. This method allows the tip to perform lateral oscillation and maintains the tip-sample interaction in the attractive region to ensure high efficiency of the charge generation during the rubbing process. The measured efficiency of generating triboelectric charges can achieve ~10.53 times higher than conventional static/contact mode in the triboelectrification experiments. In addition to the charge generation, local discharging experiments were also performed. This work would provide a new method to generate patterned charges and also be helpful in understanding the mechanism of nanotriboelectrification. PMID:27302624

  11. Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy.

    PubMed

    Cai, Wei; Yao, Nan

    2016-01-01

    Understanding the mechanism of charge generation, distribution, and transfer between surfaces is very important for energy harvesting applications based on triboelectric effect. Here, we demonstrate dynamic nanotriboelectrification with torsional resonance (TR) mode atomic force microscopy (AFM). Experiments on rubbing the sample surface using TR mode for the generation of triboelectric charges and in-situ characterization of the charge distribution using scanning Kelvin probe microcopy (SKPM) were performed. This method allows the tip to perform lateral oscillation and maintains the tip-sample interaction in the attractive region to ensure high efficiency of the charge generation during the rubbing process. The measured efficiency of generating triboelectric charges can achieve ~10.53 times higher than conventional static/contact mode in the triboelectrification experiments. In addition to the charge generation, local discharging experiments were also performed. This work would provide a new method to generate patterned charges and also be helpful in understanding the mechanism of nanotriboelectrification. PMID:27302624

  12. Direct imaging of radio-frequency modes via traveling wave magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tonyushkin, A.; Deelchand, D. K.; Van de Moortele, P.-F.; Adriany, G.; Kiruluta, A.

    2016-01-01

    We demonstrate an experimental method for direct 2D and 3D imaging of magnetic radio-frequency (rf) field distribution in metal-dielectric structures based on traveling wave (TW) magnetic resonance imaging (MRI) at ultra-high field (>7 T). The typical apparatus would include an ultra-high field whole body or small bore MRI scanner, waveguide elements filled with MRI active dielectrics with predefined electric and magnetic properties, and TW rf transmit-receive probes. We validated the technique by obtaining TW MR images of the magnetic field distribution of the rf modes of circular waveguide filled with deionized water in a 16.4 T small-bore MRI scanner and compared the MR images with numerical simulations. Our MRI technique opens up a practical non-perturbed way of imaging of previously inaccessible rf field distribution of modes inside various shapes metal waveguides with inserted dielectric objects, including waveguide mode converters and transformers.

  13. Effect of prism index on sensitivity of lossy mode resonance sensors operating in visible region

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Sharma, Vinod K.; Kapoor, Avinashi

    2015-01-01

    We present the theoretical results of the optimization of lossy mode resonance sensors at visible wavelengths. Both angular and spectral interrogations are carried out for absorbing indium tin oxide (ITO) films placed on glass prism. The inclusion of a low-index layer between the prism and the lossy (ITO) layer can produce an efficient refractive index sensor for bio/chemical applications. Further increase in sensitivity can be achieved by changing the index of the prism. It is shown that the sensitivity has strong dependence on the index of prism. Sensitivities as high as 4670 nm/RIU for spectral mode and 67 deg/RIU for angular mode with small values of full width at half maximum (FWHM) can be achieved. Dependence of sensitivity and FWHM on refractive index and thickness of low-index matching layer is also investigated.

  14. Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Yao, Nan

    2016-06-01

    Understanding the mechanism of charge generation, distribution, and transfer between surfaces is very important for energy harvesting applications based on triboelectric effect. Here, we demonstrate dynamic nanotriboelectrification with torsional resonance (TR) mode atomic force microscopy (AFM). Experiments on rubbing the sample surface using TR mode for the generation of triboelectric charges and in-situ characterization of the charge distribution using scanning Kelvin probe microcopy (SKPM) were performed. This method allows the tip to perform lateral oscillation and maintains the tip-sample interaction in the attractive region to ensure high efficiency of the charge generation during the rubbing process. The measured efficiency of generating triboelectric charges can achieve ~10.53 times higher than conventional static/contact mode in the triboelectrification experiments. In addition to the charge generation, local discharging experiments were also performed. This work would provide a new method to generate patterned charges and also be helpful in understanding the mechanism of nanotriboelectrification.

  15. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  16. The dependence of acoustic properties of a crack on the resonance mode and geometry

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2001-01-01

    We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.

  17. Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX

    SciTech Connect

    Fu, Guoyong

    2013-07-16

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSX plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level.

  18. The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.

    2014-12-01

    Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.

  19. Fano resonance through Higgs bound states in tunneling of Nambu-Goldstone modes

    NASA Astrophysics Data System (ADS)

    Nakayama, Takeru; Danshita, Ippei; Nikuni, Tetsuro; Tsuchiya, Shunji

    2015-10-01

    We study collective modes of superfluid Bose gases in optical lattices combined with potential barriers. We assume that the system is in the vicinity of the quantum phase transition to a Mott insulator at a commensurate filling, where emergent particle-hole symmetry gives rise to two types of collective mode, namely a gapless Nambu-Goldstone (NG) phase mode and a gapful Higgs amplitude mode. We consider two kinds of potential barrier: One does not break the particle-hole symmetry while the other does. In the presence of the former barrier, we find Higgs bound states that have binding energies lower than the bulk Higgs gap and are localized around the barrier. We analyze tunneling properties of the NG mode incident to both barriers to show that the latter barrier couples the Higgs bound states with the NG mode, leading to Fano resonance mediated by the bound states. Thanks to the universality of the underlying field theory, it is expected that Higgs bound states may be present also in other condensed-matter systems with a particle-hole symmetry and spontaneous breaking of a continuous symmetry, such as quantum dimer antiferromagnets, superconductors, and charge-density-wave materials.

  20. High-power operation of a 170 GHz megawatt gyrotron

    SciTech Connect

    Kreischer, K.E.; Kimura, T.; Danly, B.G.; Temkin, R.J.

    1997-05-01

    Recent gyrotron oscillator experiments have achieved record powers at 170 GHz. Single mode emission with a peak output power of 1.5 MW and an efficiency of 35{percent} has been measured. The experiment is based on a resonant TE{sub 28,8,1} cylindrical cavity situated in a 6.7 T magnetic field. Microwaves are generated in the cavity by an 83 kV annular electron beam produced by a triode-type magnetron injection gun that is capable of currents up to 50 A. Megawatt power levels with efficiencies between 30{percent}{endash}36{percent} have been measured over a wide range of operating parameters for the TE{sub 28,8,1} mode. Similar results were also achieved in the neighboring TE{sub 27,8,1} mode at 166.6 GHz, and the TE{sub 29,8,1} mode at 173.5 GHz. The high output power is the result of a carefully designed electron gun with low perpendicular velocity spread (6{percent}{endash}10{percent}) and a novel cavity with an output iris that is less prone to mode competition. These results are in good agreement with nonlinear multimode simulations. {copyright} {ital 1997 American Institute of Physics.}

  1. Fission mode fluctuations in the resonances of 235U(n,f)

    NASA Astrophysics Data System (ADS)

    Hambsch, F. J.; Knitter, H. H.; Budtz-Jørgensen, C.; Theobald, J. P.

    1989-01-01

    Fission fragment mass- and total kinetic energy distributions were measured for single, isolated resonances and neutron energy bins covering the incident neutron energy range from 0.006 eV to 130 eV. The measurements were performed at the Geel Electron Linear Accelerator (GELINA) of the European Communities using a Frisch-gridded ionization chamber. Fluctuations of the fission fragment mass distributions as function of resonance energy were observed, which are correlated with fluctuations of the reaction Q-value and with the measured total kinetic energy averaged over all fragments. In the resonance region the fluctuations in from resonance to resonance are observed with amplitudes up to about 450 keV. The correlations between the mass-distribution fluctuations and other parameters like spin J, spin orientation quantum number K, angular distribution fluctuations and the fluctuations of the average number of neutrons emitted in fission, overlinev, are evaluated and discussed. An interpretation of the overlinev- fluctuations observed in other experiments is given in terms of the mass distribution fluctuations. The fluctuations of the mass-distribution parameters and of the total kinetic energy distributions as function of mass are viewed in the frame of the fission channel model of Bohr and Wheeler and of the recent multi-fission mode random neck-rupture model of Brosa, Grossmann and Müller.

  2. Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

    PubMed Central

    Wildgen, Sarah M.; Dunn, Robert C.

    2015-01-01

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835

  3. Multi-parameter sensing with a single magnetoelastic sensor by applying loads on the null locations of multiple resonant modes

    NASA Astrophysics Data System (ADS)

    DeRouin, Andrew; Ghee Ong, Keat

    2016-03-01

    Magnetoelastic sensors are mass sensitive sensors commonly used for stress and pressure measurement, as well as chemical and biological monitoring when combined with a functionalized coating. Magnetoelastic sensors are typically made of free-standing, rectangular strips of magnetoelastic materials that exhibit longitudinal, extensional vibrations due to the excitation of magnetic fields. A single magnetoelastic sensor is generally used to monitor one parameter since only the fundamental resonant frequency is measured. Multiple-parameter sensing in close proximity has previously been achieved by using multiple magnetoelastic sensors of different dimensions and tracking their resonant frequencies independently. However, this requires a large surface area and inconvenient layout of dissimilarly shaped sensors. This paper presents a technique for monitoring multiple parameters with a single magnetoelastic sensor by applying separate mass loads at the null points (points of zero vibration) of multiple resonant modes. Applying a load at a null location does not affect the corresponding resonant mode but alters the resonant frequencies of other modes. Therefore, by isolating the variables of interest to multiple null points and simultaneously measuring the resonant frequency shifts of related resonant modes, the masses at each null location can be calculated. Results showed that changing the coverage at a null location along the width of the sensor can be used to minimize the loading effect on the corresponding resonant mode. In contrast, changing the lengthwise coverage can maximize the loading effect on other resonant modes, thus increasing the mass sensitivity of the sensor. Furthermore, simultaneously applying loads to null points of multiple resonant modes had a nearly additive effect, allowing detection of multiple parameters with a single magnetoelastic sensor.

  4. Size and dielectric-environment dependence of transversal resonance modes of localized surface plasmons in silver nanorods.

    PubMed

    Yu, Jie; Zhang, Junxi; Zhang, Lide; Jia, Junhui; Xu, Wei; Wang, Junfeng; Fei, Guangtao

    2016-06-20

    Tuning transversal resonance modes of localized surface plasmons (LSPs) by the size and the ambient dielectric medium of Ag nanorods is presented. It is found that the resonance wavelength and intensity of the transversal modes of LSPs are closely related to the dimensions of the Ag nanorods embedded in anodic aluminum oxide membranes. The transversal resonance peak exhibits obvious redshifts from 365 to 396 nm with increasing nanorod diameter from 40 to 80 nm, and the resonance intensity remarkably enhances with increasing nanorod diameter. In addition, it is observed that the transversal resonance modes of LSPs in Ag nanorods are strongly sensitive to their surrounding dielectric medium such as water, ethanol, and cetyltrimethylammonium bromide, and the transversal resonance peak distinctly redshifts from 422 to 467 nm when the refractive index of the dielectric medium increases from 1.342 to 1.435. As a result, a refractive index sensitivity of up to 484 nm/RIU can be achieved based on the transversal resonance modes. The transverse resonance modes of LSPs in the Ag nanorods can be used for sensitive quantification of chemical and biological species. PMID:27409112

  5. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    PubMed

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field. PMID:25918549

  6. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. I. Effective mode number profile and resonant frequency tracking

    NASA Astrophysics Data System (ADS)

    Bierwage, Andreas; Shinohara, Kouji

    2016-04-01

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150-400 keV range are studied numerically in a JT-60U tokamak scenario with realistic geometry, large magnetic drifts, and strong beam drive. For this purpose, the recently developed orbit-based resonance analysis (ORA) method for circulating particles is extended, so that it can be applied to the nonlinear regime, where the spectrum of orbit-based poloidal mode numbers m orb varies in time as the fast ions undergo wave-particle trapping and radial transport. In particular, the extended ORA method captures the effect of nonlinear overlaps between resonances associated with neighboring harmonics ( m orb , n ) and ( m orb + 1 , n ) that cause long-distance ballistic transport. Two cases with low toroidal mode numbers n ≳ 1 are studied: an n = 1 mode without resonance overlap and a strongly driven n = 3 mode with resonance overlap. For both cases, an effective radial profile of the resonant poloidal mode number m res = M eff ( r ) is computed and used to track the effective resonant frequency ω res ( t ) of individual particles during their radial motion r(t). In Paper II, this frequency tracking technique will be applied to study the nonlinear frequency chirping and convective amplification of the modes.

  7. 2-Chloro- and 2-bromo-3-pyridinecarboxaldehydes: Structures, rotamers, fermi resonance and vibration modes

    NASA Astrophysics Data System (ADS)

    Yenagi, Jayashree; Shettar, Anita; Tonannavar, J.

    2011-09-01

    FT-Infrared (4000-400 cm -1) and NIR-FT-Raman (4000-50 cm -1) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON- trans and ON- cis: the ON- trans rotamer being more stable than cis by 3.42 kcal mol -1 for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol -1 for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON- trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm -1; the characteristic ring mode at 1051 cm -1 is diminished; a mixed mode near 707 cm -1 is enhanced. Further, an observed doublet near 1696-1666 cm -1 in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm -1 and a combination mode of ring stretch near 1059 cm -1 and deformation vibration, 625 cm -1. A strong Raman aldehydic torsional mode at 62 cm -1 is interpreted to correspond to the dominant ON- trans over cis rotamers population.

  8. Fusion of entangled coherent W and GHZ states in cavity QED

    NASA Astrophysics Data System (ADS)

    Zang, Xue-Ping; Yang, Ming; Song, Wei; Cao, Zhuo-Liang

    2016-07-01

    Efficient preparation of W and GHZ states encoded in various degrees of freedom of quantum particles is vital in quantum information science. So far, most of the studies have focused on polarization encoded photonic W and GHZ states. In this paper, we focus on W- and GHZ-class entangled coherent states, and propose schemes to fuse small W- and GHZ-entangled coherent states into larger ones. Based on successive detuned interactions between optical modes and an ancilla atom, an (N + M - 2)-mode entangled coherent W state can be probabilistically prepared from an N-mode and an M-mode entangled coherent W states. This fusion scheme applies to entangled coherent GHZ states too, and it can succeed in a deterministic way. The ancilla atom only interacts with a single optical mode, which avoids the problem of synchronizing many atoms in the previous cavity QED based fusion schemes. The detuning property of the interaction makes the current fusion scheme more feasible that the ones based on resonant atom-light interactions. In addition, the two levels of the ancilla atom for encoding quantum information are two degenerate ground states, and the excited state is adiabatically eliminated during the fusion process, so the atomic decay from excited states does not affect the quality of the fusion process.

  9. Coupling of radiation into thin film modes by means of localized plasma resonances

    NASA Technical Reports Server (NTRS)

    Holland, W. R.; Hall, D. G.

    1983-01-01

    The interaction between the surface plasmon mode that propagates at a metal dielectric interface and the localized plasma resonances (LPR) is investigated experimentally in Ag-island films. A stair-stepped sample geometry comprising a glass substrate, a continuous 50-nm Ag film, an LiF spacer film of thickness d = 5-60 nm, and an Ag-island film of mass thickness 3 nm is used in near-normal-reflectivity and plasmon-propagation-constant (k) determinations. The results are presented graphically and discussed. The overall shape of the reflectivity curves is found to be characteristic of Ag films, but with a dip at about 400 nm (corresponding to the absorption resonance of the island film) which is most pronounced with d = 25 nm. It is inferred that the island resonances are strongly coupled to a continuous-film dissipative mechanism at this d value. This inference is supported by the fact that the variation in k, correctd for LiF effects and plotted as a function of d, is greatest at around d = 25 nm. The implications of this finding for broad-band coupling into a thin-film mode, LPR enhancement of waveguide nonlinear effects, and new surface-enhanced-Raman-scattering geometries are indicated.

  10. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    SciTech Connect

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  11. Resonantly pumped amplification in a Tm-doped large mode-area photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Shah, Lawrence; Wysmolek, Mateusz; Ryan, Robert; Abdulfattah, Ali; Richardson, Martin

    2015-03-01

    Ultra-large mode area thulium-doped photonic crystal fibers (Tm:PCF) have enabled the highest peak powers in 2 micron fiber laser systems to date. However, Tm:PCFs are limited by slope efficiencies of <50% when pumped with 790 nm laser diodes. A well-known alternative is pumping at 1550 nm with erbium/ytterbium-doped fiber (Er/Yb:fiber) lasers for efficiencies approaching ~70%. However, these 1550 nm pump lasers are also relatively inefficient themselves. A recently demonstrated and more attractive approach to enable slope efficiencies over 90% in thuliumdoped step-index fibers is resonant pumping (or in-band pumping). This utilizes a high power thulium fiber laser operating at a shorter wavelength as the pump. In this manuscript, we describe an initial demonstration of resonant pumping in Tm:PCF. While the extracted power was still in the exponential regime due to pump power limitations, slope efficiencies in excess of ~64 have been observed, and there is still room for improvement. These initial results show promise for applying resonant pumping in Tm:PCF to improve efficiencies and facilitate high power scaling in ultralarge mode area systems.

  12. Guided-mode-resonance-enhanced measurement of thin-film absorption.

    PubMed

    Wang, Yifei; Huang, Yin; Sun, Jingxuan; Pandey, Santosh; Lu, Meng

    2015-11-01

    We present a numerical and experimental study of a guided-mode-resonance (GMR) device for detecting surface-bound light-absorbing thin films. The GMR device functions as an optical resonator at the wavelength strongly absorbed by the thin film. The GMR mode produces an evanescent field that results in enhanced optical absorption by the thin film. For a 100-nm-thick lossy thin film, the GMR device enhances its absorption coefficients over 26 × compared to a conventional glass substrate. Simulations show the clear quenching effect of the GMR when the extinction coefficient is greater than 0.01. At the resonant wavelength, the reflectance of the GMR surface correlates well with the degree of optical absorption. GMR devices are fabricated on a glass substrate using a surface-relief grating and a titanium-dioxide coating. To analyze a visible absorbing dye, the reflection coefficient of dye-coated GMR devices was measured. The GMR-based method was also applied to detecting acid gases, such as hydrochloric vapor, by monitoring the change in absorption in a thin film composed of a pH indicator, bromocresol green. This technique potentially allows absorption analysis in the visible and infrared ranges using inexpensive equipment. PMID:26561126

  13. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores

    SciTech Connect

    Deng, H.; Manor, D.; Weng, G.; Rath, P.; Callender, R.H. ); Koutalos, Y.; Ebrey, T. ); Gebhard, R.; Lugtenburg, J. ); Tsuda, M. )

    1991-05-07

    Resonance Raman spectra of the hydrogen out-of-plane (HOOP) vibrational modes in the retinal chromophore of octopus bathorhodopsin with deuterium label(s) along the polyene chain have been obtained. In clear contrast with bovine bathorhodopsin's HOOP modes, there are only two major HOOP bands at 887 and 940 cm{sup {minus}1} for octopus bathorhodopsin. On the basis of their isotopic shifts upon deuterium labeling, the authors have assigned the band at 887 cm{sup {minus}1} to C{sub 10}H and C{sub 14}H HOOP modes, and the band at 940 cm{sup {minus}1} to C{sub 11}H{double bond}C{sub 12}H A{sub u}-like HOOP mode. They found also that the C{sub 10}H and C{sub 14}H HOOP wags are also similar to those in the model-compound studies. However, they have found that the interaction between the C{sub 7}H and C{sub 8}H HOOP internal coordinates of the chromophore in octopus bathorhodopsin is different from that of the chromophore in solution. The twisted nature of the chromophore, semiquantitatively discussed here, likely affects the {lambda}{sub max} of the chromophore and its enthalpy. The nature of the HOOP modes of octopus bathorhodopsin differs substantially from those found in bovine bathorhodopsin.

  14. Intensity Ratio of Resonant Raman Modes for (n,m) Enriched Semiconducting Carbon Nanotubes.

    PubMed

    Piao, Yanmei; Simpson, Jeffrey R; Streit, Jason K; Ao, Geyou; Zheng, Ming; Fagan, Jeffrey A; Hight Walker, Angela R

    2016-05-24

    Relative intensities of resonant Raman spectral features, specifically the radial breathing mode (RBM) and G modes, of 11, chirality-enriched, single-wall carbon nanotube (SWCNT) species were established under second-order optical transition excitation. The results demonstrate an under-recognized complexity in the evaluation of Raman spectra for the assignment of (n,m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of the RBM to G modes and can result in misleading interpretations. Furthermore, we report five additional (n,m) values for the chirality-dependent G(+) and G(-) Raman peak positions and intensity ratios; thereby extending the available data to cover more of the smaller diameter regime by including the (5,4) second-order, resonance Raman spectra. Together, the Raman spectral library is demonstrated to be sufficient for decoupling G peaks from multiple species via a spectral fitting process, and enables fundamental characterization even in mixed chiral population samples. PMID:27128733

  15. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    PubMed Central

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-01-01

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail. PMID:27275823

  16. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes.

    PubMed

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-01-01

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m³ to 900 kg/m³ and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail. PMID:27275823

  17. Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators.

    PubMed

    Farnesi, Daniele; Berneschi, Simone; Cosi, Franco; Righini, Giancarlo C; Soria, Silvia; Nunzi Conti, Gualtiero

    2016-01-01

    Dielectric microspheres can confine light and sound for a length of time through high quality factor whispering gallery modes (WGM). Glass microspheres can be thought as a store of energy with a huge variety of applications: compact laser sources, highly sensitive biochemical sensors and nonlinear phenomena. A protocol for the fabrication of both the microspheres and coupling system is given. The couplers described here are tapered fibers. Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ((3)) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS). A proof of the cavity-enhanced phenomenon is given by the lack of correlation among the pump, signal and idler: a resonant mode has to exist in order to obtain the pair of signal and idler. In the case of hyperparametric oscillations (four wave mixing and stimulated anti-stokes Raman scattering), the modes must fulfill the energy and momentum conservation and, last but not least, have a good spatial overlap. PMID:27078752

  18. Progress of high power 170 GHz gyrotron in JAEA

    NASA Astrophysics Data System (ADS)

    Sakamoto, Keishi; Kasugai, Atsushi; Kajiwara, Ken; Takahashi, Koji; Oda, Yasuhisa; Hayashi, Kazuo; Kobayashi, Noriyuki

    2009-09-01

    Recent progress on the high power gyrotron development in JAEA is presented. The gyrotron is featured to have a triode-type magnetron injection gun, a cylindrical resonator working at 170 GHz with TE31,8 mode, a water-cooled diamond window and a depressed collector. After the demonstration of the ITER basic performance, the gyrotron has been operated for 3 years, and recorded ~200 GJ of total output energy. Next, a gyrotron which oscillates in higher order resonator mode, TE31,12, is designed and fabricated to study the long pulse oscillation at greater than 1 MW. In parallel, feasibility studies of a CW-power modulation for neoclassical tearing mode stabilization, a dual frequency gyrotron and a rapid frequency control are carried out. It is shown that these gyrotrons will be available with current technology.

  19. Microwave Frequency Discriminator With Sapphire Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John

    1994-01-01

    Cooled sapphire resonator provides ultralow phase noise. Apparatus comprises microwave oscillator operating at nominal frequency of about 8.1 GHz, plus frequency-discriminator circuit measuring phase fluctuations of oscillator output. One outstanding feature of frequency discriminator is sapphire resonator serving as phase reference. Sapphire resonator is dielectric ring resonator operating in "whispering-gallery" mode. Functions at room temperature, but for better performance, typically cooled to operating temperature of about 80 K. Similar resonator described in "Sapphire Ring Resonator for Microwave Oscillator" (NPO-18082).

  20. Drag detection and identification by whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2013-06-01

    Experimental data on optical resonance spectra of whispering gallery modes of dielectric microspheres in antibiotic solutions under varied in wide range concentration are represented. Optical resonance was demonstrated could be detected at a laser power of less than 1 microwatt. Several antibiotics of different generations: Amoxicillin, Azithromycin, Cephazolin, Chloramphenicol, Levofloxacin, Lincomicin Benzylpenicillin, Riphampicon both in deionized water and physiological solution had been used for measurements. Both spectral shift and the structure of resonance spectra were of specific interest in this investigation. Drag identification has been performed by developed multilayer perceptron network. The network topology was designed included: a number of the hidden layers of multilayered perceptron, a number of neurons in each of layers, a method of training of a neural network, activation functions of layers, type and size of a deviation of the received values from required values. For a network training the method of the back propagation error in various modifications has been used. Input vectors correspond to 6 classes of biological substances under investigation. The result of classification was considered as positive when each of the region, representing a certain substance in a space: relative spectral shift of an optical resonance maxima - relative efficiency of excitation of WGM, was singly connected. It was demonstrated that the approach described in the paper can be a promising platform for the development of sensitive, lab-on-chip type sensors that can be used as an express diagnostic tools for different drugs and instrumentation for proteomics, genomics, drug discovery, and membrane studies.