Science.gov

Sample records for giant resonances caractere

  1. Dynamical Coupling of Pygmy and Giant Resonances

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos; Brady, Nathan; Aumann, Thomas; Thomas, James

    2016-03-01

    One of the effects overseen in studies of excitation of pygmy resonances is the fact that both pygmy and giant resonances are strongly coupled. This coupling leads to dynamical effects such as the modification of transition probabilities and and cross sections. We make an assessment of such effects by means of the relativistic coupled channels equations developed by our group. Supported by the U.S. NSF Grant No. 1415656 and the U.S. DOE Grant No. DE-FG02-08ER41533.

  2. Damping of giant resonances in hot nuclei

    SciTech Connect

    Smerzi, A.; Bonasera, A.; DiToro, M. )

    1991-10-01

    The effect of one- and two-body dissipation on the damping of giant dipole resonances (GDR's) is studied in a semiclassical approach solving a Vlasov equation with a collision relaxation time. The latter is microscopically evaluated from the equilibration of a distorted momentum distribution in a kinetic approach. Temperature effects are introduced in the initial distribution function and in Pauli blocking rearrangement in the path to equilibration. Particle emission is also computed in the same microscopic picture. Without free parameters a good agreement with data is obtained for GDR's on the ground state. For collective vibration built on excited states we get a dramatic increase of the widths due to the enhancement of nucleon-nucleon ({ital NN}) collisions. The saturation observed in some experiments is explained as due to the competition of particle evaporation which cools down the system. The transition to first-sound modes is ruled out for the persistence of long-nucleon mean free paths at relatively high temperatures.

  3. Giant dipole resonance in hot rotating nuclei

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Dinh Dang, N.; Datar, V. M.

    2016-05-01

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature ( T), angular momentum ( J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range ˜ 1 - 3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T . The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field will be discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions will be briefly addressed.

  4. Deformation effects on isoscalar giant resonances in 24Mg

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Garg, U.; Hoffman, J.; Matta, J.; Rao, P. V. Madhusudhana; Patel, D.; Peach, T.; Yoshida, K.; Itoh, M.; Fujiwara, M.; Hara, K.; Hashimoto, H.; Nakanishi, K.; Yosoi, M.; Sakaguchi, H.; Terashima, S.; Kishi, S.; Murakami, T.; Uchida, M.; Yasuda, Y.; Akimune, H.; Kawabata, T.; Harakeh, M. N.

    2016-04-01

    Strength distributions for isoscalar giant resonances with multipolarity L ≤2 have been determined in 24Mg from "instrumental background-free" inelastic scattering of 386-MeV α particles at extreme forward angles, including 0∘. The isoscalar E 0 , E 1 , and E 2 strengths are observed to be 57 ±7 % , 111 .1-7.2+10.9% , and 148.6 ±7.3 % , respectively, of their energy-weighted sum rules in the excitation energy range of 6 to 35 MeV. The isoscalar giant monopole (ISGMR) and quadrupole (ISGQR) resonances exhibit a prominent K splitting which is consistent with microscopic theory for a prolate-deformed ground state of 24Mg. For the ISGQR it is due to splitting of the three K components, whereas for the ISGMR it is due to its coupling to the K =0 component of the ISGQR. Deformation effects on the isoscalar giant dipole resonance are less pronounced, however.

  5. 4f wavefunction collapse and giant resonances in molecules

    NASA Astrophysics Data System (ADS)

    Robin, M. B.

    1985-08-01

    The effective potential for an f orbital in an atom reflects both the attractive Coulomb and repulsive centrifugal forces, resulting in a double-well potential. Transitions from nd orbitals to f¯ orbitals bound in the inner well of the effective potential are unique in their frequency, intensity and response to external perturbations, and are known as "giant resonances". In molecules, the role of the repulsive centrifugal force is played instead by orthogonality to bonding valence orbitals, in which case the inner-well wavefunctions then become antibonding valence MOs. In general, the expected molecular giant resonances resulting from transitions between d-like MOs and antibonding valence MOs of f symmetry are not seen because of strong valence/Rydberg mixing. However, in certain molecules having high symmetries and the proper electronic configurations, this upper-state mixing is symmetry forbidden, and so molecular giant resonances can appear. These d → f¯ molecular giant resonances are identified for the first time in the vacuum-ultraviolet spectra of cyclopropane, cyclohexane, neopentane and uranium hexafluoride.

  6. Collisional width of giant resonances and interplay with Landau damping

    SciTech Connect

    Bonasera, A.; Burgio, G. F.; Di Toro, M.; Wolter, H. H.

    1989-06-01

    We present a semiclassical method to calculate the widths of giant resonances. We solve a mean-field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time approximation to construct a damped strength distribution for collective motions. The relaxation time is evaluated from the time evolution of distortions in the nucleon momentum distribution using a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite important interplay between self-consistent (Landau) and collisional damping is revealed.

  7. Giant dipole resonances in the interacting boson model

    NASA Astrophysics Data System (ADS)

    Scholtz, F. G.; Hahne, F. J. W.

    1983-03-01

    Giant dipole resonances, represented by p bosons, are introduced into the interacting boson model. For nuclei with SU(3) symmetry the dipole is split by the interactions into two main parts, with any further fragmentation being generally small. The Raman scattering to side bands tends to be very small. This agrees with recent measurements on Er. Supported by the National Accelerator Centre, CSIR, Faure, South Africa.

  8. Giant dipole resonance in hot and rotating nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Sudhee R.

    2013-04-01

    The study of Giant Dipole Resonance (GDR) even after more than 60 years of its discovery, still remains an intriguing and a very relevant topic of research particularly in the case of hot and fast rotating nuclei. Many new facets of this giant collective mode of vibration are being brought to light recently owing to the new age powerful detection systems. Particularly for the nuclei with large asymmetries in its neutron and protons the study of its GDR decay modes opened up very interesting research prospects worldwide. Even with low energy light-ion and heavy-ion accelerated beams and employing the powerful large volume high energy photon spectrometer LAMBDA at VECC a number of very interesting experimental observations have been made recently which radically changes the present understanding of GDR vibrations in moderately hot nuclei in general. The availability of higher energy heavy-ion beams from the near ready superconducting cyclotron at VECC will open up many more interesting and challenging research prospects with the LAMBDA spectrometer. Exciting challenges and opportunities are also on offer for studying the properties and dynamics of hot exotic nuclei with stable and RI beams through high energy gamma decays from giant resonances. A few of the very interesting results obtained recently at VECC with the LAMBDA spectrometer, further research possibilities and several other powerful detector facilities will be discussed during the conference.

  9. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab.

  10. Kinetic approach to the damping of giant quadrupole resonances

    SciTech Connect

    Bonasera, A.; Di Toro, M.; Gulminelli, F. Dipartimento di Fisica, Corso Italia 57, 95129 Catania Dipartimento di Fisica, Via Celoria 16, 20133 Milano Laboratorio Nazionale del Sud, Viale A. Doria, 95125 Catania )

    1990-09-01

    The effect of one- and two-body dissipation on the damping of giant quadrupole resonances is studied in a semiclassic approach solving a Vlasov equation with a collisional relaxation time. The latter is microscopically evaluated from the equilibration of a distorted momentum distribution in a kinetic approach. Important effects from energy and angle dependent nucleon-nucleon ({ital NN}) cross sections and from the time variation of Pauli blocking are stressed. Once these points are suitably treated, a good agreement with the experimental systematics is obtained from the use of a free {ital NN} cross section.

  11. Isoscalar Giant Dipole Resonance within Fermi Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Pochivalov, Oleksiy; Shlomo, Shalom

    2006-04-01

    Recent highly accurate experimental data on Isoscalar Giant Dipole (ISGDR) and Monopole (ISGMR) Resonances in nuclei renewed interest in correct microscopic description of collective excitations. Hartree-Fock based Random-Phase-Approximation (HF-RPA) is a successful method of describing collective excitations in nuclei. However, recent fully self-consistent HF-RPA calculations, which reproduce the centroid energies of the ISGMR, systematically overestimate by 1.5-2.5 MeV results for the ISGDR energy comparing with experimentally obtained data. Also, the HF-RPA model does not provide description of the widths of giant resonances. We consider these issues within the semi-classical generalization of the mean field theory, namely, Fermi-Liquid-Drop-Model (FLDM). In this presentation, we provide description of the FLDM formalism in its application to ISGDR and ISGMR calculations. We present results of FLDM calculations for centroid energy and widths of the ISGDR and ISGMR in the four nuclei, namely, 90Zr, 116Sn, 144Sm, and 208Pb and compare with available experimental data.

  12. Relaxation of giant resonances: Semimicroscopic description (Methods, Results, and Prospects)

    SciTech Connect

    Urin, M. H.

    2011-08-15

    An account of a semimicroscopic approach to globally describing dominant relaxation modes for giant resonances in spherical nuclei is given. This approach is based on the continuum version of the random-phase approximation and on a phenomenological description of the fragmentation effect. The fragmentation effect in question is taken into account in the 'pole' approximation in terms of the excitationenergy-dependent imaginary part of the single-particle effective optical potential directly in the equations of the approximation in question. In the practical implementation of the above approach, use is made of the Landau-Migdal interaction in the particle-hole channel and a phenomenological mean field of the nucleus being considered, these two being related by a partial-consistency condition. The results obtained within this approach by calculating integrated and differential features for a number of giant resonances over a broad range of excitation energies are used to perform a comparison with available experimental data and to predict the results of possible experiments. A particle-hole optical model that serves both as a substantiation for the existing version of the semimicroscopic approach and as a basic element for describing excitations of the particle-hole type at an arbitrary (albeit rather high) energy is formulated.

  13. Phase-space exploration in nuclear giant resonance decay

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1995-02-13

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  14. Driving Rabi oscillations at the giant dipole resonance in xenon

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan; Wang, Daochen; Santra, Robin

    2015-11-01

    Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the 4 d ionization threshold. We find that intensities around 1018W /cm2 are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in the form of Autler-Townes splittings extending over several tens of electronvolts.

  15. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning

    NASA Astrophysics Data System (ADS)

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio

    2015-12-01

    This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.

  16. Dynamical coupling of pygmy and giant resonances in relativistic Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Brady, N. S.; Aumann, T.; Bertulani, C. A.; Thomas, J. O.

    2016-06-01

    We study the Coulomb excitation of pygmy dipole resonances (PDR) in heavy ion reactions at 100 MeV/nucleon and above. The reactions 68Ni +197Au and 68Ni +208Pb are taken as practical examples. Our goal is to address the question of the influence of giant resonances on the PDR as the dynamics of the collision evolves. We show that the coupling to the giant resonances affects considerably the excitation probabilities of the PDR, a result that indicates the need of an improved theoretical treatment of the reaction dynamics at these bombarding energies.

  17. Giant Kerr nonlinearity via tunneling induced double dark resonances in triangular quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Wan, Ren-Gang; Tong, Cun-Zhu; Fu, Xi-Hong; Cao, Jun-Sheng; Ning, Yong-Qiang

    2015-12-01

    A scheme for giant Kerr nonlinearity via tunneling in triangular triple quantum dot molecules is proposed. In such a system, the linear absorption and the Kerr nonlinearity depend critically on the energy splitting of the excited states and the tunneling intensity. With proper parameters, giant Kerr nonlinearity accompanied by vanishing absorption can be realized. The enhancement of Kerr nonlinearity is attributed to the interacting double dark resonances induced by the tunneling between the quantum dots, requiring no extra coupling laser fields.

  18. E2 giant resonances and an M1 component in the photofission of /sup 236/U

    SciTech Connect

    Arruda-Neto, J.D.T.; Herdade, S.B.; Berman, B.L.; Nascimento, I.C.

    1980-11-01

    Electrofission and photofission yields and electrofission-fragment angular distributions for /sup 236/U have been measured with fission-track detectors for incident electron energies from 5.5 to 33.0 MeV. Analysis of these data with the use of virtual-photon spectra calculated in distorted-wave Born approximation, combined with the known photofission cross section, results in the simultaneous determination for this nucleus of (a) a giant isoscalar E2 resonance located at 10.8 +- 0.4 MeV, having a width of 6 +- 1 MeV, and exhausting approx.70% of the isoscalar energy-weighted sum rule, and (b) a small M1 component located at 5.8 +- 0.2 MeV whose strength is <2% of that of the giant isoscalar E2 resonance. No evidence is seen for a giant isovector E2 resonance between 22 and 30 MeV.

  19. Attosecond delay of xenon 4 d photoionization at the giant resonance and Cooper minimum

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed El-Amine; Chakraborty, Himadri S.

    2016-07-01

    A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4 d photoionization that involves the 4 d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al., Phys. Rev. A 91, 033413 (2015), 10.1103/PhysRevA.91.033413]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3 p minimum [S. B. Schoun et al., Phys. Rev. Lett. 112, 153001 (2014), 10.1103/PhysRevLett.112.153001] is found. The result should encourage attosecond measurements of Xe 4 d photoemission.

  20. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  1. Relativistic effects on giant resonances in electron-impact double ionization

    SciTech Connect

    Pindzola, M.S.

    1987-06-01

    The electron-impact double-ionization cross section for Fr/sup +/ is calculated in the distorted-wave Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to the cross section is found to be quite sensitive to changes in the double-well potential caused by relativistic effects on bound-state wave functions.

  2. The Isoscalar Giant Dipole Resonance in {sup 20}Pb, {sup 90}Zr and the Nuclear Compressibility

    SciTech Connect

    Yildirim, Serbulent; Koeroglu, Ulas

    2008-11-11

    The isoscalar giant dipol resonance (ISGDR) in finite nuclei is studied within the framework of a relativistic transport approach. The excitation energies of spherical {sup 90}Zr and {sup 208}Pb nuclei are obtained for different quantum hydrodynamical Lagrangian parametrization. The sensitivity of ISGDR excitation energy on the nuclear bulk to surface properties are also investigated.

  3. Splitting of the isovector giant dipole resonance in neutron-rich spherical nuclei

    SciTech Connect

    Kolomietz, V.M.; Magner, A.G.; Shlomo, S.

    2006-02-15

    The well-known splitting of the isovector giant dipole resonance is traditionally explained as a phenomenon of the nuclear isospin asymmetry (isospin splitting model) or the nuclear deformation. We suggest a new mechanism of the splitting of the giant multipole resonances in spherical neutron-rich nuclei resulting from the interplay of the isovector and isoscalar sounds with different velocities. Our approach is based on the collisional Landau kinetic theory and can be used for description of the splitting phenomena for both the isoscalar and the isovector modes in a wide region of nuclear masses A{approx}40-240. For the isovector dipole modes, the evaluated values of the splitting energy, the relative strength of the main and satellite resonance peaks, and the contribution to the energy-weighted sum rule are in agreement with experimental data.

  4. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    SciTech Connect

    Thompson, I J; Escher, Jutta E; Arbanas, Goran

    2013-01-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  5. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Escher, J. E.; Arbanas, G.

    2014-04-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  6. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    NASA Astrophysics Data System (ADS)

    Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.

    2015-10-01

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  7. Giant spin Nernst effect induced by resonant scattering at surfaces of metallic films

    NASA Astrophysics Data System (ADS)

    Long, Nguyen H.; Mavropoulos, Phivos; Zimmermann, Bernd; Blügel, Stefan; Mokrousov, Yuriy

    2016-05-01

    A concept realizing giant spin Nernst effect in nonmagnetic metallic films is introduced. It is based on the idea of engineering an asymmetric energy dependence of the longitudinal and transverse electrical conductivities, as well as a pronounced energy dependence of the spin Hall angle in the vicinity of the Fermi level by the resonant impurity states at the Fermi level. We employ an analytical model and demonstrate the emergence of a giant spin Nernst effect in Ag(111) films using ab initio calculations combined with the Boltzmann approach for transport properties arising from skew scattering off impurities.

  8. Magnetic resonance imaging findings in giant cell arteritis.

    PubMed

    D'Souza, N M; Morgan, M L; Almarzouqi, S J; Lee, A G

    2016-05-01

    PurposeGiant cell arteritis (GCA) is a systemic vasculitis that affects medium-to-large-caliber arteries. Early diagnosis and treatment is essential as involvement of the ophthalmic artery or its branches may cause blindness. Radiographic findings may be variable and non-specific leading to delay in diagnosis. We conducted a review of the literature on neuroimaging findings in GCA and present a retrospective case series from tertiary-care ophthalmic referral centers of three patients with significant neuroimaging findings in biopsy-proven GCA.MethodsRetrospective case series of biopsy-proven GCA cases with neuroimaging findings at the Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital between 2010-2015 were included in this study. Literature search was conducted using Google Scholar and Medline search engines between the years 1970 and 2015.ResultsWe report findings of optic nerve enhancement, optic nerve sheath enhancement, and the first description in the English-language ophthalmic literature, to our knowledge, of chiasmal enhancement in biopsy-proven GCA. We describe four main categories of neuroimaging findings that may be seen in GCA from our series and from past cases in the literature.DiscussionIt is essential that clinicians be aware of the possible radiographic findings in GCA. Appropriate and prompt treatment should not be delayed based upon these findings. PMID:26915748

  9. Simplest photonuclear reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances: Semimicroscopic description

    SciTech Connect

    Tulupov, B. A.; Urin, M. H.

    2012-09-15

    A semimicroscopic approach based on the continuum version of the random-phase approximation (CRPA) and on a semiphenomenological inclusion of the fragmentation effect is applied to describing cross sections for photoabsorption and direct plus semidirect and inverse reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances. In addition to the spinless part of the Landau-Migdal interaction and a partly self-consistent phenomenological mean field of the nucleus, that version of the approach which is used here takes into account isovector separable velocity-dependent forces, as well as the effect of the fragmentation shift of the giant-resonance energy. The results obtained by calculating various features of the aforementioned cross sections for a number of magic and semimagic medium-mass nuclei are compared with respective experimental data.

  10. Giant resonance tuning of micro and nanomechanical oscillators

    PubMed Central

    Vitorino, Miguel V.; Carpentier, Simon; Panzarella, Alain; Rodrigues, Mario S.; Costa, Luca

    2015-01-01

    We present a method to tune the resonance frequency and the Q-factor of micro and nano-metric mechanical oscillators. A counteracting loop drives a capacitive force applied to the oscillator. The proportional and differential gains are used to shift the resonance frequency up to 75% and to tune the Q-factor of the oscillator, by changing its effective stiffness and damping ratio. The oscillator position is monitored in a large bandwidth with a fiber-optic based interferometer. We applied this simple operational scheme with different oscillators for modifying easily their dynamical properties. Compared to alternative methods requiring external fields, our method can either increase or decrease the resonance frequency in a frequency range much more extended. This opens up a wide range of applications, from force sensors with extremely low elastic constants but high quality factor to tunable energy harvesters or to high-frequency tuning of radio frequency filters. The control scheme can work in different media, and is then suitable to be applied to biological sensors and actuators. PMID:25588846

  11. Fluxes and spectra of quasimonochromatic annihilation photons for studying E1 giant resonances in nuclei

    SciTech Connect

    Dzhilavyan, L. Z.

    2014-12-15

    The fluxes and spectra of quasimonochromatic photons originating from the in-flight annihilation of positrons interacting with electrons of targets are analyzed in the energy region characteristic of the excitation of E1 giant resonances in nuclei. Targets of small thickness and low atomic number are used. The dependences of the spectra on the energy and angle (and their scatter) for positrons incident to the target, on the collimation angle for photons, and on the target thickness are studied.

  12. Local nuclear magnetic resonance spectroscopy with giant magnetic resistance-based sensors

    NASA Astrophysics Data System (ADS)

    Guitard, P. A.; Ayde, R.; Jasmin-Lebras, G.; Caruso, L.; Pannetier-Lecoeur, M.; Fermon, C.

    2016-05-01

    Nuclear Magnetic Resonance (NMR) spectroscopy on small volumes, either on microfluidic channels or in vivo configuration, is a present challenge. We report here a high resolution NMR spectroscopy on micron scale performed with Giant Magnetic Resistance-based sensors placed in a static magnetic B 0 field of 0.3 T. The sensing volume of the order of several tens of pL opens the way to high resolution spectroscopy on volumes unreached so far.

  13. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-12-31

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.

  14. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-01-01

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.

  15. Isoscalar giant resonance studies in a stored-beam experiment within EXL

    NASA Astrophysics Data System (ADS)

    Zamora, J. C.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, K.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, T.; Kuilman, M.; Litvinov, S.; Litvinov, Yu A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.; the EXL Collaboration

    2015-11-01

    In the first campaign of the exotic nuclei studied with light-ion induced reaction in storage rings (EXL) collaboration at the existing storage ring experimental heavy-ion storage ring (ESR) at Helmholtz Center for Heavy Ion Research (GSI), we performed the first experiments using a stored beam of 58Ni and an internal helium gas-jet target aiming for the investigation of isoscalar giant resonances in inverse kinematics. In this experiment, inelastically scattered recoil particles (at very forward angles, {θ }{cm}≤slant 1°) were detected with a dedicated setup, including ultra-high vacuum (UHV)-compatible double-sided silicon strip detector (DSSDs). Preliminary results show evidence for the excitation of the isoscalar giant monopole resonance (ISGMR) in the 58Ni nucleus. This opens the opportunity to study in the near future giant resonances also with stored radioactive beams, like 56Ni, and extract important information about the nuclear matter incompressibility. In the present work the current status of the data analysis and results are shown and discussed.

  16. Giant Resonances in the Alpha-Nucleus Interaction

    SciTech Connect

    Karpeshin, F. F.

    2010-04-30

    Tunneling of alpha particles through the Coulomb barrier for the source {sup 135}Pr nucleus is consecutively considered. The effect of sharp peaks arising in the case of coincidence of the alpha energy with that of a quasistationary state within the barrier is elucidated. Peaks' energy depend on the alpha-nucleus potential. They can give rise to 'anomalous' properties of some neutron resonances. The peaks can also be observed in the incoming alpha-nucleus channel. The method can be applied for solution of the reverse problem of the alpha-nucleus scattering.

  17. 'Coulomb' description of basic relaxation parameters of isobar analog and charge-exchange giant monopole resonances

    SciTech Connect

    Gorelik, M. L.; Rykovanov, V. S.; Urin, M. G.

    2010-12-15

    Within a semimicroscopic approach, basic relaxation parameters of the isobaric analog resonance and of the charge-exchange giant monopole resonance, which is an overtone of the isobaric analog resonance, are interpreted in terms of the mean Coulomb field of a nucleus. The continuum version of the random-phase approximation, allowance for an approximate isospin conservation in nuclei in an explicit form, and a phenomenological description of the fragmentation effect are basic ingredients of the approach used. The aforementioned parameters were calculated for a number of magic and near-magic nuclei by using a partly self-consistent phenomenological nuclear mean field and the isovector part of the Landau-Migdal interaction in the particle-hole channel. The results of the calculations are compared with corresponding experimental data.

  18. Chaos-driven decay of nuclear giant resonances: Quantum route to self-organization

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J. Institute of Nuclear Physics, PL-31-342 Krakow Institut fuer Kernphysik, Forschungszentrum Juelich, D-5170 Juelich College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1994-05-02

    The influence of background states with increasing level of complexity on the strength distribution of the isoscalar and isovector giant quadrupole resonance in [sup 40]Ca is studied. It is found that the background characteristics, typical for chaotic systems, strongly affect the fluctuation properties of the strength distribution. In particular, the small components of the wave function obey a scaling law analogous to self-organized systems at the critical state. This appears to be consistent with the Porter-Thomas distribution of the transition strength.

  19. Fission decay of the giant quadrupole resonance for /sup 234/U

    SciTech Connect

    Arruda-Neto, J.D.T.; Berman, B.L.; Herdade, S.B.; Nascimento, I.C.

    1981-06-01

    The electrofission cross section for /sup 234/U from 5.5 to 25.4 MeV has been measured. From a combined analysis of it and the previously measured photofission cross section, using virtual-photon spectra calculated in the distorted-wave Born approximation, the E2 photofission cross section has been determined. Parameters of the fission-decay branch of the giant quadrupole resonance for this nucleus have been obtained. A comparison of the E2 and E1 integrated photofission cross sections for the even uranium isotopes shows that the E1 fission channel increases in strength more rapidly with fissility than does the E2 channel.

  20. Photofission of {sup 238}U in the giant-resonance region

    SciTech Connect

    Dzhilavyan, L. Z. Nedorezov, V. G.

    2013-12-15

    Data on cross sections for the reaction {sup 238}U(γ,F) in the giant-resonance region were analyzed in connection with the preparation of new experiments aimed at studying {sup 238}U photofission—in particular, in beams of photons from in-flight positron annihilation on internal targets of positron storage rings. These data were taken from measurements also performed with annihilation photons but from positron beams external to the accelerators used. The procedures applied in such measurements and based both on processing the multiplicity of detected neutrons and on detecting fission fragments were also analyzed.

  1. Excitation of giant monopole resonance in {sup 24}Mg using {sup 6}Li scattering

    SciTech Connect

    Dennert, H.; Aschenauer, E.; Eyrich, W.; Lehmann, A.; Moosburger, M.; Scholz, N.; Wirth, H.; Gils, H.J.; Rebel, H.; Zagromski, S.

    1995-12-01

    The isoscalar giant monopole resonance in the nucleus {sup 24}Mg was investigated by inelastic {sup 6}Li scattering at {ital E}{sub Li}=156 MeV. At extreme forward angles fragmented {ital E}0 strength was observed up to {ital E}{sub {ital x}}=23 MeV. The extracted strength centered at 18.3{plus_minus}0.5 MeV excitation energy with a width of {Gamma}=4.8{plus_minus}0.5 MeV corresponds to 97.3%{plus_minus}15% of the {ital E}0 energy weighted sum rule.

  2. The gamma decay of the giant dipole resonance: from zero to finite temperature

    NASA Astrophysics Data System (ADS)

    Bracco, Angela; Camera, Franco

    2016-08-01

    This paper is intended to give a selected and rather brief overview of the work made in the last thirty years to study the properties of the giant dipole resonance focusing in particular on nuclei formed at finite temperatures using heavy ion reactions. The physical problems that are discussed (using examples of particular results) in this paper can be grouped into 3 major topics: (i) the temperature dependence of the GDR width; (ii) the dipole oscillation in reaction dynamics; (iii) the isospin mixing at finite temperature.

  3. Dopamine-secreting giant adrenal ganglioneuroma: clinical and diffusion-weighted magnetic resonance imaging findings.

    PubMed

    Polat, A V; Polat, A Kamali; Aslan, K; Atmaca, H; Karagoz, F

    2014-01-01

    We report a case of a dopamine-secreting giant primary adrenal ganglioneuroma (GN) in a 29-year-old male patient. Although the patient was clinically silent, the 24-hour urine levels of dopamine, normetanephrine, homovanillic acid and vanillyl mandelic acid were elevated. Abdominal ultrasonography and magnetic resonance imaging showed a large solid tumor with calcifications and a slightly lobular edge on the left adrenal gland. A tumor, 13 x 23 x 25 cm in size, was completely resected without morbidity. A 2-year follow-up with computed tomography showed that the postoperative course of the patient was uneventful. PMID:25073244

  4. Resonant excitation of black holes by massive bosonic fields and giant ringings

    NASA Astrophysics Data System (ADS)

    Décanini, Yves; Folacci, Antoine; Ould El Hadj, Mohamed

    2014-04-01

    We consider the massive scalar field, the Proca field, and the Fierz-Pauli field in the Schwarzschild spacetime and we focus more particularly on their long-lived quasinormal modes. We show numerically that the associated excitation factors have a strong resonant behavior and we confirm this result analytically from semiclassical considerations based on the properties of the unstable circular geodesics on which a massive particle can orbit the black hole. The conspiracy of (i) the long-lived behavior of the quasinormal modes and (ii) the resonant behavior of their excitation factors induces intrinsic giant ringings, i.e., ringings of a huge amplitude. Such ringings, which are moreover slowly decaying, are directly constructed from the retarded Green function. If we describe the source of the black hole perturbation by an initial value problem with Gaussian initial data, i.e., if we consider the excitation of the black hole from an extrinsic point of view, we can show that these extraordinary ringings are still present. This suggests that physically realistic sources of perturbations should generate giant and slowly decaying ringings and that their existence could be used to constrain ultralight bosonic field theory interacting with black holes.

  5. Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement.

    PubMed

    Sekkat, Zouheir; Hayashi, Shinji; Nesterenko, Dmitry V; Rahmouni, Anouar; Refki, Siham; Ishitobi, Hidekazu; Inouye, Yasushi; Kawata, Satoshi

    2016-09-01

    We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors. PMID:27607617

  6. Fluctuation properties of the strength function associated with the giant quadrupole resonance in {sup 208}Pb

    SciTech Connect

    Aiba, Hirokazu; Matsuo, Masayuki; Nishizaki, Shigeru; Suzuki, Toru

    2011-02-15

    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) giant quadrupole resonance (GQR) in {sup 208}Pb where the strength function is obtained by the shell model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is contrasted with the results for the GQR in {sup 40}Ca, where at the intermediate energy scale of about 1.7 MeV, a deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the local scaling dimension is ascribed to the difference in the properties of the damping process.

  7. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  8. Integrated cross sections for excitation of nuclear isomers by inelastic photon scattering at giant resonance

    NASA Astrophysics Data System (ADS)

    Sáfár, József; Lakosi, László

    2014-02-01

    In the view of the evidences arising from our experimental and theoretical studies, the long-standing picture of a two-humped excitation function for photoexcitation of isomers cannot be confirmed. Whereas the first maximum (at the photoneutron threshold) of the cross section of nuclear photon scattering can be attributed to inelastic (compound) scattering, the second large peak at about giant dipole resonance is mostly due to the elastic (direct) process. A second large peak or increase reported to appear in isomer production has been shown to be practically vanishing. On realizing such a situation, calculated estimates have been given for saturated integral cross section values for isomer activation, based on photoabsorption cross sections taken from the usual Lorentzian parametrization up to the photoneutron threshold. Results compare reasonably well to available experimental data acquired by gamma-ray spectrometry in a large set of stable nuclides having long-lived isomeric states.

  9. Shear-viscosity to entropy-density ratio from giant dipole resonances in hot nuclei

    SciTech Connect

    Nguyen Dinh Dang

    2011-09-15

    The Green-Kubo relation and fluctuation-dissipation theorem are employed to calculate the shear viscosity {eta} of a finite hot nucleus directly from the width and energy of the giant dipole resonance (GDR) of this nucleus. The ratio {eta}/s of shear viscosity {eta} to entropy density s is extracted from the experimental systematics of the GDR in copper, tin, and lead isotopes at finite temperature T. These empirical results are then compared with the predictions by several independent models as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio {eta}/s in medium and heavy nuclei decreases with increasing temperature T to reach (1.3--4)x({h_bar}/2{pi})/(4{pi}k{sub B}) at T=5 MeV.

  10. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    SciTech Connect

    Krasznahorkay, A.; Stuhl, L.; Csatlos, M.; Algora, A.; and others

    2012-10-20

    The {gamma}-decay of the anti-analog of the giant dipole resonance (AGDR) to the isobaric analog state has been measured following the p({sup 124}Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent relativistic random-phase approximation (RPA) and turned out to be very sensitive to the neutronskin thickness ({Delta}R{sub pn}). By comparing the theoretical results with the measured one, the {Delta}R{sub pn} value for {sup 124}Sn was deduced to be 0.21 {+-} 0.07 fm, which agrees well with the previous results. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.

  11. Measurement of giant dipole resonance width at low temperature: A new experimental perspective

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Pandit, Deepak; Pal, Surajit; Bhattacharya, Srijit; De, A.; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Mukherjee, G.; Pandey, R.; Gohil, M.; Pai, H.; Meena, J. K.; Banerjee, S. R.

    2012-03-01

    The systematic evolution of the giant dipole resonance (GDR) width in the temperature region of 0.9- 1.4 MeV has been measured experimentally for 119Sb using alpha induced fusion reaction and employing the LAMBDA high energy photon spectrometer. The temperatures have been precisely determined by simultaneously extracting the vital level density parameter from the neutron evaporation spectrum and the angular momentum from gamma multiplicity filter using a realistic approach. The systematic trend of the data seems to disagree with the thermal shape fluctuation model (TSFM). The model predicts the gradual increase of GDR width from its ground state value whereas the measured GDR widths appear to remain constant at the ground state value till T ∼ 1 MeV and increase thereafter, indicating towards a failure of the adiabatic assumption of the model at low temperature.

  12. Are there nuclear structure effects on the isoscalar giant monopole resonance near A = 90?

    NASA Astrophysics Data System (ADS)

    Gupta, Yogesh; Garg, Umesh; Howard, K.; Senyigit, M.; Itoh, M.; Ando, S.; Uchiyama, A.; Aoki, T.; Iwamoto, C.; Adachi, S.; Tamii, A.; Fujiwara, M.; Kadono, C.; Akimune, H.; Matsuda, Y.; Nakahara, T.; Kawabata, T.; Tsumura, M.; Furuno, T.; Harakeh, M.; Kalantar-Nayestanaki, N.

    2015-10-01

    The excitation energy of the isoscalar giant monopole resonance (ISGMR) exhibits, in general, a very smooth behavior (Ex ~A 1 / 3) over the periodic Table. In recent work the Texas A&M group has reported that ISGMR energies for 92Zr and 92Mo are appreciably higher than that for 90Zr, suggesting significant nuclear structure effects on ISGMR and, hence, on the nuclear compressibility. We have measured inelastic scattering of 385-MeV a particles on 90,92Zr, 92Mo at extremely forward angles, including 0°, using the ``Grand Raiden'' spectrometer at RCNP, Japan. Results of detailed multipole decomposition analyses to extract the ISGMR strength distributions in the three nuclei will be presented. Supported in part by the National Science Foundation (Grant No. PHY1419765).

  13. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors

    NASA Astrophysics Data System (ADS)

    Nesterenko, D. V.; Hayashi, S.; Sekkat, Z.

    2016-06-01

    Low-loss waveguides (WGs), which support excitation of waveguide modes (WMs), are based on a dielectric WG separated from an absorptive film by a low-index dielectric spacer layer. We perform numerical and analytical study of the impact of the losses imposed to the WG in a planar sensing structure in the Kretschmann configuration on the resonance properties of the excitation. We demonstrate that the loss degree of the WMs can be controlled by the thickness of the spacer layer for both s and p polarizations. Extremely narrow resonances are discovered in the reflectivity spectra due to excitation of the low-loss WMs, and the maximum of the estimated sensitivity by intensity is found to be of 105-fold higher as compared to the conventional surface plasmon and WG-coupled surface plasmon sensors. We reveal the giant field intensity enhancement of 107-fold on the surface of the sensing structure in aqueous sensing media that can provide stronger fluorescence intensity at lower sample volumes for fluorescent labeling sensing.

  14. Intense {gamma}-Ray Source in the Giant-Dipole-Resonance Range Driven by 10-TW Laser Pulses

    SciTech Connect

    Giulietti, A.; Gamucci, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, P.; Galy, J.; Hamilton, D. J.; Giulietti, D.

    2008-09-05

    A {gamma}-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the {gamma}-ray yield in the giant dipole resonance region (8

  15. Intense gamma-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses.

    PubMed

    Giulietti, A; Bourgeois, N; Ceccotti, T; Davoine, X; Dobosz, S; D'Oliveira, P; Galimberti, M; Galy, J; Gamucci, A; Giulietti, D; Gizzi, L A; Hamilton, D J; Lefebvre, E; Labate, L; Marquès, J R; Monot, P; Popescu, H; Réau, F; Sarri, G; Tomassini, P; Martin, P

    2008-09-01

    A gamma-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the gamma-ray yield in the giant dipole resonance region (8

  16. Giant resonances in {sup 238}U within the quasiparticle random-phase approximation with the Gogny force

    SciTech Connect

    Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.

    2011-01-15

    Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.

  17. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    SciTech Connect

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-08-10

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  18. Experimental study of playback giant magnetic resonance head nonlinearity in perpendicular recording

    NASA Astrophysics Data System (ADS)

    Luo, P.; Stoev, K.; Liu, F.; Vadde, A.; Gibbons, M.; Lederman, M.; Re, M.

    2003-05-01

    In this article, nonlinear distortions of the playback giant magnetic resonance (GMR) sensor in perpendicular recording are characterized in both time and frequency domains. We use three perpendicular media with different Mrt (0.46, 0.6, and 0.8 emu/cm2) and two groups of similar magnetic-read width (MRW) but different junction type [contiguous junction (CJ) and lead-over-lay (LOL)] GMR heads. Square-wave patterns at moderate densities are recorded to minimize NLTS, partial erasure, and transition broadening effects. Both time- and frequency-domain measurements indicate that the LOL-type GMR heads show playback nonlinearity (7%-23%), while the CJ-type GMR heads do not. Micromagnetic simulation is utilized to understand the hard bias field with different junction designs. The result indicates that the hard bias (HB) field in LOL type (HB field ˜6.9 Oe) at the air bearing surface (ABS) and stripe center is much lower than that in CJ type (HB field ˜54.0 Oe). Therefore, the free layer with large HB-HB distance will be more susceptible to saturation.

  19. Temperature dependence of the giant dipole resonance width in 152Gd

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Mishra, G.; Rhine Kumar, A. K.; Dokania, N.; Nanal, V.; Pillay, R. G.; Kumar, Suresh; Rout, P. C.; Joshi, Sandeep; Arumugam, P.

    2016-07-01

    To investigate the dependence of giant dipole resonance (GDR) width on temperature (T ) and angular momentum (J ), high energy γ -ray spectra were measured in the reaction 28Si+124Sn at E28Si=135 MeV. The J information was deduced from multiplicity of low-energy γ rays. The GDR parameters, namely, the centroid energy and width are extracted using statistical model analysis. The observed variation of the GDR width for T ˜1.2 -1.37 MeV and J ˜20 ℏ -40 ℏ is consistent with the universal scaling given by Kusnezov et al., which is applicable in the liquid-drop regime. The GDR input cross sections extracted from the statistical model best fits are compared with thermal shape fluctuation model (TSFM) calculations and are found to be in good agreement. The TSFM calculations predominantly favor the noncollective oblate shape, while the statistical model fit with both prolate and oblate shapes describes the data. The present data together with earlier measurements indicate a very slow variation of the GDR width for T ˜1.2 to 1.5 MeV. The observed trend is well explained by the TSFM calculations, although the calculated values are ˜4 %-13% higher than the data.

  20. Extreme nuclear shapes examined via giant dipole resonance lineshapes in hot light-mass systems

    SciTech Connect

    Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Banerjee, S. R.; De, A.; Gupta, D.

    2010-06-15

    The influence of alpha clustering on nuclear reaction dynamics is investigated using the giant dipole resonance (GDR) lineshape studies in the reactions {sup 20}Ne (E{sub lab}=145,160 MeV) + {sup 12}C and {sup 20}Ne (E{sub lab}=160 MeV) + {sup 27}Al, populating {sup 32}S and {sup 47}V, respectively. The GDR lineshapes from the two systems are remarkably different from each other. Whereas, the non-alpha-like {sup 47}V undergoes Jacobi shape transition and matches exceptionally well with the theoretical GDR lineshape estimated under the framework rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM) signifying shape equilibration, for the alpha cluster {sup 32}S an extended prolate kind of shape is observed. This unusual deformation, seen directly via gamma decay for the first time, is predicted to be due to the formation of orbiting dinuclear configuration or molecular structure of {sup 16}O + {sup 16}O in the {sup 32}S superdeformed band.

  1. Giant dipole resonance width in nuclei near Sn at low temperature and high angular momentum

    SciTech Connect

    Bhattacharya, Srijit; Mukhopadhyay, S.; Pandit, Deepak; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Gupta, D.; Banerjee, S. R.

    2008-02-15

    High energy {gamma} rays in coincidence with low energy yrast {gamma} rays have been measured from {sup 113}Sb, at excitation energies of 109 and 122 MeV, formed by bombarding {sup 20}Ne on {sup 93}Nb at projectile energies of 145 and 160 MeV, respectively, to study the role of angular momentum (J) and temperature (T) over giant dipole resonance (GDR) width ({gamma}). The maximum populated angular momenta for fusion were 67({Dirac_h}/2{pi}) and 73({Dirac_h}/2{pi}), respectively, for the above-mentioned beam energies. The high energy photons were detected using a Large Area Modular BaF{sub 2} Detector Array (LAMBDA) along with a 24-element multiplicity filter. After pre-equilibrium corrections, the excitation energy E* was averaged over the decay steps of the compound nucleus (CN). The average values of temperature, angular momentum, CN mass, etc., have been calculated using the statistical model code CASCADE. Using those average values, results show the systematic increase of GDR width with T, which is consistent with Kusnezov parametrization and the thermal shape fluctuation model (TSFM). The rise of GDR width with temperature also supports the assumptions of adiabatic coupling in the TSFM. But the GDR widths and corresponding reduced plots with J are not consistent with those of the theoretical model at high spins.

  2. Giant dipole resonance width in nuclei near Sn at low temperature and high angular momentum

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Srijit; Mukhopadhyay, S.; Pandit, Deepak; Pal, Surajit; de, A.; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Gupta, D.; Banerjee, S. R.

    2008-02-01

    High energy γ rays in coincidence with low energy yrast γ rays have been measured from Sb113, at excitation energies of 109 and 122 MeV, formed by bombarding Ne20 on Nb93 at projectile energies of 145 and 160 MeV, respectively, to study the role of angular momentum (J) and temperature (T) over giant dipole resonance (GDR) width (Γ). The maximum populated angular momenta for fusion were 67ℏ and 73ℏ, respectively, for the above-mentioned beam energies. The high energy photons were detected using a Large Area Modular BaF2 Detector Array (LAMBDA) along with a 24-element multiplicity filter. After pre-equilibrium corrections, the excitation energy E* was averaged over the decay steps of the compound nucleus (CN). The average values of temperature, angular momentum, CN mass, etc., have been calculated using the statistical model code CASCADE. Using those average values, results show the systematic increase of GDR width with T, which is consistent with Kusnezov parametrization and the thermal shape fluctuation model (TSFM). The rise of GDR width with temperature also supports the assumptions of adiabatic coupling in the TSFM. But the GDR widths and corresponding reduced plots with J are not consistent with those of the theoretical model at high spins.

  3. /sup 31/P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle

    SciTech Connect

    Hamm, J.R.; Yue, G.M.

    1987-01-01

    The accuracy of intracellular pH (pH/sub i/) measurements by /sup 31/P nuclear magnetic resonance (NMR) spectroscopy was examined in single muscle fibers from the giant barnacle, Balanus nubilis. The pH/sub i/ was derived from the chemical shifts of 2-deoxy-D-glucose-6-phosphate and inorganic phosphate. In fibers superfused with sea water at pH 7.7, pH/sub i/ = 7.30 +/- 0.02 at 20/sup 0/C. Experimentally induced pH/sub i/ changes were followed with a time resolution of 3 min. Intracellular alkalinization was induced by exposure to NH/sub 3/Cl and intracellular acidification followed when NH/sub 3/ was removed. Then acid extrusion was stimulated by exposure to bicarbonate containing sea water. In single muscle fibers /sup 31/P NMR results were in excellent agreement with microelectrode studies over the pH range of 6.5 to 8.0. The initial acid extrusion rate was 1.7 +/- 0.3 mmol x 1/sup -1/ x min/sup -1/ at pH/sub i/ 6.75. The authors results showed that /sup 31/P NMR is a reliable in vivo pH probe.

  4. 31P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle.

    PubMed

    Hamm, J R; Yue, G M

    1987-01-01

    The accuracy of intracellular pH (pHi) measurements by 31P nuclear magnetic resonance (NMR) spectroscopy was examined in single muscle fibers from the giant barnacle, Balanus nubilis. The pHi was derived from the chemical shifts of 2-deoxy-D-glucose-6-phosphate and inorganic phosphate. In fibers superfused with sea water at pH 7.7, pHi = 7.30 +/- 0.02 at 20 degrees C. Experimentally induced pHi changes were followed with a time resolution of 3 min. Intracellular alkalinization was induced by exposure to NH4Cl and intracellular acidification followed when NH3 was removed. Then acid extrusion was stimulated by exposure to bicarbonate containing sea water. In single muscle fibers 31P NMR results were in excellent agreement with microelectrode studies over the pH range of 6.5 to 8.0. The initial acid extrusion rate was 1.7 +/- 0.3 mmol X l-1 X min-1 at pHi 6.75. Our results showed that 31P NMR is a reliable in vivo pH probe. PMID:3812665

  5. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo

    2016-03-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.

  6. Onset of quenching of the giant dipole resonance at high excitation energies

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.; Wieland, O.

    2014-11-01

    The evolution of the giant dipole resonance (GDR) properties in nuclei of mass A =120 to 132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions using 116Sn beams at 17 A and 23 A MeV from the cyclotron of the Laboratorio Nazionale del Sud impinging on 12C and 24Mg targets. γ rays and light charged particles were detected using the multi-element detector array MEDEA in coincidence with evaporation residues detected by using mass and charge identification spectrometry with telescope (MACISTE). Light-charged-particle energy spectra were analyzed within the framework of a multiple-source-emission scenario by using a fitting procedure to determine the amount of pre-equilibrium emission and deduce the excitation energies reached in the compound nuclei. A detailed analysis of the γ -ray spectra and their comparison with statistical model calculations is presented. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy. The quenching effect becomes progressively more important with increasing excitation energy, as observed when the comparison is extended to data from the reaction 36Ar+96Mo at 37 A MeV where hot nuclei were populated up to 430 MeV excitation energy. A coherent scenario emerges indicating the existence of a limiting excitation energy for the collective motion of about E*/A =2.1 MeV for systems of mass A =105 to 111 while a slightly lower value was observed for nuclei of mass A ˜132 . The existence of a possible link between GDR disappearance and the liquid-gas phase transition is discussed.

  7. Dipole-Strength Distributions up to the Giant Dipole Resonance Deduced from Photon Scattering

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Rusev, G.; Benouaret, N.; Beyer, R.; Dönau, F.; Erhard, M.; Grosse, E.; Junghans, A. R.; Kosev, K.; Klug, J.; Nair, C.; Nankov, N.; Schilling, K. D.; Wagner, A.

    2008-04-01

    Dipole-strength distributions up to the neutron-separation energies of the even-mass Mo isotopes from 92Mo to 100Mo and of the N = 50 isotones 88Sr, 89Y, 90Zr have been investigated in photon-scattering experiments using the bremsstrahlung facility at the superconducting electron accelerator ELBE of the Forschungszentrum Dresden-Rossendorf. A measurement using polarised bremsstrahlung impinging on 88Sr revealed that all resolved transitions with energies greater than 6 MeV in this nuclide except for one are E1 transitions. The intensity distributions obtained from the measured spectra after a correction for detector response and a subtraction of atomic background in the target contain a continuum part in addition to the resolved peaks. It turns out that the dipole strength in the resolved peaks amounts to about 30% of the total dipole strength while the continuum contains about 70%. In order to estimate the distribution of inelastic transitions and to correct the ground-state transitions for their branching ratios simulations of γ-ray cascades were performed. The photoabsorption cross sections obtained in this way connect smoothly to (γ, n) cross sections and give novel information about the strength on the low-energy tails of the Giant Dipole Resonances below the neutron-separation energies. The experimental cross sections are compared with predictions of a Quasiparticle-Random-Phase Approximation in a deformed basis. The calculations describe the experimentally observed increase of the dipole strengths with increasing neutron number of the Mo isotopes as a consequence of increasing nuclear deformation.

  8. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  9. Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-05-01

    The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.

  10. Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Peru, S.; Goutte, H.

    2008-04-15

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed {sup 26-28}Si and {sup 22-24}Mg nuclei as well as in the spherical {sup 30}Si and {sup 28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.

  11. Measurement of the {sup 241}Am({gamma},n){sup 240}Am reaction in the giant dipole resonance region

    SciTech Connect

    Tonchev, A. P.; Howell, C. R.; Hutcheson, A.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.; Hammond, S. L.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Vieira, D. J.; Wilhelmy, J. B.

    2010-11-15

    The photodisintegration cross section of the radioactive nucleus {sup 241}Am has been obtained using activation techniques and monoenergetic {gamma}-ray beams from the HI{gamma}S facility. The induced activity of {sup 240}Am produced via the {sup 241}Am({gamma},n) reaction was measured in the energy interval from 9 to 16 MeV utilizing high-resolution {gamma}-ray spectroscopy. The experimental data for the {sup 241}Am({gamma},n) reaction in the giant dipole resonance energy region are compared with statistical nuclear-model calculations.

  12. Heavy ion Coulomb excitation and gamma decay studies of the one and two phonon giant dipole resonances in {sup 208}Pb and {sup 209}Bi

    SciTech Connect

    Mueller, P.E.; Beene, J.R.; Bertrand, F.E.

    1993-12-01

    Projectile -- photon coincidences were measured for the scattering of an 80 MeV/nucleon {sup 64}Zn beam from {sup 208}Pb and {sup 209}Bi targets at the GANIL heavy ion accelerator facility. Projectile-like particles between 0.5{degrees} and 4.5{degrees} relative to the incident beam direction were detected in the SPEG energy loss spectrometer where their momentum, charge, and mass were determined. Photons were detected in the BaF{sub 2} scintillation detector array TAPS. Light charged particles produced in the reaction were detected in the KVI Forward Wall. The analysis of the data acquired in this experiment is focused on three different phenomena: (1) the two phonon giant dipole resonance, (2) time dependence of the decay of the one phonon giant dipole resonance, and (3) giant resonance strength in projectile nuclei.

  13. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets—Implications for the Solar System's Formation

    NASA Astrophysics Data System (ADS)

    Simões, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Béghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; Martin, Steven; Rowland, Douglas; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  14. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; Martin, Steven; Rowland, Douglas; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  15. A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM

    SciTech Connect

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Horner, J.; Wittenmyer, Robert A.; Simon, Attila E.

    2012-07-20

    We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M{sub J} ) on a {approx}1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Segransan et al., we discover an outer Jovian (Msin i = 1.6 M{sub J} ) planet with P {approx} 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.

  16. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    SciTech Connect

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Takahashi, Yukihiro; Yair, Yoav

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  17. Probing nuclear shapes close to the fission limit with the giant dipole resonance in {sup 216}Rn

    SciTech Connect

    Kmiecik, M.; Maj, A.; Brekiesz, M.; Krolas, W.; Meczynski, W.; Styczen, J.; Zieblinski, M.; Million, B.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Wieland, O.; Brambilla, S.; Herskind, B.; Kicinska-Habior, M.; Dubray, N.; Dudek, J.; Schunck, N.

    2004-12-01

    The gamma-ray decay of the giant dipole resonance (GDR) in the compound nucleus {sup 216}Rn formed with the reaction {sup 18}O+{sup 198}Pt at the bombarding energy of 96 MeV was investigated. High-energy gamma-ray spectra in coincidence with both prompt and delayed low-energy transitions were measured. The obtained GDR width at the average temperature {approx_equal}1 MeV was found to be larger than that at T=0 MeV and to be approximately constant as a function of spin. The measured width value of 7 MeV is found to be consistent with the predictions based on calculations of the nuclear shape distribution using the newest approach for the treatment of the fission barrier within the liquid drop model. The present study is the first investigation of the giant dipole resonance width from the fusion-evaporation decay channel in this nuclear mass range.

  18. Giant dipole resonance built on hot rotating nuclei produced during evaporation of light particles from the 88Mo compound nucleus

    NASA Astrophysics Data System (ADS)

    Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Bracco, A.; Kravchuk, V. L.; Casini, G.; Barlini, S.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Camera, F.; Carboni, S.; Cinausero, M.; Chbihi, A.; Chiari, M.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fornal, B.; Giaz, A.; Gramegna, F.; Krzysiek, M.; Leoni, S.; Marchi, T.; Matejska-Minda, M.; Mazumdar, I.; Meczyński, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Piantelli, S.; Prete, G.; Roberts, O. J.; Schmitt, Ch.; Styczeń, J.; Szpak, B.; Valdré, S.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; Ziebliński, M.; Dudek, J.; Dinh Dang, N.

    2015-05-01

    High-energy giant dipole resonance (GDR) γ rays were measured following the decay of the hot, rotating compound nucleus of 88Mo, produced at excitation energies of 124 and 261 MeV. The reaction 48Ti + 40Ca at 300 and 600 MeV bombarding energies has been used. The data were analyzed using the statistical model Monte Carlo code gemini++. It allowed extracting the giant dipole resonance parameters by fitting the high-energy γ -ray spectra. The extracted GDR widths were compared with the available data at lower excitation energy and with theoretical predictions based on (i) The Lublin-Strasbourg drop macroscopic model, supplemented with thermal shape fluctuations analysis, and (ii) The phonon damping model. The theoretical predictions were convoluted with the population matrices of evaporated nuclei from the statistical model gemini++. Also a comparison with the results of a phenomenological expression based on the existing systematics, mainly for lower temperature data, is presented and discussed. A possible onset of a saturation of the GDR width was observed around T =3 MeV.

  19. Roles of deformation and neutron excess on the giant monopole resonance in neutron-rich Zr isotopes

    SciTech Connect

    Yoshida, Kenichi

    2010-09-15

    We investigate the roles of deformation on the giant monopole resonance (GMR), particularly the mixing of the giant quadrupole resonance (GQR) and the effects of the neutron excess in the well-deformed nuclei around {sup 110}Zr and in the drip-line nuclei around {sup 140}Zr by means of the deformed quasiparticle-random-phase approximation employing the Skyrme and the local-pairing energy-density functionals. It is found that the isoscalar (IS) GMR has a two-peak structure, the lower peak of which is associated with the mixing between the ISGMR and the K{sup {pi}=}0{sup +} component of the ISGQR. The transition strength of the lower peak of the ISGMR grows as the neutron number increases. In the drip-line nuclei, the neutron excitation is dominant over the proton excitation. We find that for an isovector (IV) excitation the GMR has a four-peak structure due to the mixing of the IS and IV modes as well as the mixing of the K{sup {pi}=}0{sup +} component of the IVGQR. In addition to the GMR, we find that the threshold strength is generated by neutrons only.

  20. Study of dynamical processes at the final stages of planetary system formation: Resonance motion of giant planets

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. V.

    2012-09-01

    According to current observational data, planets of many exoplanetary systems have resonant motion. The formation of resonance configurations is studied within a unified model of planetary migration. Planets in the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser, which are moving in the 2: 1 resonance, could have been captured into this resonance due to both the Type I and II migration with a wide range of parameters. The migration conditions are defined for the formation of HD 45364 and HD 200964 that are in the 3: 2 and 4: 3 first-order resonances, correspondingly. The results obtained for HD 200964 show that planets can be captured in the first-order resonances, when the outer-to-inner orbital period ratios for the planets are less than 3: 2, only if Type I migration rates are large, and the mass of at least one planet is substantially less than the modern masses of the observed giant planets. The formation of the HD 102272, HD 108874, HD 181433 and HD 202206 systems with planets in high-order resonances is considered. The capture into these resonances can be realized with very slow Type II migration. Possible bounds for migration parameters are considered. In particular, it has been found that the capture of HD 108874 into the 4: 1 resonance is possible only if the angle between the plane of planetary orbits and the plane of sky is appreciably less than 90°, i.e., the planetary masses are a few times larger than the minimum values. The capture of HD 202206 into the 5: 1 resonance is possible at low migration rates; however, another mechanism is required to explain the high observed eccentricity of the inner planet (for example, strong gravitational interaction between the planets). Resonant configurations can be disrupted due to the interaction between planets and remaining fragments of the planetesimal disk as, for example, may occur in the three-planet system 47 UMa. The specific orbital features observed for

  1. (. pi. sup +- ,. pi. sup +- prime N) reactions on sup 12 C and sup 208 Pb near the giant resonance region

    SciTech Connect

    Yoo, Sung Hoon.

    1990-05-01

    Angular distributions for the {sup 12}C({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p) and {sup 208}Pb({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p or n) reactions near the giant resonance region have been measured at T{sub {pi}} = 180 MeV, and found different between {pi}{sup +} and {pi}{sup {minus}} data. This observation is interpreted as evidence for different excitation mechanisms dominating the {pi}{sup {minus}}-nucleus and {pi}{sup +}-nucleus interactions in the giant resonance region of these targets. A comparison with the single-nucleon knock-out distorted-wave impulse approximation calculations shows, even though these calculations underestimate ({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} N) data for both targets, the dominance of direct process for ({pi}{sup +}, {pi}{sup {plus}}{prime} p) or ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} n) in contrast to ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) or ({pi}{sup +}, {pi}{sup +}{prime} n). In the ({pi}{sup +}, {pi}{sup +}{prime} p) reaction proton-proton hole states are excited directly and appear to have a large probability for direct decay with escape width, whereas in ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) the preferentially excited neutron-neutron hole doorway states couple to resonance states and decay with spreading width. This interpretation led us to suggest that the ratio of cross-sections for inelastic scattering to the giant resonance region should be written in terms of an incoherent sum of cross-sections to neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states contribute incoherently because the different decay processes do not populate the same final states of the residual nucleus.

  2. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    NASA Astrophysics Data System (ADS)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  3. Constraints on the neutron skin and symmetry energy from the anti-analog giant dipole resonance in 208Pb

    NASA Astrophysics Data System (ADS)

    Cao, Li-Gang; Roca-Maza, X.; Colò, G.; Sagawa, H.

    2015-09-01

    We investigate the impact of the neutron skin thickness, Δ Rn p , on the energy difference between the anti-analog giant dipole resonance (AGDR), EAGDR, and the isobaric analog state (IAS), EIAS, in a heavy nucleus such as 208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the droplet model that linearly connects the energy difference EAGDR-EIAS with Δ Rn p . To test this correlation on more fundamental grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on the value of the symmetry energy at saturation density J are explored. The calculations have been performed within the fully self-consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA) framework. We confirm the linear correlation within our microscopic approach and we can compare our results with available experimental data in 208Pb in order to extract a preferred value for Δ Rn p and, in turn, for the symmetry energy parameters. Averaging the results from two available experimental data, our analysis gives Δ Rn p = 0.236 ±0.018 fm, J = 33.2 ±1.0 MeV, and a slope parameter of the symmetry energy at saturation L = 97.3 ±11.2 MeV. The errors include the experimental uncertainties and a lower-limit estimate of model uncertainties. These results are consistent with those extracted from different experimental data albeit L and Δ Rn p are somewhat large when compared to previous estimations based on giant resonance studies. Possible hints whether model dependence can explain this difference are provided.

  4. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  5. Description of the dipole giant resonance in heavy and superheavy nuclei within Skyrme random-phase approximation

    SciTech Connect

    Kleinig, W.; Nesterenko, V. O.; Kvasil, J.; Vesely, P.; Reinhard, P.-G.

    2008-10-15

    The E1(T=1) isovector dipole giant resonance (GDR) in heavy and superheavy deformed nuclei is analyzed over a sample of 18 rare-earth nuclei, four actinides, and three chains of superheavy elements (Z=102, 114, and 120). The basis of the description is the self-consistent separable random-phase approximation (SRPA) using the Skyrme force SLy6. The model well reproduces the experimental data in the rare-earth and actinide regions. The trend of the resonance peak energies follows the estimates from collective models, showing a bias to the volume mode for the rare-earth isotopes and a mix of volume and surface modes for actinides and superheavy elements. The widths of the GDR are mainly determined by the Landau fragmentation, which in turn is found to be strongly influenced by deformation. A deformation splitting of the GDR can contribute to about one-third of the width, and about 1 MeV further broadening can be associated with mechanisms beyond the SRPA description (e.g., escape widths and coupling with complex configurations)

  6. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  7. Combined dielectric and plasmon resonance for giant enhancement of Raman scattering

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. I.; Grishina, Ya. V.; Egorov, S. V.; Solov'ev, V. V.; Kukushkin, I. V.

    2016-04-01

    Combined dielectric/metal resonators for colossal enhancement of inelastic light scattering are developed and their properties are investigated. It is shown that a record enhancement factor of 2 × 108 can be obtained using these structures. The dielectric resonators are fabricated on Si/SiO2 substrates where periodic arrays of square 10- to 200-nm-high dielectric pillars are produced via electron-beam lithography and plasma etching. The lateral size a of the pillars varies between 50 and 1500 nm, and their period in the array is 2 a. To make a combined dielectric/metal resonator, a nanostructured layer of silver is deposited onto the fabricated periodic dielectric structure by thermal evaporation. It is established that, for a fixed height of the dielectric pillars, the Raman scattering enhancement factor experiences pronounced oscillations as a function of the period (and size) of the pillars. It is shown that these oscillations are determined by the modes of the dielectric resonator and governed by the relation between the excitation laser wavelength and the planar size of the dielectric pillars.

  8. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    SciTech Connect

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons (< 2.5 MeV) are emitted isotropically and the fast neutrons are emitted anisotropically in the form of 1+Csin{sup 2}{theta}, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range.

  9. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles

    NASA Astrophysics Data System (ADS)

    Tribelsky, Michael I.; Miroshnichenko, Andrey E.

    2016-05-01

    We present the results of a detailed analytical study of light scattering by a particle with high refractive index m +i κ and low losses (m ≫1 ,0 <κ ≪1 ) based on the exact Mie solution. We show that there is a dramatic difference in the behavior of the electromagnetic field within the particle (inner problem) and outside it (outer problem). With an increase in m at fixed values of the other parameters, the field within the particle asymptotically converges to a periodic function of m . The electric and magnetic type Mie resonances of different orders overlap substantially. It may lead to a giant concentration of the electromagnetic energy within the particle. At the same time, we demonstrate that the solution for the outer problem makes it possible to present each partial scattered wave as a sum of two partitions. One of them corresponds to the m -independent wave, scattered by a perfectly reflecting particle and plays the role of a background, while the other is associated with the excitation of a sharply m -dependent resonant Mie mode. The interference of the partitions brings about a typical asymmetric Fano profile. The profile is obtained from the exact Mie solution by means of identical transformations without any additional assumptions and/or fitting. It makes it possible to generalize rigorously the Fano theory to the case of finite dissipation. At an increase in m the Fano resonances in the outer problem die out and the scattered field converges to the universal, m -independent profile. The behavior of the resonances at a fixed m and varying particle size parameter (x ) is also discussed in detail. The similarities and differences of the two cases (fixed x , varying m and fixed m , varying x ) are disclosed. We also show that under certain very general conditions the scattering cross section of a large lossy sphere cannot be smaller than half its geometric cross section, while its absorption cross section cannot exceed three halves of the geometric

  10. Dipole-Strength Distributions Below the Giant Dipole Resonance in the Stable Even-Mass Molybdenum Isotopes

    SciTech Connect

    Rusev, G.; Hutcheson, A. L.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C. T.; Hammond, S. L.; Kawowski, H. J.; Beyer, R.; Doenau, F.; Erhard, M.; Grosse, E.; Frauendorf, S.; Junghans, A. R.; Klug, J.; Kosev, K.; Nair, C.; Nikolov, N.; Schilling, K.-D.; Schwengner, R.

    2009-03-10

    Dipole-strength distributions in the stable even-mass molybdenum isotopes up to the neutron-separation energies have been studied in photon-scattering experiments with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf, Germany, and with mono-energetic photon beams at the High Intensity Gamma-ray Source facility at Triangle Universities Nuclear Laboratory. In order to determine the dipole-strength distribution, statistical methods were developed for the analysis of the measured spectra. The data obtained for the stable even-mass molybdenum isotopes from the present ({gamma},{gamma}') experiments are combined with ({gamma},n) cross sections from the literature resulting in a photoabsorption cross section covering the full range from about 4 to 15 MeV, which is of interest for nuclear structure as well as for nuclear astrophysics network calculations. Novel information about the low-energy tail of the Giant Dipole Resonance and the energy spreading of its strength is derived.

  11. Dipole-Strength Distributions Below the Giant Dipole Resonance in the Stable Even-Mass Molybdenum Isotopes

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Angell, C. T.; Beyer, R.; Dönau, F.; Erhard, M.; Grosse, E.; Hammond, S. L.; Hutcheson, A. L.; Frauendorf, S.; Junghans, A. R.; Kawowski, H. J.; Kelley, J. H.; Klug, J.; Kosev, K.; Kwan, E.; Nair, C.; Nikolov, N.; Schilling, K.-D.; Schwengner, R.; Tonchev, A. P.; Tornow, W.; Wagner, A.

    2009-03-01

    Dipole-strength distributions in the stable even-mass molybdenum isotopes up to the neutron-separation energies have been studied in photon-scattering experiments with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf, Germany, and with mono-energetic photon beams at the High Intensity Gamma-ray Source facility at Triangle Universities Nuclear Laboratory. In order to determine the dipole-strength distribution, statistical methods were developed for the analysis of the measured spectra. The data obtained for the stable even-mass molybdenum isotopes from the present (γ,γ') experiments are combined with (γ,n) cross sections from the literature resulting in a photoabsorption cross section covering the full range from about 4 to 15 MeV, which is of interest for nuclear structure as well as for nuclear astrophysics network calculations. Novel information about the low-energy tail of the Giant Dipole Resonance and the energy spreading of its strength is derived.

  12. Giant Dipole Resonance in the hot and thermalized 132Ce nucleus: damping of collective modes at finite temperature

    SciTech Connect

    Wieland, O; Bracco, A; Camera, F; Benzoni, G; Blasi, N; Brambilla, S; Crespi, F; Giussani, A; Leoni, S; Million, B; Moroni, A; Barlini, S; Kravchuk, V L; Gramegna, F; Lanchais, A; Mastinu, P; Maj, A; Brekiesz, M; Kmiecik, M; Bruno, M; Geraci, E; Vannini, G; Casini, G; Chiari, M; Nannini, A; Ordine, A; Ormand, W E

    2006-06-16

    The {gamma} decay of the Giant Dipole Resonance in the {sup 132}Ce compound nucleus with temperature up to {approx} 4 MeV has been measured. The symmetric {sup 64}Ni + {sup 68}Zn at E{sub beam} = 300, 400, 500 MeV and the asymmetric reaction {sup 16}O + {sup 116}Sn at E{sub beam} = 130, 250 MeV have been investigated. Light charged particles and {gamma} rays have been detected in coincidence with the recoiling compound system. In the case of the mass symmetric {sup 64}Ni induced reaction the {gamma} and charged particle spectral shapes are found to be consistent with the emission from a fully equilibrated compound nuclei and the GDR parameters are extracted from the data using a statistical model analysis. The GDR width is found to increase almost linear with temperature. This increase is rather well reproduced within a model which includes both the thermal fluctuation of the nuclear shape and the lifetime of the compound nucleus.

  13. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    PubMed Central

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287

  14. Study of Collective Dipole Excitations below the Giant Dipole Resonance at HI{gamma}S

    SciTech Connect

    Tonchev, A. P.; Howell, C. R.; Tornow, W.; Angell, C.; Boswell, M.; Karwowski, H. J.; Chyzh, A.; Kelley, J. H.; Tsoneva, N.; Wu, Y. K.

    2007-02-26

    The High-Intensity Gamma-ray Source utilizing intra-cavity back-scattering of free electron laser photons from relativistic electrons allows one to produce a unique beam of high-flux gamma rays with 100% polarization and selectable energy and energy resolution which is ideal for low-energy {gamma}-ray scattering experiments. Nuclear resonance fluorescence experiments have been performed on N=82 nuclei. High sensitivity studies of E1 and M1 excitations at energies close to the neutron emission threshold have been performed. The method allows the determination of excitation energies, spin, parities, and decay branching ratios of the pygmy dipole mode of excitation. The observations are compared with calculations using statistical and quasi-particle random-phase approximations.

  15. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  16. Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps.

    PubMed

    Bagiante, S; Enderli, F; Fabiańska, J; Sigg, H; Feurer, T

    2015-01-01

    Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm(-1) have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations. PMID:25623373

  17. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond.

    PubMed

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287

  18. A case of a giant pseudoangiomatous stromal hyperplasia of the breast: magnetic resonance imaging findings.

    PubMed

    Solomou, Ekaterini; Kraniotis, Pantelis; Patriarcheas, Georgios

    2012-04-12

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign myofibroblastic process. We present the case of a 17-year-old girl who underwent diagnostic work-up due to an enlargement of her left breast. She was submitted to ultrasounds and magnetic resonance imaging (MRI) which depicted a 14 cm lesion in her left breast. The patient was later operated and histology revealed PASH. Although PASH may range from 0.6-12 cm, a few lesions over 12 cm have been described, the largest being 20 cm. Large series present mammographic and ultrasonographic features of PASH in the literature, but little has been reported on the MR characteristics of PASH up to today. Signal on the T1-weighted image (T1WI) and T2-weighted image (T2WI) may vary. Curves generated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies are mainly type I or less frequently type II. There are no reports about diffusion-weighted imaging and corresponding apparent diffusion coefficient (ADC) values for PASH in the literature. ADC values in our case lie within the range of values reported for other benign breast lesions. The presence of slit-like spaces within the lesion on MR imaging along with DCE-MRI type I curve and ADC values consistent with a benign lesion may favour the diagnosis of PASH. Tissue biopsy is necessary, however for the final diagnosis. This case report will further contribute to the understanding of MR imaging features of PASH, especially in cases where mammography is not indicated. PMID:22826780

  19. Giant distal humeral geode.

    PubMed

    Maher, M M; Kennedy, J; Hynes, D; Murray, J G; O'Connell, D

    2000-03-01

    We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. PMID:10794554

  20. The Pan-Pacific Planet Search. IV. Two Super-Jupiters in a 3:5 Resonance Orbiting the Giant Star HD 33844

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Johnson, John Asher; Butler, R. P.; Horner, Jonathan; Wang, Liang; Robertson, Paul; Jones, M. I.; Jenkins, J. S.; Brahm, R.; Tinney, C. G.; Mengel, M. W.; Clark, J.

    2016-02-01

    We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes {a}b\\=1.60+/- 0.02 AU and {a}c=2.24+/- 0.05 AU, and have minimum masses (m sin i) of {M}b=1.96+/- 0.12 {M}{{Jup}} and {M}c=1.76+/- 0.18 {M}{{Jup}}. Detailed N-body dynamical simulations show that the two planets have remained on stable orbits for more than 106 years for low eccentricities and are most likely trapped in a mutual 3:5 mean motion resonance.

  1. Photoionization of Xe inside C{sub 60}: Atom-fullerene hybridization, giant cross-section enhancement, and correlation confinement resonances

    SciTech Connect

    Madjet, Mohamed E.; Renger, Thomas; Hopper, Dale E.; McCune, Matthew A.; Chakraborty, Himadri S.; Rost, Jan-M.; Manson, Steven T.

    2010-01-15

    A theoretical study of the subshell photoionization of the Xe atom endohedrally confined in C{sub 60} is presented. Powerful hybridization of the Xe 5s state with the bottom edge of C{sub 60} pi band is found that induces strong structures in the 5s ionization, causing the cross section to differ significantly from earlier results that omit this hybridization. The hybridization also affects the angular distribution asymmetry parameter of Xe 5p ionization near the Cooper minimum. The 5p cross section, on the other hand, is greatly enhanced by borrowing considerable oscillator strength from the C{sub 60} giant plasmon resonance via the atom-fullerene dynamical interchannel coupling. Beyond the C{sub 60} plasmon energy range the atomic subshell cross sections display confinement-induced oscillations in which, over the large 4d shape resonance region, the dominant 4d oscillations induce their 'clones' in all degenerate weaker channels known as correlation confinement resonances.

  2. Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.

    2016-06-01

    It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.

  3. Simultaneous and Direct Measurement of the Neutron - Branching Ratio of URANIUM-238 in the Region of the Giant Quadrupole Resonance.

    NASA Astrophysics Data System (ADS)

    Countryman, Peter John

    We have measured the coincidence cross-sections ^{238}U(alpha, alpha'{rm n| f} ) and ^{238}U( alpha,alpha'f), and inclusive cross-sections ^{238} U(alpha,alpha') using the 120 MeV alpha particle beam at the Lawrence Berkeley Laboratory's 88-Inch Cyclotron. The (alpha, alpha'{rm n| f} ) experiment simultaneously measured the cross-sections for ^{238}U(alpha, alpha'f) and ^{238 }U(alpha,alpha' {rm n| f}) at theta _{alpha'} ~ 17^circ, a local maximum for the angular distributions of the isoscalar giant quadrupole and monopole resonances (GQ_0R and GM _0R). The branching ratio Gamma _{rm n}/Gamma_{ rm f} obtained from this experiment is therefore not subject to many of the systematic errors which go into the individual cross-sections. The energy of the scattered alpha-particle (E _{alpha'}) and the neutron time-of-flight were measured for each event. Fission events were detected using a large solid-angle array, so that the fission neutrons could be removed from the neutron decay spectra. This enabled us to make the first measurement of the neutron decay from an actinide nucleus. Inelastic scattering cross-sections are presented for the range of excitation energy from 0. to 20. MeV. In a separate experiment, the cross-section {rm d^2sigma(alpha,alpha 'rm f)}over {rm d Omega_{alpha'}{dE}_{alpha'} } was measured for uranium at seven scattering angles in the range theta_{alpha '} = 7^circ -21^{circ}. We extracted the transition strength as a function of excitation energy for the GQ_0R and GM _0R. In (alpha,alpha 'f), we find 25% of the L = 2 energy-weighted sum-rule (from 8 to 12 MeV), and 50% of the L = 0 sum-rule (12 to 16 MeV). The strength agrees well with a recent (e,e^'f) experiment. We used the strengths extracted from the ( alpha,alpha'f) experiment along with the (alpha,alpha' {n| f}) data to place limits on (Gamma_{rm n }/Gamma_{rm f}) _{rm GQR} and ( Gamma_{rm n}/Gamma_ {rm f})_{rm GMR}. We obtained (Gamma_ {rm n}/Gamma_{rm f})_{rm GQR} = 6 +/- 4 (statistical

  4. Giant resonance for the actinide nuclei: Photoneutron and photofission cross sections for /sup 235/U, /sup 236/U, /sup 238/U, and /sup 232/Th

    SciTech Connect

    Caldwell, J.T.; Dowdy, E.J.; Berman, B.L.; Alvarez, R.A.; Meyer, P.

    1980-04-01

    The photoneutron cross sections sigma (..gamma..,n) and sigma (..gamma..,2n), and total photofission cross sections sigma (..gamma..,F) have been measured for /sup 235/U, /sup 236/U, /sup 238/U, and /sup 232/Th from threshold to 18.3 MeV using monoenergetic photons from the annihilation in flight of fast positrons and neutron-multiplicity detection in an efficient 4..pi.. neutron detector. Use of the ring-ratio technique allowed both the average photofission neutron energy for each nucleus to be obtained as a function of photon energy and, for /sup 236/U and /sup 238/U, the determination of the partial cross sections for first-chance sigma (..gamma.., f ) and second-chance sigma (..gamma..,n f ) photofission as well. Information extracted from the data includes integrated cross sections and their moments, giant-resonance parameters, deformation and radius parameters, and relative and absolute neutron and fission probabilities.

  5. Timing Treatment of a Giant Intracranial Aneurysm by the Use of Magnetic Resonance Imaging for the Determination of Intraluminal Clot Stability

    PubMed Central

    Jungreis, Charles A.; Jannetta, Peter J.; Yonas, Howard

    1993-01-01

    A 44-year-old man presented with a giant intracranial carotid artery aneurysm. Magnetic resonance (MR) images demonstrated a large amount of fresh intraluminal thrombus in the aneurysm. During test occlusion of the internal carotid artery using an endovascular balloon positioned in the cervical portion of the internal carotid, the patient sustained an apparent embolic episode. The patient was followed for several weeks with serial MR imaging until the thrombus had lysed. Repeat test occlusion followed by permanent carotid occlusion was uneventful. Serial MR evaluations of intraluminal thrombus in large aneurysms might help to determine an optimal time for institution of intervention. ImagesFigure 1Figure 2Figure 3p34-bFigure 4Figure 5 PMID:17170887

  6. X-ray excited photoluminescence near the giant resonance in solid-solution Gd(1-x)Tb(x)OCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd(1-x)Tb(x)F3.

    PubMed

    Waetzig, Gregory R; Horrocks, Gregory A; Jude, Joshua W; Zuin, Lucia; Banerjee, Sarbajit

    2016-01-14

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions. PMID:26661920

  7. Low-energy tail of the giant dipole resonance in Mo98 and Mo100 deduced from photon-scattering experiments

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Schwengner, R.; Dönau, F.; Erhard, M.; Grosse, E.; Junghans, A. R.; Kosev, K.; Schilling, K. D.; Wagner, A.; Bečvář, F.; Krtička, M.

    2008-06-01

    Dipole-strength distributions in the nuclides Mo98 and Mo100 up to the neutron-separation energies have been studied in photon-scattering experiments at the bremsstrahlung facility of the Forschungszentrum Dresden-Rossendorf. To determine the dipole-strength distributions up to the neutron-emission thresholds, statistical methods were developed for the analysis of the measured spectra. The measured spectra of scattered photons were corrected for detector response and atomic background by simulations using the code GEANT3. Simulations of γ-ray cascades were performed to correct the intensities of the transitions to the ground state for feeding from higher-lying levels and to determine their branching ratios. The photoabsorption cross sections obtained for Mo98 and Mo100 from the present (γ,γ') experiments are combined with (γ,n) data from literature, resulting in a photoabsorption cross section covering the range from 4 to about 15 MeV of interest for network calculations in nuclear astrophysics. Novel information about the low-energy tail of the giant dipole resonance and its energy dependence is derived. The photoabsorption cross sections deduced from the present photon-scattering experiments are compared with existing data from neutron capture and He3-induced reactions.

  8. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  9. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  10. Emerging giant resonant exciton induced by Ta substitution in anatase TiO2: A tunable correlation effect

    NASA Astrophysics Data System (ADS)

    Yong, Z.; Trevisanutto, P. E.; Chiodo, L.; Santoso, I.; Barman, A. R.; Asmara, T. C.; Dhar, S.; Kotlov, A.; Terentjevs, A.; Della Sala, F.; Olevano, V.; Rübhausen, M.; Venkatesan, T.; Rusydi, A.

    2016-05-01

    Titanium dioxide (TiO2) has rich physical properties with potential implications for both fundamental physics and new applications. To date, the main focus of applied research is to tune its optical properties, which is usually done via doping and/or nanoengineering. However, understanding the role of d electrons in materials and possible functionalization of d -electron properties are still major challenges. Herewith, within a combination of an innovative experimental technique, high-energy optical conductivity, and state-of-the-art ab initio electronic structure calculations, we report an emerging, novel resonant exciton in the deep ultraviolet region of the optical response. The resonant exciton evolves upon low-concentration Ta substitution in anatase TiO2 films. It is surprisingly robust and related to strong electron-electron and electron-hole interactions. The d - and f -orbital localization, due to Ta substitution, plays an unexpected role, activating strong electronic correlations and dominating the optical response under photoexcitation. Our results shed light on a new optical phenomenon in anatase TiO2 films and on the possibility of tuning electronic properties by Ta substitution.

  11. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  12. X-ray excited photoluminescence near the giant resonance in solid-solution Gd1-xTbxOCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd1-xTbxF3

    NASA Astrophysics Data System (ADS)

    Waetzig, Gregory R.; Horrocks, Gregory A.; Jude, Joshua W.; Zuin, Lucia; Banerjee, Sarbajit

    2015-12-01

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb3+ centers upon X-ray excitation near the giant resonance of the host Gd3+ ions.Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism

  13. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  14. Giant axonal neuropathy: MRS findings.

    PubMed

    Alkan, Alpay; Kutlu, Ramazan; Sigirci, Ahmet; Baysal, Tamer; Altinok, Tayfun; Yakinci, Cengiz

    2003-10-01

    Giant axonal neuropathy (GAN) is a rare genetic disease of childhood involving the central and peripheral nervous systems. Axonal loss with several giant axons filled with neurofilaments is the main histopathological feature of peripheral nerve biopsies in this disease. Routine neuroimaging studies reveal diffuse hyperintensities in cerebral and cerebellar white matter. In this case report, the authors present the brain magnetic resonance spectroscopic features (normal N-acetylaspartate/creatine and increased choline/creatine and myoinositol/creatine ratios), which might indicate the absence of neuroaxonal loss and the presence of significant demyelination and glial proliferation in white matter, of an 11-year-old boy diagnosed with GAN. PMID:14569833

  15. RCNP E398 {sup 16}O,{sup 12}C(p,p’) experiment: Measurement of the γ-ray emission probability from giant resonances in relation to {sup 16}O,{sup 12}C(ν,ν’) reactions

    SciTech Connect

    Ou, I.; Yamada, Y.; Mori, T.; Yano, T.; Sakuda, M.; Tamii, A.; Suzuki, T.; Yosoi, M.; Aoi, N.; Ideguchi, E.; Hashimoto, T.; Miki, K.; Ito, T.; Iwamoto, C.; Yamamoto, T.; Akimune, H.

    2015-05-15

    We propose to measure the γ-ray emission probability from excited states above 5 MeV including giant resonance of {sup 16}O and {sup 12}C as a function of excitation energy in 1-MeV step. Here, we measure both the excitation energy (E{sub x}=5-30MeV) at the forward scattering angles (0°-3°) of the {sup 16}O, {sup 12}C (p, p’) reaction using Grand-Raiden Spectrometer and the energy of γ-rays (E{sub γ}) using an array of NaI(Tl) counters. The purpose of the experiment is to provide the basic and important information not only for the γ-ray production from primary neutral-current neutrino-oxygen (-carbon) interactions but also for that from the secondary hadronic (neutron-oxygen and -carbon) interactions.

  16. Giant Axonal Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Giant Axonal Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Giant Axonal Neuropathy? Giant axonal neuropathy (GAN) is a rare inherited ...

  17. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  18. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  19. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  20. Recurrent renal giant leiomyosarcoma

    PubMed Central

    Öziş, Salih Erpulat; Gülpınar, Kamil; Şahlı, Zafer; Konak, Baha Burak; Keskin, Mete; Özdemir, Süleyman; Ataoğlu, Ömür

    2016-01-01

    Primary renal leiomyosarcomas are rare, aggressive tumors. They constitute 1–2% of adult malignant renal tumors. Although leiomyosarcomas are the most common histological type (50–60%) of renal sarcomas, information on renal leiomyosarcoma is limited. Local or systemic recurrences are common. The radiological appearance of renal leiomyosarcomas is not specific, therefore renal leiomyosarcoma cannot be distinguished from renal cell carcinoma by imaging methods in all patients. A 74-year-old female patient presented to our clinic complaining of a palpable mass on the right side of her abdomen in November 2012. The abdominal magnetic resonance imaging revealed a mass, 25 × 24 × 23 cm in size. Her past medical history revealed that she has undergone right radical nephrectomy in 2007, due to a 11 × 12 × 13 cm renal mass that was then reported as renal cell carcinoma on abdominal magnetic resonance imaging, but the pathological diagnosis was low-grade renal leiomyosarcoma. The most recent follow-up of the patient was in 2011, with no signs of local recurrence or distant metastases within this four-year period. The patient underwent laparotomy on November 2012, and a 35 cm retroperitoneal mass was excised. The pathological examination of the mass was reported as high-grade leiomyosarcoma. The formation of this giant retroperitoneal mass in 1 year can be explained by the transformation of the lesion’s pathology from low-grade to a high-grade tumor.

  1. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  2. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  3. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  4. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  5. Management of giant liver hemangiomas: an update.

    PubMed

    Hoekstra, Lisette T; Bieze, Matthanja; Erdogan, Deha; Roelofs, Joris J T H; Beuers, Ulrich H W; van Gulik, Thomas M

    2013-03-01

    Liver hemangiomas are the most common benign liver tumors and are usually incidental findings. Liver hemangiomas are readily demonstrated by abdominal ultrasonography, computed tomography or magnetic resonance imaging. Giant liver hemangiomas are defined by a diameter larger than 5 cm. In patients with a giant liver hemangioma, observation is justified in the absence of symptoms. Surgical resection is indicated in patients with abdominal (mechanical) complaints or complications, or when diagnosis remains inconclusive. Enucleation is the preferred surgical method, according to existing literature and our own experience. Spontaneous or traumatic rupture of a giant hepatic hemangioma is rare, however, the mortality rate is high (36-39%). An uncommon complication of a giant hemangioma is disseminated intravascular coagulation (Kasabach-Merritt syndrome); intervention is then required. Herein, the authors provide a literature update of the current evidence concerning the management of giant hepatic hemangiomas. In addition, the authors assessed treatment strategies and outcomes in a series of patients with giant liver hemangiomas managed in our department. PMID:23445235

  6. Two Giant Planets Orbiting the K Giant Star η Cet

    NASA Astrophysics Data System (ADS)

    Trifonov, T.; Reffert, S.; Tan, X.; Lee, M. H.; Quirrenbach, A.

    2014-01-01

    We present evidence of a new planetary system around the K giant η Cet (HIP 5364, HD 6805, HR 334), based on 124 high-precision optical and infrared radial velocity data, taken at Lick Observatory (Hamilton) and at VLT (CRIRES). The best dynamical fit to the data is consistent with two massive planets (m 1sini~2.6M Jup , m 2sini~3.3MJup ) and with periods of P 1~407 days, P 2~740 days. To test the η Cet system's stability we perform ~ 10,000 dynamical investigations with maximum time spans of 108 years. We find that in case of moderate eccentricities, the planets can be effectively trapped in an anti-aligned stable 2:1 mean motion resonance (MMR), very close to the separatrix. A larger non-resonant stable region exists in low-eccentricity parameter space, although less probable than the 2:1 MMR region.

  7. Peripheral giant cell granuloma.

    PubMed

    Adlakha, V K; Chandna, P; Rehani, U; Rana, V; Malik, P

    2010-01-01

    Peripheral giant cell granuloma is a benign reactive lesion of gingiva. It manifests as a firm, soft, bright nodule or as a sessile or pedunculate mass. This article reports the management of peripheral giant cell granuloma in a 12-year-old boy by surgical excision. PMID:21273719

  8. Giant Cell Tumor of the Peroneus Brevis Tendon Sheath

    PubMed Central

    Ch, Li; TH, Lui

    2015-01-01

    Introduction: Giant cell tumor of the tendon sheath is most commonly found in the flexor aspect of hand and wrist and is rare in the foot and ankle. Case report: A 49-year-old lady noticed a right lateral foot mass for 10 years. Magnetic resonance imaging suggested that the mass is originated from the peroneal tendons. The mass was excised and intra-operative findings showed that the tumor came from the peroneus brevis tendon sheath. Histological study confirmed the diagnosis of giant cell tumor. Conclusion: Giant cell tumor, although rare, should be one of the differential diagnoses of tendon sheath tumor of the foot and ankle. PMID:27299104

  9. Giant optical nonlinearity of plasmonic nanostructures

    SciTech Connect

    Melentiev, P N; Afanasev, A E; Balykin, V I

    2014-06-30

    The experimental studies of giant optical nonlinearity of single metal nanostructures are briefly reviewed. A new hybrid nanostructure – split-hole resonator (SHR) – is investigated. This structure is characterised by a record-high efficiency of third-harmonic generation and multiphoton luminescence (its nonlinearity exceeds that of a single nanohole by five orders of magnitude) and an unprecedently high sensitivity to light polarisation (extinction coefficient 4 × 10{sup 4}). (extreme light fields and their applications)

  10. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  11. Giant Subclavian Artery Aneurysm.

    PubMed

    Counts, Sarah; Zeeshan, Ahmad; Elefteriades, John

    2016-06-01

    We report the case of a 37-year-old construction executive presenting with chest pain, shortness of breath, and dizziness on exertion secondary to a giant left subclavian artery aneurysm and aortic valvular disease. PMID:27231430

  12. The Next Giant Step

    NASA Video Gallery

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  13. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  14. Giant Congenital Melanocytic Nevi and Neurocutaneous Melanosis

    PubMed Central

    Araújo, Catarina; Pardal, Francisco; Brito, Celeste

    2015-01-01

    Introduction. The major medical concern with giant congenital melanocytic nevi CMN is high risk of developing cutaneous melanoma, leptomeningeal melanoma, and neurocutaneous melanocytosis. Case Report. A 30-year-old woman with a giant congenital melanocytic nevus covering nearly the entire right thoracodorsal region and multiple disseminated melanocytic nevi presented with neurological symptoms. Cerebral magnetic resonance imaging revealed a large expansive lesion in the left frontal region. Postsurgically pathological diagnosis revealed characteristics of melanoma. Immunohistochemical examination showed S100(+), HMB45(+), MelanA(+), and MiTF(+). She received radiotherapy with temozolomide followed by two more chemotherapy cycles with temozolomide. She followed a rapidly progressive course, reflecting widespread leptomeningeal infiltration, and she died of multiorgan failure seven months after diagnosis of cerebral melanoma. Discussion. This patient was diagnosed as having a neurocutaneous melanosis with malignant widespread leptomeningeal infiltration. Diffuse spinal involvement is unusual and is described in only another patient. PMID:25722729

  15. Giant perigenital seborrheic keratosis

    PubMed Central

    Bandyopadhyay, Debabrata; Saha, Abanti; Mishra, Vivek

    2015-01-01

    Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man. PMID:25657917

  16. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  17. Giant perigenital seborrheic keratosis.

    PubMed

    Bandyopadhyay, Debabrata; Saha, Abanti; Mishra, Vivek

    2015-01-01

    Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man. PMID:25657917

  18. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%. PMID:26610277

  19. A giant ureteric calculus

    PubMed Central

    Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas

    2013-01-01

    Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved. PMID:24082453

  20. Giant urethral calculus

    PubMed Central

    Kotkar, Kunal; Thakkar, Ravi; Songra, MC

    2011-01-01

    Primary urethral calculus is rarely seen and is usually encountered in men with urethral stricture or diverticulum. We present a case of giant urethral calculus secondary to a urethral stricture in a man. The patient was treated with calculus extraction with end to end urethroplasty. PMID:24950400

  1. Juvenile giant fibroadenoma

    PubMed Central

    Yagnik, Vipul D.

    2011-01-01

    Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice. PMID:24765310

  2. A giant ureteric calculus.

    PubMed

    Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas

    2013-07-01

    Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved. PMID:24082453

  3. Giant proximity effect in cuprate superconductors.

    PubMed

    Bozovic, I; Logvenov, G; Verhoeven, M A J; Caputo, P; Goldobin, E; Beasley, M R

    2004-10-01

    Using an advanced molecular beam epitaxy system, we have reproducibly synthesized atomically smooth films of high-temperature superconductors and uniform trilayer junctions with virtually perfect interfaces. We found that supercurrent runs through very thick barriers. We can rule out pinholes and microshorts; this "giant proximity effect" (GPE) is intrinsic. It defies the conventional explanation; it might originate in resonant tunneling through pair states in an almost-superconducting barrier. GPE may also be significant for superconducting electronics, since thick barriers are easier to fabricate. PMID:15524925

  4. Management of giant pseudomeningoceles after spinal surgery

    PubMed Central

    2010-01-01

    Background Pseudomeningoceles are a rare complication after spinal surgery, and studies on these complex formations are few. Methods Between October 2000 and March 2008, 11 patients who developed symptomatic pseudomeningoceles after spinal surgery were recruited. In this retrospective study, we reported our experiences in the management of these complex, symptomatic pseudomeningoceles after spinal surgery. A giant pseudomeningocele was defined as a pseudomeningocele >8 cm in length. We also evaluated the risk factors for the formation of giant pseudomeningoceles. Results All patients were treated successfully with a combined treatment protocol of open revision surgery for extirpation of the pseudomeningoceles, repair of dural tears, and implantation of a subarachnoid catheter for drainage. Surgery-related complications were not observed. Recurrence of pseudomeningocele was not observed for any patient at a mean follow-up of 16.5 months. This result was confirmed by magnetic resonance imaging. Conclusions We conclude that a combined treatment protocol involving open revision surgery for extirpation of pseudomeningoceles, repair of dural tears, and implantation of a subarachnoid catheter for drainage is safe and effective to treat giant pseudomeningoceles. PMID:20302667

  5. Giant plexiform neurofibroma and suboccipital meningocele manifesting as segmental neurofibromatosis.

    PubMed

    Kurimoto, Masanori; Mizumaki, Yasushi; Fukuda, Osamu; Hayashi, Nakamasa; Kuwayama, Naoya; Endo, Shunro

    2008-06-01

    A 34-year-old woman presented with segmental neurofibromatosis manifesting as a soft lump with a large café-au-lait macule on her occipital region and neck. Magnetic resonance imaging showed a thick skin tumor in the occipital region and posterior neck, and a suboccipital meningocele which seemed to have no association with her symptoms. Biopsy lead to a histological diagnosis of giant plexiform neurofibroma. During biopsy, massive local bleeding occurred and hemostasis was achieved by electrocautery and meticulous suture ligation. The postoperative course was uneventful and observation was continued for both the giant plexiform neurofibroma and the meningocele. PMID:18574335

  6. A giant vesical calculus.

    PubMed

    Rahman, M; Uddin, A; Das, G C; Akanda, N I

    2007-07-01

    Massive or giant vesical calculus is a rare entity in the recent urological practice. Males are affected more than the females. Vesical calculi are usually secondary to bladder outlet obstruction. These patients present with recurrent urinary tract infection, haematuria or with retention of urine. We report a young male patient who presented with defaecatory problems along with other urinary symptoms. The patient having an average built, non diabetic but hypertensive. The stone could be palpated by physical examination. His urea levels were within normal limits but urine examination shows infection. USG reveals bilateral hydronephrosis with multiple stones in both kidneys along with a giant vesical calculus. After controlling urinary infection and hypertention he underwent an open cystolithotomy. During operation digital rectal help was needed to remove the stone as it was adherent with bladder mucosa. Post operative period was uneventful. His urinary output was quite normal and had no defaecatory problems. Patient left the hospital 10 days after operation. PMID:17917633

  7. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  8. Giant thymic carcinoid.

    PubMed

    John, L C; Hornick, P; Lang, S; Wallis, J; Edmondson, S J

    1991-05-01

    Thymic carcinoid is a rare tumour. It may present with ectopic endocrine secretion or with symptoms of compression as a result of its size. A case is reported which presented with symptoms of compression where the size of the tumour was uniquely large such as to warrant the term giant thymic carcinoid. The typical histological features are described, together with its possible origin and its likely prognosis. PMID:1852667

  9. Giant dedifferentiated retroperitoneal liposarcoma.

    PubMed

    Dominguez, Elias; Lopez de Cenarruzabeitia, Iñigo; Martinez, Manuel; Rueda, J C; Lede, A; Barreiro, Erica; Diz, Susana

    2008-01-01

    Liposarcoma tumors only represent 0.1% of all cancers, but they are the more common of retroperitoneal sarcomas. It has a great tendency for local recurrence, mainly the dedifferentiated variety, but its complete resection can provide a 5-year survival of 70%. In this report, we present a case of a giant dedifferentiated retroperitoneal liposarcoma that did not affect any neighboring organ and that was successfully treated by means of complete surgical resection. PMID:19731863

  10. Giant rodlike reversed micelles

    SciTech Connect

    Yu, Z.J.; Neuman, R.D. )

    1994-05-04

    Herein we report that sodium bis(2-ethylhexyl)phosphate, which is similar in structure to the classical surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT), forms very large rodlike reversed micelles and that their size can be even much larger if water is removed from the apolar solution. We further suggest that long-range electrostatic interactions are the primary driving force for the formation of giant reversed micelles. 19 refs., 3 figs.

  11. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  12. Red giants seismology

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  13. Giant radio pulses

    NASA Astrophysics Data System (ADS)

    Kondratiev, Vladislav

    Rotation-powered radio pulsars exhibit a remarkably diverse spectrum of variability with characteristic time scales from days and even years (intermittent pulsars) to minutes-seconds (nulling) and (sub-)microseconds. The latter time scales are associated with the phenomenon of giant pulses (GPs) and micropulses. The story of GPs started in 1968, when Staelin and Reifenstein discovered the Crab pulsar through its spectacularly bright radio pulses. To date, only seven pulsars out of more than 2200 are known to show GP emission, namely the pulsars B0531+21, B1937+21, B0540-69, B1821-24, B1957+20, J0218+4232, and B1820-30A. Giant pulses are characterized by large energies (more than ten times of the energy of the average pulse), short durations, power-law energy distribution, specific rotational phase of occurrence, high degree of polarization, and accompanying high-energy radiation. Large energies of GPs and coincidence of their phase of occurrence with peaks of high-energy profiles hint at the same mechanism of radio GP and high-energy emission. The correlation of Crab pulsar GPs with optical, X-ray and gamma-ray photons was studied for the past 20 years, with only radio/optical link confirmed so far. In my talk I will present the summary of the observational evidence of radio GPs and give an overview of theoretical advances on giant-pulse emission mechanism.

  14. Unusual Giant Prostatic Urethral Calculus

    PubMed Central

    Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.

    2010-01-01

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328

  15. Giant Coulomb blockade magnetoresistance

    SciTech Connect

    Zhang, Xiaoguang; Wen, Z. C.; Wei, H. X.; Han, Prof. X. F.

    2010-01-01

    We show that the Coulomb blockade voltage can be made to depend strongly on the electron spin in a thin magnetic granular layer inserted in the middle of an insulating layer of a tunnel junction. This strong spin dependence is predicted from the spin-dependent inter-granular conductance through any of the following effects within the granular layer, giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), colossal magnetoresistance (CMR), or GMR through a polymer spacer. The resulting Coulomb blockade magnetoresistance (CBMR) ratio can exceed the magnetoresistance ratio of the granular layer itself by orders of magnitude. Unlike other magenetoresistance effects, the CBMR effect does not require magnetic electrodes.

  16. Giant Cardiac Cavernous Hemangioma.

    PubMed

    Unger, Eric; Costic, Joseph; Laub, Glenn

    2015-07-01

    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  17. Calculation of the energy loss for an electron passing near giant fullerenes

    NASA Astrophysics Data System (ADS)

    Henrard, L.; Lambin, Ph

    1996-11-01

    We present a theoretical analysis of the electron energy-loss spectra of isolated giant fullerenes. We use a macroscopic dielectric description of spherical onion-like fullerenes and a discrete dipole approximation (DDA) framework for tubular fullerenes. In the DDA model, an anisotropic dynamical polarizability is assigned to each carbon site. We stress the fundamental importance of the hollow character of giant fullerenes in the electron energy-loss resonances.

  18. Fluid-fluid levels in giant cell tumors of bone: report of two cases.

    PubMed

    Kaplan, P A; Murphey, M; Greenway, G; Resnick, D; Sartoris, D J; Harms, S

    1987-04-01

    Fluid-fluid levels have been described in association with aneurysmal bone cysts, telangiectatic osteosarcoma, and a chondroblastoma. We report two cases of giant cell tumors of bone with fluid-fluid levels identified by computed tomography and, in one case, by magnetic resonance imaging. This finding has not previously been associated with giant cell tumors. The radiographic features of the fluid-fluid levels cannot be distinguished from those reported in other osseous neoplasms. PMID:3581850

  19. Giant cell tumor of the flexor tendon of the wrist: US and MRI evaluation. Case report

    PubMed Central

    Bassetti, E.; Candreva, R.; Santucci, E.

    2011-01-01

    Giant cell tumor of the tendon sheath (GCTTS) is a benign proliferative lesion of synovial origin that may affect the joints, bursae and tendon sheaths. We report the case of a giant cell tumor of the tendon sheath arising from the carpal tunnel of the wrist in a 47-year-old woman. The patient underwent ultrasound (US) examination and subsequently magnetic resonance imaging (MRI). PMID:23396659

  20. Rheology of giant micelles

    NASA Astrophysics Data System (ADS)

    Cates, M. E.; Fielding, S. M.

    2006-12-01

    Giant micelles are elongated, polymer-like objects created by the self-assembly of amphiphilic molecules (such as detergents) in solution. Giant micelles are typically flexible, and can become highly entangled even at modest concentrations. The resulting viscoelastic solutions show fascinating flow behaviour (rheology) which we address theoretically in this article at two levels. First, we summarize advances in understanding linear viscoelastic spectra and steady-state nonlinear flows, based on microscopic constitutive models that combine the physics of polymer entanglement with the reversible kinetics of self-assembly. Such models were first introduced two decades ago, and since then have been shown to explain robustly several distinctive features of the rheology in the strongly entangled regime, including extreme shear thinning. We then turn to more complex rheological phenomena, particularly involving spatial heterogeneity, spontaneous oscillation, instability and chaos. Recent understanding of these complex flows is based largely on grossly simplified models which capture in outline just a few pertinent microscopic features, such as coupling between stresses and other order parameters such as concentration. The role of ‘structural memory’ (the dependence of structural parameters such as the micellar length distribution on the flow history) in explaining these highly nonlinear phenomena is addressed. Structural memory also plays an intriguing role in the little-understood shear thickening regime, which occurs in a concentration regime close to but below the onset of strong entanglement, and which is marked by a shear-induced transformation from an inviscid to a gelatinous state.

  1. Giant solitary trichoepithelioma

    PubMed Central

    Teli, Bhavuray; Thrishuli, P. B.; Santhosh, R.; Amar, D. N.; Rajpurohit, Shravan

    2015-01-01

    Adnexal tumors like giant solitary trichoepitheliomas are uncommon to most of us to permit a ready familiarity with them. Information regarding the genesis, clinical profile, behavior, and management options for this tumor is limited. There are 18 cases reported in the world literature till date. This review attempts to provide insight to this rare tumor. Our search included indexed literature from Pubmed, Directory of Open Access Journals, Health Inter Network Access to Research Initiative and Google databases in addition to standard dermatology texts. Giant solitary trichoepithelioma is a rare trichogenic tumor with potential for local recurrence. It has predilection for the older age, but may present at any age including at birth. It has close resemblance to basal cell carcinoma and other skin adnexal tumors - clinically, cytologically, and histologically. CD10, CD 34, PHLDA1 but not p75NTR are useful adjunct markers. Surgical excision is the standard treatment. Recurrence and possible transformation into BCC cautions follow up at regular intervals. PMID:25839021

  2. Giant solitary trichoepithelioma.

    PubMed

    Teli, Bhavuray; Thrishuli, P B; Santhosh, R; Amar, D N; Rajpurohit, Shravan

    2015-01-01

    Adnexal tumors like giant solitary trichoepitheliomas are uncommon to most of us to permit a ready familiarity with them. Information regarding the genesis, clinical profile, behavior, and management options for this tumor is limited. There are 18 cases reported in the world literature till date. This review attempts to provide insight to this rare tumor. Our search included indexed literature from Pubmed, Directory of Open Access Journals, Health Inter Network Access to Research Initiative and Google databases in addition to standard dermatology texts. Giant solitary trichoepithelioma is a rare trichogenic tumor with potential for local recurrence. It has predilection for the older age, but may present at any age including at birth. It has close resemblance to basal cell carcinoma and other skin adnexal tumors - clinically, cytologically, and histologically. CD10, CD 34, PHLDA1 but not p75NTR are useful adjunct markers. Surgical excision is the standard treatment. Recurrence and possible transformation into BCC cautions follow up at regular intervals. PMID:25839021

  3. Giant papillary conjunctivitis.

    PubMed Central

    Donshik, P C

    1994-01-01

    Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881

  4. Prenatal assessment of a fast-growing giant epignathus.

    PubMed

    Faghfouri, Farahnaz; Bucourt, Martine; Garel, Catherine; Benchimol, Michel; Amarenco, Brigitte; Soupre, Véronique; Benbara, Amélie; Carbillon, Lionel

    2014-02-01

    Epignathus is a very rare fetal tumor. We report a case of fast-growing giant epignathus with severe distortion of the right part of the face and orbit. A thorough prenatal work-up was performed by the association of Magnetic Resonance Imaging and Ultrasonography. A multidisciplinary approach was crucial to assess the operability and provide careful counseling to help parents understand and reach decision. PMID:24164281

  5. Allometry indicates giant eyes of giant squid are not exceptional

    PubMed Central

    2013-01-01

    Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone. PMID:23418818

  6. Planets around Giant Stars: Results from the Lick Survey

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas; Reffert, Sabine; Trifonov, Trifon; Bergmann, Christoph; Schwab, Christian

    2015-12-01

    We present results from a radial-velocity survey of 373 giant stars at Lick Observatory, which started in 1999. We have detected planets around 15 of these stars; an additional 20 stars host planet candidates. Companions with up to 25 Jupiter masses are rather commonly found around stars with about 2 Solar masses. The frequency of detected planetary companions appears to increase with metallicity. No planets or planet candidates are found around stars with more than 2.7 Solar masses, although our sample contains 113 such stars. We conclude that the occurrence rate of giant planets as a function of Stellar mass peaks around 2 Solar masses. This has important consequences for our understanding of giant planet formation.The stars 91 Aqr and tau Gem have companions with orbits that are among those with the lowest eccentricities of all known exoplanets, perhaps due to tidal circularization during the RGB phase. If confirmed, this would be the first evidence of planetary orbits modified through stellar evolution.We have discovered several multiple systems in our sample. An extensive dynamical analysis of the eta Cet system indicates that it contains two massive planets in a 2:1 orbital resonance. The star nu Oph is orbited by two brown dwarf companions in a 6:1 resonance. It is likely that they arrived in this resonance through migration in a circumstellar disk, arguing strongly that objects with more than 20 Jupiter masses can be formed in disks around Herbig Ae stars.

  7. Neutron decay of the Giant Pairing Vibration in 15C

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Agodi, C.; Assié, M.; Azaiez, F.; Cappuzzello, F.; Carbone, D.; de Séréville, N.; Foti, A.; Pandola, L.; Scarpaci, J. A.; Sgouros, O.; Soukeras, V.

    2016-06-01

    The neutron decay of the resonant states of light neutron-rich nuclei is an important and poorly explored property, useful to extract valuable nuclear structure information. The neutron decay of the 15C resonances populated via the two-neutron transfer reaction 13C(18O,16O n) at 84 MeV incident energy is studied using an innovative technique which couples the MAGNEX magnetic spectrometer and the EDEN neutron detector array. The data show that the recently observed 15C Giant Pairing Vibration at 13.7 MeV mainly decays via two-neutron emission.

  8. Giant magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Duenas, Terrisa Ann

    The limitation of magnetostrictive composites has been in their low magnetostrictive response when compared to their monolithic counterparts. In this dissertation research is presented describing the methods and analysis used to create a giant magnetostrictive composite (GMC) producing giant strains at low fields, exhibiting magnetization ``jumping'' and the ΔE effect. This composite combines the giant magnetostrictive material, Terfenol-D (Tb0.3Dy0.7Fe2) in particle form, with a nonmetallic binder and is capable of producing strains (at room temperature) exceeding 1000 ppm at a nominal field of 1.5 kOe mechanically unloaded and 1200 ppm at 8 MPa preload (2.5 kOe). Several studies leading to the high response of this composite are presented. A connectivity study shows that a [1-3] connected composite produces 50% more strain than a [0-3] composite. A resin study indicates that the lower the viscosity of the resin, the greater the magnetostrictive response; this is attributed to the removal of voids during degassing. A void study correlates the increase in voids to the decrease in strain response. A model is used to correlate analysis with experimental results within 10% accuracy and shows that an optimal volume fraction exists based on the properties of the binder. Using a Polyscience Spurr low- viscosity (60 cps) binder this volume fraction is nominally 20%; this optimum is attributed to the balance of epoxy contracting on the particle (built-in preload) and the actuation delivered by the magnetostrictive material. In addition to the connectivity, resin, void, and volume-fraction study, particle size and gradation studies are presented. Widely dispersed (<106, <212, <300 μm), narrowly dispersed (<45, (90-106), (275-300) μm), and an optimized bimodal (18.7% of (45-90) μm with 81.3% of (250-300) μm) particle distributions are studied. Results show that the larger the particle size, the higher the magnetostrictive response; this is attributed to the reduction of

  9. Giant magnetofossils and hyperthermal events

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Williams, Wyn; Fitz Gerald, John D.; Larrasoaña, Juan C.; Jovane, Luigi; Muxworthy, Adrian R.

    2012-10-01

    Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (˜40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for

  10. Two giant stellar complexes

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.; Efremov, E. Yu.

    Common star complexes are huge (0.3-1 kpc in diameter) groups of relatively young stars, associations and clusters. The complexes usually form regular chains along spiral arms of grand design galaxies, being evidently formed and supported by magneto- gravitational instability developing along an arm. Special attention is given to a few large complexes which have signatures of gravitational boundness, such as round shape and high central density. Concentrations of stars and clusters in such a complex in M51 galaxy were found in this paper; we concluded it is possible to suggest that the complex is gravitationally bound. It is also stressed that some properties of the giant complex in NGC 6946 (such as its semicircular and sharp Western edge) are still enigmatic.

  11. Giant facial lymphangioma.

    PubMed

    Sanger, Claire; Wong, Lindsey; Wood, Jeyhan; David, Lisa R; Argenta, Louis C

    2011-07-01

    Lymphatic malformation (LM) is a benign cystic entity resulting from aberrant lymphatic drainage. Often evident at birth, most LMs have declared themselves by 2 years of age. They can be concerning when they occur near vital structures such as the airway or orbit. The natural history varies considerable from spontaneous gradual regression to long-term growth and debilitation. Depending on the location, structures involved, and clinical course of the LM, therapeutic options include observation, intralesional sclerosis, laser therapy, and surgical excision. The literature provides guidelines for treatment options that must be carefully applied to the facial region. We present a newborn infant who presented to our institution with giant facial lymphangioma who underwent a combination of sclerosis, laser ablation, and surgery with reconstruction. PMID:21772195

  12. [Giant adrenal myelolipoma].

    PubMed

    El Mejjad, Amine; Fekak, Hamid; Dakir, Mohamed; Sarf, Ismail; Manni, Ahmed; Meziane, Fethi

    2004-02-01

    Adrenal myelolipoma is a rare, benign, non-secreting tumour composed of adipose and haematopoietic tissue. The authors report a rare case of giant adrenal myelolipoma in a 53-year-old patient presenting with low back pain and a palpable flank mass on examination. CT scan suggested the diagnosis and surgical resection was indicated in view of the size and symptomatic nature of this mass. Histological examination confirmed the diagnosis. The outcome was favourable without recurrence after a follow-up of one year. The diagnosis of adrenal myelolipoma is based on radiology. Conservative management is generally sufficient for small asymptomatic tumours, but resection is required for large (> 5 cm) and/or symptomatic tumours. PMID:15098761

  13. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  14. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  15. Landscape of the lost giants

    NASA Astrophysics Data System (ADS)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  16. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return. PMID:25002632

  17. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  18. A Case of Giant Uterine Lipoleiomyoma Simulating Malignancy

    PubMed Central

    Karaman, Erbil; Çim, Numan; Bulut, Gülay; Elçi, Gülhan; Andıç, Esra; Tekin, Mustafa; Kolusarı, Ali

    2015-01-01

    Introduction. Uterine leiomyoma is the most common benign pathology in women and lipoleiomyoma is an extremely rare and specific type of leiomyoma. Here, we report an unusual case of giant pedunculated subserous lipoleiomyoma misdiagnosed preoperatively as leiomyosarcoma. Case. A 45-year-old woman admitted to our gynecology outpatient clinic for complaints of abdominal distention, tiredness, and pelvic pain for the last 6 months. Sonography and abdominal magnetic resonance imaging (MRI) showed a giant semisolid mass that filled whole abdominal cavity from pelvis to subdiaphragmatic area. A primary diagnosis of uterine sarcoma or ovarian malignancy was made. On operation, total abdominal hysterectomy with a pedunculated mass of size 30 × 23 × 12 cm and weighing 5.4 kg and bilateral salpingo-oophorectomy were performed. The histopathology revealed a lipoleiomyoma with extensive cystic and fatty degeneration without any malignancy. Discussion. The diagnosis of leiomyoma is done usually with pelvic ultrasound but sometimes it is difficult to reach a correct diagnosis especially in cases of giant and pedunculated lipoleiomyoma that included fatty tissue which may mimick malignancy. Conclusion. Subserous pedunculated giant lipoleiomyoma should be kept in mind in the differential diagnosis of leiomyosarcoma or ovarian malignancy. PMID:26266066

  19. Giant retinal tears.

    PubMed

    Shunmugam, Manoharan; Ang, Ghee Soon; Lois, Noemi

    2014-01-01

    A giant retinal tear (GRT) is a full-thickness neurosensory retinal break that extends circumferentially around the retina for three or more clock hours in the presence of a posteriorly detached vitreous. Its incidence in large population-based studies has been estimated as 1.5% of rhegmatogenous retinal detachments, with a significant male preponderance, and bilaterality in 12.8%. Most GRTs are idiopathic, with trauma, hereditary vitreoretinopathies and high myopia each being causative in decreasing frequency. The vast majority of GRTs are currently managed with a pars plana vitrectomy; the use of adjunctive circumferential scleral buckling is debated, but no studies have shown a clear anatomical or visual advantage with its use. Similarly, silicone oil tamponade does not influence long-term outcomes when compared with gas. Primary and final retinal reattachment rates are achieved in 88% and 95% of patients, respectively. Even when the retina remains attached, however, visual recovery may be limited. Furthermore, fellow eyes of patients with a GRT are at higher risk of developing retinal tears and retinal detachment. Prophylactic treatment under these circumstances may be considered but there is no firm evidence of its efficacy at the present time. PMID:24138895

  20. [Giant retroperitoneal ganglioneuroma].

    PubMed

    Sarf, Ismail; el Mejjad, Amine; Badre, Latifa; Mani, Ahmed; Aboutaieb, Rachid; Meziane, Fethi

    2003-06-01

    The authors report a new case of retroperitoneal ganglioneuroma in an 18-year-old girl presenting with abdominal mass and lumbosciatica. The diagnosis of retroperitoneal tumour was based on computed tomography and magnetic resonance imaging. Treatment consisted of complete resection of the tumour. The postoperative course was favourable with no recurrence after one year of follow-up. The authors discuss the diagnostic, therapeutic and prognostic aspects of this disease. PMID:12940207

  1. A unique advantage for giant eyes in giant squid.

    PubMed

    Nilsson, Dan-Eric; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger; Shashar, Nadav

    2012-04-24

    Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes. PMID:22425154

  2. Formation of giant planets

    NASA Astrophysics Data System (ADS)

    Magni, G.; Coradini, A.

    2003-04-01

    In this presentation we address the problem of the formation of giant planets and their regular satellites. We study in particular the problem of formation of the Jupiter System comparing the results of the model with the present characteristics of the system, in order to identify what are those better represented by our approach. In fact here, using a 3-D hydro-dynamical code, we study the modalities of gas accretion onto a solid core, believed to be the seed from which Jupiter started. To do that we have modelled three main regions: the central planet, a turbulent accretion disk surrounding it and an extended region from which the gas is collected. In the extended region we treat the gas as a frictionless fluid. Our main goal is to identify what are the characteristics of the planet during its growth and the physical parameters affecting its growth at the expenses of the nebular gas present in the feeding zone. Moreover we want to understand what are the thermodynamical parameters characterizing the gas captured by the planet and swirling around it. Finally, we check if a disk can be formed in prograde rotation around the planet and if this disk can survive the final phases of the planet formation. Due to the interaction between the accreting planet and the disk it has been necessary to develop a complete model of the Jupiter’s structure. In fact the radiation emitted by the growing planet heats up the surrounding gas. In turn the planet’s thermodynamic structure depend on the mass accretion rate onto it. When the accretion is rapid, shock waves in the gas are formed close to the planet. This region cannot be safely treated by a numerical code; for this reason we have developed a semi-analytically model of a a turbulent accretion disk to be considered as transition between the planet and the surrounding disk.

  3. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  4. Arthroscopic Decompression for a Giant Meniscal Cyst.

    PubMed

    Ohishi, Tsuyoshi; Suzuki, Daisuke; Matsuyama, Yukihiro

    2016-01-01

    The authors report the case of a giant medial meniscal cyst in an osteoarthritic knee of an 82-year-old woman that was successfully treated with only arthroscopic cyst decompression. The patient noticed a painful mass on the medial side of the right knee that had been gradually growing for 5 years. Magnetic resonance imaging showed an encapsulated large medial cystic mass measuring 80×65×40 mm that was adjacent to the medial meniscus. An accompanying horizontal tear was also detected in the middle and posterior segments of the meniscus. The medial meniscus was resected up to the capsular attachment to create bidirectional flow between the joint and the cyst with arthroscopic surgery. Magnetic resonance imaging performed 14 months postoperatively showed that the cyst had completely disappeared, and no recurrence was observed during a 2-year follow-up period. An excellent result could be obtained by performing limited meniscectomy to create a channel leading to the meniscal cyst, even though the cyst was large. Among previously reported cases of meniscal cysts, this case is the largest to be treated arthroscopically without open excision. PMID:26726987

  5. Dynamical Simulations of Terrestrial Planet Formation During Giant Planet Migration

    NASA Astrophysics Data System (ADS)

    Mandell, A. M.; Raymond, S. N.; Sigurdsson, S.

    2005-12-01

    We present preliminary results of dynamical simulations of young planetary systems undergoing migration of a Jovian-type planet through the terrestrial region. We find that a significant fraction (10-40%) of the initial planetary embryos remain after giant planet migration, and subsequent evolution of the system results in the formation of terrestrial planets in various configurations, often including a planet in the Habitable Zone. In simulations with gas drag, 3-6 Earth mass planets are formed interior to the migrating Jovian planet, swept inward through moving resonances, and eccentricities are damped for all planets. Systematic variations are seen between simulations with and without gas drag. The presence of a second, non-migrating giant planet reduces the water content and mass of the planets formed throughout the system. This research was supported in part by the Penn State Astrobiology Research Center and the Goddard Center for Astrobiology.

  6. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  7. CMB lensing and giant rings

    NASA Astrophysics Data System (ADS)

    Rathaus, Ben; Itzhaki, Nissan

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  8. Giant myoma and erythrocytosis syndrome.

    PubMed

    Ozsaran, A A; Itil, I M; Terek, C; Kazandi, M; Dikmen, Y

    1999-08-01

    The objective of this study is to discuss the myomatous erythrocytosis syndrome in a patient with a giant subserous uterine myoma. She presented with plethora and an abdominal mass. After venesection of 4 units of blood, the preoperative haematocrit value of 53.3% and haemoglobin value of 17.5 g/dL had decreased to 48.6% and 16.8 g/dL levels, respectively. After the operative extraction of the giant subserous myoma with attached uterus weighing 14.2 kg, the haematocrit and the haemoglobin values had regressed to 40.3% and 14.3 g/dL levels, respectively. The findings indicated that the giant subserous myoma was the cause of the myomatous erythrocytosis syndrome in this patient. PMID:10554963

  9. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  10. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    SciTech Connect

    Ziętek, Sławomir Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  11. Peripheral Giant Cell Granuloma in a Dog.

    PubMed

    Hiscox, Lorraine A; Dumais, Yvan

    2015-01-01

    Peripheral giant cell granuloma is considered rare in the dog with little known about the clinicopathologic features. There are few reports in the veterinary literature concerning this benign, reactive lesion, formerly known as giant cell epulis. In humans, the four most commonly described reactive epulides are focal fibrous hyperplasia (fibrous epulis), pyogenic granuloma, peripheral ossifying fibroma, and peripheral giant cell granuloma. This case report describes the diagnosis and surgical management of a peripheral giant cell granuloma in a dog. PMID:26415387

  12. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high

  13. Giant serpentine aneurysm arising from the middle cerebral artery successfully treated with trapping and anastomosis: case report.

    PubMed

    Abiko, Masaru; Ikawa, Fusao; Ohbayashi, Naohiko; Mitsuhara, Takafumi; Nosaka, Ryo; Inagawa, Tetsuji

    2009-02-01

    A 56-year-old man presented with a giant serpentine aneurysm arising from the middle cerebral artery (MCA) manifesting as right hemiparesis and motor aphasia. Magnetic resonance imaging and digital subtraction angiography identified the giant serpentine aneurysm arising from the MCA. The patient was treated surgically. Temporary clipping of the distal channel induced thrombosis in the vascular channel, and the thrombosis was aspirated with an ultrasonic suction device after superficial temporal artery-MCA anastomosis. This case shows that initial occlusion of the distal channel is effective to treat giant serpentine aneurysm. PMID:19246869

  14. Chemical Abundances of Symbiotic Giants

    NASA Astrophysics Data System (ADS)

    Gałan, C.; Mikołajewska, J.; Hinkle, K. H.; Joyce, R. R.

    2015-12-01

    High resolution (R ˜ 50000), near-IR spectra were used to measure photospheric abundances of CNO and elements around the iron peak for 24 symbiotic giants. Spectrum synthesis was employed using local thermal equilibrium and hydrostatic model atmospheres. The metallicities are distributed in a wide range with maximum around [Fe/H] ˜-0.4 - - 0.3 dex. Enrichment in 14N indicates that all the sample giants have experienced the first dredge-up. The relative abundance of [Ti/Fe] is generally large in red symbiotic systems.

  15. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  16. Resonance capture at arbitrary inclination

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2015-01-01

    Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180° with 5° increments totalling nearly 6 × 105 numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10°,110°]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60°,130°]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.

  17. Real-Time Detection and Constraining Pulsar Emission Physics through Radio/Gamma-Ray Correlation of Crab Giant Pulses

    NASA Astrophysics Data System (ADS)

    Mickaliger, Mitchell B.; Ransom, S.; Langston, G.; McLaughlin, M.; Lorimer, D.; Bilous, A.; Kondratiev, V.; Lyutikov, M.

    2010-01-01

    Giant pulses are rare, short, bright bursts of radio emission. Although giant pulses are well documented, the physical processes behind them are not well known. To determine these processes, certain properties of giant pulses need to be constrained. Among these constraints are the rate of giant pulses and the number of giant pulses as a function of intensity. Data have been taken with the 43-m telescope at Green Bank over a time span of several months and reduced in real time to search for giant pulses. We have developed a real time detection algorithm to search the data for pulses, ruling out periodic signal. When a pulse is found, the intensity vs time profile, frequency vs time plot, and raw data within a second of the burst are saved. This real time detection algorithm allows us to take a large amount of data on the Crab with minimal disk space and human intervention. Another way we are trying to determine emission processes is by correlating Fermi data with giant pulse data from the 100-m Green Bank Telescope and the 43-m telescope. The main purpose of this is to test whether giant pulses are due to changes in the coherence of the radio emission mechanism, variations in the pair creation rate in the pulsar magnetosphere, or changes in the beaming direction. Also being tested is a specific giant pulse emission model proposed by Lyutikov, in which Crab giant pulses are generated on closed magnetic field lines near the light cylinder via anomalous cyclotron resonance of the ordinary mode. This model gives a clear prediction that radio giant pulses should be accompanied by gamma-ray photons.

  18. The giant panda gut microbiome.

    PubMed

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed. PMID:26143242

  19. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  20. Recurrent giant hypogastric artery aneurysms--a case report.

    PubMed

    Golden, R L; Bauman, J; Johnstone, M; Pindyck, F

    1988-07-01

    Aneurysms of the hypogastric artery are rare occurrences that are frequently asymptomatic until the time of rupture. When signs and symptoms are present, a pulsatile pelvic mass, frequently detected by rectal or vaginal examination, may produce compression symptoms with urologic, gastrointestinal, and neurologic manifestations. In addition to classical invasive methods of detection such as angiography, newer noninvasive imaging techniques, including ultrasonography, computerized tomography, and magnetic resonance imaging, may be employed to establish the diagnosis. Proximal ligation of the hypogastric artery is the usual method of treatment. A case of bilateral, giant hypogastric artery aneurysms with successful surgical management is reported. PMID:3044197

  1. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  2. On the Nature and Timing of Giant Planet Migration in the Solar System

    NASA Astrophysics Data System (ADS)

    Agnor, Craig B.

    2016-05-01

    Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.

  3. The fragility of the terrestrial planets during a giant-planet instability

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.; Chambers, John E.

    2016-02-01

    Many features of the outer Solar system are replicated in numerical simulations if the giant planets undergo an orbital instability that ejects one or more ice giants. During this instability, Jupiter and Saturn's orbits diverge, crossing their 2:1 mean motion resonance (MMR), and this resonance-crossing can excite the terrestrial planet orbits. Using a large ensemble of simulations of this giant-planet instability, we directly model the evolution of the terrestrial planet orbits during this process, paying special attention to systems that reproduce the basic features of the outer planets. In systems that retain four giant planets and finish with Jupiter and Saturn beyond their 2:1 MMR, we find at least an 85 per cent probability that at least one terrestrial planet is lost. Moreover, systems that manage to retain all four terrestrial planets often finish with terrestrial planet eccentricities and inclinations larger than the observed ones. There is less than a ˜5 per cent chance that the terrestrial planet orbits will have a level of excitation comparable to the observed orbits. If we factor in the probability that the outer planetary orbits are well replicated, we find a probability of 1 per cent or less that the orbital architectures of the inner and outer planets are simultaneously reproduced in the same system. These small probabilities raise the prospect that the giant-planet instability occurred before the terrestrial planets had formed. This scenario implies that the giant-planet instability is not the source of the Late Heavy Bombardment and that terrestrial planet formation finished with the giant planets in their modern configuration.

  4. Giant colon lipoma

    PubMed Central

    Yaman, İsmail; Derici, Hayrullah; Demirpolat, Gülen

    2015-01-01

    Colon lipomas are rare, non-epithelial tumors. They are generally smaller than two centimeters and asymptomatic, they are incidentally diagnosed and do not require treatment. Large and symptomatic colon lipomas are rather rare. Its differential diagnosis is generally made by histopathological examination of the resected specimen. A fifty-year-old female patient presented with the symptoms of abdominal pain, swelling in the abdomen and loss of weight. During colonoscopy, there was a submucosal mass of 8×6 cm, which almost completely obstructed the lumen in the hepatic flexure and was covered by a mucosa that was sporadically ulcerated and necrotic in nature. In magnetic resonance imaging, an ovoid mass with a diameter of 8.5 cm at its widest dimension was detected, which had signal intensity similar to that of adipose tissue. Since the patient was symptomatic and differential diagnosis could not be made, she underwent laparoscopic right hemicolectomy. A submucosal lipoma was detected on histopathological examination of the specimen. The patient was discharged without any problems on post-operative day 7. Definite diagnosis of lipomas before surgery is challenging; they may be mistaken for malignancy, especially if the lesion is large and ulcerated. For large and symptomatic colon lipomas, surgery is required to both prevent complications and rule out malignancy. PMID:26170744

  5. There might be giants: unseen Jupiter-mass planets as sculptors of tightly packed planetary systems

    NASA Astrophysics Data System (ADS)

    Hands, T. O.; Alexander, R. D.

    2016-03-01

    The limited completeness of the Kepler sample for planets with orbital periods ≳1 yr leaves open the possibility that exoplanetary systems may host undetected giant planets. Should such planets exist, their dynamical interactions with the inner planets may prove vital in sculpting the final orbital configurations of these systems. Using an N-body code with additional forces to emulate the effects of a protoplanetary disc, we perform simulations of the assembly of compact systems of super-Earth-mass planets with unseen giant companions. The simulated systems are analogous to Kepler-11 or Kepler-32 in that they contain four or five inner super-Earths, but our systems also contain longer-period giant companions which are unlikely to have been detected by Kepler. We find that giant companions tend to break widely spaced first-order mean-motion resonances, allowing the inner planets to migrate into tighter resonances. This leads to more compact architectures and increases the occurrence rate of Laplace resonant chains.

  6. Role of giant resonances in heavy-ion radiative capture

    SciTech Connect

    Sandorfi, A.M.

    1984-01-01

    The main features and physics of the radiative capture of heavy ions are reviewed. Data are discussed from three reactions: /sup 12/C(/sup 12/C,..gamma..)/sup 24/Mg, /sup 14/C(/sup 12/C,..gamma..)/sup 26/Mg, /sup 12/C(/sup 16/O,..gamma..)/sup 28/Si. Excitation functions are given and discussed. 17 references.

  7. Giant Dipole Resonance decay of hot rotating 88Mo

    NASA Astrophysics Data System (ADS)

    Ciemała, M.; Kmiecik, M.; Maj, A.; Kravchuk, V. L.; Gramegna, F.; Barlini, S.; Casini, G.; Camera, F.

    2014-03-01

    An experiment focusing on study of the properties of hot rotating compound nucleus of 88Mo was performed in LNL Legnaro using 48Ti beam at energies of 300 and 600 MeV on 40Ca target. The compound nucleus was produced at the temperatures of 3 and 4.5 MeV, with angular momentum distribution with lmax > 60 ħ (i.e. exceeding the crtical angular momentum for fission). High-energy gamma rays, measured in coincidence with evaporation residues and alpha particles, were analyzed with the statistical model. The GDR parameters were obtained from the best fit to the data, which allowed investigating an evolution of the GDR width up to high temperatures.

  8. Tides in Giant Planets

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2015-11-01

    possibility that the tidal frequency is coincidentally close to some resonance, as would be required if (as some have suggested) the tidal Q is currently small (e.g., a few thousand or less). Predictions and detectability for Juno will be presented.

  9. [Giant intradiploic infratentorial epidermoid cyst].

    PubMed

    Alberione, F; Caire, F; Fischer-Lokou, D; Gueye, M; Moreau, J J

    2007-10-01

    Epidermoid cysts are benign, uncommon lesions (1% of all intracranial tumors). Their localization is intradiploic in 25% of cases, and exceptionally subtentorial. We report here a rare case of giant intradiploic infratentorial epidermoid cyst. A 74-year old patient presented with recent diplopia and sindrome cerebellar. CT scan and MR imaging revealed a giant osteolytic extradural lesion of the posterior fossa (5.2 cm x 3.8 cm) with a small area of peripheral enhancement after contrast injection. Retrosigmoid suboccipital craniectomy allowed a satisfactory removal of the tumor, followed by an acrylic cranioplasty. The outcome was good. Neuropathological examination confirmed an epidermoid cyst. We review the literature and discuss our case. PMID:18008017

  10. Giant viruses come of age.

    PubMed

    Fischer, Matthias G

    2016-06-01

    Viruses with genomes up to a few megabases in length are a common occurrence in nature, even though they have escaped our notice until recently. These giant viruses infect mainly single-celled eukaryotes and isolation efforts concentrating on amoebal hosts alone have spawned hundreds of viral isolates, featuring viruses with previously unseen virion morphologies and the largest known viral genomes and particles. One of the challenges that lie ahead is to analyze and categorize the available data and to establish an approved classification system that reflects the evolutionary relationships and biological properties of these viruses. Extensive sampling of Acanthamoeba-infecting mimiviruses and initial characterization of their virophage parasites have provided a first blueprint of the genetic diversity and composition of a giant virus clade that will facilitate the taxonomic grouping of these fascinating microorganisms. PMID:26999382

  11. Proteorhodopsin genes in giant viruses

    PubMed Central

    2012-01-01

    Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists. This article was reviewed by Igor B. Zhulin and Laksminarayan M. Iyer. For the full reviews, see the Reviewers’ reports section. PMID:23036091

  12. Giant Raman gain in silicon nanocrystals

    PubMed Central

    Sirleto, Luigi; Antonietta Ferrara, Maria; Nikitin, Timur; Novikov, Sergei; Khriachtchev, Leonid

    2012-01-01

    Nanostructured silicon has generated a lot of interest in the past decades as a key material for silicon-based photonics. The low absorption coefficient makes silicon nanocrystals attractive as an active medium in waveguide structures, and their third-order nonlinear optical properties are crucial for the development of next generation nonlinear photonic devices. Here we report the first observation of stimulated Raman scattering in silicon nanocrystals embedded in a silica matrix under non-resonant excitation at infrared wavelengths (~1.5 μm). Raman gain is directly measured as a function of the silicon content. A giant Raman gain from the silicon nanocrystals is obtained that is up to four orders of magnitude greater than in crystalline silicon. These results demonstrate the first Raman amplifier based on silicon nanocrystals in a silica matrix, thus opening new perspectives for the realization of more efficient Raman lasers with ultra-small sizes, which would increase the synergy between electronic and photonic devices. PMID:23187620

  13. Wandering Gas Giants and Lunar Bombardment

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2006-08-01

    There may have been a dramatic event early in the history of the Solar System--the intense bombardment of the inner planets and the Moon by planetesimals during a narrow interval between 3.92 and 3.85 billion years ago, called the late heavy bombardment, but also nicknamed the lunar cataclysm. The evidence for this event comes from Apollo lunar samples and lunar meteorites. While not proven, it makes for an interesting working hypothesis. If correct, what caused it to happen? A group of physicists from the Observatoire de la Côte d'Azur (Nice, France), GEA/OV/Universidade Federal do Rio de Janeiro and Observatorio Nacional/MTC (Rio de Janeiro, Brazil), and the Southwest Research Institute (Boulder, Colorado) conducted a series of studies of the dynamics of the early Solar System. Alessandro Morbidelli, Kleomenis Tsiganis, Rodney Gomes, and Harold Levison simulated the migration of Saturn and Jupiter. When the orbits of these giant planets reached the special condition of Saturn making one trip around the Sun for every two trips by Jupiter (called the 1:2 resonance), violent gravitational shoves made the orbits of Neptune and Uranus unstable, causing them to migrate rapidly and scatter countless planetesimals throughout the Solar System. This dramatic event could have happened in a short interval, anywhere from 200 million years to a billion years after planet formation, causing the lunar cataclysm, which would have affected all the inner planets.

  14. Hairpin Furans and Giant Biaryls.

    PubMed

    Geng, Xin; Mague, Joel T; Donahue, James P; Pascal, Robert A

    2016-05-01

    The thermal reaction of two cyclopentadienones with 5,5'-binaphthoquinone or 6,6'-dimethoxy-5,5'-binaphthoquinone in refluxing nitrobenzene (210 °C) gives, in a single synthetic step that includes two Diels-Alder additions, two decarbonylations, and two dehydrogenations, giant biaryl bisquinones (compounds 13, 14, 15, 18, and 21). However, when two cyclopentadienones react with 6,6'-dimethoxy-5,5'-binaphthoquinone in nitrobenzene at higher temperatures (250-260 °C), the resulting products are molecular ribbons composed of two twisted aromatic systems fused to a heteropentahelicene (19, 20, and 22). These molecules are representatives of a new class of chiral polycyclic aromatic compounds, the "hairpin furans". Interestingly, reheating a dimethoxy-substituted giant biaryl (e.g., 21) in nitrobenzene at 260 °C does not yield the corresponding hairpin furan (22), and mechanistic studies indicate that some intermediate or byproduct of the synthesis of the giant biaryls is a reagent or catalyst necessary for the conversion of the dimethoxybiaryl to the furan. PMID:27040596

  15. Observed Properties of Giant Cells

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa; Colegrove, Owen

    2014-01-01

    The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.

  16. Guiding the Giant

    NASA Astrophysics Data System (ADS)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination < -17.5°) was carried out in the 1970's with the ESO 1-metre Schmidt Telescope in support of the work at the 3.6-m telescope at the ESO La Silla observatory. However, while until recently most observational programmes could rely on samples of objects found on photographic plates, this is no longer possible. New image surveys must match the fainter limiting magnitudes reached by the new and larger telescopes. Modern digital, multi-colour, deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without

  17. Cabergoline Treatment in Invasive Giant Prolactinoma

    PubMed Central

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically. PMID:25002819

  18. Resection of giant liver hemangioma in a pregnant woman with coagulopathy: Case report and literature review

    PubMed Central

    Ebina, Yasuhiko; Hazama, Ryoichi; Nishimoto, Masashi; Tanimura, Kenji; Miyahara, Yoshiya; Morizane, Mayumi; Nakabayashi, Koji; Fukumoto, Takumi; Ku, Yonson; Yamada, Hideto

    2011-01-01

    Background Hemangioma is a common benign tumor in the liver and usually asymptomatic. Scanty evidence concerning treatment modality of symptomatic hemangioma during pregnancy exists. Case A 35 year-old woman with giant hepatic cavernous hemangioma developed consumption coagulopathy due to the enlarged tumor, and underwent danaparoid therapy from 5 weeks of gestation (GW). Magnetic resonance image revealed giant hemangioma with 20 cm in diameter in the right lobe of the liver. A surgical operation of liver resection was successfully performed at 16 GW. Thereafter, the coagulopathy disappeared. She delivered a healthy male infant at 36 GW. Conclusion This is the first case report of surgical resection therapy for giant liver hemangioma during pregnancy. PMID:22905301

  19. Speciation and phylogeography of giant petrels Macronectes.

    PubMed

    Techow, N M S M; O'Ryan, C; Phillips, R A; Gales, R; Marin, M; Patterson-Fraser, D; Quintana, F; Ritz, M S; Thompson, D R; Wanless, R M; Weimerskirch, H; Ryan, P G

    2010-02-01

    We examine global phylogeography of the two forms of giant petrel Macronectes spp. Although previously considered to be a single taxon, and despite debate over the status of some populations and the existence of minimal genetic data (one mitochondrial cytochrome b sequence per form), the current consensus based on morphology is that there are two species, Northern Giant Petrel M. halli and Southern Giant Petrel M. giganteus. This study examined genetic variation at cytochrome b as well as six microsatellite loci in giant petrels from 22 islands, representing most island groups at which the two species breed. Both markers support separate species status, although sequence divergence in cytochrome b was only 0.42% (corrected). Divergence was estimated to have occurred approximately 0.2mya, but with some colonies apparently separated for longer (up to 0.5 my). Three clades were found within giant petrels, which separated approximately 0.7mya, with the Southern Giant Petrel paraphyletic to a monophyletic Northern Giant Petrel. There was evidence of past fragmentation during the Pleistocene, with subsequent secondary contact within Southern Giant Petrels. The analysis also suggested a period of past population expansion that corresponded roughly to the timing of speciation and the separation of an ancestral giant petrel population from the fulmar Fulmarus clade. PMID:19755164

  20. Spontaneous thrombosis in giant intracranial aneurysms.

    PubMed Central

    Whittle, I R; Dorsch, N W; Besser, M

    1982-01-01

    Twelve patients in a series of 22 with giant intracranial aneurysms demonstrated neuroradiological features of partial or total spontaneous intra-aneurysmal thrombosis. The presence of this intra-aneurysmal clot significantly altered the computed tomographic appearance of the giant aneurysm. Massive intra-aneurysmal thrombosis did not protect against subarachnoid haemorrhage and the likelihood of rupture of a clot containing giant aneurysm was not significantly different from that of a non-thrombosed giant aneurysm. Although parent artery occlusion from a thrombosed giant aneurysm, and massive aneurysmal thrombosis leading to the formation of giant serpentine aneurysm were documented, these are rare epiphenomena. The risk of embolisation from a partially thrombosed giant aneurysm, which was documented in one case, would appear to be greater than that from a non-thrombosed giant aneurysm. The findings in this series, and a review of literature, suggest that the presence of intra-aneurysmal clot in giant intracranial aneurysms has little prognostic significance and does not alter the management or outcome after treatment. Images PMID:7175528

  1. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  2. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  3. Giant rockslides from the inside

    NASA Astrophysics Data System (ADS)

    Weidinger, Johannes T.; Korup, Oliver; Munack, Henry; Altenberger, Uwe; Dunning, Stuart A.; Tippelt, Gerold; Lottermoser, Werner

    2014-03-01

    The growing body of research on large-scale mass wasting events so far has only scarcely investigated the sedimentology of chaotic deposits from non-volcanic terrestrial landslides such that any overarching and systematic terminological framework remains elusive. Yet recent work has emphasized the need for better understanding the internal structure and composition of rockslide deposits as a means to characterise the mechanics during the final stages of runout and emplacement. We offer a comprehensive overview on the occurrence of rock fragmentation and frictional melt both at different geographic locations, and different sections within large (>106 m) rockslide masses. We argue that exposures of pervasively fragmented and interlocked jigsaw-cracked rock masses; basal mélange containing rip-up clasts and phantom blocks; micro-breccia; and thin bands of basal frictionite are indispensable clues for identifying deposits from giant rockslides that may remain morphologically inconspicuous otherwise. These sedimentary assemblages are diagnostic tools for distinguishing large rockslide debris from macro- and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias, and thus help avoid palaeoclimatic and tectonic misinterpretations, let alone misestimates of the hazard from giant rockslides. Moreover, experimental results from Mössbauer spectroscopy of frictionite samples support visual interpretations of thin sections, and demonstrate that short-lived (<10 s) friction-induced partial melting at temperatures >1500 °C in the absence of water occurred at the base of several giant moving rockslides. This finding supports previous theories of dry excess runout accompanied by comminution of rock masses down to μm-scale, and indicates that catastrophic motion of large fragmenting rock masses does not require water as a potential lubricant.

  4. The Primordial Destruction of Moons around Giant Exoplanets through Disk-Driven Planetary Migration

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2015-11-01

    The extensive array of satellites around Jupiter and Saturn makes it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Observational surveys have revealed a significant population of such giant planets residing at distances of about 1 AU, leading to speculation that some of these 'exomoons' might be capable of maintaining liquid water on their surfaces. Accordingly, many recent efforts have specifically hunted for moons around giant exoplanets. Owing to the lack of detections thus far, it is worth asking whether certain processes intrinsic to planet formation might lead to the loss of moons. Here, we highlight that giant planets are thought to undergo inward migration within their natal disks and show that the very process of migration naturally captures moons into a so-called "evection resonance". Within this resonance, the lunar orbit's eccentricity grows until the moon is lost, either by collision with the planet or through tidal disruption. Whether moons survive or not is critically dependent upon where the planet began its inward trek. In this way, the presence or absence of exomoons can inform us on the extent of inward migration, for which no reliable observational proxy currently exists.

  5. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations. PMID:15917800

  6. Giant Piloleiomyoma of the Forehead

    PubMed Central

    Kim, Gun-Wook; Park, Hyun-Je; Kim, Hoon-Soo; Kim, Su-Han; Ko, Hyun-Chang; Kim, Byung-Soo

    2011-01-01

    Cutaneous piloleiomyomas are benign smooth muscle tumors arising from the arrector pili muscles. Piloleiomyomas appear as firm dermal papules of skin color or with a reddish to brown surface, and are commonly located on the extremities. Histologically, these lesions are composed of interlacing bundles of smooth muscle cells in the reticular dermis. Our case presented with an unusually large nodule on the forehead that was accompanied by intermittent pain. Histological analysis was compatible with piloleiomyoma and the lesion showed haphazardly arranged bundles of smooth muscle in the dermis. We describe herein an interesting case of a giant piloleiomyoma occurring on the forehead. PMID:22148036

  7. [Aortitis in giant cell arteritis].

    PubMed

    Schmidt, J; Duhaut, P

    2016-04-01

    Aortitis is a frequent complication of giant cell arteritis. Imaging techniques can reveal the inflammation of the aortic wall. CT-scan can show circumferential aortic wall thickening, or TEP-scan can show aortic FDG-uptake. Aortic aneurysm and dissection is a feared but probably rare complication of the inflammation of the aortic wall during GCA. Screening for aortitis could be proposed for patients with symptoms of aortic involvement, for patients with signs of large vessels involvement (limb claudication, bruit) or for patients with incomplete response to treatment. The best follow-up and treatment are to be determined for the patients with aortitis related to GCA. PMID:26781692

  8. Bilateral giant cyst of the shoulder.

    PubMed

    Agarwal, A; Ferrante, J; Schmidt, R; Eisenbeis, C H

    1987-01-01

    The case of a 61 year old white female with a rapidly progressive rheumatoid arthritis who developed bilateral giant cyst of the shoulder is described here. Arthrographic investigation indicated that these giant cysts were true synovial cysts rather than "pseudocysts". PMID:3427842

  9. Sodium in weak G-band giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Lambert, David L.

    1994-01-01

    Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.

  10. Deep Imaging of Giant Planets

    NASA Astrophysics Data System (ADS)

    Chauvin, G.

    2010-10-01

    With the development of high contrast imaging instruments and techniques, vast efforts have been devoted during the past decade to detect and characterize lighter, cooler and closer companions to nearby stars, and ultimately image new planetary systems. Complementary to other observing techniques (radial velocity, transit, micro-lensing, pulsar-timing and astrometry), this approach has opened a new astrophysical window to study the physical properties and the formation and evolution mechanisms of giant planets at orbits larger than a few AUs. In this review, I will briefly present the main motivations to use deep imaging to search for exoplanets and review the constant progress achieved thanks to improved performances of advanced instrumentation and data analysis techniques. I will describe the main classes of stars identified and observed so far to increase the chances of detection. I will also detail the classical strategy adopted to identify false alarms and characterize true companions. I will review the current status of the different deep imaging surveys as well as the main results that recently led to the discovery of giant planets probably formed like the ones of our solar system. Finally, I will rise the questions and uncertainties related to the formation mechanisms, the physical properties and the frequency of these planetary mass companions to conclude with the exciting and attractive perspectives offered with the future generation of deep imaging instruments.

  11. Giant Planets in Open Clusters

    NASA Astrophysics Data System (ADS)

    Quinn, S. N.; White, R. J.; Latham, D. W.

    2015-10-01

    Two decades after the discovery of 51 Peg b, more than 200 hot Jupiters have now been confirmed, but the details of their inward migration remain uncertain. While it is widely accepted that short period giant planets could not have formed in situ, several different mechanisms (e.g., Type II migration, planet-planet scattering, Kozai-Lidov cycles) may contribute to shrinking planetary orbits, and the relative importance of each is not well-constrained. Migration through the gas disk is expected to preserve circular, coplanar orbits and must occur quickly (within ˜ 10 Myr), whereas multi-body processes should initially excite eccentricities and inclinations and may take hundreds of millions of years. Subsequent evolution of the system (e.g., orbital circularization and inclination damping via tidal interaction with the host star) may obscure these differences, so observing hot Jupiters soon after migration occurs can constrain the importance of each mechanism. Fortunately, the well-characterized stars in young and adolescent open clusters (with known ages and compositions) provide natural laboratories for such studies, and recent surveys have begun to take advantage of this opportunity. We present a review of the discoveries in this emerging realm of exoplanet science, discuss the constraints they provide for giant planet formation and migration, and reflect on the future direction of the field.

  12. Selective infarction of the anterior genu fornices associated with giant cell arteritis.

    PubMed

    Murr, Najib; Thaisetthawatkul, Pariwat; Helvey, Jason; Fayad, Pierre

    2012-05-01

    We report a middle-aged woman presenting with acute confusion and anterograde amnesia. Magnetic resonance imaging revealed an acute infarction of the anterior genu fornices. Evaluation of an elevated erythrocyte sedimentation rate led to the diagnosis of giant cell arteritis (GCA). Cerebral infarction is a known complication of GCA; this is the first report of such an association with selective fornix infarction. PMID:20884244

  13. Nonfunctioning giant pituitary adenomas: Invasiveness and recurrence

    PubMed Central

    Landeiro, José Alberto; Fonseca, Elissa Oliveira; Monnerat, Andrea Lima Cruz; Taboada, Giselle Fernandes; Cabral, Gustavo Augusto Porto Sereno; Antunes, Felippe

    2015-01-01

    Background: We report our surgical series of 35 patients with giant nonfunctioning pituitary adenomas (GNFPA). We analyzed the rule of Ki-67 antigen expression in predicting recurrence. Methods: Thirty-five patients were operated between 2000 and 2010. Suprassellar extension of the tumors were classified according to Hardy and Mohr based on magnetic resonance (MR) studies. Pituitary endocrine function and MR scans were assessed preoperatively and at 1, 6, and 12 months postoperatively. Immunohistochemical studies were based in regard to the expression of the proliferative Ki-67 index and the hormonal receptor for luteinizing hormone, follicle stimulating hormone, growth hormone, thyroid stimulating hormone, adrenocorticotropic hormone, and prolactin. Tumors specimens were obtained from 35 patients with GNFPA. Endoscopic transsphenoidal surgery was the approach of choice. Results: Thirty-five patients were submitted to 49 surgeries, 44 (89.8%) were transsphenoidal and 5 (10.2%) were transcranial. The most frequent preoperative complaints were visual acuity impairment and visual field defect in 25 (71.2%) and 23 (65.7%) cases, respectively. Improvement of visual acuitiy and visual field deficit after surgery was seen in 20 (80%) and 17 (73.9%) patients, respectively. Endocrinological deficits were encountered in 20 patients (57.1%). After surgery, 18 patients (51.4%) required hormonal replacement. Three patients had visual symptoms related to pituitary apoplexy and recovered after surgery. The Ki-67 labeling index (LI) ranged from <1% to 4.8%. The rate of recurrence in tumors with Ki-67 <3% was 7.7% (2 patients), Ki-67 >3% was present in 5 patients and the recurrence committed 3 patients. Conclusion: In our series, regardless the improvement of visual function and compressing symptoms, 5 patients with expression of Ki-67 LI more than 3% experienced a recurrence. PMID:26674325

  14. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  15. Structure of the Asteroid Belt from the Gas Giants' Growth and Chaotic Dynamics

    NASA Astrophysics Data System (ADS)

    Izidoro, André; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon; Nesvorny, David

    2016-05-01

    The structure of the asteroid belt holds a record of the Solar System's dynamical history. The current belt only contains 10-3 Earth masses yet the asteroids' orbits are dynamically excited, with a large spread in eccentricity and inclination. The belt is also chemically segregated: the inner belt is dominated by dry S-types and the outer belt by hydrated C-types. Here we propose a new model in which the asteroid belt was always low-mass and was partially populated and sculpted by the giant planets on chaotic, resonant orbits. We first show that the compositional dichotomy of the asteroid belt is a simple consequence of Jupiter's growth in the gaseous protoplanetary disk. As Jupiter's core rapidly grew by accreting gas, orbits of nearby planetesimals were perturbed onto Jupiter-crossing trajectories. A significant fraction (~10%) of objects in the neighborhood exterior of Jupiter's orbit were implanted by gas drag into the outer parts of the asteroid belt as C-types. While the gas giants were likely in mean motion resonance at the end of the gaseous disk phase, we show that small perturbations may have driven them into a chaotic but stable state. After the dissipation of the gaseous disk, stochastic variations in the gas giants orbits caused resonances to chaotically jump across the main belt and excite the asteroids' orbits. Our results suggest that the early Solar System was chaotic and introduce a simple framework to understand the origins of the asteroid belt.

  16. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  17. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis.

    PubMed

    Chen, Yingming Amy; Woodley-Cook, Joel; Sgro, Michael; Bharatha, Aditya

    2016-03-01

    Neurocutaneous melanosis is a rare nonfamilial phakomatosis characterized by large or multiple congenital melanocytic nevi plus the presence of central nervous system melanosis or melanoma. We report a case of a male infant with a giant posteroaxial nevus and evidence of intracranial melanosis on ultrasound and magnetic resonance imaging. PMID:26973729

  18. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis

    PubMed Central

    Chen, Yingming Amy; Woodley-Cook, Joel; Sgro, Michael; Bharatha, Aditya

    2016-01-01

    Neurocutaneous melanosis is a rare nonfamilial phakomatosis characterized by large or multiple congenital melanocytic nevi plus the presence of central nervous system melanosis or melanoma. We report a case of a male infant with a giant posteroaxial nevus and evidence of intracranial melanosis on ultrasound and magnetic resonance imaging. PMID:26973729

  19. Giant tunneling magnetoresistance in silicene

    SciTech Connect

    Wang, Yu; Lou, Yiyi

    2013-11-14

    We have theoretically studied ballistic electron transport in silicene under the manipulation of a pair of ferromagnetic gate. Transport properties like transmission and conductance have been calculated by the standard transfer matrix method for parallel and antiparallel magnetization configurations. It is demonstrated here that, due to the stray field-induced wave-vector filtering effect, remarkable difference in configuration-dependent transport gives rise to a giant tunneling magnetoresistance. In combination with the peculiar buckled structure of silicene and its electric tunable energy gap, the receiving magnetoresistance can be efficiently modulated by the externally-tunable stray field, electrostatic potential, and staggered sublattice potential, providing some flexible strategies to construct silicene-based nanoelectronic device.

  20. Giant magnetoresistance in nanogranular magnets.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Vinokur, V. M.; Materials Science Division; Univ. of Chicago

    2008-05-01

    We study the giant magnetoresistance of nanogranular magnets in the presence of an external magnetic field and finite temperature. We show that the magnetization of arrays of nanogranular magnets has hysteretic behavior at low temperatures leading to a double peak in the magnetoresistance which coalesces at high temperatures into a single peak. We numerically calculate the magnetization of magnetic domains and the motion of domain walls in this system using a combined mean-field approach and a model for an elastic membrane moving in a random medium, respectively. From the obtained results, we calculate the electric resistivity as a function of magnetic field and temperature. Our findings show excellent agreement with various experimental data.

  1. The Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Nityananda, R.

    2003-05-01

    The Giant Metrewave Radio Telescope (GMRT) of the National Centre of Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR) at Khodad, India, has been operational in the band 0.2 to 2 metres for the last two and a half years. The system characteristics and performance and recent results from the group will be presented. Details of use over the last six months by scientists from other observatories under the GMRT Time Allocation Committee (GTAC) and future plans will be also be reviewed in this paper. Areas which have been studied include observations made in the GMRT band of neutral hydrogen, nearby galaxies, supernova remnants, the Galactic Centre, pulsars, the Sun and others.

  2. The Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Zhong; Deng, Yuanyong; Ji, Haisheng

    2014-01-01

    Chinese Giant Solar Telescope is the next generation ground-based solar telescope. The main science task of this telescope is to observe the ultra fine structures of the solar magnetic field and dynamic field. Due to the advantages in polarization detection and thermal controlling with a symmetrical circular system, the current design of CGST is a 6~8 meter circular symmetrical telescope. The results of simulations and analysis showed that the current design could meet the demands of most science cases not only in infrared bands but also in near infrared bands and even in visible bands. The prominences and the filaments are very important science cases of CGST. The special technologies for prominence observation will be developed, including the day time laser guide star and MCAO. CGST is proposed by all solar observatories and several institutes and universities in China. It is supported by CAS and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  3. Core formation by giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1991-01-01

    Ideas about the accretion and early evolution of the Earth and the other terrestrial planets have recently undergone a number of revolutionary changes. It has become clear that giant impacts were far from rare events. In the later stages of accretion any given planetary embryo is liable to be struck several times by other bodies of up to half its own diameter. Such an impact may have the ability to trigger core formation. Traditional accretion models have had great difficulty explaining the formation of the core. If one admits the importance of infrequent large events that may melt an entire hemisphere, the core formation difficulty vanishes. Millimeter-size iron blebs in the melted region will rain out due to their density difference with the silicate melt. Core formation may not require the melting of the entire hemisphere of the planet. The conditions are explored under which impact induced core formation may occur.

  4. SYNOVIAL GIANT CELL TUMOR OF THE KNEE

    PubMed Central

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2015-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection. PMID:27004193

  5. Rotation and macroturbulence in bright giants

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1986-11-01

    Spectral line profiles of 35 F, G, and K bright giants were analyzed to obtain rotation rates, v sin i, and macroturbulence dispersion. This sample indicates that rotation rates of cool class II giants is less than 11 km/s, in contrast with some recent periodicity measurements. Macroturbulence dispersion generally increases with effective temperature, but the range of values at a given effective temperature is much larger than seen for lower luminosity classes; this is interpreted in terms of red-giant and blue-loop evolution. No evidence is found for angular momentum dissipation on the first crossing of the H-R diagram. 57 references.

  6. The Metallicity of Giant Planets

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan

    2015-12-01

    Unique clues about the formation processes of giant planets can be found in their bulk compositions. Transiting planets provide us with bulk density determinations that can then be compared to models of planetary structure and evolution, to deduce planet bulk metallicities. At a given mass, denser planets have a higher mass fraction of metals. However, the unknown hot Jupiter "radius inflation" mechanism leads to under-dense planets that severely biases this work. Here we look at cooler transiting gas giants (Teff < 1000 K), which do not exhibit the radius inflation effect seen in their warmer cousins. We identified 40 such planets between 20 M_Earth and 20 M_Jup from the literature and used evolution models to determine their bulk heavy-element ("metal") mass. Several important trends are apparent. We see that all planets have at least ~10 M_Earth of metals, and that the mass of metal correlates strongly with the total mass of the planet. The heavy-element mass goes as the square root of the total mass. Both findings are consistent with the core accretion model. We also examined the effect of the parent star metallicity [Fe/H], finding that planets around high-metallicity stars are more likely to have large amounts of metal, but the relation appears weaker than previous studies with smaller sample sizes had suggested. We also looked for connections between bulk composition and planetary orbital parameters and stellar parameters, but saw no pattern, which is also an important result. This work can be directly compared to current and future outputs from planet formation models, including population synthesis.

  7. Hydrodynamic Simulations of Giant Impacts

    NASA Astrophysics Data System (ADS)

    Reinhardt, Christian; Stadel, Joachim

    2013-07-01

    We studied the basic numerical aspects of giant impacts using Smoothed Particles Hydrodynamics (SPH), which has been used in most of the prior studies conducted in this area (e.g., Benz, Canup). Our main goal was to modify the massive parallel, multi-stepping code GASOLINE widely used in cosmological simulations so that it can properly simulate the behavior of condensed materials such as granite or iron using the Tillotson equation of state. GASOLINE has been used to simulate hundreds of millions of particles for ideal gas physics so that using several millions of particles in condensed material simulations seems possible. In order to focus our attention of the numerical aspects of the problem we neglected the internal structure of the protoplanets and modelled them as homogenous (isothermal) granite spheres. For the energy balance we only considered PdV work and shock heating of the material during the impact (neglected cooling of the material). Starting at a low resolution of 2048 particles for the target and the impactor we run several simulations for different impact parameters and impact velocities and successfully reproduced the main features of the pioneering work of Benz from 1986. The impact sends a shock wave through both bodies heating the target and disrupting the remaining impactor. As in prior simulations material is ejected from the collision. How much, and whether it leaves the system or survives in an orbit for a longer time, depends on the initial conditions but also on resolution. Increasing the resolution (to 1.2x10⁶ particles) results in both a much clearer shock wave and deformation of the bodies during the impact and a more compact and detailed "arm" like structure of the ejected material. Currently we are investigating some numerical issues we encountered and are implementing differentiated models, making one step closer to more realistic protoplanets in such giant impact simulations.

  8. A Rare Entity: Adult Asymptomatic Giant Vallecular Cyst

    PubMed Central

    Torun, Mümtaz Taner; Seçkin, Ender; Tuncel, Ümit; Kılıç, Caner; Özkan, Özalkan

    2015-01-01

    Background. Cysts in the larynx are rare and generally asymptomatic. However, large cysts in adults can be symptomatic. If they are symptomatic, they typically present with respiratory and feeding difficulties. They are usually benign in terms of pathology. Several surgical techniques may be used for treatment. Case Report. A 56-year-old man presented to our clinic with hoarseness. Routine laryngeal examination revealed a giant mass and the larynx could not be visualized. At magnetic resonance imaging (MRI), a cystic mass originating from the vallecula was detected. There was no pathology at the glottic level. We planned tracheotomy for the airway and endoscopic surgery for excision. The mass was excised using CO2 laser and was reported as benign. Conclusion. An asymptomatic vallecular cyst may cause difficult intubation in any operation. It may also cause respiratory or other complications. Airway management should be led by an ear, nose, and throat surgeon, since tracheotomy may be required. Endoscopic excision with CO2 laser is a good choice for treatment in elective cases. In this report, we discuss the diagnosis and treatment of a patient with an asymptomatic giant vallecular cyst. PMID:26688767

  9. The Clinical Approach Toward Giant Cell Tumor of Bone

    PubMed Central

    van der Heijden, Lizz; Dijkstra, P.D. Sander; van de Sande, Michiel A.J.; Kroep, Judith R.; Nout, Remi A.; van Rijswijk, Carla S.P.; Bovée, Judith V.M.G.; Hogendoorn, Pancras C.W.

    2014-01-01

    We provide an overview of imaging, histopathology, genetics, and multidisciplinary treatment of giant cell tumor of bone (GCTB), an intermediate, locally aggressive but rarely metastasizing tumor. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) by mononuclear neoplastic stromal cells promotes recruitment of numerous reactive multinucleated giant cells. Conventional radiographs show a typical eccentric lytic lesion, mostly located in the meta-epiphyseal area of long bones. GCTB may also arise in the axial skeleton and very occasionally in the small bones of hands and feet. Magnetic resonance imaging is necessary to evaluate the extent of GCTB within bone and surrounding soft tissues to plan a surgical approach. Curettage with local adjuvants is the preferred treatment. Recurrence rates after curettage with phenol and polymethylmethacrylate (PMMA; 8%–27%) or cryosurgery and PMMA (0%–20%) are comparable. Resection is indicated when joint salvage is not feasible (e.g., intra-articular fracture with soft tissue component). Denosumab (RANKL inhibitor) blocks and bisphosphonates inhibit GCTB-derived osteoclast resorption. With bisphosphonates, stabilization of local and metastatic disease has been reported, although level of evidence was low. Denosumab has been studied to a larger extent and seems to be effective in facilitating intralesional surgery after therapy. Denosumab was recently registered for unresectable disease. Moderate-dose radiotherapy (40–55 Gy) is restricted to rare cases in which surgery would lead to unacceptable morbidity and RANKL inhibitors are contraindicated or unavailable. PMID:24718514

  10. Giant Splenic Artery Pseudoaneurysm: A Case Report and Literature Review.

    PubMed

    Yagmur, Yusuf; Akbulut, Sami; Gumus, Serdar; Demircan, Firat

    2015-07-01

    Splenic artery aneurysms (SAAs) are the third most frequent intra-abdominal aneurysm, following abdominal aorta and iliac artery aneurysms. SAAs are classified according to their involvement of arterial wall layers: true aneurysms involve all 3 layers (intima, media, and adventitia), and pseudoaneurysms involve only one or two. Herein we present a new case of giant pseudo SAA. A 65-year-old female patient with a pancreatic mass and iron deficiency was referred to our clinic for further investigation. Abdominal ultrasonography, contrast-enhanced CT and magnetic resonance imaging showed a lesion resembling a subcapsular hemangioma in the spleen, and aneurysmatic dilation of the splenic artery with a diameter of >5 cm. The large size of the aneurysm and the clinical findings were indications for surgical treatment. The patient underwent en bloc resection of the spleen, distal pancreas, and aneurysmatic segment of the splenic artery. The patient remains complication-free 2 months after the operation. Spontaneous rupture is the most important life-threatening complications of giant SAAs. Therefore, all symptomatic patients with SAA should be treated, as well as asymptomatic patients with lesions ≥2 cm, who are pregnant or fertile, have portal hypertension, or are candidates for liver transplantation. Despite advances in endovascular techniques, conventional abdominal surgery remains the gold standard for treatment. PMID:26595501

  11. Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Morbidelli, Alessandro

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M disk >~ 50 M Earth), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e 55 <~ 0.01 compared to present e 55 = 0.044, where e 55 is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M disk ~= 20 M Earth. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a sime5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  12. Studies on the ingestion characteristics of giant freshwater prawn, Chinese prawn and giant tiger prawn

    NASA Astrophysics Data System (ADS)

    Zang, Wei-Ling; Wang, Wei-Dong; Dai, Xi-Lin; Jiang, Min; Zhu, Zheng-Guo; Yang, Ming-Hui; Liu, Xian-Zhong; Xu, Gui-Rong; Ding, Fu-Jiang

    2000-12-01

    The ingestion of giant freshwater prawn, Chinese prawn and giant tiger prawn had continuity and the ingestion high peak occurred at night. Light and temperature had significant effects on the daily ingestion rate (DIR) of giant freshwater prawn Macrobrachium rosenbergii. Red light and blue light favorably induced favorable ingestion. In the adaptive range of temperature, the DIR increased with rising temperature and feeding frequency, but decreased with rising body weight.

  13. Hierarchical spin-orbital polarization of a giant Rashba system

    PubMed Central

    Bawden, Lewis; Riley, Jonathan M.; Kim, Choong H.; Sankar, Raman; Monkman, Eric J.; Shai, Daniel E.; Wei, Haofei I.; Lochocki, Edward B.; Wells, Justin W.; Meevasana, Worawat; Kim, Timur K.; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J.; Shen, Kyle M.; Chou, Fangcheng; King, Phil D. C.

    2015-01-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector. PMID:26601268

  14. [Giant mediastinal thyroid follicular carcinoma with tracheal stenosis].

    PubMed

    Ishibashi, Hironori; Ohta, S; Hirose, M; Kitano, M; Kato, T; Yokoyama, J; Muro, H; Morita, T; Takagi, A

    2008-05-01

    A 76-year-old female was admitted to the hospital with dyspnea and hypertention. She had the giant thyroid tumor which had been awared but not treated for 40 years. On a computed tomography (CT) scan and magnetic resonance imaging (MRI), the tumor was 14 x 10 cm and the tracheal stenosis was completely intrathoracic, which was 5 x 7 mm. Tracheal incubation was performed safety by using percutaneous cardiopulmonary support. A subtotal thyroidectomy was performed by midsternotomy with cervical incision. The weight of the resected specimen was 340 g and the pathological diagnosis was follicular thyroid carcinoma. The postoperative course was uneventful and the patient suffered no hoarseness and dyspnea. PMID:18464485

  15. Juno and Cassini Proximal: Giant Steps Towards Understanding Giant Planets

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2014-12-01

    In 2016-17, Juno and Cassini Proximal will provide comparable large advances in our understanding of the interiors of Jupiter and Saturn. Both will provide high accuracy gravity and magnetic field data, while Juno will in addition determine the water abundance deep in the Jovian atmosphere, essential for understanding of giant planet formation and the density of the outer envelope (needed to construct interior models). Although Jupiter and Saturn are both gas giants, they differ in important ways (magnetic field, strength of zonal flows, enrichment in heavy elements, and probably the distribution of helium within). The opportunity to contrast and compare will be invaluable. Juno and Cassini are expected to determine the gravity field to about a part in 109 though with different spatial coverage and with less accurate determination near the poles. The determination of Jupiter's likely central concentration of heavy elements is particularly challenging because it is only a few percent at most of the total mass and yet important for understanding Jupiter's formation, which in turn likely determined the architecture of our solar system. This determination will be done from gravity, water determination and magnetic field and also aided by advances in our understanding of material properties. The corresponding determination for Saturn may prove easier (because the heavy element enrichment is a larger fraction of the mass) though complicated by lack of knowledge of water abundance and the need to identify a more precise value for the deep rotation of the planet (difficult for Saturn because of the lack of a measurable magnetic dipole tilt thus far). For both planets, the higher harmonics of gravity will likely be controlled by differential rotation (the zonal flows) and this will tell us their depth, an issue of major interest in the dynamics of these bodies. The magnetic field structure for Jupiter will be determined to higher accuracy than the Earth's core field (since

  16. Innate predator recognition in giant pandas.

    PubMed

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species. PMID:22303845

  17. Tests of the Giant Impact Hypothesis

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  18. "GIANT" Steps to Create Online Orientations

    ERIC Educational Resources Information Center

    Bacon, Pamela

    2005-01-01

    Online orientation is provided due to the flexibility of online learning. The online orientation consists of the GIANT steps which stands for Get support, Identify your curriculum, Assemble your program, Navigate students through the pilot project and Test students.

  19. Selecting M-giants with WISE photometry

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2015-08-01

    We use M-giants, M-dwarfs and QSOs identified by LAMOST to assess how well WISE & 2MASS colour-cuts can separate these populations through photometry. We find that the WISE bands are very efficient to separate M-giants from M-dwarfs, especially for the early-type stars. We derive a new photometric relation to estimate [Fe/H] for M-giants. We show that previous photometric distance relations may be biased and devise a new empirical distance relation. We detect M-giants in the Sagittarius stream from the ALLWISE Source Archive. Our detection shows good agreement with the bright stream, although the leading tail appears to be misaligned by a couple of degrees. We have measured the metallicity distribution at four locations along the stream, finding a clear metallicity offset between the leading and trailing tails.

  20. EUVE Observations of the Hyades Giants

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.; Oliversen, Ronald J. (Technical Monitor)

    1998-01-01

    We describe EUVE and ROSAT observations of the Hyades K0 III giants theta(sup 1) (vB 71 = HR1411) and gamma (vB 28 = HR1346) Tau. We also discuss ASCA observations of theta(sup 1)Tau. The coronal activity of these "clump" giants is intermediate between that of the Sun and of high activity stars such as RS CVn systems. There is no evidence for significant short or long term variability up to several years. Modeling of the individual and combined spectra suggest that these two X-ray and EUV-bright Hyades giants resemble in their activity levels another clump giant, beta Cet, with a peak in the emission measure distribution near log T approx. 6.8, reminiscent of the Capella emission measure "bump."

  1. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  2. EUVE Observations of the Hyades Giants

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    The contractor describes EUVE and ROSAT observations of the Hyades K0 III giants theta(sup 1(vB 71 = HR 1411) and gamma$ (vB 28 = HR 1346) Tau, and ASCA observations of theta(sup 1) Tau. The coronal activity of these "clump" giants is intermediate between that of the Sun and of high-activity stars such as RS CVn systems. There is no evidence for significant short or long term variability up to several years. Modeling of the individual and combined spectra suggest that these two X-ray and EUV- bright Hyades giants resemble in their activity levels another clump giant, beta Cet, with a peak in the emission measure distribution near log T approx. 6.8, reminiscent of the Capella emission measure "bump."

  3. Giant cell arteritis presenting as scalp necrosis.

    PubMed

    Maidana, Daniel E; Muñoz, Silvia; Acebes, Xènia; Llatjós, Roger; Jucglà, Anna; Alvarez, Alba

    2011-01-01

    The differential of scalp ulceration in older patients should include several causes, such as herpes zoster, irritant contact dermatitis, ulcerated skin tumors, postirradiation ulcers, microbial infections, pyoderma gangrenosum, and giant cell arteritis. Scalp necrosis associated with giant cell arteritis was first described in the 1940s. The presence of this dermatological sign within giant cell arteritis represents a severity marker of this disease, with a higher mean age at diagnosis, an elevated risk of vision loss and tongue gangrene, as well as overall higher mortality rates, in comparison to patients not presenting this manifestation. Even though scalp necrosis due to giant cell arteritis is exceptional, a high level of suspicion must be held for this clinical finding, in order to initiate prompt and proper treatment and avoid blindness. PMID:21789466

  4. Central giant cell granuloma of the maxilla

    PubMed Central

    Gupta, Manish; Gupta, Monica; Singh, Sunder; Kaur, Rupinder

    2013-01-01

    Central giant cell granuloma (CGCG), formerly called giant cell reparative granuloma, is a non-neoplastic proliferative lesion of an unknown aetiology. It occurs most commonly in the mandible. The case reported here resembled a wide variety of conditions that led to a misdiagnosis both on clinical and radiographic examinations but was histopathologically diagnosed as CGCG. We managed this case by endoscopic excision and curettage via nasal route without producing external scar and avoiding damage to the un-erupted tooth. PMID:23475995

  5. Arterial Embolization of Giant Hepatic Hemangiomas

    SciTech Connect

    Giavroglou, Constantinos; Economou, Hippolete; Ioannidis, Ioannis

    2003-02-15

    Hepatic cavernous hemangiomas are usually small and asymptomatic. They are usually discovered incidentally and only a few require treatment. However, giant hemangiomas may cause symptoms,which are indications for treatment. We describe four cases of symptomatic giant hepatic hemangiomas successfully treated with transcatheter arterial embolization, performed with polyvinyl alcohol particles. There were no complications. Follow-up with clinical and imaging examinations showed disappearance of symptoms and decrease in size of lesions.

  6. Signatures of the Giant Pairing Vibration in the 14C and 15C atomic nuclei.

    PubMed

    Cappuzzello, F; Carbone, D; Cavallaro, M; Bondì, M; Agodi, C; Azaiez, F; Bonaccorso, A; Cunsolo, A; Fortunato, L; Foti, A; Franchoo, S; Khan, E; Linares, R; Lubian, J; Scarpaci, J A; Vitturi, A

    2015-01-01

    Giant resonances are collective excitation modes for many-body systems of fermions governed by a mean field, such as the atomic nuclei. The microscopic origin of such modes is the coherence among elementary particle-hole excitations, where a particle is promoted from an occupied state below the Fermi level (hole) to an empty one above the Fermi level (particle). The same coherence is also predicted for the particle-particle and the hole-hole excitations, because of the basic quantum symmetry between particles and holes. In nuclear physics, the giant modes have been widely reported for the particle-hole sector but, despite several attempts, there is no precedent in the particle-particle and hole-hole ones, thus making questionable the aforementioned symmetry assumption. Here we provide experimental indications of the Giant Pairing Vibration, which is the leading particle-particle giant mode. An immediate implication of it is the validation of the particle-hole symmetry. PMID:25814169

  7. Signatures of the Giant Pairing Vibration in the 14C and 15C atomic nuclei

    PubMed Central

    Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Bondì, M.; Agodi, C.; Azaiez, F.; Bonaccorso, A.; Cunsolo, A.; Fortunato, L.; Foti, A.; Franchoo, S.; Khan, E.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.

    2015-01-01

    Giant resonances are collective excitation modes for many-body systems of fermions governed by a mean field, such as the atomic nuclei. The microscopic origin of such modes is the coherence among elementary particle-hole excitations, where a particle is promoted from an occupied state below the Fermi level (hole) to an empty one above the Fermi level (particle). The same coherence is also predicted for the particle–particle and the hole–hole excitations, because of the basic quantum symmetry between particles and holes. In nuclear physics, the giant modes have been widely reported for the particle–hole sector but, despite several attempts, there is no precedent in the particle–particle and hole–hole ones, thus making questionable the aforementioned symmetry assumption. Here we provide experimental indications of the Giant Pairing Vibration, which is the leading particle–particle giant mode. An immediate implication of it is the validation of the particle–hole symmetry. PMID:25814169

  8. Resonant Removal of Exomoons during Planetary Migration

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2016-01-01

    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable zone formed farther out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called evection resonance. Within this resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about ∼10 planetary radii are susceptible to this mechanism, with the exact number dependent on the planetary mass, oblateness, and physical size. Whether moons survive or not is critically related to where the planet began its inward migration, as well as the character of interlunar perturbations. For example, a Jupiter-like planet currently residing at 1 AU could lose moons if it formed beyond ∼5 AU. Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of inward planetary migration, for which no reliable observational proxy currently exists.

  9. Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Energy has initiated efforts to decrease the nation’s dependence on imported oil by developing domestic renewable sources of cellulosic-derived bioenergy. In this study, giant miscanthus (Miscanthus x giganteus), sugarcane (complex hybrid of Saccharum spp.), and giant reed (Ar...

  10. The Giant Planet Satellite Exospheres

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  11. Red Giant Plunging Through Space

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This image from NASA's Spitzer Space Telescope (left panel) shows the 'bow shock' of a dying star named R Hydrae, or R Hya, in the constellation Hydra.

    Bow shocks are formed where the stellar wind from a star are pushed into a bow shape (illustration, right panel) as the star plunges through the gas and dust between stars. Our own Sun has a bow shock, but prior to this image one had never been observed around this particular class of red giant star.

    R Hya moves through space at approximately 50 kilometers per second. As it does so, it discharges dust and gas into space. Because the star is relatively cool, that ejecta quickly assumes a solid state and collides with the interstellar medium. The resulting dusty nebula is invisible to the naked eye but can be detected using an infrared telescope. This bow shock is 16,295 astronomical units from the star to the apex and 6,188 astronomical units thick (an astronomical unit is the distance between the sun and Earth). The mass of the bow shock is about 400 times the mass of the Earth.

    The false-color Spitzer image shows infrared emissions at 70 microns. Brighter colors represent greater intensities of infrared light at that wavelength. The location of the star itself is drawn onto the picture in the black 'unobserved' region in the center.

  12. Origins of Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ostriker, E. C.; Kim, W.-T.

    2004-12-01

    The material in giant molecular clouds (GMCs) constitutes a large proportion of the Milky Way's ISM, and determining how cloud-formation processes affect the properties and spatial distribution of GMCs is important to understanding the structure of the Milky Way. Understanding the formation of GMCs is also key to theories of galactic evolution because it represents the first stage in the overall process of star formation. Several lines of evidence point to a need for relatively rapid GMC formation via coherent dynamical instabilities, and both Parker- and Jeans- type modes have been proposed as potential cloud-forming mechanisms. Recent numerical simulations have investigated these instabilities directly, using spatially-localized models of the interstellar medium that self-consistently incorporate rotational shear, self-gravity, and magnetic fields, as well as the effects of stellar spiral arms. These models have demonstrated that condensation via gravitational instability, aided by magnetic torques, is the most likely candidate for explaining the formation of GMCs. The models have also shown that spiral arm ``spurs'' -- clearly seen as regular projections from dust lanes in at least one external galaxy -- may originate as magneto-gravitational instabilities of the ISM within the dense portions of stellar spiral arms. This raises the interesting possibility that spur structures with similar dynamical origins could potentially be present in the Milky Way as well.

  13. Nebulin--a giant chameleon.

    PubMed

    Pelin, Katarina; Wallgren-Pettersson, Carina

    2008-01-01

    Nebulin is an enormous protein of the muscle sarcomere. It is a determinant of thin filament length, Z-disk structure and fiber contractility. The nebulin gene contains four regions of alternative splicing, providing a wealth of different isoforms of the protein. The precise function of these numerous isoforms in various types of muscle tissue remains to be elucidated, as does their role in the maintenance of normal muscle strength and activity. Understanding these basic mechanisms is a prerequisite for the development of specific therapies for the disorders caused by mutations in the nebulin gene. Such mutations are the main cause of autosomal recessive nemaline (rod) myopathy, especially of the typical form of this congenital myopathy. Further known disorders caused by nebulin mutations are several other subcategories of recessively inherited nemaline myopathy and a novel distal myopathy caused byhomozygous missense mutations in the nebulin gene. Because of the giant size of the gene, molecular genetic testing methods are difficult to design for routine diagnostic use. PMID:19181091

  14. A giant thunderstorm on Saturn.

    PubMed

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Dyudina, U A; Ingersoll, A P; Ewald, S P; Porco, C C; Wesley, A; Go, C; Delcroix, M

    2011-07-01

    Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009. PMID:21734705

  15. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  16. Osteoclastic giant cell tumor of the pancreas☆

    PubMed Central

    Temesgen, Wudneh M.; Wachtel, Mitchell; Dissanaike, Sharmila

    2014-01-01

    INTRODUCTION Pancreatic giant cell tumors are rare, with an incidence of less than 1% of all pancreatic tumors. Osteoclastic giant cell tumor (OGCT) of the pancreas is one of the three types of PGCT, which are now classified as undifferentiated carcinoma with osteoclast-like giant cells. PRESENTATION OF CASE The patient is a 57 year old woman who presented with a 3 week history of epigastric pain and a palpable abdominal mass. Imaging studies revealed an 18 cm × 15 cm soft tissue mass with cystic components which involved the pancreas, stomach and spleen. Exploratory laparotomy with distal pancreatectomy, partial gastrectomy and splenectomy was performed. Histology revealed undifferentiated pancreatic carcinoma with osteoclast-like giant cells with production of osteoid and glandular elements. DISCUSSION OGCT of the pancreas resembles benign-appearing giant cell tumors of bone, and contain osteoclastic-like multinucleated cells and mononuclear cells. OGCTs display a less aggressive course with slow metastasis and lymph node spread compared to pancreatic adenocarcinoma. Due to the rarity of the cancer, there is a lack of prospective studies on treatment options. Surgical en-bloc resection is currently considered first line treatment. The role of adjuvant therapy with radiotherapy or chemotherapy has not been established. CONCLUSION Pancreatic giant cell tumors are rare pancreatic neoplasms with unique clinical and pathological characteristics. Osteoclastic giant cell tumors are the most favorable sub-type. Surgical en bloc resection is the first line treatment. Long-term follow-up of patients with these tumors is essential to compile a body of literature to help guide treatment. PMID:24631915

  17. CHAOTIC DIFFUSION OF RESONANT KUIPER BELT OBJECTS

    SciTech Connect

    Tiscareno, Matthew S.; Malhotra, Renu

    2009-09-15

    We carried out extensive numerical orbit integrations to probe the long-term chaotic dynamics of the two strongest mean-motion resonances of Neptune in the Kuiper Belt, the 3:2 (Plutinos) and 2:1 (Twotinos). Our primary results include a computation of the relative volumes of phase space characterized by large- and small-resonance libration amplitudes, and maps of resonance stability measured by mean chaotic diffusion rate. We find that Neptune's 2:1 resonance has weaker overall long-term stability than the 3:2-only {approx}15% of Twotinos are projected to survive for 4 Gyr, compared to {approx}27% of Plutinos, based on an extrapolation from our 1-Gyr integrations. We find that Pluto has only a modest effect, causing a {approx}4% decrease in the Plutino population that survives to 4 Gyr. Given current observational estimates, and assuming an initial distribution of particles proportional to the local phase-space volume in the resonance, we conclude that the primordial populations of Plutinos and Twotinos formerly made up more than half the population of the classical and resonant Kuiper Belt. We also conclude that Twotinos were originally nearly as numerous as Plutinos; this is consistent with predictions from early models of smooth giant planet migration and resonance sweeping of the Kuiper Belt and provides a useful constraint for more detailed models.

  18. Sunspots and Giant-Cell Convection

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Hathaway, David H.; Reichmann, Ed J.

    2000-01-01

    From analysis of Doppler velocity images from SOHO/MDI, Hathaway et al (2000, Solar Phys., in press) have found clear evidence for giant convection cells that fill the solar surface, have diameters 3 - 10 times that typical of supergranules, and have lifetimes approx. greater than 10 days. Analogous to the superposition of the granular convection on the supergranular convection, the approx. 30,000 km diameter supergranules are superposed on these still larger giant cells. Because the giant cells make up the large-scale end of a continuous power spectrum that peaks at the size scale of supergranules, it appears that the giant cells are made by the same mode of convection as the supergranules. This suggests that the giant cells are similar to supergranules, just longer-lived, larger in diameter, and deeper. Here we point out that the range of lengths of large bipolar sunspot groups is similar to the size range of giant cells. This, along with the long lives (weeks) of large sunspots, suggests that large sunspots sit in long-lived, deep downflows at the corners of giant cells, and that the distance from leader to follower sunspots in large bipolar groups is the distance from one giant-cell corner to the next. By this line of reasoning, an unusually large and strong downdraft might pull in both legs of a rising spot-group magnetic flux loop, resulting in the formation of a delta sunspot. This leads us to suggest that a large, strong giant-cell corner downdraft should be present at the birthplaces of large delta sunspots for some time (days to weeks) before the birth. Thus, early detection of such downdrafts by local helioscismology might provide an early warning for the formation of those active regions (large delta sunspot groups) that produce the Sun's most violent flares and coronal mass ejections. This work is supported by NASA's Office of Space Science through the Solar Physics Branch of its Sun-Earth Connection Program.

  19. An MHD model for magnetar giant flares

    SciTech Connect

    Meng, Y.; Lin, J.; Zhang, Q. S.; Zhang, L.; Reeves, K. K.; Yuan, F. E-mail: jlin@ynao.ac.cn

    2014-04-10

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  20. Giant components in directed multiplex networks.

    PubMed

    Azimi-Tafreshi, N; Dorogovtsev, S N; Mendes, J F F

    2014-11-01

    We describe the complex global structure of giant components in directed multiplex networks that generalizes the well-known bow-tie structure, generic for ordinary directed networks. By definition, a directed multiplex network contains vertices of one type and directed edges of m different types. In directed multiplex networks, we distinguish a set of different giant components based on the existence of directed paths of different types between their vertices such that for each type of edges, the paths run entirely through only edges of that type. If, in particular, m=2, we define a strongly viable component as a set of vertices in which for each type of edges each two vertices are interconnected by at least two directed paths in both directions, running through the edges of only this type. We show that in this case, a directed multiplex network contains in total nine different giant components including the strongly viable component. In general, the total number of giant components is 3^{m}. For uncorrelated directed multiplex networks, we obtain exactly the size and the emergence point of the strongly viable component and estimate the sizes of other giant components. PMID:25493836

  1. Giant components in directed multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2014-11-01

    We describe the complex global structure of giant components in directed multiplex networks that generalizes the well-known bow-tie structure, generic for ordinary directed networks. By definition, a directed multiplex network contains vertices of one type and directed edges of m different types. In directed multiplex networks, we distinguish a set of different giant components based on the existence of directed paths of different types between their vertices such that for each type of edges, the paths run entirely through only edges of that type. If, in particular, m =2 , we define a strongly viable component as a set of vertices in which for each type of edges each two vertices are interconnected by at least two directed paths in both directions, running through the edges of only this type. We show that in this case, a directed multiplex network contains in total nine different giant components including the strongly viable component. In general, the total number of giant components is 3m. For uncorrelated directed multiplex networks, we obtain exactly the size and the emergence point of the strongly viable component and estimate the sizes of other giant components.

  2. An MHD Model for Magnetar Giant Flares

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lin, J.; Zhang, L.; Reeves, K. K.; Zhang, Q. S.; Yuan, F.

    2014-04-01

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806-20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 1047 erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806-20, SGR 0526-66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  3. Anaplastic giant cell thyroid carcinoma.

    PubMed

    Wallin, G; Lundell, G; Tennvall, J

    2004-01-01

    Anaplastic (giant cell) thyroid carcinoma (ATC), is one of the most aggressive malignancies in humans with a median survival time after diagnosis of 3-6 months. Death from ATC was earlier seen because of local growth and suffocation. ATC is uncommon, accounting for less than 5 % of all thyroid carcinomas. The diagnosis can be established by means of multiple fine needle aspiration biopsies, which are neither harmful nor troublesome for the patient. The cytological diagnosis of this high-grade malignant tumour is usually not difficult for a well trained cytologist. The intention to treat patients with ATC is cure, although only few of them survive. The majority of the patients are older than 60 years and treatment must be influenced by their high age. We have by using a combined modality regimen succeeded in achieving local control in most patients. Every effort should be made to control the primary tumour and thereby improve the quality of remaining life and it is important for patients, relatives and the personnel to know that cure is not impossible. Different treatment combinations have been used since 30 years including radiotherapy, cytostatic drugs and surgery, when feasible. In our latest combined regimen, 22 patients were treated with hyper fractionated radiotherapy 1.6Gy x 2 to a total target dose of 46 Gy given preoperatively, 20 mg doxorubicin was administered intravenously once weekly and surgery was carried out 2-3 weeks after the radiotherapy. 17 of these 22 patients were operated upon and none of these 17 patients got a local recurrence. In the future we are awaiting the development of new therapeutic approaches to this aggressive type of carcinoma. Inhibitors of angiogenesis might be useful. Combretastatin has displayed cytotoxicity against ATC cell lines and has had a positive effect on ATC in a patient. Sodium iodide symporter (NIS) genetherapy is also being currently considered for dedifferentiated thyroid carcinomas with the ultimate aim of

  4. Electrodynamics on extrasolar giant planets

    SciTech Connect

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.; Cho, J. Y-K.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be

  5. LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b

    SciTech Connect

    Crida, Aurelien; Masset, Frederic

    2009-11-10

    Recent observations of exoplanets by direct imaging reveal that giant planets orbit at a few dozens to more than a hundred AU from their central star. The question of the origin of these planets challenges the standard theories of planet formation. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outward, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semimajor axes can increase by almost 1 order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.

  6. Giant magnetoelectric effect in negative magnetostrictive/piezoelectric/positive magnetostrictive semiring structure

    NASA Astrophysics Data System (ADS)

    Zeng, Lingyu; Zhou, Minhong; Bi, Ke; Lei, Ming

    2016-01-01

    Magnetoelectric (ME) Ni/PZT/TbFe2 and TbFe2/PZT composites with two semiring structures are prepared. The dependence between ME coupling and magnetostrictive property of the composite is discussed. Because Ni possesses negative magnetostrictive property and TbFe2 shows positive magnetostrictive property, the ME voltage coefficient of Ni/PZT/TbFe2 semiring structure is much larger than that of TbFe2/PZT. In these composites, the ME voltage coefficient increases and the resonance frequency gradually decreases with the increase of the semiring radius, showing that structural parameters are key factors to the composite properties. Due to the strong ME coupling effect, a giant ME voltage coefficient αE = 44.8 V cm-1 Oe-1 is obtained. This approach opens a way for the design of ME composites with giant ME voltage coefficient.

  7. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    SciTech Connect

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N.; Langston, G. I.; Bilous, A. V.; Kondratiev, V. I.; Lyutikov, M.; Ransom, S. M.

    2012-11-20

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi {gamma}-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 {gamma}-ray photons were used in this correlation analysis. No significant correlations were found between GPs and {gamma}-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  8. What Are Polymyalgia Rheumatica and Giant Cell Arteritis?

    MedlinePlus

    ... Cell Arteritis Find a Clinical Trial Journal Articles What Are Polymyalgia Rheumatica and Giant Cell Arteritis? PDF Version Size: 58 KB November 2014 What Are Polymyalgia Rheumatica and Giant Cell Arteritis? Fast ...

  9. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  10. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  11. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  12. Arthroscopic Resection of a Tenosynovial Giant Cell Tumor in the Wrist

    PubMed Central

    Lee, Young-Keun; Han, Youngshin; Lee, Malrey

    2015-01-01

    Abstract The treatment for giant cell tumors of the tendon sheath is surgical therapy, but surgical recurrence rates were reported to be as high as 50% in some cases. Therefore, complete radical excision of the lesion is the treatment of choice. If the tumor originates from the joint, it is important to perform capsulotomy. Here, the authors report the first case of successful treatment of a localized intra-articular giant cell tumor in the wrist by arthroscopic resection. A 28-year-old right-handed woman visited the clinic because of left wrist ulnar-side pain, which had been aggravated during the previous 15 days. Vague ulnar-side wrist pain had begun 2 years ago. When the authors examined the patient, the wrist showed mild swelling on the volo-ulnar aspect and the distal radioulnar joint, as well as volar joint line tenderness. She showed a positive result on the ulnocarpal stress test and displayed limited range of motion. Magnetic resonance imaging revealed an intra-articular mass with synovitis in the ulnocarpal joint. Wrist arthroscopy was performed using standard portals under regional anesthesia. The arthroscopic findings revealed a large, well-encapsulated, yellow lobulated soft-tissue mass that was attached to the volar side of the ulnocarpal ligament and connected to the extra-articular side. The mass was completely excised piece by piece with a grasping forceps. Histopathologic examination revealed that the lesion was an intra-articular localized form of a tenosynovial giant cell tumor. At 24-month follow-up, the patient was completely asymptomatic and had full range of motion in her left wrist, and no recurrence was found in magnetic resonance imaging follow-up evaluations. The authors suggest that the arthroscopic excision of intra-articular giant cell tumors, as in this case, may be an alternative method to open excisions, with many advantages. PMID:26496348

  13. Asymptomatic post-rheumatic giant left atrium.

    PubMed

    Özkartal, Tardu; Tanner, Felix C; Niemann, Markus

    2016-06-26

    A 78-year-old asymptomatic woman was referred to our clinic for a second opinion regarding indication for mitral valve surgery. An echocardiogram showed a moderate mitral stenosis with a concomitant severe regurgitation. The most striking feature, however, was a giant left atrium with a parasternal anteroposterior diameter of 79 mm and a left atrial volume index of 364 mL/m². There are various echocardiographic definitions of a giant left atrium, which are mainly based on measurements of the anteroposterior diameter of the left atrium using M-mode in the parasternal long axis view. Since the commonly accepted method for echocardiographic evaluation of left atrial size is left atrial volume index, we propose a cut-off value of 140 mL/m(2) for the definition of a "giant left atrium". PMID:27354895

  14. Giant axonal neuropathy: visual and oculomotor deficits.

    PubMed

    Kirkham, T H; Guitton, D; Coupland, S G

    1980-08-01

    Giant axonal neuropathy, a generalised disorder or neurofilaments, presents as a chronic, progressive peripheral neuropathy in childhood. Evidence for central nervous system involvement is demonstrated in this study of four male patients with giant axonal neuropathy who had defective visual function and abnormal ocular motility. The visual system was studied by electroretinography, which showed normal retinal function, and by visual evoked potentials, which showed disease of both optic nerves and retrochiasmal visual pathways. The ocular motility disorder, studied by electrooculography, comprised defective pursuit, inability to maintain eccentric gaze with gaze paretic and rebound nystagmus, abnormal optokinetic responses and failure of suppression of the vestibulo-ocular reflex by fixation. These findings suggested involvement by giant axonal neuropathy of the cerebellar and brain stem pathways important in the control of ocular motility. PMID:7192592

  15. Asymptomatic post-rheumatic giant left atrium

    PubMed Central

    Özkartal, Tardu; Tanner, Felix C; Niemann, Markus

    2016-01-01

    A 78-year-old asymptomatic woman was referred to our clinic for a second opinion regarding indication for mitral valve surgery. An echocardiogram showed a moderate mitral stenosis with a concomitant severe regurgitation. The most striking feature, however, was a giant left atrium with a parasternal anteroposterior diameter of 79 mm and a left atrial volume index of 364 mL/m². There are various echocardiographic definitions of a giant left atrium, which are mainly based on measurements of the anteroposterior diameter of the left atrium using M-mode in the parasternal long axis view. Since the commonly accepted method for echocardiographic evaluation of left atrial size is left atrial volume index, we propose a cut-off value of 140 mL/m2 for the definition of a “giant left atrium”. PMID:27354895

  16. Electrically controlled giant piezoresistance in silicon nanowires.

    PubMed

    Neuzil, Pavel; Wong, Chee Chung; Reboud, Julien

    2010-04-14

    Herein we demonstrate giant piezoresistance in silicon nanowires (NWs) by the modulation of an electric field-induced with an external electrical bias. Positive bias for a p-type device (negative for an n-type) partially depleted the NWs forming a pinch-off region, which resembled a funnel through which the electrical current squeezed. This region determined the total current flowing through the NWs. In this report, we combined the electrical biasing with the application of mechanical stress, which impacts the charge carriers' concentration, to achieve an electrically controlled giant piezoresistance in nanowires. This phenomenon was used to create a stress-gated field-effect transistor, exhibiting a maximum gauge factor of 5000, 2 orders of magnitude increase over bulk value. Giant piezoresistance can be tailored to create highly sensitive mechanical sensors operating in a discrete mode such as nanoelectromechanical switches. PMID:20192246

  17. Case report of solitary giant hepatic lymphangioma

    PubMed Central

    Lee, Hwan Hyo

    2016-01-01

    A hepatic lymphangioma is a rare benign neoplasm that is usually associated with systemic lymphangiomatosis. A solitary hepatic lymphangioma is extremely rare. Therefore, we present a rare case of a female patient who underwent right hepatectomy for solitary giant hepatic lymphangioma. A 42-year-old female presented to the emergency department with complaint of severe abdominal pain of the right upper quadrant. Abdominal computed tomography showed an approximately 23×30-cm sized, giant, relatively well-defined, homogenous cystic mass with few septa in the right liver (segments VII and VIII). The preoperative diagnosis was a giant hepatic cystadenoma or cystadenocarcinoma. We performed right hepatectomy. The permanent histopathological report revealed cystic lymphangioma of the liver. Although the prognosis of solitary hepatic lymphangioma after surgical resection is favorable, recurrence has been reported in literature. PMID:27212994

  18. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. EXCISION OF GIANT CELL TUMOR OF TENDON SHEATH WITH BONE INVOLVEMENT BY MEANS OF DOUBLE ACCESS APPROACH: CASE REPORT

    PubMed Central

    Alves, Marcelo de Pinho Teixeira

    2015-01-01

    Giant cell tumors of the tendon sheath are common lesions and are the second most frequent tumors in the hand, after synovial cysts. They are diagnosed by means of clinical examination and complementary examinations (simple radiography and magnetic resonance). Erosion and invasion of the phalangeal bone affected may be seen on radiological examination. Magnetic resonance may show a “fluorescent or radiant effect” may be observed, caused by the high quantity of hemosiderin inside the tumor. Surgical treatment is the commonest practice, and complete excision is important for avoiding recurrence of the tumor, especially when bone invasion is observed on imaging examinations, which is generally related to greater tumor recurrence. In this paper, a case of a giant cell tumor of the tendon sheath in the middle phalanx of the third finger of a 45-year-old female patient is presented. This was successfully treated by means of surgery using a double access approach (dorsal and volar). PMID:27026996

  20. Surgical Resection of a Giant Coronary Aneurysm.

    PubMed

    Mehall, John R; Verlare, Jordan L

    2015-06-01

    Coronary aneurysms are quite uncommon, and those qualifying as giant aneurysms are even more so. Currently, no standardized treatment protocol exists. We report the case of a 46-year-old man presenting with clinical signs and symptoms of acute myocardial infarction who was found to have a giant coronary aneurysm. The patient was initially evaluated with a computed tomography angiogram, which revealed a 9-cm aneurysm of the left circumflex coronary artery. Surgical resection of the aneurysm, ligation of the proximal circumflex artery, and bypass using the left internal mammary artery to vascularize the proximal circumflex artery was performed. PMID:26046882

  1. Giant eruptions of very massive stars

    NASA Astrophysics Data System (ADS)

    Davidson, Kris

    2016-07-01

    Giant eruptions or supernova-impostor events are far more mysterious than true supernovae. An extreme example can release as much radiative energy as a SN, ejecting several Mʘ of material. These events involve continuous radiation-driven outflows rather than blast waves. They constitute one of the main unsolved problems in stellar astrophysics, but have received little theoretical attention. The most notorious giant-eruption survivor, ƞ Carinae, is amazingly close to us for such a rare event. It offers a wealth of observational clues, many of them quite unexpected in terms of simple theory.

  2. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    SciTech Connect

    Kostov, Veselin; Apai, Daniel

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  3. Spin-dependent deprotonation induced giant magnetocurrent in electrochemical cells.

    PubMed

    Pan, Haiping; Shen, Yan; Duan, Jiashun; Lu, Kai; Hu, Bin

    2016-04-21

    A giant magnetocurrent (>100%) is observed in the electrochemical system based on tertiary amines at room temperature. This giant magnetocurrent is ascribed to spin-dependent deprotonation during the oxidation of tertiary amines. This presents a new approach of using spin-dependent deprotonation to generate giant magnetocurrent in electrochemical reactions. PMID:27009519

  4. Evaluation of Glyphosate for Managing Giant Reed (Arundo donax)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed is an invasive plant of riparian habitats throughout California and the United States. Two herbicides approved for controlling giant reed in California are glyphosate and imazapyr. Sources indicate that 1.5% to 5% glyphosate solutions are effective at controlling giant reed. Imazapyr has ...

  5. GIANT PITUITARY ADENOMA WITH NORMAL VISION AND MISLEADING RADIOLOGICAL FINDINGS.

    PubMed

    Khalid, Muhammad; Raina, Umer Farooq; uz Zaman, Khaleeq; Tahir, Muhammad

    2015-01-01

    Giant pituitary adenomas are rare and present with visual loss. Giant pituitary adenoma has rarely been reported presenting with normal vision. We report Giant pituitary adenoma with Normal vision in a 35 years old patient presenting with adult onset epilepsy and headache. PMID:26721053

  6. THE LINE POLARIZATION WITHIN A GIANT Ly{alpha} NEBULA

    SciTech Connect

    Prescott, Moire K. M.; Smith, Paul S.; Schmidt, Gary D.; Dey, Arjun

    2011-04-01

    Recent theoretical work has suggested that Ly{alpha} nebulae could be substantially polarized in the Ly{alpha} emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Ly{alpha} polarization measurements for a giant Ly{alpha} nebula at z{approx} 2.656. We do not detect any significant linear polarization of the Ly{alpha} emission: P{sub Ly{alpha}} = 2.6% {+-} 2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Ly{alpha} (e.g., from the nearby active galactic nucleus, AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Ly{alpha} nebulae.

  7. Design, analysis, and modeling of giant magnetostrictive transducers

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick Theodore

    The increased use of giant magnetostrictive, Terfenol-D transducers in a wide variety of applications has led to a need for greater understanding of the materials performance. This dissertation attempts to add to the Terfenol-D transducer body of knowledge by providing an in-depth analysis and modeling of an experimental transducer. A description of the magnetostriction process related to Terfenol-D includes a discussion of material properties, production methods, and the effect of mechanical stress, magnetization, and temperature on the material performance. The understanding of the Terfenol-D material performance provides the basis for an analysis of the performance of a Terfenol-D transducer. Issues related to the design and utilization of the Terfenol-D material in the transducers are considered, including the magnetic circuit, application of mechanical prestress, and tuning of the mechanical resonance. Experimental results from two broadband, Tonpilz design transducers show the effects of operating conditions (prestress, magnetic bias, AC magnetization amplitude, and frequency) on performance. In an effort to understand and utlilize the rich performance space described by the experimental results a variety of models are considered. An overview of models applicable to Terfenol-D and Terfenol-D transducers is provided, including a discussion of modeling criteria. The Jiles-Atherton model of ferromagnetic hysteresis is employed to describe the quasi-static transducer performance. This model requires the estimation of only six physically-based parameters to accurately simulate performance. The model is shown to be robust with respect to model parameters over a range of mechanical prestress, magnetic biases, and AC magnetic field amplitudes, allowing predictive capability within these ranges. An additional model, based on electroacoustics theory, explains trends in the frequency domain and facilitates an analysis of efficiency based on impedance and admittance

  8. Expression of CD34 and CD68 in peripheral giant cell granuloma and central giant cell granuloma: An immunohistochemical analysis

    PubMed Central

    VK, Varsha; Hallikeri, Kaveri; Girish, HC; Murgod, Sanjay

    2014-01-01

    Background: Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. Objective: To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Materials and Methods: Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Results: Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Conclusion: Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior. PMID:25948986

  9. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  10. Laser treatment of giant xanthelasma palpebrarum.

    PubMed

    Corradino, Bartolo; Di Lorenzo, Sara; Triolo, Antonio; Moschella, Francesco

    2015-11-01

    Xanthelasma palpebrarum is the most common cutaneous xanthoma. It typically presents in middle-aged and older adults, most often around the eyelids. The diagnosis is made clinically. Giant xanthelasmas palpebrarum are xanthelasmas that extensively affect the superior and inferior bilateral eyelids. Many techniques have been put forward for treating these lesions (surgical, laser, and chemical techniques), but we describe our experience in the treatment of giant xanthelasmas by ultrapulsed CO2 laser. Between 2009 and 2012, in the Division of Plastic and Reconstructive Surgery at the University of Palermo, 12 patients with giant xanthelasmas were treated using a CO2 laser. The laser parameters are as follows: frequency 20 Hz, energy 75 mJ, and power 1.5 W. Each laser session lasts 15 min; the treatment consists of three or four sessions that are carried out at intervals of 15 days. Patients were followed up after 2, 6, and 12 months. This technique is rapid and it is accepted very well by patients. The only disadvantage is a long healing time (10-15 days). The ultrapulsed CO2 laser, in experienced hands, is an excellent device that enables the complete removal of giant xanthelasmas with a minimally invasive but very effective technique. PMID:25252796

  11. Polymyalgia rheumatica and giant cell arteritis.

    PubMed

    Subrahmanyan, Peddasomayajula; Dasgupta, Bhaskar

    2006-05-01

    Polymyalgia rheumatica and giant cell arteritis are the commonest inflammatory rheumatic conditions seen in the elderly. This review focuses on the diagnostic processes and complications of disease and treatment; and the safe management of these conditions with careful consideration of balance between benefits and long-term risks of glucocorticosteroid therapy. PMID:16729627

  12. The local density of halo giants

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.

    1993-01-01

    A new estimate of the local density of halo giants - 36 +/- 7 with M(V) less than 0.5 per cu kpc - is presented. This number is derived from an objective-prism survey for nearby metal-weak stars, and so is free from many of the assumptions needed to derive the local halo density in the traditional way, from high proper motion surveys. This number agrees well with estimates of the local density of halo horizontal-branch stars, but is approximately a factor of 2 smaller than the density derived by Bahcall and Casertano (1986). This may be due to the inclusion of some thick disk stars in their proper-motion selected sample. The halo density derived from giants can be expressed as a disk-to-halo ratio of 850:1 (+/- 35 percent). Using these results, a simple model is built to predict numbers of halo giants in specified directions in the Galaxy. It is shown that it performs much better than the Bahcall-Soniera model, in the specific case of halo giants. The surface brightness due to the halo at the solar radius is calculated to be 27.7 V magnitudes per sq arcsec, if the Galaxy was viewed from the outside, edge-on, thus raising the possibility of detecting light from halo field stars in other galaxies similar to our own.

  13. Giant light enhancement in atomic clusters

    SciTech Connect

    Gadomsky, O. N. Gadomskaya, I. V.; Altunin, K. K.

    2009-07-15

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  14. Giant diverticulum of the sigmoid colon.

    PubMed

    García Flórez, L J; Otero Diez, J; López Muñiz, C; Santamaría Girón, L; Pérez Suárez, A

    2002-12-01

    The giant colonic diverticulum is a very rare clinical entity usually located in the sigmoid colon of elderly patients. A case of an 87-year-old woman recently treated in our hospital is reported hereinafter. The patient was non-surgically treated due to her advanced age and high surgical risk. PMID:12733335

  15. Giant Cavernous Haemangioma of the Anterior Mediastinum

    PubMed Central

    Kaya, Seyda Ors; Samancılar, Ozgur; Usluer, Ozan; Acar, Tuba; Yener, Ali Galip

    2015-01-01

    Cavernous hemangiomas of the anterior mediastinum is rare. We present a case of a 56-year-old male patient with a giant cavernous hemangioma of the anterior mediastinum, 18 cm in diameters, approached by left posterolateral thoracotomy. To the best of our knowledge, such a unique case has not been previously presented in the literature. PMID:26644773

  16. Recovery From Giant Eruptions in Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, A.; Davidson, K.; Humphreys, R. M.

    2015-12-01

    We perform radiation hydrodynamic simulations to study how very massive stars recover from giant eruptions. The post eruption star experience strong mass loss due to strong winds, driven by radial pulsations in the star*s interior, that operate by the κ-mechanism. The mass loss history obtained in our simulations resembles η Car*s history.

  17. Reading on the Shoulders of Giants

    ERIC Educational Resources Information Center

    Ben-Chaim, Michael; Riendeau, Michael

    2012-01-01

    Reflecting on his successful scientific career, Isaac Newton highlighted his intellectual debt to his predecessors. "If I have seen further," he wrote, "it was "only" by standing on the shoulders of giants." The authors have chosen the title of their article as a token of recognition of their debt to the teachings of Newton and other intellectuals…

  18. Giant Cell Arteritis and Polymyalgia Rheumatica

    MedlinePlus

    ... symptoms of both GCA and PMR. Other Organizations Arthritis Foundation Questions to Ask Your Doctor What is the likely cause of my symptoms? Do I need any blood tests or biopsies? I have giant cell arteritis. Am I more likely to have polymyalgia rheumatica? I have polymyalgia ...

  19. Giant Viruses of Amoebas: An Update.

    PubMed

    Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2016-01-01

    During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages. PMID:27047465

  20. Tuberculosis Detection by Giant African Pouched Rats

    ERIC Educational Resources Information Center

    Poling, Alan; Weetjens, Bart; Cox, Christophe; Beyene, Negussie; Durgin, Amy; Mahoney, Amanda

    2011-01-01

    In recent years, operant discrimination training procedures have been used to teach giant African pouched rats to detect tuberculosis (TB) in human sputum samples. This article summarizes how the rats are trained and used operationally, as well as their performance in studies published to date. Available data suggest that pouched rats, which can…

  1. Vocal repertoire of the social giant otter.

    PubMed

    Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme

    2014-11-01

    According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis. PMID:25373985

  2. Generation of a Chiral Giant Micelle.

    PubMed

    Ito, Thiago H; Salles, Airton G; Priebe, Jacks P; Miranda, Paulo C M L; Morgon, Nelson H; Danino, Dganit; Mancini, Giovanna; Sabadini, Edvaldo

    2016-08-23

    Over the past few years, chiral supramolecular assemblies have been successfully used for recognition, sensing and enantioselective transformations. Several approaches are available to control chirality of discrete assemblies (e.g., cages and capsules), but few are efficient in assuring chirality for micellar aggregates. Optically active amino acid-derived surfactants are commonly used to generate chiral spherical micelles. To circumvent this limitation, we benefited from the uniaxial growth of spherical micelles into long cylindrical micelles usually called wormlike or giant micelles, upon the addition of cosolutes. This paper describes the unprecedented formation of chiral giant micelles in aqueous solutions of cetyltrimethylammonium bromide (CTAB) upon increasing addition of enantiopure sodium salt of 1,1'-bi-2-naphthol (Na-binaphtholate) as a cosolute. Depending on the concentrations of CTAB and Na-binaphtholate, chiral gel-like systems are obtained. The transition from spherical to giant micellar structures was probed using rheology, cryo-transmission electron microscopy, polarimetry, and electronic circular dichroism (CD). CD can be effectively used to monitor the incorporation of Na-binaphtholate into the micelle palisade as well as to determine its transition to giant micellar structures. Our approach expands the scope for chirality induction in micellar aggregates bringing the possibility to generate "smart" chiral systems and an alternative asymmetric chiral environment to perform enantioselective transformations. PMID:27499127

  3. Insights on a Giant Aneurysm Treated Endovascularly.

    PubMed

    Graziano, Francesca; Iacopino, Domenico Gerardo; Ulm, Arthur John

    2016-07-01

    Background Endovascular treatment with stent-assisted Guglielmi detachable coils is an accepted method for treating intracranial giant aneurysms that otherwise would require more invasive or destructive treatment or could not be treated at all. Nevertheless, there is a paucity of information concerning inner postcoiling aneurysmal changes in human subjects over the long term. We report a postmortem analysis of a patient with a giant aneurysm at the vertebrobasilar junction (VBJ) who was treated endovascularly and studied pathologically 24 months after treatment. Materials and Method The head was removed at autopsy and prefixed in a 10% neutral buffered formalin solution. The brain was gently removed from the skull base after cutting the intracranial nerves and vascular structures. The giant VBJ aneurysm and its relationship with the brainstem, cranial nerves, and vessels were captured photographically and analyzed. Afterward, under operating microscope guidance, the vertebrobasilar system with the aneurysm was gently and carefully detached from the brainstem and carefully analyzed. Results No complete fibrous obliteration of the aneurysm lumen could be detected in our case, and no endothelialization had taken place 24 months after treatment. Conclusions Our findings agree with those of previous similar reports. Coiling, in particular in large or giant aneurysms, may be burdened by the risk of coil compaction and recanalization, but it has the advantage of not affecting the flow in the perforating arteries. PMID:26296255

  4. Giant-cell granuloma of the sinuses

    SciTech Connect

    Rhea, J.T.; Weber, A.L.

    1983-04-01

    Three cases are presented which illustrate giant-cell granulomas in the maxillary, ethmoid, and sphenoid sinuses. The radiographic features are nonspecific, and the lesion can mimic carcinoma. Ossification can be demonstrated, especially with computed tomography, and may indicate a benign lesion.

  5. Giant Viruses of Amoebas: An Update

    PubMed Central

    Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2016-01-01

    During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages. PMID:27047465

  6. A rare case of giant vaginal fibromyoma

    PubMed Central

    Asnani, Mona; Srivastava, Kumkum; Gupta, Hem Prabha; Kunwar, Shipra; Srivastava, A N

    2016-01-01

    Summary Vaginal fibroids rarely exist as a primary vaginal tumor. Approximately 300 cases have been reported in the literature. Here we are reporting a rare case of giant vaginal fibromyoma. It was diagnosed as cervical fibroid polyp preoperatively but found to be vaginal fibromyoma peroperatively. PMID:26989649

  7. Chirp-driven giant phase space vortices

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2016-06-01

    In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.

  8. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  9. Giant molecules composed of polar molecules and atoms in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Qi, Ran; Tan, Shina

    2014-05-01

    Two or three polar molecules, confined to one or two dimensions, can form stable bound states with a single atom living in three dimensions, if the molecule and the atom can interact resonantly such that their mixed dimensional scattering length is large. We call these bound states ``giant molecules'' since it's a molecule composed of smaller molecules and atoms. We study their properties using techniques including exact numerical solution, exact qunatum diffusion Monte Carlo (QMC), Born-Oppenheimer approximation (BOA), and semiclassical approximation. These bound states have a hierarchical structure reminiscent of the celestial systems.

  10. On the standing wave mode of giant pulsations

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Sato, N.; Warnecke, J.; Luehr, H.; Spence, H. E.; Tonegawa, Y.

    1992-01-01

    In order to determine the standing wave mode of giant pulsations, a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE was made. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator. It is concluded that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure, which places a strong constraint on the generation mechanism of giant pulsations.

  11. Photoluminescence of Giant Quantum Dots Coupled With Waveguide Modes of Plasmonic Gap Bar Nanoantennas

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Nguyen, Hue-Minh; Karan, Niladri; Ghosh, Yagnaseni; Sheehan, Chris; Hollingsworth, Jennifer; Htoon, Han

    2015-03-01

    We designed a plasmonic gap bar nanoantenna, which is in resonances with the emission band of silica-coated giant-CdSe/CdS quantum dots. This antenna is composed of two parallel gold nano-bars with 40 nm gap fabricated on top of a 20 nm thick gold film and glass substrate. Utilizing two-step e-beam lithography process, we have fabricated this antenna and integrated the single silica-coated giant quantum dots into the gap. The enhanced emission rate and emission polarization have been studied for quantum dots placed at different positions along the gap bar antennas. The use of silica shell suppressed the energy transfer quenching from giant quantum dots to metal. Therefore, the detected lifetime shortening by a factor of 8 is purely resulted from the enhancement of decay rate. Experimental measurements also show that the photoluminescence intensity with polarization perpendicular to the bar can be 9 times stronger than along the bar, leading to a linear polarization degree of 0.8. Strong modulation of emission spectra has also been observed. Numerical simulations indicate that the strong linear polarization and the spectral modulation could be due to the emission coupling with the plasmonic waveguide modes.

  12. Origin of the obliquities of the giant planets in mutual interactions in the early Solar System.

    PubMed

    Brunini, Adrián

    2006-04-27

    The origin of the spin-axis orientations (obliquities) of the giant planets is a fundamental issue because if the obliquities resulted from tangential collisions with primordial Earth-sized protoplanets, then they are related to the masses of the largest planetesimals out of which the planets form. A problem with this mechanism, however, is that the orbital planes of regular satellites would probably be uncorrelated with the obliquities, contrary to observations. Alternatively, they could have come from an external twist that affected the orientation of the Solar System plane; but in this model, the outer planets must have formed too rapidly, before the event that produced the twist. Moreover, the model cannot be quantitatively tested. Here I show that the present obliquities of the giant planets were probably achieved when Jupiter and Saturn crossed the 1:2 orbital resonance during a specific migration process: different migration scenarios cannot account for the large observed obliquities. The existence of the regular satellites of the giant planets does not represent a problem in this model because, although they formed soon after the planetary formation, they can follow the slow evolution of the equatorial plane it produces. PMID:16641989

  13. The Rise of a Giant

    NASA Astrophysics Data System (ADS)

    2006-12-01

    European astronomy has received a tremendous boost with the decision from ESO's governing body to proceed with detailed studies for the European Extremely Large Telescope. This study, with a budget of 57 million euro, will make it possible to start, in three years time, the construction of an optical/infrared telescope with a diameter around 40m that will revolutionise ground-based astronomy. The chosen design is based on a revolutionary concept specially developed for a telescope of this size. "The decision by the ESO Council to go ahead with the design study for an European Extremely Large Telescope is a very exciting one for European astronomy,", said Richard Wade, President of the ESO Council. "Today is a great day because the ESO Council has authorised us to go forward with the final design of the next flagship telescope of ESO,", says Catherine Cesarsky, ESO's Director General. ESO PR Photo 46/06 ESO PR Photo 46/06 The European Extremely Large Telescope (Artist's Impression) Since the end of last year, ESO has been working together with its user community of European astronomers and astrophysicists to define the new giant telescope needed by the middle of the next decade [1]. More than one hundred astronomers from all European countries have been involved throughout 2006, helping the ESO Project Offices to produce a novel concept, in which performance, cost, schedule and risk were carefully evaluated. This fast pace has also been possible thanks to early conceptual studies in Europe (such as the ESO OWL and the EURO-50 studies) and research and development done in collaboration with a large number of European institutes and high-tech industries to develop critical enabling technologies within the framework of the EU FP6 programme and with significant contributions from all partners. Provisionally dubbed E-ELT for the European Extremely Large Telescope, ESO's innovative concept was presented in detail two weeks ago to more than 250 European astronomers at a

  14. Ultrabass Sounds of the Giant Star xi Hya

    NASA Astrophysics Data System (ADS)

    2002-05-01

    First Observations of Solar-type Oscillations in a Star Very Different from the Sun Summary About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface. Observations of the solar sound waves (known as " helioseismology ") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis (cf. ESO PR 16/94 ). Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun (cf. ESO PR 15/01 ), and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of " asteroseismology " (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun? Based on an extremely intensive observing project with the same telescope, an international group of astronomers [1] has found that the giant star xi Hya ("xi" is the small greek letter [2]; "Hya" is an abbreviation of "Hydrae") behaves like a giant sub-ultra-bass instrument . This star is located in the constellation Hydra (the Water-Monster) at a distance of 130 light-years, it has a radius about 10 times that of the Sun and its luminosity is about 60

  15. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  16. Hilda Asteroid Colors: Insight into Giant Planet Migration?

    NASA Astrophysics Data System (ADS)

    Sharkey, Benjamin; Ryan, Erin L.; Woodward, Charles E.; Noll, Keith S.

    2016-01-01

    The Hilda asteroids are a unique population of small bodies that are locked in a 3:2 mean motion resonance with Jupiter. Unlike other resonances in the asteroid belt, the 3:2 is a stable resonance at 3.95 AU. Objects at this resonance have stable orbits for at least 2 GYr and, more likely, for the age of the Solar System. In an instantaneous top down view of the solar system, the Hildas approximately trace a triangle with over-densities of asteroids near the L3, L4 and L5 Jovian Lagrange points. This configuration is cited as evidence that Jupiter migrated inwards by ~0.4 AU. Stable Hilda orbits have mean eccentricities of 0.16 with typical perihelia of 3.15 AU. These latter properties, in terms of observability and accessibility to spacecraft, are a major advantage that distinguishes the Hildas from other populations of potential scientific interest such as the Jovian Trojans. The Outer Main Belt (OMB) also has many objects that may have originated in the outer protoplanetary disk (OPD). However, the OMB appears to be more mixed with objects from elsewhere in the Main Belt and enjoys only a small advantage in terms of brightness for a given diameter and albedo. The intrinsic collisional probability for objects in the Hilda population is also a factor of 3 to 5 less than the collisional probabilities for Trojan and OMB populations. Thus, the Hildas likely represent a significant population of objects unaltered due to collisional processing. Here we discuss findings of our ongoing NASA Planetary Astronomy program to obtain Sloan optical (g' r' i' z') colors of Hilda-group asteroids. The loci of these colors are compared to the Kuiper Belt populations to test post-formation migration effects of the giant planets in our solar system on the small body population. In part, this work was conducted as part of a University of Minnesota Undergraduate Research Scholarship, and is supported by NASA PAST Award NNX13AJ11G.

  17. STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS

    SciTech Connect

    Nesvorny, David; Morbidelli, Alessandro

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 10{sup 4} numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M{sub disk} {approx}> 50 M{sub Earth}), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e{sub 55} {approx}< 0.01 compared to present e{sub 55} = 0.044, where e{sub 55} is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M{sub disk} {approx_equal} 20 M{sub Earth}. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a {approx_equal}5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  18. Stability of Minor-Body Orbits in Systems with Two Giant Planets

    NASA Astrophysics Data System (ADS)

    Lepage, Ian; Duncan, Martin J.

    2004-03-01

    We have performed a large ensemble of long-term numerical integrations to study the stability of the orbits of minor bodies in systems containing a solar-mass star and two giant planets. Given the large parameter space involved, we have focused on systems in which the inner planet has the mass of Jupiter (MJ) and the outer planet has a mass equal to either MJ or 1/3 MJ, and where we use an initially dynamically cold (e=0) minor-body population. We investigated the effects of the planetary semimajor-axis ratio, eccentricity, and inclination on the stability of orbits distributed throughout the system. We show that the behavior of the particles varies from region to region as the result of a complex interplay of the two major types of resonances: ``mean motion'' resonances associated with commensurabilities of orbital frequencies, and ``secular'' resonances associated with commensurabilities of orbital precession frequencies. In the region inward of the inner planet, mean motion resonances produce instabilities and secular resonances induce high eccentricities in the particles. Between the planets, the mean motion resonances are dominant and generally induce instability. Beyond the outer planet, secular and mean motion resonances overlap and produce wide-scale instability. In this last region, many stable particles are associated with mean motion resonances in various kinds of protective mechanisms. We also show that increased planetary eccentricity generally results in increased instability and that high initial inclination of both planet and test particles greatly changes the final structure of the system. Overall, our results show trends that make it possible to predict the general features of the minor-body distribution for a given set of orbital elements of the planets. We demonstrate this with two examples drawn from the set of observed extrasolar planetary systems.

  19. Fission and dipole resonances in metal clusters

    SciTech Connect

    Martin, T. P.; Billas, I. M. L.; Branz, W.; Heinebrodt, M.; Tast, F.; Malinowski, N.

    1997-06-20

    It is not obvious that metal clusters should behave like atomic nuclei--but they do. Of course the energy and distance scales are quite different. But aside from this, the properties of these two forms of condensed matter are amazingly similar. The shell model developed by nuclear physicists describes very nicely the electronic properties of alkali metal clusters. The giant dipole resonances in the excitation spectra of nuclei have their analogue in the plasmon resonances of metal clusters. Finally, the droplet model describing the fission of unstable nuclei can be successively applied to the fragmentation of highly charged metal clusters. The similarity between clusters and nuclei is not accidental. Both systems consist of fermions moving, nearly freely, in a confined space.

  20. Giant oil fields of the Gulf Coast area

    SciTech Connect

    Haeberle, F.R.

    1993-09-01

    The 134 giant fields in the Gulf Coastal area contain 29% of the total giant-field reserves. Cumulative production is 32% of the giant-field cumulative total and 20% of the United States cumulative production. Eighty-nine of the giant fields are offshore with 22% of the reserves, 11 fields are in east Texas with 24% of the reserves, and 1 field is in Florida with 1% of the reserves. In 106 of the giant fields the primary producing interval is Cenozoic with 65% of the reserves, and in 28 giant fields the producing interval is Mesozoic with 35% of the reserves. The primary producing interval is Mesozoic with 35% of the reserves. The primary producing interval in 124 giant fields consists of clastics with 91% of the reserves, in 7 fields the primary lithology is carbonates with 6% of the reserves, and in 3 giant fields the lithology is mixed clastics and carbonates. A total of 127 fields are in structural traps with all of the reserves, 4 fields are stratigraphic traps (3%) with 18% of the reserves, and 3 fields are combination traps with 1% of the reserves. Over 50 of the giant oil fields in structural traps are salt domes. The most prevalent types of giant fields in the Gulf Coastal area are onshore structural traps with Cenozoic clastics as the primary producing intervals.

  1. Confinement resonances in photoionization of Xe@C₆₀+.

    PubMed

    Kilcoyne, A L D; Aguilar, A; Müller, A; Schippers, S; Cisneros, C; Alna'washi, G; Aryal, N B; Baral, K K; Esteves, D A; Thomas, C M; Phaneuf, R A

    2010-11-19

    Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C60 cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe@C₆₀+ ion beam. The phenomenon was observed in the Xe@C(58)(3+) product ion channel. [corrected] PMID:21231297

  2. New Insight into the Pygmy Dipole Resonance in Stable Nuclei

    SciTech Connect

    Neumann-Cosel, P. von

    2008-11-11

    Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution ({gamma},{gamma}') experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a nonrelativistic mean-field description, predicting significantly different properties of the PDR. The second part presents attempts to unravel the structure of dipoles modes at energies below the giant dipole resonance (GDR) in {sup 208}Pb with a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg.

  3. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator.

    PubMed

    Fleury, Romain; Sounas, Dimitrios L; Sieck, Caleb F; Haberman, Michael R; Alù, Andrea

    2014-01-31

    Acoustic isolation and nonreciprocal sound transmission are highly desirable in many practical scenarios. They may be realized with nonlinear or magneto-acoustic effects, but only at the price of high power levels and impractically large volumes. In contrast, nonreciprocal electromagnetic propagation is commonly achieved based on the Zeeman effect, or modal splitting in ferromagnetic atoms induced by a magnetic bias. Here, we introduce the acoustic analog of this phenomenon in a subwavelength meta-atom consisting of a resonant ring cavity biased by a circulating fluid. The resulting angular momentum bias splits the ring's azimuthal resonant modes, producing giant acoustic nonreciprocity in a compact device. We applied this concept to build a linear, magnetic-free circulator for airborne sound waves, observing up to 40-decibel nonreciprocal isolation at audible frequencies. PMID:24482477

  4. 3-T MRI detects inflammatory stenosis of the vertebral artery in giant cell arteritis.

    PubMed

    Geiger, J; Uhl, M; Peter, H H; Langer, M; Bley, T A

    2008-05-01

    Giant cell arteritis (GCA) is a granulomatous vasculitis. Early diagnosis is important for the initiation of corticosteroid treatment because the arteritis can result in blindness. In most of the cases, the superficial cranial arteries are affected. However, extracranial involvement of various arteries is known. Here, we report a case of histologically proven GCA with an inflammatory stenosis of the right vertebral artery. For complete evaluation of the extension of the disease, an optimized protocol of high-resolution magnetic resonance imaging at 3 T in combination with contrast-enhanced magnetic resonance angiography was performed. This non-invasive method facilitates the differentiation of inflamed and healthy segments of small cranial arteries, may help to find appropriate sites for biopsy, and allows the assessment of affected extracranial vessels. In this patient case, even the cause of vertebral stenosis--inflammatory versus arteriosclerotic--could be elucidated. PMID:18172573

  5. Viral metagenomics: are we missing the giants?

    PubMed

    Halary, S; Temmam, S; Raoult, D; Desnues, C

    2016-06-01

    Amoeba-infecting giant viruses are recently discovered viruses that have been isolated from diverse environments all around the world. In parallel to isolation efforts, metagenomics confirmed their worldwide distribution from a broad range of environmental and host-associated samples, including humans, depicting them as a major component of eukaryotic viruses in nature and a possible resident of the human/animal virome whose role is still unclear. Nevertheless, metagenomics data about amoeba-infecting giant viruses still remain scarce, mainly because of methodological limitations. Efforts should be pursued both at the metagenomic sample preparation level and on in silico analyses to better understand their roles in the environment and in human/animal health and disease. PMID:26851442

  6. Identification of a giant cell fibroma.

    PubMed

    Lukes, Sherri M; Kuhnert, Joleen; Mangels, Mark A

    2005-01-01

    Fibrous hyperplastic connective tissue lesions are common in the oral cavity and may be similar both clinically and histologically. A giant cell fibroma, a type of fibrous hyperplasia, was discovered during a preventive patient visit in the dental hygiene clinic at a Midwestern university. The patient, a 19-year-old female, presented with a dome-shaped lesion of normal mucosal color on the attached gingiva apical to tooth number 11. She was referred to the dental school for biopsy, which revealed fibrocollagenous connective tissue exhibiting large stellate fibroblasts. She returned after 10 months and was referred to the graduate periodontal department, where the lesion was removed. Several fibrous hyperplastic lesions can be considered in the differential diagnosis of giant cell fibroma. Dental hygienists should be familiar with the different fibrous hyperplasias, noting lesions during the intra- and extra-oral examinations for further evaluation by the dentist. PMID:16197774

  7. Giant viruses of the Kutch Desert.

    PubMed

    Kerepesi, Csaba; Grolmusz, Vince

    2016-03-01

    The Kutch Desert (Great Rann of Kutch, Gujarat, India) is a unique ecosystem: in the larger part of the year it is a hot, salty desert that is flooded regularly in the Indian monsoon season. In the dry season, the crystallized salt deposits form the "white desert" in large regions. The first metagenomic analysis of the soil samples of Kutch was published in 2013, and the data were deposited in the NCBI Sequence Read Archive. At the same time, the sequences were analyzed phylogenetically for prokaryotes, especially for bacteria. In the present work, we identified DNA sequences of recently discovered giant viruses in the soil samples from the Kutch Desert. Since most giant viruses have been discovered in biofilms in industrial cooling towers, ocean water, and freshwater ponds, we were surprised to find their DNA sequences in soil samples from a seasonally very hot and arid, salty environment. PMID:26666442

  8. Disk-fed Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Menou, Kristen

    2016-03-01

    Massive giant planets, such as the ones being discovered by direct imaging surveys, likely experience the majority of their growth through a circumplanetary disk. We argue that the entropy of accreted material is determined by boundary layer processes, unlike the “cold-” or “hot-start” hypotheses usually invoked in the core-accretion and direct-collapse scenarios. A simple planetary evolution model illustrates how a wide range of radius and luminosity tracks become possible, depending on details of the accretion process. Specifically, the protoplanet evolves toward “hot-start” tracks if the scale height of the boundary layer is ≳0.24, a value not much larger than the scale height of the circumplanetary disk. Understanding the luminosity and radii of young giant planets will thus require detailed models of circumplanetary accretion.

  9. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  10. Magma ocean formation due to giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1992-01-01

    The effect of giant impacts on the initial chemical and thermal states of the terrestrial planets is just now being explored. A large high speed impact creates an approximately hemispherical melt region with a radius that depends on the projectile's radius and impact speed. It is shown that giant impacts on large planets can create large, intact melt regions containing melt volumes up to a few times the volume of the projectile. These large melt regions are not created on asteroid sized bodies. If extruded to the surface, these regions contain enough melt to create a magma ocean of considerable depth, depending on the impact speed, projectile radius, and gravity of the target planet.

  11. Giant vortex state in mesoscopic superconductors

    NASA Astrophysics Data System (ADS)

    Cobacy García, Luis; Giraldo, Jairo

    2005-08-01

    Using the self-consistent solution of the nonlinear Ginzburg-Landau equations, the superconducting state of a type II mesoscopic cylinder and of an infinite thin sheet with a circular hole (antidot), in the presence of an homogeneous magnetic field is studied. Close to the third critical field, the magnetic field penetrates the sample in the form of a vortex around the axis of the cylinder or of the antidot. This result has been found previously by other authors. The vortex, called a giant vortex, can carry several flux quanta. The giant vortex is persistent when the state is metastable and evolves to the so called paramagnetic Meissner effect (PME) within the cylinder. The behaviour of this effect as a function of the Ginzburg-Landau (GL) parameter is studied and the results are discussed. Gibbs free energy, order parameter and magnetic induccion as a function of the applied field and of the GL parameter are also studied.

  12. Effects of a giant impact on Uranus

    NASA Technical Reports Server (NTRS)

    Slattery, W. L.; Benz, W.; Cameron, A. G. W.

    1991-01-01

    The effects of a giant impact on Uranus with respect to the axis tilt of Uranus and its satellites are discussed. The simulations of possible giant impacts were carried out using Cray supercomputers. The technique used is called smooth particle hydrodynamics (SPH). In this technique, the material in the proto-Uranus planet and in the impactor is divided into a large number of particles which can overlap one another so that local averages over these particles determine density and pressure in the problem, and the particles themselves have their own temperatures and internal energies. During the course of the simulation, these particles move around under the influence of the forces acting on them: gravity and pressure gradients. The results of model simulations are presented.

  13. Giant pleomorphic adenoma of the parotid gland.

    PubMed

    Takahama, Ademar; da Cruz Perez, Danyel Elias; Magrin, José; de Almeida, Oslei Paes; Kowalski, Luiz Paulo

    2008-01-01

    Pleomorphic adenoma is the most common type of all benign and malignant salivary gland tumors, involving more frequently the parotid gland. It is a benign tumor with a slow and continuous growth that without treatment can reach an enormous size. We present a case of a giant pleomorphic adenoma in a 78-year-old man with a history of more than 30 years of a growing lesion in the parotid gland. Clinical examination revealed a giant mass on the right side of the face, however without any sign of facial nerve damage. The tumor was completely resected by total parotidectomy and preservation of the facial nerve. Macroscopically, the tumor measured 28 cm and weighed 4.0 Kg. On the histological examination there was a predominance of epithelial and myoepithelial cells in a hyaline and myxoid stroma. It was not found any area of malignant transformation. In the post-operatory the aesthetic and functional results were excellent. PMID:18167483

  14. The treatment of giant rhinophyma - Case Report.

    PubMed

    Popa, D; Osman, Georgeta; Parvanescu, H; Ciurea, Raluca; Ciurea, M

    2012-01-01

    The aim of the article is to present an update on the pathophysiology, clinical features and treatment of rhinophyma. A 56 years old patient, living in urban area, presented with a giant rhinophyma which caused him not only upper airways obstruction and difficulty in eating, but also aesthetic and psycho-social disadvantages.The treatment of the patient was a surgical intervention consisting in removal of the nasal tumor and split-thickness skin grafting of the defect. The aesthetic result after surgical intervention was very good, there were no postoperative complications or recurrences.Rhinophyma represents the most advanced form of acne rosacea. The diagnosis is easy to establish based on the clinical features of the disease. In advanced forms of rhinophyma, when the tumor is giant, the main method of treatment is surgery. PMID:24778841

  15. On the interior properties of red giants

    NASA Astrophysics Data System (ADS)

    Iben, I., Jr.

    The interior evolution of red giants is focused on, the major emphasis being on the evolution of stars during the double shell-burning stage. The evolutionary course during the first and second ascent up the red giant branch of the H-R diagram are discussed for stars that vary with respect to certain critical masses, and the thermal pulse phase is also treated. Core, envelope, and surface phenomena are explained along with the process of development into white dwarfs or supernovas. The interplay of internal forces caused by various fuel-burning processes, electron-degeneracy pressure, and gravity are detailed, and phenomena such as core dredge-up, relaxed oscillations, and AGB stars are explained. Numbers are given for the properties of H-burning and convective shells, and detailed comparisons with observations are made.

  16. The giant calculus within the prostatic urethra.

    PubMed

    Demir, Omer; Kefi, Aykut; Cahangirov, Asif; Cihan, Ahmet; Obuz, Funda; Esen, Adil Ahmet; Celebi, Ilhan

    2011-08-01

    The giant calculus within the prostatic urethra is a rare clinical entity in the young population. Most of the calculi within the urethra migrate from the urinary bladder and obliterate the urethra. These stones are often composed of calcium phosphate or calcium oxalate. The decision of treatment strategy is affected by the size, shape and position of the calculus and by the status of the urethra. If the stone is large and immovable, it may be extracted via the perineal or the suprapubic approach. In most cases, the giant calculi were extracted via the transvesical approach and external urethrotomy. Our case is the biggest prostatic calculus, known in the literature so far, which was treated endoscopically by the combination of laser and the pneumatic lithotriptor. PMID:21188583

  17. Mass loss from warm giants: Magnetic effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1980-01-01

    Among warm giant stars, rapid mass loss sets in along a well defined velocity dividing line (VDL). Hot corona also disappear close to the VDL and thermal pressure cannot drive the observed rapid mass loss in these stars. The VDL may be associated with magnetic fields changing from closed to open. Such a change is consistent with the lack of X-rays from late-type giants. A magnetic transition locus based on Pneuman's work on helmet streamer stability agrees well with the empirical VDL. The change from closed to open fields not only makes rapid mass loss possible, but also contributes to energizing the mass loss in the form of discrete bubbles.

  18. Clouds in brown dwarfs and giant planets

    NASA Astrophysics Data System (ADS)

    Metchev, S.; Apai, D.; Radigan, J.; Artigau, É.; Heinze, A.; Helling, C.; Homeier, D.; Littlefair, S.; Morley, C.; Skemer, A.; Stark, C.

    2013-02-01

    A growing body of observational and theoretical evidence points toward the importance of clouds in the atmospheres of ultra-cool brown dwarfs and giant planets. Empirically, the presence of clouds is inferred from the red, likely dusty atmospheres of young substellar objects, and from detections of periodic variability in a fraction of brown dwarfs - as expected from rotation and a patchy cloud cover. Theoretical models have progressed alongside by including ever more comprehensive atomic and molecular opacity tables, incorporating the treatment of non-equilibrium chemistry and clouds through vertical mixing and grain size/sedimentation parameters, and employing 3-D hydrodynamical simulations. In this proceeding we summarize the key issues raised during the first gathering of observers and theorists to discuss clouds and atmospheric circulation in non-irradiated ultra-cool dwarfs and giant planets.

  19. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  20. (Giant) Proximity Effects in high-Tc superlattices

    NASA Astrophysics Data System (ADS)

    Bozovic, Ivan

    2006-03-01

    Molecular beam epitaxy enables one to synthesize HTS thin films with rms surface roughness in the range 0.2-0.5 nm, much less than the unit cell height (1-2 nm).^1 One can also make atomically smooth multilayers and superlattices in which HTS or spacer layers can be just one unit cell thick if so desired. A detailed study of transport properties of such heterostructures has already revealed some unexpected findings.^2 In junctions where the barrier is made out of underdoped cuprate with a reduced critical temperature Tc, we observe the Giant Proximity Effect: supercurrent runs through very thick barrier layers even at temperature well above Tc (contrary to what is expected from the standard theory).^ Atomic smoothness of films and multilayers, excellent device uniformity, and reversible modulation of barrier properties by oxygen intake provided solid evidence against experimental artifacts such as pinholes and micro-shorts. Hence, the effect is real and intrinsic, and it defies the conventional explanation. Interpretation and significance of our experimental results will be discussed in the context of theoretical concepts such as the pseudogap, midgap states, electronic inhomogeneity, preformed pairs, and possibly resonant pair tunneling. The work at BNL is done in collaboration with G. Logvenov, V. Butko, A. Gozar and A. Bollinger. ^1 I. Bozovic et al., Phys. Rev. Lett. 89, 107001 (2002); P. Abbamonte et al., Science 297, 581 (2002). ^2 I. Bozovic et al., Nature 421, 873 (2003); Phys. Rev. Lett. 93, 157002 (2004).

  1. Giant fibrovascular polyp of the esophagus: report of a case.

    PubMed

    Goenka, Ajit Harishkumar; Sharma, Sanjay; Ramachandran, Vijay; Chattopadhyay, Tushar K; Ray, Ruma

    2011-01-01

    A fibrovascular polyp is a peculiar nonepithelial tumor of the esophagus that invariably arises in the cervical esophagus at the level of the thoracic inlet and grows distally into a massive elongated, pedunculated, intraluminal lesion. Although it is a benign lesion that is eminently resectable, it is a dramatic entity owing to its tendency to cause bizarre complications such as asphyxia and sudden death when it regurgitates into the pharynx and causes laryngeal impaction. This report describes the multimodality imaging appearance of an archetypal case of a giant fibrovascular polyp in a patient with a seemingly innocuous presentation for the size of the lesion. The essential role of cross-sectional imaging in establishing a prompt diagnosis, defining the tissue elements of the mass, and delineation of the exact extent of the lesion in guiding the treatment approach is highlighted. The appearance of fibrovascular polyp in a single patient with a combination of barium swallow, multidetector computed tomography, and high-resolution contrast-enhanced magnetic resonance imaging has not been reported previously. PMID:21191703

  2. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  3. Giant moving vortex mass in thick magnetic nanodots

    NASA Astrophysics Data System (ADS)

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-09-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  4. Ciprofloxacin encapsulation into giant unilamellar vesicles: membrane binding and release.

    PubMed

    Kaszás, Nóra; Bozó, Tamás; Budai, Marianna; Gróf, Pál

    2013-02-01

    This study aimed at investigating some respects of binding and interaction between water-soluble drugs and liposomal carrier systems depending on their size and lamellarity. As model substance, ciprofloxacin hydrochloride (CPFX) was incorporated into giant unilamellar vesicles (GUVs) to study their CPFX encapsulation/binding capacity. To characterize molecular interactions of various CPFX microspecies with lipid bilayer, zeta potential and electron paramagnetic resonance (EPR) spectroscopy measurements were performed. The increase of the zeta potential at pH 5.4 but no change at pH 7.2 was interpreted in terms of the CPFX microspecies' distribution at the two pH values. EPR observations showed an increased fluidity because of CPFX binding to GUVs. We worked out and applied a three-compartment dialysis model to separately determine the rate of drug diffusion through the liposomal membrane. Equilibrium dialysis showed (a) different permeation of CPFX through the membranes of GUVs and multilamellar vesicles (MLVs), with characteristic half-lives of 54.4 and 18.1 h, respectively; and (b) increased retention of CPFX in case of GUVs with released amounts of 70% compared with about 97% in case of MLVs. Our results may provide further details for efficient design of liposomal formulations incorporating water-soluble drugs. PMID:23233199

  5. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    NASA Astrophysics Data System (ADS)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  6. The vanishing giant abdominal aortic aneurysm.

    PubMed

    Krivoshei, Lian; Halak, Moshe; Schneiderman, Jacob; Silverberg, Daniel

    2011-05-01

    Spontaneous sac size regression of a giant abdominal aortic aneurysm (AAA) is a rare event that has not been previously described. We report a case of an 89-year-old woman with a known 9-cm AAA, which was diagnosed in 2003. The patient had refused any kind of treatment at that time. Recent imaging studies obtained 7 years later revealed an AAA of 4 cm diameter. This is the first recorded case of significant spontaneous AAA sac shrinkage. PMID:21444348

  7. Giant Right Intrathoracic Myxoid Fusocellular Lipoma

    PubMed Central

    Botianu, Petre V. H.; Cerghizan, Anda Mihaela; Botianu, Alexandru M.

    2015-01-01

    Intrathoracic lipomas are rare benign tumors; their behavior is not completely clear and their surgical removal may be challenging. We report a case of a giant right intrathoracic myxoid fusocellular lipoma compressing the lung, tracheobronchial tree, and esophagus which was removed through a posterolateral thoracotomy. Complete removal resulted in resolution of the chest pain and improvement of the dyspnea, with no recurrence at 4-year follow-up. PMID:26509096

  8. Macroscopic synthesis and characterization of giant fullerenes

    NASA Astrophysics Data System (ADS)

    Selvan, R.; Unnikrishnan, R.; Ganapathy, S.; Pradeep, T.

    2000-01-01

    Thermal treatment of carbon soot produced by arc evaporation of nickel-filled graphite rods in 500 Torr of helium gives giant fullerenes showing characteristic IR, Raman, NMR and powder XRD signatures. Transmission electron micrographs show faceted structures with pentagonal, hexagonal and spherical shapes. The simplicity and similarity of the IR spectrum with those of smaller fullerenes suggest that the material is a form of large fullerenes. Chemical treatment of the material gives carbon onions.

  9. Giant Myoepithelioma of the Soft Palate

    PubMed Central

    Oktay, Murat; Yaman, Huseyin; Belada, Abdullah; Besir, Fahri Halit; Guclu, Ender

    2014-01-01

    Myoepitheliomas are benign salivary gland tumors and account for less than 1% of all salivary gland tumors. They are usually located in the parotid gland. The soft palate is very rare affected site. The differential diagnosis of myoepitheliomas should include reactive and neoplastic lesions. The treatment of myoepitheliomas is complete removal of the tumor. Herein, we report a case with giant myoepithelioma of the soft palate, reviewing the related literature. PMID:24711949

  10. The Age Parameter in Giant EAS

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Cohen, F.; Sanosyan, K.

    The age parameter from the longitudinal development can be used to describe the lateral distribution in giant EAS up to 5 km from the axis, even if the scaling properties of Approximation B in cascade theory fail after 3.5 Moliere radii. A set of analytic descriptions is proposed under the gaussian hypergeometric formalism replacing the Eulerian formalism of the classical NKG distribution, valid for electrons, muons and vertical equivalent muons (v.e.m.).

  11. Giant Leiomyosarcoma of the Urinary Bladder

    PubMed Central

    Ribeiro, José G.A.; Klojda, Carlos A.B.; Araújo, Claudio P. De; Pires, Lucas A.S.

    2016-01-01

    The bladder leiomyosarcoma is a rare and agressive mesenchymal tumour, and adult women of reproductive age have a higher incidence of developing the bladder leiomyosarcoma. The pathophysiology of the disease is not certain, and its main symptoms are hematuria, dysuria and abdominal pain. There are not a considerable amount of cases described in the literature. We report a case of a giant leiomyosarcoma of the urinary bladder in a 31-year-old woman. PMID:27437302

  12. Giant Condyloma Acuminata of the Inguinal Region.

    PubMed

    Nain, Prabhdeep Singh; Sidhu, Sudeep; Garg, Bhavna

    2015-12-01

    A 70-year-old male presented with a progressively increasing polypoidal lesion in the right inguinal region since last 10 years. He had no anal or penile lesion. Excision biopsy was done under spinal anaesthesia. Histopathology showed it to be a giant condyloma acuminata. We report this case due to its large size and its location in inguinal region without pre-existing anal or rectal lesion. PMID:26730100

  13. Chiral metamaterials with negative refractive index based on four “U” split ring resonators

    SciTech Connect

    Li, Zhaofeng; Zhao, Rongkuo; Koschny, Thomas; Kafesaki, Maria; Alici, Kamil Boratay; Colak, Evrim; Caglayan, Humeyra; Ozbay, Ekmel; Soukoulis, C.M.

    2010-08-23

    A uniaxial chiral metamaterial is constructed by double-layered four 'U' split ring resonators mutually twisted by 90{sup o}. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.

  14. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  15. Silicon abundances in population I giants

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    Silicon to carbon abundance ratios for population I giants were determined from emission lines originating in the transition layers between stellar chromospheres and coronae. For effective temperatures larger than 6200 K we find a group of stars with increased silicon to carbon but normal nitrogen to carbon abundance ratios. These stars are presumably descendents from Ap stars with increased surface silicon to carbon abundance ratios. For G stars this anomaly disappears as is to be expected due to the increased depth of the convection zone and therefore deeper mixing which dilutes the surface overabundances. The disappearance of the abundance anomalies proves that the anomalous abundances observed for the F giants are indeed only a surface phenomenon. It also proves that the same holds for their progenitors, the Ap and Am stars, as has been generally believed. Unexplained is the increased silicon to carbon abundance ratio observed for several stars cooler than 5100 L. RS CVn and related stars do not show this increased abundance ratio. There are also some giants which appear to be enriched in carbon, perhaps due to a helium flash with some mixing if the star is a clump star.

  16. Rare cause of odynophagia: Giant esophageal ulcer

    PubMed Central

    Veroux, Massimiliano; Aprile, Giuseppe; Amore, Francesca F; Corona, Daniela; Giaquinta, Alessia; Veroux, Pierfrancesco

    2016-01-01

    Gastrointestinal complications are a frequent cause of morbidity after transplantation and may affect up to 40% of kidney transplant recipients. Here we report a rare case of idiopathic giant esophageal ulcer in a kidney transplant recipient. A 37-year-old female presented with a one-week history of odynophagia and weight loss. Upon admission, the patient presented cold sores, and a quantitative cytomegalovirus polymerase chain reaction was positive (105 copies/mL). An upper endoscopy demonstrated the presence of a giant ulcer. Serological test and tissue biopsies were unable to demonstrate an infectious origin of the ulcer. Immunosuppression was reduced and everolimus was introduced. An empirical i.v. therapy with acyclovir was started, resulting in a dramatic improvement in symptoms and complete healing of the ulcer. Only two cases of idiopathic giant esophageal ulcer in kidney transplant recipients have been reported in the literature; in both cases, steroid therapy was successful without recurrence of symptoms or endoscopic findings. However, this report suggests that correction of immune imbalance is mandatory to treat such a rare complication. PMID:27076774

  17. Two cases of giant serpentine aneurysm.

    PubMed

    Kumabe, T; Kaneko, U; Ishibashi, T; Kaneko, K; Uchigasaki, S

    1990-06-01

    Giant serpentine aneurysm (GSA) is an entity defined on radiological and pathological grounds as a giant, partially thrombosed aneurysm containing tortuous vascular channels. We have had the opportunity to study two patients with GSAs, which has allowed for a complete comparative anatomical and radiological study. This report emphasizes the etiology of the GSAs. Twenty-two patients with GSAs have been reported in the literature, of which pathological studies were done in 10. In most of these, the aneurysm was found to be filled with an organized thrombus, but in our patients the aneurysm was filled with relatively new clot. The aneurysm enlarged and a change in the tortuous vascular channel was observed over a period of 1 year in the first patient, whereas a globoid aneurysm developed into a GSA in the brief period of just 2 weeks in the second patient. This rapid transformation of a globoid aneurysm into a GSA is of particular interest when the etiology of GSAs is considered. Our patients therefore shed some interesting light on the possible pathophysiology of GSAs. That is, the bloodstream may change dynamically in a giant aneurysm and may become a serpentine channel under conditions that lead to a "Coanda effect." PMID:2362659

  18. The kinematics of halo red giants

    NASA Astrophysics Data System (ADS)

    Carney, B. W.; Latham, D. W.

    1986-07-01

    The authors have obtained 337 radial velocities with typical accuracies of ± 0.7 km s-1 for 85 metal-poor field red giants, selected from the kinematically unbiased samples of Bond (1980) and Bidelman and MacConnell (1973). The multiply observed stars suggest the field halo giant binary fraction exceeds 10%. Using their own velocities and those published by others, the authors have a sample of 174 red giants with [Fe/H] ≤ -1.5. Their mean motion with respect to the local standard of rest is >V< = -206±23 km s-1, and the velocity dispersions are σR = 154±18 km s-1, σθ = 102±27 km s-1, and σφ = 107±15 km s-1. Using photometrically derived absolute magnitudes and published proper motions, the authors compute orbital eccentricities for 72 stars not already considered in a similar study of southern stars by Norris, Bessell, and Pickles (1985). They find a few (5% - 8%) stars with e < 0.4.

  19. Observations of Radio Giant Pulses with GAVRT

    NASA Astrophysics Data System (ADS)

    Jones, Glenn

    2011-08-01

    Radio giant pulses provide a unique opportunity to study the pulsar radio emission mechanism in exquisite detail. Previous studies have revealed a wide range of properties and phenomena, including extraordinarily high brightness temperatures, sub-nanosecond emission features, and banded dynamic spectra. New measurements of giant pulse characteristics can help guide and test theoretical emission models. To this end, an extensive observation campaign has begun which will provide more than 500 hours on the Crab with a 34-meter antenna located in California, USA. The observations are being done as part of an educational outreach program called the Goldstone-Apple Valley Radio Telescope (GAVRT). This antenna has a novel wide bandwidth receiver which provides up to 8 GHz of instantaneous bandwidth in the range of 2.5 to 14 GHz. These observations will provide detailed information about the variability, amplitude distribution, and detailed frequency structure of radio giant pulses. In addition, a database of pulses from these observations and others of the Crab pulsar is being created which will simplify multiwavelength correlation analysis.

  20. Treatment of giant congenital cysts of the midline in adults: Report of two cases and review of the literature

    PubMed Central

    Lauretti, Liverana; Mattogno, Pier Paolo; Bianchi, Federico; Pallini, Roberto; Fernandez, Eduardo; Doglietto, Francesco

    2015-01-01

    Background: Giant cysts of the midline, not associated to a tumor, are exceptional finding in the brain of adults. Here we present two cases of symptomatic giant cerebral cysts of the midline occurred in an elderly and in a young adult patients both treated with mini-invasive unilateral neuroendoscopic procedure. In the recent literature (since 1999) similar cases have not been reported. Beside the clinical report, review of literature and major anatomical features of the region are described. Case Description: These two adults (82 and 41 years old respectively) had a slow progressive development of headache, gait disturbances, memory impairment and urinary incontinence. Magnetic resonance imaging showed giant cyst of the midline and hydrocephalus. Surgery with the endoscopic procedure, through a right frontal burr hole, was followed by clinical and radiological improvement. Conclusion: Giant cerebral cysts of the midline in adults can be successfully treated through a neuroendoscopic monolateral approach that comprehends multiple openings, diffuse coagulation of the capsule, and careful releasing of capsule-ependyma adherences. Knowledge of major anatomical and developmental details of the septal region is necessary to avoid complication in a mini-invasive surgical procedure. PMID:26421217

  1. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    SciTech Connect

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  2. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    NASA Astrophysics Data System (ADS)

    Li, Shi-Qiang; Zhou, Wei; Bruce Buchholz, D.; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-01

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  3. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  4. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  5. Ultrabass Sounds of the Giant Star xi Hya

    NASA Astrophysics Data System (ADS)

    2002-05-01

    First Observations of Solar-type Oscillations in a Star Very Different from the Sun Summary About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface. Observations of the solar sound waves (known as " helioseismology ") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis (cf. ESO PR 16/94 ). Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun (cf. ESO PR 15/01 ), and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of " asteroseismology " (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun? Based on an extremely intensive observing project with the same telescope, an international group of astronomers [1] has found that the giant star xi Hya ("xi" is the small greek letter [2]; "Hya" is an abbreviation of "Hydrae") behaves like a giant sub-ultra-bass instrument . This star is located in the constellation Hydra (the Water-Monster) at a distance of 130 light-years, it has a radius about 10 times that of the Sun and its luminosity is about 60

  6. M-giant star candidates identified in LAMOST DR 1

    NASA Astrophysics Data System (ADS)

    Zhong, Jing; Lépine, Sébastien; Li, Jing; Chen, Li; Hou, Jin-Liang; Yang, Ming; Li, Guang-Wei; Zhang, Yong; Hou, Yong-Hui

    2015-08-01

    We perform a discrimination procedure with the spectral index diagram of TiO5 and CaH2+CaH3 to separate M giants from M dwarfs. Using the M giant spectra identified from LAMOST DR1 with high signal-to-noise ratio, we have successfully assembled a set of M giant templates, which show more reliable spectral features. Combining with the M dwarf/subdwarf templates in Zhong et al., we present an extended library of M-type templates which includes not only M dwarfs with a well-defined temperature and metallicity grid but also M giants with subtypes from M0 to M6. Then, the template-fitting algorithm is used to automatically identify and classify M giant stars from LAMOST DR1. The resulting catalog of M giant stars is cross-matched with 2MASS JHKs and WISE W1/W2 infrared photometry. In addition, we calculated the heliocentric radial velocity of all M giant stars by using the cross-correlation method with the template spectrum in a zero-velocity rest frame. Using the relationship between the absolute infrared magnitude MJ and our classified spectroscopic subtype, we derived the spectroscopic distance of M giants with uncertainties of about 40%. A catalog of 8639 M giants is provided. As an additional result of this analysis, we also present a catalog of 101 690 M dwarfs/subdwarfs which are processed by our classification pipeline.

  7. Giant Serpentine Aneurysm of the Middle Cerebral Artery

    PubMed Central

    Lee, Seung Joo; Kwun, Byung Duk; Kim, Chang Jin

    2010-01-01

    Giant serpentine aneurysms are rare and have distinct angiographic findings. The rarity, large size, complex anatomy and hemodynamic characteristics of giant serpentine aneurysms make treatment difficult. We report a case of a giant serpentine aneurysm of the right middle cerebral artery (MCA) that presented as headache. Treatment involved a superficial temporal artery (STA)-MCA bypass followed by aneurysm resection. The patient was discharged without neurological deficits, and early and late follow-up angiography disclosed successful removal of the aneurysm and a patent bypass graft. We conclude that STA-MCA bypass and aneurysm excision is a successful treatment method for a giant serpentine aneurysm. PMID:20856671

  8. Two cases of giant pyogenic granuloma of scalp

    PubMed Central

    Chandra, B. Satish; Rao, P. Narasimha

    2013-01-01

    Pyogenic granuloma is a benign vascular tumor of unknown etiology, though multiple factors play a role in its onset, e.g., trauma, chronic irritation, drugs etc., It is commonly seen in children and adolescents. Giant pyogenic granuloma is its atypical variant. We are presenting two cases of giant pyogenic granuloma, one, in a 28-year-old adult, presenting as a giant fluffy swelling of scalp and the other in a 11-year-old child, presenting as a giant ulcerated globular swelling of the scalp. PMID:24350008

  9. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  10. THE RESONANT TRANS-NEPTUNIAN POPULATIONS

    SciTech Connect

    Gladman, B.; Lawler, S. M.; Van Laerhoven, C.; Petit, J.-M.; Rousselot, P.; Kavelaars, J.; Jones, R. L.; Parker, J. Wm.; Bieryla, A.; Nicholson, P.; Ashby, M. L. N.

    2012-07-15

    The trans-Neptunian objects (TNOs) trapped in mean-motion resonances with Neptune were likely emplaced there during planet migration late in the giant-planet formation process. We perform detailed modeling of the resonant objects detected in the Canada-France Ecliptic Plane Survey (CFEPS) in order to provide population estimates and, for some resonances, constrain the complex internal orbital element distribution. Detection biases play a critical role because phase relationships with Neptune make object discovery more likely at certain longitudes. This paper discusses the 3:2, 5:2, 2:1, 3:1, 5:1, 4:3, 5:3, 7:3, 5:4, and 7:4 mean-motion resonances, all of which had CFEPS detections, along with our upper limit on 1:1 Neptune Trojans (which is consistent with their small population estimated elsewhere). For the plutinos (TNOs in the 3:2 resonance) we refine the orbital element distribution given by Kavelaars et al. in 2009 and show that steep H-magnitude distributions (N(H){proportional_to}10{sup {alpha}H}, with {alpha} = 0.8-0.9) are favored in the range H{sub g} = 8-9, and confirm that this resonance does not share the inclination distribution of the classical Kuiper Belt. We give the first population estimate for the 5:2 resonance and find that, to within the uncertainties, the population is equal to that of the 3:2 ({approx_equal}13,000 TNOs with H{sub g} < 9.16), whereas the 2:1 population is smaller by a factor of 3-4 compared to the other two resonances. We also measure significant populations inhabiting the 4:3, 5:3, 7:3, 5:4, 7:4, 3:1, and 5:1 resonances, with H{sub g} < 9.16 (D > 100 km) populations in the thousands. We compare our intrinsic population and orbital element distributions with several published models of resonant-TNO production; the most striking discrepancy is that resonances beyond the 2:1 are in reality more heavily populated than in published models.

  11. Neutron-Capture Elements in Low Metallicity Halo Giants

    NASA Astrophysics Data System (ADS)

    Sneden, C.; French, R. S.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    1999-12-01

    We are conducting a high resolution (R = 30,000) ultraviolet spectroscopic survey of 10 very metal-poor halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. The general goal is to determine abundances of several key neutron-capture elements (Z > 30) that have no transitions accessible to ground-based spectroscopy. The stars chosen for STIS observations have -3.0 <= [Fe/H] <= --1.4, but they all have large relative overabundances of neutron-capture elements relative to iron. For example, all target stars have [Eu/Fe] > +0.5. We also have obtained STIS high resolution spectra of the well-studied halo giant HD 122563, whose substantial neutron-capture-element deficiency renders all transitions of these elements undetectably weak amid the forest of Fe-peak and OH lines in its UV spectrum. We develop synthetic spectrum line lists through iterative attempts to match the HD 122563 spectrum, and then use these in performing line-by-line differential abundance analyses of the neutron-capture-rich program stars. Detections of all possible neutron-capture elements are important, but for now we focus on Os, Ir, Pt, and Au because these are the heaviest of the stable elements (the so-called 3rd neutron-capture peak elements). With only half of the scheduled observations in hand, we have already detected at least six lines of Pt 1 in most targets, as well as lines of Os 1, Ge 1, Zr 2, Pb 1, and Ba 2. Additionally, we may have ``struck gold'' with the probable detection of the Au 1 resonance lines at 2428, 2676 Angstroms. The STIS spectra, derived with full model atmosphere, synthetic spectrum analyses, yield abundances that will shed light on star-to-star abundance variations of 3rd neutron-capture peak elements. Additionally, these abundances will be employed along with ground-based abundances of thorium to provide new estimates of the Galactic age. This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364

  12. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  13. The M giant candidates identified in the LAMOST DR1

    NASA Astrophysics Data System (ADS)

    Zhong, Jing

    2015-08-01

    M giants are red-giant-branch (RGB) stars with low surface temperature and high luminosity in the late-phase of stellar evolution. Its luminous nature allows us to use these stars as good tracers to study the outer Galactic halo and distant substructures. A well classified M-giant stars sample has important scientific values for the statistic research. In order to fully utilize the spectral data of LAMOST spectroscopic survey, we perform a discrimination procedure with the spectral index diagram of TiO5 and CaH2+CaH3 to separate M giants from M dwarfs. Using the M giant spectra identified from the LAMOST DR1 with high signal-to-noise ratio, we have successfully assembled a set of M giant templates from M0 to M6. Then, the template-fit algorithm were used to automatically identify and classify M giants from the LAMOST DR1. In addition, we calculated the heliocentric radial velocity of all M giants by using the cross-correlation method with the template spectrum in a zero-velocity rest frame. Using the relationship between the absolute infrared magnitude MJ and our classified spectroscopic subtype, we derived the spectroscopic distance of M giants, with uncertainties of about 40%. Finally, we present a spectroscopic catalog of 8639 M giants including stellar parameters like photometry, proper motion, radial velocity, distance, spectral type and so on. In particular, the large sample of M giants is carried out for the first time. We will further use this sample to study the sub-structures and tidal stream in the Galactic Anti-Center.

  14. Tenosynovial, Diffuse Type Giant Cell Tumor of the Temporomandibular Joint, Diagnosis and Management of a Rare Tumor

    PubMed Central

    Bredell, Marius; Schucknecht, Bernhard; Bode-Lesniewska, Baete

    2015-01-01

    The purpose of this paper was to describe a rare unusual case of primary mandibular condylar tenosynovial giant cell tumor of diffuse type with predominantly intraosseous growth and its management by resection and functional reconstruction with a vascularized costochondral graft. Clinical presentation was swelling in the right condylar area and limited mouth opening with radiological evidence of central bone destruction and magnetic resonance imaging showed central hemosiderin deposition. Fine needle aspiration did not lead to a diagnosis and an open biopsy had to be performed. Management consisted of tumor resection and reconstruction with a free vascularized costochondral graft. Tenosynovial diffuse type giant cell tumor of the temporomandibular joint is very rare. Complete resection leads to a low recurrence rate and reconstruction with a costochondral free vascularized flap leads to an excellent functional outcome. PMID:25699124

  15. Paraplegia caused by giant intradural herniation of a lumbar disk after combined spinal-epidural anesthesia in total hip arthroplasty.

    PubMed

    Sawai, Toshiyuki; Nakahira, Junko; Minami, Toshiaki

    2016-08-01

    Total paraplegia after epidural or spinal anesthesia is extremely rare. We herein report a case of total paraplegia caused by a giant intradural herniation of a lumbar disk at the L3-L4 level after total hip arthroplasty for coxarthrosis. The patient had no preoperative neurologic abnormalities. Intraoperative anesthetic management involved combined spinal-epidural anesthesia at the L3-L4 level with continuous intravenous propofol administration. Postoperatively, the patient complained of numbness and total paraplegia of the lower extremities. Magnetic resonance imaging showed a giant herniation of a lumbar disk compressing the spinal cord at the L3-L4 level. The intradural herniation was surgically treated, and the patient's symptoms completely resolved. PMID:27290969

  16. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    SciTech Connect

    Hasegawa, Yasuhiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  17. MERGING CRITERIA FOR GIANT IMPACTS OF PROTOPLANETS

    SciTech Connect

    Genda, H.; Kokubo, E.; Ida, S.

    2012-01-10

    At the final stage of terrestrial planet formation, known as the giant impact stage, a few tens of Mars-sized protoplanets collide with one another to form terrestrial planets. Almost all previous studies on the orbital and accretional evolution of protoplanets in this stage have been based on the assumption of perfect accretion, where two colliding protoplanets always merge. However, recent impact simulations have shown that collisions among protoplanets are not always merging events, that is, two colliding protoplanets sometimes move apart after the collision (hit-and-run collision). As a first step toward studying the effects of such imperfect accretion of protoplanets on terrestrial planet formation, we investigated the merging criteria for collisions of rocky protoplanets. Using the smoothed particle hydrodynamic method, we performed more than 1000 simulations of giant impacts with various parameter sets, such as the mass ratio of protoplanets, {gamma}, the total mass of two protoplanets, M{sub T}, the impact angle, {theta}, and the impact velocity, v{sub imp}. We investigated the critical impact velocity, v{sub cr}, at the transition between merging and hit-and-run collisions. We found that the normalized critical impact velocity, v{sub cr}/v{sub esc}, depends on {gamma} and {theta}, but does not depend on M{sub T}, where v{sub esc} is the two-body escape velocity. We derived a simple formula for v{sub cr}/v{sub esc} as a function of {gamma} and {theta} (Equation (16)), and applied it to the giant impact events obtained by N-body calculations in the previous studies. We found that 40% of these events should not be merging events.

  18. Vertical velocities from proper motions of red clump giants

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  19. Apical Orbital Aspergillosis Complicating Giant Cell Arteritis.

    PubMed

    Zhou, Yang; Morgan, Michael L; Almarzouqi, Sumayya J; Chevez-Barrios, Patricia; Lee, Andrew G

    2016-06-01

    A 75-year-old woman with new onset headaches and left vision loss, temporal scalp tenderness, and jaw claudication was found to have biopsy-proven giant cell arteritis (GCA). Despite treatment and improvement with prednisone, she later developed left orbital apex syndrome, and an orbital biopsy revealed aspergillosis. After antifungal treatment, extraocular motility improved although vision in the left eye remained no light perception. Clinicians should be aware that fungal orbital apex disease may mimic or complicate steroid-treated GCA. PMID:26835662

  20. Giant cystic pheochromocytoma: A silent entity

    PubMed Central

    Gupta, Amit; Bains, Lovenish; Agarwal, Manish Kumar; Gupta, Renu

    2016-01-01

    Pheochromocytoma is a catecholamine secreting tumor that originate from chromaffin cells. Usually, it is solid neoplasm of the adrenal medulla, however cystic pheochromocytoma is a rare neuro-endocrine tumour that is frequently asymptomatic and often diagnosed incidentally on imaging or intra-operatively. Only a few cases of cystic pheochromocytomas have been reported in the world literature. We present a case of giant cystic pheochromocytoma in a 65 years old lady who presented with a large retroperitoneal lump, which is probably the world's third largest pheochromocytoma as per the available indexed literature. PMID:27453669

  1. The worst case: giant exulcerating seminoma.

    PubMed

    Letsch, Markus; Spahn, Martin; Beissert, Matthias; Topp, Max S; Gerharz, Elmar W; Riedmiller, Hubertus

    2010-01-01

    Ten years after his brother had been treated for seminoma, a 36-year-old male presented with a giant exulcerating mass involving the right testis and both inguinal regions. Subsequent biopsy revealed pure seminoma. Staging computed tomography (CT) showed bulky retroperitoneal and pelvic lymph node metastases. After seven courses of cisplatin-based chemotherapy, positron emission tomography suggested residual tumor in the right groin. The suspicious lesion and the right testis were resected showing no vital tumor tissue. Eight months after surgery there were no signs of disease progression at follow-up CT. PMID:20173381

  2. Giant Star Clusters Near Galactic Core

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A video sequence of still images goes deep into the Milky Way galaxy to the Arches Cluster. Hubble, penetrating through dust and clouds, peers into the core where two giant clusters shine more brightly than any other clusters in the galaxy. Footage shows the following still images: (1) wide view of Sagittarius constellation; (2) the Palomar Observatory's 2 micron all-sky survey; and (3) an image of the Arches Cluster taken with the Hubble Space Telescope NICMOS instrument. Dr. Don Figer of the Space Telescope Science Institute discusses the significance of the observations and relates his first reaction to the images.

  3. Stardust from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-06-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ≈ 0.008 (0.6 × solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ≈ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  4. Female Urethral Diverticulum Containing a Giant Calculus

    PubMed Central

    Dong, ZhiLong; Wang, Hanzhang; Zuo, LinJun; Hou, MingLi

    2015-01-01

    Abstract Urethral diverticula with calculi have a low incidence as reported in the literature. Diverticulum of female urethra is rare, often discovered due to associated complications. We report a case of diverticulum of the female urethra containing giant calculi in a 62-year-old multiparous woman. She consulted with our office due to dysuria and a hard, painful periurethral mass in the anterior vagina wall. The diverticulum was approached surgically by a vaginal route, and local extraction of the calculi and subsequent diverticulectomy successfully treated the condition. Diagnosis of a complicated diverticulum can be easily achieved if one possesses a high degree of clinical symptoms. PMID:25997056

  5. New Observations of the Giant's Churches

    NASA Astrophysics Data System (ADS)

    Ridderstad, Marianna

    2015-05-01

    Orientations of the axes and gates of 49 Giant's Churches (GCs) were examined. Orientations to both solar and lunar events were discovered. The results especially suggest the importance of full moon events. Comparison between the orientations of the southern and the northern GCs did not reveal great differences. The majority of the GCs are situated on the eastern or southern sides of their ridges, and most of them enclose or are surrounded by cairns. Based on parallels to other North European Neolithic cultures, it is proposed that the GCs went through several phases of construction, the last phase being probably related to ritual activities.

  6. Norway threatens shutdown of giant Ekofisk field

    SciTech Connect

    Not Available

    1992-10-19

    This paper reports that The Norwegian Petroleum Directorate has warned Phillips Petroleum Co. Norway AS it will shut down giant Ekofisk oil field over safety concerns before winter 1995-96. Later that day Phillips, operator of the Ekofisk complex in the Norwegian North Sea, the the threat was intended to speed changes in the field's processing and transportation systems. NPD cited studies carried out by Phillips that revealed aging equipment and inadequate maintenance. Seabed subsidence, which led to several of the field's platforms being jacked up 3 m in 1987, made things worse.

  7. Giant persistent photoconductivity in rough silicon nanomembranes.

    PubMed

    Feng, Ping; Mönch, Ingolf; Harazim, Stefan; Huang, Gaoshan; Mei, Yongfeng; Schmidt, Oliver G

    2009-10-01

    This paper reports the observation of giant persistent photoconductivity from rough Si nanomembranes. When exposed to light, the current in p-type Si nanomembranes is enhanced by roughly 3 orders of magnitude in comparison with that in the dark and can persist for days at a high conductive state after the light is switched off. An applied gate voltage can tune the persistent photocurrent and accelerate the response to light. By analyzing the band structure of the devices and the surfaces through various coatings, we attribute the observed effect to hole-localized regions in Si nanomembranes due to the rough surfaces, where light can activate the confined holes. PMID:19637888

  8. Asymptomatic Giant Intraventricular Cysticercosis: A Case Report.

    PubMed

    Teerasukjinda, Ornusa; Wongjittraporn, Suwarat; Tongma, Chawat; Chung, Heath

    2016-07-01

    Neurocysticercosis is a growing health problem in the United States and worldwide. Diagnosis and treatment is challenging especially if the physician is not familiar with this condition. The World Health Organization (WHO) estimates that neurocysticercosis affects 50 million people worldwide, especially in developing countries and causes approximately 50,000 deaths annually.1 Neurocysticercosis is of emerging importance in the United States especially in Hawai'i because of immigration from disease-endemic regions.2 We present a case of a young Chinese immigrant male who presented with impressive imaging studies of a giant intraventricular neurocysticercosis. This case emphasizes the importance of recognizing neurocysticercosis, especially in the immigrant population. PMID:27437162

  9. Asymptomatic Giant Intraventricular Cysticercosis: A Case Report

    PubMed Central

    Wongjittraporn, Suwarat; Tongma, Chawat; Chung, Heath

    2016-01-01

    Neurocysticercosis is a growing health problem in the United States and worldwide. Diagnosis and treatment is challenging especially if the physician is not familiar with this condition. The World Health Organization (WHO) estimates that neurocysticercosis affects 50 million people worldwide, especially in developing countries and causes approximately 50,000 deaths annually.1 Neurocysticercosis is of emerging importance in the United States especially in Hawai‘i because of immigration from disease-endemic regions.2 We present a case of a young Chinese immigrant male who presented with impressive imaging studies of a giant intraventricular neurocysticercosis. This case emphasizes the importance of recognizing neurocysticercosis, especially in the immigrant population. PMID:27437162

  10. Giant magnetoresistance in organic spin valves

    SciTech Connect

    Sun, Da-Li; Yin, Lifeng; Sun, Chengjun; Guo, Hangwen; Gai, Zheng; Zhang, Xiaoguang; Ward, Thomas Z; Cheng, Zhaohua; Shen, Jian

    2010-01-01

    Interfacial diffusion between magnetic electrodes and organic spacer layers is a serious problem in the organic spintronics which complicates attempts to understand the spin-dependent transport mechanism and hurts the achievement of a desirably high magnetoresistance (MR). We deposit nanodots instead of atoms onto the organic layer using buffer layer assist growth. Spin valves using this method exhibit a sharper interface and a giant MR of up to {approx}300%. Analysis of the current-voltage characteristics indicates that the spin-dependent carrier injection correlates with the observed MR.

  11. The giant aye-aye Daubentonia robusta.

    PubMed

    Simons, E L

    1994-01-01

    Subfossils of a giant form of aye-aye are found at scattered sites in the south and southwest of the island of Madagascar, outside the known distribution of the living, or common, aye-aye. The subfossil aye-aye, named Daubentonia robusta, has massive, robust limb bones implying a species with a body weight 2.5-5 times as great as that of the living species. A mystery exists regarding how a species this large with the same specializations of teeth and manus as the living species could have existed in a xeric environment. PMID:7721200

  12. Giant magnetoresistance in bilayer graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Farghadan, Rouhollah; Farekiyan, Marzieh

    2016-09-01

    Coherent spin transport through bilayer graphene (BLG) nanoflakes sandwiched between two electrodes made of single-layer zigzag graphene nanoribbon was investigated by means of Landauer-Buttiker formalism. Application of a magnetic field only on BLG structure as a channel produces a perfect spin polarization in a large energy region. Moreover, the conductance could be strongly modulated by magnetization of the zigzag edge of AB-stacked BLG, and the junction, entirely made of carbon, produces a giant magnetoresistance (GMR) up to 100%. Intestinally, GMR and spin polarization could be tuned by varying BLG width and length. Generally, MR in a AB-stacked BLG strongly increases (decreases) with length (width).

  13. Giant Star Clusters Near Galactic Core

    NASA Astrophysics Data System (ADS)

    2001-02-01

    A video sequence of still images goes deep into the Milky Way galaxy to the Arches Cluster. Hubble, penetrating through dust and clouds, peers into the core where two giant clusters shine more brightly than any other clusters in the galaxy. Footage shows the following still images: (1) wide view of Sagittarius constellation; (2) the Palomar Observatory's 2 micron all-sky survey; and (3) an image of the Arches Cluster taken with the Hubble Space Telescope NICMOS instrument. Dr. Don Figer of the Space Telescope Science Institute discusses the significance of the observations and relates his first reaction to the images.

  14. GIANT: A Cytoscape Plugin for Modular Networks

    PubMed Central

    Cumbo, Fabio; Paci, Paola; Santoni, Daniele; Di Paola, Luisa; Giuliani, Alessandro

    2014-01-01

    Network analysis provides deep insight into real complex systems. Revealing the link between topological and functional role of network elements can be crucial to understand the mechanisms underlying the system. Here we propose a Cytoscape plugin (GIANT) to perform network clustering and characterize nodes at the light of a modified Guimerà-Amaral cartography. This approach results into a vivid picture of the a topological/functional relationship at both local and global level. The plugin has been already approved and uploaded on the Cytoscape APP store. PMID:25275465

  15. Enhanced giant magnetoimpedance in heterogeneous nanobrush

    PubMed Central

    2012-01-01

    A highly sensitive and large working range giant magnetoimpedance (GMI) effect is found in the novel nanostructure: nanobrush. The nanostructure is composed of a soft magnetic nanofilm and a nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The optimal GMI ratio of nanobrush is promoted to more than 250%, higher than the pure FeNi film and some sandwich structures at low frequency. The design of this structure is based on the vortex distribution of magnetic moments in thin film, and it can be induced by the exchange coupling effect between the interfaces of nanobrush. PMID:22963551

  16. Giant segmented adaptive mirrors: progress report

    NASA Astrophysics Data System (ADS)

    Riccardi, Armando; Biasi, Roberto; Brusa, Guido; Del Vecchio, Ciro; Esposito, Simone; Gallieni, Daniele; Salinari, Piero

    2003-01-01

    We show that the same technology developed for MMT and LBT Adaptive Secondary mirrors can be used for building segmented adaptive mirrors of essentially any size. This seems to be at the moment the most promising approach to provide the enormous number of degrees of freedom necessary for adaptive correction at visual wavelengths in giant telescopes. In this paper we recall the analytical formulation of the problem and we report recent numerical studies and initial experimental results obtained with prototype actuators for large adaptive segments.

  17. Forming giant-sized polymersomes using gel-assisted rehydration

    DOE PAGESBeta

    Greene, Adrienne C.; Sasaki, Darryl Y.; Bachand, George D.

    2016-05-26

    Here, we present a protocol to rapidly form giant polymer vesicles (pGVs). Briefly, polymer solutions are dehydrated on dried agarose films adhered to coverslips. Rehydration of the polymer films results in rapid formation of pGVs. This method greatly advances the preparation of synthetic giant vesicles for direct applications in biomimetic studies.

  18. Laparoscopic Ureterolithotomy for Giant Ureteric Calculus: A Case Report.

    PubMed

    Magdum, Prasad V; Nerli, Rajendra B; Devaraju, Shishir; Hiremath, Murigendra B

    2015-09-01

    We present a case of a 21 year old male who presented with symptomatic right upper ureteric calculus measuring 5 cm × 1.5 cm fulfilling the criteria to be named as giant ureteric calculus. Laparoscopic right ureterolithotomy was performed and the giant ureteric calculus was retrieved. PMID:26793529

  19. Giant pulmonary hamartoma causing acute right heart failure.

    PubMed

    Joshi, Heman M N; Page, Richard D

    2014-01-01

    Giant pulmonary hamartomas are rare. We describe a case of a 59-year-old female patient with a giant chondroid hamartoma in the lower lobe of the right lung presenting with acute right heart failure. To the best of our knowledge such a unique presentation has not been previously described in the literature. PMID:24384217

  20. Evolutionary dynamics of giant viruses and their virophages.

    PubMed

    Wodarz, Dominik

    2013-07-01

    Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested. PMID:23919155

  1. Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the use of ornamental plants as phenological indicators for predicting giant foxtail emergence, and compared their performance with predictions based upon calendar date, cumulative growing degree-days (GDD) and the WeedCast program. From 1997 to 2001, we monitored giant foxtail emergenc...

  2. Evaluation of stem injection for managing giant reed (Arundo donax)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed is an emergent aquatic plant that may be weedy throughout California and the United States. Two herbicides approved for controlling giant reed in California are glyphosate and imazapyr. Foliar applications of these herbicides may be restricted in sensitive areas, such as those which are w...

  3. Planetary Motion in the Atmospheres of Red Giants

    NASA Astrophysics Data System (ADS)

    Volobueva, M. I.; Tarakanov, P. A.

    2015-09-01

    When a star reaches the red giant stage in the course of its evolution, its closest planets are in its atmosphere. Numerical gas dynamic models are constructed for hypersonic flow around planets by matter in the atmosphere of a red giant. The results are compared with analytic models for the motion of planets in the atmospheres of stars.

  4. Topological effects in anisotropy-induced nano-fano resonance of a cylinder.

    PubMed

    Gao, Dongliang; Gao, Lei; Novitsky, Andrey; Chen, Hongli; Luk'yanchuk, Boris

    2015-09-01

    We demonstrate that optical Fano resonance can be induced by the anisotropy of a cylinder rather than frequency selection under the resonant condition. A tiny perturbation in anisotropy can result in a giant switch in the principal optic axis near plasmon resonance. Such anisotropy-induced Fano resonance shows fast reversion between forward and backward scattering at the lowest-energy interference. The near and far fields of the particle change dramatically around Fano resonance. The topology of optical singular points and the trajectory of energy flux distinctly reveal the interaction between the incident wave and the localized surface plasmons, which also determine the far-field scattering pattern. The anisotropy-induced Fano resonance and its high sensitivity open new perspectives on light-matter interactions and promise potential applications in biological sensors, optical switches, and optomechanics. PMID:26368737

  5. [Giant haemangioma of the liver: diagnosis and treatment].

    PubMed

    Hoekstra, Lisette T; Bieze, Matthanja; Erdogan, Deha; Roelofs, Joris J T H; Beuers, Ulrich H W; van Gulik, Thomas M

    2012-01-01

    A liver haemangioma is a benign, usually small tumour comprised of blood vessels, which is often discovered coincidentally; giant haemangiomas are defined as haemangiomas larger than 5 cm. The differential diagnosis includes other hypervascular tumours, such as hepatocellular adenoma, hepatocellular carcinoma, metastasis of a neuro-endocrine tumour or renal cell carcinoma.- The diagnosis is based on abdominal ultrasonography and can be confirmed by a CT or MR scan. A wait-and-see approach is justified in patients without symptoms or with minimal symptoms, even in the presence of a giant haemangioma. Surgical resection of a giant haemangioma is only necessary when the preoperative diagnosis is inconclusive, or when the haemangioma leads to mechanical symptoms or complications. Extirpation is the only effective form of treatment of the giant haemangioma; enucleation is preferred over partial liver resection. A known complication of a giant haemangioma is the occurrence of disseminated intravascular coagulation, the Kasabach-Merritt syndrome; intervention is then demanded. PMID:22853763

  6. Peripheral giant cell granuloma: This enormity is a rarity

    PubMed Central

    Rodrigues, Silvia Victor; Mitra, Dipika Kalyan; Pawar, Sudarshana Devendrasing; Vijayakar, Harshad Narayan

    2015-01-01

    Peripheral giant cell granuloma (PGCG) is an infrequent exophytic lesion of the oral cavity, also known as giant cell epulis, osteoclastoma, giant cell reparative granuloma, or giant cell hyperplasia. Lesions vary in appearance from smooth, regularly outlined masses to irregularly shaped, multilobulated protuberances with surface indentations. Ulcerations of the margin are occasionally seen. The lesions are painless, vary in size, and may cover several teeth. It normally presents as a purplish-red nodule consisting of multinucleated giant cells in the background of mononuclear stromal cells and extravasated red blood cells. This case report describes the unusual appearance of a PGCG extending from left maxillary interdental gingiva to palatal area in 32-year-old female patient. PMID:26392701

  7. Management of a giant perineal condylomata acuminata.

    PubMed

    Hemper, Evelyn; Wittau, Mathias; Lemke, Johannes; Kornmann, Marko; Henne-Bruns, Doris

    2016-01-01

    A condylomata acuminata infection is caused by human papillomaviridae (HPV). This sexually transmitted condition most often affects the perineal region. Importantly, infections with types 16 and 18 are associated with an increased risk for anal and cervix cancer. In most cases topical therapy is sufficient for successfully treating condylomata acuminata. Here, we report the case of a 51-year old patient who suffered from a giant perianal located condylomata acuminata which had developed over a period of more than 10 years. Imaging by MRI revealed a possible infiltration of the musculus sphincter ani externus. Because a topical treatment or a radiotherapy was considered unfeasible, a surgical treatment was the only therapeutic option in this unusual case. First, a colostomy was performed and subsequently a resection of the tumor in toto with circular resection of the external portion of the musculus sphincter ani externus was performed. The large skin defect was closed by two gluteus flaps. The rectum wall was reinserted in the remnant of the musculus sphincter ani externus. Postoperatively, parts of the flaps developed necrosis. Therefore, a vacuum sealing therapy was initiated. Subsequently, the remaining skin defects were closed by autologous skin transplantation. Six months later the colostomy could be reversed. To date, one year after first surgery, the patient has still a normal sphincter function and no recurrence of the condylomata acuminata. This case report demonstrates how giant condylomata acuminata can be successfully treated by extended surgical procedures including colostomy and plastic reconstruction of resulting defects upon resection. PMID:26814336

  8. Predecessors of the giant 1960 Chile earthquake.

    PubMed

    Cisternas, Marco; Atwater, Brian F; Torrejón, Fernando; Sawai, Yuki; Machuca, Gonzalo; Lagos, Marcelo; Eipert, Annaliese; Youlton, Cristián; Salgado, Ignacio; Kamataki, Takanobu; Shishikura, Masanobu; Rajendran, C P; Malik, Javed K; Rizal, Yan; Husni, Muhammad

    2005-09-15

    It is commonly thought that the longer the time since last earthquake, the larger the next earthquake's slip will be. But this logical predictor of earthquake size, unsuccessful for large earthquakes on a strike-slip fault, fails also with the giant 1960 Chile earthquake of magnitude 9.5 (ref. 3). Although the time since the preceding earthquake spanned 123 years (refs 4, 5), the estimated slip in 1960, which occurred on a fault between the Nazca and South American tectonic plates, equalled 250-350 years' worth of the plate motion. Thus the average interval between such giant earthquakes on this fault should span several centuries. Here we present evidence that such long intervals were indeed typical of the last two millennia. We use buried soils and sand layers as records of tectonic subsidence and tsunami inundation at an estuary midway along the 1960 rupture. In these records, the 1960 earthquake ended a recurrence interval that had begun almost four centuries before, with an earthquake documented by Spanish conquistadors in 1575. Two later earthquakes, in 1737 and 1837, produced little if any subsidence or tsunami at the estuary and they therefore probably left the fault partly loaded with accumulated plate motion that the 1960 earthquake then expended. PMID:16163355

  9. Management of a giant perineal condylomata acuminata

    PubMed Central

    Hemper, Evelyn; Wittau, Mathias; Lemke, Johannes; Kornmann, Marko; Henne-Bruns, Doris

    2016-01-01

    A condylomata acuminata infection is caused by human papillomaviridae (HPV). This sexually transmitted condition most often affects the perineal region. Importantly, infections with types 16 and 18 are associated with an increased risk for anal and cervix cancer. In most cases topical therapy is sufficient for successfully treating condylomata acuminata. Here, we report the case of a 51-year old patient who suffered from a giant perianal located condylomata acuminata which had developed over a period of more than 10 years. Imaging by MRI revealed a possible infiltration of the musculus sphincter ani externus. Because a topical treatment or a radiotherapy was considered unfeasible, a surgical treatment was the only therapeutic option in this unusual case. First, a colostomy was performed and subsequently a resection of the tumor in toto with circular resection of the external portion of the musculus sphincter ani externus was performed. The large skin defect was closed by two gluteus flaps. The rectum wall was reinserted in the remnant of the musculus sphincter ani externus. Postoperatively, parts of the flaps developed necrosis. Therefore, a vacuum sealing therapy was initiated. Subsequently, the remaining skin defects were closed by autologous skin transplantation. Six months later the colostomy could be reversed. To date, one year after first surgery, the patient has still a normal sphincter function and no recurrence of the condylomata acuminata. This case report demonstrates how giant condylomata acuminata can be successfully treated by extended surgical procedures including colostomy and plastic reconstruction of resulting defects upon resection. PMID:26814336

  10. Giant horseshoe intra-abdominal abscess.

    PubMed Central

    Altemeier, W A; Culbertson, W R; Fidler, J P

    1975-01-01

    A study of 12 patients with giant horseshoe abscess of the abdominal and pelvic cavities seen at the Surgical Services of the University of Cincinnati Medical Center has emphasized the complexity and bizarre nature of these lesions. These infections represented a huge abscess or series of communicating abscesses extending from one subphrenic space along the corresponding paracolic gutter into the pelvis, up and along the opposite paracolic space, and into the other subphrenic space. Since these lesions occurred infrequently, they were often not recognized until they had become far advanced and had produced profound effects on the patients. The diagnosis was difficult and obscured by various factors including the postoperative state after laparotomy for complex diseases or serious injuries of the biliary tract, the genitourinary tract, or the alimentary tract. An important etiologic component of the formation of these giant abscesses was the continuing escape and collection of large volumes of fluid resulting from lesions of the biliary tract, postoperative hemorrhage, or an unrecognized large perforated peptic ulcer. Nine patients were treated successfully and 3 died. The many diagnostic and therapeutic problems presented by the patients with this interesting and complex lesion have emphasized the importance of earlier and more accurate diagnosis, early and adequate surgical drainage, intelligently applied antibiotic therapy and appropriate supportive treatment. Failure to recognize and drain effectively each of the component sections of this lesion led to continuing sepsis with prolonged morbidity, progressive debility, and death. Images Fig. 1. Fig. 2. PMID:1079447

  11. Giant waves in weakly crossing sea states

    SciTech Connect

    Ruban, V. P.

    2010-03-15

    The formation of rogue waves in sea states with two close spectral maxima near the wave vectors k{sub 0} {+-} {Delta}k/2 in the Fourier plane is studied through numerical simulations using a completely nonlinear model for long-crested surface waves [24]. Depending on the angle {theta} between the vectors k{sub 0} and {Delta}k, which specifies a typical orientation of the interference stripes in the physical plane, the emerging extreme waves have a different spatial structure. If {theta} {<=} arctan(1/{radical}2), then typical giant waves are relatively long fragments of essentially two-dimensional ridges separated by wide valleys and composed of alternating oblique crests and troughs. For nearly perpendicular vectors k{sub 0} and {Delta}k, the interference minima develop into coherent structures similar to the dark solitons of the defocusing nonlinear Schroedinger equation and a two-dimensional killer wave looks much like a one-dimensional giant wave bounded in the transverse direction by two such dark solitons.

  12. Sizing Up Red Giants Using Bayes’ Rule

    NASA Astrophysics Data System (ADS)

    Aufdenberg, Jason P.; Parsotan, Tyler

    2014-06-01

    Using the general-purpose stellar atmosphere code PHOENIX, we have constructed a grid of spherical stellar atmosphere models for comparison to cool giant star spectral energy distributions(SEDs). The models are not only parametrized by effective temperature (3500 Kto 3700 K) and surface gravity (log(g) = -0.5 to 1.0), but also by mass (7 Msun to 21 Msun), a required parameter for spherical model atmospheres. The shapes of the synthetic spectral energy distributions are sensitive to a change in mass at fixed values for the effective temperature and surface gravity. At our lowest surface gravity, differences in mass of a factor of two can yield up to 20% flux differences in the shape of the SED between 400 nm and 900 nm.Also, for a fixed mass, differences in the surface gravity of a factor of 10 can yield up to 100% flux differences in the shape of the SED below 450 nm. We are investigating whether the mass-dependence of the model SED shape may be used to constrain single star masses. One of our target stars is the supergiant Betelgeuse which has a poorly constrained mass: published estimates differ by a factor of two. To aid in our analysis, we have developed a method to extract Bayesian posterior distributions for four model parameters (effective temperature, surface gravity, mass, and angular size) from thecomparison of the synthetic SED grid to individual observed SEDs of red giants.

  13. Predecessors of the giant 1960 Chile earthquake

    USGS Publications Warehouse

    Cisternas, M.; Atwater, B.F.; Torrejon, F.; Sawai, Y.; Machuca, G.; Lagos, M.; Eipert, A.; Youlton, C.; Salgado, I.; Kamataki, T.; Shishikura, M.; Rajendran, C.P.; Malik, J.K.; Rizal, Y.; Husni, M.

    2005-01-01

    It is commonly thought that the longer the time since last earthquake, the larger the next earthquake's slip will be. But this logical predictor of earthquake size, unsuccessful for large earthquakes on a strike-slip fault, fails also with the giant 1960 Chile earthquake of magnitude 9.5 (ref. 3). Although the time since the preceding earthquake spanned 123 years (refs 4, 5), the estimated slip in 1960, which occurred on a fault between the Nazca and South American tectonic plates, equalled 250-350 years' worth of the plate motion. Thus the average interval between such giant earthquakes on this fault should span several centuries. Here we present evidence that such long intervals were indeed typical of the last two millennia. We use buried soils and sand layers as records of tectonic subsidence and tsunami inundation at an estuary midway along the 1960 rupture. In these records, the 1960 earthquake ended a recurrence interval that had begun almost four centuries before, with an earthquake documented by Spanish conquistadors in 1575. Two later earthquakes, in 1737 and 1837, produced little if any subsidence or tsunami at the estuary and they therefore probably left the fault partly loaded with accumulated plate motion that the 1960 earthquake then expended. ?? 2005 Nature Publishing Group.

  14. On the Final Mass of Giant Planets

    NASA Technical Reports Server (NTRS)

    Estrada, P. R.; Mosqueira, I.

    2004-01-01

    In the core accretion model of giant planet formation, when the core reaches critical mass, hydrostatic equilibrium is no longer possible and gas accretion ensues. If the envelope is radiative, the critical core mass is nearly independent of the boundary conditions and is roughly M(sub crit) 10Mass of the Earth (with weak dependence on the rate of planetesimal accretion M(sub core) and the disk opacity k). Given that such a core may form at the present location of Jupiter in a time comparable to its Type I migration time (10(exp 5) - 10(exp 6) years) provided that the nebula was significantly enhanced in solids with respect to the MMSN and stall at this location in a weakly turbulent (alpha approximately less than 10(exp -4) disk, it may be appropriate to assume that such objects inevitably form and drive the evolution of late-phase T Tauri star disks. Here we investigate the final masses of giant planets in disks with one or more than one such cores. Although the presence of several planets would lead to Type II migration (due to the effective viscosity resulting from the planetary tidal torques), we ignore this complication for now and simply assume that each core has stalled at its location in the disk. Once a core has achieved critical mass, its gaseous accretion is governed by the given Kelvin-Helmholtz timescale.

  15. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-01-01

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  16. Atmospheric models for post- giant impact planets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Zahnle, K. J.; Marley, M. S.; Schaefer, L. K.; Fegley, B.; Morley, C.; Cahoy, K.; Freedman, R. S.; Fortney, J. J.

    2013-12-01

    The final assembly of terrestrial planets is now universally thought to have occurred through a series of giant impacts, such as Earth's own Moon-forming impact. These collisions take place over a time interval of about 100 million years, during which time it takes at least 10 collisions between planets to make a Venus or an Earth. In the aftermath of one of these collisions the surviving planet is hot, and can remain hot for millions of years. During this phase of accretion, the proto-terrestrial planet may have a dense steam atmosphere, that will affect both the cooling of the planet and our ability to detect it. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting of vaporized rock material. The atmospheric chemistry is computed self-consistently for atmospheres in equilibrium with hot surfaces, with compositions reflecting either the bulk silicate Earth (BSE, which includes the crust, mantle, atmosphere and oceans) or Earth's continental crust (CC). These two cases allow us to examine differences in atmospheres formed by outgassing of silica-rich (felsic) rocks - like the Earth's continental crust - and MgO- and FeO-rich (mafic) rocks - like the BSE. Studies of detrital zircons from Jack Hills, Australia, show that the continental crust existed 164 million years after the formation of the solar system, in which case the material vaporized in a giant impact should likely reflect the CC composition. However, if at the time of impact the surface of the planet does not yet exhibit the formation of continents, then the BSE case becomes relevant. We compute atmospheric profiles for surface temperatures ranging from 1000 to 2200 K, surface pressures of 10 and 100 bar, and surface gravities of 10 and 30 m/s^2. We account for all major molecular and atomic opacity sources, including collision-induced absorption, to derive the atmospheric structure and compute

  17. Low-mass companions to Bright Giants

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Wolszczan, A.; Nowak, G.; Adamów, M.; Deka, B.; Górecka, M.; Kowalik, K.

    2014-04-01

    Asymmetric Planetary Nebulae (APN) are formed by bipolar outflows through various mechanism like fast rotation (Blackman et al. 2001), magnetic field (Regos & Tout 1995) or binarity (Harpaz & Soker 1994; Soker 1996; Livio & Soker 2002). The binary scenario seems currently to be best supported by observations as the most efficient in producing the observed APN (De Marco et al. 2004; Soker 2006). Detailed studies of disk formation in binaries leading to APN were presented for instance in Reyes-Ruiz & Lopez (1999), Blackman et al. (2001) and Nordhaus & Blackman (2006). To estimate relative efficiently of the various channels of APN production properties of the population of stars to become AGB stars have to be known. Here our RV search for planets around evolved stars the Penn State-Torun Centre for Astronomy Planet Search (PTPS), whose primary, long-term goal is to improve our understanding of the evolution of planetary systems around aging stars (Niedzielski et al. 2007; Niedzielski & Wolszczan 2008) may be of some help. 1036 stars are monitored within PTPS with the Hobby-Eberly Telescope (HET, Ramsey et al. 1998) and its High Resolution Spectrograph (HRS, Tull et al. 1998) for RV variations using the high precision iodine-cell technique since 2004. The sample is mainly composed of evolved low- and intermediate- mass single or SB1 stars: 449 giants (including 343 clump giants) and 297 subgiants but it also contains 151 slightly evolved dwarfs. All SB1 and SB2 stellar-mass binaries have been identified in the sample. Detailed spectroscopic analysis of 348 stars, mostly giants has been completed by Zieliński et al. (2012). Similar analyses for 403 giants and subgiants (Niedzielski et. al. in prep.) and 146 dwarf (Deka et al. in prep.) are in preparation. In addition to stellar atmospheric parameters the spectroscopic studies deliver masses and luminosities (through fits to evolutionary tracks) as well as ages required for further considerations on planetary

  18. A resonant chain of four transiting, sub-Neptune planets

    NASA Astrophysics Data System (ADS)

    Mills, Sean M.; Fabrycky, Daniel C.; Migaszewski, Cezary; Ford, Eric B.; Petigura, Erik; Isaacson, Howard

    2016-05-01

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  19. A resonant chain of four transiting, sub-Neptune planets.

    PubMed

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223. PMID:27225123

  20. Giant pulsations on the afternoonside: Geostationary satellite and ground observations

    NASA Astrophysics Data System (ADS)

    Motoba, Tetsuo; Takahashi, Kazue; Rodriguez, Juan V.; Russell, Christopher T.

    2015-10-01

    Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North America. For a long-lasting event on 29 February 2012, which spanned ˜08-18h magnetic local time, we show that basic Pg properties did not change with the local time, although the period of the pulsations was longer at later local time due to increasing mass loading. There is evidence that the Pgs resulted from fundamental poloidal mode standing Alfvén waves, both on the morning and afternoonsides. Oscillations of energetic particles associated with the field oscillations exhibited an energy-dependent phase, which has previously been reported and explained by drift resonance. A statistical analysis of the ground magnetic field data (L = 3.8-7.4) covering 2008-2013 confirms that afternoon Pgs are not unusual. We identified a total of 105 Pg events (about 70% (30%) of the events occurred during non-storm (late storm recovery) periods), 31 of which occurred on the afternoonside. The afternoon Pgs occur under solar wind and geomagnetic conditions that are similar to the morning Pgs, but the afternoon Pgs tend to have short durations and occur frequently in winter instead of around spring and fall equinoxes that are favored by the morning Pgs.

  1. MIGRATION OF GAS GIANT PLANETS IN GRAVITATIONALLY UNSTABLE DISKS

    SciTech Connect

    Michael, Scott; Durisen, Richard H.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu

    2011-08-20

    Characterization of migration in gravitationally unstable disks is necessary to understand the fate of protoplanets formed by disk instability. As part of a larger study, we are using a three-dimensional radiative hydrodynamics code to investigate how an embedded gas giant planet interacts with a gas disk that undergoes gravitational instabilities (GIs). This Letter presents results from simulations with a Jupiter-mass planet placed in orbit at 25 AU within a 0.14 M{sub sun} disk. The disk spans 5-40 AU around a 1 M{sub sun} star and is initially marginally unstable. In one simulation, the planet is inserted prior to the eruption of GIs; in another, it is inserted only after the disk has settled into a quasi-steady GI-active state, where heating by GIs roughly balances radiative cooling. When the planet is present from the beginning, its own wake stimulates growth of a particular global mode with which it strongly interacts, and the planet plunges inward 6 AU in about 10{sup 3} years. In both cases with embedded planets, there are times when the planet's radial motion is slow and varies in direction. At other times, when the planet appears to be interacting with strong spiral modes, migration both inward and outward can be relatively rapid, covering several AUs over hundreds of years. Migration in both cases appears to stall near the inner Lindblad resonance of a dominant low-order mode. Planet orbit eccentricities fluctuate rapidly between about 0.02 and 0.1 throughout the GI-active phases of the simulations.

  2. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  3. PLUTINO DETECTION BIASES, INCLUDING THE KOZAI RESONANCE

    SciTech Connect

    Lawler, S. M.; Gladman, B.

    2013-07-01

    Because of their relative proximity within the trans-Neptunian region, the plutinos (objects in the 3:2 mean-motion resonance with Neptune) are numerous in flux-limited catalogs, and well-studied theoretically. We perform detailed modeling of the on-sky detection biases for plutinos, with special attention to those that are simultaneously in the Kozai resonance. In addition to the normal 3:2 resonant argument libration, Kozai plutinos also show periodic oscillations in eccentricity and inclination, coupled to the argument of perihelion ({omega}) oscillation. Due to the mean-motion resonance, plutinos avoid coming to pericenter near Neptune's current position in the ecliptic plane. Because Kozai plutinos are restricted to certain values of {omega}, perihelion always occurs out of the ecliptic plane, biasing ecliptic surveys against finding these objects. The observed Kozai plutino fraction f{sub koz}{sup obs} has been measured by several surveys, finding values between 8% and 25%, while the true Kozai plutino fraction f{sub koz}{sup true} has been predicted to be between 10% and 30% by different giant planet migration simulations. We show that f{sub koz}{sup obs} varies widely depending on the ecliptic latitude and longitude of the survey, so debiasing to find the true ratio is complex. Even a survey that covers most or all of the sky will detect an apparent Kozai fraction that is different from f{sub koz}{sup true}. We present a map of the on-sky plutino Kozai fraction that would be detected by all-sky flux-limited surveys. This will be especially important for the Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope projects, which may detect large numbers of plutinos as they sweep the sky. f{sub koz}{sup true} and the distribution of the orbital elements of Kozai plutinos may be a diagnostic of giant planet migration; future migration simulations should provide details on their resonant Kozai populations.

  4. Magnetic resonance of slotted circular cylinder resonators

    NASA Astrophysics Data System (ADS)

    Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.

    2008-07-01

    By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.

  5. Giants among larges: how gigantism impacts giant virus entry into amoebae.

    PubMed

    Rodrigues, Rodrigo Araújo Lima; Abrahão, Jônatas Santos; Drumond, Betânia Paiva; Kroon, Erna Geessien

    2016-06-01

    The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites. PMID:27039270

  6. Spin glass-like behavior, giant magnetocaloric and giant magnetoresistance effect in PrPb manganites

    NASA Astrophysics Data System (ADS)

    Chau, N.; Hanh, D. T.; Tho, N. D.; Luong, N. H.

    2006-08-01

    The Pr 1-xPb xMnO 3 ( x=0.1-0.5) perovskites have been fabricated by solid-state reaction. The X-ray diffraction patterns show that the samples are of single phase with orthorhombic structure. The field-cooled (FC) and zero-field-cooled (ZFC) thermomagnetic curves measured at low field and low temperatures exhibit the spin glass-like state. The Curie temperature of samples increased with increase in Pb content. The maximum magnetic entropy change |Δ Sm| max reaches the giant values of 3.91 and 3.68 J/kg K for quite low magnetic field change of 1.35 T for the samples x=0.1 and 0.4, respectively. The resistance measurements show that there is insulator-metal phase transition on the R( T) curves for samples with x⩾0.3. The giant magnetoresistance effect is also observed for all samples studied.

  7. Neurological, psychiatric, ophthalmological, and endocrine complications in giant male prolactinomas: An observational study in Algerian population

    PubMed Central

    Chentli, Farida; Azzoug, Said; Daffeur, Katia; Akkache, Lina; Zellagui, Hadjer; Haddad, Meriem; Kalafate, Nadia

    2015-01-01

    Introduction: Prolactinomas are less frequent, but more invasive in males. Giant ones (≥4 cm) are extremely rare in literature. Their neurological, psychiatric and endocrine complications are life threatening. Our aim was to report the largest mono center series in order to analyze their frequency, their characteristics, and their complications. Subjects and Methods: All patients had clinical examination, hormonal, ophthalmological, and radiological assessment based on computed tomography scan and cerebral magnetic resonance imaging. Positive diagnosis was based on clinical symptoms, high prolactin ± immunohistochemy study. Mixed adenomas were excluded by hormonal exploration and immunohistochemy. For those who received medical treatment only, a reduction in tumor size was considered a supplementary positive point for the diagnosis. Results: Among 154 male prolactinomas seen between 1987 and 2013, we observed 44 giant tumors (28.5%). Median age = 36 years, and 38.3% were under 30. Median tumor height = 53.95 mm (40–130) and median prolactin = 15,715 ng/ml (n < 20). Solid and cystic aspect ± calcifications was observed in 25%. 42 had cavernous sinuses invasion. Other invasions were: Posterior= 65.9%, anterior= 63.6%, temporal= 15.9% and frontal = 9%. For endocrine complications: Hypogonadism = 98.4%, thyrotroph and corticotroph deficits were seen in respectively 34%, and 32%. Posterior pituitary insufficiency was observed in one case. For ophthalmological complications: Optic atrophy = 46%, Ptosis = 6.8%, diplopia/strabismus = 4.5%. Neurological complications were: Memory loss and/or unconsciousness = 18.2%, epilepsy = 15.9%, frontal syndrome = 9% and obstructive hydrocephalus = 6.8%. Conclusion: Giant prolactinomas account for 28% in our population. Severe neurological complications are frequent. But, obstructive hydrocephalus is rare, which argues for a slow progression. PMID:25932390

  8. The chemical compositions and evolutionary status of red giants in the open cluster NGC 6940

    NASA Astrophysics Data System (ADS)

    Böcek Topcu, G.; Afşar, M.; Sneden, C.

    2016-08-01

    We present the high resolution (R ≈ 60 000), high signal-to-noise (S/N ≃ 120) spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. We applied Yonsei-Yale isochrones to the colour-magnitude diagram, which suggested an age of 1.1 Gyr for the cluster with a turn-off mass of 2 M⊙. Atmospheric parameters (Teff, log g, [Fe/H] and ξt) were determined via equivalent widths of Fe I, Fe II, Ti I, and Ti II lines. Calculated mean metallicity of the cluster is <[Fe/H]> = 0.04 ± 0.02. We derived abundances of α (Mg, Si, Ca), Fe-group (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and n-capture (Y, La, Nd, Eu) elements to be about solar. Light odd-Z elements Na and Al are slightly enhanced in MMU 108 and MMU 152 by ˜0.34 dex and ˜0.16 dex, respectively. Abundances of light elements Li, C, N, O, and 12C/13C ratios were derived from spectrum syntheses of the Li I resonance doublet at 6707 Å, [O I] line at 6300 Å, C2 Swan bandheads at 5164 Å and 5635 Å, and strong 12, 13CN system lines in the 7995-8040 Å region. Most carbon isotopic ratios are similar to those found in other solar-metallicity giants, but MMU 152 has an unusual value of 12C/13C =6. Evaluation of the LiCNO abundances and 12C/13C ratios along with the present theoretical models suggests that all the red giants in our sample are core-helium-burning clump stars.

  9. Pseudo-planar conjugated swastikas metamaterial with giant circular dichroism and negative refraction at near-infrared region

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Gao, Lin; Liao, Honghua

    2016-02-01

    In this paper, a pseudo-planar conjugated swastikas metamaterial (MM) was proposed and investigated numerically at near-infrared region. Numerical results show that the circular dichroism (CD) is more than 25 dB at resonance frequencies. Owing to the stronger chirality, the refractive indices for right-handed and left-handed circularly polarized waves are negative. The surface current distributions are studied to explain mechanism of the chiral behaviors. The pseudo-planar MM is easy to fabricate and thus lead to many applications in photonic devices due to its giant CD effect and negative refraction.

  10. Fatal canine distemper virus infection of giant pandas in China.

    PubMed

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  11. Fatal canine distemper virus infection of giant pandas in China

    PubMed Central

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  12. Provirophages and transpovirons as the diverse mobilome of giant viruses.

    PubMed

    Desnues, Christelle; La Scola, Bernard; Yutin, Natalya; Fournous, Ghislain; Robert, Catherine; Azza, Saïd; Jardot, Priscilla; Monteil, Sonia; Campocasso, Angélique; Koonin, Eugene V; Raoult, Didier

    2012-10-30

    A distinct class of infectious agents, the virophages that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements, the transpovirons. The transpovirons are linear DNA elements of ~7 kb that encompass six to eight protein-coding genes, two of which are homologous to virophage genes. Fluorescence in situ hybridization showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns and inteins constitute the complex, interconnected mobilome of the giant viruses and are likely to substantially contribute to interviral gene transfer. PMID:23071316

  13. On the standing wave mode of giant pulsations

    SciTech Connect

    Takahashi, K. ); Sato, N. ); Warnecke, J.; Luehr, H. ); Spence, H.E. ); Tonegawa, Y. )

    1992-07-01

    Both odd-mode and even-mode standing were structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, the authors have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. They selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et at., 1982). In agreement with Hillebrand et al., they conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations.

  14. BROADBAND PHOTOMETRY OF 105 GIANT ARCS: REDSHIFT CONSTRAINTS AND IMPLICATIONS FOR GIANT ARC STATISTICS

    SciTech Connect

    Bayliss, Matthew B.

    2012-01-10

    We measure the photometric properties of 105 giant arcs that were identified in systematic searches for galaxy-cluster-scale strong lenses in the Second Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. The cluster lenses span 0.2 < z{sub l} < 1.2 in redshift, with a median z-bar{sub l}=0.58. Using broadband color criteria we sort the entire arc sample into redshift bins based on u-g and g-r colors, and also r-z colors for the {approx}90% of arcs that have z-band data. This analysis yields broad redshift constraints with 71{sup +5}{sub -4%} of the arcs at z {>=} 1.0, 64{sup +6}{sub -4%} at z {>=} 1.4, 56{sup +5}{sub -4%} at z {>=} 1.9, and 21{sup +4}{sub -2%} at z {>=} 2.7. The remaining 29{sup +03}{sub -5%} have z < 1. The inferred median redshift is z-bar{sub s}= 2.0{+-}0.1, in good agreement with a previous determination from a smaller sample of brighter arcs (g {approx}< 22.5). This agreement confirms that z{sub s} = 2.0 {+-} 0.1 is the typical redshift for giant arcs with g {approx}< 24 that are produced by cluster-scale strong lenses and that there is no evidence for strong evolution in the redshift distribution of arcs over a wide range of g-band magnitudes (20 {<=} g {<=}24). Establishing that half of all giant arcs are at z {approx}> 2 contributes significantly toward relieving the tension between the number of arcs observed and the number expected in a {Lambda}CDM cosmology, but there is considerable evidence to suggest that a discrepancy persists. Additionally, this work confirms that forthcoming large samples of giant arcs will supply the observational community with many magnified galaxies at z {approx}> 2.

  15. 75 FR 39166 - Safety Zone; San Francisco Giants Baseball Game Promotion, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; San Francisco Giants Baseball Game... Bay off San Francisco, CA in support of the San Francisco Giants Baseball Game Promotion. This safety... Giants will sponsor the San Francisco Giants Baseball Game Promotion on July 16, 2010, on the...

  16. Melting and metallization of silica in the cores of gas giants, ice giants, and super Earths

    NASA Astrophysics Data System (ADS)

    Mazevet, S.; Tsuchiya, T.; Taniuchi, T.; Benuzzi-Mounaix, A.; Guyot, F.

    2015-07-01

    The physical state and properties of silicates at conditions encountered in the cores of gas giants, ice giants, and of Earth-like exoplanets now discovered with masses up to several times the mass of the Earth remain mostly unknown. Here, we report on theoretical predictions of the properties of silica, SiO2, up to 4 TPa and about 20 000 K by using first principles molecular dynamics simulations based on density functional theory. For conditions found in the super Earths and in ice giants, we show that silica remains a poor electrical conductor up to 10 Mbar due to an increase in the Si-O coordination with pressure. For Jupiter and Saturn cores, we find that MgSiO3 silicate has not only dissociated into MgO and SiO2, as shown in previous studies, but that these two phases have likely differentiated to lead to a core made of liquid SiO2 and solid (Mg,Fe)O.

  17. The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae).

    PubMed

    Soo, Pamela; Todd, Peter A

    2014-01-01

    Giant clams, the largest living bivalves, live in close association with coral reefs throughout the Indo-Pacific. These iconic invertebrates perform numerous important ecological roles as well as serve as flagship species-drawing attention to the ongoing destruction of coral reefs and their associated biodiversity. To date, no review of giant clams has focussed on their behaviour, yet this component of their autecology is critical to their life history and hence conservation. Almost 100 articles published between 1865 and 2014 include behavioural observations, and these have been collated and synthesised into five sections: spawning, locomotion, feeding, anti-predation, and stress responses. Even though the exact cues for spawning in the wild have yet to be elucidated, giant clams appear to display diel and lunar periodicities in reproduction, and for some species, peak breeding seasons have been established. Perhaps surprisingly, giant clams have considerable mobility, ranging from swimming and gliding as larvae to crawling in juveniles and adults. Chemotaxis and geotaxis have been established, but giant clams are not phototactic. At least one species exhibits clumping behaviour, which may enhance physical stabilisation, facilitate reproduction, or provide protection from predators. Giant clams undergo several shifts in their mode of acquiring nutrition; starting with a lecithotrophic and planktotrophic diet as larvae, switching to pedal feeding after metamorphosis followed by the transition to a dual mode of filter feeding and phototrophy once symbiosis with zooxanthellae (Symbiodinium spp.) is established. Because of their shell weight and/or byssal attachment, adult giant clams are unable to escape rapidly from threats using locomotion. Instead, they exhibit a suite of visually mediated anti-predation behaviours that include sudden contraction of the mantle, valve adduction, and squirting of water. Knowledge on the behaviour of giant clams will benefit

  18. Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca).

    PubMed

    Gong, Minghao; Song, Yanling; Yang, Zhisong; Lin, Chen

    2012-06-01

    Population viability analysis (PVA) is a tool to evaluate the risk of extinction for endangered species and aid conservation decision-making. The quality of PVA output is dependent on parameters related to population dynamics and life-history; however, it has been difficult to collect this information for the giant panda (Aliuropoda melanoleuca), a rare and endangered mammal native to China, confined to some 30 fragmented habitat patches. Since giant pandas are long-lived, mature late, have lower reproductive rates, and show little sexual dimorphism, obtaining data to perform adequate PVA has been difficult. Here, we develop a parameter sensitivity index by modeling the dynamics of six giant panda populations in the Minshan Mountains, in order to determine the parameters most influential to giant panda populations. Our data shows that the giant panda populations are most sensitive to changes in four female parameters: initial breeding age, reproductive rate, mortality rate between age 0 and 1, and mortality rate of adults. The parameter sensitivity index strongly correlated with initial population size, as smaller populations were more sensitive to changes in these four variables. This model suggests that demographic parameters of females have more influence on the results of PVA, indicating that females may play a more important role in giant panda population dynamics than males. Consequently, reintroduction of female individuals to a small giant panda population should be a high priority for conservation efforts. Our findings form a technical basis for the coming program of giant panda reintroduction, and inform which parameters are crucial to successfully and feasibly monitoring wild giant panda populations. PMID:22653866

  19. Peripheral synapses and giant neurons in whip spiders.

    PubMed

    Foelix, Rainer; Troyer, David; Igelmund, Peter

    2002-08-15

    Among invertebrates the synapses between neurons are generally restricted to ganglia, i.e., to the central nervous system (CNS). As an exception, synapses occur in the sensory nerves of arachnid legs, indicating that some nervous integration is already taking place far out in the periphery. In the antenniform legs of whip spiders (Amblypygi), a very special synaptic circuit is present. These highly modified legs contain several large interneurons (giant neurons) that receive mechanosensory input from 700-1,500 tarsal bristles. Some of the sensory cell axons contact a giant neuron at its short, branched dendrite, a few at the soma, but most synapse onto the long giant axon. The fine structure of these synapses resembles that of typical chemical synapses in other arthropods. Although thousands of sensory fibers converge on a single giant neuron, there is no reduction in the actual number of sensory fibers, because these afferent fibers continue their course to the CNS after having made several en passant synapses onto the giant neuron. Touching a single tarsal bristle is sufficient to elicit action potentials in a giant neuron. Owing to the large diameter of the giant axon (10-20 microm), the action potentials reach the CNS within 55 ms, at conduction velocities of up to 7 m/s. However, mechanical stimulation of the tarsal bristles does not elicit a fast escape response, in contrast to giant fiber systems in earthworms, certain insects, and crayfishes. A quick escape is observed in whip spiders, but only after stimulation of the filiform hairs (trichobothria) on the regular walking legs. Although the giant fiber system in the antenniform legs undoubtedly provides a fast sensory pathway, its biological significance is not clearly understood at the moment. PMID:12214295

  20. Giant adrenal pseudocyst harbouring adrenocortical cancer

    PubMed Central

    Wilkinson, Michael; Fanning, Deirdre Mary; Moloney, James; Flood, Hugh

    2011-01-01

    The authors report a very rare case of adreno-cortical carcinoma arising in a giant adrenal pseudocyst. A 64-year-old woman presented to the emergency department with a 6 week history of progressively worsening severe left abdominal pain, anorexia, anergia and constipation. On examination, she was cachectic with tenderness over the left abdomen and flank. Medical history was significant for gastritis and anaemia. During her investigation, a well-defined para-renal 12×6 centimetre multi-loculated cyst, of uncertain origin was identified on CT. Ultrasound-guided biopsy was not diagnostic. MRI showed the cyst to be likely adrenal in origin. Serum and urinary catecholamines were unremarkable. At laparotomy an unresectable large, tense, fixed, cystic mass was seen to occupy the left side of the abdomen. The cyst was de-roofed. Pathology showed a high-grade poorly differentiated adreno-cortical carcinoma with a pseudo-capsule. She died 2 months postoperatively. PMID:22679267

  1. Air pollution from future giant jetports

    NASA Technical Reports Server (NTRS)

    Fay, J. A.

    1970-01-01

    Because aircraft arrive and depart in a generally upwind direction, the pollutants are deposited in a narrow corridor extending downwind of the airport. Vertical mixing in the turbulent atmosphere will not dilute such a trail, since the pollutants are distributed vertically during the landing and take-off operations. As a consequence, airport pollution may persist twenty to forty miles downwind without much attenuation. Based on this simple meteorological model, calculations of the ambient levels of nitric oxide and particulates to be expected downwind of a giant jetport show them to be about equal to those in present urban environments. These calculations are based on measured emission rates from jet engines and estimates of aircraft performance and traffic for future jetports.

  2. The Giant Radio Array for Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Martineau-Huynh, Olivier; Kotera, Kumiko; Bustamente, Mauricio; Charrier, Didier; De Jong, Sijbrand; de Vries, Krijn D.; Fang, Ke; Feng, Zhaoyang; Finley, Chad; Gou, Quanbu; Gu, Junhua; Hanson, Jordan C.; Hu, Hongbo; Murase, Kohta; Niess, Valentin; Oikonomou, Foteini; Renault-Tinacci, Nicolas; Schmid, Julia; Timmermans, Charles; Wang, Zhen; Wu, Xiangping; Zhang, Jianli; Zhang, Yi

    2016-04-01

    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ˜ 105 radio antennas deployed over ˜ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10-11E-2 GeV-1 cm-2 s-1 sr-1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs.

  3. Rotation Rates of the Giant Planets (Invited)

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Helled, R.; Anderson, J. D.

    2009-12-01

    It has been generally believed that a rotation period could be assigned to each of the giant planets. Accepted values of these periods, till now, are 9h 55m 29s, 10h 39m 22s, 17h 14m 24s, and 16h 06m 36s for Jupiter, Saturn, Uranus, and Neptune, respectively. The rotation period of Jupiter is based on the periodic variations in the planet’s kilometric radiation and magnetic field, periodicities that have been unchanged since the Voyager flybys. The association of these periodicities with Jupiter’s internal rotation period is based on the idea that the radio and magnetic phenomena are tied to the planet’s magnetic field lines anchored deep within Jupiter. The periodic variations of the Saturnian Kilometric Radiation (SKR), unlike those of Jupiter, have not been rock solid, however; the periodicity has changed from 10h 39m 22s at the time of Voyager to 10h 45m 45s at the time of Cassini. Clearly, the SKR period does not represent the internal rotation period of Saturn, and it raises the possibility that the rotation periods of the other giant planets are uncertain. In fact, we must seriously reconsider whether the interiors of the giant planets are in solid body rotation with a single period. Even for Jupiter, the 9h 55m 29s rotation period might represent only the rotation of the region in which the magnetic field is generated. The dynamo region could extend from some unknown inner radius out to about 0.9 Jovian radius. The deeper Jovian interior could be rotating with a different period. A recent attempt to model the interior of Jupiter with new equation of state data concluded that the gravitational coefficients of Jupiter could not be fit unless Jupiter’s internal rotation rate was constant on cylinders parallel to the rotation axis (Militzer, B., W.B. Hubbard, J. Vorberger, I. Tamblyn, and S.A. Bonev, A massive core in Jupiter predicted from first-principles simulations, 2008, ApJ, 688, L45-L48 [doi: 10.1086/594364]). For Saturn, two studies of the

  4. Giant complex odontoma in maxillary sinus

    PubMed Central

    Carvalho Visioli, Adriano Rossini; de Oliveira e Silva, Cléverson; Marson, Fabiano Carlos; Takeshita, Wilton Mitsunari

    2015-01-01

    In this manuscript, we present a rare case report of giant complex odontoma in the maxillary sinus, where the applied therapy included complete excision of the lesion with a conservative approach. Odontomas are also called benign growth abnormalities or hamartomas. They represent a more common type of odontogenic tumor and are related to various disorders such as bad dental placements, expansion, increased volumetric bone, and no eruption of permanent teeth. Usually they have an asymptomatic evolutionary course. The etiologic factors, although obscure, are related to local trauma, infection, and genetic factor. The structural composition of an odontoma consists of mature dental tissues. Odontomas can be differentiated according to their anatomical presentations: Compound odontoma-clusters of several denticles and complex odontoma-well defined tumefaction mass. The diagnosis can be performed by radiographic examination. PMID:26389051

  5. Introduction to Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2016-04-01

    A brief introduction on the main characteristics of the asymptotic giant branch stars (briefly: AGB) is presented. We describe a link to observations and outline basic features of theoretical modeling of these important evolutionary phases of stars. The most important aspects of the AGB stars is not only because they are the progenitors of white dwarfs, but also they represent the site of almost half of the heavy element formation beyond iron in the galaxy. These elements and their isotopes are produced by the s-process nucleosynthesis, which is a neutron capture process competing with the β- radioactive decay. The neutron source is mainly due to the reaction 13C(α,n)16O reaction. It is still a challenging problem to obtain the right amount of 13 C that can lead to s-process abundances compatible with observation. Some ideas are presented in this context.

  6. [Neurological manifestations of giant cell arteritis].

    PubMed

    Grachev, Yu V

    2016-01-01

    The article describes clinical, including neurological manifestations, of giant cell arteritis (GCA) - granulomatous vasculitis of large and medium-sized vessels, predominantly craniofacial, including precerebral and cerebral, arteries. Histopathological features of GCA are illustrated by the schemes of panarteritis and «postarteritis» (proliferative and fibrotic changes in the intima, underlying the development of cerebrovascular disorders). The main clinical manifestations of GCA are described as 3 groups of symptoms: general constitutional symptoms; manifestations of vasculitis of craniofacial, precerebral and cerebral arteries; polymyalgia rheumaticа. The authors present their own version of the taxonomy of visual disturbances in patients with GCA. Diagnostic steps in patients with suggestive signs of GCA are described. Therapeutic regimens of use of glucocorticoids for suggestion/diagnosis of GCA are presented. PMID:26977631

  7. Novel giant magnetostrictive material current sensor

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Liu, Zhao; Lin, Qiuyan; Ge, Jinming; Zhang, Guoqing; Yu, Wenbin

    2015-07-01

    Because of the shortcomings of the traditional inductive current sensor and optical current sensor, this paper proposes a new type of current sensor that uses a giant magnetostrictive material (GMM) to monitor and control power lines. This paper introduces operating principle and structure design of a GMM current sensor. To eliminate the frequency- doubled effect and to obtain good linearity, we set the bias magnetic field to 11.53 kA/m and the prestress force to 6 MPa. The strains of the 100- and 200-mm GMM sticks under the same magnetic field were compared; the results showed that the 100-mm stick had a larger strain. The magnetic field interference during a single-phase measurement of power lines was also studied. Finally, we analyzed the device sensitivity and discussed its influencing factors. The sensitivity reached 4 × 10-9 m2/A.

  8. Optical Spectra of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam

    2004-01-01

    The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.

  9. Gamma rays from giant molecular clouds

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Kanbach, Gottfried

    1990-01-01

    Giant Molecular Clouds (GMCs) are massive, bounded, cool, dense regions containing mostly H2, but also H I, CO, and other molecules. These clouds occupy less than 1 percent of the galactic volume, but are a substantial part of the interstellar mass. They are irradiated by the high energy cosmic rays which are possibly modulated by the matter and magnetic fields within the clouds. The product of cosmic-ray flux and matter density is traced by the emission of high energy gamma-rays. A spherical cloud model is considered and the gamma ray flux from several GMCs within 1 kpc of the sun which should be detectable by the EGRET (Energetic Gamma-Ray Experimental Telescope) instrument on GRO (Gamma Ray Observatory).

  10. Magnetocardiography with sensors based on giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.

    2011-04-01

    Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.

  11. Giant radicular cyst of the maxilla

    PubMed Central

    Deshmukh, Jeevanand; Shrivastava, Ratika; Bharath, Kashetty Panchakshari; Mallikarjuna, Rachappa

    2014-01-01

    Radicular cysts are inflammatory odontogenic cysts of tooth bearing areas of the jaws. Most of these lesions involve the apex of offending tooth and appear as well-defined radiolucencies. Owing to its clinical characteristics similar to other more commonly occurring lesions in the oral cavity, differential diagnosis should include dentigerous cyst, ameloblastoma, odontogenic keratocyst, periapical cementoma and Pindborg tumour. The present case report documents a massive radicular cyst crossing the midline of the palate. Based on clinical, radiographical and histopathological findings, the present case was diagnosed as an infected radicular cyst. The clinical characteristics of this cyst could be considered as an interesting and unusual due to its giant nature. The lesion was surgically enucleated along with the extraction of the associated tooth; preservation of all other teeth and vital structures, without any postoperative complications and satisfactory healing, was achieved. PMID:24792022

  12. Magma ocean formation due to giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

  13. Giant paramagnetic Meissner effect in multiband superconductors.

    PubMed

    da Silva, R M; Milošević, M V; Shanenko, A A; Peeters, F M; Aguiar, J Albino

    2015-01-01

    Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces. PMID:26244936

  14. Giant paramagnetic Meissner effect in multiband superconductors

    PubMed Central

    da Silva, R. M.; Milošević, M. V.; Shanenko, A. A.; Peeters, F. M.; Aguiar, J. Albino

    2015-01-01

    Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces. PMID:26244936

  15. Giant paramagnetic Meissner effect in multiband superconductors

    NASA Astrophysics Data System (ADS)

    da Silva, R. M.; Milošević, M. V.; Shanenko, A. A.; Peeters, F. M.; Aguiar, J. Albino

    2015-08-01

    Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.

  16. Giant impacts on a primitive Uranus

    NASA Technical Reports Server (NTRS)

    Slattery, Wayne L.; Benz, Willy; Cameron, A. G. W.

    1992-01-01

    Simulations of collisions are conducted between a model of the primitive Uranus and 1-3 earth-mass impactors, using smooth-particle hydrodynamics. A series of collisions was simulated for each impactor while varying the total angular momentum of the system. Most of the simulation runs left ices in orbit; a subset of the runs also left rock or iron (from the impactor). It is concluded on the basis of these results that there is a wide range of giant impacts which could have produced the current period and inclination of the spin axis relative to the plane of the ecliptic. A subset of these could have deposited the material in orbit from which the regular satellites of Uranus were assembled.

  17. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  18. Quantifying Irregularity in Pulsating Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Esteves, S.; Lin, A.; Menezes, C.; Wu, S.

    2009-12-01

    Hundreds of red giant variable stars are classified as “type L,” which the General Catalogue of Variable Stars (GCVS) defines as “slow irregular variables of late spectral type...which show no evidence of periodicity, or any periodicity present is very poorly defined....” Self-correlation (Percy and Muhammed 2004) is a simple form of time-series analysis which determines the cycle-to-cycle behavior of a star, averaged over all the available data. It is well suited for analyzing stars which are not strictly periodic. Even for non-periodic stars, it provides a “profile” of the variability, including the average “characteristic time” of variability. We have applied this method to twenty-three L-type variables which have been measured extensively by AAVSO visual observers. We find a continuous spectrum of behavior, from irregular to semiregular.

  19. Giant gravitons - with strings attached (III)

    NASA Astrophysics Data System (ADS)

    Bekker, David; de Mello Koch, Robert; Stephanou, Michael

    2008-02-01

    We develop techniques to compute the one-loop anomalous dimensions of operators in the Script N = 4 super Yang-Mills theory that are dual to open strings ending on boundstates of sphere giant gravitons. Our results, which are applicable to excitations involving an arbitrary number of open strings, generalize the single string results of hep-th/0701067. The open strings we consider carry angular momentum on an S3 embedded in the S5 of the AdS5 × S5 background. The problem of computing the one loop anomalous dimensions is replaced with the problem of diagonalizing an interacting Cuntz oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for open strings propagating on multiple branes can arise dynamically.

  20. Giant switchable Rashba effect in oxide heterostructures

    SciTech Connect

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; Yin, Wei-Guo; Yunoki, Seiji; Held, Karsten

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, induces a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.

  1. Blind detection of giant pulses: GPU implementation

    NASA Astrophysics Data System (ADS)

    Ait-Allal, Dalal; Weber, Rodolphe; Dumez-Viou, Cédric; Cognard, Ismael; Theureau, Gilles

    2012-01-01

    Radio astronomical pulsar observations require specific instrumentation and dedicated signal processing to cope with the dispersion caused by the interstellar medium. Moreover, the quality of observations can be limited by radio frequency interference (RFI) generated by Telecommunications activity. This article presents the innovative pulsar instrumentation based on graphical processing units (GPU) which has been designed at the Nançay Radio Astronomical Observatory. In addition, for giant pulsar search, we propose a new approach which combines a hardware-efficient search method and some RFI mitigation capabilities. Although this approach is less sensitive than the classical approach, its advantage is that no a priori information on the pulsar parameters is required. The validation of a GPU implementation is under way.

  2. Giant Molecular Cloud Populations in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Hughes, Annie; Meidt, Sharon; Leroy, Adam; Dobbs, Clare; Schinnerer, Eva; Colombo, Dario; Wong, Tony; Pety, Jerome

    2015-08-01

    The structure of the molecular interstellar medium on the scale of individual giant molecular clouds (GMCs) is an important quantity for models of star formation, and one that is often invoked to explain the correlations between tracers of gas and star formation obtained by kiloparsec-scale observations of nearby galaxies. In this talk, I will highlight new results from recent wide-field, cloud-scale imaging surveys of CO emission in nearby galaxies that have provided important new insights into the timescales of GMC evolution, the dominant processes of GMC formation and destruction, and the emergence of a kiloparsec-scale star formation law from the physical properties of individual clouds. These results underscore the importance of galactic environment on the evolution of GMCs, and on a galaxy's global pattern of star formation.

  3. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  4. GIANT INTRALIGAMENTARY UTERINE LEIOMYOMA AND ITS COMPLICATIONS.

    PubMed

    Cărăuleanu, A; Socolov, R; Lupaşcu, Ivona Anghelache; Rugină, V; Socolov, Demetra

    2016-01-01

    Uterine leiomyomas are benign tumors arising from uterine smooth muscle. Although their pathogenesis remains unclear, they are the most common tumor of the female reproductive tract, occurring in as many as half of women older than 35 years. Uterine leiomyomas represent the most common benign tumors of the female reproductive tract. Giant uterine leiomyomas are very rare and represents a great diagnosis and therapeutic challenge. Uterine leiomyoma is one of the most frequent types of tumours and it is diagnosed in 20-40% of the women of reproductive age. Until the age of 50, approximately 70% of the white women and less than 80% of the black women will have had at least one leiomyoma. The frequency of the emergence of uterine leiomyoma in black women is significantly higher than in white women. PMID:27125088

  5. Membrane tensiometer for heavy giant vesicles

    NASA Astrophysics Data System (ADS)

    Puech, P.-H.; Brochard-Wyart, F.

    2004-10-01

    One key parameter of giant-vesicles adhesion is their membrane tension, σ. A theoretically simple but delicate way to impose (and measure) it is to use micropipette manipulation techniques. But usually, the vesicles are free and their tension is unknown, until an adhesion patch grows. σ can be deduced from the detailed profile of the membrane close to the substrate, but this method is limited to very low tensions. We present here a rather simple way to estimate the membrane tension of heavy vesicles, which sediment close to a surface, by observing by RIM the size of the flat region of the vesicle. As an application, we follow the slow flattening of vesicles, when the surrounding sugar solution is evaporating, and their light-induced tensioning.

  6. Giant complex odontoma in maxillary sinus.

    PubMed

    Carvalho Visioli, Adriano Rossini; de Oliveira E Silva, Cléverson; Marson, Fabiano Carlos; Takeshita, Wilton Mitsunari

    2015-01-01

    In this manuscript, we present a rare case report of giant complex odontoma in the maxillary sinus, where the applied therapy included complete excision of the lesion with a conservative approach. Odontomas are also called benign growth abnormalities or hamartomas. They represent a more common type of odontogenic tumor and are related to various disorders such as bad dental placements, expansion, increased volumetric bone, and no eruption of permanent teeth. Usually they have an asymptomatic evolutionary course. The etiologic factors, although obscure, are related to local trauma, infection, and genetic factor. The structural composition of an odontoma consists of mature dental tissues. Odontomas can be differentiated according to their anatomical presentations: Compound odontoma-clusters of several denticles and complex odontoma-well defined tumefaction mass. The diagnosis can be performed by radiographic examination. PMID:26389051

  7. Management of Giant Splenic Artery Aneurysm

    PubMed Central

    Akbulut, Sami; Otan, Emrah

    2015-01-01

    Abstract To provide an overview of the medical literature on giant splenic artery aneurysm (SAA). The PubMed, Medline, Google Scholar, and Google databases were searched using keywords to identify articles related to SAA. Keywords used were splenic artery aneurysm, giant splenic artery aneuryms, huge splenic artery aneurysm, splenic artery aneurysm rupture, and visceral artery aneurysm. SAAs with a diameter ≥5 cm are considered as giant and included in this study. The language of the publication was not a limitation criterion, and publications dated before January 15, 2015 were considered. The literature review included 69 papers (62 fulltext, 6 abstract, 1 nonavailable) on giant SAA. A sum of 78 patients (50 males, 28 females) involved in the study with an age range of 27–87 years (mean ± SD: 55.8 ± 14.0 years). Age range for male was 30–87 (mean ± SD: 57.5 ± 12.0 years) and for female was 27–84 (mean ± SD: 52.7 ± 16.6 years). Most frequent predisposing factors were acute or chronic pancreatitis, atherosclerosis, hypertension, and cirrhosis. Aneurysm dimensions were obtained for 77 patients with a range of 50–300 mm (mean ± SD: 97.1 ± 46.0 mm). Aneurysm dimension range for females was 50–210 mm (mean ± SD: 97.5 ± 40.2 mm) and for males was 50–300 mm (mean ± SD: 96.9 ± 48.9 mm). Intraperitoneal/retroperitoneal rupture was present in 15, among which with a lesion dimension range of 50–180 mm (mean ± SD; 100 ± 49.3 mm) which was range of 50–300 mm (mean ± SD: 96.3 ± 45.2 mm) in cases without rupture. Mortality for rupture patients was 33.3%. Other frequent complications were gastrosplenic fistula (n = 3), colosplenic fistula (n = 1), pancreatic fistula (n = 1), splenic arteriovenous fistula (n = 3), and portosplenic fistula (n = 1). Eight of the patients died in early postoperative period while 67 survived. Survival status of the

  8. Variable Red Giants--The MACHO View

    SciTech Connect

    Keller, S C; Cook, K H

    2003-01-03

    The authors present a study of the MACHO red variable population in the Large Magellanic Cloud. This study reveals six period-luminosity relations among the red variable population. Only two of these were known prior to MACHO. The results are consistent with Mira pulsation in the fundamental mode. A sequence comprising 26% of the red variable population can not be explained by pulsation. They propose a dust {kappa}-mechanism in the circumstellar environment is responsible for the long period variation of these objects. The luminosity function of the variables shows a sharp edge at the tip of the red giant branch (TRGB). This is the first clear indication of a population of variable stars within the immediate vicinity of the TRGB. The results indicate this population amounts to 8% of the RGB population near the TRGB.

  9. Giant magnetoimpedance effect enhanced by thermoplastic drawing

    NASA Astrophysics Data System (ADS)

    Qiang, Jian; Estevez, Diana; Dong, Yaqiang; Man, Qikui; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei

    2014-09-01

    We performed thermoplastic forming (TPF) on FeCoNbB metallic glass ribbons with a supercooled liquid region exceeding 100 K, and found the sample after TPF is still completely amorphous. More importantly, the giant magnetoimpedance (GMI) effect was improved after the forming process: the maximum GMI ratio and sensitivity increased from 41% to 12.3%/Oe in the case of as-cast sample to 280% and 358.2%/Oe in the case of resulting sample after TPF, respectively. The hysteresis loops and domain patterns were subsequently studied, which revealed that the primary factor leading to the improvement of the GMI effect was the enhanced longitudinal magnetic anisotropy induced by the TPF process. We therefore assume that TPF is an effective way that improves the GMI effect, which differs from conventional annealing methods.

  10. Rubidium-rich asymptotic giant branch stars.

    PubMed

    García-Hernández, D A; García-Lario, P; Plez, B; D'Antona, F; Manchado, A; Trigo-Rodríguez, J M

    2006-12-15

    A long-debated issue concerning the nucleosynthesis of neutron-rich elements in asymptotic giant branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidium-rich as a result of overproduction of the long-lived radioactive isotope (87)Rb, as predicted theoretically 40 years ago. This finding represents direct observational evidence that the (22)Ne(alpha,n)(25)Mg reaction must be the dominant neutron source in these stars. These stars challenge our understanding of the late stages of the evolution of intermediate-mass stars and would have promoted a highly variable Rb/Sr environment in the early solar nebula. PMID:17095658

  11. Giant Magnetoresistive Sensors for DNA Microarray

    PubMed Central

    Xu, Liang; Yu, Heng; Han, Shu-Jen; Osterfeld, Sebastian; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2009-01-01

    Giant magnetoresistive (GMR) sensors are developed for a DNA microarray. Compared with the conventional fluorescent sensors, GMR sensors are cheaper, more sensitive, can generate fully electronic signals, and can be easily integrated with electronics and microfluidics. The GMR sensor used in this work has a bottom spin valve structure with an MR ratio of 12%. The single-strand target DNA detected has a length of 20 bases. Assays with DNA concentrations down to 10 pM were performed, with a dynamic range of 3 logs. A double modulation technique was used in signal detection to reduce the 1/f noise in the sensor while circumventing electromagnetic interference. The logarithmic relationship between the magnetic signal and the target DNA concentration can be described by the Temkin isotherm. Furthermore, GMR sensors integrated with microfluidics has great potential of improving the sensitivity to 1 pM or below, and the total assay time can be reduced to less than 1 hour. PMID:20824116

  12. Giant intracranial aneurysms: rapid sequential computed tomography

    SciTech Connect

    Pinto, R.S.; Cohen, W.A.; Kricheff, I.I.; Redington, R.W.; Berninger, W.H.

    1982-11-01

    Giant intracranial aneurysms often present as mass lesions rather than with subarachnoid hemorrhage. Routine computed tomographic (CT) scans with contrast material will generally detect them, but erroneous diagnosis of basal meningioma is possible. Rapid sequential scanning (dynamic CT) after bolus injection of 40 ml of Renografin-76 can conclusively demonstrate an intracranial aneurysm, differentiating it from other lesions by transit-time analysis of the passage of contrast medium. In five patients, the dynamics of contrast bolus transit in aneurysms were consistently different from the dynamics in pituitary tumors, craniopharyngiomas, and meningiomas, thereby allowing a specific diagnosis. Dynamic CT was also useful after treatment of the aneurysms by carotid artery ligation and may be used as an alternative to angiographic evaluation in determining luminal patency or thrombosis.

  13. Explosive Percolation with Multiple Giant Components

    NASA Astrophysics Data System (ADS)

    Chen, Wei; D'Souza, Raissa M.

    2011-03-01

    We generalize the random graph evolution process of Bohman, Frieze, and Wormald [T. Bohman, A. Frieze, and N. C. Wormald, Random Struct. AlgorithmsRSALFD1042-983210.1002/rsa.20038, 25, 432 (2004)]. Potential edges, sampled uniformly at random from the complete graph, are considered one at a time and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function asymptotically approaching the value α=1/2. We show that multiple giant components appear simultaneously in a strongly discontinuous percolation transition and remain distinct. Furthermore, tuning the value of α determines the number of such components with smaller α leading to an increasingly delayed and more explosive transition. The location of the critical point and strongly discontinuous nature are not affected if only edges which span components are sampled.

  14. Submillimeter polarimetry of giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Li, Hua-Bai

    This dissertation presents submillimeter polarimetry methods and scientific results. The scientific results focus on revealing the magnetic field structure of giant molecular clouds (GMCs). The basic principles, instrumentation, observing strategy, and data analysis methods of submillimeter polarimetry are introduced. The scientific data were acquired by SPARO during the observing campaign of Austral Winter 2003. SPARO is a 450 [mu]m polarimeter used with a two-meter telescope at South Pole. We mapped four GMCs: NGC 6334, the Carina Nebula, G333.6-0.2, and G331.5-0.1. Comparing the mean field direction with optical polarimetry data, we suggest that field direction tends to be preserved during GMC formation. By comparing the observed field disorder with that from GMC simulations, we conclude that the magnetic field energy density is at least comparable to that of turbulence.

  15. Anterior mediastinal presentation of a giant angiomyolipoma.

    PubMed

    Amir, Afzal M I; Zeebregts, Clark J; Mulder, H Jan

    2004-12-01

    Angiomyolipomas are benign, solitary, noninvasive lesions that most often arise in the kidney. Extrarenal manifestations of these tumors include the skin, oropharynx, the abdominal wall, retroperitoneum, gastrointestinal tract, heart, lung, liver, uterus, penis, and spinal cord. We report a patient with a giant angiomyolipoma located in the anterior mediastinum. We believe this is the seventh reported case of mediastinal angiomyolipoma and the largest reported by size. It is the second reported lesion to arise in the anterior mediastinum. Distinction from other pulmonary or thoracic masses relies on the appreciation of the unique and characteristic histologic features of these mediastinal angiomyolipomas. We conclude that, although rare, angiomyolipoma should be considered in the differential diagnosis of a mediastinal tumor. PMID:15561061

  16. Giant switchable Rashba effect in oxide heterostructures

    DOE PAGESBeta

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; Yin, Wei-Guo; Yunoki, Seiji; Held, Karsten

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less

  17. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    El Eid, Mounib F.

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  18. Giant malignant phylloides tumor: case report.

    PubMed

    Arcuri, M F; Del Rio, P; Martella, E M; Bezer, L; Sianesi, M

    2007-01-01

    The incidence of phylloides breast tumors is less than 1% in the population affected by breast cancers. The age at higher risk is between 35 and 45 years. These neoplasms are characterized by a proliferation of mesenchimal and epithelial cells. We present a rare case of giant malignant phylloides tumor (28 x 21 x 15 cm) with a complet substitution of the gland. The clinical presentation of phylloides tumors is heterogenous; the surgical treatment is a conservative one of the gland if the neoplastic lesion size is less than 5 cm with a free margin of 1 cm and a mastectomy if the diameter of lesion is more than 5 cm. Complementary therapies still remain controversial. PMID:17626767

  19. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  20. Supramolecular Synthons: Will Giant Rigid Superspheres Do?

    PubMed Central

    2016-01-01

    For the first time, the concept of supramolecular synthons was applied to giant rigid superspheres based on pentaphosphaferrocene [CpRFe(η5-P5)] (R = Me, Et) and Cu(I) halides, which reach 2.1–3.0 nm in diameter. Two supramolecular synthons, σ–π and π–π, are discovered based on halogen···CpR and Cp*···Cp* specific interactions, respectively. The geometry of the synthons is reproducible in a series of crystal structures of various supramolecules. The σ–π synthon alone is realized more frequently for Br-containing superspheres. A combination of the σ–π and π–π synthons is more typical for Cl-containing supramolecules. Each supramolecule can bear up to nine synthons to give mostly 2D and 3D architectures. PMID:27081373