Science.gov

Sample records for gii-4 norovirus variant-specific

  1. Analysis of Amino Acid Variation in the P2 Domain of the GII-4 Norovirus VP1 Protein Reveals Putative Variant-Specific Epitopes

    PubMed Central

    Allen, David J.; Gray, Jim J.; Gallimore, Chris I.; Xerry, Jacqueline; Iturriza-Gómara, Miren

    2008-01-01

    Background Human noroviruses are a highly diverse group of viruses classified into three of the five currently recognised Norovirus genogroups, and contain numerous genotypes or genetic clusters. Noroviruses are the major aetiological agent of endemic gastroenteritis in all age groups, as well as the cause of periodic epidemic gastroenteritis. The noroviruses most commonly associated with outbreaks of gastroenteritis are genogroup II genotype 4 (GII-4) strains. The relationship between genotypes of noroviruses with their phenotypes and antigenic profile remains poorly understood through an inability to culture these viruses and the lack of a suitable animal model. Methodology/Principal Findings Here we describe a study of the diversity of amino acid sequences of the highly variable P2 region in the major capsid protein, VP1, of the GII-4 human noroviruses strains using sequence analysis and homology modelling techniques. Conclusions/Significance Our data identifies two sites in this region, which show significant amino acid substitutions associated with the appearance of variant strains responsible for epidemics with major public health impact. Homology modelling studies revealed the exposed nature of these sites on the capsid surface, providing supportive structural data that these two sites are likely to be associated with putative variant-specific epitopes. Furthermore, the patterns in the evolution of these viruses at these sites suggests that noroviruses follow a neutral network pattern of evolution. PMID:18213393

  2. Immunogenetic Mechanisms Driving Norovirus GII.4 Antigenic Variation

    PubMed Central

    Donaldson, Eric F.; Corti, Davide; Swanstrom, Jesica; Debbink, Kari; Lanzavecchia, Antonio; Baric, Ralph S.

    2012-01-01

    Noroviruses are the principal cause of epidemic gastroenteritis worldwide with GII.4 strains accounting for 80% of infections. The major capsid protein of GII.4 strains is evolving rapidly, resulting in new epidemic strains with altered antigenic potentials. To test if antigenic drift may contribute to GII.4 persistence, human memory B cells were immortalized and the resulting human monoclonal antibodies (mAbs) characterized for reactivity to a panel of time-ordered GII.4 virus-like particles (VLPs). Reflecting the complex exposure history of the volunteer, human anti-GII.4 mAbs grouped into three VLP reactivity patterns; ancestral (1987–1997), contemporary (2004–2009), and broad (1987–2009). NVB 114 reacted exclusively to the earliest GII.4 VLPs by EIA and blockade. NVB 97 specifically bound and blocked only contemporary GII.4 VLPs, while NBV 111 and 43.9 exclusively reacted with and blocked variants of the GII.4.2006 Minerva strain. Three mAbs had broad GII.4 reactivity. Two, NVB 37.10 and 61.3, also detected other genogroup II VLPs by EIA but did not block any VLP interactions with carbohydrate ligands. NVB 71.4 cross-neutralized the panel of time-ordered GII.4 VLPs, as measured by VLP-carbohydrate blockade assays. Using mutant VLPs designed to alter predicted antigenic epitopes, two evolving, GII.4-specific, blockade epitopes were mapped. Amino acids 294–298 and 368–372 were required for binding NVB 114, 111 and 43.9 mAbs. Amino acids 393–395 were essential for binding NVB 97, supporting earlier correlations between antibody blockade escape and carbohydrate binding variation. These data inform VLP vaccine design, provide a strategy for expanding the cross-blockade potential of chimeric VLP vaccines, and identify an antibody with broadly neutralizing therapeutic potential for the treatment of human disease. Moreover, these data support the hypothesis that GII.4 norovirus evolution is heavily influenced by antigenic variation of neutralizing epitopes

  3. Mechanisms of GII.4 Norovirus Persistence in Human Populations

    PubMed Central

    LoBue, Anna D; Cannon, Jennifer L; Zheng, Du-Ping; Vinje, Jan; Baric, Ralph S

    2008-01-01

    Background Noroviruses are the leading cause of viral acute gastroenteritis in humans, noted for causing epidemic outbreaks in communities, the military, cruise ships, hospitals, and assisted living communities. The evolutionary mechanisms governing the persistence and emergence of new norovirus strains in human populations are unknown. Primarily organized by sequence homology into two major human genogroups defined by multiple genoclusters, the majority of norovirus outbreaks are caused by viruses from the GII.4 genocluster, which was first recognized as the major epidemic strain in the mid-1990s. Previous studies by our laboratory and others indicate that some noroviruses readily infect individuals who carry a gene encoding a functional alpha-1,2-fucosyltransferase (FUT2) and are designated “secretor-positive” to indicate that they express ABH histo-blood group antigens (HBGAs), a highly heterogeneous group of related carbohydrates on mucosal surfaces. Individuals with defects in the FUT2 gene are termed secretor-negative, do not express the appropriate HBGA necessary for docking, and are resistant to Norwalk infection. These data argue that FUT2 and other genes encoding enzymes that regulate processing of the HBGA carbohydrates function as susceptibility alleles. However, secretor-negative individuals can be infected with other norovirus strains, and reinfection with the GII.4 strains is common in human populations. In this article, we analyze molecular mechanisms governing GII.4 epidemiology, susceptibility, and persistence in human populations. Methods and Findings Phylogenetic analyses of the GII.4 capsid sequences suggested an epochal evolution over the last 20 y with periods of stasis followed by rapid evolution of novel epidemic strains. The epidemic strains show a linear relationship in time, whereby serial replacements emerge from the previous cluster. Five major evolutionary clusters were identified, and representative ORF2 capsid genes for each

  4. Serological Correlates of Protection against a GII.4 Norovirus.

    PubMed

    Atmar, Robert L; Bernstein, David I; Lyon, G Marshall; Treanor, John J; Al-Ibrahim, Mohamed S; Graham, David Y; Vinjé, Jan; Jiang, Xi; Gregoricus, Nicole; Frenck, Robert W; Moe, Christine L; Chen, Wilbur H; Ferreira, Jennifer; Barrett, Jill; Opekun, Antone R; Estes, Mary K; Borkowski, Astrid; Baehner, Frank; Goodwin, Robert; Edmonds, Anthony; Mendelman, Paul M

    2015-08-01

    Noroviruses are the leading cause of acute gastroenteritis worldwide, and norovirus vaccine prevention strategies are under evaluation. The immunogenicity of two doses of bivalent genogroup 1 genotype 1 (GI.1)/GII.4 (50 μg of virus-like particles [VLPs] of each strain adjuvanted with aluminum hydroxide and 3-O-desacyl-4'monophosphoryl lipid A [MPL]) norovirus vaccine administered to healthy adults in a phase 1/2 double-blind placebo-controlled trial was determined using virus-specific serum total antibody enzyme-linked immunosorbent assay (ELISA), IgG, IgA, and histoblood group antigen (HBGA)-blocking assays. Trial participants subsequently received an oral live virus challenge with a GII.4 strain, and the vaccine efficacy results were reported previously (D. I. Bernstein et al., J Infect Dis 211:870-878, 2014, doi:10.1093/infdis/jiu497). This report assesses the impact of prechallenge serum antibody levels on infection and illness outcomes. Serum antibody responses were observed in vaccine recipients by all antibody assays, with first-dose seroresponse frequencies ranging from 88 to 100% for the GI.1 antigen and from 69 to 84% for the GII.4 antigen. There was little increase in antibody levels after the second vaccine dose. Among the subjects receiving the placebo, higher prechallenge serum anti-GII.4 HBGA-blocking and IgA antibody levels, but not IgG or total antibody levels, were associated with a lower frequency of virus infection and associated illness. Notably, some placebo subjects without measurable serum antibody levels prechallenge did not become infected after norovirus challenge. In vaccinees, anti-GII.4 HBGA-blocking antibody levels of >1:500 were associated with a lower frequency of moderate-to-severe vomiting or diarrheal illness. In this study, prechallenge serum HBGA antibody titers correlated with protection in subjects receiving the placebo; however, other factors may impact the likelihood of infection and illness after virus exposure. (This

  5. Complete Genome Sequence of Human Norovirus GII.4_2006b, a Variant of Minerva 2006

    PubMed Central

    Yang, Zhihui; Mammel, Mark K.

    2016-01-01

    In 2006, the National Calicivirus Laboratory at the U.S. Centers for Disease Control and Prevention (CDC) confirmed multistate outbreaks of norovirus infection and identified two new GII.4 norovirus strains (Minerva and Laurens) through partial sequencing of the major capsid (VP1) gene. Here, we report the first complete genome sequence of the GII.4 Minerva isolate. PMID:26823589

  6. Induction of homologous and cross-reactive GII.4-specific blocking antibodies in children after GII.4 New Orleans norovirus infection.

    PubMed

    Blazevic, Vesna; Malm, Maria; Vesikari, Timo

    2015-10-01

    Noroviruses (NoVs) are major causative agents of acute gastroenteritis (AGE) in children worldwide and the most common viral cause of AGE in countries where rotavirus incidence has been eliminated by vaccination. Previous infections with the dominant GII.4 NoV genotype confer only partial protection against evolving immune escape variants that emerge every few years. The objective of this work was to investigate GII.4-specific homologous and cross-reactive antibody responses in young children after NoV GII.4-2009 New Orleans (NO) infection. Virus-like particles (VLPs) representing GII.4-1999, GII.4-2009 NO, and GII.4-2012 Sydney genotypes were used in ELISA and histo-blood group antigen blocking assays to examine acute and convalescent sera of five children <2 years of age infected with GII.4-2009 NO. GII.4-2009 NO infection induced IgG seroconversion to all three tested NoV GII.4 variants. Homologous blocking antibodies to GII.4-2009 NO were detected in each convalescent sera. Fourfold increase in cross-blocking antibodies to GII.4-2012 Sydney was observed in 4/5 subjects, but no child developed cross-blocking antibodies to GII.4-1999. In conclusion, antibodies induced in young children after norovirus GII.4 infection are targeted against the causative variant and may cross-protect against strains that are closely related, but not with more distinct and earlier GII.4 genotypes. PMID:25946711

  7. Antibody Responses to Norovirus Genogroup GI.1 and GII.4 Proteases in Volunteers Administered Norwalk Virus

    PubMed Central

    Ajami, Nadim J.; Barry, Meagan A.; Carrillo, Berenice; Muhaxhiri, Zana; Neill, Frederick H.; Prasad, B. V. Venkataram; Opekun, Antone R.; Gilger, Mark A.; Graham, David Y.; Atmar, Robert L.

    2012-01-01

    An assay was developed to detect antibodies against two norovirus proteases among participants in a Norwalk virus (GI.1) challenge study. Prechallenge seroprevalence was lower against the protease from the homologous GI.1 virus than against protease from a heterologous GII.4 strain. Seroresponses were detected for 14 of 19 (74%) infected persons. PMID:23035177

  8. Resilience of norovirus GII.4 to freezing and thawing:implications for virus infectivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genogroup II.4 norovirus (NoV) remains the predominant NoV strain in food- and water-borne outbreaks. Capsid integrity as well as viral RNA persistence were determined for GII.4 NoV by real-time RT-PCR after 1-14 freeze/thaw (F/T) cycles (-80 deg C/+22 deg C) or after -80 deg C storage for up to 12...

  9. Temporal Dynamics of Norovirus GII.4 Variants in Brazil between 2004 and 2012

    PubMed Central

    Fioretti, Julia Monassa; Bello, Gonzalo; Rocha, Mônica Simões; Victoria, Matias; Leite, José Paulo Gagliardi; Miagostovich, Marize Pereira

    2014-01-01

    Noroviruses (NoVs) are the major cause of acute gastroenteritis outbreaks, and, despite a wide genetic diversity, genotype II.4 is the most prevalent strain worldwide. Mutations and homologous recombination have been proposed as mechanisms driving the epochal evolution of the GII.4, with the emergence of new variants in 1–3-year intervals causing global epidemics. There are no data reporting the dynamics of GII.4 variants along a specific period in Brazil. Therefore, to improve the understanding of the comportment of these variants in the country, the aim of this study was to evaluate the circulation of NoV GII.4 variants during a 9-year period in 3 out of 5 Brazilian regions. A total of 147 samples were sequenced, and a phylogenetic analysis of subdomain P2 demonstrated the circulation of six GII.4 variants, Asia_2003, Hunter_2004, Den Haag_2006b, Yerseke_2006a, New Orleans_2009, and Sydney_2012, during this period. The most prevalent variant was Den Haag_2006b, circulating in different Brazilian regions from 2006 to 2011. A Bayesian coalescent analysis was used to calculate the mean evolutionary rate of subdomain P2 as 7.3×10−3 (5.85×10−3–8.82×10−3) subst./site/year. These analyses also demonstrated that clade Den Haag_2006b experienced a rapid expansion in 2005 and another in 2008 after a period of decay. The evaluation of the temporal dynamics of NoV GII.4 in Brazil revealed a similar pattern, with few exceptions, to the worldwide observation. These data highlight the importance of surveillance for monitoring the emergence of new strains of NoV GII.4 and its impact on cases of acute gastroenteritis. PMID:24667283

  10. Seroprevalence of antibodies against GII.4 norovirus among children in Pune, India.

    PubMed

    Kulkarni, Ruta; Lole, Kavita; Chitambar, Shobha D

    2016-09-01

    This study reports the seroprevalence of antibodies against GII.4 norovirus among children (≤5 years) in Pune, India. Of 191 serum specimens, 98 (51.3%) tested positive with 61, 34 and 3 having IgG, IgG-IgA and IgG-IgA-IgM, respectively. Histoblood group antigen (HBGA)-blocking antibodies were detected in 33 of the 54 tested positive specimens. IgG and blocking antibody prevalence and titer varied with age and was lowest among children aged 6-23 months. Antibody-positive children, suggesting past norovirus exposure, showed significantly lower faecal norovirus RNA detection rate than antibody-negative children. Further investigation of the seroepidemiology of norovirus infections in India is warranted. J. Med. Virol. 88:1636-1640, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868418

  11. Effects and Clinical Significance of GII.4 Sydney Norovirus, United States, 2012–2013

    PubMed Central

    Wikswo, Mary; Barclay, Leslie; Brandt, Eric; Storm, William; Salehi, Ellen; DeSalvo, Traci; Davis, Tim; Saupe, Amy; Dobbins, Ginette; Booth, Hillary A.; Biggs, Christianne; Garman, Katie; Woron, Amy M.; Parashar, Umesh D.; Vinjé, Jan; Hall, Aron J.

    2013-01-01

    During 2012, global detection of a new norovirus (NoV) strain, GII.4 Sydney, raised concerns about its potential effect in the United States. We analyzed data from NoV outbreaks in 5 states and emergency department visits for gastrointestinal illness in 1 state during the 2012–13 season and compared the data with those of previous seasons. During August 2012–April 2013, a total of 637 NoV outbreaks were reported compared with 536 and 432 in 2011–2012 and 2010–2011 during the same period. The proportion of outbreaks attributed to GII.4 Sydney increased from 8% in September 2012 to 82% in March 2013. The increase in emergency department visits for gastrointestinal illness during the 2012–13 season was similar to that of previous seasons. GII.4 Sydney has become the predominant US NoV outbreak strain during the 2012–13 season, but its emergence did not cause outbreak activity to substantially increase from that of previous seasons. PMID:23886013

  12. Detection of the pandemic norovirus variant GII.4 Sydney 2012 in Rio Branco, state of Acre, northern Brazil

    PubMed Central

    da Silva, Luciana Damascena; Rodrigues, Evandro Leite; de Lucena, Maria Silvia Sousa; de Lima, Ian Carlos Gomes; Oliveira, Darleise de Sousa; Soares, Luana Silva; Mascarenhas, Joana D'Arc Pereira; Linhares, Alexandre da Costa; Gabbay, Yvone Benchimol

    2013-01-01

    Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide. Genotype GII.4 is responsible for the majority of outbreaks reported to date. This study describes, for the first time in Brazil, the circulation of NoV GII.4 variant Sydney 2012 in faecal samples collected from children aged less than or equal to eight years in Rio Branco, state of Acre, northern Brazil, during July-September 2012. PMID:24141954

  13. Detection of the pandemic norovirus variant GII.4 Sydney 2012 in Rio Branco, state of Acre, northern Brazil.

    PubMed

    Silva, Luciana Damascena da; Rodrigues, Evandro Leite; Lucena, Maria Silvia Sousa da; Lima, Ian Carlos Gomes de; Oliveira, Darleise de Sousa; Soares, Luana Silva; Mascarenhas, Joana D'Arc Pereira; Linhares, Alexandre da Costa; Gabbay, Yvone Benchimol

    2013-12-01

    Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide. Genotype GII.4 is responsible for the majority of outbreaks reported to date. This study describes, for the first time in Brazil, the circulation of NoV GII.4 variant Sydney 2012 in faecal samples collected from children aged less than or equal to eight years in Rio Branco, state of Acre, northern Brazil, during July-September 2012. PMID:24141954

  14. Norovirus GII.4 detection in environmental samples from patient rooms during nosocomial outbreaks.

    PubMed

    Nenonen, Nancy P; Hannoun, Charles; Svensson, Lennart; Torén, Kjell; Andersson, Lars-Magnus; Westin, Johan; Bergström, Tomas

    2014-07-01

    Norovirus (NoV) is an important cause of nosocomial gastroenteric outbreaks. This 5-month study was designed to characterize NoV contamination and airborne dispersal in patient rooms during hospital outbreaks. Air vents, overbed tables, washbasins, dust, and virus traps designed to collect charged particles from the air were swabbed to investigate the possibility of NoV contamination in patient rooms during outbreaks in seven wards and in an outbreak-free ward. Symptomatic inpatients were also sampled. Nucleic acid extracts of the samples were examined for NoV RNA using genogroup I (GI) and GII real-time reverse transcription-PCR (RT-PCR). The NoV strains were characterized by RT-PCR, sequencing, and phylogenetic analysis of the RNA-dependent RNA-polymerase-N/S capsid-coding region (1,040 nucleotides [nt]). Patient strains from two outbreaks in one ward were sequenced across the RNA-dependent-RNA-polymerase major capsid-coding region (2.5 kb), including the hypervariable P2 domain. In the outbreak wards, NoV GII was detected in 48 of 101 (47%) environmental swabs and 63 of 108 patients (58%); NoV genotype II.4 was sequenced from 18 environmental samples, dust (n = 8), virus traps (n = 4), surfaces (n = 6), and 56 patients. In contrast, NoV GII was detected in 2 (GII.4) of 28 (7%) environmental samples and in 2 (GII.6 and GII.4) of 17 patients in the outbreak-free ward. Sequence analyses revealed a high degree of similarity (>99.5%, 1,040 nt) between NoV GII.4 environmental and patient strains from a given ward at a given time. The strains clustered on 11 subbranches of the phylogenetic tree, with strong correlations to time and place. The high nucleotide similarity between the NoV GII.4 strains from patients and their hospital room environment provided molecular evidence of GII.4 dispersal in the air and dust; therefore, interventional cleaning studies are justified. PMID:24759712

  15. Norovirus GII.4 Detection in Environmental Samples from Patient Rooms during Nosocomial Outbreaks

    PubMed Central

    Hannoun, Charles; Svensson, Lennart; Torén, Kjell; Andersson, Lars-Magnus; Westin, Johan; Bergström, Tomas

    2014-01-01

    Norovirus (NoV) is an important cause of nosocomial gastroenteric outbreaks. This 5-month study was designed to characterize NoV contamination and airborne dispersal in patient rooms during hospital outbreaks. Air vents, overbed tables, washbasins, dust, and virus traps designed to collect charged particles from the air were swabbed to investigate the possibility of NoV contamination in patient rooms during outbreaks in seven wards and in an outbreak-free ward. Symptomatic inpatients were also sampled. Nucleic acid extracts of the samples were examined for NoV RNA using genogroup I (GI) and GII real-time reverse transcription-PCR (RT-PCR). The NoV strains were characterized by RT-PCR, sequencing, and phylogenetic analysis of the RNA-dependent RNA-polymerase-N/S capsid-coding region (1,040 nucleotides [nt]). Patient strains from two outbreaks in one ward were sequenced across the RNA-dependent-RNA-polymerase major capsid-coding region (2.5 kb), including the hypervariable P2 domain. In the outbreak wards, NoV GII was detected in 48 of 101 (47%) environmental swabs and 63 of 108 patients (58%); NoV genotype II.4 was sequenced from 18 environmental samples, dust (n = 8), virus traps (n = 4), surfaces (n = 6), and 56 patients. In contrast, NoV GII was detected in 2 (GII.4) of 28 (7%) environmental samples and in 2 (GII.6 and GII.4) of 17 patients in the outbreak-free ward. Sequence analyses revealed a high degree of similarity (>99.5%, 1,040 nt) between NoV GII.4 environmental and patient strains from a given ward at a given time. The strains clustered on 11 subbranches of the phylogenetic tree, with strong correlations to time and place. The high nucleotide similarity between the NoV GII.4 strains from patients and their hospital room environment provided molecular evidence of GII.4 dispersal in the air and dust; therefore, interventional cleaning studies are justified. PMID:24759712

  16. Early Detection of Epidemic GII-4 Norovirus Strains in UK and Malawi: Role of Surveillance of Sporadic Acute Gastroenteritis in Anticipating Global Epidemics.

    PubMed

    Allen, David J; Trainor, Eamonn; Callaghan, Anna; O'Brien, Sarah J; Cunliffe, Nigel A; Iturriza-Gómara, Miren

    2016-01-01

    Noroviruses are endemic in the human population, and are recognised as a leading cause of acute gastroenteritis worldwide. Although they are a highly diverse group of viruses, genogroup-II genotype-4 (GII-4) noroviruses are the most frequently identified strains worldwide. The predominance of GII-4 norovirus strains is driven by the periodic emergence of antigenic variants capable of evading herd protection. The global molecular epidemiology of emerging GII-4 strains is largely based on data from outbreak surveillance programmes, but the epidemiology of GII-4 strains among sporadic or community cases is far less well studied. To understand the distribution of GII-4 norovirus strains associated with gastroenteritis in the wider population, we characterised the GII-4 norovirus strains detected during studies of sporadic cases of infectious gastroenteritis collected in the UK and Malawi between 1993 and 2009. Our data shows that GII-4 norovirus strains that have emerged as strains of global epidemic importance have circulated in the community up to 18 years before their recognition as pandemic strains associated with increases in outbreaks. These data may suggest that more comprehensive surveillance programmes that incorporate strains associated with sporadic cases may provide a way for early detection of emerging strains with pandemic potential. This may be of particular relevance as vaccines become available. PMID:27115152

  17. Early Detection of Epidemic GII-4 Norovirus Strains in UK and Malawi: Role of Surveillance of Sporadic Acute Gastroenteritis in Anticipating Global Epidemics

    PubMed Central

    Callaghan, Anna; O’Brien, Sarah J.; Cunliffe, Nigel A.; Iturriza-Gómara, Miren

    2016-01-01

    Noroviruses are endemic in the human population, and are recognised as a leading cause of acute gastroenteritis worldwide. Although they are a highly diverse group of viruses, genogroup-II genotype-4 (GII-4) noroviruses are the most frequently identified strains worldwide. The predominance of GII-4 norovirus strains is driven by the periodic emergence of antigenic variants capable of evading herd protection. The global molecular epidemiology of emerging GII-4 strains is largely based on data from outbreak surveillance programmes, but the epidemiology of GII-4 strains among sporadic or community cases is far less well studied. To understand the distribution of GII-4 norovirus strains associated with gastroenteritis in the wider population, we characterised the GII-4 norovirus strains detected during studies of sporadic cases of infectious gastroenteritis collected in the UK and Malawi between 1993 and 2009. Our data shows that GII-4 norovirus strains that have emerged as strains of global epidemic importance have circulated in the community up to 18 years before their recognition as pandemic strains associated with increases in outbreaks. These data may suggest that more comprehensive surveillance programmes that incorporate strains associated with sporadic cases may provide a way for early detection of emerging strains with pandemic potential. This may be of particular relevance as vaccines become available. PMID:27115152

  18. Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age

    PubMed Central

    Bui, Tammy; Kocher, Jacob; Li, Yanru; Wen, Ke; Li, Guohua; Liu, Fangning; Yang, Xingdong; LeRoith, Tanya; Tan, Ming; Xia, Ming; Zhong, Weiming; Jiang, Xi

    2013-01-01

    Human noroviruses (NoVs), a major cause of viral gastroenteritis, are difficult to study due to the lack of a cell-culture and a small-animal model. Pigs share with humans the types A and H histo-blood group antigens on the intestinal epithelium and have been suggested as a potential model for studies of NoV pathogenesis, immunity and vaccines. In this study, the effects of age and a cholesterol-lowering drug, simvastatin, on the susceptibility of pigs to NoV infection were evaluated. The median infectious dose (ID50) of a genogroup II, genotype 4 (GII.4) 2006b variant was determined. The ID50 in neonatal (4–5 days of age) pigs was ≤2.74×103 viral RNA copies. In older pigs (33–34 days of age), the ID50 was 6.43×104 but decreased to <2.74×103 in simvastatin-fed older pigs. Evidence of NoV infection was obtained by increased virus load in the intestinal contents, cytopathological changes in the small intestine, including irregular microvilli, necrosis and apoptosis, and detection of viral antigen in the tip of villi in duodenum. This GII.4 variant was isolated in 2008 from a patient from whom a large volume of stool was collected. GII.4 NoVs are continuously subjected to selective pressure by human immunity, and antigenically different GII.4 NoV variants emerge every 1–2 years. The determination of the ID50 of this challenge virus is valuable for evaluation of protection against different GII.4 variants conferred by NoV vaccines in concurrence with other GII.4 variants in the gnotobiotic pig model. PMID:23804568

  19. Norovirus diversity in children with gastroenteritis in South Africa from 2009 to 2013: GII.4 variants and recombinant strains predominate.

    PubMed

    Mans, J; Murray, T Y; Nadan, S; Netshikweta, R; Page, N A; Taylor, M B

    2016-04-01

    From 2009 to 2013 the diversity of noroviruses (NoVs) in children (⩽5 years) hospitalized with gastroenteritis in South Africa was investigated. NoVs were genotyped based on nucleotide sequence analyses of partial RNA-dependent RNA polymerase (RdRp) and capsid genes. Seventeen RdRp genotypes (GI.P2, GI.P3, GI.P6, GI.P7, GI.P not assigned (NA), GI.Pb, GI.Pf, GII.P2, GII.P4, GII.P7, GII.P13, GII.P16, GII.P21, GII.Pc, GII.Pe, GII.Pg, GII.PNA) and 20 capsid genotypes (GI.1, GI.2, GI.3, GI.5, GI.6, GI.7, GI.NA, GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.10, GII.12, GII.13, GII.14, GII.16, GII.17, GII.21) were identified. The combined RdRp/capsid genotype was determined for 275 GII strains. Fifteen confirmed recombinant NoV strains circulated during the study period. NoV GII.P4/GII.4 (47%) and GII.Pe/GII.4 (18%) predominated, followed by GII.PNA/GII.3 (10%) and GII.P21/GII.3 (7%). Other prevalent strains included GII.Pg/GII.12 (6%) and GII.Pg/GII.1 (3%). Two novel recombinants, GII.Pg/GII.2 and GII.Pg/GII.10 were identified. In 2013 the replacement of GII.4 New Orleans 2009 and GII.P21/GII.3, which predominated during the early part of the study, with GII.4 Sydney 2012 and GII.PNA/GII.3 was observed. This study presents the most comprehensive recent data on NoV diversity in Africa. PMID:26374265

  20. Effect of Grape Seed Extract on Human Norovirus GII.4 and Murine Norovirus 1 in Viral Suspensions, on Stainless Steel Discs, and in Lettuce Wash Water

    PubMed Central

    Baert, Leen; Zhang, Dongsheng; Xia, Ming; Zhong, Weiming; Van Coillie, Els; Jiang, Xi; Uyttendaele, Mieke

    2012-01-01

    The anti-norovirus (anti-NoV) effect of grape seed extract (GSE) was examined by plaque assay for murine norovirus 1 (MNV-1), cell-binding reverse transcription-PCR for human NoV GII.4, and saliva-binding enzyme-linked immunosorbent assay for human NoV GII.4 P particles, with or without the presence of interfering substances (dried milk and lettuce extract). GSE at 0.2 and 2 mg/ml was shown to reduce the infectivity of MNV-1 (>3-log PFU/ml) and the specific binding ability of NoV GII.4 to Caco-2 cells (>1-log genomic copies/ml), as well as of its P particles to salivary human histo-blood group antigen receptors (optical density at 450 nm of >0.8). These effects were decreased as increasing concentrations of dried milk (0.02 and 0.2%) or lettuce extract were added. Under an electron microscope, human NoV GII.4 virus-like particles showed inflation and deformation after treatment with GSE. Under conditions that simulated applications in the food industry, the anti-NoV effect of GSE using MNV-1 as a target organism was shown to be limited in surface disinfection (<1-log PFU/ml, analyzed in accordance with EN 13697:2001). However, a 1.5- to 2-log PFU/ml reduction in MNV-1 infectivity was noted when 2 mg of GSE/ml was used to sanitize water in the washing bath of fresh-cut lettuce, and this occurred regardless of the chemical oxygen demand (0 to 1,500 mg/ml) of the processing water. PMID:22904060

  1. Qualitative and Quantitative Analysis of the Binding of GII.4 Norovirus Variants onto Human Blood Group Antigens▿

    PubMed Central

    de Rougemont, A.; Ruvoen-Clouet, N.; Simon, B.; Estienney, M.; Elie-Caille, C.; Aho, S.; Pothier, P.; Le Pendu, J.; Boireau, W.; Belliot, G.

    2011-01-01

    Noroviruses (NoVs) are one of the leading causes of gastroenteritis in children and adults. For the last 2 decades, genogroup II genotype 4 (GII.4) NoVs have been circulating worldwide. GII.4 NoVs can be divided into variants, and since 2002 they have circulated in the population before being replaced every 2 or 3 years, which raises questions about the role of their histo-blood group antigen (HBGA) ligands in their evolution. To shed light on these questions, we performed an analysis of the interaction between representative GII.4 variants and HBGAs, and we determined the role of selected amino acids in the binding profiles. By mutagenesis, we showed that there was a strict structural requirement for the amino acids, directly implicated in interactions with HBGAs. However, the ablation of the threonine residue at position 395 (ΔT395), an epidemiological feature of the post-2002 variants, was not deleterious to the binding of the virus-like particle (VLP) to the H antigen, while binding to A and B antigens was severely hampered. Nevertheless, the ΔT395 VLPs gained the capacity to bind to the Lewis x and sialyl-Lewis x antigens in comparison with the wild-type VLP, demonstrating that amino acid residues outside the HBGA binding site can modify the binding properties of NoVs. We also analyzed the attachment of baculovirus-expressed VLPs from six variants (Bristol, US95/96, Hunter, Yerseke, Den Haag, and Osaka) that were isolated from 1987 to 2007 to phenotyped saliva samples and synthetic HBGAs. We showed that the six variants could all attach to saliva of secretors irrespective of the ABO phenotype and to oligosaccharides characteristic of the secretor phenotype. Interestingly, Den Haag and Osaka variants additionally bound to carbohydrates present in the saliva of Lewis-positive nonsecretors. The carbohydrate binding profile and the genetic and mutagenesis analysis suggested that GII.4 binding to Lewis x and sialyl-Lewis x antigens might be a by-product of the

  2. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study

    SciTech Connect

    Tan Ming |; Xia Ming; Cao Sheng; Huang Pengwei; Farkas, Tibor |; Meller, Jarek |; Hegde, Rashmi S. |; Li Xuemei; Rao Zihe; Jiang Xi |

    2008-09-30

    Noroviruses interact with histo-blood group antigen (HBGA) receptors in a strain-specific manner probably detecting subtle structural differences in the carbohydrate receptors. The specific recognition of types A and B antigens by various norovirus strains is a typical example. The only difference between the types A and B antigens is the acetamide linked to the terminal galactose of the A but not to the B antigen. The crystal structure of the P dimer of a GII-4 norovirus (VA387) bound to types A and B trisaccharides has elucidated the A/B binding site on the capsid but did not explain the binding specificity of the two antigens. In this study, using site-directed mutagenesis, we have identified three residues on the VA387 capsid that are sterically close to the acetamide and are required for binding to A but not B antigens, indicating that the acetamide determines the binding specificity between the A and B antigens. Further mutational analysis showed that a nearby open cavity may also be involved in binding specificity to HBGAs. In addition, a systematic mutational analysis of residues in and around the binding interface has identified a group of amino acids that are required for binding but do not have direct contact with the carbohydrate antigens, implying that these residues may be involved in the structural integrity of the receptor binding interface. Taken together, our study provides new insights into the carbohydrate/capsid interactions which are a valuable complement to the atomic structures in understanding the virus/host interaction and in the future design of antiviral agents.

  3. Mucosal Antibodies Induced by Intranasal but Not Intramuscular Immunization Block Norovirus GII.4 Virus-Like Particle Receptor Binding.

    PubMed

    Tamminen, Kirsi; Malm, Maria; Vesikari, Timo; Blazevic, Vesna

    2016-06-01

    Noroviruses (NoVs) account for the majority of diagnosed cases of viral acute gastroenteritis worldwide. Virus-like particle (VLP)-based vaccines against NoV are currently under development. Serum antibodies that block the binding of NoV VLPs to histo-blood group antigens, the putative receptors for NoV, correlate with protection against NoV infection. The role of functional mucosal antibodies in protection is largely unknown, even though the intestinal mucosa is the entry port for NoV. Balb/c mice were immunized intramuscularly (IM) or intranasally (IN) with NoV GII.4 VLPs, and systemic and mucosal blocking antibody responses were studied. IN immunization elicited NoV-specific serum and mucosal IgG and IgA antibodies, whereas IM immunized animals completely lacked IgA. Both immunization routes induced similar blocking activity in serum but only IN route generated blocking antibodies in mucosa. The level of IgA in the mucosal (nasal) lavages strongly correlated (r = 0.841) with the blocking activity, suggesting that IgA, but not IgG, is the major NoV blocking antibody on mucosal surfaces. The results indicate that only mucosal immunization route induces the development of functional anti-NoV IgA on mucosal surface. PMID:27135874

  4. Prevailing Sydney like Norovirus GII.4 VLPs induce systemic and mucosal immune responses in mice.

    PubMed

    Huo, Yuqi; Wan, Xin; Ling, Tong; Wu, Jie; Wang, Zejun; Meng, Shengli; Shen, Shuo

    2015-12-01

    The newly emerged Norovirus (NoV) Sydney 2012 strain has been sweeping all over the world, causing acute non-bacterial gastroenteritis in adults and children. Due to a lack of cell culture system, virus like particles (VLPs) has been assembled and used as vaccine candidates in preclinical and clinical studies. Expression of the major capsid protein of NoVs using recombinant baculovirus expression system in Sf9 cells leads to formation of VLPs that are morphologically and antigenically similar to true virions. In this study, VLPs were successfully produced using the VP1 of Sydney-2012-like strain and its immunogenicity was evaluated by different routes and its capability in inducing mucosal immune responses in the presence and absence of adjuvants in BALB/c mice. Administration of NoV VLPs in the presence of Al(OH)3 or monophosphoryl lipid A (MPL-A) led to high titers of VLP-specific IgG antibodies. Administration of VLPs orally in the presence of cholera toxin subunit B (CTB) didn't enhance mucosal immune response as less fecal IgA positive mice were observed when compared with those given VLPs only. Our study represents the first immunogenicity study of VLPs derived from current pandemic Sydney 2012 strain and which might have implications in the development of NoVs vaccine in china. PMID:26375574

  5. Structural Analysis of Histo-Blood Group Antigen Binding Specificity in a Norovirus GII.4 Epidemic Variant: Implications for Epochal Evolution

    SciTech Connect

    Shanker, Sreejesh; Choi, Jae-Mun; Sankaran, Banumathi; Atmar, Robert L.; Estes, Mary K.; Prasad, B.V. Venkataram

    2012-03-23

    Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.

  6. Evaluation of a Porcine Gastric Mucin and RNase A Assay for the Discrimination of Infectious and Non-infectious GI.1 and GII.4 Norovirus Following Thermal, Ethanol, or Levulinic Acid Plus Sodium Dodecyl Sulfate Treatments.

    PubMed

    Afolayan, Olamide T; Webb, Cathy C; Cannon, Jennifer L

    2016-03-01

    Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70% ethanol or 0.5% levulinic acid (LV) plus 0.01 or 0.1% sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70% EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5%) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5% LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method. PMID:26514820

  7. The influence of temperature pH and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of human norovirus (HuNoV) usually relies on molecular biology techniques, such as qRT PCR. Since histo-blood group antigens (HBGAs) are the functional receptors for HuNoV, HuNoV can bind to porcine gastric mucin (PGM), which contains HBGA-like antigens. In this study, PGM conjugated magn...

  8. Molecular epidemiology of norovirus in Singapore, 2004-2011.

    PubMed

    Lim, Kun Lee; Eden, John-Sebastian; Oon, Lynette L E; White, Peter A

    2013-10-01

    Norovirus (NoV) is the most common cause of sporadic and epidemic gastroenteritis, globally. This study aimed to investigate the molecular epidemiology of NoV-associated acute gastroenteritis in Singapore by classifying circulating NoV genotypes and genogroup II, genotype 4 (GII.4) variants between September 2004 and February 2011. The temporal dominance and antigenic variation within the circulating epidemic NoV GII.4 variants was also examined, in order to compare the trends in Singapore to those observed globally during the same period. A total of 312 of 1,060 fecal specimens were positive for NoV RNA, using a quantitative RT-PCR. In a subset (125 of 312) of NoV positive samples, the 5' end of ORF2 (region C) of the GI or GII NoV genome was amplified and sequenced. Subsequent phylogenetic analysis identified GII.4 was the most commonly identified genotype representing 80.8% (101/125) of NoV sequenced in this study. The predominant GII.4 variants in circulation during the 2004-2011 epidemic periods were Hunter 2004 (2004-2005), Den Haag 2006b (2006-2009), and New Orleans 2009 (2009-2011). Amino acid variation within the P2 domain of the major capsid protein, VP1, was followed longitudinally within the GII.4 lineage. A constant turnover of variant-specific amino acid change was observed, particularly within the antigenic epitopes A, C and E. In conclusion, this study has characterized the NoV strains in circulation in Singapore between 2004 and 2011. The molecular epidemiology and persistence of GII.4 pandemic NoV lineages in Singapore was similar to trends seen globally, with a noted absence of the Asia 2003 variant. PMID:23868077

  9. Norovirus

    MedlinePlus

    ... of scientists at Baylor College of Medicine in Texas, who recently developed a way to grow human ... Frequently Asked Questions Norovirus Reporting in Calicinet CaliciNet Data Participating Labs References and Resources NoroSTAT NoroSTAT Data ...

  10. Norovirus

    PubMed Central

    Robilotti, Elizabeth; Deresinski, Stan

    2015-01-01

    SUMMARY Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management. PMID:25567225

  11. Norovirus

    MedlinePlus

    ... Institutes of Health NoroCORE Food Virology About Norovirus Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... Infection, National Institutes of Health NoroCORE Food Virology Language: English Español (Spanish) File Formats Help: How do I ...

  12. Novel Surveillance Network for Norovirus Gastroenteritis Outbreaks, United States1

    PubMed Central

    Vega, Everardo; Barclay, Leslie; Gregoricus, Nicole; Williams, Kara; Lee, David

    2011-01-01

    CaliciNet, the outbreak surveillance network for noroviruses in the United States, was launched in March 2009. As of January 2011, twenty state and local health laboratories had been certified to submit norovirus sequences and epidemiologic outbreak data to CaliciNet. During the network’s first year, 552 outbreaks were submitted to CaliciNet, of which 78 (14%) were associated with foodborne transmission. A total of 395 (72%) outbreaks were typed as GII.4, of which 298 (75%) belonged to a new variant, GII.4 New Orleans, which first emerged in October 2009. Analysis of the complete capsid and P2 region sequences confirmed that GII.4 New Orleans is distinct from previous GII.4 variants, including GII.4 Minerva (2006b). PMID:21801614

  13. Strain-Specific Virolysis Patterns of Human Noroviruses in Response to Alcohols

    PubMed Central

    Park, Geun Woo; Collins, Nikail; Barclay, Leslie; Hu, Liya; Prasad, B. V. Venkataram; Lopman, Benjamin A.; Vinjé, Jan

    2016-01-01

    Alcohol-based hand sanitizers are widely used to disinfect hands to prevent the spread of pathogens including noroviruses. Alcohols inactivate norovirus by destruction of the viral capsid, resulting in the leakage of viral RNA (virolysis). Since conflicting results have been reported on the susceptibility of human noroviruses against alcohols, we exposed a panel of 30 human norovirus strains (14 GI and 16 GII strains) to different concentrations (50%, 70%, 90%) of ethanol and isopropanol and tested the viral RNA titer by RT-qPCR. Viral RNA titers of 10 (71.4%), 14 (100%), 3 (21.4%) and 7 (50%) of the 14 GI strains were reduced by > 1 log10 RNA copies/ml after exposure to 70% and 90% ethanol, and 70% and 90% isopropanol, respectively. RNA titers of 6 of the 7 non-GII 4 strains remained unaffected after alcohol exposure. Compared to GII strains, GI strains were more susceptible to ethanol than to isopropanol. At 90%, both alcohols reduced RNA titers of 8 of the 9 GII.4 strains by ≥ 1 log10 RNA copies/ml. After exposure to 70% ethanol, RNA titers of GII.4 Den Haag and Sydney strains decreased by ≥ 1.9 log10, whereas RNA reductions for GII.4 New Orleans strains were < 0.5 log10. To explain these differences, we sequenced the complete capsid gene of the 9 GII.4 strains and identified 17 amino acid substitutions in the P2 region among the 3 GII.4 variant viruses. When comparing with an additional set of 200 GII.4 VP1 sequences, only S310 and P396 were present in all GII.4 New Orleans viruses but not in the ethanol-sensitive GII.4 Sydney and GII.4 Den Haag viruses Our data demonstrate that alcohol susceptibility patterns between different norovirus genotypes vary widely and that virolysis data for a single strain or genotype are not representative for all noroviruses. PMID:27337036

  14. Surveillance of norovirus in Portugal and the emergence of the Sydney variant, 2011-2013.

    PubMed

    Costa, I; Mesquita, J R; Veiga, E; Oleastro, M; Nascimento, M J S

    2015-09-01

    This report presents the results of the national surveillance system of diarrhea etiology of the National Institute of Health of Portugal concerning norovirus (NoV) during a two-year period, May 2011-2013. Of the total 580 stool samples collected from patients hospitalized for acute diarrhea in 13 Hospitals of Portugal, 67 (11.6%) tested positive for NoV. From May 2011 to March 2012 the GII.4 variant New Orleans 2009 was the most predominant strain having been replaced by the new GII.4 variant Sydney 2012 since then till the end of the survey. To our knowledge this is the first study showing the circulation of GII.4 as the norovirus strain most commonly associated to gastroenteritis and the first to report the replacement of GII.4 New Orleans by GII.4 Sydney 2012 variant in Portugal. PMID:26305815

  15. Prevalence and Genotypes of Human Noroviruses in Tropical Urban Surface Waters and Clinical Samples in Singapore ▿

    PubMed Central

    Aw, Tiong Gim; Gin, Karina Yew-Hoong; Ean Oon, Lynette Lin; Chen, Eileen Xueqin; Woo, Chee Hoe

    2009-01-01

    The prevalence and genotypes of norovirus genogroup I (GI) and GII in tropical urban catchment waters and an estuarine bay were studied. A comparative analysis was performed with environmental isolates of noroviruses and concurrently identified clinical isolates in Singapore during gastroenteritis outbreaks between August 2006 to January 2007. Noroviruses in environmental water samples were concentrated by using ultrafiltration techniques and then analyzed by reverse transcription-seminested PCR assay targeting the partial capsid region of noroviruses and DNA sequencing. Among the 60 water samples collected, noroviruses were detected in 43 (71.7%) of these samples. Of these 43 norovirus-positive samples, the coexistence of both GI and GII strains was identified in 23 (53.5%) water samples. The phylogenetic analysis revealed multiple genotypes of noroviruses GI and GII in environmental water samples. GI and GII strains were clustered into seven and nine (including two unclassified) genotypes, respectively. The major norovirus genotypes in environmental water samples were GI/2 and GI/4 and GII/4. Genotyping of the 21 norovirus-positive clinical samples showed that all of the strains belonged to the GII/4 cluster. The environmental and clinical norovirus GII/4 isolates showed high levels of nucleotide sequence identity to each other and to the novel GII/4 variant associated with global epidemics of gastroenteritis during 2006. This study suggests the emergence and circulation of multiple novel norovirus GI and GII genotypes in water environments. Further comprehensive surveillance of water environments for noroviruses and routine clinical reporting is warranted. PMID:19525276

  16. A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice.

    PubMed

    Wang, Xiaoli; Ku, Zhiqiang; Dai, Wenlong; Chen, Tan; Ye, Xiaohua; Zhang, Chao; Zhang, Yingyi; Liu, Qingwei; Jin, Xia; Huang, Zhong

    2015-10-26

    Noroviruses are the main cause of severe viral gastroenteritis, which results in estimated 200,000 deaths each year, primarily in children in the developing world. Genogroup II.4 (GII.4) strains are responsible for the majority of norovirus outbreaks. Enterovirus 71 (EV71), the leading causative agent of hand, foot and mouth disease, has recently been prevalent in Asia-Pacific regions, resulting in significant morbidity and mortality in young children. However, no vaccine is commercially available for either norovirus GII.4 or EV71. Recombinant virus-like particles (VLPs) derived from either GII.4 or EV71 have been shown to be promising monovalent vaccine candidates. In this study, we investigate the possibility to formulate a VLP-based bivalent vaccine for both norovirus GII.4 and EV71. The GII.4- and EV71-VLPs were produced in a baculovirus-insect cell expression system. A bivalent combination vaccine comprised of GII.4 and EV71 VLPs was formulated and compared with monovalent GII.4- and EV71-VLPs for their immunogenicity in mice. We found that the bivalent vaccine elicited durable antibody responses toward both GII.4 and EV71, and the antibody titers were comparable to that induced by the monovalent vaccines, indicating there is no immunological interference between the two antigens in the combination vaccine. More significantly, the bivalent vaccine-immunized mouse sera could efficiently neutralize EV71 infection and block GII.4-VLP binding to mucin. Together, our results demonstrate that the experimental combination vaccine comprised of GII.4 and EV71-VLPs is able to induce a balanced protective antibody response, and therefore strongly support further preclinical and clinical development of such a bivalent VLP vaccine targeting both norovirus GII.4 and EV71. PMID:26424606

  17. Evaluation of the updated RIDA®QUICK (Version N1402) immunochromatographic assay for the detection of norovirus in clinical specimens.

    PubMed

    Bruggink, Leesa D; Dunbar, Natalie L; Marshall, John A

    2015-10-01

    The sensitivity and specificity of the R-Biopharm RIDA(®)QUICK (N1402) immunochromatography assay for norovirus detection was examined using fecal material from Australian gastroenteritis incidents. The study involved the analysis of 3 groups of specimens; group 1 comprised 100 norovirus open reading frame (ORF) 1 RT-PCR positive specimens; group 2 comprised 100 ORF 1 RT-PCR norovirus negative specimens and group 3 comprised 12 specimens containing common gastroenteritis viruses other than norovirus. The RIDA(®)QUICK (N1402) assay detected both GI and GII norovirus and had an overall sensitivity of 87%. Genotype analysis of the capsid region of the genome (ORF 2) indicated the RIDA(®)QUICK (N1402) assay could detect a range of genotypes including GI.1, GI.2, GI.3, GI.4, GI.5, GII.3, GII.4 (including variants GII.4 (2009-like), GII.4 (2012), GII.4 (2012-like) and GII.4 (unknown)), GII.6, GII.13 and GII.21. The assay had good sensitivity for both GI and GII norovirus. The assay had a specificity of 97% and did not cross react with a number of common fecal viruses. However, one of eight rotavirus positive, norovirus negative specimens gave a positive result; rotavirus cannot be taken as the cause of such a false positive but cannot be excluded either. The kit was quick and easy to use and would be valuable in point-of-care testing. PMID:26248054

  18. Norovirus Infections in Symptomatic and Asymptomatic Food Handlers in Japan▿

    PubMed Central

    Ozawa, Kazuhiro; Oka, Tomoichiro; Takeda, Naokazu; Hansman, Grant S.

    2007-01-01

    Noroviruses are the leading cause of outbreaks of gastroenteritis in the world. At present, norovirus genogroup II, genotype 4 (GII/4), strains are the most prevalent in many countries. In this study we investigated 55 outbreaks and 35 sporadic cases of norovirus-associated gastroenteritis in food handlers in food-catering settings between 10 November 2005 and 9 December 2006 in Japan. Stool specimens were collected from both symptomatic and asymptomatic individuals and were examined for norovirus by real-time reverse transcription-PCR; the results were then confirmed by sequence analysis. Norovirus was detected in 449 of 2,376 (19%) specimens. Four genogroup I (GI) genotypes and 12 GII genotypes, including one new GII genotype, were detected. The GII/4 sequences were predominant, accounting for 19 of 55 (35%) outbreaks and 16 of 35 (46%) sporadic cases. Our results also showed that a large number of asymptomatic food handlers were infected with norovirus GII/4 strains. Norovirus GII had a slightly higher mean viral load (1 log unit higher) than norovirus GI, i.e., 3.81 × 108 versus 2.79 × 107 copies/g of stool. Among norovirus GI strains, GI/4 had the highest mean viral load, whereas among GII strains, GII/4 had the highest mean viral load (2.02 × 108 and 7.96 × 109 copies/g of stool, respectively). Importantly, we found that asymptomatic individuals had mean viral loads similar to those of symptomatic individuals, which may account for the increased number of infections and the predominance of an asymptomatic transmission route. PMID:17928420

  19. Norovirus - hospital

    MedlinePlus

    Gastroenteritis - norovirus; Colitis - norovirus; Hospital acquired infection - norovirus ... fluids ( dehydration ). Anyone can become infected with norovirus. Hospital patients who are very old, very young, or ...

  20. Genotypic and Epidemiologic Trends of Norovirus Outbreaks in the United States, 2009 to 2013

    PubMed Central

    Barclay, Leslie; Gregoricus, Nicole; Shirley, S. Hannah; Lee, David

    2014-01-01

    Noroviruses are the leading cause of epidemic acute gastroenteritis in the United States. From September 2009 through August 2013, 3,960 norovirus outbreaks were reported to CaliciNet. Of the 2,895 outbreaks with a known transmission route, person-to-person and food-borne transmissions were reported for 2,425 (83.7%) and 465 (16.1%) of the outbreaks, respectively. A total of 2,475 outbreaks (62.5%) occurred in long-term care facilities (LTCF), 389 (9.8%) in restaurants, and 227 (5.7%) in schools. A total of 435 outbreaks (11%) were typed as genogroup I (GI) and 3,525 (89%) as GII noroviruses. GII.4 viruses caused 2,853 (72%) of all outbreaks, of which 94% typed as either GII.4 New Orleans or GII.4 Sydney. In addition, three non-GII.4 viruses, i.e., GII.12, GII.1, and GI.6, caused 528 (13%) of all outbreaks. Several non-GII.4 genotypes (GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) were significantly more associated with food-borne transmission (odds ratio, 1.9 to 7.1; P < 0.05). Patients in LTCF and people ≥65 years of age were at higher risk for GII.4 infections than those in other settings and with other genotypes (P < 0.05). Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013. In conclusion, our data demonstrate the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks. These surveillance data can be used to improve viral food-borne surveillance and to help guide studies to develop and evaluate targeted prevention methods such as norovirus vaccines, antivirals, and environmental decontamination methods. PMID:24172151

  1. Genetic characterization of norovirus strains in hospitalized children from Pakistan.

    PubMed

    Alam, Amna; Qureshi, Sohail A; Vinjé, Jan; Zaidi, Anita

    2016-02-01

    Norovirus is one of the most common causes of acute gastroenteritis among children in developing countries. No data on the prevalence and genetic variability of norovirus are available for Pakistan, where early childhood mortality due to acute gastroenteritis is common. We tested 255 fecal specimens from children under 5 years of age hospitalized between April 2006 and March 2008 with severe acute gastroenteritis in five hospitals in the four largest cities in Pakistan for norovirus by real-time RT-PCR. Positive samples were further genotyped by conventional RT-PCR targeting the 5'-end of the capsid gene followed by sequencing of the positive PCR products. Overall, 41 (16.1%) samples tested positive for norovirus with an equal frequency in rotavirus-positive and rotavirus-negative samples. Nine (22%) samples were genogroup (G)I positive, 30 (73%) GII positive and two (5%) samples contained a mixture of GI and GII viruses. Sequence analyses demonstrated co-circulation of 14 norovirus genotypes including four GI genotypes (GI.3, GI.5, GI.7, GI.8) and 10 GII genotypes (GII.2, GII.3, GII.4, GII.5, GII.6, GII.7, GII.9, GII.13, GII.16, and GII.21). The most prevalent genotypes were GI.7 and GII.4 both causing 12.2% of the infections. This report confirms the presence of multiple norovirus genotypes in hospitalized children with acute gastroenteritis in Pakistan and a lack of clear predominance of GII.4 viruses. PMID:26175018

  2. Llama Nanoantibodies with Therapeutic Potential against Human Norovirus Diarrhea

    PubMed Central

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I.; Bok, Marina; Sosnovtsev, Stanislav V.; Canziani, Gabriela; Green, Kim Y.; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  3. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea.

    PubMed

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I; Bok, Marina; Sosnovtsev, Stanislav V; Canziani, Gabriela; Green, Kim Y; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  4. Inactivation of human norovirus in contaminated oysters and clams by high-hydrostatic pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) is the most frequent causative agent of foodborne disease associated with shellfish consumption. In this study, the effect of high-hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) NoV were inoculated into oyster ho...

  5. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014

    PubMed Central

    Chan, Martin C. W.; Lee, Nelson; Hung, Tin-Nok; Kwok, Kirsty; Cheung, Kelton; Tin, Edith K. Y.; Lai, Raymond W. M.; Nelson, E. Anthony S.; Leung, Ting F.; Chan, Paul K. S.

    2015-01-01

    Norovirus genogroup II genotype 4 (GII.4) has been the predominant cause of viral gastroenteritis since 1996. Here we show that during the winter of 2014–2015, an emergent variant of a previously rare norovirus GII.17 genotype, Kawasaki 2014, predominated in Hong Kong and outcompeted contemporary GII.4 Sydney 2012 in hospitalized cases. GII.17 cases were significantly older than GII.4 cases. Root-to-tip and Bayesian BEAST analyses estimate GII.17 viral protein 1 (VP1) evolves one order of magnitude faster than GII.4 VP1. Residue substitutions and insertion occur in four of five inferred antigenic epitopes, suggesting immune evasion. Sequential GII.4-GII.17 infections are noted, implicating a lack of cross-protection. Virus bound to saliva of secretor histo-blood groups A, B and O, indicating broad susceptibility. This fast-evolving, broadly recognizing and probably immune-escaped emergent GII.17 variant causes severe gastroenteritis and hospitalization across all age groups, including populations who were previously less vulnerable to GII.4 variants; therefore, the global spread of GII.17 Kawasaki 2014 needs to be monitored. PMID:26625712

  6. Temporal dynamics of norovirus determined through monitoring of municipal wastewater by pyrosequencing and virological surveillance of gastroenteritis cases.

    PubMed

    Kazama, Shinobu; Masago, Yoshifumi; Tohma, Kentaro; Souma, Nao; Imagawa, Toshifumi; Suzuki, Akira; Liu, Xiaofang; Saito, Mayuko; Oshitani, Hitoshi; Omura, Tatsuo

    2016-04-01

    Norovirus is a leading etiological agent of viral gastroenteritis. Because of relatively mild disease symptoms and frequent asymptomatic infections, information on the ecology of this virus is limited. Our objective was to examine the genetic diversity of norovirus circulating in the human population by means of genotyping the virus in municipal wastewater. We investigated norovirus genogroups I and II (GI and GII) in municipal wastewater in Japan by pyrosequencing and quantitative PCR (qPCR) from November 2012 to March 2013. Virological surveillance for gastroenteritis cases was concurrently conducted in the same area. A total of fourteen distinct genotypes in total (GI.1, 3, 4, 6, 7, GII.2, 4, 5, 6, 7, 12, 13, 14, and 17), with up to eight genotypes detected per sample, were observed in wastewater using pyrosequencing; only four genotypes (GI.6, GII.4, 5, and 14) were obtained from clinical samples. Seventy-eight percent of norovirus-positive stool samples contained GII.4, but this genotype was not dominant in wastewater. The norovirus GII.4 Sydney 2012 variant, which appeared and spread during our study period, was detected in both the wastewater and clinical samples. These results suggest that an environmental approach using pyrosequencing yields a more detailed distribution of norovirus genotypes/variants. Thus, wastewater monitoring by pyrosequencing is expected to provide an effective analysis of the distribution of norovirus genotypes causing symptomatic and asymptomatic infections in human populations. PMID:26874777

  7. A waterborne norovirus gastroenteritis outbreak in a school, eastern China.

    PubMed

    Zhou, N; Zhang, H; Lin, X; Hou, P; Wang, S; Tao, Z; Bi, Z; Xu, A

    2016-04-01

    In late 2014, a gastroenteritis outbreak occurred in a school in Shandong Province, eastern China. Hundreds of individuals developed the symptoms of diarrhoea and vomiting. Epidemiological investigation showed that food consumption was not linked to this outbreak, and unboiled direct drinking water was identified as the independent risk factor with a relative risk of 1·37 (95% confidence interval 1·03-1·83). Furthermore, examination of common bacterial and viral gastroenteritis pathogens was conducted on different specimens. Norovirus GI.1, GI.2, GI.6, GII.4, GII.6 and GII.13 were detected in clinical specimens and a water sample. GII.4 sequences between clinical specimens and the water sample displayed a close relationship and belonged to GII.4 variant Sydney 2012. These results indicate that direct drinking water contaminated by norovirus was responsible for this gastroenteritis outbreak. This study enriches our knowledge of waterborne norovirus outbreaks in China, and presents valuable prevention and control practices for policy-makers. In future, strengthened surveillance and supervision of direct drinking-water systems is needed. PMID:26482884

  8. Burden of Norovirus and Rotavirus in Children After Rotavirus Vaccine Introduction, Cochabamba, Bolivia.

    PubMed

    McAtee, Casey L; Webman, Rachel; Gilman, Robert H; Mejia, Carolina; Bern, Caryn; Apaza, Sonia; Espetia, Susan; Pajuelo, Mónica; Saito, Mayuko; Challappa, Roxanna; Soria, Richard; Ribera, Jose P; Lozano, Daniel; Torrico, Faustino

    2016-01-01

    The effectiveness of rotavirus vaccine in the field may set the stage for a changing landscape of diarrheal illness affecting children worldwide. Norovirus and rotavirus are the two major viral enteropathogens of childhood. This study describes the prevalence of norovirus and rotavirus 2 years after widespread rotavirus vaccination in Cochabamba, Bolivia. Stool samples from hospitalized children with acute gastroenteritis (AGE) and outpatients aged 5-24 months without AGE were recruited from an urban hospital serving Bolivia's third largest city. Both viruses were genotyped, and norovirus GII.4 was further sequenced. Norovirus was found much more frequently than rotavirus. Norovirus was detected in 69/201 (34.3%) of specimens from children with AGE and 13/71 (18.3%) of those without diarrhea. Rotavirus was detected in 38/201 (18.9%) of diarrheal specimens and 3/71 (4.2%) of non-diarrheal specimens. Norovirus GII was identified in 97.8% of norovirus-positive samples; GII.4 was the most common genotype (71.4% of typed specimens). Rotavirus G3P[8] was the most prevalent rotavirus genotype (44.0% of typed specimens) and G2P[4] was second most prevalent (16.0% of typed specimens). This community is likely part of a trend toward norovirus predominance over rotavirus in children after widespread vaccination against rotavirus. PMID:26598569

  9. Standardized positive controls for detection of norovirus by reverse transcription PCR

    PubMed Central

    2011-01-01

    Background Norovirus is one of the most common causes of nonbacterial gastroenteritis in humans. Rapid spread by contaminated food and person-to-person transmission through the fecal-oral route are characteristics of norovirus epidemiology and result in high morbidity in vulnerable patient populations. Therefore, detection of norovirus is a major public health concern. Currently, the most common method for detecting and differentiating among norovirus strains in clinical and environmental samples is reverse transcription PCR (RT-PCR). Standardized positive controls used in RT-PCR assays to detect norovirus are designed to overcome the problem of false-negative results due to PCR inhibitors and suboptimal reaction conditions. Results In the current study, four types of RNA transcripts were produced from plasmids: norovirus GI-5 and GII-4 capsid regions with human rotavirus (VP7 gene derived) fragment insertions, and norovirus GI-6 and GII-4 capsid regions with hepatitis A virus (VP1/P2A gene derived) fragment insertions. These size-distinguishable products were used as positive controls under the RT-PCR assay conditions used to detect NoV in stool and groundwater samples. Their reliability and reproducibility was confirmed by multiple sets of experiments. Conclusions These standardized products may contribute to the reliable and accurate diagnosis by RT-PCR of norovirus outbreaks, when conducted by laboratories located in different regions. PMID:21612660

  10. Virus Genotype Distribution and Virus Burden in Children and Adults Hospitalized for Norovirus Gastroenteritis, 2012–2014, Hong Kong

    PubMed Central

    Chan, Martin C.W.; Leung, Ting F.; Chung, Tracy W.S.; Kwok, Angela K.; Nelson, E. Anthony S.; Lee, Nelson; Chan, Paul K.S.

    2015-01-01

    We conducted a 2-year hospital-based study on norovirus gastroenteritis among children and adults between August 2012 and September 2014. A total of 1,146 norovirus cases were identified. Young children (aged ≤ 5 years) accounted for a majority (53.3%) of cases. Hospitalization incidence exhibited a U-shaped pattern with the highest rate in young children (1,475 per 100,000 person-years), followed by the elderly aged > 84 years (581 per 100,000 person-years). A subset (n = 395, 34.5%) of cases were selected for norovirus genotyping and noroviral load measurement. Non-GII.4 infections were more commonly observed in young children than in older adults (aged > 65 years) (20.5% versus 9.2%; p < 0.05). In young children, the median noroviral load of GII.4 and non-GII.4 cases was indistinguishably high (cycle threshold value, median [interquartile range]: 16.6 [15.2–19.3] versus 16.6 [14.9–21.6]; p = 0.45). Two age-specific non-GII.4 genotypes (GII.3 and GII.6) were identified among young children. These findings may have implications in norovirus vaccination strategy. PMID:26082165

  11. Preclinical dose-ranging studies of a novel dry powder norovirus vaccine formulation.

    PubMed

    Springer, Michael J; Ni, Yawei; Finger-Baker, Isaac; Ball, Jordan P; Hahn, Jessica; DiMarco, Ashley V; Kobs, Dean; Horne, Bobbi; Talton, James D; Cobb, Ronald R

    2016-03-14

    Norovirus is the primary cause of viral gastroenteritis in humans with multiple genotypes currently circulating worldwide. The development of a successful norovirus vaccine is contingent on its ability to induce both systemic and mucosal antibody responses against a wide range of norovirus genotypes. Norovirus virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered intranasally. Incorporation of these VLPs into an intranasal powder vaccine offers the advantage of simplicity and induction of neutralizing systemic and mucosal antibodies. Nasal immunization, which provides the advantage of ease of administration and a mucosal delivery mechanism, faces the real issue of limited nasal residence time due to mucociliary clearance. Herein, we describe a novel dry powder (GelVac™) formulation of GI or GII.4 norovirus VLPs, two dominant circulating genotypes, to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs. Systemic and mucosal immunogenicity of each of the VLPs was observed in a dose-dependent manner. In addition, a boosting effect was observed after the second dosing of each VLP antigen. With the GelVac™ formulation, a total antigen dose of ≥ 15 μg was determined to be the maximally immunogenic dose for both GI and GII.4 norovirus VLPs based on evaluation for 56 days. Taken together, these results indicate that norovirus VLPs could be used as potential vaccine candidates without using an immunostimulatory adjuvant and provide a basis for the development of a GelVac™ bivalent GI/GII.4 norovirus VLP vaccine. PMID:26873053

  12. Norovirus diarrhea in Bangladesh, 2010-2014: prevalence, clinical features, and genotypes.

    PubMed

    Rahman, Mustafizur; Rahman, Rajibur; Nahar, Shamsun; Hossain, Shakhaowat; Ahmed, Shahnawaz; Golam Faruque, Abu Syed; Azim, Tasnim

    2016-10-01

    Norovirus infections in diarrhea patients attending an urban and a rural hospital in Bangladesh were investigated. A total of 953 fecal specimens from both children and adults collected during 2010-2014 were tested for the presence of norovirus using real time PCR. One fourth (25%) of the specimens were positive for norovirus RNA which was identified both in children and adults. Norovirus was associated with short duration of diarrhea, high abdominal pain, and more moderate to severe dehydration when compared with rotavirus infections. Norovirus GII (69%) was the most prevalent genogroup followed by GI (18%), mixed GI/GII/GIV (11%), and GIV (2%). Among GII genogroup, GII.4 (42%) was the most prevalent genotype followed by GII.3 (21%), GII.6 (7%), GII.7 (6%), and GII.21 (6%). GII.4 and GII.3 strains were frequently identified (82% and 75%, respectively) in children <2 years of age and less commonly (16% and 15%) in adults more than 18 years of age. The present study reinforces the importance of norovirus-associated hospitalizations both in children and adults. The dynamic molecular epidemiology of norovirus requires routine strain surveillance to identify changes in prevailing strains. J. Med. Virol. 88:1742-1750, 2016. © 2016 Wiley Periodicals, Inc. PMID:27003679

  13. Human norovirus infection in Latin America.

    PubMed

    da Silva Poló, Tatiane; Peiró, Juliana R; Mendes, Luiz Cláudio Nogueira; Ludwig, Louisa F; de Oliveira-Filho, Edmilson F; Bucardo, Filemon; Huynen, Pascale; Melin, Pierrette; Thiry, Etienne; Mauroy, Axel

    2016-05-01

    Noroviruses are important enteric pathogens involved in non-bacterial gastroenteritis outbreaks worldwide. Noroviruses mainly occur from person to person via the fecal-oral route but also through contaminated food or water; indirect contamination is also possible due to the resistance of the virus in the environment. Latin American countries as a whole cover a vast North-to-South range, which is highly heterogeneous in terms of climate, ecosystem, human population distribution (urban areas with high human densities versus closed communities), economic development and genetic backgrounds resulting from each particular historical context. This review aims to present epidemiological and clinical patterns of human norovirus infections in Latin American countries. Divergent prevalences were observed depending on the country and the surveyed population. In particular, a shift in rotavirus/norovirus ratio in the etiologies of gastroenteritis was detected in some countries and could be attributed partly to rotavirus vaccine coverage in their infant population. While GII.4 noroviruses were seen to constitute the most common genotype, differences in genotype distribution were observed both in the environment (via sewage sampling proxy) and between genotypes circulating in healthy and diarrheic patients. Due to high climatic discrepancies, different patterns of seasonality were observed. Accordingly, this continent may condense the different particular epidemiological features encountered for HuNoV infections worldwide. PMID:27018574

  14. Genetic diversity of norovirus in hospitalised diarrhoeic children and asymptomatic controls in Dar es Salaam, Tanzania.

    PubMed

    Moyo, Sabrina; Hanevik, Kurt; Blomberg, Bjørn; Kommedal, Oyvind; Vainio, Kirsti; Maselle, Samuel; Langeland, Nina

    2014-08-01

    This study investigated and reports norovirus diarrhoea, genetic diversity and associated clinical symptoms, HIV status and seasonality in a paediatric population of Tanzania. Stool specimens and demographic/clinical information, were prospectively collected from 705 hospitalised children with diarrhoea (cases) and 561 children without diarrhoea (controls) between 2010 and 2011. Norovirus detection was done by real-time RT-PCR. Genotype was determined using Gel-based and real time RT-PCR methods and sequencing targeting the polymerase and the capsid region respectively. Norovirus was detected in 14.3%, 181/1266 children. The prevalence of norovirus was significantly higher in cases (18.3%, 129/705) than in controls, (9.2%, 52/561), P<0.05. Except for one child who had double infection with GI and GII all 129 cases had GII. Among controls, 23.1% had GI and 76.9% had GII. Norovirus GII.4 was significantly more prevalent in cases 87.9% than in controls 56.5%. Other genotypes detected in both cases and controls were GII.21, GII.16 and GII.g. The highest numbers of norovirus were detected in April 2011. The number of norovirus detected was significantly higher during the first than second year of life (109/540, 20.2% vs. 20/165, 12.1%). The prevalence of norovirus in HIV-positive and negative children was (21.2%, 7/33) and (10.3%, 40/390, P=0.05) respectively, regardless of diarrhoea symptoms. No significant difference in gender, parent's level of education or nutritional status with norovirus infection was observed within cases or controls. This study confirms the significant role of norovirus infection, especially GII.4 in diarrhoeic children who need hospitalisation and adds knowledge on norovirus epidemiology in the African region. PMID:24960396

  15. Structural Constraints on Human Norovirus Binding to Histo-Blood Group Antigens

    PubMed Central

    Singh, Bishal K.; Leuthold, Mila M.

    2016-01-01

    ABSTRACT Human norovirus interacts with the polymorphic human histo-blood group antigens (HBGAs), and this interaction is thought to be important for infection. The genogroup II genotype 4 (GII.4) noroviruses are the dominant cluster, evolve every other year, and are thought to modify their binding interactions with different HBGA types. Most human noroviruses bind HBGAs, while some strains were found to have minimal or no HBGA interactions. Here, we explain some possible structural constraints for several noroviruses that were found to bind poorly to HBGAs by using X-ray crystallography. We showed that one aspartic acid was flexible or positioned away from the fucose moiety of the HBGAs and this likely hindered binding, although other fucose-interacting residues were perfectly oriented. Interestingly, a neighboring loop also appeared to influence the loop hosting the aspartic acid. These new findings might explain why some human noroviruses bound HBGAs poorly, although further studies are required. PMID:27303720

  16. Structural Constraints on Human Norovirus Binding to Histo-Blood Group Antigens.

    PubMed

    Singh, Bishal K; Leuthold, Mila M; Hansman, Grant S

    2016-01-01

    Human norovirus interacts with the polymorphic human histo-blood group antigens (HBGAs), and this interaction is thought to be important for infection. The genogroup II genotype 4 (GII.4) noroviruses are the dominant cluster, evolve every other year, and are thought to modify their binding interactions with different HBGA types. Most human noroviruses bind HBGAs, while some strains were found to have minimal or no HBGA interactions. Here, we explain some possible structural constraints for several noroviruses that were found to bind poorly to HBGAs by using X-ray crystallography. We showed that one aspartic acid was flexible or positioned away from the fucose moiety of the HBGAs and this likely hindered binding, although other fucose-interacting residues were perfectly oriented. Interestingly, a neighboring loop also appeared to influence the loop hosting the aspartic acid. These new findings might explain why some human noroviruses bound HBGAs poorly, although further studies are required. PMID:27303720

  17. Predicting genotype compositions in norovirus seasons in Japan.

    PubMed

    Suzuki, Yoshiyuki; Doan, Yen Hai; Kimura, Hirokazu; Shinomiya, Hiroto; Shirabe, Komei; Katayama, Kazuhiko

    2016-06-01

    Noroviruses cause acute gastroenteritis. Since multiple genotypes of norovirus co-circulate in humans, changing the genotype composition and eluding host immunity, development of a polyvalent vaccine against norovirus in which the genotypes of vaccine strains match the major strains in circulation in the target season is desirable. However, this would require prediction of changes in the genotype composition of circulating strains. A fitness model that predicts the proportion of a strain in the next season from that in the current season has been developed for influenza A virus. Here, such a fitness model that takes into account the fitness effect of herd immunity was used to predict genotype compositions in norovirus seasons in Japan. In the current study, a model that assumes a decline in the magnitude of cross immunity between norovirus strains according to an increase in the divergence of the major antigenic protein VP1 was found to be appropriate for predicting genotype composition. Although it is difficult to predict the proportions of genotypes accurately, the model is effective in predicting the direction of change in the proportions of genotypes. The model predicted that GII.3 and GII.4 may contract, whereas GII.17 may expand and predominate in the 2015-2016 season. The procedure of predicting genotype compositions in norovirus seasons described in the present study has been implemented in the norovirus forecasting system (NOROCAST). PMID:27168450

  18. Nationwide Groundwater Surveillance of Noroviruses in South Korea, 2008▿

    PubMed Central

    Lee, Sung-Geun; Jheong, Weon-Hwa; Suh, Chang-Il; Kim, Sang-Hyun; Lee, Joong-Bok; Jeong, Yong-Seok; Ko, GwangPyo; Jang, Kyung Lib; Lee, Gyu-Cheol; Paik, Soon-Young

    2011-01-01

    To inspect the norovirus contamination of groundwater in South Korea, a nationwide study was performed in the summer (June to August) and winter (October to December) of 2008. Three-hundred sites designated by the government ministry were inspected. Water samples were collected for analysis of water quality, microorganism content, and viral content. Water quality was assessed by temperature, pH, turbidity, residual chlorine, and nitrite nitrogen content. Microorganism contents were analyzed bacteria, total coliforms, Escherichia coli, and bacteriophage. Virus analyses included panenterovirus and norovirus. Two primer sets were used for the detection of norovirus genotypes GI and GII, respectively. Of 300 samples, 65 (21.7%) were norovirus positive in the summer and in 52 (17.3%) were norovirus positive in the winter. The genogroup GI noroviruses that were identified were GI-1, GI-2, GI-3, GI-4, GI-5, GI-6, and GI-8 genotypes; those in the GII genogroup were GII-4 and GII-Yuri genotypes. The analytic data showed correlative relationships between the norovirus detection rate and the following parameters: water temperature and turbidity in physical-chemical parameters and somatic phage in microbial parameters. It is necessary to periodically monitor waterborne viruses that frequently cause epidemic food poisoning in South Korea for better public health and sanitary conditions. PMID:21183642

  19. Norovirus Gastroenteritis in a Birth Cohort in Southern India

    PubMed Central

    Menon, Vipin Kumar; George, Santosh; Sarkar, Rajiv; Giri, Sidhartha; Samuel, Prasanna; Vivek, Rosario; Saravanabavan, Anuradha; Liakath, Farzana Begum; Ramani, Sasirekha; Iturriza-Gomara, Miren; Gray, James J.; Brown, David W.; Estes, Mary K.; Kang, Gagandeep

    2016-01-01

    Background Noroviruses are an important cause of gastroenteritis but little is known about disease and re-infection rates in community settings in Asia. Methods Disease, re-infection rates, strain prevalence and genetic susceptibility to noroviruses were investigated in a birth cohort of 373 Indian children followed up for three years. Stool samples from 1856 diarrheal episodes and 147 vomiting only episodes were screened for norovirus by RT-PCR. Norovirus positivity was correlated with clinical data, secretor status and ABO blood group. Results Of 1856 diarrheal episodes, 207 (11.2%) were associated with norovirus, of which 49(2.6%) were norovirus GI, 150(8.1%) norovirus GII, and 8 (0.4%) were mixed infections with both norovirus GI and GII. Of the 147 vomiting only episodes, 30 (20.4%) were positive for norovirus in stool, of which 7 (4.8%) were norovirus GI and 23 (15.6%) GII. At least a third of the children developed norovirus associated diarrhea, with the first episode at a median age of 5 and 8 months for norovirus GI and GII, respectively. Norovirus GI.3 and GII.4 were the predominant genotypes (40.3% and 53.0%) with strain diversity and change in the predominant sub-cluster over time observed among GII viruses. A second episode of norovirus gastroenteritis was documented in 44/174 (25.3%) ever-infected children. Children with the G428A homozygous mutation for inactivation of the FUT2 enzyme (se428se428) were at a significantly lower risk (48/190) of infection with norovirus (p = 0.01). Conclusions This is the first report of norovirus documenting disease, re-infection and genetic susceptibility in an Asian birth cohort. The high incidence and apparent lack of genogroupII specific immunity indicate the need for careful studies on further characterization of strains, asymptomatic infection and shedding and immune response to further our understanding of norovirus infection and disease. PMID:27284939

  20. Norovirus Recombinant Strains Isolated from Gastroenteritis Outbreaks in Southern Brazil, 2004–2011

    PubMed Central

    Leite, José Paulo Gagliardi; Miagostovich, Marize Pereira

    2016-01-01

    Noroviruses are recognized as one of the leading causes of viral acute gastroenteritis, responsible for almost 50% of acute gastroenteritis outbreaks worldwide. The positive single-strand RNA genome of noroviruses presents a high mutation rate and these viruses are constantly evolving by nucleotide mutation and genome recombination. Norovirus recombinant strains have been detected as causing acute gastroenteritis outbreaks in several countries. However, in Brazil, only one report of a norovirus recombinant strain (GII.P7/GII.20) has been described in the northern region so far. For this study, 38 norovirus strains representative of outbreaks, 11 GII.4 and 27 non-GII.4, were randomly selected and amplified at the ORF1/ORF2 junction. Genetic recombination was identified by constructing phylogenetic trees of the polymerase and capsid genes, and further SimPlot and Bootscan analysis of the ORF1/ORF2 overlap. Sequence analysis revealed that 23 out of 27 (85%) non-GII.4 noroviruses were recombinant strains, characterized as: GII.P7/GII.6 (n = 9); GIIP.g/GII.12 (n = 4); GII.P16/GII.3 (n = 4); GII.Pe/GII.17 (n = 2); GII.P7/GII.14 (n = 1); GII.P13/GII.17 (n = 1); GII.P21/GII.3 (n = 1); and GII.P21/GII.13 (n = 1). On the other hand, among the GII.4 variants analyzed (Den Haag_2006b and New Orleans_2009) no recombination was observed. These data revealed the great diversity of norovirus recombinant strains associated with outbreaks, and describe for the first time these recombinant types circulating in Brazil. Our results obtained in southern Brazil corroborate the previous report for the northern region, demonstrating that norovirus recombinant strains are circulating more frequently than we expected. In addition, these results emphasize the relevance of including ORF1/ORF2-based analysis in surveillance studies as well as the importance of characterizing strains from other Brazilian regions to obtain epidemiological data for norovirus recombinant strains circulating in the

  1. Norovirus Infection

    MedlinePlus

    ... About NIAID News & Events Volunteer NIAID > Health & Research Topics > Norovirus Infection Skip Website Tools Website Tools Print this page Get email updates Order publications Volunteer for Clinical ...

  2. Prevalence and Molecular Genotyping of Noroviruses in Market Oysters, Mussels, and Cockles in Bangkok, Thailand.

    PubMed

    Kittigul, Leera; Thamjaroen, Anyarat; Chiawchan, Suwat; Chavalitshewinkoon-Petmitr, Porntip; Pombubpa, Kannika; Diraphat, Pornphan

    2016-06-01

    Noroviruses are the most common cause of acute gastroenteritis associated with bivalve shellfish consumption. This study aimed to detect and characterize noroviruses in three bivalve shellfish species: oysters (Saccostrea forskali), cockles (Anadara nodifera), and mussels (Perna viridis). The virus concentration procedure (adsorption-twice elution-extraction) and a molecular method were employed to identify noroviruses in shellfish. RT-nested PCR was able to detect known norovirus GII.4 of 8.8 × 10(-2) genome copies/g of digestive tissues from oyster and cockle concentrates, whereas in mussel concentrates, the positive result was seen at 8.8 × 10(2) copies/g of digestive tissues. From August 2011 to July 2012, a total of 300 shellfish samples, including each of 100 samples from oysters, cockles, and mussels were collected and tested for noroviruses. Norovirus RNA was detected in 12.3 % of shellfish samples. Of the noroviruses, 7.7 % were of the genogroup (G) I, 2.6 % GII, and 2.0 % were mixed GI and GII. The detection rate of norovirus GI was 2.1 times higher than GII. With regards to the different shellfish species, 17 % of the oyster samples were positive, while 14.0 and 6.0 % were positive for noroviruses found in mussels and cockles, respectively. Norovirus contamination in the shellfish occurred throughout the year with the highest peak in September. Seventeen norovirus-positive PCR products were characterized upon a partial sequence analysis of the capsid gene. Based on phylogenetic analysis, five different genotypes of norovirus GI (GI.2, GI.3, GI.4, GI.5, and GI.9) and four different genotypes of GII (GII.1, GII.2, GII.3, and GII.4) were identified. These findings indicate the prevalence and distribution of noroviruses in three shellfish species. The high prevalence of noroviruses in oysters contributes to the optimization of monitoring plans to improve the preventive strategies of acute gastroenteritis. PMID:26872638

  3. Norovirus Treatment

    MedlinePlus

    ... Norovirus Infection, National Institutes of Health NoroCORE Food Virology Treatment Language: English Español (Spanish) Recommend on Facebook ... Norovirus Infection, National Institutes of Health NoroCORE Food Virology Language: English Español (Spanish) File Formats Help: How ...

  4. An efficient method of noroviruses recovery from oysters and clams

    NASA Astrophysics Data System (ADS)

    Zhou, Deqing; Ma, Liping; Zhao, Feng; Yao, Lin; Su, Laijin; Li, Xinguang

    2013-03-01

    Noroviruses (NoVs) are widespread causes of nonbacterial gastroenteritis. Outbreaks of NoVs caused diseases are commonly ascribed to the consumption of contaminated shellfish. The concentration and RNA extraction of NoVs are crucial steps of detecting NoVs in shellfish. This study aimed to select a simple, rapid and highly efficient recovery method of NoVs detection with real-time RT-PCR. Four methods of recovering GI.3 and GII.4 NoVs from spiked digestive tissues of oysters and clams, respectively, were compared, of them, the method involving proteinase K and PEG 8000 was found the most efficient. With this method, 9.3% and 13.1% of GI.3 and GII.4 NoVs were recovered from oysters and 9.6% and 12.3% of GI.3 and GII.4 NoVs were recovered from clams, respectively. This method was further used to detect NoVs in 84 oysters ( Crassostrea gigas) and 86 clams ( Ruditapes philippinarum) collected from 10 coastal cities in China from Jan. 2011 to Feb. 2012. The NoVs isolation rates were 10.47% of clams (9/86) and 7.14% of oysters (6/84). All the detected NoVs belonged to genotype GII. The NoVs recovery method selected is efficient for NoVs detection in oysters and clams.

  5. Norovirus: Food Handlers

    MedlinePlus

    ... sector alimentario Norovirus and Working With Food CDC Vital Signs Report Preventing Norovirus Outbreaks, Food Service has a ... norovirus Overview Symptoms Transmission Prevention Treatment Resources CDC Vital Signs — Preventing Norovirus Outbreaks, Food Service has a ...

  6. Outbreak of Norovirus GII.P17-GII.17 in the Canadian Province of Nova Scotia

    PubMed Central

    LeBlanc, Jason J.; Pettipas, Janice; Gaston, Daniel; Taylor, Robin; Hatchette, Todd F.; Booth, Tim F.; Mandes, Russell; McDermid, Andrew; Grudeski, Elsie

    2016-01-01

    Background. Norovirus is the leading cause of viral gastroenteritis, with GII.4 being the most common circulating genotype. Recently, outbreaks in China revealed that norovirus GII.17 GII.P17 had become predominant. Objective. This study aimed to characterize the distribution of norovirus genotypes circulating in Nova Scotia. Methods. Stool specimens were collected from gastrointestinal outbreaks in Nova Scotia between Jan 2014 and June 2015 and subjected to real-time RT-PCR. Norovirus-positive specimens were referred to the National Microbiology Laboratory for sequence-based genotyping. Results. The first norovirus GII.P17-GII.17 outbreak in Canada was identified, but no widespread activity was observed in Nova Scotia. Discussion. It is unknown whether GII.P17-GII.17 is more widespread in Canada since contributions to Canadian surveillance are too sparse to effectively monitor the epidemiology of emerging norovirus genotypes. Conclusions. Presence of norovirus GII.17:P17 in Canada highlights the need for more systematic surveillance to ensure that molecular targets used for laboratory detection are effective and help understand norovirus evolution, epidemiology, and pathogenesis. PMID:27366155

  7. Norovirus Infections

    MedlinePlus

    Noroviruses are a group of related viruses. Infection with these viruses causes an illness called gastroenteritis, an inflammation of the stomach and intestines. It can spread from person to person, or ...

  8. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress

    PubMed Central

    Li, Dan; Breiman, Adrien; le Pendu, Jacques; Uyttendaele, Mieke

    2015-01-01

    This study aims to investigate if histo-blood group antigen (HBGA) expressing bacteria have any protective role on human norovirus (NoV) from acute heat stress. Eleven bacterial strains were included, belonging to Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Clostridium difficile, Bifidobacterium adolescentis, and B. longum. HBGA expression of the bacteria as well as binding of human NoV virus-like particles (VLPs, GI.1, and GII.4 strains) to the bacteria were detected by flow cytometry. NoV VLPs pre-incubated with HBGA expressing or non-HBGA expressing bacteria were heated and detected by both direct ELISA and porcine gastric mucin-binding assay. The NoV-binding abilities of the bacteria correlated well with their HBGA expression profiles. Two HBGA expressing E. coli (LMG8223 and LFMFP861, both GI.1 and GII.4 binders) and one non-HBGA expressing E. coli (ATCC8739, neither GI.1 nor GII.4 binder) were selected for the heat treatment test with NoV VLPs. Compared with the same cell numbers of non-HBGA expressing E. coli, the presence of HBGA-expressing E. coli could always maintain higher antigen integrity, as well as mucin-binding ability of NoV VLPs of both GI.1 and GII.4 after heat-treatment at 90°C for 2 min. These results indicate that HBGA-expressing bacteria may protect NoVs during the food processing treatments, thereby facilitating their transmission. PMID:26191052

  9. Norovirus Infections

    MedlinePlus

    ... include fever, headache or body aches. Treatment includes bed rest and lots of liquids to prevent dehydration. There is no specific medicine to treat norovirus infections. Proper hand washing and safe food preparation may help prevent infections. Centers for Disease Control and Prevention

  10. Molecular identification of emergent GII.P17-GII.17 norovirus genotype, Romania, 2015.

    PubMed

    Dinu, Sorin; Nagy, Mariana; Negru, Dana Gabriela; Popovici, Emilian Damian; Zota, Lavinia; Oprișan, Gabriela

    2016-01-01

    The novel GII.P17-GII.17 norovirus genotype has been reported as cause of gastroenteritis outbreaks in China and Japan since the winter season 2014/15, replacing the pandemic strain GII.4 Sydney 2012. These emergent strains have also been sporadically reported on other continents than Asia. GII.P17-GII.17 isolates, similar to Kawasaki308 2015, were identified in three patients during a large outbreak of acute gastroenteritis affecting 328 people in Romania, in neighbouring localities, in 2015. PMID:26924169

  11. Development and maturation of norovirus antibodies in childhood.

    PubMed

    Blazevic, Vesna; Malm, Maria; Honkanen, Hanna; Knip, Mikael; Hyöty, Heikki; Vesikari, Timo

    2016-04-01

    The burden of norovirus (NoV) gastroenteritis is substantial in young children. Maternal antibodies are thought to protect a child from NoV infection in early infancy but subsequent development of NoV-specific protective immunity in children is still largely unexplored. We have determined NoV-specific antibody seroconversion to GII.4 virus-like particles as an indicator of NoV infection in two children prospectively followed from birth to eight years of age. Blocking activity and affinity maturation of maternal and serum IgG antibodies were evaluated. Our results show that multiple infections occur in children up to eight years of age. The titer, blocking activity and avidity of maternal antibodies determined susceptibility of an infant to NoV infection. NoV GII.4-specific antibodies with high blocking potential and avidity were developed at two to three years of age and were retained throughout the follow-up. Subsequent NoV infections may have contributed to the duration of protective NoV-specific immune responses that lasted for several years. This study adds to current understanding of the duration of passive protection by maternal antibodies and the duration and quality of acquired immunity following primary and subsequent NoV infections in infants and young children, who are the main target group for NoV vaccine development. PMID:26724451

  12. A Multi-Site Study of Norovirus Molecular Epidemiology in Australia and New Zealand, 2013-2014

    PubMed Central

    Lim, Kun Lee; Hewitt, Joanne; Sitabkhan, Alefiya; Eden, John-Sebastian; Lun, Jennifer; Levy, Avram; Merif, Juan; Smith, David; Rawlinson, William D.; White, Peter A.

    2016-01-01

    Background Norovirus (NoV) is the major cause of acute gastroenteritis across all age groups. In particular, variants of genogroup II, genotype 4 (GII.4) have been associated with epidemics globally, occurring approximately every three years. The pandemic GII.4 variant, Sydney 2012, was first reported in early 2012 and soon became the predominant circulating NoV strain globally. Despite its broad impact, both clinically and economically, our understanding of the fundamental diversity and mechanisms by which new NoV strains emerge remains limited. In this study, we describe the molecular epidemiological trends of NoV-associated acute gastroenteritis in Australia and New Zealand between January 2013 and June 2014. Methodology Overall, 647 NoV-positive clinical faecal samples from 409 outbreaks and 238 unlinked cases of acute gastroenteritis were examined by RT-PCR and sequencing. Phylogenetic analysis was then performed to identify NoV capsid genotypes and to establish the temporal dominance of circulating pandemic GII.4 variants. Recombinant viruses were also identified based on analysis of the ORF1/2 overlapping region. Findings Peaks in NoV activity were observed, however the timing of these epidemics varied between different regions. Overall, GII.4 NoVs were the dominant cause of both outbreaks and cases of NoV-associated acute gastroenteritis (63.1%, n = 408/647), with Sydney 2012 being the most common GII.4 variant identified (98.8%, n = 403/408). Of the 409 reported NoV outbreaks, aged-care facilities were the most common setting in both Western Australia (87%, n = 20/23) and New Zealand (58.1%, n = 200/344) while most of the NoV outbreaks were reported from hospitals (38%, n = 16/42) in New South Wales, Australia. An analysis of a subset of non-GII.4 viruses from all locations (125/239) showed the majority (56.8%, n = 71/125) were inter-genotype recombinants. These recombinants were surprisingly diverse and could be classified into 18 distinct recombinant

  13. Norovirus vaccines: Correlates of protection, challenges and limitations.

    PubMed

    Melhem, Nada M

    2016-07-01

    Norovirus (NoV) is responsible for at least 50% of all gastroenteritis outbreaks worldwide. NoVs are classified into 6 different genogroups (GGI- GGVI) based on the viral capsid protein with NoV genogroup II genotype 4 (GII.4) being the predominant strain causing human diseases. Supportive therapy involving reversal of dehydration and electrolyte deficiency is the main treatment of NoV gastroenteritis. However, the worldwide increased recognition of NoV as an important agent of diarrheal gastroenteritis prompted researchers to focus on establishing preventive strategies conferring long-lasting immunity. This review describes the current status of animal and human vaccine models/studies targeting NoV and addresses the factors hampering the development of a broadly effective vaccine. PMID:26836766

  14. Epidemiological and molecular analysis of human norovirus infections in Taiwan during 2011 and 2012

    PubMed Central

    2013-01-01

    Background The human norovirus (NV) circulates worldwide and is a major cause of epidemics, which have increased in Taiwan since 2002. NV in acute gastroenteritis (AGE) and non-acute gastroenteritis (asymptomatic) patients, including children and adults, have not been previously examined in Taiwan; therefore, we examined the epidemiology and phylogeny of NV in AGE and asymptomatic patients of all ages. Methods 253 stool samples were collected from August 2011 to July 2012 (including 155 AGE and 98 asymptomatic samples in Taiwan) and analyzed using reverse transcription-polymerase chain reaction (RT-PCR) for NV. Primers targeting the RNA-polymerase gene were used for RT-PCR to allow DNA sequencing of Taiwan NV strains and phylogenetic analyses. Results NV was detected in 24 (9.5%) of 253 stool specimens using RT-PCR. NV was isolated from all age groups (1 to 86 y) and those NV-positive samples were major identified from inpatients (79.2%, 19/24). Statistical analysis showed that the NV infectious rate of AGE patients was statistically significant (P < 0.05) for age, season and water type, respectively. Phylogenetic analyses of the RdRp region sequence showed that 24 NV isolates belonged to Genogroup II Genotype 4 (GII.4). They were closely related to the epidemic strain in Taiwan in 2006, the GII.4-2006b pandemic strain in 2006, and the GII.4-New Orleans strain in 2010. Conclusion This study is the first to examine NV in sporadic AGE and asymptomatic patients in Taiwan. Furthermore, epidemic strains of isolated GII.4 were predominant in Taiwan during 2011 and 2012. PMID:23875971

  15. Emergence of Norovirus GII.17 Variants among Children with Acute Gastroenteritis in South Korea

    PubMed Central

    Dang Thanh, Hien; Than, Van Thai; Nguyen, Tinh Huu; Lim, Inseok; Kim, Wonyong

    2016-01-01

    Of 1,050 fecal specimens collected from January 2013 to August 2015 from children with acute gastroenteritis, 149 (14.2%) were found to be positive for norovirus. Norovirus GII was the most predominant genogroup (98.65%; 147 of 149). The genotypes detected in this study were GI (2; 1.3%), GII.Pe-GII.4 (109; 73.1%), GII.P17-GII.17 (16; 10.7%), GII.P12-GII.3 (8; 5.4%), GII.P12-GII.12 (8; 5.4%), GII.P4-GII.4 (5; 3.4%), and the recombinant GII.Pe-GII.17 (1; 0.7%). Of these, the novel GII.17 strain was the second most predominant, and the number of affected children appeared to continuously increase over time (2013 [2; 4.4%], 2014 [4; 9.3%], and 2015 [10; 16.4%]). Phylogenetic analysis of the full genome and ORF1, ORF2, and ORF3 nucleotide sequences showed that GII.17 was grouped in cluster III with other strains isolated from 2013 to 2015 and had a different evolutionary history from strains collected in 1978 to 2002 and 2005 to 2009 formed clusters I and II. However, the phylogenetic trees also showed that cluster III was divided into subclusters IIIa (CAU-55 and CAU-85) and IIIb (Kawasaki 2014) (CAU-193, CAU-265, CAU-267, CAU-283, and CAU-289). Comparative analysis of the VP1 capsid protein using 15 complete amino acid sequences from noroviruses isolated from 1978 to 2015 showed 99 amino acid changes. These results could be helpful for epidemiological studies to understand circulating norovirus genotypes in population. PMID:27148739

  16. Norovirus Contamination Levels in Ground Water Treatment Systems Used for Food-Catering Facilities in South Korea

    PubMed Central

    Lee, Bo-Ram; Lee, Sung-Geun; Park, Jong-Hyun; Kim, Kwang-Yup; Ryu, Sang-Ryeol; Rhee, Ok-Jae; Park, Jeong-Woong; Lee, Jeong-Su; Paik, Soon-Young

    2013-01-01

    This study aimed to inspect norovirus contamination of groundwater treatment systems used in food-catering facilities located in South Korea. A nationwide study was performed in 2010. Water samples were collected and, for the analysis of water quality, the temperature, pH, turbidity, and residual chlorine content were assessed. To detect norovirus genotypes GI and GII, RT-PCR and semi-nested PCR were performed with specific NV-GI and NV-GII primer sets, respectively. The PCR products amplified from the detected strains were then subjected to sequence analyses. Of 1,090 samples collected in 2010, seven (0.64%) were found to be norovirus-positive. Specifically, one norovirus strain was identified to have the GI-6 genotype, and six GII strains had the GII, GII-3, GII-4, and GII-17 genotypes. The very low detection rate of norovirus most likely reflects the preventative measures used. However, this virus can spread rapidly from person to person in crowded, enclosed places such as the schools investigated in this study. To promote better public health and sanitary conditions, it is necessary to periodically monitor noroviruses that frequently cause epidemic food poisoning in South Korea. PMID:23820792

  17. Norovirus infection in children admitted to hospital for acute gastroenteritis in Belém, Pará, Northern Brazil.

    PubMed

    Siqueira, Jones Anderson Monteiro; Linhares, Alexandre da Costa; de Carvalho, Thaís Cristina Nascimento; Aragão, Glicélia Cruz; Oliveira, Darleise de Souza; Dos Santos, Mirleide Cordeiro; de Sousa, Maisa Silva; Justino, Maria Cleonice Aguiar; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol

    2013-04-01

    Noroviruses are the leading cause of epidemic, non-bacterial outbreaks of acute gastroenteritis, and are also a major cause of sporadic acute gastroenteritis in infants. The aim of the present study was to identify norovirus infections in children not infected by rotavirus admitted to hospital for acute gastroenteritis in Belém. A total of 348 fecal specimens were obtained from children with diarrhea aged less than 5 years, all of whom had tested negative for rotavirus, between May 2008 and April 2010. Fecal samples were screened for norovirus antigen using enzyme-immunoassay (EIA). Specimens were subjected to reverse-transcription polymerase chain reaction (RT-PCR) using the primers Mon432/434-Mon431/433 for detection of the GI and GII norovirus strains, respectively. Based on both methods, the overall norovirus positivity rate was 36.5% (127/348). Of the 169 samples collected in the first year, 44.4% (n = 75) tested positive for norovirus using both methods, 35.5% (n = 60) by EIA and 40.8% (n = 69) by RT-PCR. Using RT-PCR as a reference standard, a sensitivity of 78.3%, specificity of 94%, and agreement of 87.6% were recorded. Genome sequencing was obtained for 22 (31.9%) of the 69 positive samples, of which 90.9% (20/22) were genotype GII.4d and 9.1% (2/22) were genotype GII.b. Norovirus infection was most frequent in children under 2 years of age (41.5%-115/277). The peak incidence (62.1%) of norovirus-related acute gastroenteritis in these patients (not infected by rotavirus) was observed in February 2010. These findings emphasize the importance of norovirus as a cause of severe acute gastroenteritis among children in Belém, Pará, Northern Brazil. PMID:23359323

  18. Norovirus Epidemiology in Africa: A Review

    PubMed Central

    Mans, Janet; Armah, George E.; Steele, A. Duncan; Taylor, Maureen B.

    2016-01-01

    Norovirus (NoV) is recognised as a leading cause of gastroenteritis worldwide across all age groups. The prevalence and diversity of NoVs in many African countries is still unknown, although early sero-prevalence studies indicated widespread early infection. Reports on NoVs in Africa vary widely in terms of study duration, population groups and size, inclusion of asymptomatic controls, as well as genotyping information. This review provides an estimate of NoV prevalence and distribution of genotypes of NoVs in Africa. Inclusion criteria for the review were study duration of at least 6 months, population size of >50 and diagnosis by RT-PCR. As regions used for genotyping varied, or genotyping was not always performed, this was not considered as an inclusion criteria. A literature search containing the terms norovirus+Africa yielded 74 publications. Of these 19 studies from 14 out of the 54 countries in Africa met the inclusion criteria. Data from studies not meeting the inclusion criteria, based on sample size or short duration, were included as discussion points. The majority of studies published focused on children, under five years of age, hospitalised with acute gastroenteritis. The mean overall prevalence was 13.5% (range 0.8–25.5%) in children with gastroenteritis and 9.7% (range 7–31%) in asymptomatic controls, where tested. NoV GII.4 was the predominant genotype identified in most of the studies that presented genotyping data. Other prevalent genotypes detected included GII.3 and GII.6. In conclusion, NoV is a common pathogen in children with diarrhoea in Africa, with considerable carriage in asymptomatic children. There is however, a paucity of data on NoV infection in adults. PMID:27116615

  19. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h. PMID:26513671

  20. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  1. Molecular epidemiology of genogroup II norovirus infection among hospitalized children with acute gastroenteritis in Suzhou (Jiangsu, China) from 2010 to 2013.

    PubMed

    Fu, Jian-Guang; Ai, Jing; Zhang, Jun; Wu, Qing-Bin; Qi, Xian; Ji, Hong; Jin, Miao; Liu, Cheng; Wang, Shen-Jiao; Shan, Jun; Bao, Chang-Jun; Tang, Fen-Yang; Zhu, Ye-Fei

    2016-06-01

    Noroviruses (NoVs) are the most common cause of acute gastroenteritis in both sporadic and outbreak cases. Genotyping and recombination analyses were performed in order to help getting more knowledge of the distribution and genetic diversity of NoVs in Suzhou, located in Jiangsu province of China. All stool samples were collected from hospitalized children younger than 5 years old with acute gastroenteritis. For genotyping, the open reading frame (ORF) 1 and ORF2 were partially amplified and sequenced. 26.9% of stool samples were positive for genogroup II NoVs. The most common genotype was GII.4 and its variants included Den Haag-2006b, New Orleans-2009, and Sydney-2012. The Den Haag-2006b variants predominated during 2010-2012. In 2013, it was replaced by the Sydney-2012 variant. The second most common genotype was GII.12/GII.3. NoVs could be detected throughout the year, with GII.4 and GII.12/GII.3 coexisting during the cold months, and GII.4 was the main genotype during the warm months. The highest prevalence of NoV was detected in young children aged <24 months. Patients infected with GII.4 had a higher chance of getting moderate fever than other NoV-positive patients, while those infected with GII.12/GII.3 tended to have a mild degree of fever. NoV is an important pathogen responsible for viral gastroenteritis among children in Suzhou. Analyses of NoV circulating between 2010 and 2013 revealed a change of predominant variant of NoV GII.4 in each epidemic season and intergenotype recombinant strains represented an important part. PMID:26547266

  2. Norovirus in Transplantation.

    PubMed

    Angarone, Michael P; Sheahan, Anna; Kamboj, Mini

    2016-06-01

    Noroviruses are among the most common cause of diarrhea in transplant recipients. The clinical spectrum of norovirus infection after transplant is increasingly being recognized. As substantial morbidity is now associated with norovirus infections in this population; the quest for rapid diagnostic modalities and newer therapies has expanded. Transplant recipients with norovirus infection are at risk for several complications, including protracted illness with malnutrition, organ failure, and chronic viral shedding. This review summarizes the current knowledge on the epidemiology, complications, diagnosis, and treatment of norovirus infection in the transplant setting. PMID:27115700

  3. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces

    PubMed Central

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail

    2015-01-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. PMID:26296729

  4. Anti-viral Effect of Bifidobacterium adolescentis against Noroviruses

    PubMed Central

    Li, Dan; Breiman, Adrien; le Pendu, Jacques; Uyttendaele, Mieke

    2016-01-01

    This study aims to investigate the effect of Bifidobacterium adolescentis against noroviruses (NoVs). Murine norovirus-1 (MNV-1) used as a surrogate was detected by plaque assay and RT-qPCR. Human NoV virus like particles (VLPs) were detected by cell-binding assay. It was shown that the presence of B. adolescentis could inhibit the multiplication of MNV-1 on RAW 264.7 cells within 48 h of co-incubation period at 37°C. This inhibition did not occur at the viral binding stage, as no difference was observed in MNV-1 genomic copies collected from washed RAW 264.7 cells without and with B. adolescentis after co-incubation for 1 h at room temperature. Meanwhile, the presence of B. adolescentis decreased the binding of human NoV GI.1 VLPs to both Caco-2 cells and HT-29 cells, while no reduction was induced for the binding of human NoV GII.4 VLPs to Caco-2 cells. PMID:27375585

  5. Strain-Dependent Norovirus Bioaccumulation in Oysters ▿

    PubMed Central

    Maalouf, Haifa; Schaeffer, Julien; Parnaudeau, Sylvain; Le Pendu, Jacques; Atmar, Robert L.; Crawford, Sue E.; Le Guyader, Françoise S.

    2011-01-01

    Noroviruses (NoVs) are the main agents of gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Some NoV strains bind to shellfish tissues by using carbohydrate structures similar to their human ligands, leading to the hypothesis that such ligands may influence bioaccumulation. This study compares the bioaccumulation efficiencies and tissue distributions in oysters (Crassostrea gigas) of three strains from the two principal human norovirus genogroups. Clear differences between strains were observed. The GI.1 strain was the most efficiently concentrated strain. Bioaccumulation specifically occurred in digestive tissues in a dose-dependent manner, and its efficiency paralleled ligand expression, which was highest during the cold months. In comparison, the GII.4 strain was very poorly bioaccumulated and was recovered in almost all tissues without seasonal influence. The GII.3 strain presented an intermediate behavior, without seasonal effect and with less bioaccumulation efficiency than that of the GI.1 strain during the cold months. In addition, the GII.3 strain was transiently concentrated in gills and mantle before being almost specifically accumulated in digestive tissues. Carbohydrate ligand specificities of the strains at least partly explain the strain-dependent bioaccumulation characteristics. In particular, binding to the digestive-tube-specific ligand should contribute to bioaccumulation, whereas we hypothesize that binding to the sialic acid-containing ligand present in all tissues would contribute to retain virus particles in the gills or mantle and lead to rapid destruction. PMID:21441327

  6. Norovirus in Healthcare Settings

    MedlinePlus

    ... Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings Occupational Safety and Health Administration (OSHA) Fact Sheet on Noroviruses [PDF - 61 ...

  7. Genotype Considerations for Virus-Like Particle-Based Bivalent Norovirus Vaccine Composition

    PubMed Central

    Malm, Maria; Tamminen, Kirsi; Lappalainen, Suvi; Uusi-Kerttula, Hanni; Vesikari, Timo

    2015-01-01

    Norovirus (NoV) genogroup I (GI) and GII are responsible for most human infections with NoV. Because of the high genetic variability of NoV, natural infection does not induce sufficient protective immunity to different genotypes or to variants of the same genotype and there is little or no cross-protection against different genogroups. NoV-derived virus-like particles (VLPs) are promising vaccine candidates that induce high levels of NoV-specific humoral and cellular immune responses. It is believed that a bivalent NoV vaccine consisting of a representative VLP from GI and GII is a minimum requirement for an effective vaccine. Here, we compared the abilities of monovalent immunizations with NoV GI.1-2001, GI.3-2002, GII.4-1999, and GII.4-2010 New Orleans VLPs to induce NoV type-specific and cross-reactive immune responses and protective blocking antibody responses in BALB/c mice. All of the VLPs induced comparable levels of type-specific serum IgG antibodies, as well as blocking antibodies to the VLPs used for immunization. However, the abilities of different VLP genotypes to induce cross-reactive IgG and cross-blocking antibodies varied remarkably. Our results confirm previous findings of a lack of cross-protective immune responses between GI and GII NoVs. These data support the rationale for including NoV GI.3 and GII.4-1999 VLPs in the bivalent vaccine formulation, which could be sufficient to induce protective immune responses across NoV genotypes in the two common genogroups in humans. PMID:25903355

  8. Predominance of Norovirus and Sapovirus in Nicaragua after Implementation of Universal Rotavirus Vaccination

    PubMed Central

    Bucardo, Filemón; Reyes, Yaoska; Svensson, Lennart; Nordgren, Johan

    2014-01-01

    Background Despite significant reduction of rotavirus (RV) infections following implementation of RotaTeq vaccination in Nicaragua, a large burden of patients with diarrhea persists. Methods We conducted a community- and hospital-based study of the burden of RV, norovirus (NV) and sapovirus (SV) infections as cause of sporadic acute gastroenteritis (GE) among 330 children ≤ 5 years of age between September 2009 and October 2010 in two major cities of Nicaragua with a RotaTeq coverage rate of 95%. Results We found that NV, SV and RV infections altogether accounted for 45% of cases of GE. Notably, NV was found in 24% (79/330) of the children, followed by SV (17%, 57/330) and RV (8%, 25/330). The detection rate in the hospital setting was 27%, 15% and 14% for NV, SV and RV respectively, whereas in the community setting the detection rate of RV was < 1%. Among each of the investigated viruses one particular genogroup or genotype was dominant; GII.4 (82%) for NV, GI (46%) for SV and G1P[8] (64%) in RV. These variants were also found in higher proportions in the hospital setting compared to the community setting. The GII.4.2006 Minerva strain circulating globally since 2006 was the most common among genotyped NV in this study, with the GII.4-2010 New Orleans emerging in 2010. Conclusions This study shows that NV has become the leading viral cause of gastroenteritis at hospital and community settings in Nicaragua after implementation of RV vaccination. PMID:24849288

  9. Development of a Practical Method to Detect Noroviruses Contamination in Composite Meals.

    PubMed

    Saito, Hiroyuki; Toho, Miho; Tanaka, Tomoyuki; Noda, Mamoru

    2015-09-01

    Various methods to detect foodborne viruses including norovirus (NoV) in contaminated food have been developed. However, a practical method suitable for routine examination that can be applied for the detection of NoVs in oily, fatty, or emulsive food has not been established. In this study, we developed a new extraction and concentration method for detecting NoVs in contaminated composite meals. We spiked NoV-GI.4 or -GII.4 stool suspension into potato salad and stir-fried noodles. The food samples were suspended in homogenizing buffer and centrifuged to obtain a food emulsion. Then, anti-NoV-GI.4 or anti-NoV-GII.4 rabbit serum raised against recombinant virus-like particles or commercially available human gamma globulin and Staphylococcus aureus fixed with formalin as a source of protein A were added to the food emulsion. NoV-IgG-protein A-containing bacterial complexes were collected by centrifugation, and viral RNA was extracted. The detection limits of NoV RNA were 10-35 copies/g food for spiked NoVs in potato salad and stir-fried noodles. Human gamma globulin could also concentrate other NoV genotypes as well as other foodborne viruses, including sapovirus, hepatitis A virus, and adenovirus. This newly developed method can be used as to identify NoV contamination in composite foods and is also possibly applicable to other foodborne viruses. PMID:25796206

  10. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures. PMID:21942189

  11. Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US.

    PubMed

    Woods, Jacquelina W; Calci, Kevin R; Marchant-Tambone, Joey G; Burkhardt, William

    2016-10-01

    Human noroviruses are the leading cause of non-bacterial shellfish associated gastroenteritis. Here we report on the detection and characterization of norovirus (NoV) in shellfish associated outbreaks. Requests were received from state and federal officials for technical assistance in the analysis of shellfish for NoV and male specific coliphage (MSC; an enteric virus surrogate) during the years 2009 thru 2014. In outbreaks where NoV was detected, genogroup II (GII) levels ranged from 2.4 to 82.0 RT-qPCR U/g of digestive diverticula (DD) while NoV genogroup I (GI) levels ranged from 1.5 to 29.8 RT-qPCR U/g of DD. Murine norovirus extraction efficiencies ranged between 50 and 85%. MSC levels ranged from <6 to 80 PFU/100 g. Phylogenetic analysis of the outbreak sequences revealed strains clustering with GI.8, GI.4, GII.3, GII.4, GII.7, and GII.21. There was 100% homology between the shellfish and clinical strains occurring in 2 of 8 outbreaks. Known shellfish consumption data demonstrated probable infectious particles ingested as low as 12. These investigations demonstrate effective detection, quantification, and characterization of NoV in shellfish associated with illness. PMID:27375246

  12. Noroviruses associated with acute gastroenteritis in a children's day care facility in Rio de Janeiro, Brazil.

    PubMed

    Gallimore, C I; Barreiros, M A B; Brown, D W G; Nascimento, J P; Leite, J P G

    2004-03-01

    Noroviruses (Norwalk-like viruses) are an important cause of gastroenteritis worldwide. They are the most common cause of outbreaks of gastroenteritis in the adult population and occur in nursing homes for the elderly, geriatric wards, medical wards, and in hotel and restaurant settings. Food-borne outbreaks have also occurred following consumption of contaminated oysters. This study describes the application of a reverse transcription-polymerase chain reaction (RT-PCR) assay using random primers (PdN6) and specific Ni and E3 primers, directed at a small region of the RNA-dependent RNA polymerase-coding region of the norovirus genome, and DNA sequencing for the detection and preliminary characterisation of noroviruses in outbreaks of gastroenteritis in children in Brazil. The outbreak samples were collected from children <5 years of age at the Bertha Lutz children's day care facility at Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, that occurred between 1996 and 1998, where no pathogen had been identified. At the Bertha Lutz day care center facility, only Fiocruz's employee children are provided for, and they come from different social, economic and cultural backgrounds. Three distinct genogroup II strains were detected in three outbreaks in 1997/98 and were most closely related to genotypes GII-3 (Mexico virus) and GII-4 (Grimsby virus), both of which have been detected in paediatric and adult outbreaks of gastroenteritis worldwide. PMID:15060697

  13. Prevalence and molecular characterization of human noroviruses and sapoviruses in Ethiopia.

    PubMed

    Sisay, Zufan; Djikeng, Appolinaire; Berhe, Nega; Belay, Gurja; Gebreyes, Wondwossen; Abegaz, Woldaregay Erku; Njahira, Moses N; Wang, Q H; Saif, Linda J

    2016-08-01

    Viral gastroenteritis is a major public health problem worldwide. In Ethiopia, very limited studies have been done on the epidemiology of enteropathogenic viruses. The aim of this study was to detect and characterize noroviruses (NoVs) and sapoviruses (SaVs) from acute gastroenteritis patients of all ages. Fecal samples were collected from diarrheic patients (n = 213) in five different health centers in Addis Ababa during June-September 2013. The samples were screened for caliciviruses by reverse transcription polymerase chain reaction (RT-PCR) using universal and genogroup-specific primer pairs. Phylogenetic analyses were conducted using the sequences of the PCR products. Of the clinical samples, 25.3 % and 4.2 % were positive for NoV and SaV RNA, respectively. Among the norovirus positives, 22 were sequenced further, and diverse norovirus strains were identified: GI (n = 4), GII (n = 17) and GIV (n = 1). Most strains were GII (n = 17/22: 77.2 %), which were further divided into three different genotypes (GII.4, GII.12/GII.g recombinant-like and GII.17), with GII.17 being the dominant (7/17) strain detected. GI noroviruses, in particular GI.4 (n = 1), GI.5 (n = 2) and GI.8 (n = 1), were also detected and characterized. The GIV strain detected is the first from East Africa. The sapoviruses sequenced were also the first reported from Ethiopia. Collectively, this study showed the high burden and diversity of noroviruses and circulation of sapoviruses in diarrheic patients in Ethiopia. Continued surveillance to assess their association with diarrhea is needed to define their epidemiology, disease burden, and impact on public health. PMID:27193022

  14. Broad Blockade Antibody Responses in Human Volunteers after Immunization with a Multivalent Norovirus VLP Candidate Vaccine: Immunological Analyses from a Phase I Clinical Trial

    PubMed Central

    Lindesmith, Lisa C.; Ferris, Martin T.; Mullan, Clancy W.; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R.; Baehner, Frank; Mendelman, Paul M.; Bargatze, Robert F.; Baric, Ralph S.

    2015-01-01

    Background Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Methods and Findings Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Conclusions Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and

  15. Application of Long-Range and Binding Reverse Transcription-Quantitative PCR To Indicate the Viral Integrities of Noroviruses

    PubMed Central

    De Keuckelaere, Ann; Uyttendaele, Mieke

    2014-01-01

    This study intends to establish and apply methods evaluating both viral capsid and genome integrities of human noroviruses (NoVs), which thus far remain nonculturable. Murine norovirus 1 (MNV-1) and human NoV GII.4 in phosphate-buffered saline suspensions were treated with heat, UV light, or ethanol and detected by reverse transcription-quantitative PCR (RT-qPCR), long-range RT-qPCR, binding RT-qPCR, and binding long-range RT-qPCR. For MNV-1 heated at 60°C for 2 and 30 min, limited reductions of genomic copies (<0.3-log) were obtained by RT-qPCR and long-range RT-qPCR, while the cell-binding pretreatments obtained higher reductions (>1.89-log reduction after 60°C for 30 min by binding long-range RT-qPCR). The human NoV GII.4 was found to be more heat resistant than MNV-1. For both MNV-1 and human NoV GII.4 after UV treatments of 20 and 200 mJ/cm2, no significant difference (P > 0.05) was observed between the dose-dependent reductions obtained by the four detection methodologies. Treatment of 70% ethanol for 1 min was shown to be more effective for inactivation of both MNV-1 and human NoV GII.4 than the heat and UV treatments used in this study. Subsequently, eight raspberry and four shellfish samples previously shown to be naturally contaminated with human NoVs by RT-qPCR (GI and GII; thus, 24 RT-qPCR signals) were subjected to comparison by this method. RT-qPCR, long-range RT-qPCR, binding RT-qPCR, and binding long-range RT-qPCR detected 20/24, 14/24, 24/24, and 23/24 positive signals, respectively, indicating the abundant presence of intact NoV particles. PMID:25107982

  16. Surveillance of pathogens causing gastroenteritis and characterization of norovirus and sapovirus strains in Shenzhen, China, during 2011.

    PubMed

    Wu, Wei; Yang, Hong; Zhang, Hai-long; Xian, Hui-Xia; Yao, Xiang-Jie; Zhao, De-Jian; Chen, Long; Shu, Bai-hua; Zhou, Yi-kai; He, Ya-Qing

    2014-08-01

    Viral gastroenteritis is one of the most common diseases in humans, and it is primarily caused by rotaviruses (RVs), astroviruses (AstVs), adenoviruses (AdVs), noroviruses (NoVs), and sapoviruses (SaVs). In this study, we determined the distribution of viral gastroenteritis and human calicivirus (HuCVs) in acute gastroenteritis patients in Shenzhen, China, during 2011. Real-time RT-PCR was used to detect norovirus (NoV), group A rotavirus (RV), adenovirus (AdV), and astrovirus (AstV). From a total of 983 fecal samples, NoV was detected in 210 (21.4 %); RoV in 173 (17.6 %); AstV in 10 (1.0 %); and AdV in 15 (1.5 %). Mixed infections involving two NoVs were found in 21 of the 387 pathogen-positive stool specimens. NoV and SaV genotypes were further tested using RT-PCRs and molecular typing and phylogenetic analysis were then performed based on the ORF1-ORF2 region for NoV and a conserved nucleotide sequence in the capsid gene for SaV. Of the 68 typed strains that were sequenced and genotyped, five were NoV G1 (7.5 %) and 63 were NoV GII (96.6 %). GII strains were clustered into five genotypes, including GII.4 (65.1 %; 36 GII.4 2006b and five GII.4 New Orleans), GII.3 (28.6 %), GII.2 (3.2 %), GII.6 (1.6 %), and GII.1 (1.6 %). While all fecal specimens were tested for SaVs, 15 (1.5 %) were positive, and of these, 12 isolates belonged to G1.2, and the remaining three SaV strains belonged to the SaV GII genogroup. Although various HuCVs were detected in acute gastroenteritis patients, NoV GII.4 2006b was more prevalent than the other HuCVs. PMID:24610551

  17. Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability

    SciTech Connect

    Hansman, Grant S.; Biertümpfel, Christian; Georgiev, Ivelin; McLellan, Jason S.; Chen, Lei; Zhou, Tongqing; Katayama, Kazuhiko; Kwong, Peter D.

    2011-10-10

    Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal {alpha}fucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical {alpha}fucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.

  18. Molecular characterization of new emerging GII.17 norovirus strains from South China.

    PubMed

    Xue, Liang; Wu, Qingping; Cai, Weicheng; Zhang, Jumei; Guo, Weipeng

    2016-06-01

    Noroviruses are still the primary cause of non-bacterial acute gastroenteritis worldwide. Recently, a novel GII.17 norovirus variant emerged and caused an infection peak in the cold season of 2014/2015 in some Asian countries, including China. In this study, in order to understand the evolutionary advantage of the novel variant, complete genomic sequences of GII.17 NoV strains from South China were comprehensively analyzed. Pairwise alignments of new GII.17 genomes with representative sequences of each GII genotype were performed. Inconsistent homology was observed between different protein-encoding regions, of which VPg (NS5) and P2 were found to be the most conserved and variable ones, respectively. The differences between new sequences and other reported GII.17 genomes were also compared, and 84 mismatched nucleotides were found, resulting in 15 amino acid changes. Then, all capsid sequences of different GII.17 NoV variants were collected for multiple alignments, and a total of 87 spots were identified during their evolution process. Homology modeling of capsid proteins of four GII.17 variants was carried out based on comparison with GII.4 VA387 strain, and structural differences were mainly embodied in five extended loops. Furthermore, positions of potential conformational epitope regions of new GII.17 variants were found more similar or adjacent to those of GII.4 rather than those of the former GII.17 variants. In summary, nine GII.17 strains from South China were extensively characterized based on their complete genomes, and a different distribution pattern of epitope residues was predicted on the new GII.17 variant capsid from that of the former ones. PMID:26923075

  19. Advances in Norovirus Biology

    PubMed Central

    Karst, Stephanie M.; Wobus, Christiane E.; Goodfellow, Ian G.; Green, Kim Y.

    2014-01-01

    Human noroviruses are a major cause of epidemic and sporadic gastroenteritis worldwide, and can chronically infect immunocompromised patients. Efforts to develop effective vaccines and antivirals have been hindered by the uncultivable nature and extreme genetic diversity of human noroviruses. Although they remain a particularly challenging pathogen to study, recent advances in norovirus animal models and in vitro cultivation systems have led to an increased understanding of norovirus molecular biology and replication, pathogenesis, cell tropism, and innate and adaptive immunity. Furthermore, clinical trials of vaccines consisting of nonreplicating virus-like particles have shown promise. In this review, we summarize these recent advances and discuss controversies in the field, which is rapidly progressing towards generation of antiviral agents and increasingly effective vaccines. PMID:24922570

  20. Norovirus a Costly Bug

    MedlinePlus

    ... to be the first to assess the global economic impact of the highly contagious virus, which is ... a lot more attention. Our study presents an economic argument for greater consideration of norovirus. It has ...

  1. Characterization of virus-like particles derived from a GII.3 norovirus strain distantly related with current dominating strains.

    PubMed

    Huo, Yuqi; Chen, Xuhui; Zheng, Lijun; Huo, Jinling; Zhang, Shanfeng; Wang, Mingchen; Wang, Yumei

    2016-10-01

    Genogroup II, genotype 3 noroviruses (GII.3 NoVs) are secondary to GII.4 NoVs in causing acute non-bacterial gastroenteritis worldwide. In our previous study, we found that virus-like particles (VLPs) derived from a GII.3 NoV strain exhibited no binding activity to any salivary and synthetic histo-blood group antigens (HBGAs) tested. In this study, the nucleotide sequence encoding the major capsid protein of another documented GII.3 NoV strain was codon-optimized and synthesized, and the major capsid protein was expressed using recombinant baculovirus virus expression system. The assembly of VLPs was verified by electron microscopy, and the binding profiles of the assembled VLPs to salivary HBGAs were determined, and in vitro VLP-salivary HBGAs binding blockade assay was used to test the cross-blocking effects of hyperimmune sera produced against different genotypes (GI.2, GII.3, and GII.4). The expression of the major capsid proteins led to the successful assembly of VLPs, and in vitro VLP-salivary HBGAs binding assay indicated that the assembled VLPs bound to salivary HBGAs from blood type A, B, AB, and O individuals, with the highest binding capacity to type A salivary HBGAs. In vitro VLP-salivary HBGAs binding blockade assay demonstrated the absence of blocking activities for hyperimmune sera produced against GI.2and GII.4 VLPs and the presence of blocking activity for that against GII.3 VLPs. Our results suggest the absence of cross-blocking activities among different genotypes and the presence of blocking activities between GII.3 NoVs from different clusters, which might have implications for the design of multivalent NoV vaccines. PMID:27234312

  2. Infection control for norovirus

    PubMed Central

    Barclay, L.; Park, G. W.; Vega, E.; Hall, A.; Parashar, U.; Vinjé, J.; Lopman, B.

    2015-01-01

    Norovirus infections are notoriously difficult to prevent and control, owing to their low infectious dose, high shedding titre, and environmental stability. The virus can spread through multiple transmission routes, of which person-to-person and foodborne are the most important. Recent advances in molecular diagnostics have helped to establish norovirus as the most common cause of sporadic gastroenteritis and the most common cause of outbreaks of acute gastroenteritis across all ages. In this article, we review the epidemiology and virology of noroviruses, and prevention and control guidelines, with a focus on the principles of disinfection and decontamination. Outbreak management relies on sound infection control principles, including hand hygiene, limiting exposure to infectious individuals, and thorough environmental decontamination. Ideally, all infection control recommendations would rely on empirical evidence, but a number of challenges, including the inability to culture noroviruses in the laboratory and the challenges of outbreak management in complex environments, has made it difficult to garner clear evidence of efficacy in certain areas of infection control. New experimental data on cultivable surrogates for human norovirus and on environmental survivability and relative resistance to commonly used disinfectants are providing new insights for further refinining disinfection practices. Finally, clinical trials are underway to evaluate the efficacy of vaccines, which may shift the current infection control principles to more targeted interventions. PMID:24813073

  3. The Application of New Molecular Methods in the Investigation of a Waterborne Outbreak of Norovirus in Denmark, 2012

    PubMed Central

    Schultz, Anna Charlotte; Fonager, Jannik; Ethelberg, Steen; Dalgaard, Camilla; Adelhardt, Marianne; Engberg, Jørgen H.; Fischer, Thea Kølsen; Lassen, Sofie Gillesberg

    2014-01-01

    In December 2012, an outbreak of acute gastrointestinal illness occurred in a geographical distinct area in Denmark covering 368 households. A combined microbiological, epidemiological and environmental investigation was initiated to understand the outbreak magnitude, pathogen(s) and vehicle in order to control the outbreak. Norovirus GII.4 New Orleans 2009 variant was detected in 15 of 17 individual stool samples from 14 households. Norovirus genomic material from water samples was detected and quantified and sequencing of longer parts of the viral capsid region (>1000 nt) were applied to patient and water samples. All five purposely selected water samples tested positive for norovirus GII in levels up to 1.8×104 genomic units per 200 ml. Identical norovirus sequences were found in all 5 sequenced stool samples and 1 sequenced water sample, a second sequenced water sample showed 1 nt (<0.1%) difference. In a cohort study, including 256 participants, cases were defined as residents of the area experiencing diarrhoea or vomiting onset on 12–14 December 2012. We found an attack rate of 51%. Being a case was associated with drinking tap-water on 12–13 December (relative risk = 6.0, 95%CI: 1.6–22) and a dose-response relation for the mean glasses of tap-water consumed was observed. Environmental investigations suggested contamination from a sewage pipe to the drinking water due to fall in pressure during water supply system renovations. The combined microbiological, epidemiological and environmental investigations strongly indicates the outbreak was caused by norovirus contamination of the water supply system. PMID:25222495

  4. Noroviruses in Archival Samples

    PubMed Central

    Skraber, Sylvain; Italiaander, Ronald; Lodder, Willemijn J.

    2005-01-01

    Application of recent techniques to detect current pathogens in archival effluent samples collected and concentrated in 1987 lead to the characterization of norovirus GGII.6 Seacroft, unrecognized until 1990 in a clinical sample. Retrospective studies will likely increase our knowledge about waterborne transmission of emerging pathogens. PMID:15757575

  5. Norovirus a Costly Bug

    MedlinePlus

    ... You only seem to hear about it when people get sick on a cruise ship or at a restaurant, but norovirus is everywhere," said study leader Sarah Bartsch, a research associate at Johns Hopkins Bloomberg School of Public Health, in Baltimore. "It doesn't matter how old you are or if you're in a ...

  6. Food-Borne Noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses have emerged as the number one cause of food-borne illness in the United States. In this book chapter, the current molecular classification criteria are described as well as the current information regarding the molecular biology of the virus and its putative gene functions. Identifica...

  7. Evaluation of the Porcine Gastric Mucin Binding Assay for High-Pressure-Inactivation Studies Using Murine Norovirus and Tulane Virus

    PubMed Central

    Li, Xinhui

    2014-01-01

    We compared the results of high-hydrostatic-pressure (HHP) inactivation of murine norovirus type 1 (MNV-1) and Tulane virus (TV) obtained by a porcine gastric mucin binding assay followed by quantitative reverse transcription-PCR (referred to here as the PGM-MB/PCR assay) and a plaque assay and evaluated HHP inactivation of a human norovirus (HuNoV) genogroup I genotype 1 (GI.1) strain and a HuNoV GII.4 strain by using the PGM-MB/PCR assay. Viruses were treated at different pressure levels for 2 min at 4 or 21°C in culture medium of neutral pH and in culture medium of pH 4 at 21°C. The log reductions of infectious MNV-1 and TV particles caused by HHP were assessed using the PGM-MB/PCR and plaque assays, while the log reductions of HuNoVs were assessed by the PGM-MB/PCR assay only. For TV and MNV-1, the two pressure inactivation curves obtained using the plaque and PGM-MB/PCR assays were almost identical at ≤2-log-reduction levels regardless of the treatment temperature and pH. Further increasing the pressure over the 2-log-reduction level resulted in higher log reductions of TV and MNV-1, as assessed by the plaque assay, but did not increase the log reductions, as assessed by the PGM-MB/PCR assay. HHP treatments could achieve maximum reductions of ∼3 and 3.5 log units for GI.1 and GII.4, respectively, as assessed by the PGM-MB/PCR assay. On the basis of these results, it can reasonably be concluded that the PGM-MB/PCR assay would very likely be able to estimate HHP inactivation of HuNoV at ≤2-log-reduction levels. It would also likely conservatively quantify HHP inactivation of the GI.1 strain at 2- to 3-log-reduction levels and the GII.4 strain at 2- to 3.5-log-reduction levels. PMID:25362063

  8. Inhibition of Histo-blood Group Antigen Binding as a Novel Strategy to Block Norovirus Infections

    PubMed Central

    Zhang, Xu-Fu; Tan, Ming; Chhabra, Monica; Dai, Ying-Chun; Meller, Jarek; Jiang, Xi

    2013-01-01

    Noroviruses (NoVs) are the most important viral pathogens that cause epidemic acute gastroenteritis. NoVs recognize human histo-blood group antigens (HBGAs) as receptors or attachment factors. The elucidation of crystal structures of the HBGA-binding interfaces of a number of human NoVs representing different HBGA binding patterns opens a new strategy for the development of antiviral compounds against NoVs through rational drug design and computer-aided virtual screening methods. In this study, docking simulations and virtual screening were used to identify hit compounds targeting the A and B antigens binding sites on the surface of the capsid P protein of a GII.4 NoV (VA387). Following validation by re-docking of the A and B ligands, these structural models and AutoDock suite of programs were used to screen a large drug-like compound library (derived from ZINC library) for inhibitors blocking GII.4 binding to HBGAs. After screening >2 million compounds using multistage protocol, 160 hit compounds with best predicted binding affinities and representing a number of distinct chemical classes have been selected for subsequent experimental validation. Twenty of the 160 compounds were found to be able to block the VA387 P dimers binding to the A and/or B HBGAs at an IC50<40.0 µM, with top 5 compounds blocking the HBGA binding at an IC50<10.0 µM in both oligosaccharide- and saliva-based blocking assays. Interestingly, 4 of the top-5 compounds shared the basic structure of cyclopenta [a] dimethyl phenanthren, indicating a promising structural template for further improvement by rational design. PMID:23894462

  9. Trivalent Combination Vaccine Induces Broad Heterologous Immune Responses to Norovirus and Rotavirus in Mice

    PubMed Central

    Tamminen, Kirsi; Lappalainen, Suvi; Huhti, Leena; Vesikari, Timo; Blazevic, Vesna

    2013-01-01

    Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes. PMID:23922988

  10. Inhibition of histo-blood group antigen binding as a novel strategy to block norovirus infections.

    PubMed

    Zhang, Xu-Fu; Tan, Ming; Chhabra, Monica; Dai, Ying-Chun; Meller, Jarek; Jiang, Xi

    2013-01-01

    Noroviruses (NoVs) are the most important viral pathogens that cause epidemic acute gastroenteritis. NoVs recognize human histo-blood group antigens (HBGAs) as receptors or attachment factors. The elucidation of crystal structures of the HBGA-binding interfaces of a number of human NoVs representing different HBGA binding patterns opens a new strategy for the development of antiviral compounds against NoVs through rational drug design and computer-aided virtual screening methods. In this study, docking simulations and virtual screening were used to identify hit compounds targeting the A and B antigens binding sites on the surface of the capsid P protein of a GII.4 NoV (VA387). Following validation by re-docking of the A and B ligands, these structural models and AutoDock suite of programs were used to screen a large drug-like compound library (derived from ZINC library) for inhibitors blocking GII.4 binding to HBGAs. After screening >2 million compounds using multistage protocol, 160 hit compounds with best predicted binding affinities and representing a number of distinct chemical classes have been selected for subsequent experimental validation. Twenty of the 160 compounds were found to be able to block the VA387 P dimers binding to the A and/or B HBGAs at an IC50<40.0 µM, with top 5 compounds blocking the HBGA binding at an IC50<10.0 µM in both oligosaccharide- and saliva-based blocking assays. Interestingly, 4 of the top-5 compounds shared the basic structure of cyclopenta [a] dimethyl phenanthren, indicating a promising structural template for further improvement by rational design. PMID:23894462

  11. A Gnotobiotic Pig Model for Determining Human Norovirus Inactivation by High-Pressure Processing

    PubMed Central

    Lou, Fangfei; Ye, Mu; Ma, Yuanmei; Li, Xinhui; DiCaprio, Erin; Chen, Haiqiang; Krakowka, Steven; Hughes, John; Kingsley, David

    2015-01-01

    Human norovirus (NoV) is responsible for over 90% of outbreaks of acute nonbacterial gastroenteritis worldwide and accounts for 60% of cases of foodborne illness in the United States. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, we determined the survival of a human NoV genogroup II, genotype 4 (GII.4) strain in seeded oyster homogenates after high-pressure processing (HPP) using a novel receptor binding assay and a gnotobiotic pig model. Pressure conditions of 350 MPa at 0°C for 2 min led to a 3.7-log10 reduction in the number of viral RNA copies in oysters, as measured by the porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay and real-time RT-PCR, whereas pressure conditions of 350 MPa at 35°C for 2 min achieved only a 1-log10 reduction in the number of RNA copies. Newborn gnotobiotic piglets orally fed oyster homogenate treated at 350 MPa and 0°C for 2 min did not have viral RNA shedding in feces, histologic lesions, or viral replication in the small intestine. In contrast, gnotobiotic piglets fed oysters treated at 350 MPa and 35°C for 2 min had high levels of viral shedding in feces and exhibited significant histologic lesions and viral replication in the small intestine. Collectively, these data demonstrate that (i) human NoV survival estimated by an in vitro PGM-MB virus binding assay is consistent with the infectivity determined by an in vivo gnotobiotic piglet model and (ii) HPP is capable of inactivating a human NoV GII.4 strain at commercially acceptable pressure levels. PMID:26187968

  12. Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso

    PubMed Central

    Nordgren, Johan; Nitiema, Léon W.; Ouermi, Djeneba; Simpore, Jacques; Svensson, Lennart

    2013-01-01

    Norovirus (NoV) constitutes the second most common viral pathogen causing pediatric diarrhea after rotavirus. In Africa, diarrhea is a major health problem in children, and yet few studies have been performed regarding NoV. The association of histo-blood group antigens (HBGA) and susceptibility to NoV infection is well established in Caucasian populations with non-secretors being resistant to many common NoV strains. No study regarding HBGA and NoV susceptibility has yet been performed in Africa. We collected 309 stool and 208 saliva samples from diarrheal children in Ouagadougou, Burkina Faso; May 2009 to March 2010. NoV was detected using real-time PCR, and genotyped by sequencing. Saliva samples were ABO, Lewis and secretor phenotyped using in house ELISA assays. NoV was detected in 12% (n = 37) of the samples. The genotype diversity was unusually large; overall the 37 positive samples belonged to 14 genotypes. Only children <2 years of age were NoV positive and the GII.4 NoVs were more frequent in the late dry season (Jan-May). NoV infections were observed less in children with the secretor-negative phenotype or blood group A (OR 0.18; p = 0.012 and OR 0.31; p = 0.054; respectively), with two non-secretors infected with genotypes GII.7 and GII.4 respectively. Lewis-negative (Lea−b−) children, representing 32% of the study population, were susceptible to GII, but were not infected with any NoV GI. GII.4 strains preferentially infected children with blood group B whereas secretor-positive children with blood group O were infected with the largest variety of genotypes. This is the first study identifying host genetic factors associated with susceptibility to NoV in an African population, and suggests that while the non-secretor phenotype provides protection; the Lewis b antigen is not necessary for GII infection. PMID:23894502

  13. Absolute Humidity Influences the Seasonal Persistence and Infectivity of Human Norovirus.

    PubMed

    Colas de la Noue, Alexandre; Estienney, Marie; Aho, Serge; Perrier-Cornet, Jean-Marie; de Rougemont, Alexis; Pothier, Pierre; Gervais, Patrick; Belliot, Gaël

    2014-12-01

    Norovirus (NoV) is one of the main causative agents of acute gastroenteritis worldwide. In temperate climates, outbreaks peak during the winter season. The mechanism by which climatic factors influence the occurrence of NoV outbreaks is unknown. We hypothesized that humidity is linked to NoV seasonality. Human NoV is not cultivatable, so we used cultivatable murine norovirus (MNV) as a surrogate to study its persistence when exposed to various levels of relative humidity (RH) from low (10% RH) to saturated (100% RH) conditions at 9 and 25°C. In addition, we conducted similar experiments with virus-like particles (VLPs) from the predominant GII-4 norovirus and studied changes in binding patterns to A, B, and O group carbohydrates that might reflect capsid alterations. The responses of MNV and VLP to humidity were somewhat similar, with 10 and 100% RH exhibiting a strong conserving effect for both models, whereas 50% RH was detrimental for MNV infectivity and VLP binding capacity. The data analysis suggested that absolute humidity (AH) rather than RH is the critical factor for keeping NoV infectious, with an AH below 0.007 kg water/kg air being favorable to NoV survival. Retrospective surveys of the meteorological data in Paris for the last 14 years showed that AH average values have almost always been below 0.007 kg water/kg air during the winter (i.e., 0.0046 ± 0.0014 kg water/kg air), and this finding supports the fact that low AH provides an ideal condition for NoV persistence and transmission during cold months. PMID:25217015

  14. Absolute Humidity Influences the Seasonal Persistence and Infectivity of Human Norovirus

    PubMed Central

    Colas de la Noue, Alexandre; Estienney, Marie; Aho, Serge; Perrier-Cornet, Jean-Marie; de Rougemont, Alexis; Pothier, Pierre

    2014-01-01

    Norovirus (NoV) is one of the main causative agents of acute gastroenteritis worldwide. In temperate climates, outbreaks peak during the winter season. The mechanism by which climatic factors influence the occurrence of NoV outbreaks is unknown. We hypothesized that humidity is linked to NoV seasonality. Human NoV is not cultivatable, so we used cultivatable murine norovirus (MNV) as a surrogate to study its persistence when exposed to various levels of relative humidity (RH) from low (10% RH) to saturated (100% RH) conditions at 9 and 25°C. In addition, we conducted similar experiments with virus-like particles (VLPs) from the predominant GII-4 norovirus and studied changes in binding patterns to A, B, and O group carbohydrates that might reflect capsid alterations. The responses of MNV and VLP to humidity were somewhat similar, with 10 and 100% RH exhibiting a strong conserving effect for both models, whereas 50% RH was detrimental for MNV infectivity and VLP binding capacity. The data analysis suggested that absolute humidity (AH) rather than RH is the critical factor for keeping NoV infectious, with an AH below 0.007 kg water/kg air being favorable to NoV survival. Retrospective surveys of the meteorological data in Paris for the last 14 years showed that AH average values have almost always been below 0.007 kg water/kg air during the winter (i.e., 0.0046 ± 0.0014 kg water/kg air), and this finding supports the fact that low AH provides an ideal condition for NoV persistence and transmission during cold months. PMID:25217015

  15. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    PubMed

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane. PMID:27095709

  16. Inactivation of a Foodborne Norovirus Outbreak Strain with Nonthermal Atmospheric Pressure Plasma

    PubMed Central

    Ahlfeld, Birte; Li, Yangfang; Boulaaba, Annika; Binder, Alfred; Schotte, Ulrich; Zimmermann, Julia L.; Morfill, Gregor

    2015-01-01

    ABSTRACT  Human norovirus (NoV) is the most frequent cause of epidemic nonbacterial acute gastroenteritis worldwide. We investigated the impact of nonthermal or cold atmospheric pressure plasma (CAPP) on the inactivation of a clinical human outbreak NoV, GII.4. Three different dilutions of a NoV-positive stool sample were prepared and subsequently treated with CAPP for various lengths of time, up to 15 min. NoV viral loads were quantified by quantitative real-time reverse transcription PCR (RT-qPCR). Increased CAPP treatment time led to increased NoV reduction; samples treated for the longest time had the lowest viral load. From the initial starting quantity of 2.36 × 104 genomic equivalents/ml, sample exposure to CAPP reduced this value by 1.23 log10 and 1.69 log10 genomic equivalents/ml after 10 and 15 min, respectively (P < 0.01). CAPP treatment of surfaces carrying a lower viral load reduced NoV by at least 1 log10 after CAPP exposure for 2 min (P < 0.05) and 1 min (P < 0.05), respectively. Our results suggest that NoV can be inactivated by CAPP treatment. The lack of cell culture assays prevents our ability to estimate infectivity. It is possible that some detectable, intact virus particles were rendered noninfectious. We conclude that CAPP treatment of surfaces may be a useful strategy to reduce the risk of NoV transmission in crowded environments. Importance  Human gastroenteritis is most frequently caused by noroviruses, which are spread person to person and via surfaces, often in facilities with crowds of people. Disinfection of surfaces that come into contact with infected humans is critical for the prevention of cross-contamination and further transmission of the virus. However, effective disinfection cannot be done easily in mass catering environments or health care facilities. We evaluated the efficacy of cold atmospheric pressure plasma, an innovative airborne disinfection method, on surfaces inoculated with norovirus. We used a clinically

  17. Pattern of Circulation of Norovirus GII Strains during Natural Infection

    PubMed Central

    Fobisong, Cajetan; Tah, Ferdinand; Lindh, Magnus; Nkuo-Akenji, Theresia; Bergström, Tomas

    2014-01-01

    Norovirus (NoV) is considered a major cause of nonbacterial gastroenteritis among people of all ages worldwide, but the natural course of infection is incompletely known. In this study, the pattern of circulation of NoVs was studied among 146 children and 137 adults in a small community in southwestern Cameroon. The participants provided monthly fecal samples during a year. NoV RNA was detected in at least one sample from 82 (29%) of the participants. The partial VP1 region could be sequenced in 36 NoV GII-positive samples. Three different genotypes were identified (GII.1, GII.4, and GII.17), with each genotype circulating within 2 to 3 months and reappearing after a relapse period of 2 to 3 months. Most infections occurred once, and 2 episodes at most within a year were detected. No difference in the frequency of NoV infection between children and adults was recorded. The same genotype was detected for a maximum of 2 consecutive months in 3 children only, suggesting that a less than 30-day duration of viral shedding in natural infection was common. Reinfection within a year with the same genotype was not observed, consistent with short-term homotypic immune protection. The study revealed that NoV strains are circulating with a limited duration of viral shedding both in the individuals and the population as part of their natural infection. The results also provide evidence of cross-protective immunity of limited duration between genotypes of the same genogroup. PMID:25274996

  18. Application of next-generation sequencing to investigation of norovirus diversity in shellfish collected from two coastal sites in Japan from 2013 to 2014.

    PubMed

    Imamura, Saiki; Haruna, Mika; Goshima, Tomoko; Kanezashi, Hiromi; Okada, Tsukasa; Akimoto, Keiko

    2016-05-01

    A better understanding of the role played by shellfish regarding the manner of pathogen contamination, persistence, and selection may help considering epidemiology of noroviruses. Thus, norovirus genotype profiles in shellfish (Crassostrea gigas and Mitilus galloprovincialis) were investigated by using Next-generation sequencing (NGS) technology. In genogroup I (GI), 7 genotypes (abbreviated as GI.2 to GI.7, and GI.9) were detected from C. gigas, whereas 9 genotypes (GI.1 to GI.9) were detected from M. galloprovincialis. The genotype with the highest proportion found in both C. gigas and M. galloprovincialis was GI.4, and the second highest was GI.3. In genogroup II (GII), 17 genotypes (GII.1 to GII.9, GII.11 to GII.17, GII.21 and GI.22) were detected from C. gigas, whereas 16 genotypes (GII.1 to GII.8, GII.11 to GII.17, GII.21 and GI.22) were detected from M. galloprovincialis. The genotype with the highest proportion in both C. gigas and M. galloprovincialis was GII.4, the next highest differed between C. gigas and M. galloprovincialis. To our knowledge, this study may be the first trial to utilize the latest technology in this field, and reveal the diversity of norovirus genotypes present in shellfish. PMID:27506085

  19. Nonnucleoside inhibitors of norovirus RNA polymerase: scaffolds for rational drug design.

    PubMed

    Eltahla, Auda A; Lim, Kun Lee; Eden, John-Sebastian; Kelly, Andrew G; Mackenzie, Jason M; White, Peter A

    2014-06-01

    Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide, causing over 200,000 deaths a year. NoV is nonenveloped, with a single-stranded RNA genome, and is primarily transmitted person to person. The viral RNA-dependent RNA polymerase (RdRp) is critical for the production of genomic and subgenomic RNA and is therefore a prime target for antiviral therapies. Using high-throughput screening, nearly 20,000 "lead-like" compounds were tested for inhibitory activity against the NoV genogroup II, genotype 4 (GII.4) RdRp. The four most potent hits demonstrated half-maximal inhibitory concentrations (IC50s) between 5.0 μM and 9.8 μM against the target RdRp. Compounds NIC02 and NIC04 revealed a mixed mode of inhibition, while NIC10 and NIC12 were uncompetitive RdRp inhibitors. When examined using enzymes from related viruses, NIC02 demonstrated broad inhibitory activity while NIC04 was the most specific GII.4 RdRp inhibitor. The antiviral activity was examined using available NoV cell culture models; the GI.1 replicon and the infectious GV.1 murine norovirus (MNV). NIC02 and NIC04 inhibited the replication of the GI.1 replicon, with 50% effective concentrations (EC50s) of 30.1 μM and 71.1 μM, respectively, while NIC10 and NIC12 had no observable effect on the NoV GI.1 replicon. In the MNV model, NIC02 reduced plaque numbers, size, and viral RNA levels in a dose-dependent manner (EC50s between 2.3 μM and 4.8 μM). The remaining three compounds also reduced MNV replication, although with higher EC50s, ranging from 32 μM to 38 μM. In summary, we have identified novel nonnucleoside inhibitor scaffolds that will provide a starting framework for the development and future optimization of targeted antivirals against NoV. PMID:24637690

  20. Nonnucleoside Inhibitors of Norovirus RNA Polymerase: Scaffolds for Rational Drug Design

    PubMed Central

    Eltahla, Auda A.; Lim, Kun Lee; Eden, John-Sebastian; Kelly, Andrew G.; Mackenzie, Jason M.

    2014-01-01

    Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide, causing over 200,000 deaths a year. NoV is nonenveloped, with a single-stranded RNA genome, and is primarily transmitted person to person. The viral RNA-dependent RNA polymerase (RdRp) is critical for the production of genomic and subgenomic RNA and is therefore a prime target for antiviral therapies. Using high-throughput screening, nearly 20,000 “lead-like” compounds were tested for inhibitory activity against the NoV genogroup II, genotype 4 (GII.4) RdRp. The four most potent hits demonstrated half-maximal inhibitory concentrations (IC50s) between 5.0 μM and 9.8 μM against the target RdRp. Compounds NIC02 and NIC04 revealed a mixed mode of inhibition, while NIC10 and NIC12 were uncompetitive RdRp inhibitors. When examined using enzymes from related viruses, NIC02 demonstrated broad inhibitory activity while NIC04 was the most specific GII.4 RdRp inhibitor. The antiviral activity was examined using available NoV cell culture models; the GI.1 replicon and the infectious GV.1 murine norovirus (MNV). NIC02 and NIC04 inhibited the replication of the GI.1 replicon, with 50% effective concentrations (EC50s) of 30.1 μM and 71.1 μM, respectively, while NIC10 and NIC12 had no observable effect on the NoV GI.1 replicon. In the MNV model, NIC02 reduced plaque numbers, size, and viral RNA levels in a dose-dependent manner (EC50s between 2.3 μM and 4.8 μM). The remaining three compounds also reduced MNV replication, although with higher EC50s, ranging from 32 μM to 38 μM. In summary, we have identified novel nonnucleoside inhibitor scaffolds that will provide a starting framework for the development and future optimization of targeted antivirals against NoV. PMID:24637690

  1. Norovirus mechanisms of immune antagonism.

    PubMed

    Roth, Alexa N; Karst, Stephanie M

    2016-02-01

    Noroviruses are a leading cause of gastroenteritis outbreaks globally. Several lines of evidence indicate that noroviruses can antagonize or evade host immune responses, including the absence of long-lasting immunity elicited during a primary norovirus exposure and the ability of noroviruses to establish prolonged infections that are associated with protracted viral shedding. Specific norovirus proteins possessing immune antagonist activity have been described in recent years although mechanistic insight in most cases is limited. In this review, we discuss these emerging strategies used by noroviruses to subvert the immune response, including the actions of two nonstructural proteins (p48 and p22) to impair cellular protein trafficking and secretory pathways; the ability of the VF1 protein to inhibit cytokine induction; and the ability of the minor structural protein VP2 to regulate antigen presentation. We also discuss the current state of the understanding of host and viral factors regulating the establishment of persistent norovirus infections along the gastrointestinal tract. A more detailed understanding of immune antagonism by pathogenic viruses will inform prevention and treatment of disease. PMID:26673810

  2. Recent advances in understanding norovirus pathogenesis.

    PubMed

    Karst, Stephanie M; Tibbetts, Scott A

    2016-11-01

    Noroviruses constitute a family of ubiquitous and highly efficient human pathogens. In spite of decades of dedicated research, human noroviruses remain a major cause of gastroenteritis and severe diarrheal disease around the world. Recent findings have begun to unravel the complex mechanisms that regulate norovirus pathogenesis and persistent infection, including the important interplay between the virus, the host immune system, and commensal bacteria. Herein, we will summarize recent research developments regarding norovirus cell tropism, the use of M cells, and commensal bacteria to facilitate norovirus infection, and virus, host, and bacterial determinants of persistent norovirus infections. J. Med. Virol. 88:1837-1843, 2016. © 2016 Wiley Periodicals, Inc. PMID:27110852

  3. The State of Norovirus Vaccines

    PubMed Central

    Debbink, Kari; Lindesmith, Lisa C.; Baric, Ralph S.

    2014-01-01

    Noroviruses represent the most important cause of acute gastroenteritis worldwide; however, currently no licensed vaccine exists. Widespread vaccination that minimizes overall norovirus disease burden would benefit the entire population, but targeted vaccination of specific populations such as healthcare workers may further mitigate the risk of severe disease and death in vulnerable populations. While a few obstacles hinder the rapid development of efficacious vaccines, human trials for virus-like particle (VLP)-based vaccines show promise in both immune response and protection studies, with availability of vaccines being targeted over the next 5–10 years. Ongoing work including identification of important norovirus capsid antigenic sites, development of improved model systems, and continued studies in humans will allow improvement of future vaccines. In the meantime, a better understanding of norovirus disease course and transmission patterns can aid healthcare workers as they take steps to protect high-risk populations such as the elderly and immunocompromised individuals from chronic and severe disease. PMID:24585561

  4. Molecular epidemiology of norovirus in South Korea.

    PubMed

    Lee, Sung-Geun; Cho, Han-Gil; Paik, Soon-Young

    2015-02-01

    Norovirus is a major cause of viral gastroenteritis and a common cause of foodborne and waterborne outbreaks. Norovirus outbreaks are responsible for economic losses, most notably to the public health and food industry field. Norovirus has characteristics such as low infectious dose, prolonged shedding period, strong stability, great diversity, and frequent genome mutations. Besides these characteristics, they are known for rapid and extensive spread in closed settings such as hospitals, hotels, and schools. Norovirus is well known as a major agent of food-poisoning in diverse settings in South Korea. For these reasons, nationwide surveillance for norovirus is active in both clinical and environmental settings in South Korea. Recent studies have reported the emergence of variants and novel recombinants of norovirus. In this review, we summarized studies on the molecular epidemiology and nationwide surveillance of norovirus in South Korea. This review will provide information for vaccine development and prediction of new emerging variants of norovirus in South Korea. PMID:25441425

  5. Norovirus: U.S. Trends and Outbreaks

    MedlinePlus

    ... Norovirus outbreaks can also occur from fecal (stool) contamination of certain foods at their source. For example, ... may also result from infected crew or environmental contamination. This is because norovirus can persist on surfaces ...

  6. Effects of High-Hydrostatic Pressure on Inactivation of Human Norovirus and Physical and Sensory Characteristics of Oysters.

    PubMed

    Ye, Mu; Lingham, Talaysha; Huang, Yaoxin; Ozbay, Gulnihal; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2015-06-01

    The purpose of the study was to determine the effect of high-hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) and viral RNA was quantified by real-time RT-PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1- to 5-scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure-treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05). PMID:25943304

  7. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees.

    PubMed

    Huang, Runze; Ye, Mu; Li, Xinhui; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2016-04-16

    Human norovirus (HuNoV) has been an increasing concern of foodborne illness related to fresh and frozen berries. In this study, high hydrostatic pressure (HHP) inactivation of HuNoV on fresh strawberries, blueberries, and raspberries and in their purees was investigated. Porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs) and real-time reverse transcriptional polymerase chain reaction (RT-qPCR) were utilized for infectious HuNoV discrimination and quantification. Strawberry puree inoculated with HuNoV genogroup I.1 (GI.1) strain was HHP-treated at 450, 500 and 550 MPa for 2 min each at initial sample temperatures of 0, 4 and 20 °C. HuNoV GI.1 strain became more sensitive to HHP treatment as the temperature decreased from 20 to 0 °C. HuNoV GI.1 or genogroup II.4 (GII.4) strains were inoculated into three types of berries and their purees and treated at pressure levels from 250 to 650 MPa for 2 min at initial sample temperature of 0 °C. For the purees, the HHP condition needed to achieve >2.9 log reduction of HuNoV GI.1 strain and >4.0 log reduction of HuNoV GII.4 strain was found to be ≥ 550 MPa for 2 min at 0 °C. HHP treatment showed better inactivation effect of HuNoV on blueberries than on strawberry quarters and raspberries. HuNoV GI.1 strain was more resistant to HHP treatment than HuNoV GII.4 strain under different temperatures and environment. The physical properties and sensory qualities of HHP-treated and untreated blueberries and the three types of berry purees were evaluated. Color, pH and viscosity of blueberries and three berry purees showed no or slight changes after HHP treatment. Sensory evaluation demonstrated that HHP treatment of 550 MPa for 2 min at 0 °C did not significantly reduced the sensory qualities of three berry purees. The results demonstrated that the HHP treatment of 550 MPa for 2 min at 0 °C could be a potential nonthermal intervention for HuNoV in berry purees without adversely affecting their sensory qualities

  8. Natural Norovirus Infections in Rhesus Macaques

    PubMed Central

    2016-01-01

    Using a recently developed real-time reverse transcription PCR, I retested 500 fecal samples from rhesus macaques collected in 2008. Previous conventional reverse transcription PCR testing identified 1 isolate of GII norovirus; retesting found GI, GII, and possible GIV noroviruses in the samples, indicating the natural circulation of noroviruses in nonhuman primate colonies. PMID:27314565

  9. Natural Norovirus Infections in Rhesus Macaques.

    PubMed

    Farkas, Tibor

    2016-07-01

    Using a recently developed real-time reverse transcription PCR, I retested 500 fecal samples from rhesus macaques collected in 2008. Previous conventional reverse transcription PCR testing identified 1 isolate of GII norovirus; retesting found GI, GII, and possible GIV noroviruses in the samples, indicating the natural circulation of noroviruses in nonhuman primate colonies. PMID:27314565

  10. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus.

    PubMed

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-07-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses, increasing a potential public health risk. The virucidal properties of wipes with a singlet-oxygen-generating immobilized photosensitizer (IPS) coating were compared to those of similar but uncoated wipes (non-IPS) and of commonly used viscose wipes. Wipes were spiked with hNoV GI.4 and GII.4, murine norovirus 1 (MNV-1), human adenovirus type 5 (hAdV-5), and influenza virus H1N1 to study viral persistence. We also determined residual and transferred virus proportions on steel carriers after successively wiping a contaminated and an uncontaminated steel carrier. On IPS wipes only, influenza viruses were promptly inactivated with a 5-log10 reduction. D values of infectious MNV-1 and hAdV-5 were 8.7 and 7.0 h on IPS wipes, 11.6 and 9.3 h on non-IPS wipes, and 10.2 and 8.2 h on viscose wipes, respectively. Independently of the type of wipe, dry cleaning removed, or drastically reduced, initial spot contamination of hNoV on surfaces. All wipes transferred hNoV to an uncontaminated carrier; however, the risk of continued transmission by reuse of wipes after 6 and 24 h was limited for all viruses. We conclude that cleaning wet spots with dry wipes efficiently reduced spot contamination on surfaces but that cross-contamination with noroviruses by wiping may result in an increased public health risk at high initial virus loads. For influenza virus, IPS wipes present an efficient one-step procedure for cleaning and disinfecting contaminated surfaces. PMID:24814795

  11. Internalization and Dissemination of Human Norovirus and Animal Caliciviruses in Hydroponically Grown Romaine Lettuce

    PubMed Central

    DiCaprio, Erin; Ma, Yuanmei; Purgianto, Anastasia; Hughes, John

    2012-01-01

    Fresh produce is a major vehicle for the transmission of human norovirus (NoV) because it is easily contaminated during both pre- and postharvest stages. However, the ecology of human NoV in fresh produce is poorly understood. In this study, we determined whether human NoV and its surrogates can be internalized via roots and disseminated to edible portions of the plant. The roots of romaine lettuce growing in hydroponic feed water were inoculated with 1 × 106 RNA copies/ml of a human NoV genogroup II genotype 4 (GII.4) strain or 1 × 106 to 2 × 106 PFU/ml of animal caliciviruses (Tulane virus [TV] and murine norovirus [MNV-1]), and plants were allowed to grow for 2 weeks. Leaves, shoots, and roots were homogenized, and viral titers and/or RNA copies were determined by plaque assay and/or real-time reverse transcription (RT)-PCR. For human NoV, high levels of viral-genome RNA (105 to 106 RNA copies/g) were detected in leaves, shoots, and roots at day 1 postinoculation and remained stable over the 14-day study period. For MNV-1 and TV, relatively low levels of infectious virus particles (101 to 103 PFU/g) were detected in leaves and shoots at days 1 and 2 postinoculation, but virus reached a peak titer (105 to 106 PFU/g) at day 3 or 7 postinoculation. In addition, human NoV had a rate of internalization comparable with that of TV as determined by real-time RT-PCR, whereas TV was more efficiently internalized than MNV-1 as determined by plaque assay. Taken together, these results demonstrated that human NoV and animal caliciviruses became internalized via roots and efficiently disseminated to the shoots and leaves of the lettuce. PMID:22729543

  12. Attachment and localization of human norovirus and animal caliciviruses in fresh produce.

    PubMed

    DiCaprio, Erin; Purgianto, Anastasia; Ma, Yuanmei; Hughes, John; Dai, Xiangjun; Li, Jianrong

    2015-10-15

    Fresh produce is a high risk food for human norovirus (NoV) contamination. To help control this pathogen in fresh produce, a better understanding of the interaction of human NoV and fresh produce needs to be established. In this study the attachment of human NoV and animal caliciviruses (murine norovirus, MNV-1; Tulane virus, TV) to fresh produce was evaluated, using both visualization and viral enumeration techniques. It was found that a human NoV GII.4 strain attached efficiently to the Romaine lettuce leaves and roots and green onion shoots, and that washing with PBS or 200 ppm of chlorine removed less than 0.4 log of viral RNA copies from the tissues. In contrast, TV and MNV-1 bound more efficiently to Romaine lettuce leaves than to the roots, and simple washing removed less than 1 log of viruses from the lettuce leaves and 1-4 log PFU of viruses from roots. Subsequently, the location of virus particles in fresh produce was visualized using a fluorescence-based Quantum Dots (Q-Dots) assay and confocal microscopy. It was found that human NoV virus-like particles (VLPs), TV, and MNV-1 associated with the surface of Romaine lettuce and were found aggregating in and around the stomata. In green onions, human NoV VLPs were found between the cells of the epidermis and cell walls of both the shoots and roots. However, TV and MNV-1 were found to be covering the surface of the epidermal cells in both the shoots and roots of green onions. Collectively, these results demonstrate that (i) washing with 200 ppm chlorine is ineffective in removing human NoV from fresh produce; and (ii) different viruses vary in their localization patterns to different varieties of fresh produce. PMID:26188496

  13. Norovirus Surveillance: An Epidemiological Perspective.

    PubMed

    Harris, John P

    2016-02-01

    Surveillance for norovirus is challenging because the nature of illness due to norovirus is such that the majority of people who are infected will not have any contact with medical services and are highly unlikely to have a sample collected for diagnosis. Public health advice urges people to not visit hospitals or their family physicians, to prevent the risk further spread. The recognition of the importance of this pathogen was quickly established following the introduction of surveillance of outbreaks of gastrointestinal infection in England and Wales in 1992. This period saw >1800 outbreaks of norovirus infection reported in hospitals in England, affecting >45 000 patients and staff. A new system for reporting outbreaks of norovirus infection in hospitals, the Hospital Norovirus outbreak Reporting Scheme (HNORS), began in January 2009. Summary information on outbreaks is provided by infection control staff at hospitals and includes questions on the date the first and last person in the outbreak became symptomatic and whether closure of a bay or ward was needed. In the first 3 years (2009-2011) of the HNORS surveillance scheme, 4000 outbreaks were reported, affecting 40 000 patients and 10 000 staff. Over the last 3 years, these outbreaks have been associated with an average of 13 000 patients and 3400 staff becoming ill, with 15 000 lost bed-days annually. With the possible introduction of a vaccine on the horizon, targeted research with a more integrated approach to laboratory testing and outbreak reporting is essential to a greater understanding of the epidemiology of norovirus. PMID:26744431

  14. Molecular Characterization of Noroviruses and HBGA from Infected Quilombola Children in Espirito Santo State, Brazil

    PubMed Central

    Vicentini, Fernando; Denadai, Wilson; Gomes, Yohanna Mayelle; Rose, Tatiana L.; Ferreira, Mônica S. R.; Le Moullac-Vaidye, Beatrice; Le Pendu, Jacques; Leite, José Paulo Gagliardi; Miagostovich, Marize Pereira; Spano, Liliana Cruz

    2013-01-01

    Noroviruses (NoV) are the main etiological agents of gastroenteritis outbreaks worldwide and susceptibility to NoV infection has been related to the histo-blood group antigen (HBGA). This study aimed to determine the prevalence of NoV strains and to evaluate the HBGA phenotype and genotype of children from semi-isolated Quilombola communities, descendents of black slaves in Brazil. A total of 397 children up to eleven years old, with and without diarrhea, from Quilombola Communities in the Espirito Santo State, Brazil, were investigated for the presence of NoV from August 2007 to September 2009. Feces were collected from all the children, and blood from the NoV positive children. NoV was screened by reverse transcription-PCR with primers for the RNA-dependent RNA polymerase region; genogroup was determined by PCR with primers for the C and D regions and genotyped by sequencing. HBGA phenotype was performed by gel-spinning and FUT2 and FUT3 were analyzed by PCR or sequencing analysis. NoV were detected in 9.2% (12/131) of diarrheic and 1.5% (4/266) of non-diarrheic children (p<0.05, Fisher’s exact test). GI and GII genogroups were present in 12.5% and 87.5% of the samples, respectively. The following genotypes were characterized: GII.4 (25%), GII.12 (25%), GII.6 (12.5%) and GI.1 (6.3%), GI.3 (12.5%) and GI.4 (6.3%). Children infected with NoV showed the A (n = 6), O (n = 6), and B (n = 2) HBGA phenotypes, and 13 of them were classified as secretors (Se) and one as a non secretor (se). Mutations of Se40, 171,216,357,428,739,960 were found for the FUT2 gene and mutations of Le59, 202, 314 for the FUT3 gene. The only se child was infected by NoV GI, whereas the Se children were indiscriminately infected by GI or GII. This study showed rates of NoV infection in symptomatic and asymptomatic Quilombola children consistent with other studies. However, children under 12 months were seven times more affected than those between 1 and 5 years old. GII.12 was as

  15. Comparing human norovirus surrogates: murine norovirus and Tulane virus.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-01-01

    Viral surrogates are widely used by researchers to predict human norovirus behavior. Murine norovirus (MNV) is currently accepted as the best surrogate and is assumed to mimic the survival and inactivation of human noroviruses. Recently, a new calicivirus, the Tulane virus (TV), was discovered, and its potential as a human norovirus surrogate is being explored. This study aimed to compare the behavior of the two potential surrogates under varying treatments of pH (2.0 to 10.0), chlorine (0.2 to 2,000 ppm), heat (50 to 75°C), and survival in tap water at room (20°C) and refrigeration (4°C) temperatures for up to 30 days. Viral infectivity was determined by the plaque assay for both MNV and TV. There was no significant difference between the inactivation of MNV and TV in all heat treatments, and for both MNV and TV survival in tap water at 20°C over 30 days. At 4°C, MNV remained infectious over 30 days at a titer of approximately 5 log PFU/ml, whereas TV titers decreased significantly by 5 days. MNV was more pH stable, as TV titers were reduced significantly at pH 2.0, 9.0, and 10.0, as compared with pH 7.0, whereas MNV titers were only significantly reduced at pH 10.0. After chlorine treatment, there was no significant difference in virus with the exception of at 2 ppm, where TV decreased significantly compared with MNV. Compared with TV, MNV is likely a better surrogate for human noroviruses, as MNV persisted over a wider range of pH values, at 2 ppm of chlorine, and without a loss of titer at 4°C. PMID:23317870

  16. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands

    PubMed Central

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3′ terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5′ terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID

  17. Treatment of norovirus particles with citrate.

    PubMed

    Koromyslova, Anna D; White, Peter A; Hansman, Grant S

    2015-11-01

    Human norovirus is a dominant cause of acute gastroenteritis around the world. Several norovirus disinfectants label citric acid as an active ingredient. In this study, we showed that norovirus virus-like particles (VLPs) treated with citrate buffer caused the particles to alter their morphology, including increased diameters associated with a new ring-like structure. We also found that epitopes on the protruding (P) domain on these particles were more readily accessible to antibodies after the citrate treatment. These results suggested that citrate had a direct effect on the norovirus particles. Using X-ray crystallography, we showed that the P domain bound citrate from lemon juice and a disinfectant containing citric acid. Importantly, citrate binds at the histo-blood group antigen binding pocket, which are attachment factors for norovirus infections. Taken together, these new findings suggested that it might be possible to treat/reduce norovirus infections with citrate, although further studies are needed. PMID:26295280

  18. Norovirus Genotypes Present in Oysters and in Effluent from a Wastewater Treatment Plant during the Seasonal Peak of Infections in Ireland in 2010

    PubMed Central

    Waters, Allison; Keaveney, Sinéad; Flannery, John; Tuite, Gráinne; Coughlan, Suzie; O'Flaherty, Vincent; Doré, William

    2013-01-01

    We determined norovirus (NoV) concentrations in effluent from a wastewater treatment plant and in oysters during the peak period of laboratory-confirmed cases of NoV infection in Ireland in 2010 (January to March). Weekly samples of influent, secondary treated effluent, and oysters were analyzed using real-time quantitative reverse transcription-PCR for NoV genogroup I (GI) and genogroup II (GII). The mean concentration of NoV GII (5.87 × 104 genome copies 100 ml−1) in influent wastewater was significantly higher than the mean concentration of NoV GI (1.40 × 104 genome copies 100 ml−1). The highest concentration of NoV GII (2.20 × 105 genome copies 100 ml−1) was detected in influent wastewater during week 6. Over the study period, a total of 931 laboratory-confirmed cases of NoV GII infection were recorded, with the peak (n = 171) occurring in week 7. In comparison, 16 cases of NoV GI-associated illness were reported during the study period. In addition, the NoV capsid N/S domain was molecularly characterized for selected samples. Multiple genotypes of NoV GI (GI.1, GI.4, GI.5, GI.6, and GI.7) and GII (GII.3, GII.4, GII.6, GII.7, GII.12, GII.13, and GII.17), as well as 4 putative recombinant strains, were detected in the environmental samples. The NoV GII.4 variant 2010 was detected in wastewater and oyster samples and was the dominant strain detected in NoV outbreaks at that time. This study demonstrates the diversity of NoV genotypes present in wastewater during a period of high rates of NoV infection in the community and highlights the potential for the environmental spread of multiple NoV genotypes. PMID:23396337

  19. Identifying Carbohydrate Ligands of a Norovirus P Particle using a Catch and Release Electrospray Ionization Mass Spectrometry Assay

    NASA Astrophysics Data System (ADS)

    Han, Ling; Kitova, Elena N.; Tan, Ming; Jiang, Xi; Klassen, John S.

    2014-01-01

    Noroviruses (NoVs), the major cause of epidemic acute gastroenteritis, recognize human histo-blood group antigens (HBGAs), which are present as free oligosaccharides in bodily fluid or glycolipids and glycoproteins on the surfaces of cells. The subviral P particle formed by the protruding (P) domain of the NoV capsid protein serves as a useful model for the study NoV-HBGA interactions. Here, we demonstrate the application of a catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against the P particle to rapidly identify NoV ligands and potential inhibitors. Carbohydrate libraries of 50 and 146 compounds, which included 18 and 24 analogs of HBGA receptors, respectively, were screened against the P particle of VA387, a member of the predominant GII.4 NoVs. Deprotonated ions corresponding to the P particle bound to carbohydrates were isolated and subjected to collision-induced dissociation to release the ligands in their deprotonated forms. The released ligands were identified by ion mobility separation followed by mass analysis. All 13 and 16 HBGA ligands with intrinsic affinities >500 M-1 were identified in the 50 and the 146 compound libraries, respectively. Furthermore, screening revealed interactions with a series of oligosaccharides with structures found in the cell wall of mycobacteria and human milk. The affinities of these newly discovered ligands are comparable to those of the HBGA receptors, as estimated from the relative abundance of released ligand ions.

  20. A novel norovirus GII.17 lineage contributed to adult gastroenteritis in Shanghai, China, during the winter of 2014–2015

    PubMed Central

    Chen, Haili; Qian, Fangxing; Xu, Jin; Chan, Martin; Shen, Zhen; Zai, Shubei; Shan, Menglin; Cai, Jinfeng; Zhang, Wanju; He, Jing; Liu, Yi; Zhang, Jun; Yuan, Zhenghong; Zhu, Zhaoqin; Hu, Yunwen

    2015-01-01

    Norovirus (NoV) is now recognized as a leading cause of nonbacterial acute gastroenteritis; however, the NoV GII.17 genotype has rarely been reported as the predominant genotype in clinical diarrhea cases. During the winter of 2014–2015, the GII.17 genotype, together with the NoV GII.4 genotype, dominated in sporadic adult patients with gastroenteritis in Shanghai. Phylogenetic analysis based on full-length VP1 amino acid sequences showed that the GII.17 strains that emerged in Shanghai have close evolutionary relationships with strains recently collected in the Hong Kong area, Guangdong province of China, and Japan during the same period. This cluster in the phylogenetic tree may represent a novel NoV GII.17 lineage recently circulating in East Asia. Pairwise distances between clusters also revealed the evolution of the NoV GII.17 genotype in previous decades. Our study emphasizes the importance of combined surveillance of NoV-associated infections. PMID:26975060

  1. Analysis of norovirus contamination of seafood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of human norovirus (NoVs) replication in vitro would be a highly useful tool to virologists and immunologists. For this reason, we have searched for new approaches to determine viability of noroviruses in food samples (especially sea food). Our research team has multiple years of experie...

  2. Murine Norovirus: Propagation, Quantification and Genetic Manipulation

    PubMed Central

    Hwang, Seungmin; Alhatlani, Bader; Arias, Armando; Caddy, Sarah L; Christodoulou, Constantina; Cunha, Juliana; Emmott, Ed; Gonzalez-Hernandez, Marta; Kolawole, Abimbola; Lu, Jia; Rippinger, Christine; Sorgeloos, Frédéric; Thorne, Lucy; Vashist, Surender; Goodfellow, Ian

    2014-01-01

    Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of non-bacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal-oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because the human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology. PMID:24789596

  3. Marked Genomic Diversity of Norovirus Genogroup I Strains in a Waterborne Outbreak

    PubMed Central

    Hannoun, Charles; Larsson, Charlotte U.; Bergström, Tomas

    2012-01-01

    Marked norovirus (NoV) diversity was detected in patient samples from a large community outbreak of gastroenteritis with waterborne epidemiology affecting approximately 2,400 people. NoV was detected in 33 of 50 patient samples examined by group-specific real-time reverse transcription-PCR. NoV genotype I (GI) strains predominated in 31 patients, with mixed GI infections occurring in 5 of these patients. Sequence analysis of RNA-dependent polymerase-N/S capsid-coding regions (∼900 nucleotides in length) confirmed the dominance of the GI strains (n = 36). Strains of NoV GI.4 (n = 21) and GI.7 (n = 9) were identified, but six strains required full capsid amino acid analyses (530 to 550 amino acids) based on control sequencing of cloned amplicons before the virus genotype could be determined. Three strains were assigned to a new NoV GI genotype, proposed as GI.9, based on capsid amino acid analyses showing 26% dissimilarity from the established genotypes GI.1 to GI.8. Three other strains grouped in a sub-branch of GI.3 with 13 to 15% amino acid dissimilarity to GI.3 GenBank reference strains. Phylogenetic analysis (2.1 kb) of 10 representative strains confirmed these genotype clusters. Strains of NoV GII.4 (n = 1), NoV GII.6 (n = 2), sapovirus GII.2 (n = 1), rotavirus (n = 3), adenovirus (n = 1), and Campylobacter spp. (n = 2) were detected as single infections or as mixtures with NoV GI. Marked NoV GI diversity detected in patients was consistent with epidemiologic evidence of waterborne NoV infections, suggesting human fecal contamination of the water supply. Recognition of NoV diversity in a cluster of patients provided a useful warning marker of waterborne contamination in the Lilla Edet outbreak. PMID:22247153

  4. Affinities of recombinant norovirus P dimers for human blood group antigens

    PubMed Central

    Han, Ling; Kitov, Pavel I; Kitova, Elena N; Tan, Ming; Wang, Leyi; Xia, Ming; Jiang, Xi; Klassen, John S

    2013-01-01

    Noroviruses (NoVs), the major cause of viral acute gastroenteritis, recognize histo-blood group antigens (HBGAs) as receptors or attachment factors. To gain a deeper understanding of the interplay between NoVs and their hosts, the affinities of recombinant P dimers (P2's) of a GII.4 NoV (VA387) to a library of 41 soluble analogs of HBGAs were measured using the direct electrospray ionization mass spectrometry assay. The HBGAs contained the A, B, H and Lewis epitopes, with variable sizes (2–6 residues) and different types (1–6). The results reveal that the P2's exhibit a broad specificity for the HBGAs and bind to all of the oligosaccharides tested. Overall, the affinities are relatively low, ranging from 400 to 3000 M−1 and are influenced by the chain type: 3 > 1 ≈ 2 ≈ 4 ≈ 5 ≈ 6 for H antigens; 6 > 1 ≈ 3 ≈ 4 ≈ 5 > 2 for A antigens; 3 > 1 ≈ 4 ≈ 5 ≈ 6 > 2 for B antigens, but not by chain length. The highest-affinity ligands are B type 3 (3000 ± 300 M−1) and A type 6 (2350 ± 60 M−1). While the higher affinity to the type 3 H antigen was previously observed, preferential binding to the types 6 and 3 antigens with A and B epitopes, respectively, has not been previously reported. A truncated P domain dimer (lacking the C-terminal arginine cluster) exhibits similar binding. The central-binding motifs in the HBGAs were identified by molecular-docking simulations. PMID:23118206

  5. Evaluation of third-generation RIDASCREEN enzyme immunoassay for the detection of norovirus antigens in stool samples of hospitalized children in Belém, Pará, Brazil.

    PubMed

    Siqueira, Jones Anderson Monteiro; Linhares, Alexandre da Costa; Oliveira, Darleise de Souza; Soares, Luana da Silva; Lucena, Maria Silvia Sousa; Wanzeller, Ana Lúcia Monteiro; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol

    2011-12-01

    Noroviruses (NoVs) are major agents of gastroenteritis outbreaks and hospitalization worldwide. This study evaluated the sensitivity and specificity of the commercially available third-generation RIDASCREEN® Norovirus Enzyme Immunoassay (EIA) kit in comparison to the reverse transcription-polymerase chain reaction (RT-PCR) to detect NoVs in hospitalized children with gastroenteritis. An agreement of 88% (81/92) was observed when comparing EIA with RT-PCR. A sensitivity of 92% and a specificity of 83.3% were demonstrated. Eleven samples were positive by 1 method only (4 RT-PCR/7 EIA). Fourteen samples were sequenced and all classified as NoV genogroup GII-4. The 7 positive only by EIA were also evaluated by electron microscopy, and in 3 (42.9%) samples viral particles with a suggestive morphology of NoVs were visualized. These same samples were tested by seminested-RT-PCR with a positivity of 85.7%. The results obtained in this study demonstrated a significant improvement in the sensitivity and specificity of this updated assay. PMID:22001621

  6. Norovirus Diversity in Diarrheic Children from an African-Descendant Settlement in Belém, Northern Brazil

    PubMed Central

    Aragão, Glicélia Cruz; Mascarenhas, Joana D'Arc Pereira; Kaiano, Jane Haruko Lima; de Lucena, Maria Silvia Sousa; Siqueira, Jones Anderson Monteiro; Fumian, Túlio Machado; Hernandez, Juliana das Mercês; de Oliveira, Consuelo Silva; Oliveira, Darleise de Souza; Araújo, Eliete da Cunha; Soares, Luana da Silva; Linhares, Alexandre Costa; Gabbay, Yvone Benchimol

    2013-01-01

    Norovirus (NoV), sapovirus (SaV) and human astrovirus (HAstV) are viral pathogens that are associated with outbreaks and sporadic cases of gastroenteritis. However, little is known about the occurrence of these pathogens in relatively isolated communities, such as the remnants of African-descendant villages (“Quilombola”). The objective of this study was the frequency determination of these viruses in children under 10 years, with and without gastroenteritis, from a “Quilombola” Community, Northern Brazil. A total of 159 stool samples were obtained from April/2008 to July/2010 and tested by an enzyme immunoassay (EIA) and reverse transcription-polymerase chain reaction (RT-PCR) to detect NoV, SaV and HAstV, and further molecular characterization was performed. These viruses were detected only in the diarrheic group. NoV was the most frequent viral agent detected (19.7%-16/81), followed by SaV (2.5%-2/81) and HAstV (1.2%-1/81). Of the 16 NoV-positive samples, 14 were sequenced with primers targeting the B region of the polymerase (ORF1) and the D region of the capsid (ORF2). The results showed a broad genetic diversity of NoV, with 12 strains being classified as GII-4 (5–41.7%), GII-6 (3–25%), GII-7 (2–16.7%), GII-17 (1–8.3%) and GI-2 (1–8.3%), as based on the polymerase region; 12 samples were classified, based on the capsid region, as GII-4 (6–50%, being 3–2006b variant and 3–2010 variant), GII-6 (3–25%), GII-17 (2–16.7%) and GII-20 (1–8.3%). One NoV-strain showed dual genotype specificity, based on the polymerase and capsid region (GII-7/GII-20). This study provides, for the first time, epidemiological and molecular information on the circulation of NoV, SaV and HAstV in African-descendant communities in Northern Brazil and identifies NoV genotypes that were different from those detected previously in studies conducted in the urban area of Belém. It remains to be determined why a broader NoV diversity was observed in such a semi

  7. Norovirus diversity in diarrheic children from an African-descendant settlement in Belém, Northern Brazil.

    PubMed

    Aragão, Glicélia Cruz; Mascarenhas, Joana D'Arc Pereira; Kaiano, Jane Haruko Lima; de Lucena, Maria Silvia Sousa; Siqueira, Jones Anderson Monteiro; Fumian, Túlio Machado; Hernandez, Juliana das Mercês; de Oliveira, Consuelo Silva; Oliveira, Darleise de Souza; Araújo, Eliete da Cunha; Soares, Luana da Silva; Linhares, Alexandre Costa; Gabbay, Yvone Benchimol

    2013-01-01

    Norovirus (NoV), sapovirus (SaV) and human astrovirus (HAstV) are viral pathogens that are associated with outbreaks and sporadic cases of gastroenteritis. However, little is known about the occurrence of these pathogens in relatively isolated communities, such as the remnants of African-descendant villages ("Quilombola"). The objective of this study was the frequency determination of these viruses in children under 10 years, with and without gastroenteritis, from a "Quilombola" Community, Northern Brazil. A total of 159 stool samples were obtained from April/2008 to July/2010 and tested by an enzyme immunoassay (EIA) and reverse transcription-polymerase chain reaction (RT-PCR) to detect NoV, SaV and HAstV, and further molecular characterization was performed. These viruses were detected only in the diarrheic group. NoV was the most frequent viral agent detected (19.7%-16/81), followed by SaV (2.5%-2/81) and HAstV (1.2%-1/81). Of the 16 NoV-positive samples, 14 were sequenced with primers targeting the B region of the polymerase (ORF1) and the D region of the capsid (ORF2). The results showed a broad genetic diversity of NoV, with 12 strains being classified as GII-4 (5-41.7%), GII-6 (3-25%), GII-7 (2-16.7%), GII-17 (1-8.3%) and GI-2 (1-8.3%), as based on the polymerase region; 12 samples were classified, based on the capsid region, as GII-4 (6-50%, being 3-2006b variant and 3-2010 variant), GII-6 (3-25%), GII-17 (2-16.7%) and GII-20 (1-8.3%). One NoV-strain showed dual genotype specificity, based on the polymerase and capsid region (GII-7/GII-20). This study provides, for the first time, epidemiological and molecular information on the circulation of NoV, SaV and HAstV in African-descendant communities in Northern Brazil and identifies NoV genotypes that were different from those detected previously in studies conducted in the urban area of Belém. It remains to be determined why a broader NoV diversity was observed in such a semi-isolated community. PMID:23457593

  8. Antiviral targets of human noroviruses.

    PubMed

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  9. Enterovirus and Norovirus Monitoring under UCMR3

    EPA Science Inventory

    This presentation describes the Unregulated Contaminant Monitoring Rule round 3 (UCMR3) monitoring program for enterovirus and norovirus in groundwater. It provides the data on microbial indicators and virus occurrence during the monitoring period. Enteric virus occurrence was ab...

  10. Ultrasensitive Norovirus Detection Using DNA Aptasensor Technology

    PubMed Central

    Giamberardino, Amanda; Labib, Mahmoud; Hassan, Eman M.; Tetro, Jason A.; Springthorpe, Susan; Sattar, Syed A.; Berezovski, Maxim V.; DeRosa, Maria C.

    2013-01-01

    DNA aptamers were developed against murine norovirus (MNV) using SELEX (Systematic Evolution of Ligands by EXponential enrichment). Nine rounds of SELEX led to the discovery of AG3, a promising aptamer with very high affinity for MNV as well as for lab-synthesized capsids of a common human norovirus (HuNoV) outbreak strain (GII.3). Using fluorescence anisotropy, AG3 was found to bind with MNV with affinity in the low picomolar range. The aptamer could cross-react with HuNoV though it was selected against MNV. As compared to a non-specific DNA control sequence, the norovirus-binding affinity of AG3 was about a million-fold higher. In further tests, the aptamer also showed nearly a million-fold higher affinity for the noroviruses than for the feline calicivirus (FCV), a virus similar in size and structure to noroviruses. AG3 was incorporated into a simple electrochemical sensor using a gold nanoparticle-modified screen-printed carbon electrode (GNPs-SPCE). The aptasensor could detect MNV with a limit of detection of approximately 180 virus particles, for possible on-site applications. The lead aptamer candidate and the aptasensor platform show promise for the rapid detection and identification of noroviruses in environmental and clinical samples. PMID:24244426

  11. The makings of a good human norovirus surrogate.

    PubMed

    Kniel, Kalmia E

    2014-02-01

    Norovirus is undoubtedly a leading cause of acute gastroenteritis. A large limitation to the study of human norovirus is the lack of consensus research using norovirus surrogates. Over two decades of research have included vast comparisons of norovirus surrogates within the Calicivirus family. A discussion on the continued use of norovirus surrogates includes use of surrogates to adequately assess environmental persistence and food preservation technologies. Choice of proper surrogate may be influenced by a myriad of issues, including ease of propagation, genetic similarities, and binding properties. While it remains impossible to routinely culture human norovirus in vitro the continued use of a variety of norovirus surrogates remains crucial to facilitate an understanding of norovirus in order to reduce the public health impact of the disease. PMID:24492067

  12. Delayed norovirus epidemic in the 2009-2010 season in Japan: potential relationship with intensive hand sanitizer use for pandemic influenza.

    PubMed

    Inaida, S; Shobugawa, Y; Matsuno, S; Saito, R; Suzuki, H

    2016-09-01

    Norovirus (NoV) epidemics normally peak in December in Japan; however, the peak in the 2009-2010 season was delayed until the fourth week of January 2010. We suspected intensive hand hygiene that was conducted for a previous pandemic influenza in 2009 as the cause of this delay. We analysed the NoV epidemic trend, based on national surveillance data, and its associations with monthly output data for hand hygiene products, including alcohol-based skin antiseptics and hand soap. The delayed peak in the NoV incidence in the 2009-2010 season had the lowest number of recorded cases of the five seasons studied (2006-2007 to 2010-2011). GII.4 was the most commonly occurring genotype. The monthly relative risk of NoV and monthly output of both alcohol-based skin antiseptics and hand soap were significantly and negatively correlated. Our findings suggest an association between hand hygiene using these products and prevention of NoV transmission. PMID:27301793

  13. Variant-specific surface proteins of Giardia lamblia are zinc-binding proteins.

    PubMed Central

    Nash, T E; Mowatt, M R

    1993-01-01

    Giardia lamblia undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) are a distinct family of cysteine-rich proteins. Characteristically, cysteine residues occur mostly as CXXC tetrapeptides. Four of the reported five VSPs contain a putative metal-binding domain that resembles other metal-binding motifs; the fifth is closely related but lacks an essential histidine. Three different native VSPs bound Zn2+. Co2+, Cu2+, and Cd2+ inhibited Zn2+ binding. Analysis of recombinant VSP fusion proteins showed that the putative binding motif bound Zn2+. Surprisingly, peptide fragments from other regions of the VSP contain numerous CXXCXnCXXC motifs that also bound Zn2+. Analysis of deduced amino acid sequences showed well-conserved CXXC spacing in three out of five VSPs, suggesting conservation of structure despite amino acid sequence divergence. The function of VSPs is unknown, but by binding Zn2+ or other metals in the intestine, VSPs may contribute to Zn2+ malnutrition or inhibition of metal-dependent intestinal enzymes, which would lead to malabsorption, a well-known consequence of giardiasis. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8516291

  14. Rapid detection of norovirus in naturally contaminated food: foodborne gastroenteritis outbreak on a cruise ship in Brazil, 2010.

    PubMed

    Morillo, Simone Guadagnucci; Luchs, Adriana; Cilli, Audrey; do Carmo Sampaio Tavares Timenetsky, Maria

    2012-09-01

    Norovirus (NoV) is a prevalent pathogen of foodborne diseases; however, its detection in foods other than shellfish is often time consuming and unsuccessful. In 2010, an outbreak of acute gastroenteritis occurred on a cruise ship in Brazil, and NoV was the etiologic agent suspected. The objectives of this study were to report that a handy in-house methodology was suitable for NoV detection in naturally contaminated food, and perform the molecular characterization of food strains. Food samples (blue cheese, Indian sauce, herbal butter, soup, and white sauce) were analyzed by ELISA, two methods of RNA extraction, TRIzol(®) and QIAamp(®), following conventional RT-PCR. The qPCR was used in order to confirm the NoV genogroups. GI and GII NoV genogroups were identified by conventional RT-PCR after RNA extraction by means of the TRIzol(®) method. Two GII NoV samples were successfully sequenced, classified as GII.4; and they displayed a genetic relationship with strains from the Asian continent also isolated in 2010. GII and GI NoV were identified in distinct food matrices suggesting that it was not a common source of contamination. TRIzol(®) extraction followed by conventional RT-PCR was a suitable methodology in order to identify NoV in naturally contaminated food. Moreover, food samples could be processed within 8 h indicating the value of the method used for NoV detection, and its potential to identify foodborne gastroenteritis outbreaks in food products other than shellfish. This is the first description in Brazil of NoV detection in naturally contaminated food other than shellfish involved in a foodborne outbreak. PMID:23412839

  15. Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation.

    PubMed

    DiCaprio, Erin; Phantkankum, Nuttapong; Culbertson, Doug; Ma, Yuanmei; Hughes, John H; Kingsley, David; Uribe, Roberto M; Li, Jianrong

    2016-09-01

    Human norovirus (NoV) is a major cause of fresh produce-associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintaining fresh produce quality. In this study electron beam (E-beam) and gamma radiation were evaluated for efficacy against a human NoV GII.4 strain and Tulane virus (TV). Virus survival following ionizing radiation treatments was determined using direct quantitative reverse transcriptase PCR (RT-qPCR), the porcine gastric mucin magnetic bead (PGM-MB) binding assay followed by RT-qPCR, and plaque assay. In simple media, a high dose of E-beam treatment was required to completely abolish the receptor binding ability of human NoV (35.3kGy) and TV (19.5-24.1kGy), as assessed using the PGM-MB binding assay. Both human NoV and TV were more susceptible to gamma irradiation than E-beam, requiring 22.4kGy to achieve complete inactivation. In whole strawberries, no human NoV or TV RNA was detected following 28.7kGy of E-beam treatment using the PGM-MB binding assay. Overall, human NoV and TV are highly resistant to ionizing radiation and therefore the technology may not be suitable to eliminate viruses in fresh produce at the currently approved levels. In addition, the PGM-MB binding assay is an improved method to detect viral infectivity compared to direct RT-qPCR. PMID:27240219

  16. Noroviral P-Particles as an In Vitro Model to Assess the Interactions of Noroviruses with Probiotics

    PubMed Central

    Rubio-del-Campo, Antonio; Coll-Marqués, José M.; Yebra, María J.; Buesa, Javier; Pérez-Martínez, Gaspar; Monedero, Vicente; Rodríguez-Díaz, Jesús

    2014-01-01

    Noroviruses (NoVs) are the main etiologic agents of acute epidemic gastroenteritis and probiotic bacteria have been reported to exert a positive effect on viral diarrhea. The protruding (P) domain from NoVs VP1 capsid protein has the ability to assemble into the so-called P-particles, which retain the binding ability to host receptors. We purified the P-domains from NoVs genotypes GI.1 and GII.4 as 6X(His)-tagged proteins and determined that, similar to native domains, they were structured into P-particles that were functional in the recognition of the specific glycoconjugated receptors, as established by surface plasmon resonance experiments. We showed that several lactic acid bacteria (probiotic and non-probiotic) and a Gram-negative probiotic strain have the ability to bind P-particles on their surfaces irrespective of their probiotic status. The binding of P-particles (GI.1) to HT-29 cells in the presence of selected strains showed that bacteria can inhibit P-particle attachment in competitive exclusion experiments. However, pre-treatment of cells with bacteria or adding bacteria to cells with already attached P-particles enhanced the retention of the particles. Although direct viral binding and blocking of viral receptors have been postulated as mechanisms of protection against viral infection by probiotic bacteria, these results highlight the need for a careful evaluation of this hypothesis. The work presented here investigates for the first time the probiotic-NoVs-host interactions and points up the NoVs P-particles as useful tools to overcome the absence of in vitro cellular models to propagate these viruses. PMID:24586892

  17. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures

    PubMed Central

    Takanashi, Sayaka; Saif, Linda J.; Hughes, John H.; Meulia, Tea; Jung, Kwonil; Scheuer, Kelly A.; Wang, Qiuhong

    2013-01-01

    Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis. Establishment of a cell culture system for in vitro HuNoV growth remains challenging. Replication of HuNoVs in human intestinal cell lines (INT-407 and Caco-2) that differentiate to produce microvilli in rotation wall vessel (RWV) three-dimensional cultures has been reported (Straub et al., Emerg Infect Dis 13:396–403 2007, J Water Health 9:225–240 2011, and Water Sci Technol 67:863–868 2013). We used a similar RWV system, intestinal cell lines, and the same (Genogroup [G] I.1) plus additional (GII.4 and GII.12) HuNoV strains to test the system’s reproducibility and to expand the earlier findings. Apical microvilli were observed on the surface of both cell lines by light and electron microscopy. However, none of the cell types tested resulted in productive viral replication of any of the HuNoV strains, as confirmed by plateau or declining viral RNA titers in the supernatants and cell lysates of HuNoV-infected cells, determined by real-time reverse transcription PCR. These trends were the same when culture supplements were added that have been reported to be effective for replication of other fastidious enteric viruses in vitro. Additionally, by confocal microscopy and orthoslice analysis, viral capsid proteins were mainly observed above the actin filament signals, which suggested that the majority of viral antigens were on the cell surface. We conclude that even intestinal cells displaying microvilli were not sufficient to support HuNoV replication under the conditions tested. PMID:23974469

  18. [Current topics on inactivation of norovirus].

    PubMed

    Noda, Mamoru; Uema, Masashi

    2011-01-01

    Human norovirus is the most important foodborne virus in Japan. According to the statistics of food poisoning by the Ministry of Health, Labour, and Welfare (MHLW), the number of patients infected with norovirus has accounted for half of all the patients with food poisoning in recent years. One of the most important measures for the control of infectious diseases is establishing of techniques for inactivating pathogens. For the prevention of food poisoning caused by norovirus, MHLW recommends that foods be subjected to heat treatment at 85 degrees C for 1 min or more; moreover, it recommends the use of sodium hypochlorite to inactivate (disinfect) this virus. However, application of these treatments is not always feasible because heat results in denaturation and sodium hypochlorite can be toxic to the human body and can cause discoloration. Therefore, it is necessary to develop and improve the efficacy of disinfectants and physiochemical treatments against the virus. Human norovirus cannot be propagated in cell culture or in a small animal. This matter is the greatest hindrance for testing the stability of this virus in environments or for evaluating the efficacy of disinfectants, heat treatment, pH treatment, ultraviolet or gamma irradiation, high hydrostatic pressure treatment, and other methods for the inactivation of the virus. Hence, some viruses such as human enterovirus, feline calicivirus, or mouse norovirus have been used as surrogates of human norovirus. The data on inactivation and stability of surrogate viruses are exclusively used as the data of human noroviruses. In recent years, some attempts to distinguish between infectious and noninfectious virus particles by genetic methods such as polymerase chain reaction have been made. These methods include pretreatments by RNase for digesting viral RNAs from non-intact or destroyed virus particles, or addition of a reagent such as ethidium monoazide for inhibiting PCR amplification of viral RNAs from them

  19. Isoform and Splice-Variant Specific Functions of Dynamin-2 Revealed by Analysis of Conditional Knock-Out Cells

    PubMed Central

    Liu, Ya-Wen; Surka, Mark C.; Schroeter, Thomas; Lukiyanchuk, Vasyl

    2008-01-01

    Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. PMID:18923138

  20. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells.

    PubMed

    Liu, Ya-Wen; Surka, Mark C; Schroeter, Thomas; Lukiyanchuk, Vasyl; Schmid, Sandra L

    2008-12-01

    Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. PMID:18923138

  1. Evaluation of a Microarray for Genotyping Noroviruses

    EPA Science Inventory

    Noroviruses that infect humans are divided into three genogroups based upon their sequence diversity. Of these, genogroups I and II have been identified as leading causes of waterborne disease outbreaks worldwide and are frequently found in rivers and lakes that serve as drinkin...

  2. Outbreak of norovirus gastroenteritis infection, Thailand.

    PubMed

    McCarthy, Katie S; Guntapong, Ratigorn; Thattiyaphong, Aree; Wangroongsarb, Piyada; Hall, Aron J; Olsen, Sonja J; Holtz, Timothy H

    2013-05-01

    Norovirus is a leading cause of gastrointestinal illness worldwide. We investigated an outbreak of gastrointestinal illness in Pattaya, Thailand, among participants of a course. We asked participants and family members to complete a questionnaire asking about symptoms, meals eaten, and foods consumed during the course. We collected stool samples from persons reporting illness and analyzed specimens for several viruses and enteropathogenic bacteria. We defined a case as a person having one or more episodes of diarrhea, with onset between 30 August and 1 September 2010, in a participant or family member who attended the course. Of 56 people who attended, 95% completed the questionnaire: nine met the case definition (attack rate, 17%). Common symptoms included abdominal cramps, nausea, fatigue, headache, and vomiting. Food items with elevated risk ratios included: crispy fish maw, dried squid, and cashew nut salad [risk ratio (RR) 5.1; 95% confidence interval (CI) 0.7-37]; assorted salad bar with dressing (RR 3.0; 95% CI 0.9-11); and seafood kebab (RR 5.8; 95% CI 0.8-43). Among ill persons, four (44%) provided stool samples and two (50%) were positive for norovirus. Our data suggest a foodborne outbreak of norovirus. Increased use of norovirus diagnostics as well as measures to prevent transmission may help identify additional outbreaks and improve control measures to limit the spread of outbreaks. PMID:24050072

  3. Inactivation of human norovirus using chemical sanitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10 percent stool filtrate. One min free chlorine treatments at concentrat...

  4. Global Economic Burden of Norovirus Gastroenteritis

    PubMed Central

    Bartsch, Sarah M.; Lopman, Benjamin A.; Ozawa, Sachiko; Hall, Aron J.; Lee, Bruce Y.

    2016-01-01

    Background Despite accounting for approximately one fifth of all acute gastroenteritis illnesses, norovirus has received comparatively less attention than other infectious pathogens. With several candidate vaccines under development, characterizing the global economic burden of norovirus could help funders, policy makers, public health officials, and product developers determine how much attention and resources to allocate to advancing these technologies to prevent and control norovirus. Methods We developed a computational simulation model to estimate the economic burden of norovirus in every country/area (233 total) stratified by WHO region and globally, from the health system and societal perspectives. We considered direct costs of illness (e.g., clinic visits and hospitalization) and productivity losses. Results Globally, norovirus resulted in a total of $4.2 billion (95% UI: $3.2–5.7 billion) in direct health system costs and $60.3 billion (95% UI: $44.4–83.4 billion) in societal costs per year. Disease amongst children <5 years cost society $39.8 billion, compared to $20.4 billion for all other age groups combined. Costs per norovirus illness varied by both region and age and was highest among adults ≥55 years. Productivity losses represented 84–99% of total costs varying by region. While low and middle income countries and high income countries had similar disease incidence (10,148 vs. 9,935 illness per 100,000 persons), high income countries generated 62% of global health system costs. In sensitivity analysis, the probability of hospitalization had the largest impact on health system cost estimates ($2.8 billion globally, assuming no hospitalization costs), while the probability of missing productive days had the largest impact on societal cost estimates ($35.9 billion globally, with a 25% probability of missing productive days). Conclusions The total economic burden is greatest in young children but the highest cost per illness is among older age

  5. Human norovirus transmission and evolution in a changing world.

    PubMed

    de Graaf, Miranda; van Beek, Janko; Koopmans, Marion P G

    2016-07-01

    Norovirus infections are a major cause of gastroenteritis, and outbreaks occur frequently. Several factors are currently increasing the challenge posed by norovirus infections to global health, notably the increasing number of infections in immunocompromised individuals, who are more susceptible to disease, and the globalization of the food industry, which enables large norovirus outbreaks to occur on an international scale. Furthermore, the rapid rate of the genetic and antigenic evolution of circulating noroviruses complicates the development of vaccines and therapies that are required to counter these challenges. In this Review, we describe recent advances in the study of the transmission, pathogenesis and evolution of human noroviruses, and consider the ongoing risk of norovirus outbreaks, together with the future prospects for therapeutics, in a rapidly changing world. PMID:27211790

  6. The scenario of norovirus contamination in food and food handlers.

    PubMed

    Tuan Zainazor, C; Hidayah, M S Noor; Chai, L C; Tunung, R; Ghazali, F Mohamad; Son, R

    2010-02-01

    Recently, many cases related to viral gastroenteritis outbreaks have been reported all over the world. Noroviruses are found to be leading as the major cause of outbreaks of acute gastroenteritis. Patients with the acute gastroenteritis normally found to be positive with norovirus when stools and vomit were analyzed. This paper reviews various activities and previous reports that describe norovirus contaminated in various food matrixes and relationship between food handlers. Lately, a numbers of norovirus outbreaks have been reported which are involved fresh produce (such as vegetables, fruits), shellfish and prepared food. Food produces by infected food handlers may therefore easily contaminated. In addition, food that required much handling and have been eaten without heat treatment gave the high risk for getting foodborne illnesses. The standard method for detection of norovirus has already been available for stool samples. However, only few methods for detection of norovirus in food samples have been developed until now. PMID:20208424

  7. Inactivation of human norovirus using chemical sanitizers.

    PubMed

    Kingsley, David H; Vincent, Emily M; Meade, Gloria K; Watson, Clytrice L; Fan, Xuetong

    2014-02-01

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10% stool filtrate. One-minute free chlorine treatments at concentrations of 33 and 189 ppm reduced virus binding in the PGM-MB assay by 1.48 and 4.14 log₁₀, respectively, suggesting that chlorine is an efficient sanitizer for inactivation of human norovirus (HuNoV). Five minute treatments with 5% trisodium phosphate (pH~12) reduced HuNoV binding by 1.6 log₁₀, suggesting that TSP, or some other high pH buffer, could be used to treat food and food contact surfaces to reduce HuNoV. One minute treatments with 350 ppm chlorine dioxide dissolved in water did not reduce PGM-MB binding, suggesting that the sanitizer may not be suitable for HuNoV inactivation in liquid form. However a 60-min treatment with 350 ppm chlorine dioxide did reduce human norovirus by 2.8 log₁₀, indicating that chlorine dioxide had some, albeit limited, activity against HuNoV. Results also suggest that peroxyacetic acid has limited effectiveness against human norovirus, since 1-min treatments with up to 195 ppm reduced human norovirus binding by <1 log₁₀. Hydrogen peroxide (4%) treatment of up to 60 min resulted in minimal binding reduction (~0.1 log₁₀) suggesting that H₂O₂ is not a good liquid sanitizer for HuNoV. Overall this study suggests that HuNoV is remarkably resistant to several commonly used disinfectants and advocates for the use of chlorine (sodium hypochlorite) as a HuNoV disinfectant wherever possible. PMID:24334094

  8. Status of vaccine research and development for norovirus.

    PubMed

    Riddle, Mark S; Walker, Richard I

    2016-06-01

    The global health community is beginning to gain an understanding of the global burden of norovirus-associated disease, which appears to have significant burden in both developed- and developing-country populations. Of particular importance is the growing recognition of norovirus as a leading cause of gastroenteritis and diarrhea in countries where rotavirus vaccine has been introduced. While not as severe as rotavirus disease, the sheer number of norovirus infections not limited to early childhood makes norovirus a formidable global health problem. This article provides a landscape review of norovirus vaccine development efforts. Multiple vaccine strategies, mostly relying on virus-like particle antigens, are under development and have demonstrated proof of efficacy in human challenge studies. Several are entering phase 2 clinical development. Norovirus vaccine development challenges include, but are not limited to: valency, induction of adequate immune responses in pediatric and elderly populations, and potential for vaccine-strain mismatch. Given current strategies and global health interest, the outlook for a norovirus vaccine is promising. Because a norovirus vaccine is expected to have a dual market in both developed and developing countries, there would likely be scale-up advantages for commercial development and global distribution. Combination with or expression by another enteric pathogen, such as rotavirus, could also enhance uptake of a norovirus vaccine. PMID:27036510

  9. Structural Basis for Norovirus Inhibition and Fucose Mimicry by Citrate

    SciTech Connect

    Hansman, Grant S.; Shahzad-ul-Hussan, Syed; McLellan, Jason S.; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A.; Kwong, Peter D.

    2012-01-20

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 {angstrom} and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 {mu}M). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 {mu}M) and H type 2 trisaccharide (390 {mu}M), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  10. Heat-Denatured Lysozyme Inactivates Murine Norovirus as a Surrogate Human Norovirus

    PubMed Central

    Takahashi, Hajime; Nakazawa, Moemi; Ohshima, Chihiro; Sato, Miki; Tsuchiya, Tomoki; Takeuchi, Akira; Kunou, Masaaki; Kuda, Takashi; Kimura, Bon

    2015-01-01

    Human norovirus infects humans through the consumption of contaminated food, contact with the excrement or vomit of an infected person, and through airborne droplets that scatter the virus through the air. Being highly infectious and highly viable in the environment, inactivation of the norovirus requires a highly effective inactivating agent. In this study, we have discovered the thermal denaturing capacity of a lysozyme with known antimicrobial activity against gram-positive bacteria, as well as its inactivating effect on murine norovirus. This study is the first report on the norovirus-inactivating effects of a thermally denatured lysozyme. We observed that lysozymes heat-treated for 40 min at 100 °C caused a 4.5 log reduction in infectivity of norovirus. Transmission electron microscope analysis showed that virus particles exposed to thermally denatured lysozymes were expanded, compared to the virus before exposure. The amino acid sequence of the lysozyme was divided into three sections and the peptides of each artificially synthesised, in order to determine the region responsible for the inactivating effect. These results suggest that thermal denaturation of the lysozyme changes the protein structure, activating the region responsible for imparting an inactivating effect against the virus. PMID:26134436

  11. EVALUATION OF A GENERIC ARRAY APPROACH FOR GENOTYPING NOROVIRUSES

    EPA Science Inventory

    Noroviruses are the leading cause of nonbacterial gastroenteritis outbreaks in the United States. Because of their potential to contaminate drinking water, the U.S Environmental Protection Agency has included noroviruses on the Contaminant Candidate List (CCL) to assess the publi...

  12. Lessons Learned from an Elementary School Norovirus Outbreak

    ERIC Educational Resources Information Center

    Gomez, Eileen Button

    2008-01-01

    Outbreaks of norovirus have been on the increase. The virus often spreads quickly through schools and similar institutions. The school nurse may be able to minimize the impact of a school norovirus outbreak by providing accurate information about the disease, the scope of the local situation, and instruction on infection control measures. This…

  13. Inactivation of a Norovirus by High Pressure Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high pressure processing. Experiments with virus stocks in DMEM media demonstrated that at room temperature (20 degree C), the virus was inactivated over a pressure range of 350 to 450 MegaPascals (MPa), wi...

  14. High pressure processing inactivates human norovirus within oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of raw bivalve mollusks can result in norovirus infection. One potential intervention for virus-contaminated shellfish is high pressure processing (HPP). Currently HPP is known to inactivate Vibrio bacteria, hepatitis A virus, and murine norovirus within oysters. To evaluate the potentia...

  15. Enhanced Hygiene Measures and Norovirus Transmission during an Outbreak

    PubMed Central

    Teunis, Peter; Morroy, Gabriella; Wijkmans, Clementine; Oostveen, Sandy; Duizer, Erwin; Kretzschmar, Mirjam; Wallinga, Jacco

    2009-01-01

    Control of norovirus outbreaks relies on enhanced hygiene measures, such as handwashing, surface cleaning, using disposable paper towels, and using separate toilets for sick and well persons. However, little is known about their effectiveness in limiting further spread of norovirus infections. We analyzed norovirus outbreaks in 7 camps at an international scouting jamboree in the Netherlands during 2004. Implementation of hygiene measures coincided with an 84.8% (95% predictive interval 81.2%–86.6%) reduction in reproduction number. This reduction was unexpectedly large but still below the reduction needed to contain a norovirus outbreak. Even more stringent control measures are required to break the chain of transmission of norovirus. PMID:19116045

  16. Noroviruses: The Principal Cause of Foodborne Disease Worldwide

    PubMed Central

    Koo, Hoonmo L.; Ajami, Nadim; Atmar, Robert L.; DuPont, Herbert L.

    2011-01-01

    Noroviruses are the leading cause of foodborne disease outbreaks worldwide, and may soon eclipse rotaviruses as the most common cause of severe pediatric gastroenteritis, as the use of rotavirus vaccines becomes more widespread. Genetic mutations and recombinations contribute to the broad heterogeneity of noroviruses and the emergence of new epidemic strains. Although typically a self-limited disease, norovirus gastroenteritis can cause significant morbidity and mortality among children, the elderly, and the immunocompromised. The lack of a cell culture or small animal model has hindered norovirus research and the development of novel therapeutic and preventative interventions. However, vaccines based on norovirus capsid protein virus-like particles are promising and may one day become widely available through transgenic expression in plants. PMID:20670600

  17. Multicenter Evaluation of the Xpert Norovirus Assay for Detection of Norovirus Genogroups I and II in Fecal Specimens.

    PubMed

    Gonzalez, Mark D; Langley, L Claire; Buchan, Blake W; Faron, Matthew L; Maier, Melanie; Templeton, Kate; Walker, Kimberly; Popowitch, Elena B; Miller, Melissa B; Rao, Arundhati; Liebert, Uwe G; Ledeboer, Nathan A; Vinjé, Jan; Burnham, C A

    2016-01-01

    Norovirus is the most common cause of sporadic gastroenteritis and outbreaks worldwide. The rapid identification of norovirus has important implications for infection prevention measures and may reduce the need for additional diagnostic testing. The Xpert Norovirus assay recently received FDA clearance for the detection and differentiation of norovirus genogroups I and II (GI and GII), which account for the vast majority of infections. In this study, we evaluated the performance of the Xpert Norovirus assay with both fresh, prospectively collected (n = 914) and frozen, archived (n = 489) fecal specimens. A Centers for Disease Control and Prevention (CDC) composite reference method was used as the gold standard for comparison. For both prospective and frozen specimens, the Xpert Norovirus assay showed positive percent agreement (PPA) and negative percent agreement (NPA) values of 98.3% and 98.1% for GI and of 99.4% and 98.2% for GII, respectively. Norovirus prevalence in the prospective specimens (collected from March to May of 2014) was 9.9% (n = 90), with the majority of positives caused by genogroup II (82%, n = 74). The positive predictive value (PPV) of the Xpert Norovirus assay was 75% for GI-positive specimens, whereas it was 86.5% for GII-positive specimens. The negative predictive values (NPV) for GI and GII were 100% and 99.9%, respectively. PMID:26560532

  18. Performance of a one-step quantitative duplex RT-PCR for detection of rotavirus A and noroviruses GII during two periods of high viral circulation.

    PubMed

    Fumian, Tulio M; Leite, José Paulo G; Rocha, Mônica S; de Andrade, Juliana S R; Fioretti, Julia M; de Assis, Rosane M S; Assis, Matheus R S; Fialho, Alexandre M; Miagostovich, Marize P

    2016-02-01

    Rotavirus A (RVA) and noroviruses (NoV) are the major viral agents of acute gastroenteritis (AGE) worldwide. In the present study, we aimed to evaluate the performance of a one-step duplex quantitative RT-PCR (dRT-qPCR) assay, established for detection and quantification of RVA and NoV genogroup II (GII) using a single DNA standard curve (SC), as well as to investigate the association between fecal viral load and optical density (OD) values, and viruses' genotyping. The results obtained by dRT-qPCR in 530 fecal samples from AGE cases were compared with methods employed for the diagnosis of those viruses as follows: enzyme immunoassay (EIA) and polyacrylamide gel electrophoresis (PAGE) for RVA; and qualitative PCR for NoV. By using dRT-qPCR, we detected RVA and NoV in 353 (66%), increasing the positivity rate by 22.5% for RVA and 11.5% NoV, comparing the number of positive samples. RVA and NoV GII were detected in a range of 5.17 × 10(3) to 6.56 × 10(9) and 3.76 × 10(3) to 9.13 × 10(10) genome copies per gram of feces, respectively. We observed a significant direct correlation between genome copies values and optical density, using dRT-qPCR and EIA assays, respectively (Spearman ρ=0.41; p<0.0001). Viruses characterization demonstrated a predominance of NoV GII.4 Sidney 2012 variant during October 2013 to February 2014, followed by the emergence of RVA genotype G12P[8] in 2014. The established assay using a single SC provides an early feedback concerning detection and quantification, with the advantage of detecting simultaneously RVA and NoV GII, reducing time and reagent costs. PMID:26611226

  19. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine

    PubMed Central

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-01-01

    ABSTRACT Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  20. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine.

    PubMed

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-03-01

    Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  1. Caliciviruses in hospitalized children, São Luís, Maranhão, 1997-1999: detection of norovirus GII.12.

    PubMed

    Portal, Thayara Morais; Siqueira, Jones Anderson Monteiro; Costa, Larissa Cristina Prado das Neves; Lima, Ian Carlos Gomes de; Lucena, Maria Silvia Sousa de; Bandeira, Renato da Silva; Linhares, Alexandre da Costa; Luz, Claudia Regina Nunes Eloi da; Gabbay, Yvone Benchimol; Resque, Hugo Reis

    2016-01-01

    Gastroenteritis is one of the most common diseases during childhood, with norovirus (NoV) and sapovirus (SaV) being two of its main causes. This study reports for the first time the incidence of these viruses in hospitalized children with and without gastroenteritis in São Luís, Maranhão. A total of 136 fecal samples were tested by enzyme immunoassays (EIA) for the detection of NoV and by reverse transcription-polymerase chain reaction (RT-PCR) for detection of both NoV and SaV. Positive samples for both agents were subjected to sequencing. The overall frequency of NoV as detected by EIA and RT-PCR was 17.6% (24/136) and 32.6% (15/46), respectively in diarrheic patients and 10.0% (9/90) in non-diarrheic patients (p<0.01). Of the diarrheic patients, 17% had fever, vomiting and anorexia, and 13% developed fever, vomiting and abdominal pain. Of the 24 NoV-positive samples, 50% (12/24) were sequenced and classified as genotypes GII.3 (n=1), GII.4 (6), GII.5 (1), GII.7 (2), GII.12 (1) and GII.16 (1). SaV frequency was 9.8% (11/112), with 22.6% (7/31) in diarrheic patients and 4.9% (4/81) in nondiarrheic (p=0.04) ones. In diarrheic cases, 27.3% had fever, vomiting and anorexia, whereas 18.2% had fever, anorexia and abdominal pain. One SaV-positive sample was sequenced and classified as GII.1. These results show a high genetic diversity of NoV and higher prevalence of NoV compared to SaV. Our data highlight the importance of NoV and SaV as enteropathogens in São Luís, Maranhão. PMID:27161199

  2. Norovirus contamination on French marketed oysters.

    PubMed

    Schaeffer, Julien; Le Saux, Jean-Claude; Lora, Monica; Atmar, Robert L; Le Guyader, Françoise S

    2013-09-01

    Contaminated shellfish have been implicated in gastroenteritis outbreaks in different countries. As no regulation has been set up yet regarding viral contamination of food, very few data are available on the prevalence of contaminated products on the market. This study presents data obtained from oysters collected on the French market in one producing area over a 16 month period of time. Noroviruses were detected in 9% of samples with a seasonal impact and influence of climatic events. Contamination levels were low and, surprisingly, oysters sampled directly from the producer were found to have less contamination than oysters from supermarkets. PMID:23973835

  3. Norovirus contamination on French marketed oysters

    PubMed Central

    Schaeffer, Julien; Le Saux, Jean-Claude; Lora, Monica; Atmar, Robert L.; Le Guyader, Françoise S.

    2014-01-01

    Contaminated shellfish have been implicated in gastroenteritis outbreaks in different countries. As no regulation has been set up yet regarding viral contamination of food, very few data are available on the prevalence of contaminated products on the market. This study presents data obtained from oysters collected on the French market in one producing area over a 16 month period of time. Noroviruses were detected in 9% of samples with a seasonal impact and influence of climatic events. Contamination levels were low and, surprisingly, oysters sampled directly from the producer were found to have less contamination than oysters from supermarkets. PMID:23973835

  4. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses.

    PubMed

    Chen, Haifeng; Hu, Yuan

    2016-01-01

    Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses. PMID:27335620

  5. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses

    PubMed Central

    Chen, Haifeng; Hu, Yuan

    2016-01-01

    Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses. PMID:27335620

  6. Tropical and travel-associated norovirus: current concepts

    PubMed Central

    Ballard, Sarah-Blythe; Saito, Mayuko; Mirelman, Andrew J.; Bern, Caryn; Gilman, Robert H.

    2015-01-01

    Purpose of review We highlight recent advances relevant to understanding norovirus infections in the tropics, both in populations living in developing settings and travelers to these regions. Recent findings Because of the decrease in diarrheal disease associated with the global rollout of vaccines against rotavirus, norovirus is emerging as the predominant cause of diarrhea morbidity among children in the tropics, and evidence suggests that it contributes to adult disease in endemic populations and travelers. In addition to identifying potential target populations for preventive measures, we provide an update on norovirus vaccine development and concepts related to their implementation in low-income and middle-income countries. Summary These current concepts related to norovirus-attributable disease burden, clinical significance, and economic impact can potentially be applied to tailoring efforts to prevent and mitigate the effects of this important enteropathogen. PMID:26237546

  7. Allelic Diversity of the Plasmodium falciparum Erythrocyte Membrane Protein 1 Entails Variant-Specific Red Cell Surface Epitopes

    PubMed Central

    Vigan-Womas, Inès; Guillotte, Micheline; Juillerat, Alexandre; Vallieres, Cindy; Lewit-Bentley, Anita; Tall, Adama; Baril, Laurence; Bentley, Graham A.; Mercereau-Puijalon, Odile

    2011-01-01

    The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquistion of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as production of a vaccine

  8. Norovirus in 2016-Emesis Aplenty but Clear Signs of Progress.

    PubMed

    Head, Michael G; Lopman, Benjamin A

    2016-02-01

    The key theme emerging from the articles in this supplement is that burden of norovirus in the United Kingdom and elsewhere is substantial and that new tools for prevention, diagnosis, and treatment are required. Basic understanding of norovirus biology continues to accelerate, but parallel increases in capacity and research funding are going to be needed to translate this knowledge into clinical trials and translational research that can result in public health gains. PMID:26744425

  9. 75 FR 34146 - Draft Guideline for the Prevention and Control of Norovirus Gastroenteritis Outbreaks in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... of Norovirus Gastroenteritis Outbreaks in Healthcare Settings AGENCY: Centers for Disease Control and... for the Prevention and Control of Norovirus Gastroenteritis Outbreaks in Healthcare Settings... control programs for healthcare settings across the continuum of care. This guideline provides...

  10. [Research Progress in Norovirus Bioaccumulation in Shellfish].

    PubMed

    Zhou, Deqing; Su, Laijin; Zhao, Feng; Ma, Liping

    2015-05-01

    Noroviruses (NoVs) are one of the most important foodborne viral pathogens worldwide. Shellfish are the most common carriers of NoVs as they can concentrate and accumulate large amounts of the virus through filter feeding from seawater. Shellfish may selectively accumulate NoVs with different genotypes, and this bioaccumulation may depend on the season and location. Our previous studies found various histo-blood group antigens (HBGAs) in shellfish tissues. While HBGAs might be the main reason that NoVs are accumulated in shellfish, the detailed mechanism behind NoV concentration and bioaccumulation in shellfish is not clear. Here we review current research into NoV bioaccumulation, tissue distribution, seasonal variation, and binding mechanism in shellfish. This paper may provide insight into controlling NoV transmission and decreasing the risks associated with shellfish consumption. PMID:26470540

  11. Role of Cholesterol Pathways in Norovirus Replication▿

    PubMed Central

    Chang, Kyeong-Ok

    2009-01-01

    Norwalk virus (NV) is a prototype strain of the noroviruses (family Caliciviridae) that have emerged as major causes of acute gastroenteritis worldwide. I have developed NV replicon systems using reporter proteins such as a neomycin-resistant protein (NV replicon-bearing cells) and a green fluorescent protein (pNV-GFP) and demonstrated that these systems were excellent tools to study virus replication in cell culture. In the present study, I first performed DNA microarray analysis of the replicon-bearing cells to identify cellular factors associated with NV replication. The analysis demonstrated that genes in lipid (cholesterol) or carbohydrate metabolic pathways were significantly (P < 0.001) changed by the gene ontology analysis. Among genes in the cholesterol pathways, I found that mRNA levels of hydroxymethylglutaryl-coenzyme A (HMG-CoA) synthase, squalene epoxidase, and acyl-CoA:cholesterol acyltransferase (ACAT), ACAT2, small heterodimer partner, and low-density lipoprotein receptor (LDLR)-related proteins were significantly changed in the cells. I also found that the inhibition of cholesterol biosynthesis using statins (an HMG-CoA reductase inhibitor) significantly increased the levels of NV proteins and RNA, whereas inhibitors of ACAT significantly reduced the replication of NV in replicon-bearing cells. Up- or downregulation of virus replication with these agents significantly correlated with the mRNA level of LDLR in replicon-bearing cells. Finally, I found that the expression of LDLR promoted NV replication in trans by transfection study with pNV-GFP. I conclude that the cholesterol pathways such as LDLR expression and ACAT activity may be crucial in the replication of noroviruses in cells, which may provide potential therapeutic targets for viral infection. PMID:19515767

  12. Norovirus prevalence in ‘pathogen negative’ gastroenteritis in children from periurban areas in Lima, Peru

    PubMed Central

    Rivera, Fulton P.; Ochoa, Theresa J.; Ruiz, Joaquim; Medina, Anicia M.; Ecker, Lucie; Mercado, Erik; Gil, Ana I.; Huicho, Luis; Lanata, Claudio F.

    2011-01-01

    Summary Norovirus was detected in 17.4% of 224 diarrhoeal samples from children younger than 24 months of age in Lima, in whom all common pathogens had been excluded (pathogen negative). Norovirus was identified more frequently in children older than 12 months of age than in younger children (34% vs 8%, P<0.001). Among norovirus-positive samples, genogroup II was the predominant group (92%). Compared with rotavirus, norovirus episodes tended to be of shorter duration and less severe. The role of norovirus as a cause of diarrhoea and the ascertainment of its severity in developing countries needs further confirmation by future epidemiological studies. PMID:21962615

  13. Viability and heat resistance of murine norovirus on bread.

    PubMed

    Takahashi, Michiko; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon

    2016-01-01

    Contaminated bread was the cause of a large-scale outbreak of norovirus disease in Japan in 2014. Contamination of seafood and uncooked food products by norovirus has been reported several times in the past; however the outbreak resulting from the contamination of bread products was unusual. A few reports on the presence of norovirus on bread products are available; however there have been no studies on the viability and heat resistance of norovirus on breads, which were investigated in this study. ce:italic>/ce:italic> strain 1 (MNV-1), a surrogate for human norovirus, was inoculated directly on 3 types of bread, but the infectivity of MNV-1 on bread samples was almost unchanged after 5days at 20°C. MNV-1 was inoculated on white bread that was subsequently heated in a toaster for a maximum of 2min. The results showed that MNV-1 remained viable if the heating period was insufficient to inactivate. In addition, bread dough contaminated with MNV-1 was baked in the oven. Our results indicated that MNV-1 may remain viable on breads if the heating duration or temperature is insufficient. PMID:26485672

  14. An outbreak of norovirus linked to oysters in Tasmania.

    PubMed

    Lodo, Kerryn L; Veitch, Mark G K; Green, Michelle L

    2014-03-01

    Norovirus is the most commonly reported virus in shellfish related gastroenteritis outbreaks. In March 2013 an investigation was conducted following the receipt of reports of gastroenteritis after the consumption of oysters at private functions in Tasmania. Cases were ascertained through general practitioners, emergency departments, media releases and self-reporting. Of the 306 cases identified in Tasmania, ten faecal specimens were collected for laboratory testing and eight were positive for norovirus (GII.g). The most common symptoms were vomiting (87%), diarrhoea (85%), myalgia (82%) and fever (56%). The implicated oysters were traced to a single lease from which they were harvested and distributed locally and interstate. Nationally 525 cases were identified from Tasmania (306), Victoria (209), New South Wales (8) and Queensland (2). This report highlights the consequences of norovirus outbreaks in shellfish, even with rapid identification, trace back and removal of the implicated product from the market. PMID:25409349

  15. Genogroup IV and VI Canine Noroviruses Interact with Histo-Blood Group Antigens

    PubMed Central

    Breiman, Adrien; le Pendu, Jacques

    2014-01-01

    ABSTRACT Human noroviruses (HuNV) are a significant cause of viral gastroenteritis in humans worldwide. HuNV attaches to cell surface carbohydrate structures known as histo-blood group antigens (HBGAs) prior to internalization, and HBGA polymorphism among human populations is closely linked to susceptibility to HuNV. Noroviruses are divided into 6 genogroups, with human strains grouped into genogroups I (GI), II, and IV. Canine norovirus (CNV) is a recently discovered pathogen in dogs, with strains classified into genogroups IV and VI. Whereas it is known that GI to GIII noroviruses bind to HBGAs and GV noroviruses recognize terminal sialic acid residues, the attachment factors for GIV and GVI noroviruses have not been reported. This study sought to determine the carbohydrate binding specificity of CNV and to compare it to the binding specificities of noroviruses from other genogroups. A panel of synthetic oligosaccharides were used to assess the binding specificity of CNV virus-like particles (VLPs) and identified α1,2-fucose as a key attachment factor. CNV VLP binding to canine saliva and tissue samples using enzyme-linked immunosorbent assays (ELISAs) and immunohistochemistry confirmed that α1,2-fucose-containing H and A antigens of the HBGA family were recognized by CNV. Phenotyping studies demonstrated expression of these antigens in a population of dogs. The virus-ligand interaction was further characterized using blockade studies, cell lines expressing HBGAs, and enzymatic removal of candidate carbohydrates from tissue sections. Recognition of HBGAs by CNV provides new insights into the evolution of noroviruses and raises concerns regarding the potential for zoonotic transmission of CNV to humans. IMPORTANCE Infections with human norovirus cause acute gastroenteritis in millions of people each year worldwide. Noroviruses can also affect nonhuman species and are divided into 6 different groups based on their capsid sequences. Human noroviruses in genogroups

  16. Infectious Diarrhea: Norovirus and Clostridium difficile in Older Adults.

    PubMed

    White, Mary B; Rajagopalan, Shobita; Yoshikawa, Thomas T

    2016-08-01

    Norovirus infection usually results in acute gastroenteritis, often with incapacitating nausea, vomiting, and diarrhea. It is highly contagious and resistant to eradication with alcohol-based hand sanitizer. Appropriate preventative and infection control measures can mitigate the morbidity and mortality associated with norovirus infection. Clostridium difficile infection is the leading cause of health care-associated diarrhea in the United States. Antibiotic use is by far the most common risk factor for C difficile colonization and infection. Appropriate preventive measures and judicious use of antibiotics can help mitigate the morbidity and mortality associated with C difficile infection. PMID:27394020

  17. Eliminating Murine Norovirus by Cross-Fostering

    PubMed Central

    Buxbaum, Laurence U.; DeRitis, Pierina C.; Chu, Niansheng; Conti, Pierre A.

    2011-01-01

    Murine norovirus (MNV) is a newly discovered and extremely prevalent pathogen of laboratory mouse colonies. MNV causes severe disease in some immunocompromised mouse strains and can cause persistent infections even in immunocompetent mice. Despite the fact that immunocompetent mice are generally asymptomatic, the possibility that MNV infection might alter immune responses makes its eradication a potentially useful goal for many facilities. Initial attempts by others to use a strategy of testing and culling were unsuccessful, whereas complete depopulation and facility decontamination was successful. However, these measures may be impractical, and finding less drastic approaches seemed prudent. Based on a report that cross-fostering of pups from MNV-positive mothers to MNV-negative ones could be successful in experimental MNV infection, we undertook a comprehensive fostering program using Swiss Webster mothers, careful sanitary measures, and fecal PCR testing to eradicate the virus from a mouse colony recently infected with MNV. We successfully decontaminated 17 of 18 (94%) litters and managed to prevent spread when a new MNV-infected mouse strain entered quarantine at our facility. These results suggest that cross-fostering, when performed in a setting of excellent sanitary procedures, may be practical for the large number of mouse facilities in which MNV is endemic. PMID:21838978

  18. Selection tool for foodborne norovirus outbreaks.

    PubMed

    Verhoef, Linda P B; Kroneman, Annelies; van Duynhoven, Yvonne; Boshuizen, Hendriek; van Pelt, Wilfrid; Koopmans, Marion

    2009-01-01

    Detection of pathogens in the food chain is limited mainly to bacteria, and the globalization of the food industry enables international viral foodborne outbreaks to occur. Outbreaks from 2002 through 2006 recorded in a European norovirus surveillance database were investigated for virologic and epidemiologic indicators of food relatedness. The resulting validated multivariate logistic regression model comparing foodborne (n = 224) and person-to-person (n = 654) outbreaks was used to create a practical web-based tool that can be limited to epidemiologic parameters for nongenotyping countries. Non-genogroup-II.4 outbreaks, higher numbers of cases, and outbreaks in restaurants or households characterized (sensitivity = 0.80, specificity = 0.86) foodborne outbreaks and reduced the percentage of outbreaks requiring source-tracing to 31%. The selection tool enabled prospectively focused follow-up. Use of this tool is likely to improve data quality and strain typing in current surveillance systems, which is necessary for identification of potential international foodborne outbreaks. PMID:19116046

  19. Inactivation of a Human Norovirus Surrogate, Human Norovirus Virus-Like Particles, and Vesicular Stomatitis Virus by Gamma Irradiation ▿

    PubMed Central

    Feng, Kurtis; Divers, Erin; Ma, Yuanmei; Li, Jianrong

    2011-01-01

    Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment. PMID:21441330

  20. Variable high pressure processing sensitivities for GII human noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is one of the most promising non-thermal technologies for decontamination of viral pathogens in foods. However, the survival of HuNoVs by HPP is poorly understood because these viruses cann...

  1. Genotype GI.6 Norovirus, United States, 2010–2012

    PubMed Central

    Barclay, Leslie; Wikswo, Mary; Vega, Everardo; Gregoricus, Nicole; Parashar, Umesh D.; Vinjé, Jan; Hall, Aron J.

    2013-01-01

    We report an increase in the proportion of genotype GI.6 norovirus outbreaks in the United States from 1.4% in 2010 to 7.7% in 2012 (p<0.001). Compared with non-GI.6 outbreaks, GI.6 outbreaks were characterized by summer seasonality, foodborne transmission, and non–health care settings. PMID:23876252

  2. Norovirus Infections in Long-Term Care Facilities.

    PubMed

    Rajagopalan, Shobita; Yoshikawa, Thomas T

    2016-05-01

    Noroviruses have emerged as one of the leading causes of viral gastroenteritis worldwide, affecting community-dwelling and institutionalized older adults. Recent global epidemics present a growing challenge to the healthcare system and to long-term care facilities. Noroviruses spread readily and rapidly through multiple routes (e.g., person-to-person contact, contact with contaminated surfaces, airborne dissemination of vomitus) and thus are able to sustain an epidemic efficiently and successfully. Although norovirus gastroenteritis is a short self-limited illness in healthy immunocompetent individuals, it can result in significant morbidity and mortality in vulnerable compromised persons such as frail elderly persons and older residents of nursing homes. Diagnosis is made by clinical assessment and confirmed primarily by stool evaluation using polymerase chain reaction. Treatment is confined to supportive measures. Public health prevention and control strategies provide guidance regarding surveillance and the necessary steps to curb the clinical effect and spread of norovirus infections in various settings, including long-term care. PMID:27225361

  3. Inactivation of Tulane virus, a novel surrogate for human norovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoVs) are the major cause of non-bacterial epidemics of gastroenteritis. Due to the inability to cultivate HuNoVs and the lack of an efficient small animal model, surrogates are used to study HuNoV biology. Two such surrogates, the feline calicivirus (FCV) and the murine norovir...

  4. Low-Density microarray technologies for rapid human norovirus genotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoV) are the most common cause of food borne disease and viruses are likely responsible for a large proportion of foodborne diseases of unknown etiology. Recent advancements in molecular biology, bioinformatics, epidemiology, and risk analysis have aided the study of these agent...

  5. Low-density microarray technologies for rapid human norovirus genotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjuncti...

  6. Inaccuracies in predicting human norovirus inactivation using surrogate viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) cannot be propagated in cell culture, so virus inactivation studies, including processing interventions, are generally performed on virus surrogates that may be readily quantified in the laboratory. However, there are fundamental differences in many closely related viruses, di...

  7. Norovirus: Human Health and Food-borne Implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Norovirus (NV) infection is a significant human health issue. The CDC estimates that there are approximately 22 million cases of NV illness per annum in the United States. Of these, approximately 40% are acquired via a food-borne route. Common foods that are consumed uncooked such as raw vegetabl...

  8. Serum Immunoglobulin A Cross-Strain Blockade of Human Noroviruses

    PubMed Central

    Lindesmith, Lisa C.; Beltramello, Martina; Swanstrom, Jesica; Jones, Taylor A.; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S.

    2015-01-01

    Background. Human noroviruses are the leading cause of acute viral gastroenteritis, justifying vaccine development despite a limited understanding of strain immunity. After genogroup I (GI).1 norovirus infection and immunization, blockade antibody titers to multiple virus-like particles (VLPs) increase, suggesting that GI cross-protection may occur. Methods. Immunoglobulin (Ig)A was purified from sera collected from GI.1-infected participants, and potential neutralization activity was measured using a surrogate neutralization assay based on antibody blockade of ligand binding. Human and mouse monoclonal antibodies (mAbs) were produced to multiple GI VLPs to characterize GI epitopes. Results. Immunoglobulin A purified from day 14 post-GI.1 challenge sera blocked binding of GI.1, GI.3, and GI.4 to carbohydrate ligands. In some subjects, purified IgA preferentially blocked binding of other GI VLPs compared with GI.1, supporting observations that the immune response to GI.1 infection may be influenced by pre-exposure history. For other subjects, IgA equivalently blocked multiple GI VLPs. Only strain-specific mAbs recognized blockade epitopes, whereas strain cross-reactive mAbs recognized nonblockade epitopes. Conclusions. These studies are the first to describe a functional role for serum IgA in norovirus immunity and the first to characterize human monoclonal antibodies to GI strains, expanding our understanding of norovirus immunobiology. PMID:26180833

  9. Epidemiology of Foodborne Norovirus Outbreak in Incheon, Korea

    PubMed Central

    Kim, Na-Yeon; Koh, Yeon-Ja; Lee, Hun-Jae

    2010-01-01

    On June 14, 2008, an outbreak of gastroenteritis occurred among elementary school students in Incheon. We conducted an investigation to identify the source and described the extent of the outbreak. We performed a retrospective cohort study among students, teachers and food handlers exposed to canteen food in the elementary school. Using self-administered questionnaires we collected information on symptoms, days of canteen food eaten, food items consumed. Stool samples were collected from 131 symptomatic people and 11 food handlers. The catering kitchen was inspected and food samples were taken. Of the 1,560 people who ate canteen food, 117 were symptomatic cases, and the attack rate was 7.5%. Consumption of cucumber-crown daisy salad (RR=2.71), fresh cabbage mix (RR=2.23), dried radish salad (RR=3.04) and young radish kimchi (RR=2.52) were associated with illness. Sixty-four (45%) of the 142 stool specimens were positive for Norovirus. Norovirus was detected in 2 food handlers. Interviews with kitchen staff indicated the likelihood of contamination from an infected food handler to the dried radish salad during food processing. The excretion of Norovirus from asymptomatic food handlers may be an infection source of Norovirus outbreaks. PMID:20676321

  10. 21 CFR 866.3395 - Norovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Norovirus serological reagents. 866.3395 Section 866.3395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3395...

  11. 21 CFR 866.3395 - Norovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Norovirus serological reagents. 866.3395 Section 866.3395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3395...

  12. 21 CFR 866.3395 - Norovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Norovirus serological reagents. 866.3395 Section 866.3395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3395...

  13. Reverse genetics mediated recovery of infectious murine norovirus.

    PubMed

    Arias, Armando; Ureña, Luis; Thorne, Lucy; Yunus, Muhammad A; Goodfellow, Ian

    2012-01-01

    Human noroviruses are responsible for most cases of human gastroenteritis (GE) worldwide and are recurrent problem in environments where close person-to-person contact cannot be avoided (1, 2). During the last few years an increase in the incidence of outbreaks in hospitals has been reported, causing significant disruptions to their operational capacity as well as large economic losses. The identification of new antiviral approaches has been limited due to the inability of human noroviruses to complete a productive infection in cell culture (3). The recent isolation of a murine norovirus (MNV), closely related to human norovirus (4) but which can be propagated in cells (5) has opened new avenues for the investigation of these pathogens (6, 7). MNV replication results in the synthesis of new positive sense genomic and subgenomic RNA molecules, the latter of which corresponds to the last third of the viral genome (Figure 1). MNV contains four different open reading frames (ORFs), of which ORF1 occupies most of the genome and encodes seven non-structural proteins (NS1-7) released from a polyprotein precursor. ORF2 and ORF3 are contained within the subgenomic RNA region and encode the capsid proteins (VP1 and VP2, respectively) (Figure 1). Recently, we have identified that additional ORF4 overlapping ORF2 but in a different reading frame is functional and encodes for a mitochondrial localised virulence factor (VF1) (8). Replication for positive sense RNA viruses, including noroviruses, takes place in the cytoplasm resulting in the synthesis of new uncapped RNA genomes. To promote viral translation, viruses exploit different strategies aimed at recruiting the cellular protein synthesis machinery (9-11). Interestingly, norovirus translation is driven by the multifunctional viral protein-primer VPg covalently linked to the 5' end of both genomic and subgenomic RNAs (12-14). This sophisticated mechanism of translation is likely to be a major factor in the limited

  14. Cell Culture Assay for Human Noroviruses [response

    SciTech Connect

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  15. Comparative Virucidal Efficacy of Seven Disinfectants Against Murine Norovirus and Feline Calicivirus, Surrogates of Human Norovirus.

    PubMed

    Zonta, William; Mauroy, Axel; Farnir, Frederic; Thiry, Etienne

    2016-03-01

    Human noroviruses (HuNoV) are the leading cause of acute non-bacterial gastroenteritis in humans and can be transmitted either by person-to-person contact or by consumption of contaminated food. A knowledge of an efficient disinfection for both hands and food-contact surfaces is helpful for the food sector and provides precious information for public health. The aim of this study was to evaluate the effect of seven disinfectants belonging to different groups of biocides (alcohol, halogen, oxidizing agents, quaternary ammonium compounds, aldehyde and biguanide) on infectious viral titre and on genomic copy number. Due to the absence of a cell culture system for HuNoV, two HuNoV surrogates, such as murine norovirus and feline calicivirus, were used and the tests were performed in suspension, on gloves and on stainless steel discs. When, as criteria of efficacy, a log reduction >3 of the infectious viral titre on both surrogates and in the three tests is used, the most efficacious disinfectants in this study appear to be biocidal products B, C and D, representing the halogens, the oxidizing agents group and a mix of QAC, alcohol and aldehyde, respectively. In addition, these three disinfectants also elicited a significant effect on genomic copy number for both surrogate viruses and in all three tests. The results of this study demonstrate that a halogen compound, oxidizing agents and a mix of QAC, alcohol and aldehyde are advisable for HuNoV disinfection of either potentially contaminated surfaces or materials in contact with foodstuffs. PMID:26445948

  16. Human Norovirus Detection and Production, Quantification, and Storage of Virus-Like Particles

    PubMed Central

    Debbink, Kari; Costantini, Veronica; Swanstrom, Jesica; Agnihothram, Sudhakar; Vinjé, Jan; Baric, Ralph

    2014-01-01

    Human noroviruses constitute a significant worldwide disease burden. Each year noroviruses cause over 267 million infections, deaths in over 200,000 children under the age of five, and over 50% of U.S. food borne illness. Due to the absence of a tissue culture model or small animal model to study human norovirus, virus-like particles (VLPs) and ELISA-based biological assays have been used to answer questions about norovirus evolution and immunity as well provide a potential vaccine platform. This chapter outlines the protocols on norovirus detection in stool and norovirus VLP design, production, purification, and storage using a Venezuelan equine encephalitis virus (VEE)-based VRP expression system. PMID:24510290

  17. Acute gastroenteritis outbreak caused by a GII.6 norovirus

    PubMed Central

    Luo, Ling-Fei; Qiao, Kun; Wang, Xiao-Guang; Ding, Ke-Ying; Su, Hua-Ling; Li, Cui-Zhen; Yan, Hong-Jing

    2015-01-01

    AIM: To report an acute gastroenteritis outbreak caused by a genogroup 2 genotype 6 (GII.6) strain norovirus in Shanghai, China. METHODS: Noroviruses are responsible for approximately half of all reported gastroenteritis outbreaks in many countries. Genogroup 2 genotype 4 strains are the most prevalent. Rare outbreaks caused by GII.6 strains have been reported. An acute gastroenteritis outbreak occurred in an elementary school in Shanghai in December of 2013. Field and molecular epidemiologic investigations were conducted. RESULTS: The outbreak was limited to one class in an elementary school located in southwest Shanghai. The age of the students ranged from 9 to 10 years. The first case emerged on December 10, 2013, and the last case emerged on December 14, 2013. The cases peaked on December 11, 2013, with 21 new cases. Of 45 students in the class, 32 were affected. The main symptom was gastroenteritis, and 15.6% (5/32) of the cases exhibited a fever. A field epidemiologic investigation showed the pathogen may have been transmitted to the elementary school from employees in a delicatessen via the first case student, who had eaten food from the delicatessen one day before the gastroenteritis episodes began. A molecular epidemiologic investigation identified the cause of the gastroenteritis as norovirus strain GII.6; the viral sequence of the student cases showed 100% homology with that of the shop employees. Genetic relatedness analyses showed that the new viral strain is closely related to previously reported GII.6 sequences, especially to a strain reported in Japan. CONCLUSION: This is the first report to show that norovirus strain GII.6 can cause a gastroenteritis outbreak. Thus, the prevalence of GII.6 noroviruses requires attention. PMID:25954103

  18. Does spatial proximity drive norovirus transmission during outbreaks in hospitals?

    PubMed Central

    Harris, John P; Lopman, Ben A; Cooper, Ben S; O'Brien, Sarah J

    2013-01-01

    Objective To assess the role of spatial proximity, defined as patients sharing bays, in the spread of norovirus during outbreaks in hospitals. Design Enhanced surveillance of norovirus outbreaks between November 2009 and November 2011. Methods Data were gathered during 149 outbreaks of norovirus in hospital wards from five hospitals in two major cities in England serving a population of two million. We used the time between the first two cases of each outbreak to estimate the serial interval for norovirus in this setting. This distribution and dates of illness onset were used to calculate epidemic trees for each outbreak. We then used a permutation test to assess whether proximity, for all outbreaks, was more extreme than would be expected by chance under the null hypothesis that proximity was not associated with transmission risk. Results 65 outbreaks contained complete data on both onset dates and ward position. We estimated the serial interval to be 1.86 days (95% CI 1.6 to 2.2 days), and with this value found strong evidence to reject the null hypothesis that proximity was not significant (p<0.001). Sensitivity analysis using different values of the serial interval showed that there was evidence to reject the null hypothesis provided the assumed serial interval was less than 2.5 days. Conclusions Our results provide evidence that patients occupying the same bay as patients with symptomatic norovirus infection are at an increased risk of becoming infected by these patients compared with patients elsewhere in the same ward. PMID:23852138

  19. High pressure inactivation of human norovirus-like particles: evidence that the capsid of human norovirus is highly pressure resistant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pressure processing (HPP) is a promising non-thermal technology to inactivate foodborne viruses. However, the effectiveness of HPP on inactivating human norovirus (HuNoV), the leading cause of acute gastroenteritis, is unknown because it cannot be propagated in cell culture. Therefore, developi...

  20. Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients

    PubMed Central

    Ye, Xunyan; Van, John N.; Munoz, Flor M.; Revell, Paula A.; Kozinetz, Claudia A; Krance, Robert A.; Atmar, Robert L.; Estes, Mary K.; Koo, Hoonmo L.

    2016-01-01

    Case reports describe significant norovirus gastroenteritis morbidity in immunocompromised patients. We evaluated norovirus pathogenesis in prospectively enrolled solid organ (SOT) and hematopoietic stem cell transplant (HSCT) patients with diarrhea who presented to Texas Children’s Hospital and submitted stool for enteric testing. Noroviruses were detected by real-time reverse transcription polymerase chain reaction. Clinical outcomes of norovirus diarrhea and non-norovirus diarrhea patients, matched by transplanted organ type, were compared. Norovirus infection was identified in 25 (22%) of 116 patients, more frequently than other enteropathogens. Fifty percent of norovirus patients experienced diarrhea lasting ≥14 days, with median duration of 12.5 days (range 1 – 324 days); 29% developed diarrhea recurrence. Fifty-five percent of norovirus patients were hospitalized for diarrhea, with 27% requiring intensive care unit (ICU) admission. One HSCT recipient developed pneumatosis intestinalis. Three HSCT patients expired ≤6 months of norovirus diarrhea onset. Compared to non-norovirus diarrhea patients, norovirus patients experienced significantly more frequent ICU admission (27% vs. 0%, p = 0.02), greater serum creatinine rise (median 0.3 vs. 0.2 mg/dL, p = 0.01), and more weight loss (median 1.6 vs. 0.6 kg, p < 0.01). Noroviruses are an important cause of diarrhea in pediatric transplant patients and are associated with significant clinical complications. PMID:25788003

  1. Resolution of diarrhea in an immunocompromised patient with chronic norovirus gastroenteritis correlates with constitution of specific antibody blockade titer.

    PubMed

    Knoll, Bettina M; Lindesmith, Lisa C; Yount, Boyd L; Baric, Ralph S; Marty, Francisco M

    2016-08-01

    Norovirus gastroenteritis in immunocompromised hosts can result in a serious and prolonged diarrheal illness. We present a case of chronic norovirus disease during rituximab-bendamustine chemotherapy for non-Hodgkin's lymphoma. We show for the first time a correlation between norovirus strain-specific antibody blockade titers and symptom improvement in an immunocompromised host. PMID:26825307

  2. Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients.

    PubMed

    Ye, X; Van, J N; Munoz, F M; Revell, P A; Kozinetz, C A; Krance, R A; Atmar, R L; Estes, M K; Koo, H L

    2015-07-01

    Case reports describe significant norovirus gastroenteritis morbidity in immunocompromised patients. We evaluated norovirus pathogenesis in prospectively enrolled solid organ (SOT) and hematopoietic stem cell transplant (HSCT) patients with diarrhea who presented to Texas Children's Hospital and submitted stool for enteric testing. Noroviruses were detected by real-time reverse transcription polymerase chain reaction. Clinical outcomes of norovirus diarrhea and non-norovirus diarrhea patients, matched by transplanted organ type, were compared. Norovirus infection was identified in 25 (22%) of 116 patients, more frequently than other enteropathogens. Fifty percent of norovirus patients experienced diarrhea lasting ≥14 days, with median duration of 12.5 days (range 1-324 days); 29% developed diarrhea recurrence. Fifty-five percent of norovirus patients were hospitalized for diarrhea, with 27% requiring intensive care unit (ICU) admission. One HSCT recipient developed pneumatosis intestinalis. Three HSCT patients expired ≤6 months of norovirus diarrhea onset. Compared to non-norovirus diarrhea patients, norovirus patients experienced significantly more frequent ICU admission (27% vs. 0%, p = 0.02), greater serum creatinine rise (median 0.3 vs. 0.2 mg/dL, p = 0.01), and more weight loss (median 1.6 vs. 0.6 kg, p < 0.01). Noroviruses are an important cause of diarrhea in pediatric transplant patients and are associated with significant clinical complications. PMID:25788003

  3. Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2012-09-01

    Norovirus is a highly infectious pathogen that is commonly found in oysters growing in fecally contaminated waters. Norovirus outbreaks can cause the closure of oyster harvesting waters and acute gastroenteritis in humans associated with consumption of contaminated raw oysters. Extensive efforts and progresses have been made in detection and forecasting of oyster norovirus outbreaks over the past decades. The main objective of this paper is to provide a literature review of methods and techniques for detecting and forecasting oyster norovirus outbreaks and thereby to identify the future directions for improving the detection and forecasting of norovirus outbreaks. It is found that (1) norovirus outbreaks display strong seasonality with the outbreak peak occurring commonly in December-March in the U.S. and April-May in the Europe; (2) norovirus outbreaks are affected by multiple environmental factors, including but not limited to precipitation, temperature, solar radiation, wind, and salinity; (3) various modeling approaches may be employed to forecast norovirus outbreaks, including Bayesian models, regression models, Artificial Neural Networks, and process-based models; and (4) diverse techniques are available for near real-time detection of norovirus outbreaks, including multiplex PCR, seminested PCR, real-time PCR, quantitative PCR, and satellite remote sensing. The findings are important to the management of oyster growing waters and to future investigations into norovirus outbreaks. It is recommended that a combined approach of sensor-assisted real time monitoring and modeling-based forecasting should be utilized for an efficient and effective detection and forecasting of norovirus outbreaks caused by consumption of contaminated oysters. PMID:22841883

  4. Evaluation of Xpert® Norovirus Assay performance in comparison with real-time RT-PCR in hospitalized adult patients with acute gastroenteritis.

    PubMed

    Rovida, Francesca; Premoli, Marta; Campanini, Giulia; Sarasini, Antonella; Baldanti, Fausto

    2016-08-01

    Xpert® Norovirus Assay (Cepheid, Sunnyvale, CA) was compared with a laboratory-developed real-time RT-PCR assay for the detection of Norovirus GI and GII in hospitalized patients with acute gastroenteritis. The two assays showed a high level of concordance but Xpert® Norovirus Assay allowed faster detection of Norovirus and a simpler sample handling. PMID:27233425

  5. Bioinformatics analysis of the epitope regions for norovirus capsid protein

    PubMed Central

    2013-01-01

    Background Norovirus is the major cause of nonbacterial epidemic gastroenteritis, being highly prevalent in both developing and developed countries. Despite of the available monoclonal antibodies (MAbs) for different sub-genogroups, a comprehensive epitope analysis based on various bioinformatics technology is highly desired for future potential antibody development in clinical diagonosis and treatment. Methods A total of 18 full-length human norovirus capsid protein sequences were downloaded from GenBank. Protein modeling was performed with program Modeller 9.9. The modeled 3D structures of capsid protein of norovirus were submitted to the protein antigen spatial epitope prediction webserver (SEPPA) for predicting the possible spatial epitopes with the default threshold. The results were processed using the Biosoftware. Results Compared with GI, we found that the GII genogroup had four deletions and two special insertions in the VP1 region. The predicted conformational epitope regions mainly concentrated on N-terminal (1~96), Middle Part (298~305, 355~375) and C-terminal (560~570). We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. Conclusions The predicted conformational epitope regions of norovirus VP1 mainly concentrated on N-terminal, Middle Part and C-terminal. We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. The overlapping with experimental epitopes indicates the important role of latest computational technologies. With the fast development of computational immunology tools, the bioinformatics pipeline will be more and more critical to vaccine design. PMID:23514273

  6. Viruses in Rodent Colonies: Lessons Learned from Murine Noroviruses.

    PubMed

    Karst, Stephanie M; Wobus, Christiane E

    2015-11-01

    Noroviruses (NoVs) are highly prevalent, positive-sense RNA viruses that infect a range of mammals, including humans and mice. Murine noroviruses (MuNoVs) are the most prevalent pathogens in biomedical research colonies, and they have been used extensively as a model system for human noroviruses (HuNoVs). Despite recent successes in culturing HuNoVs in the laboratory and a small animal host, studies of human viruses have inherent limitations. Thus, owing to its versatility, the MuNoV system-with its native host, reverse genetics, and cell culture systems-will continue to provide important insights into NoV and enteric virus biology. In the current review, we summarize recent findings from MuNoVs that increase our understanding of enteric virus pathogenesis and highlight similarities between human and murine NoVs that underscore the value of MuNoVs to inform studies of HuNoV biology. We also discuss the potential of endemic MuNoV infections to impact other disease models. PMID:26958927

  7. Inactivation of HAV and norovirus surrogates within raw shellfish and other foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pressure processing can inactivate hepatitis A virus, (HAV) and the human norovirus surrogates, feline calicivirus (FCV) and murine norovirus (MNV), in foods such as oysters, strawberries, and green onions. A 5-min 400-Megapascals (MPa) treatment at 5 degrees C and a 1–min 400-MPa treatment at ...

  8. Atmospheric cold plasma iactivation of norovirus surrogates and native microbiota on blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (CP) is an emerging, novel, nonthermal technology that can be used for surface decontamination of foods. This study investigated CP technology for the nonthermal inactivation of the human norovirus surrogates, Tulane virus (TV) and Murine Norovirus (MNV), as well as for background microb...

  9. Critical review of norovirus surrogates in food safety research: rationale for considering volunteer studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inability to propagate human norovirus (NoV) or to clearly differentiate infectious from noninfectious virus particles have led to the use of surrogate viruses, like feline calicivirus (FCV) and murine norovirus-1 (MNV), which are propagatable in cell culture. The use of surrogates is predicate...

  10. Novel Platform Technologies for Analysis of Norovirus Contamination of Sea Food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of human norovirus (NoVs) replication in vitro would be a highly useful tool to virologists and immunologists. For this reason, we have searched for new approaches to determine viability of noroviruses in food samples (especially seafood). Our research team has multiple years of experien...

  11. Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human noroviruses are the most common non-bacterial cause of gastroenteritis and are responsible for as much as 50% of all gastroenteritis outbreaks worldwide. Norovirus (NoV), a single stranded RNA virus, is highly contagious with an infectious dose of less than 100 viral particles. While techn...

  12. Complete Genome Sequence of a GII.17 Norovirus Isolated from a Rhesus Monkey in China.

    PubMed

    Liu, Bo; Tao, Yufen; Li, Chao; Li, Xintong; Liu, Jiansheng; He, Zhanlong; Xia, Ming; Jiang, Xi; Tan, Ming; Liu, Hongqi

    2016-01-01

    The previously silent GII.17 norovirus was found to be the predominant genotype causing major epidemics in China in the 2014-2015 winter epidemic season. We report here the complete genomic sequence of a GII.17 norovirus (mky/GII.17/KM1509/CHN/2015) that infected rhesus monkeys at a monkey farm in southwestern China. PMID:27609911

  13. High Prevalence and Increased Severity of Norovirus Mixed Infections Among Children 12-24 Months of Age Living in the Suburban Areas of Lima, Peru.

    PubMed

    Zambruni, Mara; Luna, Giannina; Silva, Maria; Bausch, Daniel G; Rivera, Fulton P; Velapatino, Grace; Campos, Miguel; Chea-Woo, Elsa; Baiocchi, Nelly; Cleary, Thomas G; Ochoa, Theresa J

    2016-09-01

    In an active diarrhea surveillance study of children aged 12-24 months in Lima, Peru, norovirus was the most common pathogen identified. The percentage of mixed (bacterial and noroviral) infections was significantly higher among norovirus-positive samples (53%) than among norovirus-negative samples (12%). The combination of norovirus with the most common bacterial pathogens was associated with increased clinical severity over that of either single-pathogen norovirus or single-pathogen bacterial infections. PMID:27534674

  14. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool

    PubMed Central

    Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  15. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool.

    PubMed

    Masago, Yoshifumi; Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  16. Sanitizer Efficacy against Murine Norovirus, a Surrogate for Human Norovirus, on Stainless Steel Surfaces when Using Three Application Methods

    PubMed Central

    Kotwal, Grishma; Harrison, Mark A.; Law, S. Edward; Harrison, Judy A.

    2013-01-01

    Human noroviruses are major etiologic agents of epidemic gastroenteritis. Outbreaks are often accompanied by contamination of environmental surfaces, but since these viruses cannot be routinely propagated in laboratory cultures, their response to surface disinfectants is predicted by using surrogates, such as murine norovirus 1 (MNV-1). This study compared the virucidal efficacies of various liquid treatments (three sanitizer liquids, 5% levulinic acid plus 2% SDS [LEV/SDS], 200 ppm chlorine, and an isopropanol-based quaternary ammonium compound [Alpet D2], and two control liquids, sterile tap water and sterile tap water plus 2% SDS) when delivered to MNV-1-inoculated stainless steel surfaces by conventional hydraulic or air-assisted, induction-charged (AAIC) electrostatic spraying or by wiping with impregnated towelettes. For the spray treatments, LEV/SDS proved effective when applied with hydraulic and AAIC electrostatic spraying, providing virus reductions of 2.71 and 1.66 log PFU/ml, respectively. Alpet D2 provided a 2.23-log PFU/ml reduction with hydraulic spraying, outperforming chlorine (1.16-log PFU/ml reduction). Chlorine and LEV/SDS were equally effective as wipes, reducing the viral load by 7.05 log PFU/ml. Controls reduced the viral load by <1 log with spraying applications and by >3 log PFU/ml with wiping. Results indicated that both sanitizer type and application methods should be carefully considered when choosing a surface disinfectant to best prevent and control environmental contamination by noroviruses. PMID:23263949

  17. Hydrogen Peroxide Vapor Decontamination in a Patient Room Using Feline Calicivirus and Murine Norovirus as Surrogate Markers for Human Norovirus.

    PubMed

    Holmdahl, Torsten; Walder, Mats; Uzcátegui, Nathalie; Odenholt, Inga; Lanbeck, Peter; Medstrand, Patrik; Widell, Anders

    2016-05-01

    OBJECTIVE To determine whether hydrogen peroxide vapor (HPV) could be used to decontaminate caliciviruses from surfaces in a patient room. DESIGN Feline calicivirus (FCV) and murine norovirus (MNV) were used as surrogate viability markers to mimic the noncultivable human norovirus. Cell culture supernatants of FCV and MNV were dried in triplicate 35-mm wells of 6-well plastic plates. These plates were placed in various positions in a nonoccupied patient room that was subsequently exposed to HPV. Control plates were positioned in a similar room but were never exposed to HPV. METHODS Virucidal activity was measured in cell culture by reduction in 50% tissue culture infective dose titer for FCV and by both 50% tissue culture infective dose titer and plaque reduction for MNV. RESULTS Neither viable FCV nor viable MNV could be detected in the test room after HPV treatment. At least 3.65 log reduction for FCV and at least 3.67 log reduction for MNV were found by 50% tissue culture infective dose. With plaque assay, measurable reduction for MNV was at least 2.85 log units. CONCLUSIONS The successful inactivation of both surrogate viruses indicates that HPV could be a useful tool for surface decontamination of a patient room contaminated by norovirus. Hence nosocomial spread to subsequent patients can be avoided. Infect Control Hosp Epidemiol 2016;37:561-566. PMID:26861195

  18. Modeling and Prediction of Oyster Norovirus Outbreaks along Gulf of Mexico Coast

    PubMed Central

    Wang, Jiao; Deng, Zhiqiang

    2015-01-01

    Background: Oyster norovirus outbreaks often pose high risks to human health. However, little is known about environmental factors controlling the outbreaks, and little can be done to prevent the outbreaks because they are generally considered to be unpredictable. Objective: We sought to develop a mathematical model for predicting risks of oyster norovirus outbreaks using environmental predictors. Methods: We developed a novel probability-based Artificial Neural Network model, called NORF model, using 21 years of environmental and norovirus outbreak data collected from Louisiana oyster harvesting areas along the Gulf of Mexico coast, USA. The NORF model involves six input variables that were selected through stepwise regression analysis and sensitivity analysis. Results: We found that the model-based probability of norovirus outbreaks was most sensitive to gage height (the depth of water in an oyster bed) and water temperature, followed by wind, rainfall, and salinity, respectively. The NORF model predicted all historical oyster norovirus outbreaks from 1994 through 2014. Specifically, norovirus outbreaks occurred when the NORF model probability estimate was > 0.6, whereas no outbreaks occurred when the estimated probability was < 0.5. Outbreaks may also occur when the estimated probability is 0.5–0.6. Conclusions: Our findings require further confirmation, but they suggest that oyster norovirus outbreaks may be predictable using the NORF model. The ability to predict oyster norovirus outbreaks at their onset may make it possible to prevent or at least reduce the risk of norovirus outbreaks by closing potentially affected oyster beds. Citation: Wang J, Deng Z. 2016. Modeling and prediction of oyster norovirus outbreaks along Gulf of Mexico coast. Environ Health Perspect 124:627–633; http://dx.doi.org/10.1289/ehp.1509764 PMID:26528621

  19. Generic and sequence-variant specific molecular assays for the detection of the highly variable Grapevine leafroll-associated virus 3.

    PubMed

    Chooi, Kar Mun; Cohen, Daniel; Pearson, Michael N

    2013-04-01

    Grapevine leafroll-associated virus 3 (GLRaV-3) is an economically important virus, which is found in all grapevine growing regions worldwide. Its accurate detection in nursery and field samples is of high importance for certification schemes and disease management programmes. To reduce false negatives that can be caused by sequence variability, a new universal primer pair was designed against a divergent sequence data set, targeting the open reading frame 4 (heat shock protein 70 homologue gene), and optimised for conventional one-step RT-PCR and one-step SYBR Green real-time RT-PCR assays. In addition, primer pairs for the simultaneous detection of specific GLRaV-3 variants from groups 1, 2, 6 (specifically NZ-1) and the outlier NZ2 variant, and the generic detection of variants from groups 1 to 5 were designed and optimised as a conventional one-step multiplex RT-PCR assay using the plant nad5 gene as an internal control (i.e. one-step hexaplex RT-PCR). Results showed that the generic and variant specific assays detected in vitro RNA transcripts from a range of 1×10(1)-1×10(8) copies of amplicon per μl diluted in healthy total RNA from Vitis vinifera cv. Cabernet Sauvignon. Furthermore, the assays were employed effectively to screen 157 germplasm and 159 commercial field samples. Thus results demonstrate that the GLRaV-3 generic and variant-specific assays are prospective tools that will be beneficial for certification schemes and disease management programmes, as well as biological and epidemiological studies of the divergent GLRaV-3 populations. PMID:23313884

  20. Norovirus Infection and Acquired Immunity in 8 Countries: Results From the MAL-ED Study

    PubMed Central

    Rouhani, Saba; Peñataro Yori, Pablo; Paredes Olortegui, Maribel; Siguas Salas, Mery; Rengifo Trigoso, Dixner; Mondal, Dinesh; Bodhidatta, Ladaporn; Platts-Mills, James; Samie, Amidou; Kabir, Furqan; Lima, Aldo; Babji, Sudhir; Mason, Carl J.; Kalam, Adil; Bessong, Pascal; Ahmed, Tahmeed; Mduma, Estomih; Bhutta, Zulfiqar A.; Lima, Ila; Ramdass, Rakhi; Lang, Dennis; George, Ajila; Zaidi, Anita K. M.; Kang, Gagandeep; Houpt, Eric; Kosek, Margaret N.

    2016-01-01

    Background. Norovirus is an important cause of childhood diarrhea. We present data from a longitudinal, multicountry study describing norovirus epidemiology during the first 2 years of life. Methods. A birth cohort of 1457 children across 8 countries contributed 7077 diarrheal stools for norovirus testing. A subset of 199 children contributed additional asymptomatic samples (2307) and diarrheal stools (770), which were used to derive incidence rates and evaluate evidence for acquired immunity. Results. Across sites, 89% of children experienced at least 1 norovirus infection before 24 months, and 22.7% of all diarrheal stools were norovirus positive. Severity of norovirus-positive diarrhea was comparable to other enteropathogens, with the exception of rotavirus. Incidence of genogroup II (GII) infection was higher than genogroup I and peaked at 6–11 months across sites. Undernutrition was a risk factor for symptomatic norovirus infection, with an increase in 1 standard deviation of length-for-age z score associated with a 17% reduction (odds ratio, 0.83 [95% confidence interval, .72–.97]; P = .011) in the odds of experiencing diarrhea when norovirus was present, after accounting for genogroup, rotavirus vaccine, and age. Evidence of acquired immunity was observed among GII infections only: Children with prior GII infection were found to have a 27% reduction in the hazard of subsequent infection (hazard ratio, 0.727; P = .010). Conclusions. The high prevalence of norovirus across 8 sites in highly variable epidemiologic settings and demonstration of protective immunity for GII infections provide support for investment in vaccine development. PMID:27013692

  1. Modelling Estimates of Norovirus Disease in Patients with Chronic Medical Conditions

    PubMed Central

    Verstraeten, Thomas; Jiang, Baoguo; Weil, John G.; Lin, Jennifer H.

    2016-01-01

    Background The burden of disease due to norovirus infection has been well described in the general United States population, but studies of norovirus occurrence among persons with chronic medical conditions have been limited mostly to the immunocompromised. We assessed the impact of norovirus gastroenteritis on health care utilization in US subjects with a range of chronic medical conditions. Methods We performed a retrospective cohort study using MarketScan data from July 2002 to December 2013, comparing the rates of emergency department visits, outpatient visits and hospitalizations among patients with chronic conditions (renal, cardiovascular, respiratory, immunocompromising, gastrointestinal, hepatic/pancreatic and neurological conditions and diabetes) with those in a healthy population. We estimated the rates of these outcomes due to norovirus gastroenteritis using an indirect modelling approach whereby cases of gastroenteritis of unknown cause and not attributed to a range of other causes were assumed to be due to norovirus. Results Hospitalization rates for norovirus gastroenteritis were higher in all of the risk groups analyzed compared with data in otherwise healthy subjects, ranging from 3.2 per 10,000 person-years in persons with chronic respiratory conditions, to 23.1 per 10,000 person-years in persons with chronic renal conditions, compared to 2.1 per 10,000 among persons without chronic conditions. Over 51% of all norovirus hospitalizations occurred in the 37% of the population with some form of chronic medical condition. Outpatient visits for norovirus gastroenteritis were also increased in persons with chronic gastrointestinal or immunocompromising conditions. Conclusion Norovirus gastroenteritis leads to significantly higher rates of healthcare utilization in patients with a chronic medical condition compared to patients without any such condition. PMID:27438335

  2. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  3. Quantification of Human Norovirus GII on Hands of Mothers with Children under the Age of Five Years in Bagamoyo, Tanzania

    PubMed Central

    Mattioli, Mia Catharine M.; Davis, Jennifer; Mrisho, Mwifadhi; Boehm, Alexandria B.

    2015-01-01

    Human noroviruses are the most common cause of viral gastroenteritis worldwide and one of the leading causes of viral diarrhea in children under the age of 5 years. Hands have been shown to play an important role in norovirus transmission. Norovirus outbreaks tend to exhibit strong seasonality, most often occurring during cold, dry months, but recently have also been documented during hot, dry winter months in the southern hemisphere. Other research suggests that rainfall is an important factor in norovirus outbreaks. This study examines the prevalence and concentration of human norovirus GII on the hands of mothers in Bagamoyo, Tanzania, during the rainy and dry seasons. Norovirus GII was detected in approximately 5% of hand rinse samples during both the rainy and dry seasons. Fecal indicator bacteria levels, Escherichia coli and enterococci, in hand rinse samples were not associated with norovirus hand contamination. Turbidity of the hand rinses was found to be associated with norovirus presence on mothers' hands; however, this relationship was only observed during the rainy season. The results suggest mothers' hands serve as a source of norovirus exposure for young children in Tanzanian households, and further work is needed to determine better indicators of norovirus contamination in these environments. PMID:26149861

  4. Quantification of Human Norovirus GII on Hands of Mothers with Children Under the Age of Five Years in Bagamoyo, Tanzania.

    PubMed

    Mattioli, Mia Catharine M; Davis, Jennifer; Mrisho, Mwifadhi; Boehm, Alexandria B

    2015-09-01

    Human noroviruses are the most common cause of viral gastroenteritis worldwide and one of the leading causes of viral diarrhea in children under the age of 5 years. Hands have been shown to play an important role in norovirus transmission. Norovirus outbreaks tend to exhibit strong seasonality, most often occurring during cold, dry months, but recently have also been documented during hot, dry winter months in the southern hemisphere. Other research suggests that rainfall is an important factor in norovirus outbreaks. This study examines the prevalence and concentration of human norovirus GII on the hands of mothers in Bagamoyo, Tanzania, during the rainy and dry seasons. Norovirus GII was detected in approximately 5% of hand rinse samples during both the rainy and dry seasons. Fecal indicator bacteria levels, Escherichia coli and enterococci, in hand rinse samples were not associated with norovirus hand contamination. Turbidity of the hand rinses was found to be associated with norovirus presence on mothers' hands; however, this relationship was only observed during the rainy season. The results suggest mothers' hands serve as a source of norovirus exposure for young children in Tanzanian households, and further work is needed to determine better indicators of norovirus contamination in these environments. PMID:26149861

  5. Two-Year Systematic Study To Assess Norovirus Contamination in Oysters from Commercial Harvesting Areas in the United Kingdom

    PubMed Central

    Gustar, Nicole E.; Powell, Andrew L.; Hartnell, Rachel E.; Lees, David N.

    2012-01-01

    The contamination of bivalve shellfish with norovirus from human fecal sources is recognized as an important human health risk. Standardized quantitative methods for the detection of norovirus in molluscan shellfish are now available, and viral standards are being considered in the European Union and internationally. This 2-year systematic study aimed to investigate the impact of the application of these methods to the monitoring of norovirus contamination in oyster production areas in the United Kingdom. Twenty-four monthly samples of oysters from 39 United Kingdom production areas, chosen to represent a range of potential contamination risk, were tested for norovirus genogroups I and II by using a quantitative real-time reverse transcription (RT)-PCR method. Norovirus was detected in 76.2% (643/844) of samples, with all sites returning at least one positive result. Both prevalences (presence or absence) and norovirus levels varied markedly between sites. However, overall, a marked winter seasonality of contamination by both prevalence and quantity was observed. Correlations were found between norovirus contamination and potential risk indicators, including harvesting area classifications, Escherichia coli scores, and environmental temperatures. A predictive risk score for norovirus contamination was developed by using a combination of these factors. In summary, this study, the largest of its type undertaken to date, provides a systematic analysis of norovirus contamination in commercial oyster production areas in the United Kingdom. The data should assist risk managers to develop control strategies to reduce the risk of human illness resulting from norovirus contamination of bivalve molluscs. PMID:22685151

  6. Protective role of murine norovirus against Pseudomonas aeruginosa acute pneumonia.

    PubMed

    Thépaut, Marion; Grandjean, Teddy; Hober, Didier; Lobert, Pierre-Emmanuel; Bortolotti, Perrine; Faure, Karine; Dessein, Rodrigue; Kipnis, Eric; Guery, Benoit

    2015-01-01

    The murine norovirus (MNV) is a recently discovered mouse pathogen, representing the most common contaminant in laboratory mouse colonies. Nevertheless, the effects of MNV infection on biomedical research are still unclear. We tested the hypothesis that MNV infection could alter immune response in mice with acute lung infection. Here we report that co-infection with MNV increases survival of mice with Pseudomonas aeruginosa acute lung injury and decreases in vivo production of pro-inflammatory cytokines. Our results suggest that MNV infection can deeply modify the parameters studied in conventional models of infection and lead to false conclusions in experimental models. PMID:26338794

  7. A Point-Source Norovirus Outbreak Caused by Exposure to Fomites

    PubMed Central

    Repp, Kimberly K.; Keene, William E.

    2012-01-01

    We investigated a norovirus outbreak (genotype GII.2) affecting 9 members of a soccer team. Illness was associated with touching a reusable grocery bag or consuming its packaged food contents (risk difference, 0.636; P < .01). By polymerase chain reaction, GII norovirus was recovered from the bag, which had been stored in a bathroom used before the outbreak by a person with norovirus-like illness. Airborne contamination of fomites can lead to subsequent point-source outbreaks. When feasible, we recommend dedicated bathrooms for sick persons and informing cleaning staff (professional or otherwise) about the need for adequate environmental sanitation of surfaces and fomites to prevent spread. PMID:22573873

  8. Viability of murine norovirus in salads and dressings and its inactivation using heat-denatured lysozyme.

    PubMed

    Takahashi, Hajime; Tsuchiya, Tomoki; Takahashi, Michiko; Nakazawa, Moemi; Watanabe, Tomoka; Takeuchi, Akira; Kuda, Takashi; Kimura, Bon

    2016-09-16

    In recent years, a number of food poisoning outbreaks due to the contamination of norovirus in ready-to-eat (RTE) foods such as salads have been reported, and this issue is regarded as a global problem. The risk of contamination of fresh vegetables with norovirus has been previously reported, but the survivability of norovirus that contaminates salads remains unknown. In addition, there have been limited reports on the control of norovirus in food products by using inactivating agents. In this study, the viability of norovirus in various types of salads and dressings was examined using murine norovirus strain 1 (MNV-1) as a surrogate for the closely related human norovirus. In addition, the inactivation of MNV-1 in salads was examined using heat-denatured lysozyme, which had been reported to inactivate norovirus. MNV-1 was inoculated in 4 types of salads (coleslaw, thousand island salad, vinaigrette salad, egg salad) and 3 types of dressings (mayonnaise, thousand island dressing, vinaigrette dressing), stored at 4°C for 5days. The results revealed that in the vinaigrette dressing, the infectivity of MNV-1 decreased by 2.6logPFU/mL in 5days, whereas in the other dressings and salads, the infectivity of MNV-1 did not show any significant decrease. Next, 1% heat-denatured lysozyme was added to the 4 types of salads, and subsequently it was found that in 2 types of salads (thousand island salad, vinaigrette salad), the infectivity of MNV-1 decreased by >4.0logPFU/g, whereas in coleslaw salad, a decrease of 3.0logPFU/g was shown. However, in egg salads, the infectivity of MNV-1 did not show such decrease. These results suggest that norovirus can survive for 5days in contaminated salads. Further, these findings also indicated that heat-denatured lysozyme had an inactivating effect on norovirus, even in salads. In the future, heat-denatured lysozyme can be used as a novel norovirus-inactivating agent, although it is essential to investigate the mechanism of inactivating

  9. Ozone inactivation of norovirus surrogates on fresh produce.

    PubMed

    Hirneisen, K A; Markland, S M; Kniel, K E

    2011-05-01

    Preharvest contamination of produce by foodborne viruses can occur through a variety of agents, including animal feces/manures, soil, irrigation water, animals, and human handling. Problems of contamination are magnified by potential countrywide distribution. Postharvest processing of produce can involve spraying, washing, or immersion into water with disinfectants; however, disinfectants, including chlorine, have varying effects on viruses and harmful by-products pose a concern. The use of ozone as a disinfectant in produce washes has shown great promise for bacterial pathogens, but limited research exists on its efficacy on viruses. This study compares ozone inactivation of human norovirus surrogates (feline calicivirus [FCV] and murine norovirus [MNV]) on produce (green onions and lettuce) and in sterile water. Green onions and lettuce inoculated with FCV or MNV were treated with ozone (6.25 ppm) for 0.5- to 10-min time intervals. Infectivity was determined by 50% tissue culture infectious dose (TCID(50)) and plaque assay for FCV and MNV, respectively. After 5 min of ozone treatment, >6 log TCID(50)/ml of FCV was inactivated in water and ∼2-log TCID(50)/ml on lettuce and green onions. MNV inoculated onto green onions and lettuce showed a >2-log reduction after 1 min of ozone treatment. The food matrix played the largest role in protection against ozone inactivation. These results indicate that ozone is an alternative method to reduce viral contamination on the surface of fresh produce. PMID:21549058

  10. Presence of Antibodies against Genogroup VI Norovirus in Humans

    PubMed Central

    2013-01-01

    Background Noroviruses are important enteric pathogens in humans and animals. Recently, we reported a novel canine norovirus (CaNoV) in dogs with diarrhea belonging to a new genogroup (GVI). No data are available on exposure of humans to this virus. Methods Sera from 373 small animal veterinarians and 120 age-matched population controls were tested for IgG antibodies to CaNoV by a recombinant virus like particle based enzyme-linked immunosorbent assay. Results Antibodies to CaNoV were found in 22.3% of the veterinarians and 5.8% of the control group (p < 0.001). Mean corrected OD450 values for CaNoV antibodies were significantly higher in small animal veterinarians compared to the control group. Conclusions These findings suggest that CaNoV may infect humans and small animal veterinarians are at an increased risk for exposure to this virus. Additional studies are needed to assess if this virus is able to cause disease in humans. PMID:23735311

  11. Norovirus and other human enteric viruses in moroccan shellfish.

    PubMed

    Benabbes, Laila; Ollivier, Joanna; Schaeffer, Julien; Parnaudeau, Sylvain; Rhaissi, Houria; Nourlil, Jalal; Le Guyader, Françoise S

    2013-03-01

    The aim of this study was to evaluate the presence of human enteric viruses in shellfish collected along the Mediterranean Sea and Atlantic Coast of Morocco. A total of 77 samples were collected from areas potentially contaminated by human sewage. Noroviruses were detected in 30 % of samples, with an equal representation of GI and GII strains, but were much more frequently found in cockles or clams than in oysters. The method used, including extraction efficiency controls, allowed the quantification of virus concentration. As in previous reports, results showed levels of contamination between 100 and 1,000 copies/g of digestive tissues. Sapoviruses were detected in 13 % of samples mainly in oyster and clam samples. Hepatitis A virus was detected in two samples, with concentrations around 100 RNA copies/g of digestive tissues. Only two samples were contaminated with enterovirus and none with norovirus GIV or Aichi virus. This study highlights the interest of studying shellfish samples from different countries and different production areas. A better knowledge of shellfish contamination helps us to understand virus levels in shellfish and to improve shellfish safety, thus protecting consumers. PMID:23412717

  12. Comprehensive analysis of a norovirus-associated gastroenteritis outbreak, from the environment to the consumer.

    PubMed

    Le Guyader, Françoise S; Krol, Joanna; Ambert-Balay, Katia; Ruvoen-Clouet, Nathalie; Desaubliaux, Benedicte; Parnaudeau, Sylvain; Le Saux, Jean-Claude; Ponge, Agnès; Pothier, Pierre; Atmar, Robert L; Le Pendu, Jacques

    2010-03-01

    Noroviruses have been recognized to be the predominant agents of nonbacterial gastroenteritis outbreaks in humans, and their transmission via contaminated shellfish consumption has been demonstrated. Norovirus laboratory experiments, volunteer challenge studies, and community gastroenteritis outbreak investigations have identified human genetic susceptibility factors related to histo-blood group antigen expression. Following a banquet in Brittany, France, in February 2008, gastroenteritis cases were linked to oyster consumption. This study identified an association of the norovirus illnesses with histo-blood group expression, and oyster contamination with norovirus was confirmed by qualitative and quantitative analyses. The secretor phenotype was associated with illness, especially for the non-A subgroup. The study showed that, in addition to accidental climatic events that may lead to oyster contamination, illegal shellfish collection and trading are also risk factors associated with outbreaks. PMID:20053852

  13. An acute gastroenteritis outbreak caused by GII.17 norovirus in Jiangsu Province, China.

    PubMed

    Shi, Chao; Feng, Wei-Hong; Shi, Ping; Ai, Jing; Guan, Hong-Xia; Sha, Dan; Geng, Qian; Mei, Jun; Chen, Shan-Hui; Xiao, Yong; Qian, Yan-Hua

    2016-08-01

    Noroviruses are a common cause of acute gastroenteritis around the world; however, reports of outbreaks caused by GII.17 norovirus are rare. An outbreak caused by GII.17 norovirus in a senior high school in Wuxi, Jiangsu Province, China is reported here. An epidemiological investigation, pathogen detection, and case-control study were performed. Epidemiological data combined with the epidemic curve indicated that this outbreak was a point source type initially, followed by secondary transmission. The first case was identified as most likely the source of the outbreak. Risk analysis showed exposure to patients and sharing a communal water cooler to be associated with the spread of infection. Sequence analysis of GII-positive samples confirmed that the norovirus GII.17 variant was the etiological agent of this outbreak. PMID:27224012

  14. Potent Inhibition of Norovirus by Dipeptidyl α-Hydroxyphosphonate Transition State Mimics

    PubMed Central

    Mandadapu, Sivakoteswara Rao; Gunnam, Mallikarjuna Reddy; Kankanamalage, Anushka C. Galasiti; Uy, Roxanne Adeline Z.; Alliston, Kevin R.; Lushington, Gerald H.; Kim, Yunjeong; Chang, Kyeong-Ok; Groutas, William C.

    2013-01-01

    The design, synthesis, and evaluation of a series of dipeptidyl α-hydroxyphosphonates is reported. The synthesized compounds displayed high anti-norovirus activity in a cell-based replicon system, as well as high enzyme selectivity. PMID:24054123

  15. Molecular evolution of the capsid gene in human norovirus genogroup II

    PubMed Central

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10−3 substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>102) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  16. Infectivity of a recombinant murine norovirus (RecMNV) in Balb/cByJ mice.

    PubMed

    Mathijs, Elisabeth; Oliveira-Filho, Edmilson F de; Dal Pozzo, Fabiana; Mauroy, Axel; Thiry, Damien; Massart, François; Saegerman, Claude; Thiry, Etienne

    2016-08-30

    The infectivity of a recombinant murine norovirus (RecMNV) strain, previously isolated following in vitro coinfections, was evaluated in vivo in comparison with its parental strains (MNV-1-CW1 and WU20) in Balb/cByJ mice via measurement of weight loss and estimation of viral loads in faeces, tissues and organs 48 and 72h post-infection. The presence of infectious virus in all analysed tissues and organs suggests that, similarly to its parental viruses, RecMNV can disseminate beyond organs associated with the digestive tract. Our results also suggest that recombination occurring in vitro between two homologous murine norovirus strains can give rise to a chimeric strain which, despite slight differences, shows similar biological properties to its parental strains. This study provides the first report on in vivo replication of a recombinant norovirus strain isolated following in vitro coinfection. These results have great significance for norovirus genetic evolution and future vaccine development. PMID:27527773

  17. Evidence for asymptomatic norovirus infection transmission associated with swimming at a tropical beach

    EPA Science Inventory

    Swimming in fecally-contaminated natural waterbodies can result in gastrointestinal (GI) infections and associated symptoms. However, the pathogenic microorganisms responsible are often unidentified because studies nearly always rely on self-reported symptoms. Noroviruses have be...

  18. Occurrence of Norovirus GIV in Environmental Water Samples from Belém City, Amazon Region, Brazil.

    PubMed

    Teixeira, Dielle Monteiro; Hernandez, Juliana Merces; Silva, Luciana Damascena; Oliveira, Darleise de Souza; Spada, Paula Katharine de Pontes; Gurjão, Tereza Cristina Monteiro; Mascarenhas, Joana D'Arc Pereira; Linhares, Alexandre Costa; Morais, Lena Líllian Canto de Sá; Gabbay, Yvone Benchimol

    2016-03-01

    Noroviruses are the major cause of non-bacterial acute gastroenteritis outbreaks in humans, with few reports about the occurrence of the norovirus GIV strain. We investigated the presence of norovirus GIV in surface water (river, bay, and stream) and untreated sewage, and we determined a positivity rate of 9.4% (9/96). The strains genotyped were GIV.1. To our knowledge, this is the first report of GIV in Brazil. PMID:26538419

  19. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control

    PubMed Central

    Lopman, Benjamin A.; Steele, Duncan; Kirkwood, Carl D.; Parashar, Umesh D.

    2016-01-01

    Globally, norovirus is associated with approximately one-fifth of all diarrhea cases, with similar prevalence in both children and adults, and is estimated to cause over 200,000 deaths annually in developing countries. Norovirus is an important pathogen in a number of high-priority domains: it is the most common cause of diarrheal episodes globally, the principal cause of foodborne disease outbreaks in the United States, a key health care–acquired infection, a common cause of travel-associated diarrhea, and a bane for deployed military troops. Partly as a result of this ubiquity and burden across a range of different populations, identifying target groups and strategies for intervention has been challenging. And, on top of the breadth of this public health problem, there remain important gaps in scientific knowledge regarding norovirus, especially with respect to disease in low-income settings. Many pathogens can cause acute gastroenteritis. Historically, rotavirus was the most common cause of severe disease in young children globally. Now, vaccines are available for rotavirus and are universally recommended by the World Health Organization. In countries with effective rotavirus vaccination programs, disease due to that pathogen has decreased markedly, but norovirus persists and is now the most common cause of pediatric gastroenteritis requiring medical attention. However, the data supporting the precise role of norovirus in low- and middle-income settings are sparse. With vaccines in the pipeline, addressing these and other important knowledge gaps is increasingly pressing. We assembled an expert group to assess the evidence for the global burden of norovirus and to consider the prospects for norovirus vaccine development. The group assessed the evidence in the areas of burden of disease, epidemiology, diagnostics, disease attribution, acquired immunity, and innate susceptibility, and the group considered how to bring norovirus vaccines from their current state

  20. Modeling and Mapping Oyster Norovirus Outbreak Risks in Gulf of Mexico Using NASA MODIS Aqua Data

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.

    2015-12-01

    Norovirus is a highly infectious virus and the leading cause of foodborne disease outbreaks such as oyster norovirus outbreaks. Currently, there is no vaccine to prevent norovirus infection and no drug to treat it. This paper presents an integrated modeling and mapping framework for predicting the risk of norovirus outbreaks in oyster harvesting waters in the Northern Gulf of Mexico coast. The framework involves (1) the construction of three novel remote sensing algorithms for the retrieval of sea surface salinity, sea surface temperature, and gage height (tide level) using NASA MODIS Aqua data; (2) the development of probability-based Artificial Neural Network (ANN) model for the prediction of oyster norovirus outbreak risk, and (3) the application of the Local Indicators of Spatial Association (LISA) for mapping norovirus outbreak risks in oyster harvesting areas in the Northern Gulf of Mexico using the remotely sensed NASA data, retrieved data from the three remote sensing algorithms, and the ANN model predictions. The three remote sensing algorithms are able to correctly retrieve 94.1% of sea surface salinity, 94.0% of sea surface temperature, and 77.8% of gage height observed along the US coast, including the Pacific coast, the Gulf of Mexico coast, and the Atlantic coast. The gage height, temperature, and salinity are the three most important explanatory variables of the ANN model in terms of spatially distributed input variables. The ANN model is capable of hindcasting/predicting all oyster norovirus outbreaks occurred in oyster growing areas along the Gulf of Mexico coast where environmental data are available. The integrated modeling and mapping framework makes it possible to map daily risks of norovirus outbreaks in all oyster harvesting waters and particularly the oyster growing areas where no in-situ environmental data are available, greatly improving the safety of seafood and reducing outbreaks of foodborne disease.

  1. Multiple Norovirus Infections in a Birth Cohort in a Peruvian Periurban Community

    PubMed Central

    Saito, Mayuko; Goel-Apaza, Sonia; Espetia, Susan; Velasquez, Daniel; Cabrera, Lilia; Loli, Sebastian; Crabtree, Jean E.; Black, Robert E.; Kosek, Margaret; Checkley, William; Zimic, Mirko; Bern, Caryn; Cama, Vitaliano; Gilman, Robert H.; Xiao, L.; Kelleher, D.; Windle, H. J.; van Doorn, L. J.; Varela, M.; Verastegui, M.; Calderon, M.; Alva, A.; Roman, K.

    2014-01-01

    Background. Human noroviruses are among the most common enteropathogens globally, and are a leading cause of infant diarrhea in developing countries. However, data measuring the impact of norovirus at the community level are sparse. Methods. We followed a birth cohort of children to estimate norovirus infection and diarrhea incidence in a Peruvian community. Stool samples from diarrheal episodes and randomly selected nondiarrheal samples were tested by polymerase chain reaction for norovirus genogroup and genotype. Excretion duration and rotavirus coinfection were evaluated in a subset of episodes. Results. Two hundred twenty and 189 children were followed to 1 and 2 years of age, respectively. By 1 year, 80% (95% confidence interval [CI], 75%–85%) experienced at least 1 norovirus infection and by 2 years, 71% (95% CI, 65%–77%) had at least 1 episode of norovirus-associated diarrhea. Genogroup II (GII) infections were 3 times more frequent than genogroup 1 (GI) infections. Eighteen genotypes were found; GII genotype 4 accounted for 41%. Median excretion duration was 34.5 days for GII vs 8.5 days for GI infection (P = .0006). Repeat infections by the same genogroup were common, but repeat infections by the same genotype were rare. Mean length-for-age z score at 12 months was lower among children with prior norovirus infection compared to uninfected children (coefficient: −0.33 [95% CI, −.65 to −.01]; P = .04); the effect persisted at 24 months. Conclusions. Norovirus infection occurs early in life and children experience serial infections with multiple genotypes, suggesting genotype-specific immunity. An effective vaccine would have a substantial impact on morbidity, but may need to target multiple genotypes. PMID:24300042

  2. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control.

    PubMed

    Lopman, Benjamin A; Steele, Duncan; Kirkwood, Carl D; Parashar, Umesh D

    2016-04-01

    Globally, norovirus is associated with approximately one-fifth of all diarrhea cases, with similar prevalence in both children and adults, and is estimated to cause over 200,000 deaths annually in developing countries. Norovirus is an important pathogen in a number of high-priority domains: it is the most common cause of diarrheal episodes globally, the principal cause of foodborne disease outbreaks in the United States, a key health care-acquired infection, a common cause of travel-associated diarrhea, and a bane for deployed military troops. Partly as a result of this ubiquity and burden across a range of different populations, identifying target groups and strategies for intervention has been challenging. And, on top of the breadth of this public health problem, there remain important gaps in scientific knowledge regarding norovirus, especially with respect to disease in low-income settings. Many pathogens can cause acute gastroenteritis. Historically, rotavirus was the most common cause of severe disease in young children globally. Now, vaccines are available for rotavirus and are universally recommended by the World Health Organization. In countries with effective rotavirus vaccination programs, disease due to that pathogen has decreased markedly, but norovirus persists and is now the most common cause of pediatric gastroenteritis requiring medical attention. However, the data supporting the precise role of norovirus in low- and middle-income settings are sparse. With vaccines in the pipeline, addressing these and other important knowledge gaps is increasingly pressing. We assembled an expert group to assess the evidence for the global burden of norovirus and to consider the prospects for norovirus vaccine development. The group assessed the evidence in the areas of burden of disease, epidemiology, diagnostics, disease attribution, acquired immunity, and innate susceptibility, and the group considered how to bring norovirus vaccines from their current state of

  3. Estimated hospitalizations attributed to norovirus and rotavirus infection in Canada, 2006-2010.

    PubMed

    Morton, V K; Thomas, M K; McEwen, S A

    2015-12-01

    Enteric viruses including norovirus and rotavirus are leading causes of gastroenteritis in Canada. However, only a small number of clinical cases are actually tested for these pathogens leading to systematic underestimation of attributed hospitalizations in administrative databases. The objective of this analysis was to estimate the number of hospitalizations due to norovirus and rotavirus in Canada. Hospitalization records for acute gastroenteritis-associated discharges at all acute-care hospitals in Canada between 2006 and 2011 were analysed. Cause-unspecified gastroenteritis hospitalizations were modelled using age-specific negative binomial models with cause-specified gastroenteritis admissions as predictors. The coefficients from the models were used to estimate the number of norovirus and rotavirus admissions. The total annual hospitalizations for rotavirus were estimated to be between 4500 and 10 000. Total annual hospitalizations for norovirus were estimated to be between 4000 and 11 000. The mean total annual cost associated with these hospitalizations was estimated to be at least $16 million for rotavirus and $21 million for norovirus (all figures in Canadian dollars). This study is the first comprehensive analysis of norovirus and rotavirus hospitalizations in Canada. These estimates provide a more complete assessment of the burden and economic costs of these pathogens to the Canadian healthcare system. PMID:25991407

  4. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome.

    PubMed

    Lee, Heetae; Ko, GwangPyo

    2016-01-01

    The effect and underlying mechanism of vitamin A on norovirus infection are largely unknown. This study aimed to investigate how vitamin A administration affects the gut microbiome after norovirus infection. Here, we demonstrate that treatment with either retinol or retinoic acid (RA) inhibits murine norovirus (MNV) replication using both in vitro and in vivo models. Compositional changes in the gut microbiome associated with RA administration and/or norovirus infection were also investigated. Oral administration of RA and/or MNV significantly altered intestinal microbiome profiles. Particularly, bacterial species belonging to the Lactobacillaceae families were remarkably increased by MNV inoculation and RA administration, suggesting that the antiviral effects of RA occur via the modulation of specific microbiota. The antiviral causal effect of Lactobacillus was identified and demonstrated using in vitro models in RAW264.7 cells. The antiviral immune response to MNV was mediated by IFN-β upregulation. This study represents the first comprehensive profiling of gut microbiota in response to RA treatment against norovirus infection. Moreover, we conclude that the abundance of Lactobacillus through gut microbiota modulation by RA is at least partially responsible for norovirus inhibition. PMID:27180604

  5. Temperature-Dependent Persistence of Human Norovirus Within Oysters (Crassostrea virginica).

    PubMed

    Choi, Changsun; Kingsley, David H

    2016-06-01

    This study characterizes the persistence of human norovirus in Eastern oysters (Crassostrea virginica) held at different seawater temperatures. Oysters were contaminated with human norovirus GI.1 (Norwalk strain 8FIIa) by exposing them to virus-contaminated water at 15 °C, and subsequently holding them at 7, 15, and 25 °C for up to 6 weeks. Viral RNA was extracted from oyster tissue and hemocytes and quantitated by RT-qPCR. Norovirus was detected in hemocytes and oysters held at 7 and 15 °C for 6 weeks and in hemocytes and oysters held at 25 °C for up to 2 and 4 weeks, respectively. Results confirm that NoV is quite persistent within oysters and demonstrate that cooler water temperatures extend norovirus clearance times. This study suggests a need for substantial relay times to remove norovirus from contaminated shellfish and suggests that regulatory authorities should consider the effects of water temperature after a suspected episodic norovirus-contamination event. PMID:26983441

  6. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome

    PubMed Central

    Lee, Heetae; Ko, GwangPyo

    2016-01-01

    The effect and underlying mechanism of vitamin A on norovirus infection are largely unknown. This study aimed to investigate how vitamin A administration affects the gut microbiome after norovirus infection. Here, we demonstrate that treatment with either retinol or retinoic acid (RA) inhibits murine norovirus (MNV) replication using both in vitro and in vivo models. Compositional changes in the gut microbiome associated with RA administration and/or norovirus infection were also investigated. Oral administration of RA and/or MNV significantly altered intestinal microbiome profiles. Particularly, bacterial species belonging to the Lactobacillaceae families were remarkably increased by MNV inoculation and RA administration, suggesting that the antiviral effects of RA occur via the modulation of specific microbiota. The antiviral causal effect of Lactobacillus was identified and demonstrated using in vitro models in RAW264.7 cells. The antiviral immune response to MNV was mediated by IFN-β upregulation. This study represents the first comprehensive profiling of gut microbiota in response to RA treatment against norovirus infection. Moreover, we conclude that the abundance of Lactobacillus through gut microbiota modulation by RA is at least partially responsible for norovirus inhibition. PMID:27180604

  7. Recovery and Disinfection of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, from Hard Nonporous and Soft Porous Surfaces.

    PubMed

    Yeargin, Thomas; Fraser, Angela; Huang, Guohui; Jiang, Xiuping

    2015-10-01

    Human norovirus is a leading cause of foodborne disease and can be transmitted through many routes, including environmental exposure to fomites. In this study, both the recovery and inactivation of two human norovirus surrogates, feline calicivirus (FCV) and murine norovirus (MNV), on hard nonporous surfaces (glass) and soft porous surfaces (polyester and cotton) were evaluated by both plaque assay and reverse transcription quantitative PCR method. Two disinfectants, sodium hypochlorite (8.25%) and accelerated hydrogen peroxide (AHP, at 4.25%) were evaluated for disinfection efficacy. Five coupons per surface type were used to evaluate the recovery of FCV and MNV by sonication and stomaching and the disinfection of each surface type by using 5 ml of disinfectant for a contact time of 5 min. FCV at an initial titer of ca. 7 log PFU/ml was recovered from glass, cotton, and polyester at 6.2, 5.4, and 3.8 log PFU/ml, respectively, compared with 5.5, 5.2, and 4.1 log PFU/ml, respectively, for MNV with an initial titer of ca. 6 log PFU/ml. The use of sodium hypochlorite (5,000 ppm) was able to inactivate both FCV and MNV (3.1 to 5.5 log PFU/ml) below the limit of detection on all three surface types. AHP (2,656 ppm) inactivated FCV (3.1 to 5.5 log PFU/ml) below the limit of detection for all three surface types but achieved minimal inactivation of MNV (0.17 to 1.37 log PFU/ml). Reduction of viral RNA by sodium hypochlorite corresponded to 2.72 to 4.06 log reduction for FCV and 2.07 to 3.04 log reduction for MNV on all three surface types. Reduction of viral RNA by AHP corresponded to 1.89 to 3.4 log reduction for FCV and 0.54 to 0.85 log reduction for MNV. Our results clearly indicate that both virus and surface types significantly influence recovery efficiency and disinfection efficacy. Based on the performance of our proposed testing method, an improvement in virus recovery will be needed to effectively validate virus disinfection of soft porous surfaces. PMID:26408133

  8. Interactions between Human Norovirus Surrogates and Acanthamoeba spp.

    PubMed Central

    Hsueh, Tun-Yun

    2015-01-01

    Human noroviruses (HuNoVs) are the most common cause of food-borne disease outbreaks, as well as virus-related waterborne disease outbreaks in the United States. Here, we hypothesize that common free-living amoebae (FLA)—ubiquitous in the environment, known to interact with pathogens, and frequently isolated from water and fresh produce—could potentially act as reservoirs of HuNoV and facilitate the environmental transmission of HuNoVs. To investigate FLA as reservoirs for HuNoV, the interactions between two Acanthamoeba species, A. castellanii and A. polyphaga, as well as two HuNoV surrogates, murine norovirus type 1 (MNV-1) and feline calicivirus (FCV), were evaluated. The results showed that after 1 h of amoeba-virus incubation at 25°C, 490 and 337 PFU of MNV-1/ml were recovered from A. castellanii and A. polyphaga, respectively, while only few or no FCVs were detected. In addition, prolonged interaction of MNV-1 with amoebae was investigated for a period of 8 days, and MNV-1 was demonstrated to remain stable at around 200 PFU/ml from day 2 to day 8 after virus inoculation in A. castellanii. Moreover, after a complete amoeba life cycle (i.e., encystment and excystment), infectious viruses could still be detected. To determine the location of virus associated with amoebae, immunofluorescence experiments were performed and showed MNV-1 transitioning from the amoeba surface to inside the amoeba over a 24-h period. These results are significant to the understanding of how HuNoVs may interact with other microorganisms in the environment in order to aid in its persistence and survival, as well as potential transmission in water and to vulnerable food products such as fresh produce. PMID:25841006

  9. Characterization of Cross-Reactive Norovirus-Specific Monoclonal Antibodies

    PubMed Central

    Kou, Baijun; Crawford, Sue E.; Ajami, Nadim J.; Czakó, Rita; Neill, Frederick H.; Tanaka, Tomoyuki N.; Kitamoto, Noritoshi; Palzkill, Timothy G.; Estes, Mary K.

    2014-01-01

    Noroviruses (NoVs) commonly cause acute gastroenteritis outbreaks. Broadly reactive diagnostic assays are essential for rapid detection of NoV infections. We previously generated a panel of broadly reactive monoclonal antibodies (MAbs). We characterized MAb reactivities by use of virus-like particles (VLPs) from 16 different NoV genotypes (6 from genogroup I [GI], 9 from GII, and 1 from GIV) coating a microtiter plate (direct enzyme-linked immunosorbent assay [ELISA]) and by Western blotting. MAbs were genotype specific or recognized multiple genotypes within a genogroup and between genogroups. We next applied surface plasmon resonance (SPR) analysis to measure MAb dissociation constants (Kd) as a surrogate for binding affinity; a Kd level of <10 nM was regarded as indicating strong binding. Some MAbs did not interact with the VLPs by SPR analysis. To further assess this lack of MAb-VLP interaction, the MAbs were evaluated for the ability to identify NoV VLPs in a capture ELISA. Those MAbs for which a Kd could not be measured by SPR analysis also failed to capture the NoV VLPs; in contrast, those with a measurable Kd gave a positive signal in the capture ELISA. Thus, some broadly cross-reactive epitopes in the VP1 protruding domain may be partially masked on intact particles. One MAb, NV23, was able to detect genogroup I, II, and IV VLPs from 16 genotypes tested by sandwich ELISA, and it successfully detected NoVs in stool samples positive by real-time reverse transcription-PCR when the threshold cycle (CT) value was <31. Biochemical analyses of MAb reactivity, including SPR analysis, identified NV23 as a broadly reactive ligand for application in norovirus diagnostic assays. PMID:25428247

  10. Inactivation of Norovirus on Dry Copper Alloy Surfaces

    PubMed Central

    Warnes, Sarah L.; Keevil, C. William

    2013-01-01

    Noroviruses (family Caliciviridae) are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS) determined that Cu(II) and especially Cu(I) ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen. PMID:24040380

  11. Type I and Type II Interferons Inhibit the Translation of Murine Norovirus Proteins▿

    PubMed Central

    Changotra, Harish; Jia, Yali; Moore, Tara N.; Liu, Guangliang; Kahan, Shannon M.; Sosnovtsev, Stanislav V.; Karst, Stephanie M.

    2009-01-01

    Human noroviruses are responsible for more than 95% of nonbacterial epidemic gastroenteritis worldwide. Both onset and resolution of disease symptoms are rapid, suggesting that components of the innate immune response are critical in norovirus control. While the study of the human noroviruses has been hampered by the lack of small animal and tissue culture systems, our recent discovery of a murine norovirus (MNV) and its in vitro propagation have allowed us to begin addressing norovirus replication strategies and immune responses to norovirus infection. We have previously demonstrated that interferon responses are critical to control MNV-1 infection in vivo and to directly inhibit viral replication in vitro. We now extend these studies to define the molecular basis for interferon-mediated inhibition. Viral replication intermediates were not detected in permissive cells pretreated with type I interferon after either infection or transfection of virion-associated RNA, demonstrating a very early block to virion production that is after virus entry and uncoating. A similar absence of viral replication intermediates was observed in infected primary macrophages and dendritic cells pretreated with type I IFN. This was not due to degradation of incoming genomes in interferon-pretreated cells since similar levels of genomes were present in untreated and pretreated cells through 6 h of infection, and these genomes retained their integrity. Surprisingly, this block to the translation of viral proteins was not dependent on the well-characterized interferon-induced antiviral molecule PKR. Similar results were observed in cells pretreated with type II interferon, except that the inhibition of viral translation was dependent on PKR. Thus, both type I and type II interferon signaling inhibit norovirus translation in permissive myeloid cells, but they display distinct dependence on PKR for this inhibition. PMID:19297466

  12. Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype.

    PubMed

    Ferragut, Fátima; Vega, Celina G; Mauroy, Axel; Conceição-Neto, Nádia; Zeller, Mark; Heylen, Elisabeth; Uriarte, Enrique Louge; Bilbao, Gladys; Bok, Marina; Matthijnssens, Jelle; Thiry, Etienne; Badaracco, Alejandra; Parreño, Viviana

    2016-06-01

    Bovine noroviruses are enteric pathogens detected in fecal samples of both diarrheic and non-diarrheic calves from several countries worldwide. However, epidemiological information regarding bovine noroviruses is still lacking for many important cattle producing countries from South America. In this study, three bovine norovirus genogroup III sequences were determined by conventional RT-PCR and Sanger sequencing in feces from diarrheic dairy calves from Argentina (B4836, B4848, and B4881, all collected in 2012). Phylogenetic studies based on a partial coding region for the RNA-dependent RNA polymerase (RdRp, 503 nucleotides) of these three samples suggested that two of them (B4836 and B4881) belong to genotype 2 (GIII.2) while the third one (B4848) was more closely related to genotype 1 (GIII.1) strains. By deep sequencing, the capsid region from two of these strains could be determined. This confirmed the circulation of genotype 1 (B4848) together with the presence of another sequence (B4881) sharing its highest genetic relatedness with genotype 1, but sufficiently distant to constitute a new genotype. This latter strain was shown in silico to be a recombinant: phylogenetic divergence was detected between its RNA-dependent RNA polymerase coding sequence (genotype GIII.2) and its capsid protein coding sequence (genotype GIII.1 or a potential norovirus genotype). According to this data, this strain could be the second genotype GIII.2_GIII.1 bovine norovirus recombinant described in literature worldwide. Further analysis suggested that this strain could even be a potential norovirus GIII genotype, tentatively named GIII.4. The data provides important epidemiological and evolutionary information on bovine noroviruses circulating in South America. PMID:26940636

  13. Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments.

    PubMed

    Cromeans, Theresa; Park, Geun Woo; Costantini, Veronica; Lee, David; Wang, Qiuhong; Farkas, Tibor; Lee, Alvin; Vinjé, Jan

    2014-09-01

    Human norovirus is the leading cause of epidemic and sporadic acute gastroenteritis. Since no cell culture method for human norovirus exists, cultivable surrogate viruses (CSV), including feline calicivirus (FCV), murine norovirus (MNV), porcine enteric calicivirus (PEC), and Tulane virus (TuV), have been used to study responses to inactivation and disinfection methods. We compared the levels of reduction in infectivities of CSV and Aichi virus (AiV) after exposure to extreme pHs, 56°C heating, alcohols, chlorine on surfaces, and high hydrostatic pressure (HHP), using the same matrix and identical test parameters for all viruses, as well as the reduction of human norovirus RNA levels under these conditions. At pH 2, FCV was inactivated by 6 log10 units, whereas MNV, TuV, and AiV were resistant. All CSV were completely inactivated at 56°C within 20 min. MNV was inactivated 5 log10 units by alcohols, in contrast to 2 and 3 log10 units for FCV and PEC, respectively. TuV and AiV were relatively insensitive to alcohols. FCV was reduced 5 log10 units by 1,000 ppm chlorine, in contrast to 1 log10 unit for the other CSV. All CSV except FCV, when dried on stainless steel surfaces, were insensitive to 200 ppm chlorine. HHP completely inactivated FCV, MNV, and PEC at ≥300 MPa, and TuV at 600 MPa, while AiV was completely resistant to HHP up to 800 MPa. By reverse transcription-quantitative PCR (RT-qPCR), genogroup I (GI) noroviruses were more sensitive than GII noroviruses to alcohols, chlorine, and HHP. Although inactivation profiles were variable for each treatment, TuV and MNV were the most resistant CSV overall and therefore are the best candidates for studying the public health outcomes of norovirus infections. PMID:25015883

  14. Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure-Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies

    PubMed Central

    Kankanamalage, Anushka C. Galasiti; Kim, Yunjeong; Weerawarna, Pathum M.; Uy, Roxanne Adeline Z.; Damalanka, Vishnu C.; Mandadapu, Sivakoteswara Rao; Alliston, Kevin R.; Mehzabeen, Nurjahan; Battaile, Kevin P.; Lovell, Scott; Chang, Kyeong-Ok; Groutas, William C.

    2015-01-01

    Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of anti-norovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection. PMID:25761614

  15. Genetic Diversity of Norovirus and Sapovirus in Hospitalized Infants with Sporadic Cases of Acute Gastroenteritis in Chiang Mai, Thailand

    PubMed Central

    Hansman, Grant S.; Katayama, Kazuhiko; Maneekarn, Niwat; Peerakome, Supatra; Khamrin, Pattara; Tonusin, Supin; Okitsu, Shoko; Nishio, Osamu; Takeda, Naokazu; Ushijima, Hiroshi

    2004-01-01

    Stool specimens from hospitalized infants with sporadic gastroenteritis in Chiang Mai, Thailand, between July 2000 and July 2001 were examined for norovirus and sapovirus by reverse transcription-PCR and sequence analysis. These viruses were identified in 13 of 105 (12%) specimens. One strain was found to be a recombinant norovirus. PMID:15004104

  16. High hydrostatic pressure processing of murine norovirus 1-contaminated oysters inhibits oral infection in STAT-1 -/- deficient female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously demonstrated that high pressure processing (HPP) is effective in preventing in vitro replication of murine norovirus strain 1 (MNV-1), a human norovirus surrogate, in a monocyte cell line following extraction from MNV-1-contaminated oysters. In the present study, the efficacy of ...

  17. EVALUATION OF MURINE NOROVIRUS, FELINE CALICIVIRUS, POLIOVIRUS, AND MS2 AS SURROGATES FOR HUMAN NOROVIRUS IN a Model of Viral Persistence in SURFACE Water AND GROUNDWATER

    EPA Science Inventory

    Human noroviruses (NoV) are a significant cause of non bacterial gastroenteritis worldwide with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate mod...

  18. High pressure inactivation of human norovirus virus-like particles: evidence that the capsid of human norovirus is highly pressure resistant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) is the leading cause of non-bacterial acute gastroenteritis epidemics worldwide. High pressure processing (HPP) has been considered a promising non-thermal processing technology to inactivate food- and water-borne viral pathogens. Due to the lack of an effective cell culture fo...

  19. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies.

    PubMed

    Weerawarna, Pathum M; Kim, Yunjeong; Galasiti Kankanamalage, Anushka C; Damalanka, Vishnu C; Lushington, Gerald H; Alliston, Kevin R; Mehzabeen, Nurjahan; Battaile, Kevin P; Lovell, Scott; Chang, Kyeong-Ok; Groutas, William C

    2016-08-25

    Outbreaks of acute gastroenteritis caused by noroviruses constitute a public health concern worldwide. To date, there are no approved drugs or vaccines for the management and prophylaxis of norovirus infections. A potentially effective strategy for the development of norovirus therapeutics entails the discovery of inhibitors of norovirus 3CL protease, an enzyme essential for noroviral replication. We describe herein the structure-based design of the first class of permeable, triazole-based macrocyclic inhibitors of norovirus 3C-like protease, as well as pertinent X-ray crystallographic, biochemical, spectroscopic, and antiviral studies. PMID:27235842

  20. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    SciTech Connect

    Chang, Kyeong-Ok; Takahashi, Daisuke; Prakash, Om; Kim, Yunjeong

    2012-02-20

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  1. Structural and Inhibitor Studies of Norovirus 3C-like Proteases

    PubMed Central

    Takahashi, Daisuke; Kim, Yunjeong; Lovell, Scott; Prakash, Om; Groutas, William C; Chang, Kyeong-Ok

    2013-01-01

    Noroviruses have a single-stranded, positive sense 7–8 kb RNA genome, which encodes a polyprotein precursor processed by a virus-encoded 3C-like cysteine protease (3CLpro) to generate mature non-structural proteins. Because processing of the polyprotein is essential for virus replication, norovirus 3CLpro has been targeted for the discovery of anti-norovirus small molecule therapeutics. Thus, we performed functional, structural and inhibition studies of norovirus 3CLpro with fluorescence resonance energy transfer (FRET) assay, X-ray crystallography, and NMR spectroscopy with a synthetic protease inhibitor. Three 3CLpro from Norwalk virus (NV, genogroup I), MD145 (genogroup II) and murine norovirus-1 (MNV-1, genogroup V) were optimized for a FRET assay, and compared for the inhibitory activities of a synthetic protease inhibitor (GC376). The apo 3D structures of NV 3CLpro determined with X-ray crystallography and NMR spectroscopy were further analyzed. In addition, the binding mode of NV 3CLpro-GC376 was compared with X-ray crystallography and NMR spectroscopy. The results of this report provide insight into the interaction of NV 3CLpro with substrate/inhibitor for better understanding of the enzyme and antiviral drug development. PMID:24055466

  2. A norovirus outbreak associated with consumption of NSW oysters: implications for quality assurance systems.

    PubMed

    Huppatz, Clare; Munnoch, Sally A; Worgan, Tory; Merritt, Tony D; Dalton, Craig; Kelly, Paul M; Durrheim, David N

    2008-03-01

    Norovirus is a common cause of gastroenteritis outbreaks associated with raw shellfish consumption. In Australia there have been several reports of norovirus outbreaks associated with oysters despite the application of regulatory measures recommended by Food Standards Australia New Zealand. This study describes an outbreak of norovirus gastroenteritis following the consumption of New South Wales oysters. In September 2007, OzFoodNet conducted a cohort study of a gastroenteritis outbreak amongst people that had dined at a Port Macquarie restaurant. Illness was strongly associated with oyster consumption, with all cases having eaten oysters from the same lease (RR undefined, p < 0.0001). Norovirus was detected in a faecal specimen. Although no pathogen was identified during the environmental investigation, the source oyster lease had been closed just prior to harvesting due to sewage contamination. Australian quality assurance programs do not routinely test oysters for viral contamination that pose a risk to human health. It is recommended that the feasibility of testing oysters for norovirus, particularly after known faecal contamination of oyster leases, be assessed. PMID:18522310

  3. Economic Cost of Campylobacter, Norovirus and Rotavirus Disease in the United Kingdom

    PubMed Central

    Tam, Clarence C; O’Brien, Sarah J

    2016-01-01

    Objectives To estimate the annual cost to patients, the health service and society of infectious intestinal disease (IID) from Campylobacter, norovirus and rotavirus. Design Secondary data analysis. Setting The United Kingdom population, 2008–9. Main outcome measures Cases and frequency of health services usage due to these three pathogens; associated healthcare costs; direct, out-of-pocket expenses; indirect costs to patients and caregivers. Results The median estimated costs to patients and the health service at 2008–9 prices were: Campylobacter £50 million (95% CI: £33m–£75m), norovirus £81 million (95% CI: £63m–£106m), rotavirus £25m (95% CI: £18m–£35m). The costs per case were approximately £30 for norovirus and rotavirus, and £85 for Campylobacter. This was mostly borne by patients and caregivers through lost income or out-of-pocket expenditure. The cost of Campylobacter-related Guillain-Barré syndrome hospitalisation was £1.26 million (95% CI: £0.4m–£4.2m). Conclusions Norovirus causes greater economic burden than Campylobacter and rotavirus combined. Efforts to control IID must prioritise norovirus. For Campylobacter, estimated costs should be considered in the context of expenditure to control this pathogen in agriculture, food production and retail. Our estimates, prior to routine rotavirus immunisation in the UK, provide a baseline vaccine cost-effectiveness analyses. PMID:26828435

  4. The Spread and Control of Norovirus Outbreaks Among Hospitals in a Region: A Simulation Model

    PubMed Central

    Bartsch, Sarah M.; Huang, Susan S.; Wong, Kim F.; Avery, Taliser R.; Lee, Bruce Y.

    2014-01-01

    Background  Because hospitals in a region are connected via patient sharing, a norovirus outbreak in one hospital may spread to others. Methods.  We utilized our Regional Healthcare Ecosystem Analyst software to generate an agent-based model of all the acute care facilities in Orange County (OC), California and simulated various norovirus outbreaks in different locations, both with and without contact precautions. Results.  At the lower end of norovirus reproductive rate (R0) estimates (1.64), an outbreak tended to remain confined to the originating hospital (≤6.1% probability of spread). However, at the higher end of R0 (3.74), an outbreak spread 4.1%–17.5% of the time to almost all other OC hospitals within 30 days, regardless of the originating hospital. Implementing contact precautions for all symptomatic cases reduced the probability of spread to other hospitals within 30 days and the total number of cases countywide, but not the number of other hospitals seeing norovirus cases. Conclusions.  A single norovirus outbreak can continue to percolate throughout a system of different hospitals for several months and appear as a series of unrelated outbreaks, highlighting the need for hospitals within a region to more aggressively and cooperatively track and control an initial outbreak. PMID:25734110

  5. Sensitive Detection of Norovirus Using Phage Nanoparticle Reporters in Lateral-Flow Assay

    PubMed Central

    Hagström, Anna E. V.; Garvey, Gavin; Paterson, Andrew S.; Dhamane, Sagar; Adhikari, Meena; Estes, Mary K.; Strych, Ulrich; Kourentzi, Katerina; Atmar, Robert L.; Willson, Richard C.

    2015-01-01

    Noroviruses are recognized worldwide as the principal cause of acute, non-bacterial gastroenteritis, resulting in 19-21 million cases of disease every year in the United States. Noroviruses have a very low infectious dose, a short incubation period, high resistance to traditional disinfection techniques and multiple modes of transmission, making early, point-of-care detection essential for controlling the spread of the disease. The traditional diagnostic tools, electron microscopy, RT-PCR and ELISA require sophisticated and expensive instrumentation, and are considered too laborious and slow to be useful during severe outbreaks. In this paper we describe the development of a new, rapid and sensitive lateral-flow assay using labeled phage particles for the detection of the prototypical norovirus GI.1 (Norwalk), with a limit of detection of 107 virus-like particles per mL, one hundred-fold lower than a conventional gold nanoparticle lateral-flow assay using the same antibody pair. PMID:25978622

  6. Tulane Virus as a Potential Surrogate To Mimic Norovirus Behavior in Oysters.

    PubMed

    Drouaz, Najoua; Schaeffer, Julien; Farkas, Tibor; Le Pendu, Jacques; Le Guyader, Françoise S

    2015-08-01

    Oyster contamination by noroviruses is an important health and economic problem. The present study aimed to compare the behaviors of Norwalk virus (the prototype genogroup I norovirus) and two culturable viruses: Tulane virus and mengovirus. After bioaccumulation, tissue distributions were quite similar for Norwalk virus and Tulane virus, with the majority of viral particles detected in digestive tissues, while mengovirus was detected in large amounts in the gills and mantle as well as in digestive tissues. The levels of persistence of all three viruses over 8 days were comparable, but clear differences were observed over longer periods, with Norwalk and Tulane viruses displaying rather similar half-lives, unlike mengovirus, which was cleared more rapidly. These results indicate that Tulane virus may be a good surrogate for studying norovirus behavior in oysters, and they confirm the prolonged persistence of Norwalk virus in oyster tissues. PMID:26025893

  7. Detection of human norovirus from frozen raspberries in a cluster of gastroenteritis outbreaks.

    PubMed

    Maunula, L; Roivainen, M; Keränen, M; Mäkela, S; Söderberg, K; Summa, M; von Bonsdorff, C H; Lappalainen, M; Korhonen, T; Kuusi, M; Niskanen, T

    2009-01-01

    We describe a cluster of norovirus outbreaks affecting about 200 people in Southern Finland in September and October 2009. All outbreaks occurred after consumption of imported raspberries from the same batch intended for the catering sector. Human norovirus genotype GI.4 was found in frozen raspberries. The berries were served in toppings of cakes in separate catering settings or mixed in curd cheese as a snack for children in a daycare center. The relative risk for consumption of the berry dish was 3.0 (p norovirus GI.4 was also detected in samples from two patients, and in berries. Both shared identical partial capsid sequences. Based on the results of epidemiological, trace-back and laboratory investigations it was concluded that one particular batch of frozen raspberries was the source of all outbreaks. PMID:20003905

  8. Tulane Virus as a Potential Surrogate To Mimic Norovirus Behavior in Oysters

    PubMed Central

    Drouaz, Najoua; Schaeffer, Julien; Farkas, Tibor; Le Pendu, Jacques

    2015-01-01

    Oyster contamination by noroviruses is an important health and economic problem. The present study aimed to compare the behaviors of Norwalk virus (the prototype genogroup I norovirus) and two culturable viruses: Tulane virus and mengovirus. After bioaccumulation, tissue distributions were quite similar for Norwalk virus and Tulane virus, with the majority of viral particles detected in digestive tissues, while mengovirus was detected in large amounts in the gills and mantle as well as in digestive tissues. The levels of persistence of all three viruses over 8 days were comparable, but clear differences were observed over longer periods, with Norwalk and Tulane viruses displaying rather similar half-lives, unlike mengovirus, which was cleared more rapidly. These results indicate that Tulane virus may be a good surrogate for studying norovirus behavior in oysters, and they confirm the prolonged persistence of Norwalk virus in oyster tissues. PMID:26025893

  9. Norovirus cross-contamination during preparation of fresh produce.

    PubMed

    Grove, Stephen F; Suriyanarayanan, Annamalai; Puli, Balasubramanyam; Zhao, Heng; Li, Mingming; Li, Di; Schaffner, Donald W; Lee, Alvin

    2015-04-01

    Infection with human norovirus (HuNoV) is considered a common cause of foodborne illness worldwide. Foodborne HuNoV outbreaks may result from consumption of food contaminated by an infected food handler in the foodservice environment, in which bare-hand contact, lack of hand washing, and inadequate cleaning and disinfection are common contributing factors. The goal of this study was to examine cross-contamination of a HuNoV surrogate, murine norovirus (MNV-1), during common procedures used in preparing fresh produce in a food service setting, including turning water spigots, handling and chopping Romaine lettuce, and washing hands. MNV-1 transfer % was log-transformed to achieve a normal distribution of the data and enable appropriate statistical analyses to be performed. MNV-1 transfer coefficients varied by surface type, and a greater affinity for human hands and chopped lettuce was observed. For example, greater transfer was observed from a contaminated stainless steel spigot to a clean hand (24% or 1.4-log transfer %) compared to transfer from hand to spigot (0.6% or -0.2-log transfer %). During the chopping of Romaine lettuce, MNV-1 was transferred from either a contaminated cutting board (25% or 1.4-log transfer %) or knife (~100% or 2.0-log transfer %) to lettuce at a significantly greater rate (p>0.05) than from contaminated lettuce to the board (2.1% or 0.3-log transfer %) and knife (1.2% or 0.06-log transfer %). No significant difference (p>0.05) in MNV-1 transfer coefficients was observed between bare hands and Romaine lettuce during handling. For handwashing trials, only one hand was inoculated with MNV-1 prior to washing. The handwashing methods included rubbing hands under tap water for at least 5s (average 2.8-log reduction) or washing hands for at least 20s with liquid soap (average 2.9-log reduction) or foaming soap (average 3.0-log reduction), but no statistical difference between these reductions was achieved (p>0.05). Despite the reductions of

  10. A Systematic Review and Meta-Analysis of the Global Seasonality of Norovirus

    PubMed Central

    Ahmed, Sharia M.; Lopman, Benjamin A.; Levy, Karen

    2013-01-01

    Background Noroviruses are the most common cause of acute gastroenteritis across all ages worldwide. These pathogens are generally understood to exhibit a wintertime seasonality, though a systematic assessment of seasonal patterns has not been conducted in the era of modern diagnostics. Methods We conducted a systematic review of the Pubmed Medline database for articles published between 1997 and 2011 to identify and extract data from articles reporting on monthly counts of norovirus. We conducted a descriptive analysis to document seasonal patterns of norovirus disease, and we also constructed multivariate linear models to identify factors associated with the strength of norovirus seasonality. Results The searched identified 293 unique articles, yielding 38 case and 29 outbreak data series. Within these data series, 52.7% of cases and 41.2% of outbreaks occurred in winter months, and 78.9% of cases and 71.0% of outbreaks occurred in cool months. Both case and outbreak studies showed an earlier peak in season-year 2002-03, but not in season-year 2006-07, years when new genogroup II type 4 variants emerged. For outbreaks, norovirus season strength was positively associated with average rainfall in the wettest month, and inversely associated with crude birth rate in both bivariate and multivariate analyses. For cases, none of the covariates examined was associated with season strength. When case and outbreaks were combined, average rainfall in the wettest month was positively associated with season strength. Conclusions Norovirus is a wintertime phenomenon, at least in the temperate northern hemisphere where most data are available. Our results point to possible associations of season strength with rain in the wettest month and crude birth rate. PMID:24098406

  11. Emergence of GII.Pg norovirus in gastroenteritis outbreaks in Victoria, Australia.

    PubMed

    Bruggink, Leesa D; Dunbar, Natalie L; Marshall, John A

    2016-09-01

    The ORF 1 GII.Pg genotype represents an obligatory recombinant comprising the ORF 1 GII.Pg genotype and a number of ORF 2 genotypes. The emergence, incidence, and molecular features of GII.Pg norovirus have never been considered in detail and are the subject of the current study. Over the period 2002-2013, GII.Pg norovirus was detected in 16 outbreaks in Victoria, Australia. It was first identified in 2009 and thereafter was detected at low level in each year of the study. GII.Pg norovirus outbreaks occurred in both healthcare and non-healthcare settings and could be found in individuals with a broad range of ages. The seasonality of GII.Pg norovirus outbreaks was significantly different from that of all other (non-GII.Pg) norovirus outbreaks. For the 15 GII.Pg norovirus outbreaks where ORF 2 sequencing data were available, two ORF 2 recombinant genotypes were found: GII.1 in 5 (33%) outbreaks and GII.12 in 10 (67%) outbreaks. The ORF 1 phylogenetic tree shows that the GII.Pg ORF 1 genotype fell into two distinct groups. The ORF 2 phylogenetic tree indicates that the GII.1 and GII.12 clusters each corresponded to one of the groups in the ORF 1 tree. This indicates the two recombinant forms were evolving in parallel and not one from the other. Analysis of age data indicates the GII.1 and GII.12 recombinant forms circulated in different ways in the community. J. Med. Virol. 88:1521-1528, 2016. © 2016 Wiley Periodicals, Inc. PMID:26946515

  12. Evaluation of a New Environmental Sampling Protocol for Detection of Human Norovirus on Inanimate Surfaces.

    PubMed

    Park, Geun Woo; Lee, David; Treffiletti, Aimee; Hrsak, Mario; Shugart, Jill; Vinjé, Jan

    2015-09-01

    Inanimate surfaces are regarded as key vehicles for the spread of human norovirus during outbreaks. ISO method 15216 involves the use of cotton swabs for environmental sampling from food surfaces and fomites for the detection of norovirus genogroup I (GI) and GII. We evaluated the effects of the virus drying time (1, 8, 24, or 48 h), swab material (cotton, polyester, rayon, macrofoam, or an antistatic wipe), surface (stainless steel or a toilet seat), and area of the swabbed surface (25.8 cm(2) to 645.0 cm(2)) on the recovery of human norovirus. Macrofoam swabs produced the highest rate of recovery of norovirus from surfaces as large as 645 cm(2). The rates of recovery ranged from 2.2 to 36.0% for virus seeded on stainless-steel coupons (645.0 cm(2)) to 1.2 to 33.6% for toilet seat surfaces (700 cm(2)), with detection limits of 3.5 log10 and 4.0 log10 RNA copies. We used macrofoam swabs to collect environmental samples from several case cabins and common areas of a cruise ship where passengers had reported viral gastroenteritis symptoms. Seventeen (18.5%) of 92 samples tested positive for norovirus GII, and 4 samples could be sequenced and had identical GII.1 sequences. The viral loads of the swab samples from the cabins of the sick passengers ranged from 80 to 31,217 RNA copies, compared with 16 to 113 RNA copies for swab samples from public spaces. In conclusion, our swab protocol for norovirus may be a useful tool for outbreak investigations when no clinical samples are available to confirm the etiology. PMID:26116675

  13. Evaluation of a New Environmental Sampling Protocol for Detection of Human Norovirus on Inanimate Surfaces

    PubMed Central

    Lee, David; Treffiletti, Aimee; Hrsak, Mario; Shugart, Jill; Vinjé, Jan

    2015-01-01

    Inanimate surfaces are regarded as key vehicles for the spread of human norovirus during outbreaks. ISO method 15216 involves the use of cotton swabs for environmental sampling from food surfaces and fomites for the detection of norovirus genogroup I (GI) and GII. We evaluated the effects of the virus drying time (1, 8, 24, or 48 h), swab material (cotton, polyester, rayon, macrofoam, or an antistatic wipe), surface (stainless steel or a toilet seat), and area of the swabbed surface (25.8 cm2 to 645.0 cm2) on the recovery of human norovirus. Macrofoam swabs produced the highest rate of recovery of norovirus from surfaces as large as 645 cm2. The rates of recovery ranged from 2.2 to 36.0% for virus seeded on stainless-steel coupons (645.0 cm2) to 1.2 to 33.6% for toilet seat surfaces (700 cm2), with detection limits of 3.5 log10 and 4.0 log10 RNA copies. We used macrofoam swabs to collect environmental samples from several case cabins and common areas of a cruise ship where passengers had reported viral gastroenteritis symptoms. Seventeen (18.5%) of 92 samples tested positive for norovirus GII, and 4 samples could be sequenced and had identical GII.1 sequences. The viral loads of the swab samples from the cabins of the sick passengers ranged from 80 to 31,217 RNA copies, compared with 16 to 113 RNA copies for swab samples from public spaces. In conclusion, our swab protocol for norovirus may be a useful tool for outbreak investigations when no clinical samples are available to confirm the etiology. PMID:26116675

  14. Population-Based Incidence Rates of Diarrheal Disease Associated with Norovirus, Sapovirus, and Astrovirus in Kenya

    PubMed Central

    Shioda, Kayoko; Cosmas, Leonard; Audi, Allan; Gregoricus, Nicole; Vinjé, Jan; Parashar, Umesh D.; Montgomery, Joel M.; Feikin, Daniel R.; Breiman, Robert F.; Hall, Aron J.

    2016-01-01

    Background Diarrheal diseases remain a major cause of mortality in Africa and worldwide. While the burden of rotavirus is well described, population-based rates of disease caused by norovirus, sapovirus, and astrovirus are lacking, particularly in developing countries. Methods Data on diarrhea cases were collected through a population-based surveillance platform including healthcare encounters and household visits in Kenya. We analyzed data from June 2007 to October 2008 in Lwak, a rural site in western Kenya, and from October 2006 to February 2009 in Kibera, an urban slum. Stool specimens from diarrhea cases of all ages who visited study clinics were tested for norovirus, sapovirus, and astrovirus by RT-PCR. Results Of 334 stool specimens from Lwak and 524 from Kibera, 85 (25%) and 159 (30%) were positive for norovirus, 13 (4%) and 31 (6%) for sapovirus, and 28 (8%) and 18 (3%) for astrovirus, respectively. Among norovirus-positive specimens, genogroup II predominated in both sites, detected in 74 (87%) in Lwak and 140 (88%) in Kibera. The adjusted community incidence per 100,000 person-years was the highest for norovirus (Lwak: 9,635; Kibera: 4,116), followed by astrovirus (Lwak: 3,051; Kibera: 440) and sapovirus (Lwak: 1,445; Kibera: 879). For all viruses, the adjusted incidence was higher among children aged <5 years (norovirus: 22,225 in Lwak and 17,511 in Kibera; sapovirus: 5,556 in Lwak and 4,378 in Kibera; astrovirus: 11,113 in Lwak and 2,814 in Kibera) compared to cases aged ≥5 years. Conclusion Although limited by a lack of controls, this is the first study to estimate the outpatient and community incidence rates of norovirus, sapovirus, and astrovirus across the age spectrum in Kenya, suggesting a substantial disease burden imposed by these viruses. By applying adjusted rates, we estimate approximately 2.8–3.3 million, 0.45–0.54 million, and 0.77–0.95 million people become ill with norovirus, sapovirus, and astrovirus, respectively, every year in

  15. Defining cell culture conditions to improve human norovirus infectivity assays.

    PubMed

    Straub, T M; Hutchison, J R; Bartholomew, R A; Valdez, C O; Valentine, N B; Dohnalkova, A; Ozanich, R M; Bruckner-Lea, C J

    2013-01-01

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional (3-D) tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that lead to more reproducible hNoV infectivity in vitro requires that the cell line be (1) of human gastrointestinal origin, (2) expresses apical microvilli, and (3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log(10) increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microscopy. In our hands, using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using qRT-PCR that measures all RNA vs. plaque assays that measure infectious virus. PMID:23306266

  16. Defining cell culture conditions to improve human norovirus infectivity assays

    SciTech Connect

    Straub, Tim M.; Hutchison, Janine R.; Bartholomew, Rachel A.; Valdez, Catherine O.; Valentine, Nancy B.; Dohnalkova, Alice; Ozanich, Richard M.; Bruckner-Lea, Cindy J.

    2013-01-10

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that leads to more reproducible hNoV infectivity in vitro requires that the cell line be 1) of human gastrointestinal origin, 2) expresses apical microvilli, and 3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log10 increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both reverse transcription quantitative PCR (qRT-PCR) and microscopy. Using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using quantitative reverse transcription PCR (qRT-PCR) that measures all RNA vs. plaque assays that measure infectious virus.

  17. Molecular Evolution of the Capsid Gene in Norovirus Genogroup I.

    PubMed

    Kobayashi, Miho; Yoshizumi, Shima; Kogawa, Sayaka; Takahashi, Tomoko; Ueki, Yo; Shinohara, Michiyo; Mizukoshi, Fuminori; Tsukagoshi, Hiroyuki; Sasaki, Yoshiko; Suzuki, Rieko; Shimizu, Hideaki; Iwakiri, Akira; Okabe, Nobuhiko; Shirabe, Komei; Shinomiya, Hiroto; Kozawa, Kunihisa; Kusunoki, Hideki; Ryo, Akihide; Kuroda, Makoto; Katayama, Kazuhiko; Kimura, Hirokazu

    2015-01-01

    We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1-9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10(-3) substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans. PMID:26338545

  18. Discovery of a proteinaceous cellular receptor for a norovirus.

    PubMed

    Orchard, Robert C; Wilen, Craig B; Doench, John G; Baldridge, Megan T; McCune, Broc T; Lee, Ying-Chiang J; Lee, Sanghyun; Pruett-Miller, Shondra M; Nelson, Christopher A; Fremont, Daved H; Virgin, Herbert W

    2016-08-26

    Noroviruses (NoVs) are a leading cause of gastroenteritis globally, yet the host factors required for NoV infection are poorly understood. We identified host molecules that are essential for murine NoV (MNoV)-induced cell death, including CD300lf as a proteinaceous receptor. We found that CD300lf is essential for MNoV binding and replication in cell lines and primary cells. Additionally, Cd300lf(-/-) mice are resistant to MNoV infection. Expression of CD300lf in human cells breaks the species barrier that would otherwise restrict MNoV replication. The crystal structure of the CD300lf ectodomain reveals a potential ligand-binding cleft composed of residues that are critical for MNoV infection. Therefore, the presence of a proteinaceous receptor is the primary determinant of MNoV species tropism, whereas other components of cellular machinery required for NoV replication are conserved between humans and mice. PMID:27540007

  19. Environmental Transmission of Human Noroviruses in Shellfish Waters

    PubMed Central

    Lees, David N.

    2014-01-01

    Human noroviruses (NoV) are the most common cause of epidemic gastroenteritis following consumption of bivalve shellfish contaminated with fecal matter. NoV levels can be effectively reduced by some sewage treatment processes such as activated sludge and membrane bioreactors. However, tertiary sewage treatment and substantial sewage dilution are usually required to achieve low concentrations of virus in shellfish. Most outbreaks have been associated with shellfish harvested from waters affected by untreated sewage from, for example, storm overflows or overboard disposal of feces from boats. In coastal waters, NoV can remain in suspension or associate with organic and inorganic matter and be accumulated by shellfish. Shellfish take considerably longer to purge NoV than fecal indicator bacteria when transferred from sewage-polluted estuarine waters to uncontaminated waters. The abundance and distribution of NoV in shellfish waters are influenced by the levels of sewage treatment, proximity of shellfish beds to sewage sources, rainfall, river flows, salinity, and water temperature. Detailed site-specific information on these factors is required to design measures to control the viral risk. PMID:24705321

  20. Naturally occurring murine norovirus infection in a large research institution.

    PubMed

    Perdue, Kathy A; Green, Kim Y; Copeland, Michelle; Barron, Elyssa; Mandel, Myrna; Faucette, Lawrence J; Williams, Elizabeth M; Sosnovtsev, Stanislav V; Elkins, William R; Ward, Jerrold M

    2007-07-01

    Murine norovirus (MNV) is a recently discovered infectious agent in mice and may be the most common naturally occurring infection of laboratory mice in North America. In 2005, we surveyed the Swiss Webster female sentinel mice in our institute's research facilities. Of the 4 facilities surveyed, 3 had sentinel mice that were positive for MNV antibodies, whereas our largest facility (which only receives mice directly from select vendors or by embryo rederivation directly into the facility) was apparently MNV-free. However, testing of sentinel mice in this large facility 1 y later found that 2% of the animals had developed MNV-specific antibodies. In a recently opened fifth facility, a serologic survey in 2006 identified MNV-antibody-positive Tac:SW sentinel mice that had received bedding from experimental mice on the same rack quadrant. Reverse transcription- polymerase chain reaction analysis of feces from the cages of these mice showed evidence for shedding of MNV. These sentinel mice were used to study the fecal excretion, antibody development, gross lesions upon necropsy, histopathology, and immunohistochemistry of the viral infection. None of the MNV-antibody-positive sentinel mice exhibited clinical signs or gross lesions, but these mice excreted virus in feces and developed antibodies to MNV. Histopathologic lesions consisted only of a few hepatic inflammatory foci in each liver section, some of which were immunoreactive with antibodies to MNV. MNV viral antigens also were present in the mesenteric lymph nodes. PMID:17645294

  1. Control of norovirus outbreak on a pediatric oncology unit

    PubMed Central

    Sheahan, Anna; Copeland, Gretchen; Richardson, Lauren; McKay, Shelley; Chou, Alexander; Babady, N. Esther; Tang, Yi-Wei; Boulad, Farid; Eagan, Janet; Sepkowitz, Kent; Kamboj, Mini

    2016-01-01

    Background Patients undergoing treatment for cancer with chemotherapy and hematopoietic stem cell recipients are at risk for severe morbidity caused by norovirus (NV). Methods We describe a NV outbreak on the Memorial Sloan Kettering Cancer Center's pediatric oncology unit. Stool testing for diagnosis of NV was performed by real-time polymerase chain reaction (PCR). Results Twelve NV cases occurred; 7 were hospital acquired. Twenty-five health care workers reported NV compatible illness. Patient-to-patient transmission occurred once. The practices of the Centers for Disease Control and Prevention were supplemented with electronic surveillance, surrogate screening for NV, and heightened cleaning. Two additional cases occurred after implementation of interventions. Long-term shedding was detected in 2 patients. Conclusion We describe interventions for controlling NV on a pediatric oncology unit. High-risk chronic shedders pose ongoing transmission risks. PCR is a valuable diagnostic tool but may be overly sensitive. Surrogate markers to assess NV burden in stool and studies on NV screening are needed to develop guidelines for high-risk chronic shedders. PMID:26164767

  2. An Integrated Approach to Identifying International Foodborne Norovirus Outbreaks1

    PubMed Central

    Kouyos, Roger D.; Vennema, Harry; Kroneman, Annelies; Siebenga, Joukje; van Pelt, Wilfrid; Koopmans, Marion

    2011-01-01

    International foodborne norovirus outbreaks can be difficult to recognize when using standard outbreak investigation methods. In a novel approach, we provide step-wise selection criteria to identify clusters of outbreaks that may involve an internationally distributed common foodborne source. After computerized linking of epidemiologic data to aligned sequences, we retrospectively identified 100 individually reported outbreaks that potentially represented 14 international common source events in Europe during 1999–2008. Analysis of capsid sequences of outbreak strains (n = 1,456), showed that ≈7% of outbreaks reported to the Foodborne Viruses in Europe database were part of an international event (range 2%–9%), compared with 0.4% identified through standard epidemiologic investigations. Our findings point to a critical gap in surveillance and suggest that international collaboration could have increased the number of recognized international foodborne outbreaks. Real-time exchange of combined epidemiologic and molecular data is needed to validate our findings through timely trace-backs of clustered outbreaks. PMID:21392431

  3. Environmental persistence of Tulane virus - a surrogate for human norovirus.

    PubMed

    Arthur, Sabastine Eugene; Gibson, Kristen Elizabeth

    2016-05-01

    Human noroviruses (HuNoVs) are the leading cause of acute viral gastroenteritis worldwide. The persistence of HuNoV in the environment contributes significantly to its transmission to humans. Surrogate viruses are used to study HuNoV owing to the lack of a cell culture system for this virus. Here, the persistence of Tulane virus (TV) - a novel HuNoV surrogate - in surface water (SW) and groundwater (GW) as well as on acrylic-based solid (ABS) and stainless steel (SS) surfaces was investigated. After 28 days, TV remained stable in SW (<1 log10 reduction) but was reduced by ≥3.5 to 4 log10 in GW by day 21. TV had a higher rate of reduction on SS compared with ABS, with corresponding D values of 18.5 ± 0.34 and 13.1 ± 0.36 days, respectively. This is the first study to demonstrate the persistence of TV in environmental waters and on fomite surfaces. PMID:26825139

  4. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs

    PubMed Central

    Lei, Shaohua; Samuel, Helen; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Wen, Ke; Weiss, Mariah; Li, Guohua; Yang, Xingdong; Jiang, Xi; Yuan, Lijuan

    2016-01-01

    Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 104 genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization. PMID:27113278

  5. Bioluminescent enzyme immunoassay for the detection of norovirus capsid antigen.

    PubMed

    Sakamaki, Nozomi; Ohiro, Yoshiyuki; Ito, Mitsuki; Makinodan, Mitsuru; Ohta, Tsubasa; Suzuki, Wataru; Takayasu, Susumu; Tsuge, Harufumi

    2012-12-01

    An ultrasensitive and fully automated bioluminescent enzyme immunoassay (BLEIA) was developed for the detection of norovirus (NV) capsid antigen. In the evaluation tests with recombinant virus-like particles, the BLEIA demonstrated broad reactivity against several NV genotypes (genotypes 1, 3, 4, 7, 8, and 12 in genogroup I [GI] and genotypes 1, 2, 3, 4, 5, 6, 12, and 13 in GII), a wide dose-response range from 0.25 pg/ml to 10,000 pg/ml, and good reproducibility with low coefficients of variation (CVs) (within-run CVs of <2.8%, between-day CVs of <3.7%). In the evaluation tests with NV-positive fecal samples, a good correlation (y = 0.66x - 3.21, r = 0.84) between the BLEIA and real-time quantitative reverse transcription-PCR was obtained. Furthermore, in the dilution test with NV specimens, the analytical sensitivity of NV was estimated to be 10(5) to 10(6) copies/g of fecal sample, indicating that the analytical sensitivity of the BLEIA is comparable to that of commercially available molecular methods. All assay steps are fully automated, the turnaround time is 46 min, and the throughput of the assay is 120 tests/h. These results indicate that the BLEIA is potentially useful for the rapid diagnosis of NV in epidemic and sporadic gastroenteritis. PMID:23081816

  6. Multiplex real-time RT-PCR for the simultaneous detection and quantification of GI, GII and GIV noroviruses.

    PubMed

    Farkas, Tibor; Singh, Amy; Le Guyader, Françoise S; La Rosa, Giuseppina; Saif, Linda; McNeal, Monica

    2015-10-01

    Noroviruses are important causes of acute gastroenteritis and are classified into six genogroups with GI, GII and GIV containing human pathogens. This high genetic diversity represents a significant challenge for diagnostic assay development. Genogroup specific monoplex and multiplex real time RT-PCR assays are widely used for the detection of GI and GII noroviruses. On the other hand, GIV norovirus detection is not part of routine laboratory diagnosis. This study describes the development and evaluation of a one tube, real time RT-PCR assay for the simultaneous detection and quantification of GI, GII and GIV noroviruses, including both GIV.1 (human) and GIV.2 (animal) strains. Assay performance was evaluated on a panel of norovirus positive clinical samples by comparison of monoplex and multiplex standard curves and Ct values. The multiplex assay demonstrated equal sensitivity and specificity to the monoplex assays and was able to detect all GI, GII and GIV noroviruses with Ct values equal to that of the monoplex assays. The multiplex assay described in this study will be instrumental for the better understanding of GIV norovirus epidemiology, including their possible zoonotic nature. PMID:26248055

  7. Identification of environmental determinants for spatio-temporal patterns of norovirus outbreaks in Korea using a geographic information system and binary response models.

    PubMed

    Kim, Jin Hwi; Lee, Dong Hoon; Joo, Yongsung; Zoh, Kyung Duk; Ko, Gwangpyo; Kang, Joo-Hyon

    2016-11-01

    Although norovirus outbreaks are well-recognized to have strong winter seasonality relevant to low temperature and humidity, the role of artificial human-made features within geographical areas in norovirus outbreaks has rarely been studied. The aim of this study is to assess the natural and human-made environmental factors favoring the occurrence of norovirus outbreaks using nationwide surveillance data. We used a geographic information system and binary response models to examine whether the norovirus outbreaks are spatially patterned and whether these patterns are associated with specific environmental variables including service levels of water supply and sanitation systems and land-use types. The results showed that small-scale low-tech local sewage treatment plants and winter sports areas were statistically significant factors favoring norovirus outbreaks. Compactness of the land development also affected the occurrence of norovirus outbreaks; transportation, water, and forest land-uses were less favored for effective transmission of norovirus, while commercial areas were associated with an increased rate of norovirus outbreaks. We observed associations of norovirus outbreaks with various outcomes of human activities, including discharge of poorly treated sewage, overcrowding of people during winter season, and compactness of land development, which might help prioritize target regions and strategies for the management of norovirus outbreaks. PMID:27343948

  8. A Synergy Effect of Trisodium Phosphate and Ethanol on Inactivation of Murine Norovirus 1 on Lettuce and Bell Pepper.

    PubMed

    Kim, Eun-Jin; Lee, Young-Duck; Kim, Kwang-Yup; Park, Jong-Hyun

    2015-12-28

    The synergy effect of trisodium phosphate (TSP) and ethanol against murine norovirus 1 (MNV-1), as a surrogate for human noroviruses, on fresh produces was evaluated. More than 2% (w/v) of TSP effectively inactivated MNV-1. The single treatment of 1% TSP or 30% ethanol for 30 min was not effective on MNV-1; however, cotreatment showed inactivation of MNV-1 on stainless steel and the produces of lettuce and bell pepper under 15 min. The results suggest that cotreatment of TSP and ethanol at a low concentration and a short time of exposure might be useful for the reduction of norovirus in some produce. PMID:26323270

  9. Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure–Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies

    DOE PAGESBeta

    Galasiti Kankanamalage, Anushka C.; Kim, Yunjeong; Weerawarna, Pathum M.; Uy, Roxanne Adeline Z.; Damalanka, Vishnu C.; Mandadapu, Sivakoteswara Rao; Alliston, Kevin R.; Mehzabeen, Nurjahan; Battaile, Kevin P.; Lovell, Scott; et al

    2015-04-09

    Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.

  10. Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure-Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies

    SciTech Connect

    Kankanamalage, Anushka C.Galasiti; Kim, Yunjeong; Weerawarna, Pathum M.; Uy, Roxanne Adeline Z.; Damalanka, Vishnu C.; Mandadapu, Sivakoteswara Rao; Alliston, Kevin R.; Mehzabeen, Nurjahan; Battaile, Kevin P.; Lovell, Scott; Chang, Kyeong-Ok; Groutas, William C.

    2015-04-09

    Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.

  11. Molecular evolution of the capsid gene in human norovirus genogroup II.

    PubMed

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10(-3) substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>10(2)) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  12. 76 FR 65200 - Risk Assessment on Norovirus in Bivalve Molluscan Shellfish: Request for Comments and for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ...The Food and Drug Administration (FDA) is undertaking a collaboration with Health Canada, the Canadian Food Inspection Agency, Environment Canada, and Fisheries and Oceans Canada, to conduct a quantitative food safety risk assessment on norovirus in bivalve molluscan shellfish, specifically, oysters, clams, and mussels. FDA, on behalf of the collaborative team, is requesting submission of......

  13. Human norovirus inactivation in oysters by high hydrostatic pressure processing: A randomized double-blinded study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This randomized, double-blinded, clinical trial assessed the effect of high hydrostatic pressure processing (HPP) on genogroup I.1 human norovirus (HuNoV) inactivation in virus-seeded oysters when ingested by subjects. The safety and efficacy of HPP treatments were assessed in three study phases wi...

  14. Efficacy of oxidizing disinfectants at inactivating murine norovirus on ready-to-eat foods.

    PubMed

    Girard, Maryline; Mattison, Kirsten; Fliss, Ismail; Jean, Julie

    2016-02-16

    Noroviruses are the leading cause of foodborne illness, and ready-to-eat foods are frequent vehicles of their transmission. Studies of the disinfection of fruits and vegetables are becoming numerous. It has been shown that strong oxidizing agents are more effective than other chemical disinfectants for inactivating enteric viruses. The aim of this study was to evaluate the efficacy of oxidizing disinfectants (sodium hypochlorite, chloride dioxide and peracetic acid) at inactivating noroviruses on fruits and vegetables, using a norovirus surrogate, namely murine norovirus 3, which replicates in cell culture. Based on plaque assay, solutions of peracetic acid (85 ppm) and chlorine dioxide (20 ppm) reduced the infectivity of the virus in suspension by at least 3 log10 units after 1 min, while sodium hypochlorite at 50 ppm produced a 2-log reduction. On the surface of blueberries, strawberries and lettuce, chlorine dioxide was less effective than peracetic acid and sodium hypochlorite, which reduced viral titers by approximately 4 logs. A surprising increase in the efficacy of sodium hypochlorite on surfaces fouled with artificial feces was noted. PMID:26686597

  15. High pressure treatment of human norovirus-like particles: factors affecting destruction efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is considered a promising non-thermal technology to inactivate viral pathogens in foods. However, the effectiveness of HPP on inactivating HuNoV remains poorly understood because it cannot be...

  16. High pressure treatment of human norovirus virus-like particles: factors affecting destruction efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) accounts for more than 90% of nonbacterial gastroenteritis. To date, the efficacy of human NoV inactivation interventions cannot be accurately evaluated because the virus is nonculturable. In this study, we aimed to estimate inactivation of human NoV by high pressure processing...

  17. DEVELOPMENT AND EVALUATION OF A MICROARRAY APPROACH TO DETECT AND GENOTYPE NOROVIRUSES IN WATER

    EPA Science Inventory

    Noroviruses are the leading cause of nonbacterial gastroenteritis outbreaks in the United States, some of which are caused by the ingestion of contaminated water. These viruses are usually detected and genotyped using reverse transcription-polymerase chain reaction (RT-PCR) base...

  18. Gastroenteritis Caused by Norovirus GGII.4, the Netherlands, 1994–2005

    PubMed Central

    Vennema, Harry; Duizer, Erwin; Koopmans, Marion P.G.

    2007-01-01

    From 1994 through 2005, gastroenteritis outbreaks caused by norovirus generally increased in the Netherlands, with 3 epidemic seasons associated with new GGII.4 strains. Increased percentages of GGII.4 strains during these epidemics, followed by a sharp decrease in their absolute and relative numbers, suggest development of immunity. PMID:17370531

  19. Evaluation of methods using celite to concentrate norovirus, adenovirus and enterovirus from wastewater

    EPA Science Inventory

    Enteroviruses, noroviruses and adenoviruses are among the most common viruses infecting humans worldwide. These viruses are shed in the feces of infected individuals and can accumulate in wastewater. Therefore, wastewater is a source of a potentially diverse group of enteric viru...

  20. A Novel system for evaluating the interaction between human norovirus and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoVs) are major pathogens for acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Recombinant HuNoV viral capsid proteins and/or P particles...

  1. Treatment of norovirus infections: Moving antivirals from the bench to the bedside

    PubMed Central

    Kaufman, Stuart S.; Green, Kim Y.; Korba, Brent E.

    2016-01-01

    Noroviruses (NV) are the most common cause of acute gastrointestinal illness in the United States and worldwide. The development of specific antiviral countermeasures has lagged behind that of other viral pathogens, primarily because norovirus disease has been perceived as brief and self-limiting and robust assays suitable for drug discovery have been lacking. The increasing recognition that NV illness can be life-threatening, especially in immunocompromised patients who often require prolonged hospitalization and intensive supportive care, has stimulated new research to develop an effective antiviral therapy. Here, we propose a path forward for evaluating drug therapy in norovirus-infected immunocompromised individuals, a population at high risk for serious and prolonged illness. The clinical and laboratory features of norovirus illness in immunocompromised patients are reviewed, and potential markers of drug efficacy are defined. We discuss the potential design of clinical trials in these patients and how an anti-viral therapy that proves effective in immunocompromised patients might also be used in the setting of acute outbreaks, especially in confined settings such as nursing homes, to block the spread of infection and reduce the severity of illness. We conclude by reviewing the current status of approved and experimental compounds that might be evaluated in a hospital setting. PMID:24583027

  2. Seasonal Tracking of Histo-blood Group Antigen Expression and Norovirus Binding in Oyster Gastrointestinal Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses (NORs) are the most common cause of viral gastroenteritis outbreaks and the illnesses are sometimes described as “highly seasonal syndrome” or "winter vomiting disease”. Outbreaks are often associated with the consumption of contaminated oysters or other bivalves and generally occur betw...

  3. An extraction method for discrimination between infectious and inactive norovirus using RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (NoVs) are known to bind to human histo-blood group antigens, as well as to chemically-similar porcine gastric mucins. The binding ability of NoV to porcine mucin was assessed as a novel means of distinguishing non-infectious viral particles from potentially infectious viral parti...

  4. Specificity and kinetics of norovirus binding to magnetic bead- conjugated histo-blood group antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histo-blood group antigens (HBGA) have been identified as candidate receptors for human norovirus (NOR). Type A, type H1, and Lewis histo-blood group antigens (HBGAs) in humans have been identified as major targets for NOR binding. Pig HBGA-conjugated magnetic beads have been utilized as a means ...

  5. Inactivation conditions for human Norovirus measured by an in situ capture-qRT-PCR Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoVs) are the major cause of epidemic non-bacterial gastroenteritis. Due to the inability to cultivate HuNoVs, it has been a challenge to determine their infectivity. Quantitative real-time RT-PCR (qRT-PCR) is widely used in detecting HuNoVs. However, qRT-PCR only detects the...

  6. Alternative methods to determine infectivity of Tulane virus: a surrogate for human norovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culturable animal caliciviruses are widely-used as surrogates for human norovirus (HuNoV), which can not replicate in cells. The infectivity of a culturable virus was traditionally determined by plaque assay and/or 50% tissue culture infectious dose (TCID50) assay, both of which are time-consuming ...

  7. Molecular Epidemiology of Norovirus in Outbreaks of Gastroenteritis in Southwest Germany from 2001 to 2004

    PubMed Central

    Ike, Anthony C.; Brockmann, Stefan O.; Hartelt, Kathrin; Marschang, Rachel E.; Contzen, Matthias; Oehme, Rainer M.

    2006-01-01

    The identification and molecular epidemiology of norovirus in outbreaks of gastroenteritis were studied during a 3-year period in Germany. Specimens (n = 316) from 159 nonbacterial gastroenteritis outbreaks from March 2001 to June 2004 were analyzed for the presence of noroviruses by reverse transcriptase PCR. Outbreaks were most frequent in elderly people's homes and care centers (43%), followed by hospitals (24%). Molecular analyses of strains from 148 outbreaks showed that there were up to 12 genotypes involved in the outbreaks. Genogroup II noroviruses were responsible for 95% of the outbreaks. Cocirculation of more than one strain in the same outbreak and cocirculation of genogroup I and II strains in the same place were observed. Genogroup II4 (Grimsby-like) was the most prevalent strain, accounting for 48% and 67% of the outbreaks in 2002 and 2003, respectively. The genogroup IIb (Castell/Suria) genotype was observed in all the years of the study. Epidemiological and molecular data indicated that there was a major shift of the predominant strain that coincided with the appearance of a new variant of genogroup II4 in 2002. By the application of reverse transcriptase PCR, this study has demonstrated the importance and dynamism of noroviruses in Germany. PMID:16597849

  8. Use of Low-Density DNA Microarrays and Photopolymerization for Genotyping Foodborne-Associated Noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjunct...

  9. Rapid detection of hepatitis A virus and murine norovirus in hemocytes of contaminated oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human enteric pathogens, hepatitis A virus and human norovirus, have been shown to contaminate molluscan shellfish and cause foodborne disease in consumers. Rapid viral extraction methods are needed to replace current time consuming methods, which use whole oysters or dissected tissues. In our ...

  10. Norovirus outbreak associated with a hotel in the west of Ireland, 2006.

    PubMed

    Michel, A; Fitzgerald, R; Whyte, D; Fitzgerald, A; Beggan, E; O'Connell, N; Greally, T

    2007-07-01

    An outbreak of gastrointestinal disease (nausea, vomiting or diarrhoea) occurred among a party of wedding guests, staff and other guests in a hotel in the west of Ireland, in October 2006. Upon notification, a multi-disciplinary outbreak control team was convened to investigate and control the outbreak. In all, 98 people were ascertained ill. The median duration of illness was 48 hours. The attack rate ranged between 48 and 85%. The hotel voluntarily notified health authorities and co-operated fully with investigation and control measures. Strict prevention and control measures were instituted promptly, including air ventilation, enhanced hand hygiene, isolation of cases, temporary "cooked food only", temporary alternative accommodation and specialised cleaning. Three cases of norovirus infection were laboratory-confirmed. There was no evidence of food- or water-borne transmission. Clinical and epidemiological findings indicated person-to-person transmission of norovirus. This report highlights the potential for large social gatherings to facilitate the spread of viral gastroenteritis by person-to-person transmission and via contaminated environment. Effective community management of this outbreak appears to have prevented its having an impact on local acute hospital services. The authors conclude that in addition to the existing national guidelines on the management of outbreaks of norovirus in healthcare settings, agreed guidelines for the management of norovirus outbreaks in the hotel and tourism industry are needed in Ireland. PMID:17991406

  11. A norovirus oyster-related outbreak in a nursing home in France, January 2012.

    PubMed

    Loury, P; Le Guyader, F S; Le Saux, J C; Ambert-Balay, K; Parrot, P; Hubert, B

    2015-09-01

    The presence of norovirus in shellfish is a public health concern in Europe. Here, we report the results of an investigation into a norovirus gastroenteritis outbreak following a festive lunch which affected 84 (57%) residents and staff members of a nursing home in January 2012 in France. Individuals who had eaten oysters had a significantly higher risk of developing symptoms in the following 2·5 days than those who had not, the risk increasing with the amount eaten [relative risk 2·2 (1·0-4·6) and 3·3 (1·6-6·6) for 3-4 and 5-12 oysters, respectively]. In healthy individuals during those days, 29 (32%) subsequently became ill, most of whom were staff members performing activities in close contact with residents. Genogroup II noroviruses were detected in faecal samples, in a sample of uneaten oysters and in oysters from the production area. Identifying a norovirus's infectious dose may facilitate the health-related management of contaminated shellfish. PMID:25567093

  12. Production of Human Norovirus Protruding Domains in E. coli for X-ray Crystallography.

    PubMed

    Leuthold, Mila M; Koromyslova, Anna D; Singh, Bishal K; Hansman, Grant S

    2016-01-01

    The norovirus capsid is composed of a single major structural protein, termed VP1. VP1 is subdivided into a shell (S) domain and a protruding (P) domain. The S domain forms a contiguous scaffold around the viral RNA, whereas the P domain forms viral spikes on the S domain and contains determinants for antigenicity and host-cell interactions. The P domain binds carbohydrate structures, i.e., histo-blood group antigens, which are thought to be important for norovirus infections. In this protocol, we describe a method for producing high quality norovirus P domains in high yields. These proteins can then be used for X-ray crystallography and ELISA in order to study antigenicity and host-cell interactions. The P domain is firstly cloned into an expression vector and then expressed in bacteria. The protein is purified using three steps that involve immobilized metal-ion affinity chromatography and size exclusion chromatography. In principle, it is possible to clone, express, purify, and crystallize proteins in less than four weeks, which makes this protocol a rapid system for analyzing newly emerging norovirus strains. PMID:27167457

  13. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  14. Persistence and elimination of human norovirus in food and on food contact surfaces: a critical review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This critical review addresses the persistence of human norovirus (NoV) in water, shellfish, processed meats, soils and organic wastes; on berries, herbs, vegetables, fruits and salads; and on food contact surfaces. The review focuses on studies using NoV; information from studies involving only su...

  15. Replication of human noroviruses in stem cell-derived human enteroids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major barrier to research and development of effective interventions for human noroviruses (HuNoVs) has been the lack of a robust and reproducible in vitro cultivation system. HuNoVs are the leading cause of gastroenteritis worldwide. We report successful cultivation of multiple HuNoV strains in...

  16. A gnotobiotic pig model for determining human norovirus inactivation by high-pressure processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) is responsible for over 90 percent of outbreaks of acute nonbacterial gastroenteritis worldwide, and accounts for 60 percent of foodborne illness in the US. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, w...

  17. Viewpoint: norovirus outbreak on the AMU: a lesson in shared clinical leadership.

    PubMed

    Krishnamoorthy, S; Murch, N

    2012-01-01

    Three times a year, the first Wednesday of the month heralds a changeover of junior doctors within our hospital. This year, the first Wednesday in December provided a different kind of challenge. The voice on the phone confirmed the words that no one wanted to hear: "You have three confirmed cases of Norovirus and you have to close to new admissions". PMID:22423350

  18. Norovirus in symptomatic and asymptomatic individuals: cytokines and viral shedding.

    PubMed

    Newman, K L; Moe, C L; Kirby, A E; Flanders, W D; Parkos, C A; Leon, J S

    2016-06-01

    Noroviruses (NoV) are the most common cause of epidemic gastroenteritis world-wide. NoV infections are often asymptomatic, although individuals still shed large amounts of NoV in their stool. Understanding the differences between asymptomatic and symptomatic individuals would help in elucidating mechanisms of NoV pathogenesis. Our goal was to compare the serum cytokine responses and faecal viral RNA titres of asymptomatic and symptomatic NoV-infected individuals. We tested serum samples from infected subjects (n = 26; 19 symptomatic, seven asymptomatic) from two human challenge studies of GI.1 NoV for 16 cytokines. Samples from prechallenge and days 1-4 post-challenge were tested for these cytokines. Cytokine levels were compared to stool NoV RNA titres quantified previously by reverse transcription-polymerase chain reaction (RT-qPCR). While both symptomatic and asymptomatic groups had similar patterns of cytokine responses, the symptomatic group generally exhibited a greater elevation of T helper type 1 (Th1) and Th2 cytokines and IL-8 post-challenge compared to the asymptomatic group (all P < 0·01). Daily viral RNA titre was associated positively with daily IL-6 concentration and negatively with daily IL-12p40 concentration (all P < 0·05). Symptoms were not associated significantly with daily viral RNA titre, duration of viral shedding or cumulative shedding. Symptomatic individuals, compared to asymptomatic, have greater immune system activation, as measured by serum cytokines, but they do not have greater viral burden, as measured by titre and shedding, suggesting that symptoms may be immune-mediated in NoV infection. PMID:26822517

  19. Effect of Murine Norovirus Infection on Mouse Parvovirus Infection

    PubMed Central

    Paturzo, Frank X; Macy, James D

    2010-01-01

    Enzootic infection with mouse parvovirus (MPV) remains a common problem in laboratory colonies, and diagnosis of MPV infection is complicated by viral and host factors. The effect of an underlying viral infection on MPV infection has not previously been investigated. We assessed the effect of murine norovirus (MNV) infection, the most prevalent infectious agent in laboratory mice, on MPV shedding, tissue distribution and transmission. Fecal MPV shedding persisted longer in BALB/c mice infected with MNV 1 wk prior to MPV infection than in mice infected with MPV only, but transmission of MPV to soiled-bedding sentinels was not prolonged in coinfected mice. MPV DNA levels in coinfected BALB/c mice were higher in mesenteric lymph nodes and spleens at 1 and 2 wk after inoculation and in small intestines at 1 wk after inoculation compared with levels in mice infected with MPV only. In C57BL/6 mice, fecal shedding was prolonged, but no difference in soiled bedding transmission or MPV DNA levels in tissues was detected between singly and coinfected mice. MPV DNA levels in singly and coinfected SW mice were similar. MPV DNA levels were highest in SW, intermediate in BALB/c and lowest in C57BL/6 mice. MPV DNA levels in mesenteric lymph nodes of BALB/c and SW mice exceeded those in small intestines and feces, whereas the inverse occurred in C57BL/6 mice. In conclusion, MNV infection increased the duration of MPV shedding and increased MPV DNA levels in tissues of BALB/c mice. PMID:20122310

  20. Mathematical model for the control of nosocomial norovirus.

    PubMed

    Vanderpas, J; Louis, J; Reynders, M; Mascart, G; Vandenberg, O

    2009-03-01

    A gastroenteritis outbreak in a long-term care facility was analysed by means of a SEIR (Susceptible, Exposed/Latent phase, Infected/Infectious, and Recovered) compartment model of infection dynamics in a closed population [96 beds; attack rate=41%; R0 (basic reproductive number)=3.74; generation time approximately 1 day; duration of disease approximately 2 days; theoretical infinite (1000 days) duration of hospital stay]. The patient-turnover variation was simulated to determine the effect of the length of hospital stay on the endemic level of gastroenteritis perpetuating the epidemic phase in an open population. With all the other parameters held constant, the prevalence of infected patients in the endemic phase (50 days after the beginning of the outbreak) increased markedly from five to 18 cases as the hospital stay increased from one-tenth of a day (one-day care) to one or two days; the prevalence decreased exponentially with the length of hospital stay, being fewer than five cases for hospital stays >50 days. In conclusion, the endemic prevalence of norovirus gastroenteritis is critically dependent on the patient turnover within hospital wards. For the usual range of hospital stay (0.1-20 days), the prevalence level is sufficiently elevated to maintain the perpetuation of gastroenteritis within the population of institutionalised patients. In long-term care facilities (hospital stay >20 days), the patient turnover is sufficiently low for one to expect a spontaneous extinction of epidemic outbreak without endemic perpetuation. When an epidemic outbreak occurs in an acute-care setting, reinforcement of infection control measures, including closure of the ward, is required to break the transmission chain. PMID:19162373

  1. A non-foodborne norovirus outbreak among school children during a skiing holiday, Austria, 2007.

    PubMed

    Kuo, Hung-Wei; Schmid, Daniela; Schwarz, Karin; Pichler, Anna-Margaretha; Klein, Heidelinde; König, Christoph; de Martin, Alfred; Allerberger, Franz

    2009-01-01

    Norovirus is increasingly recognized as a leading cause of outbreaks of foodborne disease. We report on an outbreak in Austria that reached a total of 176 cases, affecting pupils and teachers from four schools on a skiing holiday in a youth hostel in the province of Salzburg in December 2007. A questionnaire was sent to the four schools in order to obtain data from persons attending the school trip on disease status, clinical onset, duration of illness and hospitalization. A cohort study was undertaken to identify the sources of infection. The school trip attendees were interviewed by questionnaire or face-to-face on their exposure to food items from the menu provided by the hostel owner. Of the 284 school holiday-makers, 176 fitted the definition of an outbreak case (attack rate 61.9%). A total of 264 persons on the ski holiday participated in the cohort study (response rate 93%). The day-by-day food-specific analyses did not find any food items served on any of five days (December 8-12) of the holiday to be associated with infection risk. The day-specific risk analyses revealed Monday December 10 (RR: 9.04; 95% CI: 6.02-13.6; P < 0.001) and Tuesday December 11 (RR: 3.37; 95% CI: 2.56-4.43; P < 0.001) as the two most risky days for having being exposed to norovirus. According to the epidemiological investigation, airborne transmission of norovirus originating from the first vomiting case most probably initiated this outbreak; foodborne genesis was excluded. During recent years, norovirus has become increasingly established as the most important causative agent of epidemic gastroenteritis in holiday-makers all over Europe. Tourism is one of the primary industries in Austria. Timely involvement of the relevant public health authorities is essential in any outbreak of norovirus gastroenteritis, irrespective of its genesis. PMID:19280137

  2. Towards the development of a combined Norovirus and sediment transport model for coastal waters

    NASA Astrophysics Data System (ADS)

    Barry, K.; O'Kane, J. P. J.

    2009-04-01

    Sewage effluent in coastal waters used for oyster culture poses a risk to human health. The primary pathogen in outbreaks of gastroenteritis following consumption of raw oysters is the Norovirus or "winter vomiting bug". The Norovirus is a highly infectious RNA virus of the Caliciviridae taxonomic family. It has a long survival time in coastal waters (T90 = 30 days in winter). Oysters selectively concentrate Norovirus in their digestive ducts. The virus cannot be removed by conventional depuration. The primary goal of the research is to quantify the risk of Norovirus infection in coastal waters through physically-based high-resolution numerical modelling. Cork Harbour and Clew Bay in Ireland provide case studies for the research. The models simulate a number of complex physical, chemical and biological processes which influence the transport and decay of the virus as well as its bioaccumulation in oyster tissue. The current phase of the research is concerned with the adsorption of the virus to suspended sediment in the water column. Adsorbed viruses may be taken out of the water column when sedimentation occurs and, subsequently, be added to it with resuspension of the bed sediment. Preliminary simulations of the Norovirus-sediment model indicate that suspended sediment can influence the transport of the virus in coastal waters when a high sediment-water partitioning coefficient is used and the model is run under calm environmental conditions. In this instance a certain fraction of the adsorbed viruses are taken out of the water column by sedimentation and end up locked in the bed sediment. Subsequently, under storm conditions, a large number of viruses in the bed are released into the water column by erosion of the bed and a risk of contamination occurs at a time different to when the viruses were initially released into the body of water.

  3. Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR

    EPA Science Inventory

    Version 1.1 - Enteroviruses and noroviruses that may be present in environmental or finished drinking waters are concentrated by passage through electropositive filters. Viruses are eluted from the filters with a beef extract reagent and concentrated using organic flocculation....

  4. Treatment with a Nucleoside Polymerase Inhibitor Reduces Shedding of Murine Norovirus in Stool to Undetectable Levels without Emergence of Drug-Resistant Variants

    PubMed Central

    Rocha-Pereira, Joana; Van Dycke, Jana

    2015-01-01

    Prolonged norovirus shedding may occur in certain patients, such as organ transplant recipients. We established a mouse model for persistent norovirus infection (using the mouse norovirus MNV.CR6 strain). The nucleoside viral polymerase inhibitor 2′-C-methylcytidine (2CMC), but not favipiravir (T-705), reduced viral shedding to undetectable levels. Viral rebound was observed after stopping treatment, which was again effectively controlled by treatment with 2CMC. No drug-resistant variants emerged. PMID:26711754

  5. Food-borne norovirus-outbreak at a military base, Germany, 2009

    PubMed Central

    2010-01-01

    Background Norovirus is often transmitted from person-to-person. Transmission may also be food-borne, but only few norovirus outbreak investigations have identified food items as likely vehicles of norovirus transmission through an analytical epidemiological study. During 7-9 January, 2009, 36 persons at a military base in Germany fell ill with acute gastroenteritis. Food from the military base's canteen was suspected as vehicle of infection, norovirus as the pathogen causing the illnesses. An investigation was initiated to describe the outbreak's extent, to verify the pathogen, and to identify modes of transmission and source of infection to prevent further cases. Methods For descriptive analysis, ill persons were defined as members of the military base with acute onset of diarrhoea or vomiting between 24 December 2008, and 3 February 2009, without detection of a pathogen other than norovirus in stools. We conducted a retrospective cohort study within the headquarters company. Cases were military base members with onset of diarrhoea or vomiting during 5-9 January. We collected information on demographics, food items eaten at the canteen and contact to ill persons or vomit, using a self-administered questionnaire. We compared attack rates (AR) in exposed and unexposed persons, using bivariable and multivariable logistic regression modelling. Stool specimens of ill persons and canteen employees, canteen food served during 5-7 January and environmental swabs were investigated by laboratory analysis. Results Overall, 101/815 (AR 12.4%) persons fell ill between 24 December 2008 and 3 February 2009. None were canteen employees. Most persons (n = 49) had disease onset during 7-9 January. Ill persons were a median of 22 years old, 92.9% were male. The response for the cohort study was 178/274 (72.1%). Of 27 cases (AR 15.2%), 25 had eaten at the canteen and 21 had consumed salad. Salad consumption on 6 January (aOR: 8.1; 95%CI: 1.5-45.4) and 7 January (aOR: 15.7; 95%CI: 2

  6. Gaps in food safety professionals' knowledge about noroviruses.

    PubMed

    Kosa, Katherine M; Cates, Sheryl C; Hall, Aron J; Brophy, Jenna E; Fraser, Angela

    2014-08-01

    Noroviruses (NoVs) are the most common etiologic agents of endemic and epidemic foodborne disease in the United States. Food safety professionals play an important role in protecting the public from foodborne illness. A survey of food safety professionals (n = 314) was conducted to characterize their knowledge of NoVs and to identify gaps in this knowledge. To recruit individuals, 25 professional organizations promoted the survey via their Web sites, newsletters, and/or e-mail distribution lists. The survey used true or false and open-ended questions to assess knowledge about NoVs, including attribution, transmission, and prevention and control strategies, including food handling practices. The online survey was available from mid-October 2012 to mid-January 2013. Of the 314 respondents, 66.2% correctly identified NoVs as one of the three most common causes of foodborne disease in the United States. Only 5.4% of respondents correctly identified the three most common settings for NoV infections, and 65.0% of respondents had the misperception that cruise ships are one of the three most common settings. Seventeen respondents (5.4%) answered all 20 true-or-false questions correctly, 33 respondents (10.5%) answered at least 19 of the 20 questions correctly, and 186 respondents (65.0%) answered at least 15 of the 20 questions correctly (i.e., a score of 75% or higher). The content domain in which respondents had the most incorrect answers was food handling practices. Thirty-eight percent of respondents incorrectly responded that it is safe for restaurant workers infected with NoVs to handle packaged food, food equipment, and utensils. About half of respondents did not know the recommended sanitizing solution for eliminating NoVs from a contaminated surface. The survey findings identified several important gaps in food safety professionals' knowledge of NoVs. The study results will inform the development of a Web-based educational module on NoVs to improve efforts to

  7. Cost-Effectiveness of Norovirus Vaccination in Children in Peru

    PubMed Central

    Mirelman, Andrew; Ballard, Sarah-Blythe; Saito, Mayuko; Kosek, Margaret; Gilman, Robert H.

    2015-01-01

    Background With candidate norovirus (NV) vaccines in a rapid phase of development, assessment of the potential economic value of vaccine implementation will be necessary to aid health officials in vaccine implementation decisions. To date, no evaluations have been performed to evaluate the benefit of adopting NV vaccines for use in the childhood immunization programs of low- and middle-income countries. Methods We used a Markov decision model to evaluate the cost-effectiveness of adding a two-dose NV vaccine to Peru’s routine childhood immunization schedule using two recent estimates of NV incidence, one for a peri-urban region and one for a jungle region of the country. Results Using the peri-urban NV incidence estimate, the annual cost of vaccination would be $13.0 million, offset by $2.6 million in treatment savings. Overall, this would result in 473 total DALYs averted; 526,245 diarrhea cases averted;153,735 outpatient visits averted; and 414 hospitalizations averted between birth and the fifth year of life. The incremental cost-effectiveness ratio would be $21,415 per DALY averted; $19.86 per diarrhea case; $68.23 per outpatient visit; and $26,298 per hospitalization. Using the higher jungle NV incidence rates provided a lower cost per DALY of $10,135. The incremental cost per DALY with per-urban NV incidence is greater than three times the 2012 GDP per capita of Peru but the estimate drops below this threshold using the incidence from the jungle setting. In addition to the impact of incidence, sensitivity analysis showed that vaccine price and efficacy play a strong role in determining the level of cost-effectiveness. Conclusions The introduction of a NV vaccine would prevent many healthcare outcomes in the Peru and potentially be cost-effective in scenarios with high NV incidence. The vaccine cost-effectiveness model could also be applied to the evaluation of NV vaccine cost-effectiveness in other countries. In resource-poor settings, where NV incidence

  8. Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics

    PubMed Central

    Zhang, Huidan; Cockrell, Shelley K.; Kolawole, Abimbola O.; Rotem, Assaf; Serohijos, Adrian W. R.; Chang, Connie B.; Tao, Ye; Mehoke, Thomas S.; Han, Yulong; Lin, Jeffrey S.; Giacobbi, Nicholas S.; Feldman, Andrew B.; Shakhnovich, Eugene; Weitz, David A.; Wobus, Christiane E.

    2015-01-01

    ABSTRACT Human noroviruses (HuNoVs) are positive-sense RNA viruses that can cause severe, highly infectious gastroenteritis. HuNoV outbreaks are frequently associated with recombination between circulating strains. Strain genotyping and phylogenetic analyses show that noroviruses often recombine in a highly conserved region near the junction of the viral polyprotein (open reading frame 1 [ORF1]) and capsid (ORF2) genes and occasionally within the RNA-dependent RNA polymerase (RdRP) gene. Although genotyping methods are useful for tracking changes in circulating viral populations, they report only the dominant recombinant strains and do not elucidate the frequency or range of recombination events. Furthermore, the relatively low frequency of recombination in RNA viruses has limited studies to cell culture or in vitro systems, which do not reflect the complexities and selective pressures present in an infected organism. Using two murine norovirus (MNV) strains to model coinfection, we developed a microfluidic platform to amplify, detect, and recover individual recombinants following in vitro and in vivo coinfection. One-step reverse transcriptase PCR (RT-PCR) was performed in picoliter drops with primers that identified the wild-type and recombinant progenies and scanned for recombination breakpoints at ∼1-kb intervals. We detected recombination between MNV strains at multiple loci spanning the viral protease, RdRP, and capsid ORFs and isolated individual recombinant RNA genomes that were present at a frequency of 1/300,000 or higher. This study is the first to examine norovirus recombination following coinfection of an animal and suggests that the exchange of RNA among viral genomes in an infected host occurs in multiple locations and is an important driver of genetic diversity. IMPORTANCE RNA viruses increase diversity and escape host immune barriers by genomic recombination. Studies using a number of viral systems indicate that recombination occurs via template

  9. Norovirus RNA in the blood of a child with gastroenteritis and convulsions--A case report.

    PubMed

    Medici, Maria Cristina; Abelli, Laura Anna; Dodi, Icilio; Dettori, Giuseppe; Chezzi, Carlo

    2010-06-01

    Potential extra-intestinal spread is an important issue in understanding the pathogenesis of NoV disease. A previously healthy 14-month-old boy was admitted to the Pediatric Emergency Department of the University-Hospital of Parma, Italy, for afebrile convulsions in a gastroenteritis episode. Bacterial culture and microscopic examination on cerebrospinal fluid (CSF) yielded negative results as well as PCRs and reverse-transcription PCRs (RT-PCRs) for neurotropic viruses performed either on CSF or plasma. Stools were subjected to electron microscopy and conventional cell culture, yielding negative results. NoV was found in stools and plasma by nested RT-PCR targeting the NoV polymerase gene. The nucleotide sequences obtained from the two specimens showed 100% identity, demonstrating that the strain invading the blood stream was from the intestine, and, in comparison with GenBank sequences, they belonged to NoV genotype GII.4, "2006b" variant. The child had no abnormal electrolyte balance and no fever that could justify seizures, encouraging the hypothesis that NoV could be the cause of the neurologic disorder. These findings further induce to review the current concept of human NoV focused on intestinal infection. PMID:20381416

  10. Geographical and temporal variation of E. coli and norovirus in mussels.

    PubMed

    Strubbia, S; Lyons, B P; Lee, R J

    2016-06-15

    Bivalve shellfish may accumulate contaminants of public health concern including pathogenic bacteria and viruses. Microbiological monitoring of production areas is based on faecal coliforms in water in the USA and Escherichia coli in bivalve molluscs in the European Union. E. coli is known to reflect contamination with Salmonella enterica but not necessarily with other human pathogens such as enteric viruses. A structured field study was undertaken at three locations in order to investigate the geographical and temporal variability of E. coli and norovirus (NoV). Total norovirus concentration differed significantly by both sampling site and sampling date. A significant correlation was found between total NoV concentration and E. coli concentration by sample, but not with E. coli in seawater. The results have implications for the establishment of sampling plans for NoV in harvesting areas and potentially also for the approach taken to classification based on faecal indicator bacteria. PMID:27114089

  11. Norovirus outbreak at a wildland fire base camp ignites investigation of restaurant inspection policies.

    PubMed

    Britton, Carla L; Guzzle, Patrick L; Hahn, Christine G; Carter, Kris K

    2014-01-01

    Norovirus outbreaks occur worldwide and have been associated with congregate settings (e.g., military and recreational camps). Investigation of a norovirus outbreak at a wildland fire base camp identified 49 (27%) illnesses among approximately 180 responders. Epidemiologic evidence implicated a restaurant as the infection source. Eight (89%) of nine wildland fire responder groups who ate at the restaurant had ill members; no groups who ate elsewhere reported ill members. An environmental health specialist restaurant inspection identified lack of managerial knowledge to protect against foodborne disease one year after the restaurant's opening; earlier inspection after opening might have led to earlier intervention. States were surveyed to determine existence of any policy or rule for food establishment inspection after opening and inspection timing. Among 18 states, five had no state rule or policy; nine had a policy in place; and four required postopening inspection by rule. Further research is needed to evaluate post-opening inspection efficacy and timing. PMID:25185322

  12. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection.

    PubMed

    Baldridge, Megan T; Nice, Timothy J; McCune, Broc T; Yokoyama, Christine C; Kambal, Amal; Wheadon, Michael; Diamond, Michael S; Ivanova, Yulia; Artyomov, Maxim; Virgin, Herbert W

    2015-01-16

    The capacity of human norovirus (NoV), which causes >90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-λ, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system. PMID:25431490

  13. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas

    PubMed Central

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard

    2015-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  14. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas.

    PubMed

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard; Li, Jianrong

    2016-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 10(7) PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  15. Acute gastroenteritis outbreaks associated with ground-waterborne norovirus in South Korea during 2008-2012.

    PubMed

    Cho, H G; Lee, S G; Kim, W H; Lee, J S; Park, P H; Cheon, D S; Jheong, W H; Jho, E H; Lee, J B; Paik, S Y

    2014-12-01

    Epidemiological and virological studies indicate that noroviruses-contaminated groundwater was the primary source of four acute gastroenteritis outbreaks in South Korea between 2008 and 2012. Furthermore, cabbage kimchi was first identified as the vehicle of transmission between groundwater and infected patients in an outbreak in 2011. The proper treatment of groundwater sources prior to use for drinking or in food preparation is necessary to prevent further outbreaks. PMID:24534556

  16. Vomiting as a Symptom and Transmission Risk in Norovirus Illness: Evidence from Human Challenge Studies

    PubMed Central

    Kirby, Amy E.; Streby, Ashleigh; Moe, Christine L.

    2016-01-01

    Background In the US, noroviruses are estimated to cause 21 million cases annually with economic losses reaching $2 billion. Outbreak investigations frequently implicate vomiting as a major transmission risk. However, little is known about the characteristics of vomiting as a symptom or the amount of virus present in emesis. Methodology and Principal Findings Emesis samples and symptomology data were obtained from previous norovirus human challenge studies with GI.1 Norwalk virus, GII.2 Snow Mountain virus, and a pilot study with GII.1 Hawaii virus. Viral titers in emesis were determined using strain-specific quantitative RT-PCR. In all four studies, vomiting was common with 40–100% of infected subjects vomiting at least once. However, only 45% of subjects with vomiting also had diarrhea. Most of the emesis samples had detectable virus and the mean viral titers were 8.0 x 105 and 3.9 x 104 genomic equivalent copies (GEC)/ml for GI and GII viruses, respectively (p = 0.02). Sample pH was correlated with GII.2 Snow Mountain virus detection. Conclusions and Significance Half of all subjects with symptomatic infection experienced vomiting and the average subject shed 1.7 x 108 GEC in emesis. Unlike shedding through stool, vomiting is more likely to result in significant environmental contamination, leading to transmission through fomites and airborne droplets. This quantitative data will be critical for risk assessment studies to further understand norovirus transmission and develop effective control measures. The correlation between sample pH and virus detection is consistent with a single site of virus replication in the small intestine and stomach contents becoming contaminated by intestinal reflux. Additionally, the frequency of vomiting without concurrent diarrhea suggests that epidemiology studies that enroll subjects based on the presence of diarrhea may be significantly underestimating the true burden of norovirus disease. PMID:27116105

  17. Propidium monoazide reverse transcriptase PCR and RT-qPCR for detecting infectious enterovirus and norovirus.

    PubMed

    Karim, Mohammad R; Fout, G Shay; Johnson, Clifford H; White, Karen M; Parshionikar, Sandhya U

    2015-07-01

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the public health significance of positive findings are limited. In this study, PMA RT-PCR and RT-qPCR assays were evaluated for selective detection of infectious poliovirus, murine norovirus (MNV-1), and Norwalk virus. Viruses were inactivated using heat, chlorine, and ultraviolet light (UV). Infectious and non-infectious viruses were treated with PMA before RT-PCR and RT-qPCR. PMA RT-PCR was able to differentiate selectively between infectious and heat and chlorine inactivated poliovirus. PMA RT-PCR was able to differentiate selectively between infectious and noninfectious murine norovirus only when inactivated by chlorine. However, PMA RT-PCR could not differentiate infectious Norwalk virus from virus particles rendered non-infectious by any treatment. PMA RT-PCR assay was not able to differentiate between infectious and UV inactivated viruses suggesting that viral capsid damage may be necessary for PMA to enter and bind to the viral genome. PMA RT-PCR on naked MNV-1 and Norwalk virus RNA suggest that PMA RT-PCR can be used to detect intact, potentially infectious MNV-1 and Norwalk viruses and can be used to exclude the detection of free viral RNA by PCR assay. PMID:25796356

  18. Study of the virucidal potential of organic peroxyacids against norovirus on food-contact surfaces.

    PubMed

    Vimont, Allison; Fliss, Ismaïl; Jean, Julie

    2015-03-01

    This study was conducted to evaluate the efficacy of four different peroxyacids, namely peracetic (PAA), perpropionic (PPA), perlactic (PLA), and percitric (PCA) for inactivating viruses in suspension or attached to stainless steel or polyvinyl chloride surfaces. The test virus was a proxy for human norovirus, namely murine norovirus 1. Plaque-forming units in suspension (10(7) per mL) were treated with 50-1,000 mg L(-1) peroxyacid (equilibrium mixture of organic acid, hydrogen peroxide, peroxyacid, and water) for 1-10 min. Inactivation was measured by plaque assay. PAA and PPA were the most effective, with a 5 min treatment at 50 mg L(-1) being sufficient to reduce viral titer by at least 3.0 log10, whether the virus was in suspension or attached to stainless steel or polyvinyl chloride disks under clean or fouled conditions. Combinations of organic acid and hydrogen peroxide were found ineffective. Similar inactivation was observed in the case of virus in artificial biofilm (alginate gel). These short super-oxidizers could be used for safe inactivation of human noroviruses in water or on hard surfaces. PMID:25416069

  19. Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce.

    PubMed

    Allwood, Paul B; Malik, Yashpal S; Maherchandani, Sunil; Vought, Kevin; Johnson, Lee-Ann; Braymen, Craig; Hedberg, Craig W; Goyal, Sagar M

    2004-11-01

    Forty samples of fresh produce collected from retail food establishments were examined to determine the occurrence of Escherichia coli, F-specific coliphages, and noroviruses. An additional six samples were collected from a restaurant undergoing investigation for a norovirus outbreak. Nineteen (48%) of the retail samples and all outbreak samples were preprocessed (cut, shredded, chopped, or peeled) at or before the point of purchase. Reverse transcription-PCR, with the use of primers JV 12 and JV 13, failed to detect norovirus RNA in any of the samples. All six outbreak samples and 13 (33%) retail samples were positive for F-specific coliphages (odds ratio undefined, P = 0.003). Processed retail samples appeared more likely to contain F-specific coliphages than unprocessed samples (odds ratio 3.8; 95% confidence interval 0.8 to 20.0). Only two (5.0%) retail samples were positive for E. coli; outbreak samples were not tested for E. coli. The results of this preliminary survey suggest that F-specific coliphages could be useful conservative indicators of fecal contamination of produce and its associated virological risks. Large-scale surveys should be conducted to confirm these findings. PMID:15553617

  20. Evaluation of methods using celite to concentrate norovirus, adenovirus and enterovirus from wastewater.

    PubMed

    Brinkman, Nichole E; Haffler, Tyler D; Cashdollar, Jennifer L; Rhodes, Eric R

    2013-10-01

    Enteroviruses, noroviruses and adenoviruses are among the most common viruses infecting humans worldwide. These viruses are shed in the feces of infected individuals and can accumulate in wastewater, making wastewater a source of a potentially diverse group of enteric viruses. In this study, two procedures were evaluated to concentrate noroviruses, adenoviruses and enteroviruses from primary effluent of wastewater. In the first procedure, indigenous enteroviruses, noroviruses and adenoviruses were concentrated using celite (diatomaceous earth) followed by centrifugation through a 30K MWCO filter and nucleic acid extraction. The second procedure used celite concentration followed by nucleic acid extraction only. Virus quantities were measured using qPCR. A second set of primary effluent samples were seeded with Coxsackievirus A7, Coxsackievirus B1, poliovirus 1 or enterovirus 70 before concentration and processed through both procedures for recovery evaluation of enterovirus species representatives. The pairing of the single step extraction procedure with the celite concentration process resulted in 47-98% recovery of examined viruses, while the celite concentration process plus additional centrifugal concentration before nucleic acid extraction showed reduced recovery (14-47%). The celite concentration process followed by a large volume nucleic acid extraction technique proved to be an effective procedure for recovering these important human pathogens from wastewater. PMID:23727118

  1. Chronic or accidental exposure of oysters to norovirus: is there any difference in contamination?

    PubMed

    Ventrone, Iole; Schaeffer, Julien; Ollivier, Joanna; Parnaudeau, Sylvain; Pepe, Tiziana; Le Pendu, Jacques; Le Guyader, Françoise S

    2013-03-01

    Bivalve molluscan shellfish such as oysters may be contaminated by human pathogens. Currently, the primary pathogens associated with shellfish-related outbreaks are noroviruses. This study was conducted to improve understanding of oyster bioaccumulation when oysters were exposed to daily contamination or one accidental contamination event, i.e., different modes of contamination. Oysters were contaminated with two representative strains of norovirus (GI.1 and GII.3) and then analyzed with real-time reverse transcription PCR. Exposure to a repeated virus dose for 9 days (mimicking a growing area subjected to frequent sewage contamination) led to an additive accumulation that was not significantly different from that obtained when the same total dose of virus was added all at once (as may happen after accidental sewage discharge). Similarly, bioaccumulation tests performed with mixed strains revealed additive accumulation of both viruses. Depuration may not be efficient for eliminating viruses; therefore, to prevent contaminated shellfish from being put onto the market, continuous sanitary monitoring must be considered. All climatic events or sewage failures occurring in production areas must be recorded, because repeated low-dose exposure or abrupt events may lead to similar levels of accumulation. This study contributes to an understanding of norovirus accumulation in oysters and provides suggestions for risk management strategies. PMID:23462089

  2. Subgenomic promoter recognition by the norovirus RNA-dependent RNA polymerases

    PubMed Central

    Lin, Xiaoyan; Thorne, Lucy; Jin, Zhinan; Hammad, Loubna A.; Li, Serena; Deval, Jerome; Goodfellow, Ian G.; Kao, C. Cheng

    2015-01-01

    The replication enzyme of RNA viruses must preferentially recognize their RNAs in an environment that contains an abundance of cellular RNAs. The factors responsible for specific RNA recognition are not well understood, in part because viral RNA synthesis takes place within enzyme complexes associated with modified cellular membrane compartments. Recombinant RNA-dependent RNA polymerases (RdRps) from the human norovirus and the murine norovirus (MNV) were found to preferentially recognize RNA segments that contain the promoter and a short template sequence for subgenomic RNA synthesis. Both the promoter and template sequence contribute to stable RdRp binding, accurate initiation of the subgenomic RNAs and efficient RNA synthesis. Using a method that combines RNA crosslinking and mass spectrometry, residues near the template channel of the MNV RdRp were found to contact the hairpin RNA motif. Mutations in the hairpin contact site in the MNV RdRp reduced MNV replication and virus production in cells. This work demonstrates that the specific recognition of the norovirus subgenomic promoter is through binding by the viral RdRp. PMID:25520198

  3. Norovirus gastroenteritis outbreak transmitted by food and vomit in a high school.

    PubMed

    Godoy, P; Alsedà, M; Bartolomé, R; Clavería, D; Módol, I; Bach, P; Mirada, G; Domínguez, À

    2016-07-01

    We investigated an outbreak of norovirus that affected students and teachers of a high school in Lleida, Spain through various transmission mechanisms. A case-control epidemiological study of the risk of disease and the relative importance of each mode of transmission was carried out. Cases and controls were selected from a systematic sample of students and teachers present at the school on 28 January. Faecal samples were taken from three food handlers and 16 cases. The influence of each factor was studied using the adjusted odds ratio (aOR) and the estimated population attributable risk (ePAR) with 95% confidence intervals (CI). We interviewed 210 people (42 cases, 168 controls). The proportion of symptoms in these individuals was nausea 78·6%, vomiting 59·5%, diarrhoea 45·2%, and fever 19·0%. The epidemic curve showed transmission for at least 4 days. The risk of disease was associated with exposure to food (aOR 5·8) in 66·1% of cases and vomit (aOR 4·7) in 24·8% of cases. Faecal samples from 11 patients and two food handlers were positive for norovirus GII.12 g. Vomit may co-exist with other modes of transmission in norovirus outbreaks and could explain a large number of cases. PMID:26759924

  4. Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation.

    PubMed

    Leen, Eoin N; Baeza, Gabriela; Curry, Stephen

    2012-01-01

    Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1-2, NS3, NS4, NS5, NS6(pro), NS7(pol)) by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6(pro), which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6(pro) within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6(pro) C-terminus is formed in vivo by NS6(pro) processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6(pro) specificity. PMID:22685603

  5. The efficacy of X-ray does on murine norovirus-1 (MNV-1) in pure culture, half-shell oyster, salmon sushi, and tuna salad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this investigation, we determined the efficacy of X-ray doses on reducing a human norovirus (HuNoV) surrogate [murine norovirus-1 (MNV-1)] in pure culture, half-shell oyster, salmon sushi and tuna salad. The pure culture (phosphate-buffer saline, pH 7.4), half-shell oyster, salmon sushi and tuna ...

  6. Application of porcine gastric mucin-conjugated magnetic beads and polyethylene glycol goncentration and detection of human noroviruses from green onion and grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To set up detection methods for norovirus in fruits and vegetables by using porcine gastric mucin-conjugated magnetic beads (PGM-MB) and polyethylene glycol 8000 (PEG8000) concentrating and detecting the norovirus in green onion and grape. Methods: The highest virus dilution given a posit...

  7. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    EPA Science Inventory

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...

  8. Detecting the Norovirus Season in Sweden Using Search Engine Data – Meeting the Needs of Hospital Infection Control Teams

    PubMed Central

    Edelstein, Michael; Wallensten, Anders; Zetterqvist, Inga; Hulth, Anette

    2014-01-01

    Norovirus outbreaks severely disrupt healthcare systems. We evaluated whether Websök, an internet-based surveillance system using search engine data, improved norovirus surveillance and response in Sweden. We compared Websök users' characteristics with the general population, cross-correlated weekly Websök searches with laboratory notifications between 2006 and 2013, compared the time Websök and laboratory data crossed the epidemic threshold and surveyed infection control teams about their perception and use of Websök. Users of Websök were not representative of the general population. Websök correlated with laboratory data (b = 0.88-0.89) and gave an earlier signal to the onset of the norovirus season compared with laboratory-based surveillance. 17/21 (81%) infection control teams answered the survey, of which 11 (65%) believed Websök could help with infection control plans. Websök is a low-resource, easily replicable system that detects the norovirus season as reliably as laboratory data, but earlier. Using Websök in routine surveillance can help infection control teams prepare for the yearly norovirus season. PMID:24955857

  9. Incidence of Norovirus-Associated Medical Encounters among Active Duty United States Military Personnel and Their Dependents

    PubMed Central

    Rha, Brian; Lopman, Benjamin A.; Alcala, Ashley N.; Riddle, Mark S.; Porter, Chad K.

    2016-01-01

    Background Norovirus is a leading cause of gastroenteritis episodes and outbreaks in US military deployments, but estimates of endemic disease burden among military personnel in garrison are lacking. Methods Diagnostic codes from gastroenteritis-associated medical encounters of active duty military personnel and their beneficiaries from July 1998–June 2011 were obtained from the Armed Forces Health Surveillance Center. Using time-series regression models, cause-unspecified encounters were modeled as a function of encounters for specific enteropathogens. Model residuals (representing unexplained encounters) were used to estimate norovirus-attributable medical encounters. Incidence rates were calculated using population data for both active duty and beneficiary populations. Results The estimated annual mean rate of norovirus-associated medically-attended visits among active duty personnel and their beneficiaries was 292 (95% CI: 258 to 326) and 93 (95% CI: 80 to 105) encounters per 10,000 persons, respectively. Rates were highest among beneficiaries <5 years of age with a median annual rate of 435 (range: 318 to 646) encounters per 10,000 children. Norovirus was estimated to cause 31% and 27% of all-cause gastroenteritis encounters in the active duty and beneficiary populations, respectively, with over 60% occurring between November and April. There was no evidence of any lag effect where norovirus disease occurred in one population before the other, or in one beneficiary age group before the others. Conclusions Norovirus is a major cause of medically-attended gastroenteritis among non-deployed US military active duty members as well as in their beneficiaries. PMID:27115602

  10. Evaluation of immunochromatographic tests for the rapid detection of the emerging GII.17 norovirus in stool samples, January 2016.

    PubMed

    Théry, Lucie; Bidalot, Maxime; Pothier, Pierre; Ambert-Balay, Katia

    2016-01-01

    A novel GII.17 norovirus emerged in Asia in the winter of 2014/15. A worldwide spread is conceivable and norovirus diagnostic assays need to be evaluated to investigate if they adequately detect this emerging genotype. Seven immunochromatographic kits commercially available in Europe were evaluated on ten stool samples where GII.17 virus had been quantified by real-time reverse transcription-polymerase chain reaction. All the kits detected GII.17 with various sensitivities, partly depending on the virus titre. PMID:26848594

  11. Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay.

    PubMed

    Rutjes, Saskia A; van den Berg, Harold H J L; Lodder, Willemijn J; de Roda Husman, Ana Maria

    2006-08-01

    Noroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods. Molecular detection assays for viruses in water are often repressed by inhibitory factors present in the environment, like humic acids and heavy metals. To study the effect of environmental inhibitors on the performance of nucleic acid sequence-based amplification (NASBA), we developed a real-time norovirus NASBA targeting part of the RNA-dependent RNA polymerase (RdRp) gene. Specificity of the assay was studied with 33 divergent clones that contained part of the targeted RdRp gene of noroviruses from 15 different genogroups. Viral RNA originated from commercial oysters, surface waters, and sewage treatment plants in The Netherlands. Ninety-seven percent of the clones derived from human noroviruses were detected by real-time NASBA. Two clones containing animal noroviruses were not detected by NASBA. We compared the norovirus detection by real-time NASBA with that by conventional reverse transcriptase PCR (RT-PCR) with large-volume river water samples and found that inhibitory factors of RT-PCR had little or no effect on the performance of the norovirus NASBA. This consequently resulted in a higher sensitivity of the NASBA assay than of the RT-PCR. We show that by combining an efficient RNA extraction method with real-time NASBA the sensitivity of norovirus detection in water samples increased at least 100 times, which consequently has implications for the outcome of the infectious risk assessment. PMID:16885286

  12. Electron-beam inactivation of a norovirus surrogate in fresh produce and model systems.

    PubMed

    Sanglay, Gabriel C; Li, Jianrong; Uribe, R M; Lee, Ken

    2011-07-01

    Norovirus remains the leading cause of foodborne illness, but there is no effective intervention to eliminate viral contaminants in fresh produce. Murine norovirus 1 (MNV-1) was inoculated in either 100 ml of liquid or 100 g of food. The inactivation of MNV-1 by electron-beam (e-beam), or high-energy electrons, at varying doses was measured in model systems (phosphate-buffered saline [PBS], Dulbecco's modified Eagle's medium [DMEM]) or from fresh foods (shredded cabbage, diced strawberries). E-beam was applied at a current of 1.5 mA, with doses of 0, 2, 4, 6, 8, 10, and 12 kGy. The surviving viral titer was determined by plaque assays in RAW 264.7 cells. In PBS and DMEM, e-beam at 0 and 2 kGy provided less than a 1-log reduction of virus. At doses of 4, 6, 8, 10, and 12 kGy, viral inactivation in PBS ranged from 2.37 to 6.40 log, while in DMEM inactivation ranged from 1.40 to 3.59 log. Irradiation of inoculated cabbage showed up to a 1-log reduction at 4 kGy, and less than a 3-log reduction at 12 kGy. On strawberries, less than a 1-log reduction occurred at doses up to 6 kGy, with a maximum reduction of 2.21 log at 12 kGy. These results suggest that a food matrix might provide increased survival for viruses. In foods, noroviruses are difficult to inactivate because of the protective effect of the food matrix, their small sizes, and their highly stable viral capsid. PMID:21740718

  13. Efficacy and Mechanisms of Murine Norovirus Inhibition by Pulsed-Light Technology

    PubMed Central

    Vimont, Allison; Fliss, Ismaïl

    2015-01-01

    Pulsed light is a nonthermal processing technology recognized by the FDA for killing microorganisms on food surfaces, with cumulative fluences up to 12 J cm−2. In this study, we investigated its efficacy for inactivating murine norovirus 1 (MNV-1) as a human norovirus surrogate in phosphate-buffered saline, hard water, mineral water, turbid water, and sewage treatment effluent and on food contact surfaces, including high-density polyethylene, polyvinyl chloride, and stainless steel, free or in an alginate matrix. The pulsed-light device emitted a broadband spectrum (200 to 1,000 nm) at a fluence of 0.67 J cm−2 per pulse, with 2% UV at 8 cm beneath the lamp. Reductions in viral infectivity exceeded 3 log10 in less than 3 s (5 pulses; 3.45 J cm−2) in clear suspensions and on clean surfaces, even in the presence of alginate, and in 6 s (11 pulses; 7.60 J cm−2) on fouled surfaces except for stainless steel (2.6 log10). The presence of protein or bentonite interfered with viral inactivation. Analysis of the morphology, the viral proteins, and the RNA integrity of treated MNV-1 allowed us to elucidate the mechanisms involved in the antiviral activity of pulsed light. Pulsed light appeared to disrupt MNV-1 structure and degrade viral protein and RNA. The results suggest that pulsed-light technology could provide an effective alternative means of inactivating noroviruses in wastewaters, in clear beverages, in drinking water, or on food-handling surfaces in the presence or absence of biofilms. PMID:25681193

  14. Efficacy and mechanisms of murine norovirus inhibition by pulsed-light technology.

    PubMed

    Vimont, Allison; Fliss, Ismaïl; Jean, Julie

    2015-04-01

    Pulsed light is a nonthermal processing technology recognized by the FDA for killing microorganisms on food surfaces, with cumulative fluences up to 12 J cm(-2). In this study, we investigated its efficacy for inactivating murine norovirus 1 (MNV-1) as a human norovirus surrogate in phosphate-buffered saline, hard water, mineral water, turbid water, and sewage treatment effluent and on food contact surfaces, including high-density polyethylene, polyvinyl chloride, and stainless steel, free or in an alginate matrix. The pulsed-light device emitted a broadband spectrum (200 to 1,000 nm) at a fluence of 0.67 J cm(-2) per pulse, with 2% UV at 8 cm beneath the lamp. Reductions in viral infectivity exceeded 3 log10 in less than 3 s (5 pulses; 3.45 J cm(-2)) in clear suspensions and on clean surfaces, even in the presence of alginate, and in 6 s (11 pulses; 7.60 J cm(-2)) on fouled surfaces except for stainless steel (2.6 log10). The presence of protein or bentonite interfered with viral inactivation. Analysis of the morphology, the viral proteins, and the RNA integrity of treated MNV-1 allowed us to elucidate the mechanisms involved in the antiviral activity of pulsed light. Pulsed light appeared to disrupt MNV-1 structure and degrade viral protein and RNA. The results suggest that pulsed-light technology could provide an effective alternative means of inactivating noroviruses in wastewaters, in clear beverages, in drinking water, or on food-handling surfaces in the presence or absence of biofilms. PMID:25681193

  15. Epidemiology, prevention, and control of the number one foodborne illness: human norovirus.

    PubMed

    Dicaprio, Erin; Ma, Yuanmei; Hughes, John; Li, Jianrong

    2013-09-01

    Human norovirus (NoV) is the number one cause of foodborne illness. Despite tremendous research efforts, human NoV is still poorly understood and understudied. There is no effective measure to eliminate this virus from food and the environment. Future research efforts should focus on developing: (1) an efficient cell culture system and a robust animal model, (2) rapid and sensitive detection methods, (3) novel sanitizers and control interventions, and (4) vaccines and antiviral drugs. Furthermore, there is an urgent need to build multidisciplinary and multi-institutional teams to combat this important biodefense agent. PMID:24011835

  16. Production of Brazilian human norovirus VLPs and comparison of purification methods.

    PubMed

    Lamounier, Thais Alves da Costa; de Oliveira, Layssa Miranda; de Camargo, Brenda Rabello; Rodrigues, Kelly Barreto; Noronha, Eliane Ferreira; Ribeiro, Bergmann Morais; Nagata, Tatsuya

    2015-01-01

    Noroviruses (NVs) are responsible for most cases of human nonbacterial gastroenteritis worldwide. Some parameters for the purification of NV virus-like particles (VLPs) such as ease of production and yield were studied for future development of vaccines and diagnostic tools. In this study, VLPs were produced by the expression of the VP1 and VP2 gene cassette of the Brazilian NV isolate, and two purification methods were compared: cesium chloride (CsCl) gradient centrifugation and ion-exchange chromatography (IEC). IEC produced more and purer VLPs of NV compared to CsCl gradient centrifugation. PMID:26691489

  17. Detection and genogrouping of noroviruses from children's stools by Taqman One-step RT-PCR.

    PubMed

    Apaza, Sonia; Espetia, Susan; Gilman, Robert H; Montenegro, Sonia; Pineda, Susana; Herhold, Fanny; Pomari, Romeo; Kosek, Margaret; Vu, Nancy; Saito, Mayuko

    2012-01-01

    Noroviruses (NoVs) are the leading cause of outbreaks of sporadic acute gastroenteritis worldwide in humans of all ages. They are important cause of hospitalizations in children with a public health impact similar to that of Rotavirus. NoVs are RNA viruses of great genetic diversity and there is a continuous appearance of new strains. Five genogroups are recognized; GI and GII with their many genotypes and subtypes being the most important for human infection. However, the diagnosis of these two genotypes remains problematic, delaying diagnosis and treatment. For RNA extraction from stool specimens the most commonly used method is the QIAmp Viral RNA commercial kit from Qiagen. This method combines the binding properties of a silica gel membrane, buffers that control RNases and provide optimum binding of the RNA to the column together with the speed of microspin. This method is simple, fast and reliable and is carried out in a few steps that are detailed in the description provided by the manufacturer. Norovirus is second only to rotavirus as the most common cause of diarrhea. Norovirus diagnosis should be available in all studies on pathogenesis of diarrhea as well as in outbreaks or individual diarrhea cases. At present however norovirus diagnosis is restricted to only a few centers due to the lack of simple methods of diagnosis. This delays diagnosis and treatment. In addition, due to costs and regulated transportation of corrosive buffers within and between countries use of these manufactured kits poses logistical problems. As a result, in this protocol we describe an alternative, economic, in-house method which is based on the original Boom et al. method which uses the nucleic acid binding properties of silica particles together with the anti-nuclease properties of guanidinium thiocyanate. For the detection and genogrouping (GI and GII) of NoVs isolates from stool specimens, several RT-PCR protocols utilizing different targets have been developed. The

  18. Detection of a novel recombinant strain of norovirus in an African-descendant community from the Amazon region of Brazil in 2008.

    PubMed

    Fumian, Tulio M; Aragão, Glicélia C; Mascarenhas, Joana D'Arc P; Kaiano, Jane H; Siqueira, Jones Anderson M; Soares, Luana S; Linhares, Alexandre C; Gabbay, Yvone B

    2012-12-01

    Noroviruses, a major cause of acute gastroenteritis outbreaks worldwide, are constantly evolving. This ability is reflected in the speed and efficiency with which these viruses spread and remain in the human population. The present study reports the detection of a novel recombination event among norovirus genotypes in Brazil in 2008. A strain detected in a stool sample from a child with norovirus-associated gastroenteritis, residing in an African-descendant semi-closed community of Pará State, was characterized as a novel intergenotype recombinant, GII.7/GII.20, as determined by partial sequencing and SimPlot analysis. PMID:22872050

  19. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    PubMed

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus. PMID:26474396

  20. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles

    PubMed Central

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F.; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus. PMID:26474396

  1. Inactivation of human norovirus and Tulane virus in simple mediums and fresh whole strawberries by ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) is a major cause of fresh produce associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintainin...

  2. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  3. Absolute Quantification of Norovirus Capsid Protein in Food, Water, and Soil Using Synthetic Peptides with Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  4. Development of rapid hemocyte-based extraction methods for detection of hepatitis A virus and murine norovirus in contaminated oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human enteric pathogens, hepatitis A virus and human norovirus, have been shown to contaminate molluscan shellfish and cause foodborne disease in consumers. Rapid viral extraction methods are needed to replace current time consuming methods, which use whole oysters or dissected tissues. In our ...

  5. Comparative survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Murine Norovirus on spinach plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Outbreaks resulting from the consumption of leafy greens contaminated with E. coli O157:H7, Salmonella spp., and norovirus have occurred. It is unclear how the stress response factor rpoS in E. coli O157:H7 and Salmonella spp. affects their survival on spinach. Purpose: A comparison ...

  6. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry.

    PubMed

    Hartmann, Erica M; Colquhoun, David R; Schwab, Kellogg J; Halden, Rolf U

    2015-04-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  7. A critical review on the survival and elimination of norovirus in food and on food contact surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This critical review covers the survival of human norovirus (NoV) in foods and on food contact surfaces as well as the state-of-the-art on the effectiveness of methods to eliminate these viruses. Virus survival studies are reviewed for water, soils and organic wastes, on fomites, hands, fruits and v...

  8. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks

    PubMed Central

    Hellmér, Maria; Paxéus, Nicklas; Magnius, Lars; Enache, Lucica; Arnholm, Birgitta; Johansson, Annette; Bergström, Tomas

    2014-01-01

    Most persons infected with enterically transmitted viruses shed large amounts of virus in feces for days or weeks, both before and after onset of symptoms. Therefore, viruses causing gastroenteritis may be detected in wastewater, even if only a few persons are infected. In this study, the presence of eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E virus) was investigated in sewage to explore whether their identification could be used as an early warning of outbreaks. Samples of the untreated sewage were collected in proportion to flow at Ryaverket, Gothenburg, Sweden. Daily samples collected during every second week between January and May 2013 were pooled and analyzed for detection of viruses by concentration through adsorption to milk proteins and PCR. The largest amount of noroviruses was detected in sewage 2 to 3 weeks before most patients were diagnosed with this infection in Gothenburg. The other viruses were detected at lower levels. HAV was detected between weeks 5 and 13, and partial sequencing of the structural VP1protein identified three different strains. Two strains were involved in an ongoing outbreak in Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg during spring of 2013. The third strain was unique and was not detected in any patient sample. The method used may thus be a tool to detect incipient outbreaks of these viruses and provide early warning before the causative pathogens have been recognized in health care. PMID:25172863

  9. Viral Gastroenteritis Associated with Genogroup II Norovirus among U.S. Military Personnel in Turkey, 2009

    PubMed Central

    Ahmed, Salwa F.; Klena, John D.; Mostafa, Manal; Dogantemur, Jessica; Middleton, Tracy; Hanson, James; Sebeny, Peter J.

    2012-01-01

    The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks. PMID:22606235

  10. Bovine Norovirus: Carbohydrate Ligand, Environmental Contamination, and Potential Cross-Species Transmission via Oysters ▿ †

    PubMed Central

    Zakhour, Maha; Maalouf, Haifa; Di Bartolo, Ilaria; Haugarreau, Larissa; Le Guyader, Françoise S.; Ruvoën-Clouet, Nathalie; Le Saux, Jean-Claude; Ruggeri, Franco Maria; Pommepuy, Monique; Le Pendu, Jacques

    2010-01-01

    Noroviruses (NoV) are major agents of acute gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Previous studies showed that some human strains bind to oyster tissues through carbohydrate ligands that are similar to their human receptors. Thus, based on presentation of shared norovirus carbohydrate ligands, oysters could selectively concentrate animal strains with increased ability to overcome species barriers. In comparison with human GI and GII strains, bovine GIII NoV strains, although frequently detected in bovine feces and waters of two estuaries of Brittany, were seldom detected in oysters grown in these estuaries. Characterization of the carbohydrate ligand from a new GIII strain indicated recognition of the alpha-galactosidase (α-Gal) epitope not expressed by humans, similar to the GIII.2 Newbury2 strain. This ligand was not detectable on oyster tissues, suggesting that oysters may not be able to accumulate substantial amounts of GIII strains due to the lack of shared carbohydrate ligand and that they should be unable to contribute to select GIII strains with an increased ability to recognize humans. PMID:20709837

  11. An Outbreak of Norovirus Infections Among Lunch Customers at a Restaurant, Tampere, Finland, 2015.

    PubMed

    Vo, Thuan Huu; Okasha, Omar; Al-Hello, Haider; Polkowska, Aleksandra; Räsänen, Sirpa; Bojang, Merja; Nuorti, J Pekka; Jalava, Katri

    2016-09-01

    On January 29, 2015, the city of Tampere environmental health officers were informed of a possible foodborne outbreak among customers who had eaten lunch in restaurant X. Employees of electric companies A and B had a sudden onset of gastrointestinal symptoms. We conducted a retrospective cohort study to identify the vehicle, source, and causative agent of the outbreak. A case was defined as an employee of companies A or B with diarrhea and/or vomiting who ate lunch at Restaurant X on January 26, 2015. All employees of the companies attending the implicated lunch were invited to participate in the cohort study. Environmental investigation was conducted. Twenty-one responders were included in statistical analysis, of which 11 met with the case definition. Of the 15 food items consumed by participants, four food items were associated with gastroenteritis. Of four kitchen staff, three tested positive for norovirus GIP7, the strain was found earlier in the community. No patient samples were obtained. Level of hygiene in the kitchen was inadequate. Infected kitchen staff probably transmitted norovirus by inadequate hygiene practices. No new cases associated with Restaurant X were reported after the hygiene practices were improved. PMID:27074943

  12. High-Resolution X-Ray Structure and Functional Analysis of the Murine Norovirus 1 Capsid Protein Protruding Domain▿

    PubMed Central

    Taube, Stefan; Rubin, John R.; Katpally, Umesh; Smith, Thomas J.; Kendall, Ann; Stuckey, Jeanne A.; Wobus, Christiane E.

    2010-01-01

    Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A′-B′ and E′-F′ loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1−/− mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A′-B′ and E′-F′ loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface. PMID:20335262

  13. Comparison of nucleic acid extraction and reverse transcription-qPCR approaches for detection of GI and GII noroviruses in drinking water

    EPA Science Inventory

    Noroviruses (NoVs) are responsible for a number of waterborne and foodborne gastroenteritis cases each year. They are frequently associated with human sewage, and thus a potential link between wastewater discharge and contamination of source waters exists. Subsequently, contami...

  14. Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model.

    PubMed

    Rocha-Pereira, Joana; Kolawole, Abimbola O; Verbeken, Eric; Wobus, Christiane E; Neyts, Johan

    2016-08-01

    Noroviruses are a leading cause of gastroenteritis across the world in all age groups and are linked to increased hospitalization and mortality in children, the elderly and immunocompromised. The development of specific antiviral treatment for norovirus gastroenteritis is urgently needed. We explored in a mouse model whether an inhibitor of norovirus replication could be used therapeutically post murine norovirus (MNV)-infection of mice. Using the MNV, we previously discovered that the viral polymerase inhibitor 2'-C-methylcytidine (2CMC) is able to protect against diarrhea and mortality in mice when used prophylactically and to block the transmission of MNV between mice. Here, we investigated whether 2CMC could be used therapeutically, starting treatment between 12 h and 3 days post-infection with 2CMC. Post-exposure treatment of MNV-infected mice with 2CMC was efficient up to 2 days after infection, preventing norovirus-induced diarrhea, delaying and reducing MNV shedding in stool of treated mice. Rehydration of 2CMC-treated animals did not result in a further improvement of the disease evolution compared to antiviral treatment only. The presence of MNV antigens and inflammation in the small intestine of infected mice inversely correlated with the effectiveness of delayed antiviral treatment. Anti-MNV IgGs were detected in re-challenged mice 10 weeks after the first contact, these protected the mice from re-infection. We here demonstrate the benefit of antiviral treatment in ongoing norovirus infections. PMID:27252124

  15. Tenacity of human norovirus and the surrogates feline calicivirus and murine norovirus during long-term storage on common nonporous food contact surfaces.

    PubMed

    Mormann, Sascha; Heißenberg, Cathrin; Pfannebecker, Jens; Becker, Barbara

    2015-01-01

    The transfer of human norovirus (hNV) to food via contaminated surfaces is highly probable during food production, processing, and preparation. In this study, the tenacity of hNV and its cultivable surrogates feline calicivirus (FCV) and murine norovirus (MNV) on two common nonporous surface materials at two storage temperatures was directly compared. Virus titer reduction on artificially inoculated stainless steel and plastic carriers was monitored for 70 days at room temperature and at 7°C. Viruses were recovered at various time points by elution. Genomes from intact capsids (hNV, FCV, and MNV) were quantified with real-time reverse transcription (RT) PCR, and infectivity (FCV and MNV) was assessed with plaque assay. RNase treatment before RNA extraction was used to eliminate exposed RNA and to assess capsid integrity. No significant differences in titer reduction were found between materials (stainless steel or plastic) with the plaque assay or the real-time quantitative RT-PCR. At room temperature, infectious FCV and MNV were detected for 7 days. Titers of intact hNV, FCV, and MNV capsids dropped gradually and were still detectable after 70 days with a loss of 3 to 4 log units. At 7°C, the viruses were considerably more stable than they were at room temperature. Although only MNV infectivity was unchanged after 70 days, the numbers of intact capsids (hNV, FCV, and MNV) were stable with less than a 1-log reduction. The results indicate that hNV persists on food contact surfaces and seems to remain infective for weeks. MNV appears to be more stable than FCV at 7°C, and thus is the most suitable surrogate for hNV under dry conditions. Although a perfect quantitative correlation between intact capsids and infective particles was not obtained, real-time quantitative RT-PCR provided qualitative data about hNV inactivation characteristics. The results of this comparative study might support future efforts in assessment of foodborne virus risk and food safety. PMID

  16. A Membrane-Based Electro-Separation Method (MBES) for Sample Clean-Up and Norovirus Concentration

    PubMed Central

    Kang, Wei; Cannon, Jennifer L.

    2015-01-01

    Noroviruses are the leading cause of acute gastroenteritis and foodborne illnesses in the United States. Enhanced methods for detecting noroviruses in food matrices are needed as current methods are complex, labor intensive and insensitive, often resulting in inhibition of downstream molecular detection and inefficient recovery. Membrane-based electro-separation (MBES) is a technique to exchange charged particles through a size-specific dialysis membrane from one solution to another using electric current as the driving force. Norovirus has a net negative surface charge in a neutrally buffered environment, so when placed in an electric field, it moves towards the anode. It can then be separated from the cathodic compartment where the sample is placed and then collected in the anodic compartment for downstream detection. In this study, a MBES-based system was designed, developed and evaluated for concentrating and recovering murine norovirus (MNV-1) from phosphate buffer. As high as 30.8% MNV-1 migrated from the 3.5 ml sample chamber to the 1.5 ml collection chamber across a 1 μm separation membrane when 20 V was applied for 30 min using 20 mM sodium phosphate with 0.01% SDS (pH 7.5) as the electrolyte. In optimization of the method, weak applied voltage (20 V), moderate duration (30 min), and low ionic strength electrolytes with SDS addition were needed to increase virus movement efficacy. The electric field strength of the system was the key factor to enhance virus movement, which could only be improved by shortening the electrodes distance, instead of increasing system applied voltage because of virus stability. This study successfully demonstrated the norovirus mobility in an electric field and migration across a size-specific membrane barrier in sodium phosphate electrolyte. With further modification and validation in food matrixes, a novel, quick, and cost-effective sample clean-up technique might be developed to separate norovirus particles from food

  17. Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry.

    PubMed

    House, Thomas; Ford, Ashley; Lan, Shiwei; Bilson, Samuel; Buckingham-Jeffery, Elizabeth; Girolami, Mark

    2016-08-01

    Infectious diseases exert a large and in many contexts growing burden on human health, but violate most of the assumptions of classical epidemiological statistics and hence require a mathematically sophisticated approach. Viral shedding data are collected during human studies-either where volunteers are infected with a disease or where existing cases are recruited-in which the levels of live virus produced over time are measured. These have traditionally been difficult to analyse due to strong, complex correlations between parameters. Here, we show how a Bayesian approach to the inverse problem together with modern Markov chain Monte Carlo algorithms based on information geometry can overcome these difficulties and yield insights into the disease dynamics of two of the most prevalent human pathogens-influenza and norovirus-as well as Ebola virus disease. PMID:27558850

  18. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives

    PubMed Central

    Kocher, Jacob; Yuan, Lijuan

    2015-01-01

    Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed. PMID:26568768

  19. Risk Factors for Norovirus, Sapporo-like Virus, and Group A Rotavirus Gastroenteritis

    PubMed Central

    de Wit, Matty AS; Koopmans, Marion PG

    2003-01-01

    Viral pathogens are the most common causes of gastroenteritis in the community. To identify modes of transmission and opportunities for prevention, a case-control study was conducted and risk factors for gastroenteritis attributable to norovirus (NV), Sapporo-like virus (SLV), and rotavirus were studied. For NV gastroenteritis, having a household member with gastroenteritis, contact with a person with gastroenteritis outside the household, and poor food-handling hygiene were associated with illness (population attributable risk fractions [PAR] of 17%, 56%, and 47%, respectively). For SLV gastroenteritis, contact with a person with gastroenteritis outside the household was associated with a higher risk (PAR 60%). For rotavirus gastroenteritis, contact with a person with gastroenteritis outside the household and food-handling hygiene were associated with a higher risk (PAR 86% and 46%, respectively). Transmission of these viral pathogens occurs primarily from person to person. However, for NV gastroenteritis, foodborne transmission seems to play an important role. PMID:14720397

  20. Wading pool water contaminated with both noroviruses and astroviruses as the source of a gastroenteritis outbreak.

    PubMed Central

    Maunula, L.; Kalso, S.; Von Bonsdorff, C. H.; Pönkä, A.

    2004-01-01

    In July 2001, an outbreak of gastroenteritis occurred in Helsinki among children and adults after bathing in an outdoor wading pool. The epidemiological survey revealed that at least 242 persons were affected. Microbiological testing of both patient stool samples and of the pool water revealed the presence of two different gastroenteritis viruses: a norovirus (NV) and an astrovirus. Amplicon sequencing of the NV samples showed nucleotide sequence identity between the virus from patients and the water. After changing the pool water and the sand at the bottom of the pool followed by shock chlorination, no virus could be detected in the water. However, NV was continuously detected in the water outlet well as much as 8 months after the incident. Here we show how molecular methods aided in tracing the source of the epidemic and in finding the causative pathogens both in patients and in the environment. PMID:15310176

  1. The Norovirus epidemic...or just a stone? Revising the diagnosis with an abdominal radiograph.

    PubMed

    Wagner, Siegfried K; Remoundos, Dionysios D; Abdulla, Muaad

    2013-01-01

    During an acute outbreak of Norovirus in the local area, a 77-year-old woman was admitted with a short history of diarrhoea and vomiting. A working diagnosis of viral gastroenteritis complicated by acute renal failure, secondary to dehydration, was made. Despite judicious fluid resuscitation and regular antiemetics, the patient's symptoms persisted with only mild improvement in her renal function. An abdominal radiograph revealed evidence of significant small bowel obstruction and subsequent CT of the abdomen and pelvis identified a 1.5 cm intraluminal density at a transition point raising the suspicion of gallstone ileus. An urgent laparotomy with stone removal was carried out without complications. The patient recovered well postoperatively and was discharged home after 3 days. PMID:23771969

  2. Norovirus Transmission between Hands, Gloves, Utensils, and Fresh Produce during Simulated Food Handling

    PubMed Central

    Aho, E.; Mikkelä, A.; Ranta, J.; Tuominen, P.; Rättö, M.; Maunula, L.

    2014-01-01

    Human noroviruses (HuNoVs), a leading cause of food-borne gastroenteritis worldwide, are easily transferred via ready-to-eat (RTE) foods, often prepared by infected food handlers. In this study, the transmission of HuNoV and murine norovirus (MuNoV) from virus-contaminated hands to latex gloves during gloving, as well as from virus-contaminated donor surfaces to recipient surfaces after simulated preparation of cucumber sandwiches, was inspected. Virus transfer was investigated by swabbing with polyester swabs, followed by nucleic acid extraction from the swabs with a commercial kit and quantitative reverse transcription-PCR. During gloving, transfer of MuNoV dried on the hand was observed 10/12 times. HuNoV, dried on latex gloves, was disseminated to clean pairs of gloves 10/12 times, whereas HuNoV without drying was disseminated 11/12 times. In the sandwich-preparing simulation, both viruses were transferred repeatedly to the first recipient surface (left hand, cucumber, and knife) during the preparation. Both MuNoV and HuNoV were transferred more efficiently from latex gloves to cucumbers (1.2% ± 0.6% and 1.5% ± 1.9%) than vice versa (0.7% ± 0.5% and 0.5% ± 0.4%). We estimated that transfer of at least one infective HuNoV from contaminated hands to the sandwich prepared was likely to occur if the hands of the food handler contained 3 log10 or more HuNoVs before gloving. Virus-contaminated gloves were estimated to transfer HuNoV to the food servings more efficiently than a single contaminated cucumber during handling. Our results indicate that virus-free food ingredients and good hand hygiene are needed to prevent HuNoV contamination of RTE foods. PMID:24951789

  3. Survival of murine norovirus and hepatitis A virus in different types of manure and biosolids.

    PubMed

    Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E

    2010-08-01

    Noroviruses and hepatitis A virus (HAV) are common causes of foodborne disease. They are usually shed in feces and have been found in sewage water, biosolids, and animal manures. With the wide application of manure and biosolids on agricultural lands, there is an increasing interest in investigating virus survival in manure and biosolids. In this study, Murine norovirus-1 (MNV) and HAV were inoculated into different types of animal manure and three types of differently treated biosolids at 20 degrees C and 4 degrees C for up to 60 days. Both HAV and MNV viral genomes degraded immediately in high pH biosolids type 2 and 3 at time zero. For other types of manure and biosolids, HAV RNA was significantly reduced in biosolids type 1 and in liquid dairy manure (DM) after 60 days stored at 20 degrees C, but was stable in all types of manure and biosolids type 1 at 4 degrees C. MNV RNA was unstable in pelletized poultry litter and biosolids type 1 at 20 degrees C, and less stable in liquid DM at both temperatures. For MNV infectivity, there was no significant difference among pelletized poultry litter, alum-treated poultry litter, raw poultry litter, and swine manure at either 20 degrees C or 4 degrees C after 60 days of storage. However, HAV stored in swine manure and raw poultry litter had significantly higher infectivity levels than HAV stored in alum-treated poultry litter at both 20 degrees C and 4 degrees C. Overall, both viruses were inactivated rapidly in alkaline pH biosolids and unstable in liquid DM, but alum added in poultry litter had different effects on the two viruses: alum inactivated some HAV at both temperatures but had no effect on MNV. PMID:20455755

  4. Inactivation of Human Norovirus and Its Surrogates on Alfalfa Seeds by Aqueous Ozone.

    PubMed

    Wang, Qing; Markland, Sarah; Kniel, Kalmia E

    2015-08-01

    Alfalfa sprouts have been associated with numerous foodborne outbreaks. Previous studies investigated the effectiveness of aqueous ozone on bacterially contaminated seeds, yet little is known about the response of human norovirus (huNoV). This study assessed aqueous ozone for the disinfection of alfalfa seeds contaminated with huNoV and its surrogates. The inactivation of viruses without a food matrix was also investigated. Alfalfa seeds were inoculated with huNoV genogroup II, Tulane virus (TV), and murine norovirus (MNV); viruses alone or inoculated on seeds were treated in deionized water containing 6.25 ppm of aqueous ozone with agitation at 22°C for 0.5, 1, 5, 15, or 30 min. The data showed that aqueous ozone resulted in reductions of MNV and TV infectivity from 1.66 ± 1.11 to 5.60 ± 1.11 log PFU/g seeds; for all treatment times, significantly higher reductions were observed for MNV (P < 0.05). Viral genomes were relatively resistant, with a reduction of 1.50 ± 0.14 to 3.00 ± 0.14 log genomic copies/g seeds; the reduction of TV inoculated in water was similar to that of huNoV, whereas MNV had significantly greater reductions in genomic copies (P < 0.05). Similar trends were observed in ozone-treated viruses alone, with significantly higher levels of inactivation (P < 0.05), especially with reduced levels of infectivity for MNV and TV. The significant inactivation by aqueous ozone indicates that ozone may be a plausible substitute for chlorine as an alternative treatment for seeds. The behavior of TV was similar to that of huNoV, which makes it a promising surrogate for these types of scenarios. PMID:26219375

  5. First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in Ethiopia.

    PubMed

    Sisay, Zufan; Djikeng, Appolinaire; Berhe, Nega; Belay, Gurja; Abegaz, Woldaregay Erku; Wang, Q H; Saif, Linda J

    2016-10-01

    Noroviruses (NoVs) and sapoviruses (SaVs), which belong to the family Caliciviridae, are important human and animal enteric pathogens with zoonotic potential. In Ethiopia, no study has been done on the epidemiology of animal NoVs and SaVs. The aim of this study was to detect and characterize NoVs and SaVs from swine of various ages. Swine fecal samples (n = 117) were collected from commercial farms in Ethiopia. The samples were screened for caliciviruses by reverse transcription polymerase chain reaction (RT-PCR) using universal and genogroup-specific primer pairs. Phylogenetic analysis was conducted using a portion of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of genome sequences of caliciviruses. Among 117 samples, potential caliciviruses were detected by RT-PCR in 17 samples (14.5 %). Of the RT-PCR-positive fecal samples, four were sequenced, of which two were identified as human NoV GII.1 and the other two as porcine SaV GIII. The porcine SaV strains that were detected were genetically related to the porcine enteric calicivirus Cowden strain genogroup III (GIII), which is the prototype porcine SaV strain. No porcine NoVs were detected. Our results showed the presence of NoVs in swine that are most similar to human strains. These findings have important implications for NoV epidemiology and food safety. Therefore, continued surveillance of NoVs in swine is needed to define their zoonotic potential, epidemiology and public and animal health impact. This is the first study to investigate enteric caliciviruses (noroviruses and sapoviruses) in swine in Ethiopia. PMID:27424025

  6. Feline Calicivirus, Murine Norovirus, Porcine Sapovirus, and Tulane Virus Survival on Postharvest Lettuce.

    PubMed

    Esseili, Malak A; Saif, Linda J; Farkas, Tibor; Wang, Qiuhong

    2015-08-01

    Human norovirus (HuNoV) is the leading cause of foodborne illnesses, with an increasing number of outbreaks associated with leafy greens. Because HuNoV cannot be routinely cultured, culturable feline calicivirus (FCV), murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV) have been used as surrogates. These viruses are generated in different cell lines as infected cell lysates, which may differentially affect their stability. Our objective was to uniformly compare the survival of these viruses on postharvest lettuce while evaluating the effects of cell lysates on their survival. Viruses were semipurified from cell lysates by ultrafiltration or ultracentrifugation followed by resuspension in sterile water. Virus survival was examined before and after semipurification: in suspension at room temperature (RT) until day 28 and on lettuce leaves stored at RT for 3 days or at 4°C for 7 and 14 days. In suspension, both methods significantly enhanced the survival of all viruses. On lettuce, the survival of MNV in cell lysates was similar to that in water, under all storage conditions. In contrast, the survival of FCV, SaV, and TV was differentially enhanced, under different storage conditions, by removing cell lysates. Following semipurification, viruses showed similar persistence to each other on lettuce stored under all conditions, with the exception of ultracentrifugation-purified FCV, which showed a higher inactivation rate than MNV at 4°C for 14 days. In conclusion, the presence of cell lysates in viral suspensions underestimated the survivability of these surrogate viruses, while viral semipurification revealed similar survivabilities on postharvest lettuce leaves. PMID:26002891

  7. Concentration of Norovirus during Wastewater Treatment and Its Impact on Oyster Contamination

    PubMed Central

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent

    2012-01-01

    The concentrations of Escherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. Using a real-time reverse transcription-quantitative PCR (RT-qPCR), the mean NoV GI and NoV GII concentrations detected in effluent wastewater were 2.53 and 2.63 log10 virus genome copies 100 ml−1, respectively. The mean NoV concentrations in wastewater during the winter period (January to March) (n = 12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than the mean concentrations for the rest of the year (n = 37). The mean reductions of NoV GI and GII during treatment were 0.80 and 0.92 log units, respectively, with no significant difference detected in the extent of NoV reductions due to season. No seasonal trend was detected in the concentrations of E. coli or FRNA bacteriophage in wastewater influent and showed mean reductions of 1.49 and 2.13 log units, respectively. Mean concentrations of 3.56 and 3.72 log10 virus genome copies 100 ml−1 for NoV GI and GII, respectively, were detected in oysters sampled adjacent to the WWTP discharge. A strong seasonal trend was observed, and the concentrations of NoV GI and GII detected in oysters were correlated with concentrations detected in the wastewater effluent. No seasonal difference was detected in concentrations of E. coli or FRNA bacteriophage detected in oysters. PMID:22367079

  8. Critical review of norovirus surrogates in food safety research: rationale for considering volunteer studies.

    PubMed

    Richards, Gary P

    2012-03-01

    The inability to propagate human norovirus (NoV) or to clearly differentiate infectious from noninfectious virus particles has led to the use of surrogate viruses, like feline calicivirus (FCV) and murine norovirus-1 (MNV), which are propagatable in cell culture. The use of surrogates is predicated on the assumption that they generally mimic the viruses they represent; however, studies are proving this concept invalid. In direct comparisons between FCV and MNV, their susceptibility to temperatures, environmental and food processing conditions, and disinfectants are dramatically different. Differences have also been noted between the inactivation of NoV and its surrogates, thus questioning the validity of surrogates. Considerable research funding is provided globally each year to conduct surrogate studies on NoVs; however, there is little demonstrated benefit derived from these studies in regard to the development of virus inactivation techniques or food processing strategies. Human challenge studies are needed to determine which processing techniques are effective in reducing NoVs in foods. A major obstacle to clinical trials on NoVs is the perception that such trials are too costly and risky, but in reality, there is far more cost and risk in allowing millions of unsuspecting consumers to contract NoV illness each year, when practical interventions are only a few volunteer studies away. A number of clinical trials have been conducted, providing important insights into NoV inactivation. A shift in research priorities from surrogate research to volunteer studies is essential if we are to identify realistic, practical, and scientifically valid processing approaches to improve food safety. PMID:22408689

  9. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters.

    PubMed

    Wu, Juan; Hou, Wei; Cao, Binbin; Zuo, Tao; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2015-09-01

    Norovirus (NoV) is one of the most important seafood- and water-borne viruses, and is a major cause of acute gastroenteritis outbreaks. In the present study we investigated the effect of curcumin as a sensitizer to photodynamic treatment both in buffer and in oysters against murine norovirus 1 (MNV-1), a surrogate of NoV. MNV-1 cultured in buffer and MNV-1 bio-accumulated in oysters were irradiated with a novel LED light source with a wavelength of 470nm and an energy of 3.6J/cm(2). Inactivation of MNV-1 was investigated by plaque assays. After virus was extracted from the gut of oysters treated over a range of curcumin concentrations, the ultrastructural morphology of the virus was observed using electron microscopy, and the integrity of viral nucleic acids and stability of viral capsid proteins were also determined. Results showed that the infectivity of MNV-1 was significantly inhibited by 1-3logPFU/ml, with significant damage to viral nucleic acids in a curcumin dose-dependent manner after photodynamic activation. Virus morphology was altered after the photodynamic treatment with curcumin, presumably due to the change of the viral capsid protein structures. The data suggest that treatment of oysters with photodynamic activation of curcumin is a potentially efficacious and cost-effective method to inactivate food-borne NoV. Further studies are necessary to evaluate the toxicology of this approach in detail and perform sensory evaluation of the treated product. PMID:26117199

  10. Feline Calicivirus, Murine Norovirus, Porcine Sapovirus, and Tulane Virus Survival on Postharvest Lettuce

    PubMed Central

    Esseili, Malak A.; Saif, Linda J.; Farkas, Tibor

    2015-01-01

    Human norovirus (HuNoV) is the leading cause of foodborne illnesses, with an increasing number of outbreaks associated with leafy greens. Because HuNoV cannot be routinely cultured, culturable feline calicivirus (FCV), murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV) have been used as surrogates. These viruses are generated in different cell lines as infected cell lysates, which may differentially affect their stability. Our objective was to uniformly compare the survival of these viruses on postharvest lettuce while evaluating the effects of cell lysates on their survival. Viruses were semipurified from cell lysates by ultrafiltration or ultracentrifugation followed by resuspension in sterile water. Virus survival was examined before and after semipurification: in suspension at room temperature (RT) until day 28 and on lettuce leaves stored at RT for 3 days or at 4°C for 7 and 14 days. In suspension, both methods significantly enhanced the survival of all viruses. On lettuce, the survival of MNV in cell lysates was similar to that in water, under all storage conditions. In contrast, the survival of FCV, SaV, and TV was differentially enhanced, under different storage conditions, by removing cell lysates. Following semipurification, viruses showed similar persistence to each other on lettuce stored under all conditions, with the exception of ultracentrifugation-purified FCV, which showed a higher inactivation rate than MNV at 4°C for 14 days. In conclusion, the presence of cell lysates in viral suspensions underestimated the survivability of these surrogate viruses, while viral semipurification revealed similar survivabilities on postharvest lettuce leaves. PMID:26002891

  11. Age-Specific Incidence Rates for Norovirus in the Community and Presenting to Primary Healthcare Facilities in the United Kingdom.

    PubMed

    O'Brien, Sarah J; Donaldson, Anna L; Iturriza-Gomara, Miren; Tam, Clarence C

    2016-02-01

    In a prospective, population-based cohort study and a study of primary-healthcare consultations, we had a rare opportunity to estimate age-specific rates of norovirus-associated infectious intestinal disease in the United Kingdom. Rates in children aged <5 years were significantly higher than those for other age groups in the community (142.6 cases per 1000 person-years [95% confidence interval {CI}, 99.8-203.9] vs 37.6 [95% CI, 31.5-44.7]) and those for individuals presenting to primary healthcare (14.4 cases per 1000 person-years [95% CI, 8.5-24.5] vs 1.4 [95% CI, .9-2.0]). Robust incidence estimates are crucial for vaccination policy makers. This study emphasises the impact of norovirus-associated infectious intestinal disease, especially in children aged <5 years. PMID:26744427

  12. A Structural Study of Norovirus 3C Protease Specificity: Binding of a Designed Active Site-Directed Peptide Inhibitor†

    PubMed Central

    2010-01-01

    Noroviruses are the major cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.7 Å resolution. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, which is based on the most rapidly cleaved recognition sequence in the 200 kDa polyprotein substrate, reacts covalently through its propenyl ethyl ester group (X) with the active site nucleophile, Cys 139. The structure permits, for the first time, the identification of substrate recognition and binding groups in a noroviral 3C protease and thus provides important new information for the development of antiviral prophylactics. PMID:21128685

  13. The Murine Norovirus Core Subgenomic RNA Promoter Consists of a Stable Stem-Loop That Can Direct Accurate Initiation of RNA Synthesis

    PubMed Central

    Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C. Cheng

    2014-01-01

    ABSTRACT All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3′ of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. PMID:25392209

  14. A theoretical approach to using faecal indicator data to model norovirus concentration in surface water for QMRA: Glomma River, Norway.

    PubMed

    Petterson, Susan R; Stenström, Thor Axel; Ottoson, Jakob

    2016-03-15

    Monitoring of faecal indicator organisms, such as Escherichia coli, in environmental and drinking waters is inadequate for the protection public health, primarily due to the poor relationship between E. coli and the occurrence of human pathogens, especially viruses, in environmental samples. Nevertheless, measurements of faecal indicator organisms within the risk based approach, can provide valuable information related to the magnitude and variability of faecal contamination, and hence provide insight into the expected level of potential pathogen contamination. In this study, a modelling approach is presented that estimates the concentration of norovirus in surface water relying on indicator monitoring data, combined with specific assumptions regarding the source of faecal contamination. The model is applied to a case study on drinking water treatment intake from the Glomma River in Norway. Norovirus concentrations were estimated in two sewage sources discharging into the river upstream of the drinking water offtake, and at the source water intake itself. The characteristics of the assumed source of faecal contamination, including the norovirus prevalence in the community, the size of the contributing population and the relative treatment efficacy for indicators and pathogens in the sewage treatment plant, influenced the magnitude and variability in the estimated norovirus concentration in surface waters. The modelling exercise presented is not intended to replace pathogen enumeration from environmental samples, but rather is proposed as a complement to better understand the sources and drivers of viruses in surface waters. The approach has the potential to inform sampling regimes by identifying when the best time would be to collect environmental samples; fill in the gaps between sparse datasets; and potentially extrapolate existing datasets in order to model rarer events such as an outbreak in the contributing population. In addition, and perhaps most

  15. Inactivation of Murine Norovirus on a Range of Copper Alloy Surfaces Is Accompanied by Loss of Capsid Integrity

    PubMed Central

    Summersgill, Emma N.; Keevil, C. William

    2014-01-01

    Norovirus is one of the most common causes of acute viral gastroenteritis. The virus is spread via the fecal-oral route, most commonly from infected food and water, but several outbreaks have originated from contamination of surfaces with infectious virus. In this study, a close surrogate of human norovirus causing gastrointestinal disease in mice, murine norovirus type 1 (MNV-1), retained infectivity for more than 2 weeks following contact with a range of surface materials, including Teflon (polytetrafluoroethylene [PTFE]), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. Persistence was slightly prolonged on ceramic surfaces. A previous study in our laboratory observed that dry copper and copper alloy surfaces rapidly inactivated MNV-1 and destroyed the viral genome. In this new study, we have observed that a relatively small change in the percentage of copper, between 70 and 80% in copper nickels and 60 and 70% in brasses, had a significant influence on the ability of the alloy to inactivate norovirus. Nickel alone did not affect virus, but zinc did have some antiviral effect, which was synergistic with copper and resulted in an increased efficacy of brasses with lower percentages of copper. Electron microscopy of purified MNV-1 that had been exposed to copper and stainless steel surfaces suggested that a massive breakdown of the viral capsid had occurred on copper. In addition, MNV-1 that had been exposed to copper and treated with RNase demonstrated a reduction in viral gene copy number. This suggests that capsid integrity is compromised upon contact with copper, allowing copper ion access to the viral genome. PMID:25452290

  16. The fate of murine norovirus and hepatitis A virus during preparation of fresh produce by cutting and grating.

    PubMed

    Wang, Qing; Erickson, Marilyn; Ortega, Ynes R; Cannon, Jennifer L

    2013-03-01

    Human noroviruses and hepatitis A virus (HAV) are commonly associated with outbreaks occurring in restaurant establishments and catered events. Food handlers are major contributing factors to foodborne illnesses initiated in the kitchen setting. In this study, transfer of HAV and murine norovirus (MNV-1), a human norovirus surrogate, between produce (cucumbers, strawberries, tomatoes, cantaloupes, carrots, and honeydew melons) and common kitchen utensils (graters and knives) was investigated. The extent of virus transfer to produce during utensil application, in the presence and the absence of food residue, and the impact of knife surface properties (sharp, dull, serrated) was also investigated. Transfer of MNV-1 and HAV from produce items, initially contaminated with ~5.5 log PFU, to knives and graters during application ranged from 0.9 to 5.1 log PFU. MNV-1 transfer to knives was the greatest for cucumbers, strawberries, and tomatoes, and the least for honeydew melons, while transfer of HAV to knives was greater for tomatoes and honeydew melons than strawberries, cantaloupes, and cucumbers. After preparation of a contaminated produce item, knife cross-contamination easily occurred as viruses were detected on almost all of the seven produce items successively prepared. Produce residues on utensils often resulted in less virus transfer when compared to utensils without residue accumulation. Knife surface properties did not impact virus transfer. The ease of virus transfer between produce and utensils demonstrated by the current study highlights the importance of efforts aimed toward preventing cross-contamination in the kitchen environment. PMID:23412721

  17. Association of host, agent and environment characteristics and the duration of incubation and symptomatic periods of norovirus gastroenteritis.

    PubMed

    Devasia, T; Lopman, B; Leon, J; Handel, A

    2015-08-01

    We analysed the reported duration of incubation and symptomatic periods of norovirus for a dataset of 1022 outbreaks, 64 of which reported data on the average incubation period and 87 on the average symptomatic period. We found the mean and median incubation periods for norovirus to be 32·8 [95% confidence interval (CI) 30·9-34·6] hours and 33·5 (95% CI 32·0-34·0) hours, respectively. For the symptomatic period we found the mean and median to be 44·2 (95% CI 38·9-50·7) hours and 43·0 (95% CI 36·0-48·0) hours, respectively. We further investigated how these average periods were associated with several reported host, agent and environmental characteristics. We did not find any strong, biologically meaningful associations between the duration of incubation or symptomatic periods and the reported host, pathogen and environmental characteristics. Overall, we found that the distributions of incubation and symptomatic periods for norovirus infections are fairly constant and showed little differences with regard to the host, pathogen and environmental characteristics we analysed. PMID:25483148

  18. Control of human norovirus surrogates in fresh foods by gaseous ozone and a proposed mechanism of inactivation.

    PubMed

    Predmore, Ashley; Sanglay, Gabe; Li, Jianrong; Lee, Ken

    2015-09-01

    Fresh produce is a major concern for transmission of foodborne enteric viruses as it is normally consumed with no heat treatments and minimal other processing to ensure safety. Commonly used sanitizers are ineffective at removing foodborne viruses from fresh produce. Thus the use of gaseous ozone for viral inactivation was investigated. Ozone has great potential for improved food safety because of four benefits: It is a potent sanitizer, it is effective against a wide range of microorganisms, it is permitted for food use as regulated by the U.S. FDA and several other nations, and it spontaneously decomposes to oxygen leaving no residue. This study determined the effectiveness of gaseous ozone for the sanitization of two norovirus surrogates (MNV-1 and TV) from both liquid media and popular fresh foods where viral contamination is common-lettuce and strawberries. Foods were treated with gaseous ozone at 6% wt/wt ozone in oxygen for 0, 10, 20, 30, and 40 min, and surviving viruses were quantified by viral plaque assay. Our results showed that gaseous ozone inactivated norovirus in both liquid media and fresh produce in a dose-dependent manner. These results are promising because ozone treatment significantly reduced two important norovirus surrogates in both liquid and food matrices. Viruses are generally more resistant to sanitation treatments than bacteria, thus gaseous ozone is an effective means to improve fresh produce safety. PMID:25998824

  19. Survival and transfer of murine norovirus 1, a surrogate for human noroviruses, during the production process of deep-frozen onions and spinach.

    PubMed

    Baert, Leen; Uyttendaele, Mieke; Vermeersch, Mattias; Van Coillie, Els; Debevere, Johan

    2008-08-01

    The reduction of murine norovirus 1 (MNV-1) on onions and spinach by washing was investigated as was the risk of contamination during the washing procedure. To decontaminate wash water, the industrial sanitizer peracetic acid (PAA) was added to the water, and the survival of MNV-1 was determined. In contrast to onions, spinach undergoes a heat treatment before freezing. Therefore, the resistance of MNV-1 to blanching of spinach was examined. MNV-1 genomic copies were detected with a real-time reverse transcription PCR assay in PAA-treated water and blanched spinach, and PFUs (representing infectious MNV-1 units) were determined with a plaque assay. A < or = 1-log reduction in MNV-1 PFUs was achieved by washing onion bulbs and spinach leaves. More than 3 log PFU of MNV-1 was transmitted to onion bulbs and spinach leaves when these vegetables were washed in water containing approximately 5 log PFU/ml. No decline of MNV-1 occurred in used industrial spinach wash water after 6 days at room temperature. A concentration of 20 ppm of PAA in demineralized water (pH 4.13) and in potable water (pH 7.70) resulted in reductions of 2.88 +/- 0.25 and 2.41 +/- 0.18 log PFU, respectively, after 5 min of exposure, but no decrease in number of genomic copies was observed. No reduction of MNV-1 PFUs was observed on frozen onions or spinach during storage for 6 months. Blanching spinach (80 degrees C for 1 min) resulted in at least 2.44-log reductions of infectious MNV-1, but many genomic copies were still present. PMID:18724752

  20. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    PubMed Central

    Fout, G. Shay; Cashdollar, Jennifer L.; Griffin, Shannon M.; Brinkman, Nichole E.; Varughese, Eunice A.; Parshionikar, Sandhya U.

    2016-01-01

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. This method was developed with the goal of having a standardized method for use in multiple analytical laboratories during monitoring period 3 of the Unregulated Contaminant Monitoring Rule. Herein we present the protocol for extraction of viral ribonucleic acid (RNA) from water sample concentrates and for quantitatively measuring enterovirus and norovirus concentrations using reverse transcription-quantitative PCR (RT-qPCR). Virus concentrations for the molecular assay are calculated in terms of genomic copies of viral RNA per liter based upon a standard curve. The method uses a number of quality controls to increase data quality and to reduce interlaboratory and intralaboratory variation. The method has been evaluated by examining virus recovery from ground and reagent grade waters seeded with poliovirus type 3 and murine norovirus as a surrogate for human noroviruses. Mean poliovirus recoveries were 20% in groundwaters and 44% in reagent grade water. Mean murine norovirus recoveries with the RT-qPCR assay were 30% in groundwaters and 4% in reagent grade water. PMID:26862985

  1. Expression of the Murine Norovirus (MNV) ORF1 Polyprotein Is Sufficient to Induce Apoptosis in a Virus-Free Cell Model

    PubMed Central

    Skilton, Rachel J.; Prince, Cynthia A.; Ward, Vernon K.; Lambden, Paul R.; Clarke, Ian N.

    2014-01-01

    Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruses. PMID:24599381

  2. Expression of the murine norovirus (MNV) ORF1 polyprotein is sufficient to induce apoptosis in a virus-free cell model.

    PubMed

    Herod, Morgan R; Salim, Omar; Skilton, Rachel J; Prince, Cynthia A; Ward, Vernon K; Lambden, Paul R; Clarke, Ian N

    2014-01-01

    Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruses. PMID:24599381

  3. An outbreak of norovirus gastroenteritis associated with a secondary water supply system in a factory in south China

    PubMed Central

    2013-01-01

    Background Between September 17 and October 3, 2009, hundreds of workers employed in a manufacturing factory in Shenzhen, a city in south China developed a sudden onset of acute gastroenteritis. A retrospective cohort study is designed to identify the risk factors and control this outbreak. Methods Information on demographic characteristics, working place, the history of contact with a person having diarrhea and/or vomiting, drink water preference and frequency, eating in the company cafeteria or outside the company, hand-washing habits and eating habits is included. Furthermore, in order to find the contamination source, we investigated the environment around the underground reservoir and collected water samples from the junction between municipal supply water system and underground reservoir to test potential bacteria and virus, examine the seepage tracks on the wall of the underground reservoir from the side of septic tank, and check the integrity and attitude of this lid. Relative risk was presented and Chi-square test was performed. All the analyses were performed with OpenEpi software version 2.3.1 online. Results The cohort study demonstrated that the workers who had direct drink water were 3.0 fold more likely to suffer from acute gastroenteritis than those who consumed commercial bottled water. The direct drinking water, water of the tank of buildings, and the underground reservoir were positive only for norovirus. Norovirus was also detected from stool and rectal swab samples from patients with acute gastroenteritis. The underground reservoir was found to be the primary contamination source. Further environmental investigation showed that the norovirus contaminated substance entered into the underground reservoir via access holes in lid covering this underground reservoir. Conclusion This acute gastroenteritis outbreak was caused by the secondary supply system contaminated by norovirus in this factory. The outbreak of gastroenteritis cases caused by

  4. Norovirus Symptoms

    MedlinePlus

    ... Infection, National Institutes of Health NoroCORE Food Virology Symptoms Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Español: SÃntomas Prevent Dehydration Drink plenty of liquids to replace fluids that ...

  5. Tracking and modeling norovirus transmission during mechanical slicing of globe tomatoes.

    PubMed

    Shieh, Y Carol; Tortorello, Mary Lou; Fleischman, Gregory J; Li, Di; Schaffner, Donald W

    2014-06-16

    Recent epidemiological evidence indicates that preparation of fresh produce for use as ingredients in ready-to-eat food in commercial settings has been a significant source of the norovirus (NoV) infections in the U.S. This research investigated the dissemination of NoV from a single tomato to many others via the use of an 11-horizontal blade slicer commonly found in restaurants or sandwich shops. A total of eight trials were conducted. The source of contamination in each trial was a soak-inoculated, air-dried globe tomato containing ~8log10 murine norovirus (MNV). Each trial began by slicing a single un-inoculated tomato in the slicer, followed by slicing an inoculated tomato. This was then followed by slicing 9 to 27 un-inoculated tomatoes. A similar and constant hand pressure on the slicer was used in every trial. Three slices from each tomato were collected for virus elution, concentration, and extraction before RT-PCR detection of MNV. The change in MNV per sliced tomato was averaged over all eight trials, and two mathematical models were fit to the average data using a logarithmic model or a power model. Regression analysis determined that the equation that best fit the data was y=-0.903∗ln(x)+7.945, where y=log10 MNV per slicing and x=tomato slicing number. An acceptable fit (R(2)=0.913) was indicated. The MNV levels transferred (y) generally decreased as the number of tomatoes sliced (x) increased, with some exceptions. Infrequent but erratic transfers, where the MNV level of a subsequent tomato was higher than that of a preceding tomato, occurred in later transfer of some trials. In contrast, the first and second transfers of each trial were always shown to have sharply decreased levels of MNV from the inoculum. The MNV log10 reduction per slicing event changes throughout the process: with a predicted 0.63log10 reduction from tomato 1 to tomato 2 (76% reduction); a 0.07log10 reduction predicted from tomato 13 to tomato 14 (a 14% reduction); and 0.03log10

  6. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting.

    PubMed

    Wang, Qing; Kniel, Kalmia E

    2016-01-01

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  7. Aqueous Extracts of Hibiscus sabdariffa Calyces Decrease Hepatitis A Virus and Human Norovirus Surrogate Titers.

    PubMed

    Joshi, Snehal S; Dice, Lezlee; D'Souza, Doris H

    2015-12-01

    Hibiscus sabdariffa extract is known to have antioxidant, anti-diabetic, and antimicrobial properties. However, their effects against foodborne viruses are currently unknown. The objective of this study was to determine the antiviral effects of aqueous extracts of H. sabdariffa against human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)) and hepatitis A virus (HAV) at 37 °C over 24 h. Individual viruses (~5 log PFU/ml) were incubated with 40 or 100 mg/ml of aqueous hibiscus extract (HE; pH 3.6), protocatechuic acid (PCA; 3 or 6 mg/ml, pH 3.6), ferulic acid (FA; 0.5 or 1 mg/ml; pH 4.0), malic acid (10 mM; pH 3.0), or phosphate buffered saline (pH 7.2 as control) at 37 °C over 24 h. Each treatment was replicated thrice and plaque assayed in duplicate. FCV-F9 titers were reduced to undetectable levels after 15 min with both 40 and 100 mg/ml HE. MNV-1 was reduced by 1.77 ± 0.10 and 1.88 ± 0.12 log PFU/ml after 6 h with 40 and 100 mg/ml HE, respectively, and to undetectable levels after 24 h by both concentrations. HAV was reduced to undetectable levels by both HE concentrations after 24 h. PCA at 3 mg/ml reduced FCV-F9 titers to undetectable levels after 6 h, MNV-1 by 0.53 ± 0.01 log PFU/ml after 6 h, and caused no significant change in HAV titers. FA reduced FCV-F9 to undetectable levels after 3 h and MNV-1 and HAV after 24 h. Transmission electron microscopy showed no conclusive results. The findings suggest that H. sabdariffa extracts have potential to prevent foodborne viral transmission. PMID:26143492

  8. Inactivation of the Tulane Virus, a Novel Surrogate for the Human Norovirus

    PubMed Central

    TIAN, PENG; YANG, DAVID; QUIGLEY, CHRISTINA; CHOU, MARISSA; JIANG, XI

    2014-01-01

    Human noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis epidemics. The culturable feline calicivirus and murine norovirus have been used extensively as surrogates to study HuNoV biology, as HuNoV does not grow in vitro. Additional efforts to identify new surrogates are needed, because neither of these common surrogates are truly intestinal pathogens. The newly described Tulane virus (TV) is a typical calicivirus, it is isolated from macaque stools, is cultivable in vitro, and recognizes human histo-blood group antigens. Therefore, TV is a promising surrogate for HuNoVs. In this study, we evaluated the resistance or stability of TV under various physical and environmental conditions by measuring a 50% reduction of tissue culture infective dose (TCID50) by using a TV cell culture system. Due to the nature of this virus, it is hard to produce a high-titer stock through tissue culture. In our study, the maximal reduction in virus titers was 5 D (D = 1 log) in heat-denaturation and EtOH experiments, and 4 D in UV, chlorine, and pH-stability experiments. Therefore in this study, we defined the inactivation of TV as reaching a TCID50/ml of 0 (a 4- to 5-D reduction in TCID50, depending on the detection limit). TV was inactivated after incubation at 63°C for 5 min, incubation at 56°C for 30 min (5 D), exposure to 60 mJ/cm2 of UVC radiation (4 D), or incubation at 300 ppm of free chlorine for 10 min (4 D). TV was shown to be stable from pH 3.0 to 8.0, though an obvious reduction in virus titer was observed at pH 2.5 and 9.0, and was inactivated at pH 10.0 (4 D). TV was resistant to a low concentration of EtOH (40% or lower) but was fully inactivated (5 D) by 50 to 70% EtOH after a short exposure (20 s). In contrast, quantitative real-time PCR was unable to detect, or poorly detected, virus titer reductions between treated and untreated samples described in this study. PMID:23575140

  9. Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus.

    PubMed

    Yakes, Betsy Jean; Papafragkou, Efstathia; Conrad, Stephen M; Neill, John D; Ridpath, Julia F; Burkhardt, William; Kulka, Michael; Degrasse, Stacey L

    2013-03-15

    The human noroviruses are the most common non-bacterial cause of gastroenteritis and are responsible for as much as 50% of all gastroenteritis outbreaks worldwide. Norovirus (NoV), a single stranded RNA virus, is highly contagious with an infectious dose of less than 100 viral particles. While techniques exist for the identification of NoV, the lack of a reliable cell culture system, NoV genetic variability, and time-consuming sample preparation steps required to isolate the virus (or its genome) prior to molecular based methods has hindered rapid virus detection. To better protect the public from virus-contaminated food and enable better detection in clinical and environmental samples, sensitive and selective methods with simple sample preparation are needed. Surface plasmon resonance (SPR) biosensors represent an emerging detection platform, and this approach has been applied to the rapid detection of foodborne small molecule toxins, protein toxins, and bacteria. This analytical technique, however, has yet to be fully investigated for rapid virus detection, especially for intact viral particles extracted from food matrices. For this study, the culturable, non-human pathogen feline calicivirus (FCV), which has similar morphology and is genetically related to NoV, was chosen as a surrogate virus for designing and evaluating an SPR assay. An antibody-based assay was performed by first immobilizing anti-FCV to an SPR chip surface and then directly measuring virus binding and subsequent secondary antibody binding. The resulting biosensor directly detected intact FCV particles with limits of detection of approximately 10(4)TCID50FCV/mL from purified cell culture lysates. In addition, intact virus detection in FCV-spiked oyster matrix was possible when using a simple extraction procedure and employing a secondary antibody to FCV for quantitation. The results from these preliminary studies show promise for the development of a rapid assay for detecting intact viruses

  10. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting

    PubMed Central

    Wang, Qing

    2015-01-01

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  11. Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses▿

    PubMed Central

    Mumphrey, Shannon M.; Changotra, Harish; Moore, Tara N.; Heimann-Nichols, Ellen R.; Wobus, Christiane E.; Reilly, Michael J.; Moghadamfalahi, Mana; Shukla, Deepti; Karst, Stephanie M.

    2007-01-01

    Human noroviruses are the major cause of nonbacterial epidemic gastroenteritis worldwide. However, little is known regarding their pathogenesis or the immune responses that control them because until recently there has been no small animal model or cell culture system of norovirus infection. We recently reported the discovery of the first murine norovirus, murine norovirus 1 (MNV-1), and its cultivation in macrophages and dendritic cells in vitro. We further defined interferon receptors and the STAT-1 molecule as critical in both resistance to MNV-1-induced disease in vivo and control of virus growth in vitro. To date, neither histopathological changes upon infection nor viral replication in wild-type mice has been shown. Here we extend our studies to demonstrate that MNV-1 replicates and rapidly disseminates to various tissues in immunocompetent mice and that infection is restricted by STAT1-dependent interferon responses at the levels of viral replication and virus dissemination. Infection of wild-type mice is associated with histopathological alterations in the intestine (mild inflammation) and the spleen (red pulp hypertrophy and white pulp activation); viral dissemination to the spleen, liver, lung, and lymph nodes; and low-level persistent infection in the spleen. STAT-1 inhibits viral replication in the intestine, prevents virus-induced apoptosis of intestinal cells and splenocytes, and limits viral dissemination to peripheral tissues. These findings demonstrate that murine norovirus infection of wild-type mice is associated with initial enteric seeding and subsequent extraintestinal spread, and they provide mechanistic evidence of the role of STAT-1 in controlling clinical norovirus-induced disease. PMID:17229692

  12. Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle

    SciTech Connect

    Hansmana, Grant S.; Taylor, David W.; Smith, Thomas J.; McLellan, Jason S.; Georgiev, Ivelin; Tame, Jeremy R.H.; Park, Sam-Yong; Yamazaki, Makoto; Gondaira, Fumio; Miki, Motohiro; Katayama, Kazuhiko; Murata, Kazuyoshi; Kwong, Peter D.

    2012-03-13

    Human noroviruses are genetically and antigenically highly divergent. Monoclonal antibodies raised in mice against one kind of norovirus virus-like particle (VLP), however, were found to have broad recognition. In this study, we present the crystal structure of the antigen-binding fragment (Fab) for one of these broadly reactive monoclonal antibodies, 5B18, in complex with the capsid-protruding domain from a genogroup II genotype 10 (GII.10) norovirus at 3.3-{angstrom} resolution and, also, the cryo-electron microscopy structure of the GII.10 VLP at {approx}10-{angstrom} resolution. The GII.10 VLP structure was more similar in overall architecture to the GV.1 murine norovirus virion than to the prototype GI.1 human norovirus VLP, with the GII.10 protruding domain raised {approx}15 {angstrom} off the shell domain and rotated {approx}40{sup o} relative to the GI.1 protruding domain. In the crystal structure, the 5B18 Fab bound to a highly conserved region of the protruding domain. Based on the VLP structure, this region is involved in interactions with other regions of the capsid and is buried in the virus particle. Despite the occluded nature of the recognized epitope in the VLP structure, enzyme-linked immunosorbent assay (ELISA) binding suggested that the 5B18 antibody was able to capture intact VLPs. Together, the results provide evidence that the norovirus particle is capable of extreme conformational flexibility, which may allow for antibody recognition of conserved surfaces that would otherwise be buried on intact particles.

  13. A systematic review of human norovirus survival reveals a greater persistence of human norovirus RT-qPCR signals compared to those of cultivable surrogate viruses.

    PubMed

    Knight, Angus; Haines, John; Stals, Ambroos; Li, Dan; Uyttendaele, Mieke; Knight, Alastair; Jaykus, Lee-Ann

    2016-01-01

    Human noroviruses (hNoV) are the single largest cause of acute gastroenteritis in the western world. The efficacy of hNoV control measures remains largely unknown, partly owing to the inability to grow the virus in vitro and partly to the large number of surrogate studies of unknown relevance. A systematic review of the persistence and survival of hNoV in foods and the environment was undertaken based upon PRISMA (preferred reporting items for systematic reviews and meta analyses) guidelines to answer the questions: (1) "What are the natural hNoV persistence characteristics in food and the environment?" and (2) "How can these properties be altered by applying physical and/or chemical treatments to foods or food contact surfaces?" Over 10,000 citations were screened using defined inclusion and exclusion criteria. One hundred and twenty-six (126) citations were identified for further evaluation and data were extracted based upon the conditions of study and treatment (e.g., treatment parameters, pH, and temperature, time, infectivity, and RT-qPCR results). Since the only markers for hNoV persistence and survival were RT-qPCR data and human challenge studies, citations for further analysis were restricted to only those that included data on hNoV behavior (using RT-qPCR) as compared directly to surrogate virus behavior (using both RT-qPCR and infectivity) in the same study, and clinical studies. Based on these criteria, a total of 12 independent studies (5 for thermal inactivation and 7 for available chlorine) and 3 human challenge studies were identified. RT-qPCR always underestimated reductions in surrogate virus titre as a function of treatment when compared to infectivity. The corresponding reductions in RT-qPCR signals for hNoV under comparable conditions were nearly always less than those observed for the surrogates. These relationships were statistically significant for heat when comparing persistence of hNoV RT-qPCR signals with surrogate MNV-1 RT-qPCR signals

  14. Crystallisation and preliminary X-ray diffraction analysis of the protease from Southampton norovirus complexed with a Michael-acceptor inhibitor

    SciTech Connect

    Coates, Leighton; Cooper, Jon; Hussey, Robert

    2008-01-01

    Noroviruses are the predominant cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional parts. Here, the crystallization of the recombinant protease from the Southampton norovirus is described. While the native crystals were found to diffract only to medium resolution (2.9 {angstrom}), cocrystals of an inhibitor complex diffracted X-rays to 1.7 {angstrom} resolution. The polypeptide inhibitor (Ac-EFQLQ-propenyl ethyl ester) possesses an amino-acid sequence designed to match the substrate specificity of the enzyme, but was synthesized with a reactive Michael acceptor group at the C-terminal end.

  15. Antiviral activity of Ecasol against feline calicivirus, a surrogate of human norovirus.

    PubMed

    Chander, Yogesh; Johnson, Thomas; Goyal, Sagar M; Russell, R J

    2012-12-01

    Human norovirus (NoV) is a major cause of acute gastroenteritis in closed settings such as hospitals, hotels and cruise ships. The virus survives on inanimate surfaces for extended periods of time, and environmental contamination has been implicated in its transmission. The disinfection of contaminated areas is important in controlling the spread of NoV infections. Neutral solutions of electrochemically activated (ECA)-anolyte have been shown to be powerful disinfectants against a broad range of bacterial pathogens. The active chemical ingredient is hypochlorous acid (HOCl), which is registered as an approved food contact surface sanitizer in the United States by the Environmental Protection Agency, pursuant to 40 CFR 180.940. We evaluated the antiviral activity of Ecasol (an ECA-anolyte) against feline calicivirus (FCV), a surrogate of NoV. FCV dried on plastic surfaces was exposed to Ecasol for 1, 2, or 5min. After exposure to Ecasol, the virus titers were compared with untreated controls to determine the virus inactivation efficacy after different contact times. Ecasol was found to decrease the FCV titer by >5log(10) within 1min of contact, indicating its suitability for inactivation of NoV on surfaces. PMID:23287613

  16. Human norovirus hyper-mutation revealed by ultra-deep sequencing.

    PubMed

    Cuevas, José M; Combe, Marine; Torres-Puente, Manoli; Garijo, Raquel; Guix, Susana; Buesa, Javier; Rodríguez-Díaz, Jesús; Sanjuán, Rafael

    2016-07-01

    Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. PMID:27094861

  17. Detection of noroviruses in shellfish and semiprocessed fishery products from a Belgian seafood company.

    PubMed

    Li, Dan; Stals, Ambroos; Tang, Qing-Juan; Uyttendaele, Mieke

    2014-08-01

    Shellfish have been implicated in norovirus (NoV) infection outbreaks worldwide. This study presents data obtained from various batches of shellfish and fishery products from a Belgian seafood company over a 6-month period. For the intact shellfish (oysters, mussels, and clams), 21 of 65 samples from 12 of 34 batches were positive for NoVs; 9 samples contained quantitative NoV levels at 3,300 to 14,300 genomic copies per g. For the semiprocessed fishery products (scallops and common sole rolls with scallop fragments), 29 of 36 samples from all eight batches were positive for NoVs; 17 samples contained quantitative NoV levels at 200 to 1,800 copies per g. This convenience study demonstrated the performance and robustness of the reverse transcription quantitative PCR detection and interpretation method and the added value of NoV testing in the framework of periodic control of seafood products bought internationally and distributed by a Belgian seafood processing company to Belgian food markets. PMID:25198595

  18. Antiviral effects of black raspberry (Rubus coreanus) seed extract and its polyphenolic compounds on norovirus surrogates.

    PubMed

    Lee, Ji-Hye; Bae, Sun Young; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Chung, Yeon Bin; Gowda K, Giri; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-01

    Black raspberry seeds, a byproduct of wine and juice production, contain large quantities of polyphenolic compounds. The antiviral effects of black raspberry seed extract (RCS) and its fraction with molecular weight less than 1 kDa (RCS-F1) were examined against food-borne viral surrogates, murine norovirus-1 (MNV-1) and feline calicivirus-F9 (FCV-F9). The maximal antiviral effect was achieved when RCS or RCS-F1 was added simultaneously to cells with MNV-1 or FCV-F9, reaching complete inhibition at 0.1-1 mg/mL. Transmission electron microscopy (TEM) images showed enlarged viral capsids or disruption (from 35 nm to up to 100 nm) by RCS-F1. Our results thus suggest that RCS-F1 can interfere with the attachment of viral surface protein to host cells. Further, two polyphenolic compounds derived from RCS-F1, cyanidin-3-glucoside (C3G) and gallic acid, identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against the viruses. C3G was suggested to bind to MNV-1 RNA polymerase and to enlarge viral capsids using differential scanning fluorimetry and TEM, respectively. PMID:26983677

  19. International collaborative study to compare reverse transcriptase PCR assays for detection and genotyping of noroviruses.

    PubMed

    Vinjé, Jan; Vennema, Harry; Maunula, Leena; von Bonsdorff, Carl-Henrik; Hoehne, Marina; Schreier, Eckart; Richards, Alison; Green, Jon; Brown, David; Beard, Suzanne S; Monroe, Stephan S; de Bruin, Erwin; Svensson, Lennart; Koopmans, Marion P G

    2003-04-01

    To allow more rapid and internationally standardized assessment of the spread of noroviruses (previously called Norwalk-like viruses [NLVs]) as important food-borne pathogens, harmonization of methods for their detection is needed. Diagnosis of NLVs in clinical diagnostic laboratories is usually performed by reverse transciptase PCR (RT-PCR) assays. In the present study, the performance of five different RT-PCR assays for the detection of NLVs was evaluated in an international collaborative study by five laboratories in five countries with a coded panel of 91 fecal specimens. The assays were tested for their sensitivity, detection limit, and ease of standardization. In total, NLVs could be detected by at least one RT-PCR assay in 69 (84%) of the samples that originally tested positive. Sensitivity ranged from 52 to 73% overall and from 54 to 100% and 58 to 85% for genogroup I and II viruses, respectively. In all, 64% of the false-negative results were obtained with a set of diluted stools (n = 20) that may have lost quality upon storage. Sensitivity was improved when these samples were excluded from analysis. No one single assay stood out as the best, although the p1 assay demonstrated the most satisfactory overall performance. To promote comparability of data, this assay will be recommended for newly starting groups in future collaborative studies. PMID:12682125

  20. Foodborne gastroenteritis outbreak in an Austrian healthcare facility caused by asymptomatic, norovirus-excreting kitchen staff.

    PubMed

    Schmid, D; Kuo, H-W; Hell, M; Kasper, S; Lederer, I; Mikula, C; Springer, B; Allerberger, F

    2011-03-01

    An outbreak of norovirus GGII.4 2006b affected an Austrian 600-bed healthcare facility from 15 to 27 March 2009. A total of 204 patients, residents and staff fitted the outbreak case definition; 17 (8.3%) were laboratory-confirmed. Foodborne origin was suspected in the 114 patient and resident cases with onset 15-18 March. A case-cohort study was performed to test the hypothesis that consumption of dishes offered on 14, 15 and 16 March (risk days) was associated with increased risk of infection. Data on food exposure of 62% (317/510) of the patient and resident cohort were available for a simultaneous retrospective cohort study. The case-cohort analysis revealed that consumption of sliced cold sausage offered on 15 March [odds ratio (OR): 3.98; 95% confidence interval (CI): 1.18-14.1], a meat dish with salad (adjusted OR: 2.2; 95% CI: 1.19-4.08) and a rolled spinach pancake (adjusted OR: 2.17; 95% CI: 1.27-3.71) on 16 March were independent risk factors. It is likely that one of the five asymptomatic excretors among the kitchen staff on duty on the risk days was the source of food contamination. The case-cohort study design was found to be a valid alternative to the retrospective cohort study design for the investigation of a suspected foodborne outbreak in a large cohort. PMID:21272956

  1. Prevalence of human norovirus and Clostridium difficile coinfections in adult hospitalized patients

    PubMed Central

    Stokely, Janelle N; Niendorf, Sandra; Taube, Stefan; Hoehne, Marina; Young, Vincent B; Rogers, Mary AM; Wobus, Christiane E

    2016-01-01

    Objective Human norovirus (HuNoV) and Clostridium difficile are common causes of infectious gastroenteritis in adults in the US. However, limited information is available regarding HuNoV and C. difficile coinfections. Our study was designed to evaluate the prevalence of HuNoV and C. difficile coinfections among adult patients in a hospital setting and disease symptomatology. Study design and setting For a cross-sectional analysis, 384 fecal samples were tested for the presence of C. difficile toxins from patients (n=290), whom the provider suspected of C. difficile infections. Subsequent testing was then performed for HuNoV genogroups I and II. Multinomial logistic regression was performed to determine symptoms more frequently associated with coinfections. Results The final cohort consisted of the following outcome groups: C. difficile (n=196), C. difficile + HuNoV coinfection (n=40), HuNoV only (n=12), and neither (n=136). Coinfected patients were more likely to develop nausea, gas, and abdominal pain and were more likely to seek treatment in the winter season compared with individuals not infected or infected with either pathogen alone. Conclusion Our study revealed that patients with coinfection are more likely to experience certain gastrointestinal symptoms, in particular abdominal pain, suggesting an increased severity of disease symptomatology in coinfected patients. PMID:27418856

  2. The presence of genogroup II norovirus in retail shellfish from seven coastal cities in China.

    PubMed

    Ma, Li-ping; Zhao, Feng; Yao, Lin; Li, Xin-guang; Zhou, De-qing; Zhang, Rui-ling

    2013-06-01

    Noroviruses (NoVs) are commonly occurring pathogens that cause gastroenteritis. Outbreaks of viral diseases have often been ascribed to the consumption of contaminated shellfish. Our objective was to evaluate the presence and contamination levels of NoV in shellfish sold at seafood markets in China. We tested 840 shellfish samples (Crassostrea gigas, Mytilus edulis, Azumapecten farreri, SinoNoVacula constricta, Scapharca subcrenata, Ruditapes philippinarum) that were collected from seven cities around the Yellow and Bohai Seas in China between December 2009 and November 2011. We used real-time RT-PCR to detect NoV in purified concentrates from the stomach and digestive diverticula of these shellfish. NoV was detected in 19.35 % (N = 155), 16.67 % (N = 114), 5.70 % (N = 158), 8.82 % (N = 136), 13.74 % (N = 131), and 16.44 % (N = 146) of oyster, mussel, scallop, razor clam, ark shell, and clam samples, respectively. The average detection rate was 13.33 % (112/840). Nucleotide sequencing of the NoV RT-PCR products demonstrated that all strains belonged to NoV genotype GII.12, except two that belonged to GI.3. More than 10² copies of the NoV genome were detected in 69 of 112 positive shellfish samples. Our results suggest that ~13 % of shellfish harbor NoV, and GII.12 NoV is the primary strain in shellfish purchased at markets in seven coastal cities in China. PMID:23412724

  3. Identification and molecular characterization of norovirus in são paulo state, Brazil.

    PubMed

    Morilla, Simone Guadagnucci; Cilli, Audrey; de Cássia Compagnoli Carmona, Rita; Timenetsky, Maria do Carmo Sampaio Tavares

    2008-10-01

    Norovirus (NoV), previously called Norwalk-like virus, represents an important group of human pathogens associated with outbreaks of nonbacterial gastroenteritis. Epidemiological surveys of outbreaks have shown that the most important routes of transmission are person-to-person contacts and contaminated food and water, with the virus affecting adults and children. NoV is classified into genogroups, being genogroups GI, GII and GIV found in humans. In view of the high genetic diversity of NoV and the lack of information about this virus in Brazil, the aim of the present study was the molecular characterization of NoV isolated from diarrheic stool samples of patients from São Paulo State. In this study, 204 stool specimens collected during diarrhea outbreaks were analyzed by RT-PCR, and 12 were sequenced for genogroup confirmation. One-step PCR was performed in order to amplify the B region of ORF 1 using the MON 431, 432, 433 and 434 primer pool. From total, 32 (15.7%) stool specimens were positive for NoV genogroup GII. Comparison of the sequences of the PCR products to GenBank sequences showed 88.8% to 98.8% identity, suggesting the presence of genogroup GII in gastroenteritis outbreaks in São Paulo State. PMID:24031277

  4. Identification and Molecular Characterization of Norovirus in São Paulo State, Brazil

    PubMed Central

    Morilla, Simone Guadagnucci; Cilli, Audrey; de Cássia Compagnoli Carmona, Rita; Timenetsky, Maria do Carmo Sampaio Tavares

    2008-01-01

    Norovirus (NoV), previously called Norwalk-like virus, represents an important group of human pathogens associated with outbreaks of nonbacterial gastroenteritis. Epidemiological surveys of outbreaks have shown that the most important routes of transmission are person-to-person contacts and contaminated food and water, with the virus affecting adults and children. NoV is classified into genogroups, being genogroups GI, GII and GIV found in humans. In view of the high genetic diversity of NoV and the lack of information about this virus in Brazil, the aim of the present study was the molecular characterization of NoV isolated from diarrheic stool samples of patients from São Paulo State. In this study, 204 stool specimens collected during diarrhea outbreaks were analyzed by RT-PCR, and 12 were sequenced for genogroup confirmation. One-step PCR was performed in order to amplify the B region of ORF 1 using the MON 431, 432, 433 and 434 primer pool. From total, 32 (15.7%) stool specimens were positive for NoV genogroup GII. Comparison of the sequences of the PCR products to GenBank sequences showed 88.8% to 98.8% identity, suggesting the presence of genogroup GII in gastroenteritis outbreaks in São Paulo State. PMID:24031277

  5. Neutral Red Assay for Murine Norovirus Replication and Detection in a Mouse

    PubMed Central

    González-Hernández, Mariam Bernadette; Perry, Jeffrey William; Wobus, Christiane E.

    2016-01-01

    Neutral red (NR) is a dye that must be actively imported into the cell, and, therefore, the dye has been used for decades to selectively stain living cells. In addition, NR can also be incorporated into virus particles, although the mechanism behind this is poorly understood. Once encapsulated into the virion, NR, a light sensitive dye, can be photoactivated to inactivate the virus. The proposed mechanism explaining this observation is that activation of NR allows the dye to cross-link viral genome to viral capsid and thus preventing viral uncoating and infection. To study the early events of murine norovirus (MNV)-host interaction, light-sensitive NR-containing MNV is used to distinguish between input virus (i.e., NR-containing virus) and replicated virus (i.e., NR-free virus). This protocol describes the incorporation of NR into MNV capsids and the use of these virions for detection of viral replication in a mouse and in tissue culture by standard plaque assay. The same technique is also used for study of poliovirus replication (1–3). Thus, there is the potential that this technique can be used for additional non-enveloped viruses. However, this has to be tested on a case-by-case basis as unpublished data on feline calicivirus suggests not all viruses may be able to stably incorporate NR into their capsid (J. Parker, personal communication).

  6. Infectivity of GI and GII noroviruses established from oyster related outbreaks.

    PubMed

    Thebault, Anne; Teunis, Peter F M; Le Pendu, Jacques; Le Guyader, Françoise S; Denis, Jean-Baptiste

    2013-06-01

    Noroviruses (NoVs) are the major cause of acute epidemic gastroenteritis in industrialized countries. Outbreak strains are predominantly genogroup II (GII) NoV, but genogroup I (GI) strains are regularly found in oyster related outbreaks. The prototype Norwalk virus (GI), has been shown to have high infectivity in a human challenge study. Whether other NoVs are equally infectious via natural exposure remains to be established. Human susceptibility to NoV is partly determined by the secretor status (Se+/-). Data from five published oyster related outbreaks were analyzed in a Bayesian framework. Infectivity estimates where high and consistent with NV(GI) infectivity, for both GII and GI strains. The median and CI95 probability of infection and illness, in Se+ subjects, associated with exposure to a mean of one single NoV genome copy were around 0.29[0.015-0.61] for GI and 0.4[0.04-0.61] for GII, and for illness 0.13[0.007-0.39] for GI and 0.18[0.017-0.42] for GII. Se- subjects were strongly protected against infection. The high infectivity estimates for Norwalk virus GI and GII, makes NoVs critical target for food safety regulations. PMID:23746803

  7. Gastroenteritis Outbreak Caused by Waterborne Norovirus at a New Zealand Ski Resort▿

    PubMed Central

    Hewitt, Joanne; Bell, Derek; Simmons, Greg C.; Rivera-Aban, Malet; Wolf, Sandro; Greening, Gail E.

    2007-01-01

    In July 2006, public health services investigated an outbreak of acute gastroenteritis among staff and visitors of a popular ski resort in southern New Zealand. The source of the outbreak was a drinking water supply contaminated by human sewage. The virological component of the investigation played a major role in confirming the source of the outbreak. Drinking water, source stream water, and 31 fecal specimens from gastroenteritis outbreak cases were analyzed for the presence of norovirus (NoV). Water samples were concentrated by ultrafiltration, and real-time reverse transcription-PCR (RT-PCR) was used for rapid detection of NoV from both water and fecal samples. The implicated NoV strain was further characterized by DNA sequencing. NoV genogroup GI/5 was identified in water samples and linked case fecal specimens, providing clear evidence of the predominant pathogen and route of exposure. A retrospective cohort study demonstrated that staff who consumed drinking water from the resort supply were twice as likely to have gastroenteritis than those who did not. This is the first time that an outbreak of gastroenteritis in New Zealand has been conclusively linked to NoV detected in a community water supply. To our knowledge, this is the first report of the use of ultrafiltration combined with quantitative real-time RT-PCR and DNA sequencing for investigation of a waterborne NoV outbreak. PMID:17965205

  8. Presence of human noroviruses on bathroom surfaces: a review of the literature.

    PubMed

    Leone, Cortney M; Tang, Chaoyi; Sharp, Julia; Jiang, Xiuping; Fraser, Angela

    2016-08-01

    Enteric viruses are the most common cause of acute gastroenteritis worldwide with most cases of illness attributed to caliciviruses, such as human noroviruses (HuNoV). While environmental transmission of HuNoV is reported to be low, environmental surfaces could be a source of secondary transmission. As many vomiting/fecal episodes occur in bathrooms, bathroom surfaces could be an important vehicle for transmitting HuNoV. We systematically reviewed the literature to determine the presence of HuNoV on bathroom surfaces. Our review included 22 eligible studies conducted in commercial and institutional settings. Under outbreak conditions, 11 studies reported detection rates of 20-100 %. Six studies implicated bathroom surfaces as primary sources of HuNoV infection while three reported HuNoV present on bathroom surfaces but indicated different primary sources. Under non-outbreak conditions, five studies reported detection rates of 2-17 %. Factors associated with HuNoV presence in bathrooms included population density, setting type, employee numbers, food handler knowledge, awareness, and behaviours, and cleaning/disinfecting procedures. Our review suggests bathrooms could be vehicles that transmit HuNoV under both outbreak and non-outbreak conditions. PMID:26786956

  9. Seroprevalence of norovirus genogroup IV antibodies among humans, Italy, 2010-2011.

    PubMed

    Di Martino, Barbara; Di Profio, Federica; Ceci, Chiara; Di Felice, Elisabetta; Green, Kim Y; Bok, Karin; De Grazia, Simona; Giammanco, Giovanni M; Massirio, Ivano; Lorusso, Eleonora; Buonavoglia, Canio; Marsilio, Fulvio; Martella, Vito

    2014-11-01

    Noroviruses (NoVs) of genogroup IV (GIV) (Alphatron-like) cause infections in humans and in carnivorous animals such as dogs and cats. We screened an age-stratified collection of serum samples from 535 humans in Italy, using virus-like particles of genotypes GIV.1, circulating in humans, and GIV.2, identified in animals, in ELISA, in order to investigate the prevalence of GIV NoV-specific IgG antibodies. Antibodies specific for both genotypes were detected, ranging from a prevalence of 6.6% to 44.8% for GIV.1 and from 6.8% to 15.1% for GIV.2 among different age groups. These data are consistent with a higher prevalence of GIV.1 strains in the human population. Analysis of antibodies against GIV.2 suggests zoonotic transmission of animal NoVs, likely attributable to interaction between humans and domestic pets. This finding, and recent documentation of human transmission of NoVs to dogs, indicate the possibility of an evolutionary relationship between human and animal NoVs. PMID:25340375

  10. Detection and phylogenetic analysis of hepatitis A virus and norovirus in marine recreational waters of Mexico.

    PubMed

    Félix, Josefina León; Fernandez, Yuridia Cháidez; Velarde-Félix, Jesús Salvador; Torres, Benigno Valdez; Cháidez, Cristobal

    2010-06-01

    An investigation was conducted to determine hepatitis A virus (HAV) and norovirus (NV) presence in marine recreational waters (MRWs) from two Mexican tourists beaches (Altata and Mazatlan), located at the northwestern state of Sinaloa, Mexico. Also, Binary Logistic Regression (BLR) analyses were conducted between physicochemical parameters (temperature, turbidity and salinity) and viral organisms (HAV and NV). A total of 32 MRWs samples were collected from April to July of 2006. Samples were processed according to the Environmental Protection Agency (EPA) adsorption-elution method. Overall, 18 MRWs samples (56.3%) were positive for HAV and NV; 4 (22.2%) were obtained from Altata and 14 (77.8%) from Mazatlan. HAV was detected in 3 MRWs samples (9.4%) and NV in 15 samples (46.8%). Phylogenetic analysis showed the presence of genotype I sub genotype B for HAV and NV genogroup II. BLR analysis showed significant correlations between NV and physicochemical parameters (temperature, turbidity and salinity) (p=0.017, p=0.08, p=0.048, respectively). No significant correlation between physicochemical parameters and HAV was observed. The results indicated that MRW quality of Sinaloa beaches is affected by human faecal pollution. Viral surveillance programs should be implemented to minimize health risks to bathers. PMID:20154390

  11. A Waterborne Gastroenteritis Outbreak Caused by Norovirus GII.17 in a Hotel, Hebei, China, December 2014.

    PubMed

    Qin, Meng; Dong, Xiao-Gen; Jing, Yan-Yan; Wei, Xiu-Xia; Wang, Zhao-E; Feng, Hui-Ru; Yu, Hong; Li, Jin-Song; Li, Jie

    2016-09-01

    Norovirus (NoV) is responsible for an estimated 90 % of all epidemic nonbacterial outbreaks of gastroenteritis worldwide. Waterborne outbreaks of NoV are commonly reported. A novel GII.17 NoV strain emerged as a major cause of gastroenteritis outbreaks in China during the winter of 2014/2015. During this time, an outbreak of gastroenteritis occurred at a hotel in a ski park in Hebei Province, China. Epidemiological investigations indicated that one water well, which had only recently been in use, was the probable source. GII.17 NoV was detected by real-time reverse-transcription polymerase chain reaction from samples taken from cases, from concentrated water samples from water well, and from the nearby sewage settling tank. Nucleotide sequences of NoV extracted from clinical and water specimens were genetically identical and had 99 % homology with Beijing/CHN/2015. All epidemiological data indicated that GII.17 NoV was responsible for this outbreak. This is the first reported laboratory-confirmed waterborne outbreak caused by GII.17 NoV genotype in China. Strengthening management of well drinking water and systematica monitoring of NoV is essential for preventing future outbreaks. PMID:27084118

  12. Persistence and Elimination of Human Norovirus in Food and on Food Contact Surfaces: A Critical Review.

    PubMed

    Cook, Nigel; Knight, Angus; Richards, Gary P

    2016-07-01

    This critical review addresses the persistence of human norovirus (NoV) in water, shellfish, and processed meats; on berries, herbs, vegetables, fruits, and salads; and on food contact surfaces. The review focuses on studies using NoV; information from studies involving only surrogates is not included. It also addresses NoV elimination or inactivation by various chemical, physical, or processing treatments. In most studies, persistence or elimination was determined by detection and quantification of the viral genome, although improved methods for determining infectivity have been proposed. NoV persisted for 60 to 728 days in water, depending on water source. It also persisted on berries, vegetables, and fruit, often showing <1-log reduction within 1 to 2 weeks. NoV was resilient on carpets, Formica, stainless steel, polyvinyl chloride, and ceramic surfaces; during shellfish depuration; and to repeated freeze-thaw cycles. Copper alloy surfaces may inactivate NoV by damaging viral capsids. Disinfection was achieved for some foods or food contact surfaces using chlorine, calcium or sodium hypochlorite, chlorine dioxide, high hydrostatic pressure, high temperatures, pH values >8.0, freeze-drying, and UV radiation. Ineffective disinfectants included hydrogen peroxide, quaternary ammonium compounds, most ethanol-based disinfectants, and antiseptics at normally used concentrations. Thorough washing of herbs and produce was effective in reducing, but not eliminating, NoV in most products. Washing hands with soap generally reduced NoV by <2 log. Recommendations for future research needs are provided. PMID:27357051

  13. ISG15 Functions as an Interferon-Mediated Antiviral Effector Early in the Murine Norovirus Life Cycle

    PubMed Central

    Rodriguez, Marisela R.; Monte, Kristen; Thackray, Larissa B.

    2014-01-01

    ABSTRACT Human noroviruses (HuNoV) are the leading cause of nonbacterial gastroenteritis worldwide. Similar to HuNoV, murine noroviruses (MNV) are enteric pathogens spread via the fecal-oral route and have been isolated from numerous mouse facilities worldwide. Type I and type II interferons (IFN) restrict MNV-1 replication; however, the antiviral effectors impacting MNV-1 downstream of IFN signaling are largely unknown. Studies using dendritic cells, macrophages, and mice deficient in free and conjugated forms of interferon-stimulated gene 15 (ISG15) revealed that ISG15 conjugation contributes to protection against MNV-1 both in vitro and in vivo. ISG15 inhibited a step early in the viral life cycle upstream of viral genome transcription. Directly transfecting MNV-1 RNA into IFN-stimulated mouse embryonic fibroblasts (MEFs) and bone marrow-derived dendritic cells (BMDC) lacking ISG15 conjugates bypassed the antiviral activity of ISG15, further suggesting that ISG15 conjugates restrict the MNV-1 life cycle at the viral entry/uncoating step. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of early stages of MNV-1 replication. IMPORTANCE Type I IFNs are important in controlling murine norovirus 1 (MNV-1) infections; however, the proteins induced by IFNs that restrict viral growth are largely unknown. This report reveals that interferon-stimulated gene 15 (ISG15) mitigates MNV-1 replication both in vitro and in vivo. In addition, it shows that ISG15 inhibits MNV-1 replication by targeting an early step in the viral life cycle, MNV-1 entry and/or uncoating. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of viral entry/uncoating. PMID:24899198

  14. Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates.

    PubMed

    Cannon, Jennifer L; Aydin, Ali; Mann, Amy N; Bolton, Stephanie L; Zhao, Tong; Doyle, Michael P

    2012-08-01

    Human noroviruses are the most common etiologic agent of foodborne illness in the United States. The inability to culture human noroviruses in the laboratory necessitates the use of surrogate viruses such as murine norovirus (MNV-1) and feline calicivirus (FCV) for inactivation studies. In this study, a novel sanitizer of organic acid (levulinic acid) plus the anionic detergent sodium dodecyl sulfate (SDS) was evaluated. Viruses were treated with levulinic acid (0.5 to 5%), SDS (0.05 to 2%), or combinations of levulinic acid plus SDS (1:10 solution of virus to sanitizer). MNV-1 inoculated onto stainless steel also was treated with a 5% levulinic acid plus 2% SDS liquid or foaming solution. Log reductions of viruses were determined with a plaque assay. Neither levulinic acid nor SDS alone were capable of inactivating MNV-1 or FCV, resulting in a ≤0.51-log reduction of the infectious virus titer. However, the combination of 0.5% levulinic acid plus 0.5% SDS inactivated both surrogates by 3 to 4.21 log PFU/ml after 1 min of exposure. Similarly, MNV-1 inoculated onto stainless steel was reduced by >1.50 log PFU/ml after 1 min and by >3.3 log PFU/ml after 5 min of exposure to a liquid or foaming solution of 5% levulinic acid plus 2% SDS. The presence of organic matter (up to 10%) in the virus inoculum did not significantly affect sanitizer efficacy. The fact that both of the active sanitizer ingredients are generally recognized as safe to use as food additives by the U.S. Food and Drug Administration further extends its potential in mitigating foodborne disease. PMID:22856583

  15. Lack of transmission of murine norovirus to mice via in vitro fertilization, intracytoplasmic sperm injection, and ovary transplantation.

    PubMed

    Raspa, Marcello; Mahabir, Esther; Fray, Martin; Volland, Ruth; Scavizzi, Ferdinando

    2016-07-15

    Since its discovery in 2003, murine norovirus (MNV) is still endemic in many rodent animal facilities. Our aim was to determine the risk of transmission of MNV (91% homology to MNV3) to embryo recipients and pups via assisted reproductive technologies, especially those which compromise the integrity of the zona pellucida. In vitro fertilization (IVF), assisted in vitro fertilization (AIVF) with reduced glutathione, intracytoplasmic sperm injection, and ovary transplantation were performed. Murine norovirus was detected by qualitative and quantitative reverse transcription polymerase chain reaction. After natural infection of immunocompetent C57BL/6NTacCnrm and immunodeficient athymic nude mice with MNV, the mesenteric lymph nodes, small intestine, spleen, liver, lung, brain, ovary, and testis were infected at specific intervals for more than a 1-year period. At Week 12, the number of viral genomes per milligram of gonad from both strains was 20 to 50. Murine norovirus strictly adhered to spermatozoa collected from infected mice because three washes did not remove MNV from the sperm. After using MNV-positive sperm for IVF, AIVF, and intracytoplasmic sperm injection, 27 to 30 genomes were detected in IVF (n = 100) and AIVF (n = 100) embryos from both mouse strains. Approximately 87% of MNV detected in these embryos was found in the zona pellucida. However, all embryo transfer recipients, pups, and ovary recipients were MNV-negative. The results indicate that manipulation of the germplasm through assisted reproductive technologies did not lead to transmission of MNV to mice. This may be because of the absence of an infectious dose or failure of the MNV strain to replicate effectively in developing embryos and the reproductive tract. PMID:26972226

  16. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belém, northern Brazil

    PubMed Central

    Siqueira, Jones Anderson Monteiro; Linhares, Alexandre da Costa; Gonçalves, Maryelle dos Santos; de Carvalho, Thaís Cristina Nascimento; Justino, Maria Cleonice Aguiar; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol

    2013-01-01

    Several viruses have been associated with acute gastroenteritis (AGE), and group A rotavirus (RVA) and nor-ovirus (NoV) are the most prevalent. This study aimed to assess their prevalence among children hospitalised for diarrhoea during a three-year surveillance study. From May 2008-April 2011, overall positivity rates of 21.6% (628/2904) and 35.4% (171/483) were observed for RVA and NoV, respectively. The seasonality observed indicated distinct patterns when both viruses were compared. This finding may explain why hospitalisation for AGE remains constant throughout the year. Continuous AGE monitoring is needed to better assess the patterns of infection. PMID:23903985

  17. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belém, northern Brazil.

    PubMed

    Siqueira, Jones Anderson Monteiro; Linhares, Alexandre da Costa; Gonçalves, Maryelle dos Santos; Carvalho, Thaís Cristina Nascimento de; Justino, Maria Cleonice Aguiar; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol

    2013-08-01

    Several viruses have been associated with acute gastroenteritis (AGE), and group A rotavirus (RVA) and norovirus (NoV) are the most prevalent. This study aimed to assess their prevalence among children hospitalised for diarrhoea during a three-year surveillance study. From May 2008-April 2011, overall positivity rates of 21.6% (628/2904) and 35.4% (171/483) were observed for RVA and NoV, respectively. The seasonality observed indicated distinct patterns when both viruses were compared. This finding may explain why hospitalisation for AGE remains constant throughout the year. Continuous AGE monitoring is needed to better assess the patterns of infection. PMID:23903985

  18. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses

    PubMed Central

    Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi

    2016-01-01

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae. The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances. PMID:27563051

  19. Infection with the Persistent Murine Norovirus Strain MNV-S99 Suppresses IFN-Beta Release and Activation of Stat1 In Vitro

    PubMed Central

    Niendorf, Sandra; Klemm, Uwe; Mas Marques, Andreas; Bock, C.-Thomas; Höhne, Marina

    2016-01-01

    Norovirus infection is the main cause of epidemic non-bacterial gastroenteritis in humans. Although human norovirus (HuNoV) infection is self-limiting, it can persist for extended periods of time in immune deficient patients. Due to the lack of robust cell culture and small animal systems, little is known about HuNoV pathogenicity. However, murine norovirus (MNV) can be propagated in cell culture and is used as a model to study norovirus infection. Several MNV are known to persist in mice. In this study, we show that the MNV strain MNV-S99 persists in wild type inbred (C57BL/6J) mice over a period of at least 5 weeks post infection. Viral RNA was detectable in the jejunum, ileum, cecum, and colon, with the highest titers in the colon and cecum. To characterize the effect of MNV-S99 on the innate immune response, Stat1 phosphorylation and IFN-β production were analyzed and compared to the non-persistent strain MNV-1.CW3. While MNV-S99 and MNV-1.CW3 showed comparable growth characteristics in vitro, Stat1 phosphorylation and IFN-β release is strongly decreased after infection with MNV-S99 compared to MNV-1.CW3. In conclusion, our results show that unlike MNV-1.CW3, MNV-S99 establishes a persistent infection in mice, possibly due to interfering with the innate immune response. PMID:27294868

  20. The Comparative Molecular Epidemiology of GII.P7_GII.6 and GII.P7_GII.7 Norovirus Outbreaks in Victoria, Australia, 2012-2014.

    PubMed

    Bruggink, Leesa D; Moselen, Jean M; Marshall, John A

    2016-01-01

    The comparative molecular epidemiology of the related GII.P7_GII.6 and GII.P7_GII.7 noroviruses has not been examined in detail. ORF 1, ORF 2 and ORF 1/ORF 2 RT-PCR as well as sequencing and phylogeny analysis were carried out on faecal specimens from 873 gastroenteritis outbreaks in Victoria, Australia (2012-2014). There were 575 (66%) detected as positive for norovirus by means of ORF 1 RT-PCR and/or ORF 2 RT-PCR. Of these, 24 (4.2%) were GII.6 (ORF 2) outbreaks, 7 (1.2%) were GII.7 (ORF 2) outbreaks, and 1 outbreak (0.2%) involved both GII.6 (ORF 2) and GII.7 (ORF 2) noroviruses. The median age of patients identified with GII.6 (ORF 2) (84 years) was significantly different from that of patients identified with GII.7 (ORF 2) (39 years). ORF 2 GII.6 and ORF 2 GII.7 sequences were always associated with a GII.P7 ORF 1 sequence, and GII.P7 sequences fell into two clusters, with one corresponding to the GII.6 ORF 2 genotype and the other to the GII.7 ORF 2 genotype, thereby indicating that the ORF 1 has been evolving separately for the two viruses. Thus, two closely related noroviruses can have a markedly different incidence and epidemiology. PMID:27553653

  1. Sensitivity of hepatitis A and murine norovirus to electron beam irradiation in oyster homogenates and whole oysters - quantifying the reduction in potential infection risks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite worldwide regulations and advisories restricting shellfish harvest to approved locations, consumption of raw oysters continues to be an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, a technology that can reduce the public health risks is needed. The focus...

  2. Detection of human Norovirus in cherry tomatoes, blueberries and vegetable salad by using a receptor binding based capture and magnetic sequestration(RBCMS) method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminated produce related norovirus (NoV) outbreak is a major public health concern. The establishment of a simple assay for concentrating and detecting NoV contamination in fresh produce that can be performed in a single day would be of great benefit to the producers and regulators of produce pr...

  3. Diversity of murine norovirus strains isolated from asymptomatic mice of different genetic backgrounds within a single U.S. research institute.

    PubMed

    Barron, Elyssa L; Sosnovtsev, Stanislav V; Bok, Karin; Prikhodko, Victor; Sandoval-Jaime, Carlos; Rhodes, Crystal R; Hasenkrug, Kim; Carmody, Aaron B; Ward, Jerrold M; Perdue, Kathy; Green, Kim Y

    2011-01-01

    Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2(-/-)) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance. PMID:21738664

  4. Application of a receptor-binding-capture qRTPCR assay to concentrate human norovirus from sewage and to study the distribution and stability of the virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoVs) are major agents of gastroenteritis and water is an important route of transmission. Using magnetic beads conjugated with blood group-like antigens previously reported as receptors for HuNoV, we developed a simple and rapid receptor-binding capture and magnetic sequestra...

  5. Two-log increase in sensitivity for detection of Norovirus in complex samples using porcine gastric mucin capture and immunomagnetic separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human histo-blood group antigens (HBGA) have been identified previously as candidate receptors for human norovirus (NOR). Type A, type H1, Lewis HBGAs have been identified major HBGA for NOR binding. We have identified that pig stomach mucin (PGM) contains group A, type H1, and Lewis b type HBGAs...

  6. Evidence of norovirus (NV)in a major produce production region watershed and a low density microarray strategy for detecting NV(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of Norovirus (NV) in watersheds in the vicinity of raw produce production is a concern. This could occur due to leaking septic systems, improper RV waste removal, improperly treated recycled wastewater, or other unknown factors. We used a qRT-PCR method to test for NV in rinsates from M...

  7. Thermal Inactivation Kinetics of Human Norovirus Surrogates and Hepatitis A Virus in Turkey Deli Meat

    PubMed Central

    Bozkurt, Hayriye; Davidson, P. Michael

    2015-01-01

    Human noroviruses (HNoV) and hepatitis A virus (HAV) have been implicated in outbreaks linked to the consumption of presliced ready-to-eat deli meats. The objectives of this research were to determine the thermal inactivation kinetics of HNoV surrogates (murine norovirus 1 [MNV-1] and feline calicivirus strain F9 [FCV-F9]) and HAV in turkey deli meat, compare first-order and Weibull models to describe the data, and calculate Arrhenius activation energy values for each model. The D (decimal reduction time) values in the temperature range of 50 to 72°C calculated from the first-order model were 0.1 ± 0.0 to 9.9 ± 3.9 min for FCV-F9, 0.2 ± 0.0 to 21.0 ± 0.8 min for MNV-1, and 1.0 ± 0.1 to 42.0 ± 5.6 min for HAV. Using the Weibull model, the tD = 1 (time to destroy 1 log) values for FCV-F9, MNV-1, and HAV at the same temperatures ranged from 0.1 ± 0.0 to 11.9 ± 5.1 min, from 0.3 ± 0.1 to 17.8 ± 1.8 min, and from 0.6 ± 0.3 to 25.9 ± 3.7 min, respectively. The z (thermal resistance) values for FCV-F9, MNV-1, and HAV were 11.3 ± 2.1°C, 11.0 ± 1.6°C, and 13.4 ± 2.6°C, respectively, using the Weibull model. The z values using the first-order model were 11.9 ± 1.0°C, 10.9 ± 1.3°C, and 12.8 ± 1.7°C for FCV-F9, MNV-1, and HAV, respectively. For the Weibull model, estimated activation energies for FCV-F9, MNV-1, and HAV were 214 ± 28, 242 ± 36, and 154 ± 19 kJ/mole, respectively, while the calculated activation energies for the first-order model were 181 ± 16, 196 ± 5, and 167 ± 9 kJ/mole, respectively. Precise information on the thermal inactivation of HNoV surrogates and HAV in turkey deli meat was generated. This provided calculations of parameters for more-reliable thermal processes to inactivate viruses in contaminated presliced ready-to-eat deli meats and thus to reduce the risk of foodborne illness outbreaks. PMID:25956775

  8. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation

    PubMed Central

    Leen, Eoin N.; Sorgeloos, Frédéric; Correia, Samantha; Chaudhry, Yasmin; Cannac, Fabien; Pastore, Chiara; Xu, Yingqi; Graham, Stephen C.; Matthews, Stephen J.; Goodfellow, Ian G.; Curry, Stephen

    2016-01-01

    Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy. PMID:26734730

  9. Evidence for Human Norovirus Infection of Dogs in the United Kingdom

    PubMed Central

    Emmott, Edward; El-Attar, Laila; Mitchell, Judy A.; Hollinshead, Michael; Belliot, Gael; Brownlie, Joe; Le Pendu, Jacques; Goodfellow, Ian

    2015-01-01

    Human noroviruses (HuNoVs) are a major cause of viral gastroenteritis, with an estimated 3 million cases per year in the United Kingdom. HuNoVs have recently been isolated from pet dogs in Europe (M. Summa, C.-H. von Bonsdorff, and L. Maunula, J Clin Virol 53:244–247, 2012, http://dx.doi.org/10.1016/j.jcv.2011.12.014), raising concerns about potential zoonotic infections. With 31% of United Kingdom households owning a dog, this could prove to be an important transmission route. To examine this risk, canine tissues were studied for their ability to bind to HuNoV in vitro. In addition, canine stool samples were analyzed for the presence of viral nucleic acid, and canine serum samples were tested for the presence of anti-HuNoV antibodies. The results showed that seven different genotypes of HuNoV virus-like particles (VLPs) can bind to canine gastrointestinal tissue, suggesting that infection is at least theoretically possible. Although HuNoV RNA was not identified in stool samples from 248 dogs, serological evidence of previous exposure to HuNoV was obtained in 43/325 canine serum samples. Remarkably, canine seroprevalence for different HuNoV genotypes mirrored the seroprevalence in the human population. Though entry and replication within cells have not been demonstrated, the canine serological data indicate that dogs produce an immune response to HuNoV, implying productive infection. In conclusion, this study reveals zoonotic implications for HuNoV, and to elucidate the significance of this finding, further epidemiological and molecular investigations will be essential. PMID:25832298

  10. The need for harmonization in detection of human noroviruses in food.

    PubMed

    Stals, Ambroos; Uyttendaele, Mieke; Van Coillie, Els

    2013-01-01

    Noroviruses (NoV) have been recognized worldwide as a leading cause of foodborne gastroenteritis over the last decade. A broad range of foods- shellfish, fresh produce, and ready-to-eat/catered foods-has been implicated in NoV foodborne outbreaks. The recognition of NoV as an important food pathogen has been aided by the development of sensitive molecular methods for detection of the NoV genome. However, despite advances, NoV detection is still hampered by several limitations. First, NoV detection can often only be implemented by expert laboratories due to the complexity of the virus extraction step, which in most protocols is cumbersome and labor-intensive. Moreover, a very wide selection of automated methods for virus extraction from foods is available, so selection of an adequate method is not straightforward. On the other hand, automated systems have been made available or the RNA purification and real-time RT-PCR (RT-qPCR) is considered the gold standard for detection of NoV. Second, correct interpretation of real-time PCR results is often difficult. From a technical point of view, the interpretation of the often nonsigmoidal amplification curves remains difficult, even for experts. From a food safety perspective, interpretation of very high Cq (or Ct) values-and thus, of low viral genomic copy numbers-is not straightforward, as RT-(q)PCR merely detects the presence of viral genomic material that is not necessarily linked to the presence of infectious viral particles. Despite efforts, both limitations have not completely resolved thus far. Harmonization may be a first step to comprehend and deal with these limitations. The current review provides an overview of a number of validated methods that have been published by food safety and other authorities. PMID:24282938

  11. Vitamin A Modifies the Intestinal Chemokine and Cytokine Responses to Norovirus Infection in Mexican Children12

    PubMed Central

    Long, Kurt Z.; Garcıa, Coralith; Ko, GwangPyo; Santos, Jose I.; Al Mamun, Abdullah; Rosado, Jorge L.; DuPont, Herbert L.; Nathakumar, Nanda

    2011-01-01

    Vitamin A supplementation is associated with divergent clinical norovirus (NoV) outcomes in Mexican children. Fecal cytokine concentrations following NoV genogroup infections among 127 Mexican children 5–15 mo old enrolled in a randomized, double-blind, placebo-controlled, vitamin A supplementation trial were determined to clarify the role the gut immune response plays in these associations. Stools collected from supplemented children [20,000 IU retinol (3.3 IU = 1 μg retinol) for children < 12 mo of age; 45,000 iu for children ≥ 12 mo] or children in the placebo group were screened for NoV genogroups I (GI) and II (GII). Monocyte chemoattractant protein-1 (MCP-1), TNFα, IL-5, IL-6, IL-8, IL-4, IFNγ, and IL-10 fecal concentrations were also determined. Differences in cytokine levels between the 2 groups following GI and GII infections were determined using ordered logistic regression models. MCP-1 and IL-8 levels were greater among GI- and GII-infected children, respectively, compared with uninfected children, whereas IL-5 levels were greater following both genogroup infections. MCP-1, IL-8, and IL-6 fecal levels were reduced among supplemented children with GII-associated diarrhea compared with the placebo group. Vitamin A–supplemented, GII-infected children had reduced MCP-1 and TNFα levels compared with GII-infected children in the placebo group (P-interaction = 0.02 and 0.03, respectively). Supplemented children with GI-associated diarrhea had higher TNFα and IL-4 levels compared with children in the placebo group with diarrhea (P-interaction = 0.02 and 0.02, respectively). The divergent effects of supplementation on NoV outcomes may result from the different effects vitamin A has on the genogroup-specific immune responses. PMID:21411606

  12. Evidence for human norovirus infection of dogs in the United kingdom.

    PubMed

    Caddy, Sarah L; de Rougemont, Alexis; Emmott, Edward; El-Attar, Laila; Mitchell, Judy A; Hollinshead, Michael; Belliot, Gael; Brownlie, Joe; Le Pendu, Jacques; Goodfellow, Ian

    2015-06-01

    Human noroviruses (HuNoVs) are a major cause of viral gastroenteritis, with an estimated 3 million cases per year in the United Kingdom. HuNoVs have recently been isolated from pet dogs in Europe (M. Summa, C.-H. von Bonsdorff, and L. Maunula, J Clin Virol 53:244-247, 2012, http://dx.doi.org/10.1016/j.jcv.2011.12.014), raising concerns about potential zoonotic infections. With 31% of United Kingdom households owning a dog, this could prove to be an important transmission route. To examine this risk, canine tissues were studied for their ability to bind to HuNoV in vitro. In addition, canine stool samples were analyzed for the presence of viral nucleic acid, and canine serum samples were tested for the presence of anti-HuNoV antibodies. The results showed that seven different genotypes of HuNoV virus-like particles (VLPs) can bind to canine gastrointestinal tissue, suggesting that infection is at least theoretically possible. Although HuNoV RNA was not identified in stool samples from 248 dogs, serological evidence of previous exposure to HuNoV was obtained in 43/325 canine serum samples. Remarkably, canine seroprevalence for different HuNoV genotypes mirrored the seroprevalence in the human population. Though entry and replication within cells have not been demonstrated, the canine serological data indicate that dogs produce an immune response to HuNoV, implying productive infection. In conclusion, this study reveals zoonotic implications for HuNoV, and to elucidate the significance of this finding, further epidemiological and molecular investigations will be essential. PMID:25832298

  13. Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method.

    PubMed

    Wang, Dapeng; Tian, Peng

    2014-02-17

    Human norovirus (HuNoV) is a leading cause of foodborne gastroenteritis. Unfortunately, the inactivation parameters for HuNoV in clinical, food and environmental samples have not been established. Due to the inability to cultivate HuNoV in vitro, quantitative real-time RT-PCR (qRT-PCR) is widely-used for detecting HuNoVs. However, qRT-PCR does not indicate viral infectivity. Our method employs histo-blood group antigens (HBGAs) as viral receptors/co-receptors and container-affixed capture agents to concentrate HuNoVs. The captured viruses are denatured and its genome is amplified in the same module by in situ capture qRT-PCR (ISC-qRT-PCR). Greater than three log10 reduction in the receptor-captured viral genomic signal (RCVGS) was observed when HuNoV was treated by heat at 72 °C for 4 min, by chlorine at a final concentration of 16 ppm in less than 1 min, and by UV irradiation at 1J/cm². Treatment of low-titer HuNoV (<10³ copies/sample) with 70% ethanol for 20 s reduced the RCVGS of HuNoV by two log10. However, ethanol had a limited effect on high-titer samples of HuNoV (>10³ copies/sample). The results demonstrate that ISC-qRT-PCR method could be used as an alternative method to measure encapsidated viral RNA and indirectly indicate the inactivation status of HuNoV caused by physical treatment such as heat, and chemical treatment such as chlorine, that damage the ability of the virus to bind to its receptor. PMID:24361836

  14. Protein-RNA linkage and posttranslational modifications of feline calicivirus and murine norovirus VPg proteins

    PubMed Central

    Olspert, Allan; Hosmillo, Myra; Chaudhry, Yasmin; Peil, Lauri; Truve, Erkki

    2016-01-01

    Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV) and murine norovirus (MNV). These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5′ end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP) moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle. PMID:27375966

  15. Murine Norovirus Infection Variably Alters Atherosclerosis in Mice Lacking Apolipoprotein E

    PubMed Central

    Hsu, Charlie C; Paik, Jisun; Brabb, Thea L; O'Brien, Kevin D; Kim, Jinkyu; Sullivan, Brittany G; Hudkins, Kelly L; Seamons, Audrey; Finley, Jennifer C; Meeker, Stacey M; Maggio-Price, Lillian

    2015-01-01

    Macrophages play a key role in the development of atherosclerosis. Murine noroviruses (MNV) are highly prevalent in research mouse colonies and infect macrophages and dendritic cells. Our laboratory found that MNV4 infection in mice lacking the LDL receptor alters the development of atherosclerosis, potentially confounding research outcomes. Therefore, we investigated whether MNV4 likewise altered atherosclerosis in ApoE−/− mice. In the presence of oxidized LDL, MNV4 infection of ApoE−/− bone marrow-derived macrophages increased the gene expression of the inflammatory markers inducible nitric oxide synthase, monocyte chemoattractant protein 1, and IL6. In addition, proteins involved in cholesterol transport were altered in MNV4-infected ApoE−/− bone marrow-derived macrophages and consisted of increased CD36 and decreased ATP-binding cassette transporter A1. MNV4 infection of ApoE−/− mice at 12 wk of age (during the development of atherosclerosis) had a variable effect on atherosclerotic lesion size. In one study, MNV4 significantly increased atherosclerotic plaque area whereas in a second study, no effect was observed. Compared with controls, MNV4-infected mice had higher circulating Ly6C-positive monocytes, and viral RNA was detected in the aortas of some mice, suggesting potential mechanisms by which MNV4 alters disease progression. Plaque size did not differ when ApoE−/− mice were infected at 4 wk of age (early during disease development) or in ApoE−/− mice maintained on a high-fat, high-cholesterol diet. Therefore, these data show that MNV4 has the potential to exert a variable and unpredictable effect on atherosclerosis in ApoE−/− mice. We therefore propose that performing experiments in MNV-free mouse colonies is warranted. PMID:26473341

  16. Murine Norovirus Infection Variably Alters Atherosclerosis in Mice Lacking Apolipoprotein E.

    PubMed

    Hsu, Charlie C; Paik, Jisun; Brabb, Thea L; O'Brien, Kevin D; Kim, Jinkyu; Sullivan, Brittany G; Hudkins, Kelly L; Seamons, Audrey; Finley, Jennifer C; Meeker, Stacey M; Maggio-Price, Lillian

    2015-10-01

    Macrophages play a key role in the development of atherosclerosis. Murine noroviruses (MNV) are highly prevalent in research mouse colonies and infect macrophages and dendritic cells. Our laboratory found that MNV4 infection in mice lacking the LDL receptor alters the development of atherosclerosis, potentially confounding research outcomes. Therefore, we investigated whether MNV4 likewise altered atherosclerosis in ApoE(-/-) mice. In the presence of oxidized LDL, MNV4 infection of ApoE(-/-) bone marrow-derived macrophages increased the gene expression of the inflammatory markers inducible nitric oxide synthase, monocyte chemoattractant protein 1, and IL6. In addition, proteins involved in cholesterol transport were altered in MNV4-infected ApoE -/- bone marrow-derived macrophages and consisted of increased CD36 and decreased ATP-binding cassette transporter A1. MNV4 infection of ApoE(-/-) mice at 12 wk of age (during the development of atherosclerosis) had a variable effect on atherosclerotic lesion size. In one study, MNV4 significantly increased atherosclerotic plaque area whereas in a second study, no effect was observed. Compared with controls, MNV4-infected mice had higher circulating Ly6C-positive monocytes, and viral RNA was detected in the aortas of some mice, suggesting potential mechanisms by which MNV4 alters disease progression. Plaque size did not differ when ApoE -/- mice were infected at 4 wk of age (early during disease development) or in ApoE -/- mice maintained on a high-fat, high-cholesterol diet. Therefore, these data show that MNV4 has the potential to exert a variable and unpredictable effect on atherosclerosis in ApoE(-/-) mice. We therefore propose that performing experiments in MNV-free mouse colonies is warranted. PMID:26473341

  17. Virucidal Effect of Cold Atmospheric Gaseous Plasma on Feline Calicivirus, a Surrogate for Human Norovirus

    PubMed Central

    Aboubakr, Hamada A.; Williams, Paul; Gangal, Urvashi; Youssef, Mohammed M.; El-Sohaimy, Sobhy A. A.; Bruggeman, Peter J.

    2015-01-01

    Minimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied the in vitro virucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10 unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2 plasma treatment had the highest virucidal effect: more than 6.0 log10 units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10 unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2 were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activity in vitro and has the potential to combat viral contamination in foods and on food preparation surfaces. PMID:25795667

  18. Aerosolization of a Human Norovirus Surrogate, Bacteriophage MS2, during Simulated Vomiting

    PubMed Central

    Tung-Thompson, Grace; Libera, Dominic A.; Koch, Kenneth L.; de los Reyes, Francis L.; Jaykus, Lee-Ann

    2015-01-01

    Human noroviruses (NoV) are the leading cause of acute gastroenteritis worldwide. Epidemiological studies of outbreaks have suggested that vomiting facilitates transmission of human NoV, but there have been no laboratory-based studies characterizing the degree of NoV release during a vomiting event. The purpose of this work was to demonstrate that virus aerosolization occurs in a simulated vomiting event, and to estimate the amount of virus that is released in those aerosols. A simulated vomiting device was constructed at one-quarter scale of the human body following similitude principles. Simulated vomitus matrices at low (6.24 mPa*s) and high (177.5 mPa*s) viscosities were inoculated with low (108 PFU/mL) and high (1010 PFU/mL) concentrations of bacteriophage MS2 and placed in the artificial “stomach” of the device, which was then subjected to scaled physiologically relevant pressures associated with vomiting. Bio aerosols were captured using an SKC Biosampler. In low viscosity artificial vomitus, there were notable differences between recovered aerosolized MS2 as a function of pressure (i.e., greater aerosolization with increased pressure), although this was not always statistically significant. This relationship disappeared when using high viscosity simulated vomitus. The amount of MS2 aerosolized as a percent of total virus “vomited” ranged from 7.2 x 10-5 to 2.67 x 10-2 (which corresponded to a range of 36 to 13,350 PFU total). To our knowledge, this is the first study to document and measure aerosolization of a NoV surrogate in a similitude-based physical model. This has implications for better understanding the transmission dynamics of human NoV and for risk modeling purposes, both of which can help in designing effective infection control measures. PMID:26287612

  19. Effective detection of human noroviruses in Hawaiian waters using enhanced RT-PCR methods.

    PubMed

    Tong, Hsin-I; Connell, Christina; Boehm, Alexandria B; Lu, Yuanan

    2011-11-15

    The current recreational water quality criteria using growth-based measurements of fecal indicator bacteria (FIB) concentration have their limitations for swimmer protection. To evaluate the possible use of enteric viruses as an improved indicator of human sewage contamination in recreational waters for enhanced health risk assessment, human norovirus (huNoV) was tested as a model in this study. To establish a highly sensitive protocol for effective huNoV detection in waters, 16 published and newly designed reverse transcription polymerase chain reaction (RT-PCR) primer pairs specific for huNoV genogroup I (GI) and genogroup II (GII) were comparatively evaluated side-by-side using single sources of huNoV RNA stock extracted from local clinical isolates. Under optimized conditions, these RT-PCR protocols shared a very different pattern of detection sensitivity for huNoV. The primer sets COG2F/COG2R and QNIF4/NV1LCR were determined to be the most sensitive ones for huNoV GII and GI, respectively, with up to 10(5)- and 10(6)-fold more sensitive as compared to other sets tested. These two sensitive protocols were validated by positive detection of huNoV in untreated and treated urban wastewater samples. In addition, these RT-PCR protocols enabled detection of the prevalence of huNoV in 5 (GI) and 10 (GII) of 16 recreational water samples collected around the island of O'ahu, which was confirmed by DNA sequencing and sequence analysis. Findings from this study support the possible use of enteric viral pathogens for environmental monitoring and argue the importance and essentiality for such monitoring activity to ensure a safe use of recreational waters. PMID:21945082

  20. Affinities of human histo-blood group antigens for norovirus capsid protein complexes

    PubMed Central

    Han, Ling; Kitova, Elena N; Tan, Ming; Jiang, Xi; Pluvinage, Benjamin; Boraston, Alisdair B; Klassen, John S

    2015-01-01

    The binding profiles of many human noroviruses (huNoVs) for human histo-blood group antigens have been characterized. However, quantitative-binding data for these important virus–host interactions are lacking. Here, we report on the intrinsic (per binding site) affinities of HBGA oligosaccharides for the huNoV VA387 virus-like particles (VLPs) and the associated subviral P particles measured using electrospray ionization mass spectrometry. The affinities of 13 HBGA oligosaccharides, containing A, B and H epitopes, with variable sizes (disaccharide to tetrasaccharide) and different precursor chain types (types 1, 2, 3, 5 and 6), were measured for the P particle, while the affinities of the A and B trisaccharides and A and B type 6 tetrasaccharides for the VLP were determined. The intrinsic affinities of the HBGA oligosaccharides for the P particle range from 500 to 2300 M−1, while those of the A and B trisaccharides and the A and B type 6 tetrasaccharides for the VLP range from 1000 to 4000 M−1. Comparison of these binding data with those measured previously for the corresponding P dimer reveals that the HBGA oligosaccharides tested exhibit similar intrinsic affinities for the P dimer and P particle. The intrinsic affinities for the VLP are consistently higher than those measured for the P particle, but within a factor of three. While the cause of the subtle differences in HBGA oligosaccharide affinities for the P dimer and P particle and those for the VLP remains unknown, the present data support the use of P dimers or P particles as surrogates to the VLP for huNoV-receptor-binding studies. PMID:25395406

  1. Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus.

    PubMed

    Aboubakr, Hamada A; Williams, Paul; Gangal, Urvashi; Youssef, Mohammed M; El-Sohaimy, Sobhy A A; Bruggeman, Peter J; Goyal, Sagar M

    2015-06-01

    Minimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied the in vitro virucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10 unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2 plasma treatment had the highest virucidal effect: more than 6.0 log10 units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10 unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2 were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activity in vitro and has the potential to combat viral contamination in foods and on food preparation surfaces. PMID:25795667

  2. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities.

    PubMed

    Barrett, M; Fitzhenry, K; O'Flaherty, V; Dore, W; Keaveney, S; Cormican, M; Rowan, N; Clifford, E

    2016-10-15

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9J/cm(2) (6900mJ/cm(2)) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. PMID:27350093

  3. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012–2013

    PubMed Central

    Grytdal, Scott P.; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D.; Hall, Aron J.

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0–98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children <5 years of age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per

  4. Evaluation of survival of murine norovirus-1 during sauerkraut fermentation and storage under standard and low-sodium conditions.

    PubMed

    Gagné, Marie-Josée; Barrette, Julie; Savard, Tony; Brassard, Julie

    2015-12-01

    Sodium reduction strategies have raised a few concerns in regards to possible outbreaks in unpasteurised raw fermented vegetables. Among potential outbreak agents, foodborne viruses are recognized as an important cause of food-borne illnesses. As most of them are acid-resistant, evaluation of the efficacy of lactic fermentation in inactivating enteric viruses must be considered to ensure the safety of these foods. In particular with the sodium reduction trend which could impair adequate fermentation in vegetables, we have challenged sauerkraut fermentation at a final concentration of 4 log TCID50/mL with the murine norovirus (MNV-1). Three sodium chloride concentrations (1.0%, 1.5%, 2.0%) were evaluated in spontaneous and starter fermentation of sauerkraut and were followed during fermentation and over a storage phase of 90 days. Detection of MNV-1 genetic material was carried out by real-time RT-PCR and the infectivity on cell culture. Real-time RT-PCR results showed that viral RNA was still detected after 90 day in sauerkraut under all the different conditions. Furthermore, MNV-1 viral particles were able to infect RAW cells after 90 days of storage with a non-significant viral charge reduction. Sodium reduction has a significant impact on the fermentation processing of sauerkraut but no influence on the destruction of norovirus particles or on their survival. PMID:26338124

  5. A large foodborne outbreak of norovirus in diners at a restaurant in England between January and February 2009.

    PubMed

    Smith, A J; McCarthy, N; Saldana, L; Ihekweazu, C; McPhedran, K; Adak, G K; Iturriza-Gómara, M; Bickler, G; O'Moore, É

    2012-09-01

    An outbreak of gastroenteritis affected at least 240 persons who had eaten at a gourmet restaurant over a period of 7 weeks in 2009 in England. Epidemiological, microbiological, and environmental studies were conducted. The case-control study demonstrated increased risk of illness in those who ate from a special 'tasting menu' and in particular an oyster, passion fruit jelly and lavender dish (odds ratio 7·0, 95% confidence interval 1·1-45·2). Ten diners and six staff members had laboratory-confirmed norovirus infection. Diners were infected with multiple norovirus strains belonging to genogroups I and II, a pattern characteristic of molluscan shellfish-associated outbreaks. The ongoing risk from dining at the restaurant may have been due to persistent contamination of the oyster supply alone or in combination with further spread via infected food handlers or the restaurant environment. Delayed notification of the outbreak to public health authorities may have contributed to outbreak size and duration. PMID:22129511

  6. The microfluidic chip module for the detection of murine norovirus in oysters using charge switchable micro-bead beating.

    PubMed

    Chung, Sung Hee; Baek, Changyoon; Cong, Vu Tan; Min, Junhong

    2015-05-15

    Sample preparation has recently been an issue in the detection of food poisoning pathogens, particularly viruses such as norovirus (NoV), in food because of the complexity of foods and raw fresh materials. Here, we demonstrate a total analytical microfluidic chip module to automatically perform a series of essential processes (cell concentration, lysis (RNA extraction), nucleic acid amplification, and detection) for the fast but sensitive detection of norovirus in oysters. The murine NoV spiked oyster was stomached using a standard method. The supernatant was first loaded into a shape switchable sample preparation chamber consisting of charge switchable micro-beads. Murine NoV, which was adsorbed on microbeads by electrostatic physisorption, was lysed using bead beating. The extracted RNA was transferred to the detection chamber to be amplified using Nucleic Acid Sequence Based Amplification (NASBA). The optimal surface functionality, size, and number of microbeads were achieved for the virus concentration and the stable RNA extraction in the shape-switchable micro-channel. As a result, murine NoV in a single oyster was successfully detected within 4h by the microfluidic chip developed here, and could be directly applied to the large volume environmental sample as well as the food sample. PMID:25449875

  7. Norovirus Narita 104 Virus-Like Particles Expressed in Nicotiana benthamiana Induce Serum and Mucosal Immune Responses

    PubMed Central

    Mathew, Lolita George; Herbst-Kralovetz, Melissa M.; Mason, Hugh S.

    2014-01-01

    Narita 104 virus is a human pathogen belonging to the norovirus (family Caliciviridae) genogroup II. Noroviruses cause epidemic gastroenteritis worldwide. To explore the potential of developing a plant-based vaccine, a plant optimized gene encoding Narita 104 virus capsid protein (NaVCP) was expressed transiently in Nicotiana benthamiana using a tobacco mosaic virus expression system. NaVCP accumulated up to approximately 0.3 mg/g fresh weight of leaf at 4 days postinfection. Initiation of hypersensitive response-like symptoms followed by tissue necrosis necessitated a brief infection time and was a significant factor limiting expression. Transmission electron microscopy of plant-derived NaVCP confirmed the presence of fully assembled virus-like particles (VLPs). In this study, an optimized method to express and partially purify NaVCP is described. Further, partially purified NaVCP was used to immunize mice by intranasal delivery and generated significant mucosal and serum antibody responses. Thus, plant-derived Narita 104 VLPs have potential for use as a candidate subunit vaccine or as a component of a multivalent subunit vaccine, along with other genotype-specific plant-derived VLPs. PMID:24949472

  8. A large foodborne outbreak of norovirus in diners at a restaurant in England between January and February 2009

    PubMed Central

    SMITH, A. J.; McCARTHY, N.; SALDANA, L.; IHEKWEAZU, C.; McPHEDRAN, K.; ADAK, G. K.; ITURRIZA-GÓMARA, M.; BICKLER, G.; O'MOORE, É.

    2012-01-01

    SUMMARY An outbreak of gastroenteritis affected at least 240 persons who had eaten at a gourmet restaurant over a period of 7 weeks in 2009 in England. Epidemiological, microbiological, and environmental studies were conducted. The case-control study demonstrated increased risk of illness in those who ate from a special ‘tasting menu’ and in particular an oyster, passion fruit jelly and lavender dish (odds ratio 7·0, 95% confidence interval 1·1–45·2). Ten diners and six staff members had laboratory-confirmed norovirus infection. Diners were infected with multiple norovirus strains belonging to genogroups I and II, a pattern characteristic of molluscan shellfish-associated outbreaks. The ongoing risk from dining at the restaurant may have been due to persistent contamination of the oyster supply alone or in combination with further spread via infected food handlers or the restaurant environment. Delayed notification of the outbreak to public health authorities may have contributed to outbreak size and duration. PMID:22129511

  9. Heat inactivation of hepatitis A virus and a norovirus surrogate in soft-shell clams (Mya arenaria).

    PubMed

    Sow, Halimatou; Desbiens, Michel; Morales-Rayas, Rocio; Ngazoa, Solange E; Jean, Julie

    2011-03-01

    The effectiveness of different thermal treatments for inactivating two viruses in clams was evaluated. Soft-shell clam digestive glands experimentally contaminated with hepatitis A virus (HAV) or murine norovirus (MNV) were heated for 90, 180, or 300 seconds at 85°C or 90°C in glass vials or plastic bags with 200 g of soft-shell clam meat. Inactivation was measured by plaque assay and real-time reverse-transcription (RT)-polymerase chain reaction assay. Measured inactivation was similar using both assays. The 90°C for 90 seconds treatment reduced MNV-1 titer by 3.33 log cycles and HAV by 2.66 log cycles. At 90°C for 180 seconds, both MNV-1 and HAV were completely inactivated (titer reduced by 5.47 log cycles) in glass vials. In the presence of clam meat as well, HAV inactivation was complete at 90°C for 180 seconds. In general, HAV was more resistant to heat treatment than MNV-1, suggesting that it would require a more severe treatment than human norovirus for inactivation in soft-shell clams. The results of the present study should contribute to the development of strategies for controlling the spread of enteric viral illness via shellfish. PMID:21126194

  10. Seroprevalence of Antibodies against Noroviruses among Students in a Chinese Military Medical University

    PubMed Central

    Dai, Ying-chun; Nie, Jun; Zhang, Xu-fu; Li, Zhi-feng; Bai, Yang; Zeng, Zhi-rong; Yu, Shou-yi; Farkas, Tibor; Jiang, Xi

    2004-01-01

    Noroviruses (NVs) are important causes of nonbacterial gastroenteritis in humans, but the role of NVs as a cause of diseases in the Chinese people, particularly in Chinese military personnel, remains unclear. This study investigated antibody prevalence and factors that associate with the prevalence of antibody to NVs among students attending a military medical university. Serum specimens were tested by an enzyme-linked immunosorbent assay for immunoglobulin G antibody to recombinant capsid antigens of three NVs (rNorwalk, rMxV, and rVA387). Of 588 serum samples tested, the antibody prevalence was 88.9, 54.1, or 90.0% for the three antigens, respectively. There were significant differences in the prevalence of antibody to rMxV between blood types (P < 0.05); the prevalence for type O was the highest (62.5%), and the prevalence for type B was the lowest (49.1%). The average optical density values for antibody to rNorwalk and rMxV were lowest among students with type B. The number of students who did not have antibody to any of the three antigens was the highest for blood type B (6.9%) compared to other blood types (0.8 to 3.4% [P < 0.006]). The antibody prevalence also varied with the hometown residencies of the students before joining the military, with the highest rates for students from rural areas, lower rates for students from small towns or villages, and the lowest rates for students from large cities. The numbers of students who did not have antibody to any of the three antigens were highest for students from the large cities, lower for students from small towns or villages, and lowest for students from rural areas. The distribution of ABO blood types did not differ among the three groups. These data suggest that NVs are prevalent in China and that both genetic and environmental factors play a role in NV infection. PMID:15472318

  11. A quantitative exposure model simulating human norovirus transmission during preparation of deli sandwiches.

    PubMed

    Stals, Ambroos; Jacxsens, Liesbeth; Baert, Leen; Van Coillie, Els; Uyttendaele, Mieke

    2015-03-01

    Human noroviruses (HuNoVs) are a major cause of food borne gastroenteritis worldwide. They are often transmitted via infected and shedding food handlers manipulating foods such as deli sandwiches. The presented study aimed to simulate HuNoV transmission during the preparation of deli sandwiches in a sandwich bar. A quantitative exposure model was developed by combining the GoldSim® and @Risk® software packages. Input data were collected from scientific literature and from a two week observational study performed at two sandwich bars. The model included three food handlers working during a three hour shift on a shared working surface where deli sandwiches are prepared. The model consisted of three components. The first component simulated the preparation of the deli sandwiches and contained the HuNoV reservoirs, locations within the model allowing the accumulation of NoV and the working of intervention measures. The second component covered the contamination sources being (1) the initial HuNoV contaminated lettuce used on the sandwiches and (2) HuNoV originating from a shedding food handler. The third component included four possible intervention measures to reduce HuNoV transmission: hand and surface disinfection during preparation of the sandwiches, hand gloving and hand washing after a restroom visit. A single HuNoV shedding food handler could cause mean levels of 43±18, 81±37 and 18±7 HuNoV particles present on the deli sandwiches, hands and working surfaces, respectively. Introduction of contaminated lettuce as the only source of HuNoV resulted in the presence of 6.4±0.8 and 4.3±0.4 HuNoV on the food and hand reservoirs. The inclusion of hand and surface disinfection and hand gloving as a single intervention measure was not effective in the model as only marginal reductions of HuNoV levels were noticeable in the different reservoirs. High compliance of hand washing after a restroom visit did reduce HuNoV presence substantially on all reservoirs. The

  12. Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries.

    PubMed

    Liu, Chuhan; Li, Xinhui; Chen, Haiqiang

    2015-12-01

    In this study, a novel set-up using water-assisted UV processing was developed and evaluated for its decontamination efficacy against murine norovirus (MNV-1) inoculated on fresh blueberries for both small and large-scale experimental setups. Blueberries were skin-inoculated with MNV-1 and treated for 1-5 min with UV directly (dry UV) or immersed in agitated water during UV treatment (water-assisted UV). The effect of the presence of 2% (v/v) blueberry juice or 5% crushed blueberries (w/w) in wash water was also evaluated. Results showed that water-assisted UV treatment generally showed higher efficacies than dry UV treatment. With 12,000 J/m(2) UV treatment in small-scale setup, MNV reductions of >4.32- and 2.48-log were achieved by water-assisted UV and dry UV treatments, respectively. Water-assisted UV showed similar inactivating efficacy as 10-ppm chlorine wash. No virus was detected in wash water after UV treatment or chlorine wash. MNV-1 was more easily killed on skin-inoculated blueberries compared with calyx-inoculated berries. When clear water was used as wash water in the large-scale setup, water-assisted UV treatment (UV dose of 12,000 J/m(2)) resulted in >3.20 log and 1.81 log MNV-1 reductions for skin- and calyx-inoculated berries, respectively. The presence of 2% blueberry juice in wash water decreased the decontamination efficacy of water-assisted UV and chlorine washing treatments. To improve the inactivation efficacy, the effect of combining water-assisted UV treatment with chlorine washing was also evaluated. The combined treatment had better or similar inactivation efficacy compared to water-assisted UV treatment and chlorine washing alone. Findings of this study suggest that water-assisted UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce. PMID:26210533

  13. Does Reducing Time to Identification of Infectious Agents Reduce Incidence Rates of Norovirus in a Population Deployed to Southwest Asia?

    PubMed

    Thompson, Kip R; Mossel, Eric C; Federman, Belle; Claborn, David M

    2016-01-01

    During its deployment to Kuwait from 2011-2012, the 983rd Medical Detachment (Preventive Medicine) was augmented with a 4-person laboratory section which provided polymerase chain reaction capabilities not normally associated with an Army Level III preventive medicine detachment. Although common in many civilian laboratories, this was the first time this equipment was used by a deployed Level III Army preventive medicine detachment to identify an outbreak in this theater. It allowed rapid identification and description of a gastrointestinal disease outbreak caused by norovirus in Kuwait. The technology contributed to a decreased time required to identification of the causative agent (hours vs days) and thus the implementation of appropriate preventive measures. Based on this event, the authors suggest the addition of a modified laboratory section to the modified table of organization equipment for deployable preventive medicine detachments. PMID:27613209

  14. Persistent Enteric Murine Norovirus Infection Is Associated with Functionally Suboptimal Virus-Specific CD8 T Cell Responses

    PubMed Central

    Tomov, Vesselin T.; Osborne, Lisa C.; Dolfi, Douglas V.; Sonnenberg, Gregory F.; Monticelli, Laurel A.; Mansfield, Kathleen; Virgin, Herbert W.

    2013-01-01

    Norovirus (NV) gastroenteritis is a major contributor to global morbidity and mortality, yet little is known about immune mechanisms leading to NV control. Previous studies using the murine norovirus (MNV) model have established a key role for T cells in MNV clearance. Despite these advances, important questions remain regarding the magnitude, location, and dynamics of the MNV-specific T cell response. To address these questions, we identified MNV-specific major histocompatibility complex (MHC) class I immunodominant epitopes using an overlapping peptide screen. One of these epitopes (amino acids 519 to 527 of open reading frame 2 [ORF2519-527]) was highly conserved among all NV genogroups. Using MHC class I peptide tetramers, we tracked MNV-specific CD8 T cells in lymphoid and mucosal sites during infection with two MNV strains with distinct biological behaviors, the acutely cleared strain CW3 and the persistent strain CR6. Here, we show that enteric MNV infection elicited robust T cell responses primarily in the intestinal mucosa and that MNV-specific CD8 T cells dynamically regulated the expression of surface molecules associated with activation, differentiation, and homing. Furthermore, compared to MNV-CW3 infection, chronic infection with MNV-CR6 resulted in fewer and less-functional CD8 T cells, and this difference was evident as early as day 8 postinfection. Finally, MNV-specific CD8 T cells were capable of reducing the viral load in persistently infected Rag1−/− mice, suggesting that these cells are a crucial component of NV immunity. Collectively, these data provide fundamental new insights into the adaptive immune response to two closely related NV strains with distinct biological behaviors and bring us closer to understanding the correlates of protective antiviral immunity in the intestine. PMID:23596300

  15. Survival of Murine Norovirus, Tulane Virus, and Hepatitis A Virus on Alfalfa Seeds and Sprouts during Storage and Germination

    PubMed Central

    Wang, Qing; Hirneisen, Kirsten A.; Markland, Sarah M.

    2013-01-01

    Human norovirus (huNoV) and hepatitis A virus (HAV) have been involved in several produce-associated outbreaks and identified as major food-borne viral etiologies. In this study, the survival of huNoV surrogates (murine norovirus [MNV] and Tulane virus [TV]) and HAV was investigated on alfalfa seeds during storage and postgermination. Alfalfa seeds were inoculated with MNV, TV, or HAV with titers of 6.46 ± 0.06 log PFU/g, 3.87 ± 0.38 log PFU/g, or 7.01 ± 0.07 log 50% tissue culture infectious doses (TCID50)/g, respectively. Inoculated seeds were stored for up to 50 days at 22°C and sampled during that storage period on days 0, 2, 5, 10, and 15. Following storage, virus presence was monitored over a 1-week germination period. Viruses remained infectious after 50 days, with titers of 1.61 ± 0.19 log PFU/g, 0.85 ± 0.21 log PFU/g, and 3.43 ± 0.21 log TCID50/g for MNV, TV, and HAV, respectively. HAV demonstrated greater persistence than MNV and TV, without a statistically significant reduction over 20 days (<1 log TCID50/g); however, relatively high levels of genomic copies of all viruses persisted over the testing time period. Low titers of viruses were found on sprouts and were located in all tissues as well as in sprout-spent water sampled on days 1, 3, and 6 following seed planting. Results revealed the persistence of viruses in seeds for a prolonged period of time, and perhaps of greater importance these data suggest the ease of which virus may transfer from seeds to sprouts and spent water during germination. These findings highlight the importance of sanitation and prevention procedures before and during germination. PMID:24014537

  16. In vivo comparison of two human norovirus surrogates for testing ethanol-based handrubs: the mouse chasing the cat!

    PubMed

    Sattar, Syed A; Ali, Mohammad; Tetro, Jason A

    2011-01-01

    Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were -1.91 and -1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log₁₀ while that of MNV by nearly 2.8 log₁₀. Extending the contact time to 30 s reduced the FCV titer by almost 2 log₁₀ by both test substances and that of MNV by >3.5 log₁₀ by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log₁₀ reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV. PMID:21390325

  17. Abiotic Stress and Phyllosphere Bacteria Influence the Survival of Human Norovirus and Its Surrogates on Preharvest Leafy Greens

    PubMed Central

    Esseili, Malak A.; Gao, Xiang; Tegtmeier, Sarah; Saif, Linda J.

    2015-01-01

    Foodborne outbreaks of human noroviruses (HuNoVs) are frequently associated with leafy greens. Because there is no effective method to eliminate HuNoV from postharvest leafy greens, understanding virus survival under preharvest conditions is crucial. The objective of this study was to evaluate the survival of HuNoV and its surrogate viruses, murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV), on preharvest lettuce and spinach that were subjected to abiotic stress (physical damage, heat, or flood). We also examined the bacteria culturable from the phyllosphere in response to abiotic stress and in relation to viral persistence. Mature plants were subjected to stressors 2 days prior to inoculation of the viruses on leaves. We quantified the viral RNA, determined the infectivity of the surrogates, and performed bacterial counts on postinoculation days (PIDs) 0, 1, 7, and 14. For both plant types, time exerted significant effects on HuNoV, MNV, SaV, and TV RNA titers, with greater effects being seen for the surrogates. Infectious surrogate viruses were undetectable on PID 14. Only physical damage on PID 14 significantly enhanced HuNoV RNA persistence on lettuce, while the three stressors differentially enhanced the persistence of MNV and TV RNA. Bacterial counts were significantly affected by time and plant type but not by the stressors. However, bacterial counts correlated significantly with HuNoV RNA titers on spinach and with the presence of surrogate viruses on both plant types under various conditions. In conclusion, abiotic stressors and phyllosphere bacterial density may differentially influence the survival of HuNoV and its surrogates on lettuce and spinach, emphasizing the need for the use of preventive measures at the preharvest stage. PMID:26497461

  18. Solar water disinfection (SODIS): Impact on hepatitis A virus and on a human Norovirus surrogate under natural solar conditions.

    PubMed

    Polo, David; García-Fernández, Irene; Fernández-Ibáñez, Pilar; Romalde, Jesús L

    2015-03-01

    This study evaluates the effectiveness of solar water disinfection (SODIS) in the reduction and inactivation of hepatitis A virus (HAV) and of the human Norovirus surrogate, murine Norovirus (MNV-1), under natural solar conditions. Experiments were performed in 330 ml polyethylene terephthalate (PET) bottles containing HAV or MNV-1 contaminated waters (10(3) PFU/ml) that were exposed to natural sunlight for 2 to 8 h. Parallel experiments under controlled temperature and/or in darkness conditions were also included. Samples were concentrated by electropositive charged filters and analysed by RT-real time PCR (RT-qPCR) and infectivity assays. Temperature reached in bottles throughout the exposure period ranged from 22 to 40ºC. After 8 h of solar exposure (cumulative UV dose of ~828 kJ/m2 and UV irradiance of ~20 kJ/l), the results showed significant (P<0.05) reductions from 4.0 (+/-0.56)x10(4) to 3.15 (+/-0.69)x10(3) RNA copies/100ml (92.1%, 1.1 log) for HAV and from 5.91 (+/-0.59)x10(4) to 9.24 (+/-3.91)x10(3) RNA copies/100 ml (84.4%, 0.81 log) for MNV-1. SODIS conditions induced a loss of infectivity between 33.4% and 83.4% after 4 to 8 h in HAV trials, and between 33.4% and 66.7% after 6 h to 8 h in MNV-1 trials. The results obtained indicated a greater importance of sunlight radiation over the temperature as the main factor for viral reduction. PMID:26415666

  19. Internalization of Sapovirus, a Surrogate for Norovirus, in Romaine Lettuce and the Effect of Lettuce Latex on Virus Infectivity

    PubMed Central

    Esseili, Malak A.; Zhang, Zhenwen

    2012-01-01

    Noroviruses are the leading cause of food-borne outbreaks, including those that involve lettuce. The culturable porcine sapovirus (SaV) was used as a norovirus surrogate to study the persistence and the potential transfer of the virus from roots to leaves and from outer to inner leaves of lettuce plants. Treatment of lettuce with SaV was done through the roots of young plants, the soil, or the outer leaves of mature plants. Sampling of roots, xylem sap, and inner and outer leaves followed by RNA extraction and SaV-specific real-time reverse transcription (RT)-PCR was performed at 2 h and on postinoculation days (PID) 2, 5, 7, 14, and/or 28. When SaV was inoculated through the roots, viral RNA persisted on the roots and in the leaves until PID 28. When the virus was inoculated through the soil, viral RNA was detected on the roots and in the xylem sap until PID 14; viral RNA was detected in the leaves only until PID 2. No infectious virus was detected inside the leaves for either treatment. When SaV was inoculated through the outer leaves, viral RNA persisted on the leaves until PID 14; however, the virus did not transfer to inner leaves. Infectious viral particles on leaves were detected only at 2 h postinoculation. The milky sap (latex) of leaves, but not the roots' xylem sap, significantly decreased virus infectivity when tested in vitro. Collectively, our results showed the transfer of SaV from roots to leaves through the xylem system and the capacity of the sap of lettuce leaves to decrease virus infectivity in leaves. PMID:22752176

  20. Ultraviolet-C efficacy against a norovirus surrogate and hepatitis A virus on a stainless steel surface.

    PubMed

    Park, Shin Young; Kim, An-Na; Lee, Ki-Hoon; Ha, Sang-Do

    2015-10-15

    In this study, the effects of 10-300 mWs/cm(2) of ultraviolet radiation (UV-C) at 260 nm were investigated for the inactivation of two foodborne viruses: murine norovirus-1 (MNV-1; a human norovirus [NoV] surrogate) and hepatitis A virus (HAV). We used an experimentally contaminated stainless steel surface, a common food-contact surface, to examine the effects of low doses of UV-C radiation on MNV-1 and HAV titers. The modified Gompertz equation was used to generate non-linear survival curves and calculate dR-values as the UV-C dose of 90% reduction for MNV-1 (R(2)=0.95, RMSE=0.038) and HAV (R(2)=0.97, RMSE=0.016). Total MNV-1 and HAV titers significantly decreased (p<0.05) with higher doses of UV-C. MNV-1 and HAV were reduced to 0.0-4.4 and 0.0-2.6 log10PFU/ml, respectively, on the stainless steel surfaces by low-dose UV-C treatment. The dR-value, 33.3 mWs/cm(2) for MNV-1 was significantly (p<0.05) lower than 55.4 mWs/cm(2) of HAV. Therefore, the present study shows that HAV is more resistant to UV-C radiation than MNV-1. These data suggest that low doses of UV-C light on food contact surfaces could be effective to inactivate human NoV and HAV in restaurant, institutional, and industrial kitchens and facilities. PMID:26184763