Science.gov

Sample records for glabrata haemocytes effects

  1. Differential gene expression in haemocytes of the snail Biomphalaria glabrata: effects of Schistosoma mansoni infection.

    PubMed

    Miller, A N; Raghavan, N; FitzGerald, P C; Lewis, F A; Knight, M

    2001-05-15

    Parasite encapsulation and destruction in Biomphalaria glabrata has been shown to involve the cellular component of the snail's internal defence system, the haemocytes. To identify genes involved in the immunobiology of these cells, we used the method of differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) to investigate differential gene regulation in haemocytes isolated from Schistosoma mansoni exposed and unexposed snails. RNA isolated from circulating haemocytes from resistant snails (BS-90 stock), previously exposed to S. mansoni, was analysed using 12 different arbitrary primers in conjunction with an anchored Oligo d(T(11)CG) primer. Transcription profiles between haemocytes of parasite exposed and unexposed snails were compared and a total of 87 differentially regulated bands were identified and isolated. Of these, 65 bands were cloned and used as probes in Southern blots to show the presence of corresponding sequences in the snail genome. RT-PCR was performed to verify the regulation of these transcripts. DNA sequence analysis showed that the majority of the cloned sequences were novel, although a few showed a high degree of sequence similarity to other sequences in the DNA and protein databases. One of these included a differentially expressed transcript that showed a significant degree of sequence identity to E. coli transposase Tn5, an enzyme whose activity is normally associated with generating mobility and instability in the genome. PMID:11336750

  2. Early Differential Gene Expression in Haemocytes from Resistant and Susceptible Biomphalaria glabrata Strains in Response to Schistosoma mansoni

    PubMed Central

    Lockyer, Anne E.; Emery, Aidan M.; Kane, Richard A.; Walker, Anthony J.; Mayer, Claus D.; Mitta, Guillaume; Coustau, Christine; Adema, Coen M.; Hanelt, Ben; Rollinson, David; Noble, Leslie R.; Jones, Catherine S.

    2012-01-01

    The outcome of infection in the host snail Biomphalaria glabrata with the digenean parasite Schistosoma mansoni is determined by the initial molecular interplay occurring between them. The mechanisms by which schistosomes evade snail immune recognition to ensure survival are not fully understood, but one possibility is that the snail internal defence system is manipulated by the schistosome enabling the parasite to establish infection. This study provides novel insights into the nature of schistosome resistance and susceptibility in B. glabrata at the transcriptomic level by simultaneously comparing gene expression in haemocytes from parasite-exposed and control groups of both schistosome-resistant and schistosome-susceptible strains, 2 h post exposure to S. mansoni miracidia, using an novel 5K cDNA microarray. Differences in gene expression, including those for immune/stress response, signal transduction and matrix/adhesion genes were identified between the two snail strains and tests for asymmetric distributions of gene function also identified immune-related gene expression in resistant snails, but not in susceptible. Gene set enrichment analysis revealed that genes involved in mitochondrial electron transport, ubiquinone biosynthesis and electron carrier activity were consistently up-regulated in resistant snails but down-regulated in susceptible. This supports the hypothesis that schistosome-resistant snails recognize schistosomes and mount an appropriate defence response, while in schistosome-susceptible snails the parasite suppresses this defence response, early in infection. PMID:23300533

  3. Differences in the Gene Expression Profiles of Haemocytes from Schistosome-Susceptible and -Resistant Biomphalaria glabrata Exposed to Schistosoma mansoni Excretory-Secretory Products

    PubMed Central

    Davies, Angela J.; Kirk, Ruth S.; Emery, Aidan M.; Rollinson, David; Jones, Catherine S.; Noble, Leslie R.; Walker, Anthony J.

    2014-01-01

    During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs) that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml) for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host. PMID:24663063

  4. Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Martino, Anna; Poli, Paola; Rossi, Carlo

    2003-05-01

    The potential application of the Comet assay for monitoring genotoxicity in the freshwater mussel Dreissena polymorpha was explored and a preliminary investigation was undertaken of the baseline levels of DNA damage in mussel haemocytes of animals kept at different temperatures. In addition, in vitro cell sensitivity against genotoxicants was assessed in relation to increasing temperatures. The mussels were kept at four different constant temperatures (4, 18, 28 and 37 degrees C) for 15 h. The haemocytes withdrawn were treated in vitro with melphalan, as a model genotoxic compound, or sodium hypochlorite, a common water disinfectant capable of producing mutagenic/carcinogenic by-products, at the established temperatures for 1h. The data obtained in vivo, in cells directly withdrawn from the mussels showed a significant (P<0.001, Student's t test) inter-individual variability, probably due to genetic and epigenetic factors and an increasing amount of DNA damage at increasing temperature. Mussel haemocytes showed a clear dose-response effect after in vitro melphalan treatment. Hypochlorite treatment also significantly increased DNA migration: the damage was temperature dependent, with a similar increase at 4 and 28 degrees C and a minimum level at 18 degrees C. This study demonstrates the potential application of the Comet assay to haemocytes of D. polymorpha. However, these findings suggest that temperature could alter both DNA damage baseline levels in untreated animals and cell sensitivity towards environmental pollutants in in vitro conditions. Therefore, more information is needed about seasonal variations and the natural background levels of DNA damage in mussels living in the wild, before they are used for the monitoring of genotoxic effects in aquatic environments. PMID:12742509

  5. Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents.

    PubMed

    Pampanin, Daniela M; Ballarin, Loriano; Carotenuto, Lucia; Marin, Maria G

    2002-03-01

    The Venus clam Chamelea gallina is fairly common along the western coasts of the Adriatic and is subjected to intense fishing. Since over the last 20 years extensive hypoxic and anoxic conditions have repeatedly damaged this natural resource, we decided to study the effects of anoxic stress on the functionality of clam haemocytes and the consequences on immune responses. Clams, exposed to air, close their valves and tissues become anoxic and metabolism processes switch to anaerobiosis. In these conditions, a significant decrease in the haematocrit value and in the percentage of acid phosphatase-positive haemocytes was observed, while the number of cells with beta-glucuronidase significantly increased after day 1. The above indices generally returned to control values when clams were re-immersed in seawater after 1 day of treatment. Clams exposed to air for 2 days and then re-immersed, attempted to recover in the subsequent 3 days. Animals had fully recovered on day 4. Three-day-exposed clams did not recover. Phagocytic and adhesion indices decreased significantly after the first day of air exposure. The change in frequency of three types of circulating cells (spreading, round, apoptotic) was also monitored. PMID:11867286

  6. Larval excretory-secretory products from the parasite Schistosoma mansoni modulate HSP70 protein expression in defence cells of its snail host, Biomphalaria glabrata

    PubMed Central

    Zahoor, Zahida; Davies, Angela J.; Kirk, Ruth S.; Rollinson, David

    2010-01-01

    Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the ∼70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host. PMID:20182834

  7. [Effects of eugenol and derivatives on Biomphalaria glabrata].

    PubMed

    De Souza, C P; De Oliveira, A B; Araújo, N; Katz, N

    1991-05-01

    Biomphalaria glabrata snails and egg-masses were exposed, for six to twenty-four hours to concentrations of 1, 10, 100 and 1000 ppm of Eugenol, O-methyleugenol, O-benzyleugenol and dehydrodieugenol. Only at 10 ppm O-benzyleugenol enhanced mortality of snails and egg-masses. The other substances showed ovicidal and molluscicidal activity only at 100 and 1000 ppm concentrations, causing a significant cardiac frequency reduction in snails after 6 to 24 hours of exposure as well as perduring low cardiac rates until 24 hours afterwards. Two specimen exposed to 100 ppm O-methyleugenol presented anesthetic effect and extrusion of copulator and urethral organs. No schistosomicide or anesthetic effects were observed in mice experimentally infected with Schistosoma mansoni and treated during 5 days with oral doses of 150 mg/kg of Eugenol, O-methyleugenol and O-benzyleugenol. PMID:1844101

  8. Genotoxic effects of starvation and dimethoate in haemocytes and midgut gland cells of wolf spider Xerolycosa nemoralis (Lycosidae).

    PubMed

    Wilczek, Grażyna; Mędrzak, Monika; Augustyniak, Maria; Wilczek, Piotr; Stalmach, Monika

    2016-06-01

    The aim of this study was to assess the genotoxic effects of starvation and dimethoate (organophosphate insecticide) in female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to the stressors under laboratory conditions. DNA damage was measured in haemocytes and midgut gland cells using the comet assay. In response to the two stressing factors, both cell types showed %TDNA, tail length (TL) and OTM values higher in males than in females. Level of DNA damage in haemocytes was greater than in midgut gland cells. In both sexes, the strongest genotoxicity was recorded at single application of dimethoate. After five-time exposure to the pesticide, genotoxic effects of a single dose were sustained in males and reduced to the control level in females. Starvation stress was well tolerated by the females, in which neither cell type was affected by DNA damage. However, in male haemocytes food deprivation induced severe DNA damage, what suggests suppression of the defence potential at prolonged starvation periods. PMID:26942684

  9. The effect of different polychlorinated biphenyls on two aquatic models, the green alga Pseudokirchneriella subcapitata and the haemocytes from the European abalone Haliotis tuberculata.

    PubMed

    Halm-Lemeille, Marie-Pierre; Abbaszadeh Fard, Elham; Latire, Thomas; Ferard, Jean-François; Costil, Katherine; Lebel, Jean-Marc; Bureau, Ronan; Serpentini, Antoine

    2014-09-01

    The present study was conducted to determine the toxicity of different polychlorinated biphenyls (PCBs) on the green algae, Pseudokirchneriella subcapitata and the haemocytes from the European abalone, Haliotis tuberculata. Using the algal growth inhibition test, the green algae median Effective Concentration (EC50) values ranged from 0.34μM for PCB28 to more than 100μM for PCBs 101 and 153. Considering the MTT viability test, the abalone EC50 values ranged from 1.67μM for PCB153 to 89μM for PCB28. Our results in contrast to previous observation in vertebrates did not show significant differences between the dioxin like- and non dioxin like-PCBs toxicities regardless of the model used. However, our results demonstrated that the toxicities of PCBs were species dependent. For example, PCB28 was the most toxic compound for P. subcapitata whereas PCBs 1, 180 and 153 were less toxic for that species. On the contrary, PCB153 was reported as the most toxic for H. tuberculata haemocytes and PCB28 the least toxic. To investigate the mode of action of these compounds, we used an in silico method. Our results suggested that PCBs have a non-specific mode of action (e.g., narcosis) on green algae, and another mode of action, probably more specific than narcosis, was reported for PCBs on the abalone haemocytes. PMID:24630249

  10. Himasthla elongata: effect of infection on expression of the LUSTR-like receptor mRNA in common periwinkle haemocytes.

    PubMed

    Gorbushin, A M; Klimovich, A V; Iakovleva, N V

    2009-09-01

    The first mollusc mRNA coding G-protein-coupled transmembrane receptor (GPcapital ES, CyrillicR), homologous to human receptors LUSTR 1 (GPR107) and LUSTR 2 (GPR108), was isolated from haemocytes of common periwinkle Littorina littorea. The analyses showed that the full-length cDNA is 1935 bp long and is predicted to encode a 614 amino acid protein (named Lit-LUSTR) with a calculated molecular mass of 69.6 kDa and theoretical isoelectric point 7.59. Pair-wise comparisons between Lit-LUSTR and LUSTR proteins from human or mouse have approximately 38% identity and 56% similarity. Lit-LUSTR clusters with LUSTR-A sub-family proteins and is a first characterization of proteins containing Lung7TM-R domain in Mollusca. Significant differences were found between the Lit-LUSTR mRNA levels in haemocytes of healthy periwinkles and those naturally infected with the echinostome trematode Himasthla elongata. Down regulated expression of the LUSTR-like receptor caused by infection illustrates modification of the haemocyte receptor system and may be attributed to the previously demonstrated greater numbers of "immature" haemocytes in the circulation of infected snails. PMID:19460375

  11. Isolated and combined exposure to ammonia and nitrite in giant freshwater pawn (Macrobrachium rosenbergii): effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes.

    PubMed

    Zhang, Yufan; Ye, Chaoxia; Wang, Anli; Zhu, Xuan; Chen, Changhong; Xian, Jianan; Sun, Zhenzhu

    2015-10-01

    The residual contaminators such as ammonia and nitrite are widely considered as relevant sources of aquatic environmental pollutants, posing a great threat to shrimp survival. To study the toxicological effects of ammonia and nitrite exposure on the innate immune response in invertebrates, we investigated the oxidative stress and apoptosis in haemocytes of freshwater prawn (Macrobrachium rosenbergii) under isolated and combined exposure to ammonia and nitrite in order to provide useful information about adult prawn immune responses. M. rosenbergii (13.44 ± 2.75 g) were exposed to 0, 5, and 25 mg/L total ammonia-N (TAN) and 0, 5, and 20 mg/L nitrite-N for 24 h. All ammonia concentrations were combined with all nitrite concentrations, making a total of nine treatments studied. Following the exposure treatment, antioxidant enzyme activity, reactive oxygen species (ROS) generation, nitric oxide (NO) generation, and apoptotic cell ratio of haemocytes were measured using flow cytometry. Results indicated that ROS generation was sensitive to the combined effect of ammonia and nitrite, which subsequently affected the Cu-Zn SOD activity. In addition, CAT showed the highest activity at 5 mg/L TAN while GPx decreased at 5 mg/L TAN and returned towards baseline at 25 mg/L. NO generation synchronized with the apoptotic cell ratio in haemocytes, indicating that NO production was closely associated with programmed cell death. Both NO production and apoptotic ratios significantly decreased following 25 mg/L TAN, which may be due to the antagonistic regulation of NO and GPx. We hypothesized that the toxicological effect of nitrite exhibited less change in physiological changes compared to that of ammonia, because of the high tolerance to nitrite exposure in mature M. rosenbergii and/or the competitive effects of chloride ions. Taken together, these results showed that ammonia and nitrite caused a series of combined oxidative stress and apoptosis in M. rosenbergi, but further

  12. Early genotoxic effects in gill cells and haemocytes of Dreissena polymorpha exposed to cadmium, B[a]P and a combination of B[a]P and Cd.

    PubMed

    Vincent-Hubert, Françoise; Arini, Adeline; Gourlay-Francé, Catherine

    2011-07-14

    The aim of this study was to assess the genotoxic potential of environmentally relevant concentrations of Cd on the zebra mussel, an important freshwater sentinel organism, and to determine the stability of DNA damage in gill cells and haemocytes. The oxidative DNA damage and the co-genotoxicity of Cd in combination with B[a]P were investigated. We measured DNA damage in haemocytes and gill cells of zebra mussels exposed for 11 days to a constant concentration of Cd (10μg/L), B[a]P (10μg/L) or the two combined chemicals (10μg/L+1μg/L). Enzymatic dissociation of gills with dispase gave the lower percentage DNA in tail, compared with collagenase/dispase or collagenase. Bioaccumulation of cadmium in the soft tissues of mussels exposed to CdCl(2) or CdCl(2)+B[a]P increased in a time-dependent manner indicating that both exposures were effective. Cd (10μg/L) is genotoxic only during the first 3 days of exposure in gill cells, while in haemocytes the genotoxicity of Cd was observed later. B[a]P (10μg/L) induced an early increase of DNA damage in gill cells (after 10h and 1 day), while in both gill cells and haemocytes, B[a]P caused a marked increase of DNA damage after 3 days of exposure. The Cd+B[a]P mixture decreased the DNA-damaging effect of Cd and B[a]P in both cell types. Cd induced an increase of DNA damage in Fpg-treated slides, indicating that Cd contributed to oxidative DNA damage. Cadmium induced a cytogenetic effect in gill cells, assessed by the number of micronuclei, throughout the duration of the exposure, while B[a]P did not induce any cytogenetic effect. B[a]P, Cd and Cd+B[a]P induced a transient increase in the number of bi-nucleated cells. Our data clearly show that gills are more sensitive to Cd and B[a]P, which makes them more suitable for future bio-monitoring studies. PMID:21453782

  13. Effects of 17α-methyltestosterone on the reproduction of the freshwater snail Biomphalaria glabrata.

    PubMed

    Rivero-Wendt, C L G; Borges, A C; Oliveira-Filho, E C; Miranda-Vilela, A L; Ferreira, M F N; Grisolia, C K

    2014-01-01

    17-α-methyltestosterone (MT) is a synthetic hormone used in fish hatcheries to induce male monosex. Snails hold promise as possible test models to assess chemicals acting on the endocrine system. Biomphalaria glabrata is an aquatic gastropod mollusk (Pulmonata, Planorbidae) that can be easily maintained in aquaria, predisposing the species for use in ecotoxicological testing. This study evaluated the reproductive effects of MT on B. glabrata by examining histological changes and its reproductive performance. Ten snails per group were exposed for 4 weeks to different concentrations of MT (0.01, 0.1, and 1.0 mg/L). The total number of laid eggs, egg mass per group, size of type V oocytes, and production of spermatozoids were determined. Reproduction of B. glabrata was affected by MT. At the lowest concentration (0.01 mg/L), MT caused a statistically significant increase in the number of egg mass per snail compared with controls unexposed to MT. Histopathology analyses showed an increase in the sperm production at the higher MT concentrations of 0.1 and 1.0 mg/L. Chromatographic analyses of water samples showed that MT concentrations rapidly declined within a 96-h period. These results highlight the importance of giving more support to regulatory authorities, since MT is not registered for use on fish hatcheries in many countries around the world. Wastewater from fish farms discharged into aquatic ecosystems should be monitored for MT residues, since its presence could compromise the reproduction of other native snail species. PMID:24615026

  14. Lethal and Sub-lethal Effects of UVB on Juvenile Biomphalaria glabrata (Mollusca: Pulmonata)

    PubMed Central

    Ruelas, Debbie S.; Karentz, Deneb; Sullivan, John T.

    2007-01-01

    Although Schistosoma mansoni occurs mainly in the tropics, where intense levels of solar radiation are present, the impact of ultraviolet (UV) light on schistosome transmission is not known. The purpose of this study was to investigate potential effects of UVB (290–320 nm) on juvenile Biomphalaria glabrata, the snail intermediate host of S. mansoni. Albino and wild type snails were exposed to doses of UVB from UV-fluorescent lamps, and the following were measured: survival, photoreactivation (light-mediated DNA repair), effects on feeding behavior, and morphological tissue abnormalities. Irradiation with UVB is lethal to B. glabrata in a dose-dependent manner. Exposure to white light subsequent to UVB irradiation enhances survival, probably by photoreactivation. The shell offers some, but not complete, protection. Experiments in which UVB transmittance through the shell was blocked with black nail polish suggest that injury to both exposed (headfoot) and shell-enclosed (mantle and visceral mass) tissues contributes to mortality in lethally-irradiated snails. Wild-type (pigmented) snails are less susceptible to lethal effects of UVB than albino snails, and they may be more capable of photoreactivation. UVB exposure inhibits snail feeding behavior, and causes tentacle forks and growths on the headfoot. Thus, UVB may influence the life cycle of S. mansoni by both lethal and sub-lethal damage to the snail intermediate host. However, the ability of snails to photoreactivate may mitigate these effects. PMID:16996081

  15. Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides

    USGS Publications Warehouse

    Cardenas, W.; Dankert, J.R.; Jenkins, J.A.

    2004-01-01

    Lipopolysaccharides (LPS) from Gram-negative bacteria are strong stimulators of white river crayfish, Procambarus zonangulus, haemocytes in vitro. Following haemocyte treatment with LPS and with LPS from rough mutant R5 (LPS Rc) from Salmonella minnesota, flow cytometric analysis revealed a conspicuous and reproducible decrease in cell size as compared to control haemocytes. These LPS molecules also caused a reduction in haemocyte viability as assessed by flow cytometry with the fluorescent dyes calcein-AM and ethidium homodimer. The onset of cell size reduction was gradual and occurred prior to cell death. Haemocytes treated with LPS from S. minnesota without the Lipid A moiety (detoxified LPS) decreased in size without a reduction of viability. The action of LPS on crayfish haemocytes appeared to be related to the activation of the prophenoloxidase system because phenoloxidase (PO)-specific activity in the supernatants from control and detoxified LPS-treated cells was significantly lower than that from LPS and LPS-Rc treated cells (P < 0.05). Furthermore, addition of trypsin inhibitor to the LPS treatments caused noticeable delays in cell size and viability changes. These patterns of cellular activation by LPS formulations indicated that crayfish haemocytes react differently to the polysaccharide and lipid A moieties of LPS, where lipid A is cytotoxic and the polysaccharide portion is stimulatory. These effects concur with the general pattern of mammalian cell activation by LPS, thereby indicting commone innate immune recognition mechanisms to bacterial antigens between cells from mammals and invertebrates. These definitive molecular approaches used to verify and identify mechanisms of invertbrate haemocyte responses to LPS could be applied with other glycoconjugates, soluble mediators, or xenobiotic compounds.

  16. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates

    PubMed Central

    Chew, SY; Cheah, YK; Seow, HF; Sandai, D; Than, LTL

    2015-01-01

    Aims This study investigates the antagonistic effects of the probiotic strains Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 against vulvovaginal candidiasis (VVC)-causing Candida glabrata. Methods and Results Growth inhibitory activities of Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains against C. glabrata were demonstrated using a spot overlay assay and a plate-based microtitre assay. In addition, these probiotic lactobacilli strains also exhibited potent candidacidal activity against C. glabrata, as demonstrated by a LIVE/DEAD yeast viability assay performed using confocal laser scanning microscopy. The metabolic activities of all C. glabrata strains were completely shut down in response to the challenges by the probiotic lactobacilli strains. In addition, both probiotic lactobacilli strains exhibited strong autoaggregation and coaggregation phenotypes in the presence of C. glabrata, which indicate that these lactobacilli strains may exert their probiotic effects through the formation of aggregates and, thus the consequent prevention of colonization by C. glabrata. Conclusions Probiotic Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains exhibited potent antagonistic activities against all of the tested C. glabrata strains. These lactobacilli exhibited antifungal effects, including those attributed to their aggregation abilities, and their presence caused the cessation of growth and eventual cell death of C. glabrata. Significance and Impact of the Study This is the first study to report on the antagonistic effects of these probiotic lactobacilli strains against the non-Candida albicans Candida (NCAC) species C. glabrata. PMID:25688886

  17. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata

    PubMed Central

    Lockyer, Anne E.; Routledge, Edwin J.; Jones, Catherine S.; Noble, Leslie R.; Jobling, Susan

    2016-01-01

    Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment. PMID:27448327

  18. Toxic effects of Microgramma vacciniifolia rhizome lectin on Artemia salina, human cells, and the schistosomiasis vector Biomphalaria glabrata.

    PubMed

    de Albuquerque, Lidiane Pereira; Pontual, Emmanuel Viana; Santana, Giselly Maria de Sá; Silva, Luanna Ribeiro Santos; Aguiar, Jaciana dos Santos; Coelho, Luana Cassandra Breitenbach Barroso; Rêgo, Moacyr Jesus Barreto de Melo; Pitta, Maira Galdino da Rocha; da Silva, Teresinha Gonçalves; Melo, Ana Maria Mendonça de Albuquerque; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2014-10-01

    The present study evaluated the toxicity of Microgramma vacciniifolia rhizome lectin (MvRL) to Artemia salina, human tumour cell lines (larynx epidermoid carcinoma Hep-2, NCI-H292 lung mucoepidermoid carcinoma, and chronic myelocytic leukaemia K562), and normal peripheral blood mononuclear cells (PBMCs), as well as to Biomphalaria glabrata embryos and adults. MvRL was toxic to A. salina (LC50=159.9 μg/mL), and exerted cytotoxic effects on NCI-H292 cells (IC50=25.23 μg/mL). The lectin (1-100 μg/mL) did not affect the viability of K562 and Hep-2 tumour cells, as well as of PBMCs. MvRL concentration of 1, 10, and 100 μg/mL promoted malformations (mainly exogastrulation) in 7.8%, 22.5%, and 27.7% of embryos, respectively, as well as delayed embryo development in 42.0%, 69.5%, and 54.7% of embryos, respectively. MvRL at a concentration of 100 μg/mL killed B. glabrata embryos (17.7%) and adults (25%). Further, MvRL damaged B. glabrata reproductive processes, which was evidenced by observations that snails exposed to the lectin (100 μg/mL) deposited fewer eggs than those in the control group, and approximately 40% of the deposited eggs exhibited malformations. Comparison of these results with that from A. salina assay indicates that MvRL is adulticidal at the concentration range which is toxic to environment. In conclusion, the cytotoxicity of MvRL on tumour cell and absence of toxicity to normal cell indicate its potential as chemotherapeutic drug. Also, the study revealed that the lectin is able to promote deleterious effects on B. glabrata embryos at environmentally safe concentrations. PMID:24954527

  19. Effects of Plagiorchis elegans (Digenea: Plagiorchiidae) infection on the reproduction of Biomphalaria glabrata (Pulmonata: Planorbidae).

    PubMed

    Zakikhani, M; Rau, M E

    1998-10-01

    Infection with the digenean parasite Plagiorchis elegans dramatically reduced the reproductive output of Biomphalaria glabrata exposed to the parasite as juveniles or adults. The total number of eggs produced by infected snails was reduced to approximately 7 and 13% of control values, respectively. Parasitic castration was attributed to the presence of mother sporocysts that readily established in the tissues of this incompatible host. Infection did not result in the production of cercariae but significantly shortened the life span of juvenile and adult B. glabrata by approximately 23 and 10%, respectively. Plagiorchis elegans also castrated its compatible host, Stagnicola elodes. PMID:9794632

  20. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections. PMID:26162470

  1. Combined effects of carbonate alkalinity and pH on survival, growth and haemocyte parameters of the Venus clam Cyclina sinensis.

    PubMed

    Lin, Tingting; Lai, Qifang; Yao, Zongli; Lu, Jianxue; Zhou, Kai; Wang, Hui

    2013-08-01

    Carbonate alkalinity (CA) and pH are considered to be two important stress factors that determine the response of aquatic animals to sudden transfers into saline-alkaline water. To evaluate the potential for aquaculture production of Venus clams (Cyclina sinensis) farmed in saline-alkaline water, the combined effects of CA (2.5 (control), 10.0, 20.0 and 40.0 meq/l) and pH (8.0 (control), 8.5, 9.0 and 9.5) on survival rate was monitored every day for 10 days. Length gain rate (LGR) and weight gain rate (WGR) were also monitored for two months, and total haemocyte count (THC), phagocytic rate (PR) and haemocyte mortality (HM) were measured for 3, 6, 12 and 24 days under the same water temperature (20 °C) and salinity (15‰) conditions. The results showed that survival rates in treatments of CA ≤ 20.0, combined with pH ≤ 9.0, were 100%. LGR and WGR in treatments of CA 2.5 & pH 8.0 (control), CA 2.5 & pH 8.5 and CA 10.0 & pH 8.0 exhibited the largest values (P > 0.05), while in other treatments, they showed a decreasing trend with an increase in either CA or pH or both (P < 0.05). Similarly, for THC, PR and HM, no significant differences were observed among the fast growth treatments during the entire experimental period (P > 0.05), however, in other treatments, they presented significant differences, especially on day 3 and 6 (P < 0.05), most notably with increases in CA or pH, but returned to control levels on day 12. In conclusion, in this study, a strong interaction between CA and pH was observed. Additionally, it was ascertained that the Venus clam C. sinensis can withstand the stress of CA 20.0 combined pH 9.0, although individuals grows slowly and may take approximately 12 days to recover to the unstressed condition. PMID:23711470

  2. Mutual modulation between norepinephrine and nitric oxide in haemocytes during the mollusc immune response

    PubMed Central

    Jiang, Qiufen; Zhou, Zhi; Wang, Lingling; Yang, Chuanyan; Wang, Jingjing; Wu, Tiantian; Song, Linsheng

    2014-01-01

    Nitric oxide (NO) is one of the most important immune molecules in innate immunity of invertebrates, and it can be regulated by norepinephrine in ascidian haemocytes. In the present study, the mutual modulation and underlying mechanism between norepinephrine and NO were explored in haemocytes of the scallop Chlamys farreri. After lipopolysaccharide stimulation, NO production increased to a significant level at 24 h, and norepinephrine concentration rose to remarkable levels at 3 h and 12~48 h. A significant decrease of NO production was observed in the haemocytes concomitantly stimulated with lipopolysaccharide and α-adrenoceptor agonist, while a dramatic increase of NO production was observed in the haemocytes incubated with lipopolysaccharide and β-adrenoceptor agonist. Meanwhile, the concentration of cyclic adenosine monophosphate (cAMP) decreased significantly in the haemocytes treated by lipopolysaccharide and α/β-adrenoceptor agonist, while the content of Ca2+ was elevated in those triggered by lipopolysaccharide and β-adrenoceptor agonist. When the haemocytes was incubated with NO donor, norepinephrine concentration was significantly enhanced during 1~24 h. Collectively, these results suggested that norepinephrine exerted varied effects on NO production at different immune stages via a novel α/β-adrenoceptor-cAMP/Ca2+ regulatory pattern, and NO might have a feedback effect on the synthesis of norepinephrine in the scallop haemocytes. PMID:25376551

  3. Cellular responses of the tiger shrimp Penaeus monodon haemocytes after lipopolysaccharide injection.

    PubMed

    Xian, Jian-An; Zhang, Xiu-Xia; Guo, Hui; Wang, Dong-Mei; Wang, An-Li

    2016-07-01

    This study was aimed at investigating the in vivo effects of lipopolysaccharide (LPS) injection on Penaeus monodon haemocytes at a cellular level. Cellular responses of LPS-injected shrimp were analysed using flow cytometry. Results showed that LPS injection caused total haemocyte count (THC) and count of large cells (semigranular and granular cells) decline. In LPS-injected shrimp, percentage of large cells decreased at the initial stage, and returned to the original level later. After LPS infection, non-specific esterase activity, reactive oxygen species (ROS) production and nitric oxide (NO) production in haemocytes were significantly induced, while apoptotic cell ratio of haemocytes increased. PO activity in plasma increased in shrimp received LPS at 2 μg g(-1) after 3-12 h and at 8 μg g(-1) after 3-6 h, and then returned to the initial levels. These results demonstrated that LPS induced immune responses on haemocytes, including production of ROS and NO, and release of esterase and PO. On the other hand, THC reduction might be due to the ROS/NO-induced apoptosis. Haemocyte apoptosis which would eliminate damaged or weak cells and contribute to haemocyte renewal, may be a defending strategie against pathogens. PMID:27134076

  4. Effects of aestivation and starvation on the neutral lipid and phospholipid content of Biomphalaria glabrata infected with Schistosoma mansoni.

    PubMed

    White, Meredith M; Fried, Bernard; Sherma, Joseph

    2007-02-01

    The effects of aestivation or starvation on the neutral lipid and phospholipid content of Biomphalaria glabrata patently infected with Schistosoma mansoni were determined by high-performance thin-layer chromatography-densitometry. Infected-aestivated snails were maintained in a moist chamber at 24 +/- 1 C and a relative humidity of 98 +/- 1%. Infected-starved snails were maintained in artificial spring water (ASW) at 23 +/- 1 C without exogenous food. Infected snails (the controls) were maintained in ASW at 23 +/- 1 C and fed lettuce ad libitum. The 3 groups were maintained in the laboratory for 7 days, and then the lipids from the digestive gland-gonad complex (DGG) were extracted and analyzed by class. Infected-aestivated snails exhibited greater mortality rate and weight loss after 7 days than did the infected-starved snails. The steryl ester concentration in the infected-starved snails was significantly increased (P = 0.010) compared with the controls but not compared with infected-aestivated snails; the concentration of phosphatidylcholine in infected-aestivated snails was significantly decreased (P = 0.007) compared with the controls but not when compared with the infected-starved snails. Aestivation or starvation had a significant effect on the concentration of certain lipid classes in the DGG of B. glabrata infected with S. mansoni. PMID:17436935

  5. OVICIDAL EFFECT OF PIPERACEAE SPECIES ON Biomphalaria glabrata, Schistosoma mansoni HOST

    PubMed Central

    Rapado, Ludmila Nakamura; Lopes, Priscila Orechio de Moraes; Yamaguchi, Lydia Fumiko; Nakano, Eliana

    2013-01-01

    SUMMARY Schistosomiasis is a neglected disease with public health importance in tropical and subtropical regions. An alternative to the disease control is the use of molluscicides to eliminate or reduce the intermediate host snail population causing a reduction of transmission in endemic regions. In this study nine extracts from eight Piperaceae species were evaluated against Biomphalaria glabrata embryos at blastula stage. The extracts were evaluated in concentrations ranging from 100 to 10 mg/L. Piper crassinervium and Piper tuberculatum extracts were the most active (100% of mortality at 20 mg/L and 30 mg/L respectively). PMID:24213196

  6. Effects of abnormal temperature and starvation on the internal defense system of the schistosome-transmitting snail Biomphalaria glabrata.

    PubMed

    Nelson, Molly K; Cruz, Brandon C; Buena, Kevin L; Nguyen, Hai; Sullivan, John T

    2016-07-01

    Climate change may affect the internal defense system (IDS) of freshwater snails, and as a result their capacity to transmit disease. We examined effects of short-term exposure to supra- and sub-optimal temperatures or starvation on 3 parameters of the IDS of the schistosome-resistant Salvador strain of Biomphalaria glabrata - hemocyte concentrations, cell division in the amebocyte-producing organ (APO), and resistance to infection with Schistosoma mansoni. Adult snails were exposed to 1 of 3 temperatures, 20°C, 27°C (controls), or 33°C, for 1 or 2weeks, with food. A fourth group was maintained at 27°C, but without food. Compared to the controls, starved snails had significantly higher hemocyte counts at both 1 and 2weeks, although mitotic activity in the APO was significantly lower at both time periods. Exposure to 20°C or 33°C for 1 or 2weeks did not affect hemocyte numbers. However, APO mitotic activity in snails exposed to 20°C was significantly higher at both 1 and 2weeks, whereas mitotic activity in snails exposed to 33°C was significantly lower at 1week but normal at 2weeks. None of the treatments altered the resistance phenotype of Salvador snails. In a follow-up experiment, exposure to 33°C for 4-5h, a treatment previously reported to both induce expression of heat shock proteins (Hsps) and abrogate resistance to infection, caused immediate upregulation of Hsp 70 and Hsp 90 expression, but did not alter resistance, and Hsp expression levels returned to baseline after 2weeks at 33°C. Results of this study indicate that abnormal environmental conditions can have both stimulatory and inhibitory effects on the IDS in adult B. glabrata, and that some degree of acclimation to abnormal temperatures may occur. PMID:27261059

  7. Effects of Plagiorchis elegans (Digenea: Plagiorchiidae) infection of Biomphalaria glabrata (Pulmonata: Planorbidae) on a challenge infection with Schistosoma mansoni (Digenea: Schistosomatidae).

    PubMed

    Zakikhani, M; Smith, J M; Rau, M E

    2003-02-01

    Prior exposure of Biomphalaria glabrata to the eggs of an incompatible digenean, Plagiorchis elegans, rendered this snail host less suitable to a compatible species, Schistosoma mansoni. Although P. elegans failed to develop patent infections in B. glabrata, it reduced the production of S. mansoni cercariae by 88%. Concomitantly, host attributes such as reproduction, growth, and survival were compromised. The effect of P. elegans infection was most severe among snails that, in addition, had developed patent schistosome infections. Although few S. mansoni cercariae were produced, egg production by B. glabrata was only 4% of control values. Furthermore, no doubly infected snails survived for more than 3 wk after patency, whereas controls experienced no mortality during the same time period. The above effects were attributable to the establishment and persistence of P. elegans sporocysts in the tissues of the incompatible snail host. Their indirect antagonistic interaction with thelarval stages of S. mansoni may be mediated, in part, through their long-term stimulation of the host's internal defense mechanisms. These findings are discussed with a view to use P. elegans and other plagiorchiid digeneans as agents in the biological control of snails and snail-borne diseases. PMID:12659305

  8. Nitric oxide production by haemocytes from Mytilus galloprovincialis shows seasonal variations.

    PubMed

    Novas, Ana; Barcia, Ramiro; Ramos-Martínez, Juan Ignacio

    2007-10-01

    Nitric oxide (NO) has been identified as an important physiological modulator, with evidence of its role as a signalling molecule throughout the whole phylogenetic scale. In marine molluscs, it intervenes in processes related to the immune function of haemocytes. The presented results indicate that basal NO production by haemocytes of Mytilus galloprovincialis shows seasonal variations, with summer values statistically higher than those of winter. The presence of IL-2 increased NO production in winter. In summer, incubating the haemocytes with TNF-alpha for 6h slightly increased NO production. LPS, TGF-beta1 or PDGF did not induce significant effects on NO production by the haemocytes. Immunoblotting experiments detected two proteins that bind to vertebrate iNOS and eNOS antibodies, with different seasonal expression: the protein that binds to anti-iNOS antibody was expressed throughout the year, whereas the anti-eNOS antibody bound with a protein that was only detected in winter. IL-2 is suggested to start a signalling system dependent on the seasonal presence of winter protein. Such a system would activate the enzyme, thus favouring the higher NO production detected in winter. PMID:17574865

  9. Innovative application of classic and newer techniques for the characterization of haemocytes in the New Zealand black-footed abalone (Haliotis iris).

    PubMed

    Grandiosa, Roffi; Mérien, Fabrice; Pillay, Krish; Alfaro, Andrea

    2016-01-01

    Haemocytes play an important role in innate immune responses within invertebrate organisms. However, identification and quantification of different types of haemocytes can be extremely challenging, and has led to numerous inconsistencies and misinterpretations within the literature. As a step to rectify this issue, we present a comprehensive and detailed approach to characterize haemocytes using a combination of classical (cytochemical and phagocytosis assays with optical microscopy) and novel (flow cytometry with Sysmex XN-1000 and Muse(®) Cell analyser) techniques. The Sysmex XN-1000 is an innovative fluorescent flow cytometric analyser that can effectively detect, identify and count haemocytes, while the Muse(®) Cell analyser provides accurate and rapid haemocyte cell counts and viability. To illustrate this approach, we present the first report on morphological and functional features of New Zealand black-footed abalone (Haliotis iris) haemocyte cells. Two types of haemocytes were identified in this study, including type I (monocyte-like) and type II (lymphocyte-like) cells. Granular cells, which have been reported in other molluscan species, were not detected in H. iris. Cell types were categorized based on shape, size, internal structures and function. The lymphocyte-like haemocytes were the most abundant hemocytes in the haemolymph samples, and they had large nuclei and basic cytoplasms. Monocyte-like cells generally were larger cells compared to lymphocyte-like cells, and had low nucleus-cytoplasm ratios. Monocyte-like cells showed higher phagocytic activity when encountering Zymosan A particles compared to lymphocyte-like cells. The present study provides a comprehensive and accurate new approach to identify and quantify haemocyte cells for future comparative studies on the immune system of abalone and other molluscan species. PMID:26672903

  10. Ecocytological and toxicological responses to copper in Perna viridis (L.) (Bivalvia: Mytilidae) haemocyte lysosomal membranes.

    PubMed

    Nicholson, S

    2001-11-01

    Bivalve lysosomes are sites of intense intracellular digestion. Lysosomes accumulate many pollutants to high concentrations resulting in membrane destabilisation. Consequently, the elucidation of lysosomal membrane integrity utilising the neutral red assay has been used to good effect in pollution monitoring. Naturally occurring environmental stressors also have the potential to destabilise the membrane. Exposure to elevated copper concentrations and extremes of temperature, salinity, hypoxia, emersion and inadequate ration were investigated in haemocyte lysosomes from the tropical bivalve, Perna viridis. Elevated copper concentrations destabilised the membrane although responses were not entirely related to the exposure-concentration. Environmental stressors induced through higher thermal regimes (29 degrees C and 35 degrees C), hyposalinity (10-25/1000) and prolonged emersion elicited significant lysosomal membrane destabilisation. Hypoxia and inadequate ration did not significantly effect membrane stability. The haemocyte lysosomal membranes were generally resistant to exogenous alterations within normal ranges and only showed significant labilisation at environmental extremes. P. viridis haemocyte lysosomal membrane biomarkers should, therefore, prove robust to natural stressors when deployed in marine monitoring programmes and thus prove a valuable, rapid, cost-effective cytological marker of pollution. PMID:11680735

  11. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus.

    PubMed

    Asokan, R; Arumugam, M; Mullainadhan, P

    1997-01-01

    Phenoloxidase activity was detected in plasma and haemocytes of the marine mussel Perna viridis. This enzyme exists as a proenzyme, prophenoloxidase (proPO), in both these haemolymph fractions and could be activated in vitro by exogenous proteases (trypsin and alpha-chymotrypsin) and a detergent (sodium dodecyl sulphate). In addition, laminarin (a polymer of beta-1,3 glucan) and bacterial lipopolysaccharides (LPSa) effectively triggered proPO activation in these haemolymph fractions. The activation of proPO by non-self molecules was dependent upon calcium ions at a low concentration. This activation process appeared to involve a limited proteolysis, since serine protease inhibitors (soybean trypsin inhibitor, benzamidine or p-nitrophenyl-p'-guanidinobenzoate) suppressed conversion of proPO to the active enzyme. This study demonstrates the selective response of plasma and haemocytic proPO to activation by different types of bacterial LPS tested and suggests that proPO system in both plasma and haemocytes of P. viridis serves an important function in non-self recognition and host immune reactions. PMID:9241484

  12. Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata

    PubMed Central

    Bonner, Kaitlin M.; Bayne, Christopher J.; Larson, Maureen K.; Blouin, Michael S.

    2012-01-01

    Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation. PMID:22724037

  13. Pinna nobilis: A big bivalve with big haemocytes?

    PubMed

    Matozzo, V; Pagano, M; Spinelli, A; Caicci, F; Faggio, C

    2016-08-01

    The fan mussel Pinna nobilis (Linnaeus, 1758) is one of the biggest bivalves worldwide. Currently, no updated information is available in the literature concerning the morpho-functional aspects of haemocytes from this bivalve species. Consequently, in this study, we characterised P. nobilis haemocytes from both a morphological and functional point of view. The mean number of haemocytes was about 5 (×10(5)) cells mL haemolymph(-1), and the cell viability was about 92-100%. Two haemocyte types were distinguished under the light microscope: granulocytes (51.6%), with evident cytoplasmic granules, and hyalinocytes (48.4%), with a few granules. The granules of the granulocytes were mainly lysosomes, as indicated by the in vivo staining with Neutral Red. Haemocytes were further distinguished in basophils (83.75%), acidophils (14.75%) and neutrophils (1.5%). After adhesion to slides and fixation, the cell diameter was approximately 10 μm for granulocytes and 7 μm for hyalinocytes. The granulocytes and hyalinocytes were both positive to the Periodic Acid-Schiff reaction for carbohydrates. Only granulocytes were able to phagocytise yeast cells. The phagocytic index (6%) increased significantly up to twofold after preincubation of yeast in cell-free haemolymph, suggesting that haemolymph has opsonising properties. In addition, haemocytes produce superoxide anion and acid and alkaline phosphatases. Summarising, this preliminary study indicates that both the granulocytes and hyalinocytes circulate in the haemolymph of P. nobilis and that they are active immunocytes. PMID:27346153

  14. Does the antibiotic amoxicillin affect haemocyte parameters in non-target aquatic invertebrates? The clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis as model organisms.

    PubMed

    Matozzo, Valerio; Bertin, Valeria; Battistara, Margherita; Guidolin, Angelica; Masiero, Luciano; Marisa, Ilaria; Orsetti, Alessandro

    2016-08-01

    Amoxicillin (AMX) is one of the most widely used antibiotics worldwide, and its levels in aquatic ecosystems are expected to be detectable. At present, information concerning the toxic effects of AMX on non-target aquatic organisms, such as bivalves, is scarce. Consequently, in this study, we investigated for the first time the effects of AMX on the haemocyte parameters of two bivalve species, the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis, which share the same habitat in the Lagoon of Venice, in order to compare the relative sensitivity of the two species. The bivalves were exposed to 100, 200 and 400 μg AMX/L for 1, 3 and 7 days, and the effects on the total haemocyte count (THC), the diameter and volume of the haemocytes, haemocyte proliferation, lactate dehydrogenase (LDH) activity in cell-free haemolymph, the haemolymph pH, and the formation of micronuclei were evaluated. The actual concentrations of AMX in the seawater samples from the experimental tanks were also measured. Overall, the obtained results demonstrated that AMX affected slightly the haemocyte parameters of bivalves. In addition, no clear differences in terms of sensitivity to AMX exposure were recorded between the two bivalve species. PMID:27219711

  15. Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition.

    PubMed

    Casas-Tintó, Sergio; Lolo, Fidel-Nicolás; Moreno, Eduardo

    2015-01-01

    Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue. PMID:26658841

  16. Haemocytes control stem cell activity in the Drosophila intestine.

    PubMed

    Ayyaz, Arshad; Li, Hongjie; Jasper, Heinrich

    2015-06-01

    Coordination of stem cell activity with inflammatory responses is critical for regeneration and homeostasis of barrier epithelia. The temporal sequence of cell interactions during injury-induced regeneration is only beginning to be understood. Here we show that intestinal stem cells (ISCs) are regulated by macrophage-like haemocytes during the early phase of regenerative responses of the Drosophila intestinal epithelium. On tissue damage, haemocytes are recruited to the intestine and secrete the BMP homologue DPP, inducing ISC proliferation by activating the type I receptor Saxophone and the Smad homologue SMOX. Activated ISCs then switch their response to DPP by inducing expression of Thickveins, a second type I receptor that has previously been shown to re-establish ISC quiescence by activating MAD. The interaction between haemocytes and ISCs promotes infection resistance, but also contributes to the development of intestinal dysplasia in ageing flies. We propose that similar interactions influence pathologies such as inflammatory bowel disease and colorectal cancer in humans. PMID:26005834

  17. Fluconazole resistance in Candida glabrata.

    PubMed Central

    Hitchcock, C A; Pye, G W; Troke, P F; Johnson, E M; Warnock, D W

    1993-01-01

    We report a case of infection with Candida glabrata in which the organism became resistant to fluconazole and in which pre- and posttreatment isolates were available for comparison. The organism was cross-resistant to ketoconazole and itraconazole, in common with other azole-resistant yeasts. Fluconazole was a potent inhibitor of cytochrome P-450-dependent 14 alpha-sterol demethylase (P-450DM) in lysates of cells from both susceptible and resistant cultures (50% inhibitory concentration, 0.2 microM), indicating that resistance was unrelated to changes in P-450DM. Instead, it appeared to arise from a permeability barrier to fluconazole, since resistant cells were unable to take up radiolabelled drug. PMID:8239613

  18. Mercury induced haemocyte alterations in the terrestrial snail Cantareus apertus as novel biomarker.

    PubMed

    Leomanni, Alessandro; Schettino, Trifone; Calisi, Antonio; Lionetto, Maria Giulia

    2016-01-01

    The aim of the present work was to study the response of a suite of cellular and biochemical markers in the terrestrial snail Cantareus apertus exposed to mercury in view of future use as sensitive tool suitable for mercury polluted soil monitoring and assessment. Besides standardized biomarkers (metallothionein, acetylcholinesterase, and lysosomal membrane stability) novel cellular biomarkers on haemolymph cells were analyzed, including changes in the spread cells/round cells ratio and haemocyte morphometric alterations. The animals were exposed for 14 days to Lactuca sativa soaked for 1h in HgCl2 solutions (0.5 e 1 μM). The temporal dynamics of the responses were assessed by measurements at 3, 7 and 14 days. Following exposure to HgCl2 a significant alteration in the relative frequencies of round cells and spread cells was evident, with a time and dose-dependent increase of the frequencies of round cells with respect to spread cells. These changes were accompanied by cellular morphometric alterations. Concomitantly, a high correspondence between these cellular responses and metallothionein tissutal concentration, lysosomal membrane stability and inhibition of AChE was evident. The study highlights the usefulness of the terrestrial snail C. apertus as bioindicator organism for mercury pollution biomonitoring and, in particular, the use of haemocyte alterations as a suitable biomarker of pollutant effect to be included in a multibiomarker strategy. PMID:26811906

  19. The roles of serine protease, intracellular and extracellular phenoloxidase in activation of prophenoloxidase system, and characterization of phenoloxidase from shrimp haemocytes induced by lipopolysaccharide or dopamine

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Pan, Luqing; Xu, Wujie; Yue, Feng

    2013-09-01

    We investigated the effects of lipopolysaccharide (LPS) and dopamine (DA) on the activation of the prophenoloxidase (proPO) system of Litopenaeus vannamei. LPS and DA were shown with a negative dose-dependent effect on hyalne cells (HC), semi-granular cells (SGC), large granular cells (LGC), and total haemocyte count (THC). When haemocytes were treated with LPS or DA, serine proteinase activity and intracellular phenoloxidase (PO) activity were significantly reduced, but extracellular PO activity increased significantly. These findings indicated that the reduction in haemocyte counts was mainly because of the degranulation and activation of the proPO system from semi-granule and large granule cells. The PKC inhibitor, chelerythrine, and the TPK inhibitor, genistein, had an inhibitory effect on extracellular PO activity, while serine proteinase and intracellular PO activity increased. This suggests that the LPS and DA induce the activation of proPO in haemocytes via PKC and TPK-related signaling pathways, but serine proteinase may be activated only by PKC, as the genistein effects were not statistically significant. Electrophoresis analysis revealed that POs induced by LPS or DA have the same molecular mass and high diphenolase activity. Two PO bands at 526 kDa and 272 kDa were observed in PAGE, while in the haemocyte lysate supernatant (HLS), only a 272-kDa band was observed. This band was resolved after SDS-PAGE under non-reducing and reducing conditions into two groups of POs, 166 kDa and 126 kDa, and 78.1 kDa and 73.6 kDa, respectively, suggesting that PO in L. vannamei is an oligomer, which may have different compositions intra- and extracellularly.

  20. A first insight into haemocytes of the smooth venus clam Callista chione.

    PubMed

    Matozzo, Valerio; Bailo, Lisa

    2015-02-01

    The smooth venus clam Callista chione is a commercially exploited bivalve species that lives on the sandy bottom of the Italian coast of the Northern Adriatic Sea. Currently, no information is available in the literature about the haemocytes of this bivalve species. In this study, we performed a morpho-functional characterisation of the haemocytes of C. chione. In freshly collected haemocytes, the total haemocyte count (THC) (measured by a Coulter Counter) varied markedly among individuals, and the mean number of haemocytes was 1.2 (×10(6)) cells mL haemolymph(-1). The mean values for the haemocyte diameter and volume were 4.2 μm and 77.8 fL, respectively. In some cases, higher THC values were related to a smaller haemocyte size, but no correlation was detected between the THC and haemocyte diameter or between THC and cell volume. Conversely, a positive correlation was observed between cell diameter and volume. Two haemocyte types were distinguished by light microscopy: granulocytes (76%), with evident cytoplasmic granules, and hyalinocytes (24%), with a few or no granules. After adhesion to slides and fixation, the cell diameter was approximately 10 μm for granulocytes and 7 μm for hyalinocytes. The granules of the granulocytes were stained in vivo with Neutral Red, indicating that they were lysosomes. The granulocytes and hyalinocytes were further distinguished as basophils and acidophils. Both the granulocytes and the hyalinocytes were able to phagocytise yeast cells. Of 2643 cells that were counted, 2007 (76%) showed phagocytic activity. The granulocytes and hyalinocytes were both positive for some hydrolytic enzymes, whereas they were not positive for peroxidase or phenoloxidase. The two types of haemocytes also produced superoxide anion. Overall, this preliminary study indicates that both the granulocytes and hyalinocytes of C. chione are immune effector cells. PMID:25481693

  1. Assimilation of NAD(+) precursors in Candida glabrata.

    PubMed

    Ma, Biao; Pan, Shih-Jung; Zupancic, Margaret L; Cormack, Brendan P

    2007-10-01

    The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection. PMID:17725566

  2. Screening protocol for Torulopsis (Candida) glabrata.

    PubMed Central

    Land, G; Burke, J; Shelby, C; Rhodes, J; Collett, J; Bennett, I; Johnson, J

    1996-01-01

    A screening test has been developed for the presumptive identification of Torulopsis (Candida) glabrata from other common clinical isolates of yeast-like fungi. An interlaboratory comparison of a protocol consisting of morphology on cornmeal Tween 80 agar and trehalose fermentation at 42 degrees C was successful in differentiating T. glabrata from other taxa that are frequent or possible clinical isolates. The screening results for 517 clinical yeast isolates, 241 of which were T. glabrata, were compared with their final identification via commercial systems (API20C Yeast Identification System [bioMERIEUX, Hazelwood, Mo.] and Rapid Yeast Identification Panel [Dade Microscan, Sacramento, Calif.]). The trehalose screening test has a sensitivity and a specificity of 97.8 and 95.8%, respectively, and a positive predictive value of 97.4% and a negative predictive value of 96.5%. Overall, the trehalose screen had an efficiency rating of 93.9% for ruling in or out T. glabrata. Since T. glabrata represents a substantial part of the workload in a clinical laboratory, a significant reduction in direct and indirect costs should be realized. PMID:8862605

  3. Expression Plasmids for Use in Candida glabrata

    PubMed Central

    Zordan, Rebecca E.; Ren, Yuxia; Pan, Shih-Jung; Rotondo, Giuseppe; Peñas, Alejandro De Las; Iluore, Joseph; Cormack, Brendan P.

    2013-01-01

    We describe a series of CEN/ARS episomal plasmids containing different Candida glabrata promoters, allowing for a range of constitutive or regulated expression of proteins in C. glabrata. The set of promoters includes three constitutive promoters (EGD2pr, HHT2pr, PDC1pr), two macrophage/phagocytosis-induced promoters (ACO2pr, LYS21pr), and one nutritionally regulated promoter (MET3pr). Each promoter was cloned into two plasmid backbones that differ in their selectable marker, URA3, or the dominant-selectable NAT1 gene, which confers resistance to the drug nourseothricin. Expression from the 12 resulting plasmids was assessed using GFP as a reporter and flow cytometry or quantitative reverse-transcription polymerase chain reaction to assess expression levels. Together this set of plasmids expands the toolkit of expression vectors available for use with C. glabrata. PMID:23934995

  4. Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness

    PubMed Central

    Llopis-Torregrosa, Vicent; Hušeková, Barbora; Sychrová, Hana

    2016-01-01

    The maintenance of potassium homeostasis is crucial for all types of cells, including Candida glabrata. Three types of plasma-membrane systems mediating potassium influx with different transport mechanisms have been described in yeasts: the Trk1 uniporter, the Hak cation-proton symporter and the Acu ATPase. The C. glabrata genome contains only one gene encoding putative system for potassium uptake, the Trk1 uniporter. Therefore, its importance in maintaining adequate levels of intracellular potassium appears to be critical for C. glabrata cells. In this study, we first confirmed the potassium-uptake activity of the identified gene’s product by heterologous expression in a suitable S. cerevisiae mutant, further we generated a corresponding deletion mutant in C. glabrata and analysed its phenotype in detail. The obtained results show a pleiotropic effect on the cell physiology when CgTRK1 is deleted, affecting not only the ability of trk1Δ to grow at low potassium concentrations, but also the tolerance to toxic alkali-metal cations and cationic drugs, as well as the membrane potential and intracellular pH. Taken together, our results find the sole potassium uptake system in C. glabrata cells to be a promising target in the search for its specific inhibitors and in developing new antifungal drugs. PMID:27058598

  5. Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency

    PubMed Central

    Cen, Yuke; Fiori, Alessandro

    2015-01-01

    Candida glabrata is reported as the second most prevalent human opportunistic fungal pathogen in the United States. Over the last decades, its incidence increased, whereas that of Candida albicans decreased slightly. One of the main reasons for this shift is attributed to the inherent tolerance of C. glabrata toward the commonly used azole antifungal drugs. Despite a close phylogenetic distance to Saccharomyces cerevisiae, homologous recombination works with poor efficiency in C. glabrata compared to baker's yeast, in fact limiting targeted genetic alterations of the pathogen's genome. It has been shown that nonhomologous DNA end joining is dominant over specific gene targeting in C. glabrata. To improve the homologous recombination efficiency, we have generated a strain in which the LIG4 gene has been deleted, which resulted in a significant increase in correct gene targeting. The very specific function of Lig4 in mediating nonhomologous end joining is the reason for the absence of clear side effects, some of which affect the ku80 mutant, another mutant with reduced nonhomologous end joining. We also generated a LIG4 reintegration cassette. Our results show that the lig4 mutant strain may be a valuable tool for the C. glabrata research community. PMID:26048009

  6. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response

    PubMed Central

    Nash, Evelyn E.; Peters, Brian M.; Lilly, Elizabeth A.; Noverr, Mairi C.; Fidel, Paul L.

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  7. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    PubMed

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  8. In vitro modulation of probiotic bacteria on the biofilm of Candida glabrata.

    PubMed

    Chew, Shu Yih; Cheah, Yoke Kqueen; Seow, Heng Fong; Sandai, Doblin; Than, Leslie Thian Lung

    2015-08-01

    A conspicuous new concept of pathogens living as the microbial societies in the human host rather than free planktonic cells has raised considerable concerns among scientists and clinicians. Fungal biofilms are communities of cells that possess distinct characteristic such as increased resistance to the immune defence and antimycotic agents in comparison to their planktonic cells counterpart. Therefore, inhibition of the biofilm may represent a new paradigm for antifungal development. In this study, we aim to evaluate the in vitro modulation of vulvovaginal candidiasis (VVC)-causing Candida glabrata biofilms using probiotic lactobacilli strains. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 were shown to have completely inhibited C. glabrata biofilms and the results were corroborated by scanning electron microscopy (SEM), which revealed scanty structures of the mixed biofilms of C. glabrata and probiotic lactobacilli strains. In addition, biofilm-related C. glabrata genes EPA6 and YAK1 were downregulated in response to the probiotic lactobacilli challenges. The present study suggested that probiotic L. rhamnosus GR-1 and L. reuteri RC-14 strains inhibited C. glabrata biofilm by partially impeding the adherence of yeast cells and the effect might be contributed by the secretory compounds produced by these probiotic lactobacilli strains. Further investigations are required to examine and identify the biofilm inhibitory compounds and the mechanism of probiotic actions of these lactobacilli strains. PMID:26028405

  9. Histochemical observations of the haemocytes of Locusta migratoria.

    PubMed

    Costin, N M

    1975-01-01

    Five of the six categories of haemocytes of Locusta migratoria, that is, the plasmatocytes, spherule cells, granulocytes, coagulocytes and oenocytoids, contain conspicuous granules of mucosubstance in their cytoplasm. The mucosubstance has been characterized by using a series of histochemical tests, including Alcian Blue staining at different pH levels and salt concentrations, the periodic acid-Schiff (PAS) test, the high iron diamine test, enzymatic digestions and sequential staining methods. The results indicate that four different mucosubstances occur in a granular form, although not all four are found in every blood cell type. The mucosubstances are a neutral glycoprotein and neuraminidase-resistant, sulphated and non-sulphated sialomucins. The non-sulphated sialomucin occurs in both periodate-reactive and -unreactive forms. PMID:47851

  10. Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the Defence Activity of Radix lagotis (Lymnaeidae) Haemocytes

    PubMed Central

    Skála, Vladimír; Černíková, Alena; Jindrová, Zuzana; Kašný, Martin; Vostrý, Martin; Walker, Anthony J.; Horák, Petr

    2014-01-01

    Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae. PMID:25372492

  11. Functional studies on Calliphora vomitoria haemocyte subpopulations defined by lectin staining and density centrifugation.

    PubMed

    McKenzie, A N; Preston, T M

    1992-01-01

    Haemocyte subpopulations of Calliphora vomitoria have been categorized by their surface staining properties using fluorescently labelled lectins, and their mobilities in Percoll density gradients. These methods of identification were exploited to determine the roles of these cell types in cellular defence reactions. Soybean agglutinin clearly defined the cell subpopulation involved in phagocytosis, while purified thrombocytoid fragments proved to be the main haemocyte population involved in encapsulation and nodule formation. PMID:1377650

  12. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations.

    PubMed

    Ng, Tzu Shan; Desa, Mohd Nasir Mohd; Sandai, Doblin; Chong, Pei Pei; Than, Leslie Thian Lung

    2016-06-01

    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment. PMID:26358577

  13. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea.

    PubMed

    Iakovleva, Nadya V; Gorbushin, Alexander M; Storey, Kenneth B

    2006-09-01

    The modulation of mitogen-activated protein kinase (MAPK) activity in haemocytes of the common periwinkle (Littorina littorea) in response to immune challenges by lipopolysaccharide from Echerichia coli (LPS), mannan from baker's yeast Saccharomyces cerevisiae and secretory-excretory products (SEP) of trematodes Himasthla elongata (Echinostomatidae) or after the treatment with phorbol ester (PMA) has been studied by Western blotting using affinity purified rabbit polyclonal antibodies. Exposure of the cells in suspension to PMA, LPS and mannan triggered an activation of p38 and ERK2. The JNK-mediated cascade was modulated differently by the elicitors examined. PMA treatment caused a transient activation of the JNK54 isoform, LPS exposure resulted in a decrease in activity of JNK46, and mannan had no effect on JNK phosphorylation status. Incubation of periwinkle haemocytes in culture medium containing trematode SEP did not affect the activity of any MAPK. PMID:16533608

  14. Histidine Degradation via an Aminotransferase Increases the Nutritional Flexibility of Candida glabrata

    PubMed Central

    Seider, Katja; Richter, Martin Ernst; Bremer-Streck, Sibylle; Ramachandra, Shruthi; Kiehntopf, Michael; Brock, Matthias

    2014-01-01

    The ability to acquire nutrients during infections is an important attribute in microbial pathogenesis. Amino acids are a valuable source of nitrogen if they can be degraded by the infecting organism. In this work, we analyzed histidine utilization in the fungal pathogen of humans Candida glabrata. Hemiascomycete fungi, like C. glabrata or Saccharomyces cerevisiae, possess no gene coding for a histidine ammonia-lyase, which catalyzes the first step of a major histidine degradation pathway in most other organisms. We show that C. glabrata instead initializes histidine degradation via the aromatic amino acid aminotransferase Aro8. Although ARO8 is also present in S. cerevisiae and is induced by extracellular histidine, the yeast cannot use histidine as its sole nitrogen source, possibly due to growth inhibition by a downstream degradation product. Furthermore, C. glabrata relies only on Aro8 for phenylalanine and tryptophan utilization, since ARO8, but not its homologue ARO9, was transcriptionally activated in the presence of these amino acids. Accordingly, an ARO9 deletion had no effect on growth with aromatic amino acids. In contrast, in S. cerevisiae, ARO9 is strongly induced by tryptophan and is known to support growth on aromatic amino acids. Differences in the genomic structure of the ARO9 gene between C. glabrata and S. cerevisiae indicate a possible disruption in the regulatory upstream region. Thus, we show that, in contrast to S. cerevisiae, C. glabrata has adapted to use histidine as a sole source of nitrogen and that the aromatic amino acid aminotransferase Aro8, but not Aro9, is the enzyme required for this process. PMID:24728193

  15. Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green-lipped mussel (Perna viridis).

    PubMed

    Siu, W H L; Cao, J; Jack, R W; Wu, R S S; Richardson, B J; Xu, L; Lam, P K S

    2004-03-10

    Green-lipped mussels (Perna viridis) were exposed to water-borne benzo[a]pyrene (B[a]P) at nominal concentrations of 0, 0.3, 3 and 30 microg l(-1) for up to 12 days, and both the relative levels of DNA strand breaks (assessed using an alkaline comet assay) and the proportion of micronucleus (MN) formation were monitored in mussel haemocytes at days 0, 1, 3, 6 and 12. The results of the comet assay indicated that an increase in the proportion of strand breaks occurred generally with increasing B[a]P concentration, but a significant decrease in the levels of DNA damage was observed after exposure for 12 days at all concentrations tested, suggesting that the patterns of changes in the levels of DNA strand breakage can be explained by the threshold dependent DNA repair theory. Moreover, the relatively slow development and recovery of the DNA damage response in mussel haemocytes in comparison with previous findings utilizing P. viridis hepatopancreas suggests that the response of DNA alteration upon exposure to B[a]P may be tissue-specific in this species. Monitoring the frequency of micronucleus development in mussel haemocytes indicated both dose- and time-response relationships within the exposure period. Furthermore, the levels of DNA strand breakage correlated well with the levels of micronucleus induction, suggesting a possible cause and effect relationship between the two damage types. We suggest that DNA strand breakage and micronucleus formation in mussel haemocytes can potentially be used as convenient biomarkers of exposure to genotoxicants in the marine environment. PMID:15168946

  16. Genome-wide survey of transcriptional initiation in the pathogenic fungus, Candida glabrata.

    PubMed

    Aoyama, Toshihiro; Nakayama, Hironobu; Ueno, Keigo; Inukai, Tatsuya; Tanabe, Koichi; Nagi, Minoru; Bard, Martin; Chibana, Hiroji

    2014-06-01

    DNA sequencing of the 5'-flanking region of the transcriptome effectively identifies transcription initiation sites and also aids in identifying unknown genes. This study describes a comprehensive polling of transcription start sites and an analysis of full-length complementary DNAs derived from the genome of the pathogenic fungus Candida glabrata. A comparison of the sequence reads derived from a cDNA library prepared from cells grown under different culture conditions against the reference genomic sequence of the Candida Genome Database (CGD: http://www.candidagenome.org/) revealed the expression of 4316 genes and their acknowledged transcription start sites (TSSs). In addition this analysis also predicted 59 new genes including 22 that showed no homology to the genome of Saccharomyces cerevisiae, a genetically close relative of C. glabrata. Furthermore, comparison of the 5'-untranslated regions (5'-UTRs) and core promoters of C. glabrata to those of S. cerevisiae showed various global similarities and differences among orthologous genes. Thus, the C. glabrata transcriptome can complement the annotation of the genome database and should provide new insights into the organization, regulation, and function of genes of this important human pathogen. PMID:24725256

  17. Detection of DNA damage in haemocytes of zebra mussel using comet assay.

    PubMed

    Pavlica, M; Klobucar, G I; Mojas, N; Erben, R; Papes, D

    2001-02-20

    The aim of the study was to use the comet assay on haemocytes of freshwater mussel, Dreissena polymorpha Pallas, for detection of possible DNA damage after exposure to pentachlorophenol (PCP) and to evaluate the potential application of the comet assay on mussel haemocytes for genotoxicity monitoring of freshwater environment. Zebra mussels were exposed for seven days to different concentrations (10, 80, 100, 150 microg/l) of PCP and in the river Sava downstream from Zagreb municipal wastewater outlet. Significant increase in DNA damage was observed after exposure to PCP at doses of 80 microg/l and higher and after in situ exposure in the river Sava as well. This study confirmed that the comet assay applied on zebra mussel haemocytes may be a useful tool in determining the potential genotoxicity of water pollutants. PMID:11342246

  18. Candida glabrata survives and replicates in human osteoblasts.

    PubMed

    Muñoz-Duarte, Ana Rosa; Castrejón-Jiménez, Nayeli Shantal; Baltierra-Uribe, Shantal Lizbeth; Pérez-Rangel, Sofia Judith; Carapia-Minero, Natalee; Castañeda-Sánchez, Jorge Ismael; Luna-Herrera, Julieta; López-Santiago, Rubén; Rodríguez-Tovar, Aída Verónica; García-Pérez, Blanca Estela

    2016-06-01

    Candida glabrata is an opportunistic pathogen that is considered the second most common cause of candidiasis after Candida albicans Many characteristics of its mechanisms of pathogenicity remain unknown. Recent studies have focused on determining the events that underlie interactions between C. glabrata and immune cells, but the relationship between this yeast and osteoblasts has not been studied in detail. The aim of this study was to determine the mechanisms of interaction between human osteoblasts and C. glabrata, and to identify the roles played by some of the molecules that are produced by these cells in response to infection. We show that C. glabrata adheres to and is internalized by human osteoblasts. Adhesion is independent of opsonization, and internalization depends on the rearrangement of the actin cytoskeleton. We show that C. glabrata survives and replicates in osteoblasts and that this intracellular behavior is related to the level of production of nitric oxide and reactive oxygen species. Opsonized C. glabrata stimulates the production of IL-6, IL-8 and MCP-1 cytokines. Adhesion and internalization of the pathogen and the innate immune response of osteoblasts require viable C. glabrata These results suggest that C. glabrata modulates immunological mechanisms in osteoblasts to survive inside the cell. PMID:27073253

  19. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila

    PubMed Central

    Chakrabarti, Sveta; Li, Xiaoxue; Collas, Esther Jeanne; Boquete, Jean-Phillipe; Lemaitre, Bruno

    2016-01-01

    The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival. PMID:27231872

  20. DNA damage in haemocytes and midgut gland cells of Steatoda grossa (Theridiidae) spiders exposed to food contaminated with cadmium.

    PubMed

    Stalmach, Monika; Wilczek, Grażyna; Wilczek, Piotr; Skowronek, Magdalena; Mędrzak, Monika

    2015-03-01

    The aim of this study was to assess the genotoxic effects of Cd on haemocytes and midgut gland cells of web-building spiders, Steatoda grossa (Theridiidae), exposed to the metal under laboratory conditions. Analyzes were conducted on adult females and males, fed for four weeks with cadmium-contaminated Drosophila hydei flies, grown on a medium suplemented with 0.25 mM CdCl2. The comet assay, providing a quantitative measure of DNA strand breaks, was used to evaluate the DNA damage caused by the metal. Cadmium content was measured in whole spider bodies by the AAS method. Metal body burden was significantly lower in females (0.25 µgg(-1) dry weight) than in males (3.03 µgg(-1) dry weight), suggesting that females may have more effective mechanisms controlling the uptake of metal, via the digestive tract, or its elimination from the body. Irrespectively of sex, spiders fed prey contaminated with cadmium showed significantly higher values of comet parameters: tail DNA (TDNA), tail length (TL) and olive tail moment (OTM), in comparison with the control. In midgut gland cells, the level of DNA damage was higher for males than females, while in haemocytes the genotoxic effect of cadmium was greater in females. The obtained results indicate that in spiders cadmium displays strong genotoxic effects and may cause DNA damage even at low concentrations, however the severity of damage seems to be sex- and internal organ-dependent. The comet assay can be considered a sensitive tool for measuring the deleterious effect of cadmium on DNA integrity in spiders. PMID:25531832

  1. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster.

    PubMed

    Carmona, Erico R; Guecheva, Temenouga N; Creus, Amadeu; Marcos, Ricardo

    2011-03-01

    This study presents the first application of an in vivo alkaline comet assay using haemocytes of Drosophila melanogaster larvae. These cells, which play a role similar to that of mammalian blood, can be easily obtained and represent an overall exposure of the treated larvae. To validate the assay, we evaluated the response of these cells to three well-known mutagenic agents: ethyl methanesulfonate (EMS), potassium dichromate (PD), and gamma radiation (γ-irradiation). Third-instar Drosophila larvae were exposed to different concentrations of EMS (1, 2, and 4 mM) and PD (0.5, 1, and 2.5 mM) and to different doses of γ-irradiation (2, 4, and 8 Gγ). Subsequently, haemolymph was extracted from the larvae, and haemocytes were isolated by centrifugation and used in the comet assay. Haemocytes exhibited a significant dose-related increase in DNA damage, indicating that these cells are clearly sensitive to the treatments. These results suggest that the proposed in vivo comet test, using larvae haemocytes of D. melanogaster, may be a useful in vivo assay for genotoxicity assessment. PMID:20740640

  2. First cytochemical study of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda)

    PubMed Central

    Matozzo, V.; Marin, M.G.

    2010-01-01

    For the first time, a morphological study of haemocytes from the crab Carcinus aestuarii was carried out by means of light microscopy and differing cytochemical assays. Analysis of haemocyte size frequency distribution (performed by means of a Coulter Counter) revealed the presence of two distinct haemocyte fractions in C. aestuarii haemolymph, depending on cell size. The first fraction was of about 3–5 µm in diameter and 30–50 fL in volume, the second was of about 6–12 µm in diameter and over 200 fL in volume. Mean cell diameter and volume were 8.20±1.7 µm and 272.30±143.5 fL, respectively. Haemocytes observed under light microscope were distinguished in three cell types: granulocytes (28%; 11.94±1.43 µm in diameter) with evident cytoplasmic granules, semigranulocytes (27%; 12.38±1.76 µm in diameter) with less granules than granulocytes, and hyalinocytes (44%; 7.88±1.6 µm in diameter) without granules. In addition, a peculiar cell type was occasionally found (about 1%): it was 25–30 µm in diameter and had a great vacuole and a peripheral cytoplasm with granules. Granulocyte and semigranulocyte granules stained in vivo with Neutral Red, indicating that they were lysosomes. Giemsa’s dye confirmed that granulocytes and semigranulocytes were larger than hyalinocytes. Pappenheim’s panoptical staining and Ehrlich’s triacid mixture allowed to distinguish granule-containing cells (including semigranulocytes) in acidophils (64%), basophils (35%) and neutrophils (1%). Hyalinocytes showed always a basophilic cytoplasm. Haemocytes were positive to the PAS reaction for carbohydrates, even if cytoplasm carbohydrate distribution varied among cell types. Lastly, lipids were found on cell membrane and in cytoplasm of all haemocyte types in the form of black spots produced after Sudan Black B staining. The morphological characterisation of C. aestuarii haemocytes by light microscopy was necessary before performing both ultrastructural and functional

  3. Haemocyte parameters associated with resistance to brown ring disease in Ruditapes spp. clams.

    PubMed

    Allam, B; Ashton-Alcox, K A; Ford, S E

    2001-01-01

    Brown ring disease (BRD) is a shell disease caused by Vibrio tapetis. This pathogen disturbs the periostracal lamina causing the appearance of a brown conchiolin deposit on the inner face of the shell, within the extrapallial space. Although differences in resistance to BRD have been documented, their relationship to possible defense functions has never been investigated. In this study, flow cytometry was used to analyze cellular parameters in asymptomatic and experimentally infected Ruditapes philippinarum from France and the west coast of the USA. Parallel analyses were made on Ruditapes decussatus, the native European clam, which is highly resistant to BRD. In the haemolymph and extrapallial fluid of animals without BRD, total haemocyte counts, the percentage of granulocytes, and the phagocytic activity against latex beads or V. tapetis by the haemocytes were significantly higher in American R. philippinarum than in French R. philippinarum. In most cases, levels in R. decussatus were the highest of all three groups. Four weeks following challenge with V. tapetis, BRD prevalence reached 52 in American clams and 100% in French specimens, but only 37% in R. decussatus. In symptomatic animals, phagocytosis of V. tapetis increased significantly in the resistant species of clam, R. decussatus, was unchanged in US clams, and decreased significantly in FR specimens when compared to asymptomatic individuals from each population. Ingestion of V. tapetis by haemocytes in the extrapallial fluid, which is in contact with the periostracal lamina, could be the main defense mechanism used to counter the pathogen. Our results suggest that resistance to BRD may well be related to the concentration of granular haemocytes and the phagocytic activity of haemocytes. PMID:11356217

  4. Interactions between copy number and expression level of genes involved in fluconazole resistance in Candida glabrata

    PubMed Central

    Abbes, Salma; Mary, Charles; Sellami, Hayet; Michel-Nguyen, Annie; Ayadi, Ali; Ranque, Stéphane

    2013-01-01

    Objectives: This study aimed to elucidate the relative involvement of drug resistance gene copy number and overexpression in fluconazole resistance in clinical C. glabrata isolates using a population-based approach. Methods: Fluconazole resistance levels were quantified using the minimal inhibitory concentration (MIC) via Etest method. Both gene expression levels and gene copy number of CgCDR1, CgPDH1, CgERG11, and CgSNQ2 were assessed via quantitative real-time PCR. The influence of the main effects and first-level interactions of both the expression level and copy number of these genes on fluconazole resistance levels were analyzed using a multivariate statistical model. Results: Forty-three C. glabrata isolates were collected from 30 patients during in a hospital survey. In the multivariate analysis, C. glabrata fluconazole MICs were independently increased by CgSNQ2 overexpression (p < 10−4) and the interaction between CgPDH1 gene copy number and CgPDH1 expression level (p = 0.038). In contrast, both CgPDH1 overexpression (p = 0.049) and the interaction between CgSNQ2 and CgERG11 expression (p = 0.003) led to a significant decrease in fluconazole MICs. Conclusion: Fluconazole resistance in C. glabrata involves complex interactions between drug resistance gene expression and/or copy number. The population-based multivariate analysis highlighted the involvement of the CgSNQ2 gene in fluconazole resistance and the complex effect of the other genes such as PDH1 for which overexpression was associated with reduced fluconazole resistance levels, while the interaction between PDH1 overexpression and copy number was associated with increased resistance levels. PMID:24273749

  5. Propargyl-Linked Antifolates are Dual Inhibitors of Candida albicans and Candida glabrata

    PubMed Central

    2015-01-01

    Species of Candida, primarily C. albicans and with increasing prevalence, C. glabrata, are responsible for the majority of fungal bloodstream infections that cause morbidity, especially among immune compromised patients. While the development of new antifungal agents that target the essential enzyme, dihydrofolate reductase (DHFR), in both Candida species would be ideal, previous attempts have resulted in antifolates that exhibit inconsistencies between enzyme inhibition and antifungal properties. In this article, we describe the evaluation of pairs of propargyl-linked antifolates that possess similar physicochemical properties but different shapes. All of these compounds are effective at inhibiting the fungal enzymes and the growth of C. glabrata; however, the inhibition of the growth of C. albicans is shape-dependent with extended para-linked compounds proving more effective than compact, meta-linked compounds. Using crystal structures of DHFR from C. albicans and C. glabrata bound to lead compounds, 13 new para-linked compounds designed to inhibit both species were synthesized. Eight of these compounds potently inhibit the growth of both fungal species with three compounds displaying dual MIC values less than 1 μg/mL. Analysis of the active compounds shows that shape and distribution of polar functionality is critical in achieving dual antifungal activity. PMID:24568657

  6. Evaluation of the molluscicidal potential of hydroalcoholic extracts of Jatropha gossypiifolia Linnaeus, 1753 on Biomphalaria glabrata (Say, 1818).

    PubMed

    Pereira Filho, Adalberto Alves; França, Clícia Rosane Costa; Oliveira, Dorlam's da Silva; Mendes, Renato Juvino de Aragão; Gonçalves, José de Ribamar Santos; Rosa, Ivone Garros

    2014-01-01

    The action of extracts from the stem, leaves, and fruit of Jatropha gossypiifolia on Biomphalaria glabrata was studied by analyzing survival, feeding capacity and oviposition ability. The extracts were obtained by macerating the plant parts in 92% ethanol, which were then evaporated until a dry residue was obtained and phytochemically studied. The molluscicidal activity on B. glabrata was investigated using the procedures recommended by WHO (1965). The amount of food ingested and oviposition were measured during each experiment. The extract of leaves from J. gossypiifolia was shown to be a strong molluscicidal agent, causing 100% mortality of B. glabrata, even in the lowest concentration tested, of 25 ppm. Regarding the fruit extract, there was variation in the mortality, depending on the concentration used (100, 75, 50 and 25 ppm). The snails that were in contact with the fruit extract had significant reduction in feeding and number of embryos in comparison to the control. The stem extract did not present molluscicidal activity nor had any influence on the feeding and oviposition abilities of B. glabrata, in the concentrations tested. In conclusion, the extracts of leaves and fruits of J. gossypiifolia investigated in this work show molluscicidal effect and may be sources of useful compounds for the schistosomiasis control. PMID:25351545

  7. EVALUATION OF THE MOLLUSCICIDAL POTENTIAL OF HYDROALCOHOLIC EXTRACTS OF Jatropha gossypiifolia Linnaeus, 1753 ON Biomphalaria glabrata (Say, 1818)

    PubMed Central

    Pereira, Adalberto Alves; França, Clícia Rosane Costa; Oliveira, Dorlam's da Silva; Mendes, Renato Juvino de Aragão; Gonçalves, José de Ribamar Santos; Rosa, Ivone Garros

    2014-01-01

    The action of extracts from the stem, leaves, and fruit of Jatropha gossypiifolia on Biomphalaria glabrata was studied by analyzing survival, feeding capacity and oviposition ability. The extracts were obtained by macerating the plant parts in 92% ethanol, which were then evaporated until a dry residue was obtained and phytochemically studied. The molluscicidal activity on B. glabrata was investigated using the procedures recommended by WHO (1965). The amount of food ingested and oviposition were measured during each experiment. The extract of leaves from J. gossypiifolia was shown to be a strong molluscicidal agent, causing 100% mortality of B. glabrata, even in the lowest concentration tested, of 25 ppm. Regarding the fruit extract, there was variation in the mortality, depending on the concentration used (100, 75, 50 and 25 ppm). The snails that were in contact with the fruit extract had significant reduction in feeding and number of embryos in comparison to the control. The stem extract did not present molluscicidal activity nor had any influence on the feeding and oviposition abilities of B. glabrata, in the concentrations tested. In conclusion, the extracts of leaves and fruits of J. gossypiifolia investigated in this work show molluscicidal effect and may be sources of useful compounds for the schistosomiasis control. PMID:25351545

  8. Two unlike cousins: Candida albicans and C. glabrata infection strategies

    PubMed Central

    Brunke, Sascha; Hube, Bernhard

    2013-01-01

    Candida albicans and C. glabrata are the two most common pathogenic yeasts of humans, yet they are phylogenetically, genetically and phenotypically very different. In this review, we compare and contrast the strategies of C. albicans and C. glabrata to attach to and invade into the host, obtain nutrients and evade the host immune response. Although their strategies share some basic concepts, they differ greatly in their outcome. While C. albicans follows an aggressive strategy to subvert the host response and to obtain nutrients for its survival, C. glabrata seems to have evolved a strategy which is based on stealth, evasion and persistence, without causing severe damage in murine models. However, both fungi are successful as commensals and as pathogens of humans. Understanding these strategies will help in finding novel ways to fight Candida, and fungal infections in general. PMID:23253282

  9. The mating type-like loci of Candida glabrata.

    PubMed

    Yáñez-Carrillo, Patricia; Robledo-Márquez, Karina A; Ramírez-Zavaleta, Candy Y; De Las Peñas, Alejandro; Castaño, Irene

    2014-01-01

    Candida glabrata, a haploid and opportunistic fungal pathogen that has not known sexual cycle, has conserved the majority of the genes required for mating and cell type identity. The C. glabrata genome contains three mating-type-like loci called MTL1, MTL2 and MTL3. The three loci encode putative transcription factors, a1, α1 and α2 that regulate cell type identity and sexual reproduction in other fungi like the closely related Saccharomyces cerevisiae. MTL1 can contain either a or α information. MTL2, which contains a information and MTL3 with α information, are relatively close to two telomeres. MTL1 and MTL2 are transcriptionally active, while MTL3 is subject to an incomplete silencing nucleated at the telomere that depends on the silencing proteins Sir2, Sir3, Sir4, yKu70/80, Rif1, Rap1 and Sum1. C. glabrata does not seem to maintain cell type identity, as cell type-specific genes are expressed regardless of the type (or even absence) of mating information. These data highlight important differences in the control of mating and cell type identity between the non-pathogenic yeast S. cerevisiae and C. glabrata, which might explain the absence of a sexual cycle in C. glabrata. The fact that C. glabrata has conserved the vast majority of the genes involved in mating might suggest that some of these genes perhaps have been rewired to control other processes important for the survival inside the host as a commensal or as a human pathogen. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24252826

  10. Diversity and antifungal susceptibility of Norwegian Candida glabrata clinical isolates

    PubMed Central

    Andersen, Kari-Mette; Kristoffersen, Anne Karin; Ingebretsen, André; Vikholt, Katharina Johnsen; Örtengren, Ulf Thore; Olsen, Ingar; Enersen, Morten; Gaustad, Peter

    2016-01-01

    Background Increasing numbers of immunocompromised patients have resulted in greater incidence of invasive fungal infections with high mortality. Candida albicans infections dominate, but during the last decade, Candida glabrata has become the second highest cause of candidemia in the United States and Northern Europe. Reliable and early diagnosis, together with appropriate choice of antifungal treatment, is needed to combat these challenging infections. Objectives To confirm the identity of 183 Candida glabrata isolates from different human body sites using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and VITEK®2, and to analyze isolate protein profiles and antifungal susceptibility. The minimum inhibitory concentration (MIC) of seven antifungal drugs was determined for the isolates to elucidate susceptibility. Design A total of 183 C. glabrata isolates obtained between 2002 and 2012 from Norwegian health-care units were analyzed. For species verification and differentiation, biochemical characterization (VITEK®2) and mass spectrometry (MALDI–TOF) were used. MIC determination for seven antifungal drugs was undertaken using E-tests®. Results Using VITEK®2, 92.9% of isolates were identified as C. glabrata, while all isolates (100%) were identified as C. glabrata using MALDI-TOF. Variation in protein spectra occurred for all identified C. glabrata isolates. The majority of isolates had low MICs to amphotericin B (≤1 mg/L for 99.5%) and anidulafungin (≤0.06 mg/L for 98.9%). For fluconazole, 18% of isolates had MICs >32 mg/L and 82% had MICs in the range ≥0.016 mg/L to ≤32 mg/L. Conclusions Protein profiles and antifungal susceptibility characteristics of the C. glabrata isolates were diverse. Clustering of protein profiles indicated that many azole resistant isolates were closely related. In most cases, isolates had highest susceptibility to amphotericin B and anidulafungin. The results confirmed previous observations of high

  11. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis

    PubMed Central

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G.; Cormack, Brendan; Edgerton, Mira

    2016-01-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata. PMID:27029023

  12. Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina.

    PubMed

    Rocha-Filho, Cláudio A A; Albuquerque, Lidiane P; Silva, Luanna R S; Silva, Patrícia C B; Coelho, Luana C B B; Navarro, Daniela M A F; Albuquerque, Monica C P A; Melo, Ana Maria M A; Napoleão, Thiago H; Pontual, Emmanuel V; Paiva, Patrícia M G

    2015-08-01

    This study reports the effect of an aqueous extract from Moringa oleifera Lam. flowers on Biomphalaria glabrata embryos and adults and on Schistosoma mansoni adult worms. The extract contains tannins, saponins, flavones, flavonols, xanthones, and trypsin inhibitor activity. The toxicity of the extract on Artemia salina larvae was also investigated to determine the safety of its use for schistosomiasis control. After incubation for 24h, the flower extract significantly (p<0.05) delayed the development of B. glabrata embryos and promoted mortality of adult snails (LC50: 2.37±0.5mgmL(-1)). Furthermore, treatment with the extract disrupted the development of embryos generated by snails, with most of them remaining in the blastula stage while control embryos were already in the gastrula stage. Flower extract killed A. salina larvae with a LC50 value (0.2±0.015mgmL(-1)) lower than that determined for snails. A small reduction (17%) in molluscicidal activity was detected when flower extract (2.37mgmL(-1)) was exposed to tropical environmental conditions (UVI index ranging from 1 to 14, temperature from 25 to 30°C, and 65% relative humidity). Toxicity to A. salina was also reduced (LC50 value of 0.28±0.01mgmL(-1)). In conclusion, M. oleifera flower extract had deleterious effects on B. glabrata adults and embryos. However, unrestricted use to control schistosomiasis should be avoided due to the toxicity of this extract on A. salina. PMID:25867917

  13. Usnic Acid Potassium Salt: An Alternative for the Control of Biomphalaria glabrata (Say, 1818)

    PubMed Central

    Lima, Vera L. M.; Pereira, Eugênia C.; Falcão, Emerson P. S.; Melo, Ana M. M. A.; da Silva, Nicácio Henrique

    2014-01-01

    In Brazil, the snail Biomphalaria glabrata is the most important vector of schistosomiasis due to its wide geographical distribution, high infection rate and efficient disease transmission. Among the methods of schistosomiasis control, the World Health Organization recommends the use of synthetic molluscicides, such as niclosamide. However, different substances of natural origin have been tested as alternatives for the control or eradication of mollusks. The literature describes the antitumor, antimicrobial and antiviral properties of usnic acid as well as other important activities of common interest between medicine and the environment. However, usnic acid has a low degree of water solubility, which can be a limiting factor for its use, especially in aquatic environments, since the organic solvents commonly used to solubilize this substance can have toxic effects on aquatic biota. Thus, the aim of the present study was to test the potassium salt of usnic acid (potassium usnate) with regard to molluscicidal activity and toxicity to brine shrimp (Artemia salina). To obtain potassium usnate, usnic acid was extracted with diethyl ether isolated and purified from the lichen Cladonia substellata. Biological assays were performed with embryos and adult snails of B. glabrata exposed for 24 h to the usnate solution solubilized in dechlorinated water at 2.5; 5 and 10 µg/ml for embryos, 0.5; 0.9; 1;5 and 10 µg/ml for mollusks and 0.5; 1; 5; 10 µg/ml for A. salina. The lowest lethal concentration for the embryos and adult snails was 10 and 1 µg/ml, respectively. No toxicity to A. salina was found. The results show that modified usnic acid has increased solubility (100%) without losing its biological activity and may be a viable alternative for the control of B. glabrata. PMID:25375098

  14. Biological, biochemical and histopathological features related to parasitic castration of Biomphalaria glabrata infected by Schistosoma mansoni.

    PubMed

    Faro, Marta Julia; Perazzini, Mariana; Corrêa, Lygia dos Reis; Mello-Silva, Clélia Christina; Pinheiro, Jairo; Mota, Ester Maria; de Souza, Samaly; de Andrade, Zilton; Júnior, Arnaldo Maldonado

    2013-06-01

    Parasitic castration in the snail-trematode relationship can be understood as any change in the reproductive function of the snail that is due to interference by the developing larvae inside the snail that leads to the reduction or complete disruption of egg-laying activity. This study was designed to observe the parasitic castration of Biomphalaria glabrata infected with Schistosoma mansoni during both the pre-patent and patent periods. The effect of infection on snail fecundity and fertility, growth rate and survival was studied during the 62 days following miracidia exposure. An integrated approach was employed that used biochemical and histological tools over the same period. To study the effect of infection on reproduction, we individually exposed 30 snails to 5 miracidia each and tracked their fertility and fecundity. For our histopathological studies, 50 snails were exposed to 20 miracidia each, and for our histochemical studies, 50 snails were exposed to 5 miracidia each. An equal number of uninfected snails were used as a control for each group. The B. glabrata exposed to the BH strain of S. mansoni showed 50% positivity for cercarial shedding. Both the experimental and control groups showed 100% survival. The pre-patent period lasted until 39 days after exposure to miracidia. Exposed snails that showed cercarial shedding exhibited higher growth rates than either exposed snails that did not demonstrate cercarial shedding or uninfected controls. Exposed snails without cercarial shedding and uninfected controls showed no differences in the reproductive parameters evaluated during the patent period; snails experiencing cercarial shedding showed a reduction in fecundity and fertility. These snails began to lay eggs only after the 50th day post miracidia exposure. The haemolymph glucose levels showed an oscillating pattern that decreased during periods of greater mobilisation of energy by the larvae and was accompanied by a depletion of glycogen in the

  15. Propensity Score Analysis of the Role of Initial Antifungal Therapy in the Outcome of Candida glabrata Bloodstream Infections.

    PubMed

    Puig-Asensio, M; Fernández-Ruiz, M; Aguado, J M; Merino, P; Lora-Pablos, D; Guinea, J; Martín-Dávila, P; Cuenca-Estrella, M; Almirante, B

    2016-06-01

    Candida glabrata isolates have reduced in vitro susceptibility to azoles, which raises concerns about the clinical effectiveness of fluconazole for treating bloodstream infection (BSI) by this Candida species. We aimed to evaluate whether the choice of initial antifungal treatment (fluconazole versus echinocandins or liposomal amphotericin B [L-AmB]-based regimens) has an impact on the outcome of C. glabrata BSI. We analyzed data from a prospective, multicenter, population-based surveillance program on candidemia conducted in 5 metropolitan areas of Spain (May 2010 to April 2011). Adult patients with an episode of C. glabrata BSI were included. The main outcomes were 14-day mortality and treatment failure (14-day mortality and/or persistent C. glabrata BSI for ≥48 h despite antifungal initiation). The impact of using fluconazole as initial antifungal treatment on the patients' prognosis was assessed by logistic regression analysis with the addition of a propensity score approach. A total of 94 patients with C. glabrata BSI were identified. Of these, 34 had received fluconazole and 35 had received an echinocandin/L-AmB-based regimen. Patients in the echinocandin/L-AmB group had poorer baseline clinical status than did those in the fluconazole group. Patients in the fluconazole group were more frequently (55.9% versus 28.6%) and much earlier (median time, 3 versus 7 days) switched to another antifungal regimen. Overall, 14-day mortality was 13% (9/69) and treatment failure 34.8% (24/69), with no significant differences between the groups. On multivariate analysis, after adjusting for baseline characteristics by propensity score, fluconazole use was not associated with an unfavorable evolution (adjusted odds ratio [OR] for 14-day mortality, 1.16, with 95% confidence interval [CI] of 0.22 to 6.17; adjusted OR for treatment failure, 0.83, with 95% CI of 0.27 to 2.61). In conclusion, initial fluconazole treatment was not associated with a poorer outcome than that

  16. Humoral and Haemocytic Responses of Litopenaeus vannamei to Cd Exposure

    PubMed Central

    Bautista-Covarrubias, Juan C.; Velarde-Montes, Germán J.; García-de la Parra, Luz M.; Soto-Jiménez, Martín F.; Frías-Espericueta, Martín G.

    2014-01-01

    White shrimp, Litopenaeus vannamei, subadults were exposed to four dilutions of the 96 h cadmium LC50 reported for postlarvae (PL12) of this species, and the effects were evaluated after 5, 48, and 96 h of exposure. While treatments did not affect survival and hemolymph clotting time increased with time, but not as a response to Cd exposure, the intensity of other responses was related to concentration, to time of exposure, and to their interaction. Hemocyanin decreased with time in all metal concentrations but increased in the control treatment, and an almost similar trend was observed with hemocyte numbers. As an initial response, phenoloxidase activity decreased with all metal concentrations, but it increased later to values similar or higher than the control treatment. PMID:24967441

  17. Humoral and haemocytic responses of Litopenaeus vannamei to Cd exposure.

    PubMed

    Bautista-Covarrubias, Juan C; Velarde-Montes, Germán J; Voltolina, Domenico; García-de la Parra, Luz M; Soto-Jiménez, Martín F; Frías-Espericueta, Martín G

    2014-01-01

    White shrimp, Litopenaeus vannamei, subadults were exposed to four dilutions of the 96 h cadmium LC50 reported for postlarvae (PL12) of this species, and the effects were evaluated after 5, 48, and 96 h of exposure. While treatments did not affect survival and hemolymph clotting time increased with time, but not as a response to Cd exposure, the intensity of other responses was related to concentration, to time of exposure, and to their interaction. Hemocyanin decreased with time in all metal concentrations but increased in the control treatment, and an almost similar trend was observed with hemocyte numbers. As an initial response, phenoloxidase activity decreased with all metal concentrations, but it increased later to values similar or higher than the control treatment. PMID:24967441

  18. Multilocus microsatellite analysis of European and African Candida glabrata isolates.

    PubMed

    Chillemi, V; Lo Passo, C; van Diepeningen, A D; Rharmitt, S; Delfino, D; Cascio, A; Nnadi, N E; Cilo, B D; Sampaio, P; Tietz, H-J; Pemán, J; Criseo, G; Romeo, O; Scordino, F

    2016-06-01

    This study aimed to elucidate the genetic relatedness and epidemiology of 127 clinical and environmental Candida glabrata isolates from Europe and Africa using multilocus microsatellite analysis. Each isolate was first identified using phenotypic and molecular methods and subsequently, six unlinked microsatellite loci were analyzed using automated fluorescent genotyping. Genetic relationships were estimated using the minimum-spanning tree (MStree) method. Microsatellite analyses revealed the existence of 47 different genotypes. The fungal population showed an irregular distribution owing to the over-representation of genetically different infectious haplotypes. The most common genotype was MG-9, which was frequently found in both European and African isolates. In conclusion, the data reported here emphasize the role of specific C. glabrata genotypes in human infections for at least some decades and highlight the widespread distribution of some isolates, which seem to be more able to cause disease than others. PMID:26946511

  19. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence.

    PubMed

    Kasper, Lydia; Seider, Katja; Hube, Bernhard

    2015-08-01

    Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection. PMID:26066553

  20. Cytotoxic and cytokine inducing properties of Candida glabrata in single and mixed oral infection models

    PubMed Central

    Li, Lulu; Kashleva, Helena; Dongari-Bagtzoglou, Anna

    2007-01-01

    Oral candidiasis is a common opportunistic infection, with Candida albicans being the most prevalent etiologic agent and Candida glabrata emerging as an important pathogen. C. glabrata is frequently co-isolated with C. albicans from oral lesions. Although C. albicans has been shown to trigger significant cytokine responses and cell damage, C. glabrata has not been systematically studied yet. The purpose of this study was to characterize the ability of C. glabrata to induce proinflammatory cytokine responses and host damage as a single infecting organism and in combination with C. albicans, using in vitro models of the oral mucosa. In monolayer oral epithelial cell cultures, C. glabrata failed to induce a significant interleukin-1α and interleukin-8 cytokine response and showed lower cytotoxicity, compared to C. albicans. However, C. glabrata triggered a significantly higher granulocyte macrophage colony stimulating factor response than C. albicans. C. glabrata strains showed a strain-dependent tissue damaging ability and a superficial invasion of the mucosal compartment in a 3-dimensional (3-D) in vitro model of the human oral mucosa and submucosa. In the 3-D system, co-infection failed to promote host damage beyond the levels of infection with C. albicans alone. These studies indicate that C. glabrata induces cytokines in human oral epithelium in a strain-specific manner, but its tissue/cell damaging ability, compared to C. albicans, is low. Synergy between C. glabrata and C. albicans in cytokine induction and host damage was not observed with the strains tested. PMID:17306958

  1. Elucidating the temporal and spatial dynamics of Biomphalaria glabrata genetic diversity in three Brazilian villages

    PubMed Central

    Thiele, Elizabeth A.; Corrêa-Oliveira, Guilherme; Gazzinelli, Andrea; Minchella, Dennis J.

    2013-01-01

    Objective The freshwater snail Biomphalaria glabrata is the principal intermediate host for the parasite Schistosoma mansoni within Brazil. We assessed the potential effects of snail population dynamics on parasite transmission dynamics via population genetics. Methods We sampled snail populations located within the confines of three schistosome-endemic villages in the state of Minas Gerais, Brazil. Snails were collected from individual microhabitats following seasonal periods of flood and drought over the span of one year. Snail spatio-temporal genetic diversity and population differentiation of 598 snails from 12 sites were assessed at 7 microsatellite loci. Results Average genetic diversity was relatively low, ranging from 4.29 to 9.43 alleles per locus and, overall, subpopulations tended to exhibit heterozygote deficits. Genetic diversity was highly spatially partitioned among subpopulations, while virtually no partitioning was observed across temporal sampling. Comparison with previously published parasite genetic diversity data indicated that S. mansoni populations are significantly more variable and less subdivided than those of the B. glabrata intermediate hosts. Discussion Within individual Brazilian villages, observed distributions of snail genetic diversity indicate temporal stability and very restricted gene flow. This is contrary to observations of schistosome genetic diversity over the same spatial scale, corroborating the expectation that parasite gene flow at the level of individual villages is likely driven by vertebrate host movement. PMID:23911082

  2. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.

    PubMed

    Brunke, Sascha; Seider, Katja; Almeida, Ricardo Sergio; Heyken, Antje; Fleck, Christian Benjamin; Brock, Matthias; Barz, Dagmar; Rupp, Steffen; Hube, Bernhard

    2010-04-01

    Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells. PMID:20199593

  3. Antioxidant defences and haemocyte internalization in Limnoperna fortunei exposed to TiO2 nanoparticles.

    PubMed

    Girardello, Francine; Leite, Camila Custódio; Branco, Catia Santos; Roesch-Ely, Mariana; Fernandes, Andreia Neves; Salvador, Mirian; Henriques, João Antonio Pêgas

    2016-07-01

    TiO2 nanoparticles (TiO2-NP) have been incorporated into a large range of materials for different applications in the last decades and are very likely to appear in wastewater and effluents, eventually reaching the aquatic environment. Therefore, the assessment of the biological impact of TiO2-NP on aquatic ecosystem is of a major concern. The mussels represent a target group for TiO2-NP toxicity, as they are filter feeders and are capable of bioaccumulating toxic compounds. Furthermore, the exotic organism Limnoperna fortunei, golden mussel, is a freshwater bivalve that has been used in biomonitoring environmental conditions. In this work, the TiO2-NP's ability to interact with haemocytes of golden mussel was assessed by transmission electron microscopy. The enzymatic and non-enzymatic antioxidant defenses were evaluated by superoxide dismutase (Sod) and catalase (Cat) activities and protein sulfhydryl content, which were measured after the golden mussel was exposed to TiO2-NP (1, 5, 10 and 50μgmL(-1)). Results demonstrate that TiO2-NP was internalized by cells, causing alterations in haemocytes membrane. Antioxidant activity of Sod and Cat decreased after 2h TiO2-NP exposure. After 4h exposure, the enzymatic antioxidant activity was restored. Notably, the protein sulfhydryl content decreased after 2h to all the TiO2-NP concentrations and no alterations were observed after 4h of TiO2-NP exposure. These results demonstrate the potential of golden mussel as sentinel organism to TiO2-NP exposure. PMID:27152940

  4. A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Huang, Mengmeng; Yi, Qilin; Guo, Ying; Gai, Yunchao; Wang, Hao; Zhang, Huan; Song, Linsheng

    2016-08-01

    Galectins are a family of β-galactoside binding lectins that function as pattern recognition receptors (PRRs) in innate immune system of both vertebrates and invertebrates. The cDNA of Chinese mitten crab Eriocheir sinensis galectin (designated as EsGal) was cloned via rapid amplification of cDNA ends (RACE) technique based on expressed sequence tags (ESTs) analysis. The full-length cDNA of EsGal was 999 bp. Its open reading frame encoded a polypeptide of 218 amino acids containing a GLECT/Gal-bind_lectin domain and a proline/glycine rich low complexity region. The deduced amino acid sequence and domain organization of EsGal were highly similar to those of crustacean galectins. The mRNA transcripts of EsGal were found to be constitutively expressed in a wide range of tissues and mainly in hepatopancreas, gill and haemocytes. The mRNA expression level of EsGal increased rapidly and significantly after crabs were stimulated by different microbes. The recombinant EsGal (rEsGal) could bind various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (GLU), and exhibited strong activity to agglutinate Escherichia coli, Vibrio anguillarum, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Pichia pastoris, and such agglutinating activity could be inhibited by both d-galactose and α-lactose. The in vitro encapsulation assay revealed that rEsGal could enhance the encapsulation of haemocytes towards agarose beads. These results collectively suggested that EsGal played crucial roles in the immune recognition and elimination of pathogens and contributed to the innate immune response against various microbes in crabs. PMID:27095174

  5. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels.

    PubMed

    Dissanayake, Awantha; Scarlett, Alan G; Jha, Awadhesh N

    2016-04-01

    Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine. PMID:26884235

  6. The Drosophila Toll pathway controls but does not clear Candida glabrata infections.

    PubMed

    Quintin, Jessica; Asmar, Joelle; Matskevich, Alexey A; Lafarge, Marie-Céline; Ferrandon, Dominique

    2013-03-15

    The pathogenicity of Candida glabrata to patients remains poorly understood for lack of convenient animal models to screen large numbers of mutants for altered virulence. In this study, we explore the minihost model Drosophila melanogaster from the dual perspective of host and pathogen. As in vertebrates, wild-type flies contain C. glabrata systemic infections yet are unable to kill the injected yeasts. As for other fungal infections in Drosophila, the Toll pathway restrains C. glabrata proliferation. Persistent C. glabrata yeasts in wild-type flies do not appear to be able to take shelter in hemocytes from the action of the Toll pathway, the effectors of which remain to be identified. Toll pathway mutant flies succumb to injected C. glabrata. In this immunosuppressed background, cellular defenses provide a residual level of protection. Although both the Gram-negative binding protein 3 pattern recognition receptor and the Persephone protease-dependent detection pathway are required for Toll pathway activation by C. glabrata, only GNBP3, and not psh mutants, are susceptible to the infection. Both Candida albicans and C. glabrata are restrained by the Toll pathway, yet the comparative study of phenoloxidase activation reveals a differential activity of the Toll pathway against these two fungal pathogens. Finally, we establish that the high-osmolarity glycerol pathway and yapsins are required for virulence of C. glabrata in this model. Unexpectedly, yapsins do not appear to be required to counteract the cellular immune response but are needed for the colonization of the wild-type host. PMID:23401590

  7. Bacterial flora of the schistosome vector snail Biomphalaria glabrata.

    PubMed Central

    Ducklow, H W; Boyle, P J; Maugel, P W; Strong, C; Mitchell, R

    1979-01-01

    The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens. PMID:539821

  8. Bacterial flora of the schistosome vector snail Biomphalaria glabrata.

    PubMed

    Ducklow, H W; Boyle, P J; Maugel, P W; Strong, C; Mitchell, R

    1979-10-01

    The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens. PMID:539821

  9. Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments.

    PubMed

    Klobucar, Göran I V; Pavlica, Mirjana; Erben, Radovan; Papes, Drazena

    2003-06-19

    Assessment of DNA damage is of primary concern when determining the pollution-related stress in living organisms. To monitor genotoxicity of the freshwater environments we used micronucleus (MN) and comet assay on Dreissena polymorpha haemocytes. Caged mussels, collected from the river Drava, were transplanted to four monitoring sites of different pollution intensity in the river Sava. Exposition lasted for a month. The baseline level of MN frequencies in the haemocytes of mussels from reference site (river Drava) was 0.5 per thousand. No increase in MN frequency was found in mussels from the medium-polluted site (Zagreb) in the river Sava while other, more polluted sites showed higher MN frequencies ranging from 2.7 per thousand (Lukavec) and 3.1 per thousand (Oborovo) to 5.2 per thousand (Sisak). Results from comet assay showed concordance with MN assay in indicating intensity of DNA damage. The use of haemocytes from caged, non-indigenous mussels in MN and comet assay proved to be a sensitive tool for the freshwater genotoxicity monitoring. PMID:12763672

  10. Cloning and expression of an actin gene in the haemocytes of pearl oyster (Pinctada fucata, Gould 1850).

    PubMed

    Wang, Zhongliang; Wu, Zaohe; Jian, Jichang; Lu, Yishan

    2008-06-01

    An actin gene (designated pfact1) of pearl oyster, Pinctada fucata, was cloned from haemocytes by the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full length of Pfact1 cDNA was 1608 bp in length, having a 5' untranslated region (UTR) of 82 bp, a 3' UTR of 395 bp, and an open reading frame (ORF) of 1131 bp encoding a polypeptide of 376 amino acids with a predicted molecular weight of 41.76 kDa and an estimated isoelectric point of 5.29. Sequence analysis revealed that Pfact1 shared high similarity with other actins and was more closely related to vertebrate cytoplastic actins than muscle types. Phylogenetic analysis indicated that molluscan actins could also be generally grouped into two classes: muscle type and cytoplasmic type, although both are similar to vertebrate cytoplastic actins. Fluorescent real-time quantitative RT-PCR was used to examine the expression level of Pfact1 in haemocytes of P. fucata after the challenge of Vibrio alginolyticus, and results showed that Pfact1 exhibited stable expression in all time points, indicating that Pfact1 could be a suitable internal control for gene expression analysis in haemocytes of P. fucata. PMID:21798155

  11. Schistosoma mansoni: identification of chemicals that attract or trap its snail vector, Biomphalaria glabrata.

    PubMed

    Uhazy, L S; Tanaka, R D; MacInnis, A J

    1978-09-01

    A new bioassay for chemical attractants of aquatic snails demonstrated that Biomphalaria glabrata could be attracted to or trapped in the vicinity of homogenates of lettuce. Fractionation of homogenates revealed the amino acids glutamate and proline and the primary attractants. Attraction was specific for the L form of glutamate. Proline appeared to stimulate reproductive activity. Glutathione, gamma-aminobutyric acid, and a number of other compounds had no effect. Extracts of lyophilized snail tissue also attracted other snails and may thus contain pheromones. These results permit formulation and testing of controlled-release attractants designed to overcome the repellant effects of slow-release molluscicides, as well as the design of stimulants to be used with no-release poisons. PMID:684418

  12. Metabolic Engineering of Candida glabrata for Diacetyl Production

    PubMed Central

    Gao, Xiang; Xu, Nan; Li, Shubo; Liu, Liming

    2014-01-01

    In this study, Candida glabrata, an efficient pyruvate-producing strain, was metabolically engineered for the production of the food ingredient diacetyl. A diacetyl biosynthetic pathway was reconstructed based on genetic modifications and medium optimization. The former included (i) channeling carbon flux into the diacetyl biosynthetic pathway by amplification of acetolactate synthase, (ii) elimination of the branched pathway of α-acetolactate by deleting the ILV5 gene, and (iii) restriction of diacetyl degradation by deleting the BDH gene. The resultant strain showed an almost 1∶1 co-production of α-acetolactate and diacetyl (0.95 g L−1). Furthermore, addition of Fe3+ to the medium enhanced the conversion of α-acetolactate to diacetyl and resulted in a two-fold increase in diacetyl production (2.1 g L−1). In addition, increased carbon flux was further channeled into diacetyl biosynthetic pathway and a titer of 4.7 g L−1 of diacetyl was achieved by altering the vitamin level in the flask culture. Thus, this study illustrates that C. glabrata could be tailored as an attractive platform for enhanced biosynthesis of beneficial products from pyruvate by metabolic engineering strategies. PMID:24614328

  13. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata.

    PubMed

    Nagi, Minoru; Tanabe, Koichi; Nakayama, Hironobu; Ueno, Keigo; Yamagoe, Satoshi; Umeyama, Takashi; Ohno, Hideaki; Miyazaki, Yoshitsugu

    2016-08-01

    Candida glabrata, a haploid budding yeast, is the cause of severe systemic infections in immune-compromised hosts. The amount of free iron supplied to C. glabrata cells during systemic infections is severely limited by iron-chelating proteins such as transferrin. Thus, the iron-deficiency response in C. glabrata cells is thought to play important roles in their survival inside the host's body. In this study, we found that mitophagy was induced under iron-depleted conditions, and that the disruption of a gene homologous to ATG32, which is responsible for mitophagy in Saccharomyces cerevisiae, blocked mitophagy in C. glabrata. The mitophagic activity in C. glabrata cells was not detected on short-period exposure to nitrogen-starved conditions, which is a mitophagy-inducing condition used in S. cerevisiae. The mitophagy-deficient atg32Δ mutant of C. glabrata also exhibited decreased longevity under iron-deficient conditions. The mitochondrial membrane potential in Cgatg32Δ cells was significantly lower than that in wild-type cells under iron-depleted conditions. In a mouse model of disseminated infection, the Cgatg32Δ strain resulted in significantly decreased kidney and spleen fungal burdens compared with the wild-type strain. These results indicate that mitophagy in C. glabrata occurs in an iron-poor host tissue environment, and it may contribute to the longevity of cells, mitochondrial quality control, and pathogenesis. PMID:27347716

  14. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata

    PubMed Central

    Nagi, Minoru; Tanabe, Koichi; Nakayama, Hironobu; Ueno, Keigo; Yamagoe, Satoshi; Umeyama, Takashi; Ohno, Hideaki; Miyazaki, Yoshitsugu

    2016-01-01

    ABSTRACT Candida glabrata, a haploid budding yeast, is the cause of severe systemic infections in immune-compromised hosts. The amount of free iron supplied to C. glabrata cells during systemic infections is severely limited by iron-chelating proteins such as transferrin. Thus, the iron-deficiency response in C. glabrata cells is thought to play important roles in their survival inside the host's body. In this study, we found that mitophagy was induced under iron-depleted conditions, and that the disruption of a gene homologous to ATG32, which is responsible for mitophagy in Saccharomyces cerevisiae, blocked mitophagy in C. glabrata. The mitophagic activity in C. glabrata cells was not detected on short-period exposure to nitrogen-starved conditions, which is a mitophagy-inducing condition used in S. cerevisiae. The mitophagy-deficient atg32Δ mutant of C. glabrata also exhibited decreased longevity under iron-deficient conditions. The mitochondrial membrane potential in Cgatg32Δ cells was significantly lower than that in wild-type cells under iron-depleted conditions. In a mouse model of disseminated infection, the Cgatg32Δ strain resulted in significantly decreased kidney and spleen fungal burdens compared with the wild-type strain. These results indicate that mitophagy in C. glabrata occurs in an iron-poor host tissue environment, and it may contribute to the longevity of cells, mitochondrial quality control, and pathogenesis. PMID:27347716

  15. Intraspecific and interspecific chemoattraction inBiomphalaria glabrata andHelisoma trivolvis (Gastropoda: Planorbidae).

    PubMed

    Marcopoulos, A A; Fried, B

    1994-10-01

    A Petri dish bioassay previously used to examine food preferences in planorbid snails was used to study intraspecific and interspecific chemoattraction inBiomphalaria glabrata (albino strain, M-line) andHelisoma trivolvis (Colorado strain) snails.B. glabrata snails showed significant intraspecific chemoattraction in the absence of visual cues and snail thigmotaxis.H. trivolvis snails also showed significant intraspecific chemoattraction. Interspecific chemoattraction between these species occurred in the bioassay, suggesting that the chemoattractants were not species specific. Artificial spring water conditioned by aqueous excretory-secretory products (snail-conditioned water) ofB. glabrata elicited significant intraspecific chemoattraction. However, lipophilic excretory-secretory products ofB. glabrata elicited significant chemorepulsion. Repellant factors in the lipophilic fraction were not characterized. PMID:24241838

  16. Haematopoiesis in molluscs: A review of haemocyte development and function in gastropods, cephalopods and bivalves.

    PubMed

    Pila, E A; Sullivan, J T; Wu, X Z; Fang, J; Rudko, S P; Gordy, M A; Hanington, P C

    2016-05-01

    Haematopoiesis is a process that is responsible for generating sufficient numbers of blood cells in the circulation and in tissues. It is central to maintenance of homeostasis within an animal, and is critical for defense against infection. While haematopoiesis is common to all animals possessing a circulatory system, the specific mechanisms and ultimate products of haematopoietic events vary greatly. Our understanding of this process in non-vertebrate organisms is primarily derived from those species that serve as developmental and immunological models, with sparse investigations having been carried out in other organisms spanning the metazoa. As research into the regulation of immune and blood cell development advances, we have begun to gain insight into haematopoietic events in a wider array of animals, including the molluscs. What began in the early 1900's as observational studies on the morphological characteristics of circulating immune cells has now advanced to mechanistic investigations of the cytokines, growth factors, receptors, signalling pathways, and patterns of gene expression that regulate molluscan haemocyte development. Emerging is a picture of an incredible diversity of developmental processes and outcomes that parallels the biological diversity observed within the different classes of the phylum Mollusca. However, our understanding of haematopoiesis in molluscs stems primarily from the three most-studied classes, the Gastropoda, Cephalopoda and Bivalvia. While these represent perhaps the molluscs of greatest economic and medical importance, the fact that our information is limited to only 3 of the 9 extant classes in the phylum highlights the need for further investigation in this area. In this review, we summarize the existing literature that defines haematopoiesis and its products in gastropods, cephalopods and bivalves. PMID:26592965

  17. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata

    PubMed Central

    Shaik, Noor F.; Neal, Erin M.; Leone, Sarah G.; Cali, Brian J.; Peel, Michael T.; Grannas, Amanda M.; Wykoff, Dennis D.

    2016-01-01

    The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine. PMID:27015653

  18. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.

    PubMed

    Iosue, Christine L; Attanasio, Nicholas; Shaik, Noor F; Neal, Erin M; Leone, Sarah G; Cali, Brian J; Peel, Michael T; Grannas, Amanda M; Wykoff, Dennis D

    2016-01-01

    The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine. PMID:27015653

  19. Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance.

    PubMed

    Pham, Cau D; Iqbal, Naureen; Bolden, Carol B; Kuykendall, Randall J; Harrison, Lee H; Farley, Monica M; Schaffner, William; Beldavs, Zintars G; Chiller, Tom M; Park, Benjamin J; Cleveland, Angela A; Lockhart, Shawn R

    2014-08-01

    Candida glabrata is the second leading cause of candidemia in U.S. hospitals. Current guidelines suggest that an echinocandin be used as the primary therapy for the treatment of C. glabrata disease due to the high rate of resistance to fluconazole. Recent case reports indicate that C. glabrata resistance to echinocandins may be increasing. We performed susceptibility testing on 1,380 isolates of C. glabrata collected between 2008 and 2013 from four U.S. cities, Atlanta, Baltimore, Knoxville, and Portland. Our analysis showed that 3.1%, 3.3%, and 3.6% of the isolates were resistant to anidulafungin, caspofungin, and micafungin, respectively. We screened 1,032 of these isolates, including all 77 that had either a resistant or intermediate MIC value with respect to at least one echinocandin, for mutations in the hot spot regions of FKS1 and FKS2, the major mechanism of echinocandin resistance. Fifty-one isolates were identified with hot spot mutations, 16 in FKS1 and 35 in FKS2. All of the isolates with an FKS mutation except one were resistant to at least one echinocandin by susceptibility testing. Of the isolates resistant to at least one echinocandin, 36% were also resistant to fluconazole. Echinocandin resistance among U.S. C. glabrata isolates is a concern, especially in light of the fact that one-third of those isolates may be multidrug resistant. Further monitoring of U.S. C. glabrata isolates for echinocandin resistance is warranted. PMID:24890592

  20. SNF3 as High Affinity Glucose Sensor and Its Function in Supporting the Viability of Candida glabrata under Glucose-Limited Environment

    PubMed Central

    Ng, Tzu Shan; Chew, Shu Yih; Rangasamy, Premmala; Mohd Desa, Mohd N.; Sandai, Doblin; Chong, Pei Pei; Than, Leslie Thian Lung

    2015-01-01

    Candida glabrata is an emerging human fungal pathogen that has efficacious nutrient sensing and responsiveness ability. It can be seen through its ability to thrive in diverse range of nutrient limited-human anatomical sites. Therefore, nutrient sensing particularly glucose sensing is thought to be crucial in contributing to the development and fitness of the pathogen. This study aimed to elucidate the role of SNF3 (Sucrose Non Fermenting 3) as a glucose sensor and its possible role in contributing to the fitness and survivability of C. glabrata in glucose-limited environment. The SNF3 knockout strain was constructed and subjected to different glucose concentrations to evaluate its growth, biofilm formation, amphotericin B susceptibility, ex vivo survivability and effects on the transcriptional profiling of the sugar receptor repressor (SRR) pathway-related genes. The CgSNF3Δ strain showed a retarded growth in low glucose environments (0.01 and 0.1%) in both fermentation and respiration-preferred conditions but grew well in high glucose concentration environments (1 and 2%). It was also found to be more susceptible to amphotericin B in low glucose environment (0.1%) and macrophage engulfment but showed no difference in the biofilm formation capability. The deletion of SNF3 also resulted in the down-regulation of about half of hexose transporters genes (four out of nine). Overall, the deletion of SNF3 causes significant reduction in the ability of C. glabrata to sense limited surrounding glucose and consequently disrupts its competency to transport and perform the uptake of this critical nutrient. This study highlighted the role of SNF3 as a high affinity glucose sensor and its role in aiding the survivability of C. glabrata particularly in glucose limited environment. PMID:26648919

  1. Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in Candida glabrata

    PubMed Central

    Chen, Ying-Lien; Konieczka, Jay H.; Springer, Deborah J.; Bowen, Samantha E.; Zhang, Jing; Silao, Fitz Gerald S.; Bungay, Alice Alma C.; Bigol, Ursela G.; Nicolas, Marilou G.; Abraham, Soman N.; Thompson, Dawn A.; Regev, Aviv; Heitman, Joseph

    2012-01-01

    Candida glabrata is an emerging human fungal pathogen that is frequently drug tolerant, resulting in difficulties in treatment and a higher mortality in immunocompromised patients. The calcium-activated protein phosphatase calcineurin plays critical roles in controlling drug tolerance, hyphal growth, and virulence in diverse fungal pathogens via distinct mechanisms involving survival in serum or growth at host temperature (37° and higher). Here, we comprehensively studied the calcineurin signaling cascade in C. glabrata and found novel and uncharacterized functions of calcineurin and its downstream target Crz1 in governing thermotolerance, intracellular architecture, and pathogenesis in murine ocular, urinary tract, and systemic infections. This represents a second independent origin of a role for calcineurin in thermotolerant growth of a major human fungal pathogen, distinct from that which arose independently in Cryptococcus neoformans. Calcineurin also promotes survival of C. glabrata in serum via mechanisms distinct from C. albicans and thereby enables establishment of tissue colonization in a murine systemic infection model. To understand calcineurin signaling in detail, we performed global transcript profiling analysis and identified calcineurin- and Crz1-dependent genes in C. glabrata involved in cell wall biosynthesis, heat shock responses, and calcineurin function. Regulators of calcineurin (RCN) are a novel family of calcineurin modifiers, and two members of this family were identified in C. glabrata: Rcn1 and Rcn2. Our studies demonstrate that Rcn2 expression is controlled by calcineurin and Crz1 to function as a feedback inhibitor of calcineurin in a circuit required for calcium tolerance in C. glabrata. In contrast, the calcineurin regulator Rcn1 activates calcineurin signaling. Interestingly, neither Rcn1 nor Rcn2 is required for virulence in a murine systemic infection model. Taken together, our findings show that calcineurin signaling plays

  2. Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate

    PubMed Central

    Mota, Sandra; Alves, Rosana; Carneiro, Catarina; Silva, Sónia; Brown, Alistair J.; Istel, Fabian; Kuchler, Karl; Sampaio, Paula; Casal, Margarida; Henriques, Mariana; Paiva, Sandra

    2015-01-01

    Candida glabrata is considered a major opportunistic fungal pathogen of humans. The capacity of this yeast species to cause infections is dependent on the ability to grow within the human host environment and to assimilate the carbon sources available. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources, such as carboxylic acids, contributes to the virulence of this fungus. Transcriptional studies on C. glabrata cells identified a similar response, upon nutrient deprivation. In this work, we aimed at analyzing biofilm formation, antifungal drug resistance, and phagocytosis of C. glabrata cells grown in the presence of acetic acid as an alternative carbon source. C. glabrata planktonic cells grown in media containing acetic acid were more susceptible to fluconazole and were better phagocytosed and killed by macrophages than when compared to media lacking acetic acid. Growth in acetic acid also affected the ability of C. glabrata to form biofilms. The genes ADY2a, ADY2b, FPS1, FPS2, and ATO3, encoding putative carboxylate transporters, were upregulated in C. glabrata planktonic and biofilm cells in the presence of acetic acid. Phagocytosis assays with fps1 and ady2a mutant strains suggested a potential role of FPS1 and ADY2a in the phagocytosis process. These results highlight how acidic pH niches, associated with the presence of acetic acid, can impact in the treatment of C. glabrata infections, in particular in vaginal candidiasis. PMID:26388859

  3. Evaluation of the mitochondrial system in the gonad-digestive gland complex of Biomphalaria glabrata (Mollusca, Gastropoda) after infection by Echinostoma paraensei (Trematoda, Echinostomatidae).

    PubMed

    Tunholi, Victor Menezes; Tunholi-Alves, Vinícius Menezes; Santos, Anderson Teixeira; Garcia, Juberlan da Silva; Maldonado, Arnaldo; da-Silva, Wagner Seixas; Rodrigues, Maria de Lurdes de Azevedo; Pinheiro, Jairo

    2016-05-01

    The effect of infection by Echinostoma paraensei on the mitochondrial physiology of Biomphalaria glabrata was investigated after exposure to 50 miracidia. The snails were dissected one, two, three and four weeks after infection for collection and mechanical permeabilization of the gonad-digestive gland (DGG) complex. The results obtained indicate that prepatent infection by this echinostomatid fluke significantly suppresses the phosphorylation state (respiratory state 3) and basal oxygen consumption of B. glabrata, demonstrating that the infection reduces the ability of the intermediate host to carry out aerobic oxidative reactions. Additionally, relevant variations related to the uncoupled mitochondrial (state 3u) of B. glabrata infected by E. paraensei were observed. Four weeks after exposure, a significant reduction in mitochondrial oxygen consumption after addition of ADP (3.68±0.26pmol O2/mg proteins) was observed in the infected snails in comparison with the respective control group (5.14±0.25). In the uncoupled state, the infected snails consumed about 62% less oxygen than the infected snails (7.87±0.84pmol O2/mg proteins) in the same period. These results demonstrate a reduction in oxidative decarboxylation rate of the tricarboxylic acid cycle and faster anaerobic degradation of carbohydrates in the infected snails. The possible mechanisms that explain this new metabolic condition in the infected organisms are discussed. PMID:27079167

  4. Efficient Mating-Type Switching in Candida glabrata Induces Cell Death

    PubMed Central

    Boisnard, Stéphanie; Zhou Li, Youfang; Arnaise, Sylvie; Sequeira, Gregory; Raffoux, Xavier; Enache-Angoulvant, Adela; Bolotin-Fukuhara, Monique; Fairhead, Cécile

    2015-01-01

    Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mating-types spontaneously, as S. cerevisiae does. We have recently sequenced the genomes of the five species that, together with C. glabrata, make up the Nakaseomyces clade. All contain MAT-like cassettes and an HO gene homolog. In this work, we express the HO gene of all Nakaseomyces and of S. cerevisiae in C. glabrata. All can induce mating-type switching, but, despite the larger phylogenetic distance, the most efficient endonuclease is the one from S. cerevisiae. Efficient mating-type switching in C. glabrata is accompanied by a high cell mortality, and sometimes results in conversion of the additional cassette HML. Mortality probably results from the cutting of the HO recognition sites that are present, in HML and possibly HMR, contrary to what happens naturally in S. cerevisiae. This has implications in the life-cycle of C. glabrata, as we show that efficient MAT switching is lethal for most cells, induces chromosomal rearrangements in survivors, and that the endogenous HO is probably rarely active indeed. PMID:26491872

  5. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

    PubMed Central

    Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-01-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

  6. Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combination with Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and azadirachtin.

    PubMed

    Shaurub, El-Sayed H; Abd El-Meguid, Afaf; Abd El-Aziz, Nahla M

    2014-10-01

    The total haemocyte count (THC) and the possible ultrastructural alterations induced in the haemocytes of the fourth larval instars of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), 96 h post-feeding on a semi-synthetic diet, treated with the LC50 of Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and the LC50 of azadirachtin alone, and the LC25 of SpliMNPV combined with the LC25 of azadirachtin were studied and compared to the control. Single treatment with the virus and azadirachtin or combined treatment significantly decreased the THC compared to the control. There are five types of haemocytes in S. littoralis: prohaemocytes, plasmatocytes, granulocytes, spherulocytes and oenocytoids. The most common symptoms in granulocytes and plasmatocytes, the main affected cell types, due to viral infection were the presence of virogenic stroma, peripheral dispersion of the chromatin and disappearance of the nucleoli. However, the most common symptoms in these two types of haemocytes due to treatment with azadirachtin were the presence of rough endoplasmic reticulum filled with fibrous materials, due to probably apoptosis, in their cisternae and disorganization of mitochondria (looped, vacuolated and swollen). In addition, the cytoplasm of granulocytes was vacuolated with the appearance of autophagic lysosomes, while plasmatocytes showed ruptured cell membrane and folded nuclear envelope. Combined treatment with the NPV and azadirachtin induced the same pathological changes which were recorded from individual treatment with the virus or azadirachtin to the same haemocytes. It can be concluded that the change in the THC and ultrastructure of granulocytes and plasmatocytes may affect the cellular-mediated immune response in S. littoralis. Moreover, it seems likely that mitochondria were the target site of azadirachtin, as they were affected in both granulocytes and plasmatocytes treated with azadirachtin alone or in

  7. In vivo exposure to microcystins induces DNA damage in the haemocytes of the zebra mussel, Dreissena polymorpha, as measured with the comet assay.

    PubMed

    Juhel, Guillaume; O'Halloran, John; Culloty, Sarah C; O'riordan, Ruth M; Davenport, John; O'Brien, Nora M; James, Kevin F; Furey, Ambrose; Allis, Orla

    2007-01-01

    The Comet assay was used to investigate the potential of the biotoxin microcystin (MC) to induce DNA damage in the freshwater zebra mussel, Dreissena polymorpha. Mussels maintained in the laboratory were fed daily, over a 21-day period, with one of four strains of the cyanobacterium, Microcystis aeruginosa. Three of the strains produced different profiles of MC toxin, while the fourth strain did not produce MCs. The mussels were sampled at 0, 7, 14, and 21 days by withdrawing haemocytes from their adductor muscle. In addition, a positive control was performed by exposing a subsample of the mussels to water containing cadmium chloride (CdCl(2)). Cell viability, measured with the Fluorescein Diacetate/Ethidium Bromide test, indicated that the MC concentrations, to which the mussels were exposed, were not cytotoxic to the haemocytes. The Comet assay performed on the haemocytes indicated that exposure to CdCl(2) produced a dose-responsive increase in DNA damage, demonstrating that mussel haemocytes were sensitive to DNA-damaging agents. DNA damage, measured as percentage tail DNA (%tDNA), was observed in mussels exposed to the three toxic Microcystis strains, but not in mussels exposed to the nontoxic strain. Toxin analysis of the cyanobacterial cultures confirmed that the three MC-producing strains exhibit different toxin profiles, with the two MC variants detected being MC-LF and MC-LR. Furthermore, the DNA damage that was observed appeared to be strain-specific, with high doses of MC-LF being associated with a higher level of genotoxicity than low concentrations of MC-LR. High levels of MC-LF also seemed to induce relatively more persistent DNA damage than small quantities of MC-LR. This study is the first to demonstrate that in vivo exposure to MC-producing strains of cyanobacteria induces DNA damage in the haemocytes of zebra mussels and confirms the sublethal toxicity of these toxins. PMID:17163507

  8. A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?

    PubMed Central

    Duval, David; Galinier, Richard; Mouahid, Gabriel; Toulza, Eve; Allienne, Jean François; Portela, Julien; Calvayrac, Christophe; Rognon, Anne; Arancibia, Nathalie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2015-01-01

    Background Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. Methodology/Principal findings In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. Conclusions/Significance This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field. PMID:25719489

  9. Production of White Colonies on CHROMagar Candida(TM) by Members of the Candida glabrata Clade and Other Species with Overlapping Phenotypic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that species of the Candida glabrata clade and species with phenotypic traits overlapping with C. glabrata would produce white colonies on CHROMagar Candida. Of 154 isolates (seven species) tested, C. bracarensis, C. nivariensis, C. norvegensis, C. glabrata, and C. inconspicua produ...

  10. Ecology of bacterial communities in the schistosomiasis vector snailBiomphalaria glabrata.

    PubMed

    Ducklow, H W; Clausen, K; Mitchell, R

    1981-09-01

    The internal colony-forming bacterial flora of the schistosome intermediate host snailBiomphalaria glabrata (Say) has been characterized in ca. 500 individual snails from Puerto Rico, Guadeloupe, and St. Lucia, and from laboratory aquaria. Freshly captured wild snails harbor 2-40×10(6) CFU·g(-1), and healthy aquarium snails harbor 4-16×10(7) CFU·g(-1), whereas moribund individuals have 4-10 times as many bacteria as healthy individuals from the same habitats.Pseudomonas spp. are the most common predominant bacteria in normal snails, whereasAcinetobacter, Aeromonas, andMoraxella spp. predominate in moribund snails. External bacterial populations in water appear to have little effect on the composition and size of the flora in any snail. In addition to normal (healthy) and moribund snails, a third group of snails has been distinguished on the basis of internal bacterial density and predominating genera. These "high-density" snails may have undergone stresses and may harbor opportunistic pathogens. The microfloras of wild and laboratory-reared snails can be altered and stimulated to increase in density by crowding the snails or treating them with antibiotics. PMID:24227500

  11. Medical treatment of a pacemaker endocarditis due to Candida albicans and to Candida glabrata.

    PubMed

    Roger, P M; Boissy, C; Gari-Toussaint, M; Foucher, R; Mondain, V; Vandenbos, F; le Fichoux, Y; Michiels, J F; Dellamonica, P

    2000-09-01

    We describe a case of pacemaker infection due to two fungal species: Candida albicans and C. glabrata. Transthoracic echocardiography showed a large vegetation on the intraventricular wires. Because of severe underlying diseases, surgery was believed to be contraindicated. The patient was treated using high dose of fluconazole, resulting in clinical improvement and negative blood cultures. However, 2 months later, the patient underwent a fatal stroke. At autopsy, a large vegetation was found only all along the wires. Postmortem culture of the infected material was positive for both C. albicans and C. glabrata. PMID:11023765

  12. Demographic responses to multi-generation cadmium exposure in two strains of the freshwater gastropod, Biomphalaria glabrata.

    SciTech Connect

    Salice, Christopher J.; Miller, Thomas J.; Roesijadi, Guritno

    2008-08-20

    A life table response experiment (LTRE) was used to quantify the population-level effects of continuous, multi-generation cadmium exposure on two strains of the freshwater gastropod, Biomphalaria glabrata; the parasite resistant BS90 and parasite susceptible NMRI strains. Snails were exposed to waterborne cadmium for three consecutive generations. Survival, growth and reproduction were measured empirically and incorporated into a stage-based, deterministic population model. Cadmium significantly affected hatching success, time to maturity and juvenile and adult survival in both strains. There were significant effects of generation on fecundity, hatching success time to maturity and juvenile survival in NMRI and time to maturity and adult survival in BS90. Cadmium significantly affected the population growth rate, lambda (λ), in BS90. Cadmium, generation and the cadmium x generation interaction had significant effects on λ in NMRI. At the high cadmium exposure, λ for NMRI showed a decrease from generation 1 to generation 2 followed by and increase from generation 2 to 3. Lambda in high cadmium BS90 steadily decreased over the three generations while NMRI at this same concentration was similar to the controls. The results indicated that strain-specific differences in response to multi-generation cadmium exposure are evident in B. glabrata. Moreover, effects seen in the first generation are not necessarily indicative of effects in subsequent generations. Changes in λ over the course of the three-generation exposure suggest that acclimation and/or adaptation to cadmium may have occurred, particularly in NMRI at the high cadmium exposure level.

  13. Comparative toxicity of Euphorbia milii latex and synthetic molluscicides to Biomphalaria glabrata embryos.

    PubMed

    Oliveira-Filho, Eduardo C; Geraldino, Barbara R; Coelho, Deise R; De-Carvalho, Rosângela R; Paumgartten, Francisco J R

    2010-09-01

    Plant molluscicides have been regarded as possible alternatives to the costly and environmentally hazardous molluscicides currently available. This study was undertaken to compare the developmental toxicity of a plant molluscicide (Euphorbia milii latex, LAT) with that of three synthetic molluscicidal compounds. Biomphalaria glabrata egg masses (0-15 h after spawning) were exposed to molluscicides for 96 h and thereafter examined up to the 14th day after spawning. Embryo deaths, abnormal embryo development (malformations) and the day of hatching were recorded. Although exhibiting a weak ovicidal effect, LAT markedly impaired the development of snail embryos at concentrations 1000 microg L(-1) and produced anomalies (EC(50)=2040 microg L(-1)) such as abnormal shells, hydropic embryos, cephalic and non-specific malformations. Embryolethal potencies of molluscicides were as follows: triphenyltin hydroxide (TPTH; LC(50)=0.30 microg L(-1))>niclosamide (NCL; LC(50)=70 microg L(-1))>copper sulphate (CuSO(4); LC(50)=2190 microg L(-1)) > LAT (LC(50)=34030 microg L(-1)). A few malformations were recorded in embryos exposed to concentrations of TPTH within the range of lethal concentrations, while almost no anomalies were noted among those treated with NCL or CuSO(4). A hatching delay (hatching on day 10 after spawning or later) was observed among LAT-exposed embryos. The effects of NCL, TPTH and CuSO4 on hatching were to some extent masked by their marked embryolethality. The no-observed effect concentrations (NOEC) for embryotoxicity were as follows: TPTH, 0.1 microg L(-1); NCL, 25.0 microg L(-1); CuSO(4), 500.0 microg L(-1) and LAT, 500.0 microg L(-1). Results from this study suggest that, although LAT was not acutely embryolethal after a short-term exposure, it markedly disrupted snail development. The marked embryotoxicity of E. milii possibly contributes to its effectiveness as a molluscicide. PMID:20594574

  14. Arteriovenous graft infection caused by Candida glabrata: A case report and literature review.

    PubMed

    Huang, Hung-Ling; Lin, Chun-Yu; Chang, Ya-Ting; Chen, Yen-Hsu; Wu, Wei-Tsung; Lu, Po-Liang

    2016-04-01

    The infection rate of arteriovenous (AV) grafts is high, but fungal etiology is rare. Only five cases of graft infection due to Candida albicans (C. albicans) or C. tropicalis have been described in the literature. Herein, we report the first case of AV graft infection caused by C. glabrata. A 60-year-old woman on maintenance hemodialysis for end-stage renal disease was admitted because of intermittent fever, for 10 days. Upon physical examination, tenderness over the AV graft site was noticed. Blood culture yielded C. glabrata and her clinical symptoms improved after she was treated with micafungin for 1 month. However, C. glabrata candidemia reoccurred 5 weeks later. Cure was achieved after removal of the AV graft and anidulafungin treatment. Pus was observed in the removed graft, from which C. glabrata was isolated. The outcome of our case and patients from the literature review suggest that removal of the infected graft is important for treatment success of AV graft Candida infection. PMID:23838263

  15. A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata.

    PubMed

    Merhej, Jawad; Thiebaut, Antonin; Blugeon, Corinne; Pouch, Juliette; Ali Chaouche, Mohammed El Amine; Camadro, Jean-Michel; Le Crom, Stéphane; Lelandais, Gaëlle; Devaux, Frédéric

    2016-01-01

    The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism. PMID:27242683

  16. Proposal to conserve the name Celtis glabrata Steven ex Planch. (Cannabaceae) with a conserved type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The name Celtis glabrata is technically illegitimate and has nomenclatural priority over U. glabra and should be replaced under the international rules of botanical nomenclature. The replacement name Celtis planchoniana, proposed in 1997 but seldom adopted to date, is not the correct name for this s...

  17. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq.

    PubMed

    Linde, Jörg; Duggan, Seána; Weber, Michael; Horn, Fabian; Sieber, Patricia; Hellwig, Daniela; Riege, Konstantin; Marz, Manja; Martin, Ronny; Guthke, Reinhard; Kurzai, Oliver

    2015-02-18

    Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host-pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast. PMID:25586221

  18. Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.

    PubMed

    Szweda, Piotr; Gucwa, Katarzyna; Romanowska, Ewa; Dzierzanowska-Fangrat, Katarzyna; Naumiuk, Łukasz; Brillowska-Dabrowska, Anna; Wojciechowska-Koszko, Iwona; Milewski, Sławomir

    2015-06-01

    Candida glabrata is currently ranked as the second most frequently isolated aetiological agent of human fungal infections, next only to Candida albicans. In comparison with C. albicans, C. glabrata shows lower susceptibility to azoles, the most common agents used in treatment of fungal infections. Interestingly, the mechanisms of resistance to azole agents in C. albicans have been much better investigated than those in C. glabrata. The aim of the presented study was to determine the mechanisms of resistance to azoles in 81 C. glabrata clinical isolates from three different hospitals in Poland. The investigation was carried out with a Sensititre Yeast One test and revealed that 18 strains were resistant to fluconazole, and 15 were cross-resistant to all other azoles tested (voriconazole, posaconazole and itraconazole). One isolate resistant to fluconazole was cross-resistant to voriconazole, and resistance to voriconazole only was observed in six other isolates. All strains were found to be susceptible to echinocandins and amphotericin B, and five were classified as resistant to 5-fluorocytosine. The sequence of the ERG11 gene encoding lanosterol 14-α demethylase (the molecular target of azoles) of 41 isolates, including all strains resistant to fluconazole and three resistant only to voriconazole, was determined, and no amino acid substitutions were found. Real-time PCR studies revealed that 13 of 15 azole-resistant strains showed upregulation of the CDR1 gene encoding the efflux pump. No upregulation of expression of the CDR2 or ERG11 gene was observed. PMID:25818698

  19. A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

    PubMed Central

    Merhej, Jawad; Thiebaut, Antonin; Blugeon, Corinne; Pouch, Juliette; Ali Chaouche, Mohammed El Amine; Camadro, Jean-Michel; Le Crom, Stéphane; Lelandais, Gaëlle; Devaux, Frédéric

    2016-01-01

    The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism. PMID:27242683

  20. First Report of Peanut Mottle Virus in Forage Peanut (Arachis glabrata) in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant material of rhizoma peanut (Arachis glabrata) of an unknown accession, obtained from the Arachis species collection nursery planted and maintained at the Coastal Plain Research Station, Tifton, GA was recently brought into the greenhouse where ring spots were identified on immature leaves. Ti...

  1. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering

    PubMed Central

    2014-01-01

    Background Acetoin is a promising chemical compound that can potentially serve as a high value-added platform for a broad range of applications. Many industrial biotechnological processes are moving towards the use of yeast as a platform. The multi-auxotrophic yeast, Candida glabrata, can accumulate a large amount of pyruvate, but produces only trace amounts of acetoin. Here, we attempted to engineer C. glabrata to redirect the carbon flux of pyruvate to increase acetoin production. Results Based on an in silico strategy, a synthetic, composite metabolic pathway involving two distinct enzymes, acetolactate synthase (ALS) and acetolactate decarboxylase (ALDC), was constructed, leading to the accumulation of acetoin in C. glabrata. Further genetic modifications were introduced to increase the carbon flux of the heterologous pathway, increasing the production of acetoin to 2.08 g/L. Additionally, nicotinic acid was employed to regulate the intracellular NADH level, and a higher production of acetoin (3.67 g/L) was obtained at the expense of 2,3-butanediol production under conditions of a lower NADH/NAD+ ratio. Conclusion With the aid of in silico metabolic engineering and cofactor engineering, C. glabrata was designed and constructed to improve acetoin production. PMID:24725668

  2. Failed Reverse Total Shoulder Arthroplasty Caused by Recurrent Candida glabrata Infection with Prior Serratia marcescens Coinfection

    PubMed Central

    Skedros, John G.; Keenan, Kendra E.; Updike, Wanda S.; Oliver, Marquam R.

    2014-01-01

    This report describes a 58-year-old insulin-dependent diabetic male patient who initially sustained a proximal humerus fracture from a fall. The fracture fixation failed and then was converted to a humeral hemiarthroplasty, which became infected with Candida glabrata and Serratia marcescens. After these infections were believed to be cured with antibacterial and antifungal treatments and two-stage irrigation and debridement, he underwent conversion to a reverse total shoulder arthroplasty. Unfortunately, the C. glabrata infection recurred and, nearly 1.5 years after implantation of the reverse total shoulder, he had a resection arthroplasty (removal of all implants and cement). His surgical and pharmacologic treatment concluded with (1) placement of a tobramycin-impregnated cement spacer also loaded with amphotericin B, with no plan for revision arthroplasty (i.e., the spacer was chronically retained), and (2) chronic use of daily oral fluconazole. We located only three reported cases of Candida species causing infection in shoulder arthroplasties (two C. albicans, one C. parapsilosis). To our knowledge, a total shoulder arthroplasty infected with C. glabrata has not been reported, nor has a case of a C. glabrata and S. marcescens periprosthetic coinfection in any joint. In addition, it is well known that S. marcescens infections are uncommon in periprosthetic joint infections. PMID:25431708

  3. In Vitro Activities of Six Antifungal Drugs Against Candida glabrata Isolates: An Emerging Pathogen

    PubMed Central

    Amirrajab, Nasrin; Badali, Hamid; Didehdar, Mojtaba; Afsarian, Mohammad Hosein; Mohammadi, Rasoul; Lotfi, Nazanin; Shokohi, Tahereh

    2016-01-01

    Background Candida glabrata is a pathogenic yeast with several unique biological features and associated with an increased incidence rate of candidiasis. It exhibits a great degree of variation in its pathogenicity and antifungal susceptibility. Objectives The aim of the present study was to evaluate the in vitro antifungal susceptibilities of the following six antifungal drugs against clinical C. glabrata strains: amphotericin B (AmB), ketoconazole (KTZ), fluconazole (FCZ), itraconazole (ITZ), voriconazole (VCZ), and caspofungin (CASP). Materials and Methods Forty clinical C. glabrata strains were investigated using DNA sequencing. The in vitro antifungal susceptibility was determined as described in clinical laboratory standard institute (CLSI) documents (M27-A3 and M27-S4). Results The sequence analysis of the isolate confirmed as C. glabrata and deposited on NCBI GenBank under the accession number no. KT763084-KT763123. The geometric mean MICs against all the tested strains were as follows, in increasing order: CASP (0.17 g/mL), VCZ (0.67 g/mL), AmB (1.1 g/mL), ITZ (1.82 g/mL), KTZ (1.85 g/mL), and FCZ (6.7 g/mL). The resistance rates of the isolates to CASP, FCZ, ITZ, VZ, KTZ, and AmB were 5%, 10%, 72.5%, 37.5%, 47.5%, and 27.5%, respectively. Conclusions These findings confirm that CASP, compared to the other antifungals, is the potent agent for treating candidiasis caused by C. glabrata. However, the clinical efficacy of these novel antifungals remains to be determined. PMID:27540459

  4. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    PubMed Central

    Roger, Emmanuel; Grunau, Christoph; Pierce, Raymond J.; Hirai, Hirohisa; Gourbal, Benjamin; Galinier, Richard; Emans, Rémi; Cesari, Italo M.; Cosseau, Céline; Mitta, Guillaume

    2008-01-01

    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on

  5. Upregulation of the Adhesin Gene EPA1 Mediated by PDR1 in Candida glabrata Leads to Enhanced Host Colonization.

    PubMed

    Vale-Silva, Luis A; Moeckli, Beat; Torelli, Riccardo; Posteraro, Brunella; Sanguinetti, Maurizio; Sanglard, Dominique

    2016-01-01

    Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with transporters regulated by the transcription factor Pdr1. Gain-of-function (GOF) mutations in PDR1 lead to a hyperactive state and thus efflux transporter upregulation. Our laboratory has characterized a collection of C. glabrata clinical isolates in which azole resistance was found to correlate with increased virulence in vivo. Contributing phenotypes were the evasion of adhesion and phagocytosis by macrophages and an increased adhesion to epithelial cells. These phenotypes were found to be dependent on PDR1 GOF mutation and/or C. glabrata strain background. In the search for the molecular effectors, we found that PDR1 hyperactivity leads to overexpression of specific cell wall adhesins of C. glabrata. Further study revealed that EPA1 regulation, in particular, explained the increase in adherence to epithelial cells. Deleting EPA1 eliminates the increase in adherence in an in vitro model of interaction with epithelial cells. In a murine model of urinary tract infection, PDR1 hyperactivity conferred increased ability to colonize the bladder and kidneys in an EPA1-dependent way. In conclusion, this study establishes a relationship between PDR1 and the regulation of cell wall adhesins, an important virulence attribute of C. glabrata. Furthermore, our data show that PDR1 hyperactivity mediates increased adherence to host epithelial tissues both in vitro and in vivo through upregulation of the adhesin gene EPA1. IMPORTANCE Candida glabrata is an important fungal pathogen in human diseases and is also rapidly acquiring drug resistance. Drug resistance can be mediated by the transcriptional activator PDR1, and this results in the upregulation of multidrug transporters. Intriguingly

  6. Upregulation of the Adhesin Gene EPA1 Mediated by PDR1 in Candida glabrata Leads to Enhanced Host Colonization

    PubMed Central

    Vale-Silva, Luis A.; Moeckli, Beat; Torelli, Riccardo; Posteraro, Brunella; Sanguinetti, Maurizio

    2016-01-01

    ABSTRACT Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with transporters regulated by the transcription factor Pdr1. Gain-of-function (GOF) mutations in PDR1 lead to a hyperactive state and thus efflux transporter upregulation. Our laboratory has characterized a collection of C. glabrata clinical isolates in which azole resistance was found to correlate with increased virulence in vivo. Contributing phenotypes were the evasion of adhesion and phagocytosis by macrophages and an increased adhesion to epithelial cells. These phenotypes were found to be dependent on PDR1 GOF mutation and/or C. glabrata strain background. In the search for the molecular effectors, we found that PDR1 hyperactivity leads to overexpression of specific cell wall adhesins of C. glabrata. Further study revealed that EPA1 regulation, in particular, explained the increase in adherence to epithelial cells. Deleting EPA1 eliminates the increase in adherence in an in vitro model of interaction with epithelial cells. In a murine model of urinary tract infection, PDR1 hyperactivity conferred increased ability to colonize the bladder and kidneys in an EPA1-dependent way. In conclusion, this study establishes a relationship between PDR1 and the regulation of cell wall adhesins, an important virulence attribute of C. glabrata. Furthermore, our data show that PDR1 hyperactivity mediates increased adherence to host epithelial tissues both in vitro and in vivo through upregulation of the adhesin gene EPA1. IMPORTANCE Candida glabrata is an important fungal pathogen in human diseases and is also rapidly acquiring drug resistance. Drug resistance can be mediated by the transcriptional activator PDR1, and this results in the upregulation of multidrug transporters

  7. Identification of Candida glabrata Genes Involved in pH Modulation and Modification of the Phagosomal Environment in Macrophages

    PubMed Central

    Gerwien, Franziska; Allert, Stefanie; Brunke, Sascha; Schwarzmüller, Tobias; Ames, Lauren; Zubiria-Barrera, Cristina; Mansour, Michael K.; Becken, Ulrike; Barz, Dagmar; Vyas, Jatin M.; Reiling, Norbert; Haas, Albert; Haynes, Ken; Kuchler, Karl; Hube, Bernhard

    2014-01-01

    Candida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein

  8. Time-to-reporting of blood culture positivity and central venous catheter-associated Candida glabrata fungemia in cancer patients.

    PubMed

    Stempel, Jessica M; Farmakiotis, Dimitrios; Tarrand, Jeffrey J; Kontoyiannis, Dimitrios P

    2016-07-01

    Among cancer patients with Candida glabrata (the Candida species with the slowest in-vitro growth) fungemia, time-to-positive blood culture reporting (TTR) was shorter in catheter-associated candidemia (mean±standard deviation: 67±35 h) than in candidemia from other sources (79±31, P<.01). TTR<48 h was 92% specific for catheter-associated C. glabrata fungemia. PMID:27133559

  9. Cloning and expression analysis of a ubiquitin gene ( Ub L40 ) in the haemocytes of Crassostrea hongkongensis under bacterial challenge

    NASA Astrophysics Data System (ADS)

    Fu, Dingkun; Zhang, Yang; Yu, Ziniu

    2011-01-01

    Ubiquitin, a highly conserved stress-related protein, is assigned multiple functions, such as DNA processing, protein degradation, and ribosome synthesis. The Crassostrea hongkongensis ubiquitin gene (designated ChUb L40 ) was cloned by a combination of suppressive subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The full-length cDNA of ChUb L40 is 496 bp in length, consisting of a 5' untranslated region (UTR) of 34 bp, a 3'-UTR of 75 bp and an open reading frame of 387 bp encoding a ubiquitin fusion protein of 128 amino acids. Analysis of the amino acid sequence of ChUb L40 reveals that Ub L40 is highly conservative during evolution. The expression patterns of ChUb L40 gene in various tissues were examined by real-time PCR. The expression level of ChUb L40 in haemocytes is down-regulated at 4 h and gradually returned to its original level from 6 h to 24 h after Vibrio alginolyticus challenge. Our results suggest that ChUb L40 is ubiquitously expressed and plays an important role in immune defense against bacterial challenge.

  10. Molecular cloning, sequence analysis and expression of Fein-Penaeidin from the haemocytes of Indian white shrimp Fenneropenaeus indicus

    PubMed Central

    Vaseeharan, Baskaralingam; Shanthi, Sathappan; Chen, Jiann-Chu; Espiñeira, Montserrat

    2012-01-01

    Penaeidins are members of a special family of antimicrobial peptide existing in penaeid shrimp and play an important role in the immunological defense of shrimp. Here, we report a penaeidin sequence cloned from the Indian white shrimp Fenneropenaus indicus (Fein-Penaeidin). The Fein-Penaeidin open reading frame encodes a 77 amino acid peptide including a 19 amino acid signal peptide. The deduced amino acid sequences of Fein-Penaeidin include a proline rich N-terminal domain and a carboxyl-domain that contains six cysteine residues. Structural analysis revealed an alpha-helix in its secondary structure and the predicted 3D structure indicated two-disulphide bridges in the alpha-helix. Phylogenetic analysis and sequence comparison with other known peaneidin suggest the gene shows high similarity to that of penaeidin from Peneaus monodon (95%), F. indicus (80%) and Fenneropenaeus chinensis (74%). Fein-Penaeidin was examined in normal and microbial challenged shrimp and was found to be constitutively expressed in haemocytes, Heart, gills, muscles, intestine, hepatopancreas and eyestalk. Bacterial challenge resulted in mRNA up-regulation, inducing expression at 6 h post injection indicating the penaeidin involved in the innate immunity. PMID:24371565

  11. Echinocandin resistance and population structure of invasive Candida glabrata isolates from two university hospitals in Germany and Austria.

    PubMed

    Klotz, Ulrike; Schmidt, Dirk; Willinger, Birgit; Steinmann, Eike; Buer, Jan; Rath, Peter-Michael; Steinmann, Joerg

    2016-05-01

    Echinocandin resistance in Candida glabrata is emerging and is associated with the presence of FKS mutations. In this study, we analysed the antifungal susceptibility, presence of FKS mutations and clonality of C. glabrata blood culture isolates from two hospitals in Germany and Austria. Susceptibility testing of 64 C. glabrata bloodstream isolates from two university hospitals was performed with broth microdilution method according to EUCAST. In addition, all isolates were screened for FKS mutations. Molecular fingerprinting was performed by microsatellite PCR with three separate primer pairs and semiautomated repetitive sequenced-based PCR (rep-PCR). One C. glabrata isolate from Germany (1.5%) was echinocandin resistant, with a corresponding mutation in FKS2 gene hot spot 1. The discriminatory power of microsatellite PCR was higher than that of rep-PCR (Simpson Index of 0.94 vs. 0.88); microsatellite PCR created 31 separate genotypes, whereas rep-PCR created 17. Predominant genotypes or clusters of isolates from Germany and Austria were present, with no epidemiological evidence of nosocomial transmissions. Although we found a low incidence of echinocandin resistance in C. glabrata in our settings, further surveillance projects in central Europe are warranted for monitoring future epidemiological trends. The genetic population structure of C. glabrata demonstrates overrepresented geographical clusters. PMID:26806376

  12. Candida glabrata sepsis associated with chorioamnionitis in an IVF twin pregnancy: Should we deliver?

    PubMed

    Tan, Shu Qi; Ng, Oon Tek; Khong, Chit Chong

    2015-06-01

    We report a case of in vitro fertilization (IVF)-acquired Candida glabrata chorioamnionitis successfully treated through systemic maternal antifungal treatment prior to delivery. To the best of our knowledge, this is the first case of its kind in the literature. C. glabrata chorioamnionitis in pregnancy is rare, but the current literature suggests a very high fetal fatality in such cases. It is known to have an association with cervical stitch, amniocentesis, chorionic villous sampling, and assisted reproductive techniques such as IVF. Given the increasing global use of artificial reproductive techniques, it is important to raise awareness of this condition and highlight its potential complications. Early recognition of possible fetal infection could enable early initiation of systemic antifungal treatment. It would be prudent to consider early delivery once fetal maturity is achieved despite normal fetal monitoring. PMID:25510957

  13. Emergence of cercariae of Echinostoma caproni and Schistosoma mansoni from Biomphalaria glabrata under different laboratory conditions.

    PubMed

    Fried, B; LaTerra, R; Kim, Y

    2002-12-01

    Release of Echinostoma caproni cercariae and Schistosoma mansoni from experimentally infected Biomphalaria glabrata snails maintained under different laboratory conditions was studied. Infected snails were isolated individually for 1 h in Stender dishes containing 5 ml of artificial spring water and the number of cercariae released during this time was recorded. Of numerous conditions tested, the addition of lettuce, the use of water conditioned by B. glabrata snails and a temperature of 35 degrees C significantly increased the release of E. caproni cercariae. A significant increase in cercarial release of S. mansoni was seen only in cultures fed lettuce. A temperature of 12 degrees C caused a significant decrease in cercarial release of both E. caproni and S. mansoni. Increased snail activity associated with feeding behaviour was probably responsible for the enhanced cercarial sheds observed in this study. PMID:12498644

  14. Phagocytic activity, respiratory burst, cytoplasmic free-Ca(2+) concentration and apoptotic cell ratio of haemocytes from the black tiger shrimp, Penaeus monodon under acute copper stress.

    PubMed

    Xian, Jian-An; Wang, An-Li; Ye, Chao-Xia; Chen, Xiao-Dan; Wang, Wei-Na

    2010-08-01

    The aim of this study was to investigate the cellular toxicity of copper-induced injury to the black tiger shrimp Penaeus monodon. The 24h, 48h, 72h and 96h LC(50) (median lethal concentration) of Cu(2+) on P. monodon (11.63+/-1.14g) were found to be 3.49, 1.54, 0.73 and 0.40mgL(-1), respectively. Total haemocyte count (THC), phagocytic activity, respiratory burst (RB), cytoplasmic free-Ca(2+) (cf-Ca(2+)) concentration and apoptotic cell ratio of shrimp were determined after exposure to different concentrations of Cu(2+) (0, 0.05, 0.5, 1.5 and 3.5mgL(-1)) for 0, 6, 12, 24 and 48h. There was no significant effect on the analytic indicator of shrimp exposed to 0.05mgL(-1) Cu(2+). THC decreased after Cu-exposure to 0.5mgL(-1) for 48h, 1.5mgL(-1) for 24h and 3.5mgL(-1) for 12h. Phagocytic activity decreased in P. monodon following 48h exposure to 3.5mgL(-1) Cu(2+). RB was induced after 6h exposure to 0.5, 1.5 and 3.5mgL(-1) Cu(2+). cf-Ca(2+) concentration increased after 48h exposure to 0.5mgL(-1) Cu(2+), and 12h exposure to 1.5 and 3.5mgL(-1) Cu(2+). The percentage of apoptotic cells increased to 9.5%, 16.3% and 18.6% respectively following 48h exposure to 0.5, 1.5 and 3.5mgL(-1) Cu(2+). These results indicate that Cu can induce oxidative stress, elevation of cf-Ca(2+) and cell apoptosis, and inhibit phagocytic activity in the shrimp P. monodon, and the lethal injury of Cu(2+) to P. monodon may be mainly due to the sharp reduction of THC caused by ROS-induced apoptosis. PMID:20398793

  15. UPC2A is required for high-level azole antifungal resistance in Candida glabrata.

    PubMed

    Whaley, Sarah G; Caudle, Kelly E; Vermitsky, John-Paul; Chadwick, Sean G; Toner, Geoffrey; Barker, Katherine S; Gygax, Scott E; Rogers, P David

    2014-08-01

    Candida glabrata, the second most common cause of Candida infections, is associated with high rates of mortality and often exhibits resistance to the azole class of antifungal agents. Upc2 and Ecm22 in Saccharomyces cerevisiae and Upc2 in Candida albicans are the transcriptional regulators of ERG11, the gene encoding the target of azoles in the ergosterol biosynthesis pathway. Recently two homologs for these transcription factors, UPC2A and UPC2B, were identified in C. glabrata. One of these, UPC2A, was shown to influence azole susceptibility. We hypothesized that due to the global role for Upc2 in sterol biosynthesis in S. cerevisiae and C. albicans, disruption of UPC2A would enhance the activity of fluconazole in both azole-susceptible dose-dependent (SDD) and -resistant C. glabrata clinical isolates. To test this hypothesis, we constructed mutants with disruptions in UPC2A and UPC2B alone and in combination in a matched pair of clinical azole-SDD and -resistant isolates. Disruption of UPC2A in both the SDD and resistant isolates resulted in increased susceptibility to sterol biosynthesis inhibitors, including a reduction in fluconazole MIC and minimum fungicidal concentration, enhanced azole activity by time-kill analysis, a decrease in ergosterol content, and downregulation of baseline and inducible expression of several sterol biosynthesis genes. Our results indicate that Upc2A is a key regulator of ergosterol biosynthesis and is essential for resistance to sterol biosynthesis inhibitors in C. glabrata. Therefore, the UPC2A pathway may represent a potential cotherapeutic target for enhancing azole activity against this organism. PMID:24867980

  16. Production of White Colonies on CHROMagar Candida Medium by Members of the Candida glabrata Clade and Other Species with Overlapping Phenotypic Traits▿

    PubMed Central

    Bishop, Justin A.; Chase, Nancy; Lee, Richard; Kurtzman, Cletus P.; Merz, William G.

    2008-01-01

    We hypothesized that species of the Candida glabrata clade and species with phenotypic traits that overlap those of C. glabrata would produce white colonies on CHROMagar Candida medium. Of 154 isolates (seven species) tested, C. bracarensis, C. nivariensis, C. norvegensis, C. glabrata, and C. inconspicua produced white colonies; the Pichia fermentans group and C. krusei did not. Many of these species are difficult to identify phenotypically; white colonies may signal the need for the use of molecular approaches. PMID:18685009

  17. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches?

    PubMed

    d'Enfert, Christophe; Janbon, Guilhem

    2016-02-01

    Biofilms are a source of therapeutic failures because of their intrinsic tolerance to antimicrobials. Candida glabrata is one of the pathogenic yeasts that is responsible for life-threatening disseminated infections and able to form biofilms on medical devices such as vascular and urinary catheters. Recent progresses in the functional genomics of C. glabrata have been applied to the study of biofilm formation, revealing the contribution of an array of genes to this process. In particular, the Yak1 kinase and the Swi/Snf chromatin remodeling complex have been shown to relieve the repression exerted by subtelomeric silencing on the expression of the EPA6 and EPA7 genes, thus allowing the encoded adhesins to exert their key roles in biofilm formation. This provides a framework to evaluate the contribution of other genes that have been genetically linked to biofilm development and, based on the function of their orthologs in Saccharomyces cerevisiae, appear to have roles in adaptation to nutrient deprivation, calcium signaling, cell wall remodeling and adherence. Future studies combining the use of in vitro and animal models of biofilm formation, omics approaches and forward or reverse genetics are needed to expand the current knowledge of C. glabrata biofilm formation and reveal the mechanisms underlying their antifungal tolerance. PMID:26678748

  18. An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2

    PubMed Central

    Chen, Hao; Zhou, Zhi; Wang, Hao; Wang, Lingling; Wang, Weilin; Liu, Rui; Qiu, Limei; Song, Linsheng

    2016-01-01

    Nuclear factor (NF)-κB pathway is an evolutionally conserved pathway in activating immune response, in which IκBs can repress the activation. In the present study, cgi-miR-2d, an invertebrate-specific microRNA, was proved to regulate CgIκB2 expression and haemocyte phagocytosis during bacterial infection in oyster Crassostrea gigas. The expression of cgi-miR-2d was significantly up-regulated after Vibrio splendidus challenge, while CgIκB2 transcripts decreased. Significant decreases in both luminescence and CgIκB2 3′UTR level was observed after transfection of cgi-miR-2d in CgIκB2 3′UTR luciferase reporter assay. CgIκB2 mRNA level decreased significantly (0.51-fold of control group, p < 0.05) in gain-of-function assay of cgi-miR-2d in vivo while it increased markedly (1.27-fold, p < 0.05) when cgi-miR-2d was repressed (0.10-fold, p < 0.01). A significant increase of haemocyte phagocytosis rate was observed in cgi-miR-2d overexpression group (p < 0.01), consistent with results in CgIκB2 knock-down group (p < 0.01). Moreover, the apoptosis rate of haemocytes was found significantly declined (28.57%, p < 0.01) in gain-of-function assay of cgi-miR-2d. Together, those results not only depicted the functional conservation of miR-2d family in anti-apoptosis of oysters but also highlighted its interaction with phagocytosis by modulating NF-κB pathway, which might dedicate critically to the well-balance of host immune response. PMID:27404434

  19. An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2.

    PubMed

    Chen, Hao; Zhou, Zhi; Wang, Hao; Wang, Lingling; Wang, Weilin; Liu, Rui; Qiu, Limei; Song, Linsheng

    2016-01-01

    Nuclear factor (NF)-κB pathway is an evolutionally conserved pathway in activating immune response, in which IκBs can repress the activation. In the present study, cgi-miR-2d, an invertebrate-specific microRNA, was proved to regulate CgIκB2 expression and haemocyte phagocytosis during bacterial infection in oyster Crassostrea gigas. The expression of cgi-miR-2d was significantly up-regulated after Vibrio splendidus challenge, while CgIκB2 transcripts decreased. Significant decreases in both luminescence and CgIκB2 3'UTR level was observed after transfection of cgi-miR-2d in CgIκB2 3'UTR luciferase reporter assay. CgIκB2 mRNA level decreased significantly (0.51-fold of control group, p < 0.05) in gain-of-function assay of cgi-miR-2d in vivo while it increased markedly (1.27-fold, p < 0.05) when cgi-miR-2d was repressed (0.10-fold, p < 0.01). A significant increase of haemocyte phagocytosis rate was observed in cgi-miR-2d overexpression group (p < 0.01), consistent with results in CgIκB2 knock-down group (p < 0.01). Moreover, the apoptosis rate of haemocytes was found significantly declined (28.57%, p < 0.01) in gain-of-function assay of cgi-miR-2d. Together, those results not only depicted the functional conservation of miR-2d family in anti-apoptosis of oysters but also highlighted its interaction with phagocytosis by modulating NF-κB pathway, which might dedicate critically to the well-balance of host immune response. PMID:27404434

  20. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients.

    PubMed

    Farahyar, Shirin; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sassan; Falahati, Mehraban; Safara, Mahin; Raoofian, Reza; Hatami, Kamran; Mohebbi, Masoumeh; Heidari, Mansour

    2016-07-01

    Acquired azole resistance in opportunistic fungi causes severe clinical problems in immunosuppressed individuals. This study investigated the molecular mechanisms of azole resistance in clinical isolates of Candida glabrata. Six unmatched strains were obtained from an epidemiological survey of candidiasis in immunocompromised hosts that included azole and amphotericin B susceptible and azole resistant clinical isolates. Candida glabrata CBS 138 was used as reference strain. Antifungal susceptibility testing of clinical isolates was evaluated using Clinical and Laboratory Standards Institute (CLSI) methods. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology, semi-quantitative RT-PCR, and sequencing were employed for identification of potential genes involved in azole resistance. Candida glabrata Candida drug resistance 1 (CgCDR1) and Candida glabrata Candida drug resistance 2 (CgCDR2) genes, which encode for multidrug transporters, were found to be upregulated in azole-resistant isolates (≥2-fold). Fatty acid activator 1 (FAA1) gene, belonging to Acyl-CoA synthetases, showed expression in resistant isolates ≥2-fold that of the susceptible isolates and the reference strain. This study revealed overexpression of the CgCDR1, CgCDR2, and FAA1 genes affecting biological pathways, small hydrophobic compounds transport, and lipid metabolism in the resistant clinical C.glabrata isolates. PMID:27424018

  1. Time to Positivity and Detection of Growth in Anaerobic Blood Culture Vials Predict the Presence of Candida glabrata in Candidemia: a Two-Center European Cohort Study

    PubMed Central

    Kaasch, Achim J.; Soriano, Alex; Torres, Jorge-Luis; Vergara, Andrea; Morata, Laura; Zboromyrska, Yuliya; De La Calle, Cristina; Alejo, Izaskun; Hernández, Cristina; Cardozo, Celia; Marco, Franscesc; Del Río, Ana; Almela, Manel; Mensa, Josep; Martínez, José Antonio

    2014-01-01

    This study shows the accuracy of exclusive or earlier growth in anaerobic vials to predict Candida glabrata in a large series of candidemic patients from two European hospitals using the Bactec 9240 system. Alternatively, C. glabrata can be predicted by a time to positivity cutoff value, which should be determined for each setting. PMID:24899027

  2. Schistosomiasis Control Using Piplartine against Biomphalaria glabrata at Different Developmental Stages

    PubMed Central

    Rapado, Ludmila Nakamura; Pinheiro, Alessandro de Sá; Lopes, Priscila Orechio de Moraes Victor; Fokoue, Harold Hilarion; Scotti, Marcus Tullius; Marques, Joaquim Vogt; Ohlweiler, Fernanda Pires; Borrely, Sueli Ivone; Pereira, Carlos Alberto de Bragança; Kato, Massuo Jorge; Nakano, Eliana; Yamaguchi, Lydia Fumiko

    2013-01-01

    Background Schistosomiasis is one of the most significant diseases in tropical countries and affects almost 200 million people worldwide. The application of molluscicides to eliminate the parasite's intermediate host, Biomphalaria glabrata, from infected water supplies is one strategy currently being used to control the disease. Previous studies have shown a potent molluscicidal activity of crude extracts from Piper species, with extracts from Piper tuberculatum being among the most active. Methods and Findings The molluscicidal activity of P. tuberculatum was monitored on methanolic extracts from different organs (roots, leaves, fruit and stems). The compounds responsible for the molluscicidal activity were identified using 1H NMR and ESIMS data and multivariate analyses, including principal component analysis and partial least squares. These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide. Piplartine was isolated from P. tuberculatum root extracts, and the molluscicidal activity of this compound on adults and embryos of B. glabrata was determined. The compound displayed potent activity against all developmental stages of B. glabrata. Next, the environmental toxicity of piplartine was evaluated using the microcrustacean Daphnia similis (LC50 7.32 µg/ml) and the fish Danio rerio (1.69 µg/ml). The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide. Conclusions The development of a new, natural molluscicide is highly desirable, particularly because the commercially available molluscicide niclosamide is highly toxic to some organisms in the environment (LC50 0.25 µg/ml to D. similis and 0.12 µg/ml to D. rerio). Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment. PMID

  3. β-Aescin at subinhibitory concentration (sub-MIC) enhances susceptibility of Candida glabrata clinical isolates to nystatin.

    PubMed

    Franiczek, Roman; Gleńsk, Michał; Krzyżanowska, Barbara; Włodarczyk, Maciej

    2015-11-01

    Aescin (escin) derived from the seeds of horse chestnut (Aesculus hippocastanum L.) is a natural mixture of triterpene saponins exhibiting a wide variety of pharmacological properties, including antiinflammatory, analgesic, and antipyretic activities. However, data concerning antifungal activities of these compounds are limited. This study aims to evaluate the in vitro antifungal susceptibility of Candida glabrata clinical isolates to α-aescin sodium, β-aescin crystalline and β-aescin sodium using the disk diffusion (DD) and broth microdilution (BMD) methods. Moreover, the influence of subinhibitory concentration (0.5×MIC) of β-aescins on the nystatin MIC was also studied. In general, the results obtained by the DD assay correlated well with those obtained by the BMD method. Both β-aescins effectively inhibited the growth of all 24 strains tested. The minimum inhibitory concentration (MIC) values ranging from 8 to 32 μg/ml for β-aescin crystalline, whereas those of β-aescin sodium were slightly lower and ranged from 4 to 16 μg/ml. In contrast, α-aescin sodium was found to be completely ineffective against the strains studied. MIC values of nystatin were reduced 2-16-fold and 2-4-fold in the presence of subinhibitory concentration of β-aescin crystalline and β-aescin sodium, respectively. Results of the present study may suggest the additive interaction between β-aescin and nystatin. PMID:26092104

  4. Heteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with In Vivo Persistence

    PubMed Central

    Ben-Ami, Ronen; Zimmerman, Offer; Finn, Talya; Amit, Sharon; Novikov, Anna; Wertheimer, Noa; Lurie-Weinberger, Mor

    2016-01-01

    ABSTRACT Candida glabrata causes persistent infections in patients treated with fluconazole and often acquires resistance following exposure to the drug. Here we found that clinical strains of C. glabrata exhibit cell-to-cell variation in drug response (heteroresistance). We used population analysis profiling (PAP) to assess fluconazole heteroresistance (FLCHR) and to ask if it is a binary trait or a continuous phenotype. Thirty (57.6%) of 52 fluconazole-sensitive clinical C. glabrata isolates met accepted dichotomous criteria for FLCHR. However, quantitative grading of FLCHR by using the area under the PAP curve (AUC) revealed a continuous distribution across a wide range of values, suggesting that all isolates exhibit some degree of heteroresistance. The AUC correlated with rhodamine 6G efflux and was associated with upregulation of the CDR1 and PDH1 genes, encoding ATP-binding cassette (ABC) transmembrane transporters, implying that HetR populations exhibit higher levels of drug efflux. Highly FLCHR C. glabrata was recovered more frequently than nonheteroresistant C. glabrata from hematogenously infected immunocompetent mice following treatment with high-dose fluconazole (45.8% versus 15%, P = 0.029). Phylogenetic analysis revealed some phenotypic clustering but also variations in FLCHR within clonal groups, suggesting both genetic and epigenetic determinants of heteroresistance. Collectively, these results establish heteroresistance to fluconazole as a graded phenotype associated with ABC transporter upregulation and fluconazole efflux. Heteroresistance may explain the propensity of C. glabrata for persistent infection and the emergence of breakthrough resistance to fluconazole. PMID:27486188

  5. Two Clinical Isolates of Candida glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2

    PubMed Central

    Hull, Claire M.; Bader, Oliver; Parker, Josie E.; Weig, Michael; Gross, Uwe; Warrilow, Andrew G. S.; Kelly, Diane E.

    2012-01-01

    Two novel isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B (MIC, 8 μg ml−1) were found to be ERG2 mutants, wherein Δ8-sterol intermediates comprised >90% of the total cellular sterol fraction. Both harbored an alteration at Thr121 in ERG2; the corresponding residue (Thr119) in Saccharomyces cerevisiae is essential for sterol Δ8-Δ7 isomerization. This constitutes the first report of C. glabrata harboring mutations in ERG2 and exhibiting reduced sensitivity to amphotericin B. PMID:23027188

  6. Rediae of echinostomatid and heterophyid trematodes suppress phagocytosis of haemocytes in Littorina littorea (Gastropoda: Prosobranchia).

    PubMed

    Iakovleva, Nadya V; Shaposhnikova, Tania G; Gorbushin, Alexander M

    2006-05-01

    A modulation of the phagocytic activity of hemocytes from the common periwinkle Littorina littorea by secretory-excretory products (SEP) released by trematode rediae during axenic in vitro cultivation was studied. The SEP released by the parasites Himasthla elongata (Echinostomatidae) and Cryptocotyle lingua (Heterophyidae) were found to inhibit the phagocytosis of zymozan particles by periwinkle hemocytes. The specificity of SEP effects was assessed: SEP of Himasthla militaris and Cryptocotyle concavum, two trematodes belonging to the same genera but infecting another closely related prosobranch snail Hydrobia ulvae, were also shown to be able to suppress L. littorea hemocytes phagocytic activity. However, no decrease in phagocytosis rate was observed when SEP of H. elongata and C. lingua were applied to monolayers of hemocytes from the bivalve mollusc Mytilus edulis. SEP from H. elongata was fractionated; only those fractions containing proteins of molecular weight more than 50 kDa were shown to possess inhibitory activity. Different H. elongata SEP concentrations were tested in for their ability to suppress phagocytosis by L. littorea hemocytes. Even very low SEP concentrations were shown to retain their ability to decrease phagocytosis rate, the inhibitory effect being dose-dependent. Hemocytes derived from snails naturally infected with H. elongata were also found to have lower phagocytic ability as compared to healthy individuals. PMID:16438967

  7. Autoactivation by a Candida glabrata copper metalloregulatory transcription factor requires critical minor groove interactions.

    PubMed Central

    Koch, K A; Thiele, D J

    1996-01-01

    Rapid transcriptional autoactivation of the Candida glabrata AMT1 copper metalloregulatory transcription factor gene is essential for survival in the presence of high extracellular copper concentrations. Analysis of the interactions between purified recombinant AMT1 protein and the AMT1 promoter metal regulatory element was carried out by a combination of missing-nucleoside analysis, ethylation interference, site-directed mutagenesis, and quantitative in vitro DNA binding studies. The results of these experiments demonstrate that monomeric AMT1 binds the metal regulatory element with very high affinity and utilizes critical contacts in both the major and minor grooves. A single adenosine residue in the minor groove, conserved in all known yeast Cu metalloregulatory transcription factor DNA binding sites, plays a critical role in both AMT1 DNA binding in vitro and Cu-responsive AMT1 gene transcription in vivo. Furthermore, a mutation in the AMT1 Cu-activated DNA binding domain which converts a single arginine, found in a conserved minor groove binding domain, to lysine markedly reduces AMT1 DNA binding affinity in vitro and results in a severe defect in the ability of C. glabrata cells to mount a protective response against Cu toxicity. PMID:8552101

  8. A family of variable immunoglobulin and lect in domain containing molecules in the snail Biomphalaria glabrata

    PubMed Central

    Dheilly, Nolwenn M; Duval, David; Mouahid, Gabriel; Emans, Rémi; Allienne, Jean-François; Galinier, Richard; Genthon, Clémence; Dubois, Emeric; Pasquier, Louis Du; Adema, Coen M; Grunau, Christoph; Mitta, Guillaume; Gourbal, Benjamin

    2014-01-01

    Technical limitations have hindered comprehensive studies of highly variable immune response molecules that are thought to have evolved due to pathogen-mediated selection such as Fibrinogen-related proteins (FREPs) from Biomphalaria glabrata. FREPs combine upstream immunoglobulin superfamily (IgSF) domains with a C-terminal fibrinogen-related domain (FreD) and participate in reactions against trematode parasites. From RNAseq data we assembled a de novo reference transcriptome of B. glabrata to investigate the diversity of FREP transcripts. This study increased over two-fold the number of bonafide FREP subfamilies and revealed important sequence diversity within FREP12 subfamily. We also report the discovery of related molecules that feature one or two IgSF domains associated with different C-terminal lectin domains, named C-type lectin-related proteins (CREPs) and Galectin-related protein (GREP). Together, the highly similar FREPs, CREPs and GREP were designated VIgL (Variable Immunoglobulin and Lectin domain containing molecules). PMID:25451302

  9. Roles of vacuolar H+-ATPase in the oxidative stress response of Candida glabrata.

    PubMed

    Nishikawa, Hiroshi; Miyazaki, Taiga; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Yamashita, Kohei; Takazono, Takahiro; Shimamura, Shintaro; Nakamura, Shigeki; Izumikawa, Koichi; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi

    2016-08-01

    Vacuolar H(+)-ATPase (V-ATPase) is responsible for the acidification of eukaryotic intracellular compartments and plays an important role in oxidative stress response (OSR), but its molecular bases are largely unknown. Here, we investigated how V-ATPase is involved in the OSR by using a strain lacking VPH2, which encodes an assembly factor of V-ATPase, in the pathogenic fungus Candida glabrata The loss of Vph2 resulted in increased H2O2 sensitivity and intracellular reactive oxygen species (ROS) level independently of mitochondrial functions. The Δvph2 mutant also displayed growth defects under alkaline conditions accompanied by the accumulation of intracellular ROS and these phenotypes were recovered in the presence of the ROS scavenger N-acetyl-l-cysteine. Both expression and activity levels of mitochondrial manganese superoxide dismutase (Sod2) and catalase (Cta1) were decreased in the Δvph2 mutant. Phenotypic analyses of strains lacking and overexpressing these genes revealed that Sod2 and Cta1 play a predominant role in endogenous and exogenous OSR, respectively. Furthermore, supplementation of copper and iron restored the expression of SOD2 specifically in the Δvph2 mutant, suggesting that the homeostasis of intracellular cupper and iron levels maintained by V-ATPase was important for the Sod2-mediated OSR. This report demonstrates novel roles of V-ATPase in the OSR in C. glabrata. PMID:27370212

  10. Ionotropic Receptors Identified within the Tentacle of the Freshwater Snail Biomphalaria glabrata, an Intermediate Host of Schistosoma mansoni

    PubMed Central

    Liang, Di; Wang, Tianfang; Rotgans, Bronwyn A.; McManus, Donald P.; Cummins, Scott F.

    2016-01-01

    Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing. PMID:27253696

  11. New insights into the amphibious life of Biomphalaria glabrata and susceptibility of its egg masses to fungal infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egg masses of an aquatic snail, Biomphalaria glabrata, matured, and juveniles subsequently eclosed and were mobile in a stable water film of transitory habitats simulated by two different simple test devices described here. The viability of eggs maintained in an unstable film due to low ambient mois...

  12. Chemical Composition of the Essential Oils from Leaves of Edible (Arachis hypogaea L.) and Perennial (Arachis glabrata Benth.) Peanut Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts or groundnuts (Arachis hypogaea L.) are a valuable oilseed crop, but other than the seed, the rest of the plant is of minimal value. Plant material including the leaves is used as mulch or as animal feed. Perennial peanut (Arachis glabrata Benth) known as forage or rhizoma peanut produces...

  13. In vitro activity of essential oils extracted from condiments against fluconazole-resistant and -sensitive Candida glabrata.

    PubMed

    Soares, I H; Loreto, É S; Rossato, L; Mario, D N; Venturini, T P; Baldissera, F; Santurio, J M; Alves, S H

    2015-09-01

    In the present study, the antifungal activity of essential oils obtained from Origanum vulgare (oregano), Cinnamomum zeylanicum (cinnamon), Lippia graveolens (Mexican oregano), Thymus vulgaris (thyme), Salvia officinalis (sage), Rosmarinus officinalis (rosemary), Ocimum basilicum (basil) and Zingiber officinale (ginger) were assessed against Candida glabrata isolates. One group contained 30 fluconazole-susceptible C. glabrata isolates, and the second group contained fluconazole-resistant isolates derived from the first group after the in vitro induction of fluconazole-resistance, for a total of 60 tested isolates. The broth microdilution methodology was used. Concentrations of 50μg/mL, 100μg/mL, 200μg/mL, 400μg/mL, 800μg/mL, 1600μg/mL and 3200μg/mL of the essential oils were used, and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined. Thyme, sage, rosemary, basil and ginger essential oils showed no antifungal activity at the tested concentrations. Antimicrobial activity less than or equal to 3200μg/mL was observed for oregano, Mexican oregano and cinnamon essential oils. Both the oregano and Mexican oregano essential oils showed high levels of antifungal activity against the fluconazole-susceptible C. glabrata group, whereas the cinnamon essential oil showed the best antifungal activity against the fluconazole-resistant C. glabrata isolates. PMID:26281965

  14. Ionotropic Receptors Identified within the Tentacle of the Freshwater Snail Biomphalaria glabrata, an Intermediate Host of Schistosoma mansoni.

    PubMed

    Liang, Di; Wang, Tianfang; Rotgans, Bronwyn A; McManus, Donald P; Cummins, Scott F

    2016-01-01

    Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing. PMID:27253696

  15. Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.

    PubMed

    Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

    2014-12-01

    A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. PMID:25259848

  16. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis

    PubMed Central

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis. PMID:26146832

  17. Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes).

    PubMed

    Adema, Coen M; Hanington, Patrick C; Lun, Cheng-Man; Rosenberg, George H; Aragon, Anthony D; Stout, Barbara A; Lennard Richard, Mara L; Gross, Paul S; Loker, Eric S

    2010-01-01

    A 70-mer-oligonucleotide-based microarray (1152 features) that emphasizes stress and immune responses factors was constructed to study transcriptomic responses of the snail Biomphalaria glabrata to different immune challenges. In addition to sequences with relevant putative ID and Gene Ontology (GO) annotation, the array features non-immune factors and unknown B. glabrata ESTs for functional gene discovery. The transcription profiles of B. glabrata (3 biological replicates, each a pool of 5 snails) were recorded at 12h post-wounding, exposure to Gram negative or Gram positive bacteria (Escherichia coli and Micrococcus luteus, respectively), or infection with compatible trematode parasites (Schistosoma mansoni or Echinostoma paraensei, 20 miracidia/snail), relative to controls, using universal reference RNA. The data were subjected to Significance Analysis for Microarrays (SAM), with a false positive rate (FPR) glabrata detects and responds differently to compatible trematodes. Echinostoma paraensei infection was associated mostly with down-regulation of many (immune-) transcripts (42 up/68 down), whereas S. mansoni exposure yielded a preponderance of up-regulated features (140 up/23 down), with only few known immune genes affected. These observations may reflect the divergent strategies developed by trematodes during their evolution as specialized pathogens of snails to negate host defense responses. Clearly, the immune defenses of B. glabrata distinguish and respond differently to various immune challenges. PMID:19962194

  18. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide.

    PubMed

    Zhang, Si-Ming; Buddenborg, Sarah K; Adema, Coen M; Sullivan, John T; Loker, Eric S

    2015-01-01

    In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy-based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide's lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has been

  19. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates.

    PubMed

    Szweda, Piotr; Gucwa, Katarzyna; Kurzyk, Ewelina; Romanowska, Ewa; Dzierżanowska-Fangrat, Katarzyna; Zielińska Jurek, Anna; Kuś, Piotr Marek; Milewski, Sławomir

    2015-06-01

    Development of effective and safe therapeutic treatment of fungal infections remains one of the major challenge for modern medicine. The aim of presented investigation was to analyze the in vitro antifungal activity of selected essential oils, ethanolic extracts of propolis and silver nanoparticles dropped on TiO2 against azole-resistant C. albicans (n = 20), C. glabrata (n = 14) and C. krusei (n = 10) clinical isolates. Among tested essential oils, the highest activity has definitely been found in the case of the oil isolated from the bark of Cinnamomum cassia, with MIC and MFC values for all tested strains in the range of 0.0006-0.0097 % (v/v) and 0.0012-0.019 % (v/v), respectively. High activity was also observed for the Lemon, Basil, Thyme, Geranium and Clove (from buds) essential oils. Significant differences in fungicidal activity have been observed in the case of four tested propolis samples. Only one of them revealed high activity, with MFC values in the range from 0.156 to 1.25 % (v/v). Satisfactory fungicidal activity, against C. albicans and C. glabrata isolates, was also observed in the case of silver nanoparticles, however C. krusei isolates were mostly resistant. We also revealed that constituents of most of essential oils and propolis as well as silver nanoparticles are not substrates for drug transporters, which belong to the most important factors affecting resistance of Candida spp. clinical isolates to many of conventional antimycotics. To conclude, the results of our investigation revealed that essential oils, propolis and silver nanoparticles represent high potential for controlling and prevention candidiasis. PMID:25805904

  20. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide

    PubMed Central

    Zhang, Si-Ming; Buddenborg, Sarah K.; Adema, Coen M.; Sullivan, John T.; Loker, Eric S.

    2015-01-01

    In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy–based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide’s lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has

  1. Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data From a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014

    PubMed Central

    Vallabhaneni, Snigdha; Cleveland, Angela A.; Farley, Monica M.; Harrison, Lee H.; Schaffner, William; Beldavs, Zintar G.; Derado, Gordana; Pham, Cau D.; Lockhart, Shawn R.; Smith, Rachel M.

    2015-01-01

    Background. Echinocandins are first-line treatment for Candida glabrata candidemia. Echinocandin resistance is concerning due to limited remaining treatment options. We used data from a multisite, population-based surveillance program to describe the epidemiology and risk factors for echinocandin nonsusceptible (NS) C glabrata candidemia. Methods. The Centers for Disease Control and Prevention's Emerging Infections Program conducts population-based laboratory surveillance for candidemia in 4 metropolitan areas (7.9 million persons; 80 hospitals). We identified C glabrata cases occurring during 2008–2014; medical records of cases were reviewed, and C glabrata isolates underwent broth microdilution antifungal susceptibility testing. We defined echinocandin-NS C glabrata (intermediate or resistant) based on 2012 Clinical and Laboratory Standards Institute minimum inhibitory concentration breakpoints. Independent risk factors for NS C glabrata were determined by stepwise logistic regression. Results. Of 1385 C glabrata cases, 83 (6.0%) had NS isolates (19 intermediate and 64 resistant); the proportion of NS isolates rose from 4.2% in 2008 to 7.8% in 2014 (P < .001). The proportion of NS isolates at each hospital ranged from 0% to 25.8%; 3 large, academic hospitals accounted for almost half of all NS isolates. In multivariate analysis, prior echinocandin exposure (adjusted odds ratio [aOR], 5.3; 95% CI, 2.6–1.2), previous candidemia episode (aOR, 2.5; 95% CI, 1.2–5.1), hospitalization in the last 90 days (aOR, 1.9; 95% CI, 1.0–3.5, and fluconazole resistance [aOR, 3.6; 95% CI, 2.0–6.4]) were significantly associated with NS C glabrata. Fifty-nine percent of NS C glabrata cases had no known prior echinocandin exposure. Conclusion. The proportion of NS C glabrata isolates rose significantly during 2008–2014, and NS C glabrata frequency differed across hospitals. In addition to acquired resistance resulting from prior drug exposure, occurrence of NS C

  2. Gastric trichobezoar associated with perforated peptic ulcer and Candida glabrata infection

    PubMed Central

    Morales, Héctor Losada; Catalán, Cecilia Huenchullán; Demetrio, Rodrigo Arriagada; Rivas, Macarena Espinoza; Parraguez, Natalia Castagnoli; Alvarez, Martín Alanis

    2014-01-01

    Bezoars are accumulations of human or plant fiber located in the gastrointestinal tract of both humans and animals. Patients remain asymptomatic for several years, and the symptoms develop as these accumulations increase in size to the point of obstruction or perforation. We report the case of a 21-year-old patient at 10 d postpartum, who presented with acute abdomen associated with sepsis. Given the urgency of the clinical picture, at no point was the presence of a giant bezoar at gastric level suspected, specifically a trichobezoar. The emergency abdominal and pelvic ultrasound revealed only unspecific signs of perforated hollow viscus. Diagnosis was therefore made intraoperatively. A complete gastric trichobezoar was found with gastric perforation and secondary peritonitis. The peritoneal fluid culture revealed Candida glabrata. PMID:25516871

  3. The Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea: Implications for Developing New Model Organisms

    PubMed Central

    Kaur, Satwant; Jobling, Susan; Jones, Catherine S.; Noble, Leslie R.; Routledge, Edwin J.; Lockyer, Anne E.

    2015-01-01

    Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different. PMID:25849443

  4. Candida glabrata among Candida spp. from environmental health practitioners of a Brazilian Hospital.

    PubMed

    Savastano, Catarina; de Oliveira Silva, Elisa; Gonçalves, Lindyanne Lemos; Nery, Jéssica Maria; Silva, Naiara Chaves; Dias, Amanda Latercia Tranches

    2016-01-01

    The incidence of the species Candida albicans and non-albicans Candida was evaluated in a Brazilian Tertiary Hospital from the environment and health practitioners. In a 12-month period we had a total positivity of 19.65% of Candida spp. The most recurring non-albicans Candida species was C. glabrata (37.62%), generally considered a species of low virulence, but with a higher mortality rate than C. albicans. Subsequently, C. parapsilosis (25.74%) and C. tropicalis (16.86%) were the second and third most commonly isolated species. Considering the total samples collected from the emergency room and from the inpatient and the pediatric sector, 19.10% were positive for Candida spp., with the predominance of non-albicans Candida species (89.42%). The high percentage of positivity occurred in the hands (24.32%) and the lab coats (21.88%) of the health care assistants. No sample of C. albicans presented a profile of resistance to the drugs. All the non-albicans Candida species presented a decreased susceptibility to miconazole and itraconazole, but they were susceptible to nystatin. Most of the isolates were susceptible to fluconazole and amphotericin B. As expected, a high resistance rate was observed in C. glabrata and C. krusei, which are intrinsically less susceptible to this antifungal agent. The contamination of environmental surfaces by Candida spp. through hand touching may facilitate the occurrence of Candida infections predominantly in immunocompromised patients. In addition to that, the antifungal agents used should be carefully evaluated considering local epidemiologic trends in Candida spp. infections, so that therapeutic choices may be better guided. PMID:26991302

  5. 3D-Ultrastructure, Functions and Stress Responses of Gastropod (Biomphalaria glabrata) Rhogocytes

    PubMed Central

    Kokkinopoulou, Maria; Güler, M. Alptekin; Lieb, Bernhard; Barbeck, Mike; Ghanaati, Shahram; Markl, Jürgen

    2014-01-01

    Rhogocytes are pore cells scattered among the connective tissue of different body parts of gastropods and other molluscs, with great variation in their number, shape and size. They are enveloped by a lamina of extracellular matrix. Their most characteristic feature is the “slit apparatus”, local invaginations of the plasma membrane bridged by cytoplasmic bars, forming slits of ca. 20 nm width. A slit diaphragm creates a molecular sieve with permeation holes of 20×20 nm. In blue-blooded gastropods, rhogocytes synthesize and secrete the respiratory protein hemocyanin, and it has been proposed–though not proven–that in the rare red-blooded snail species they might synthesize and secrete the hemoglobin. However, the cellular secretion pathway for respiratory proteins, and the functional role(s) of the enigmatic rhogocyte slit apparatus are still unclear. Additional functions for rhogocytes have been proposed, notably a role in protein uptake and degradation, and in heavy metal detoxification. Here we provide new structural and functional information on the rhogocytes of the red-blooded freshwater snail Biomphalaria glabrata. By in situ hybridization of mantle tissues, we prove that rhogocytes indeed synthesize hemoglobin. By electron tomography, the first three dimensional (3D) reconstructions of the slit apparatus are provided, showing detail of highly dense material in the cytoplasmic bars close to the slits. By immunogold labelling, we collected evidence that a major component of this material is actin. By genome databank mining, the complete sequence of a B. glabrata nephrin was obtained, and localized to the rhogocytes by immunofluorescence microscopy. The presence of both proteins fit the ultrastructure-based hypothesis that rhogocytes are related to mammalian podocytes and insect nephrocytes. Reactions of the rhogocytes to deprivation of food and cadmium toxification are also documented, and a possible secretion pathway of newly synthesized respiratory

  6. 3D-ultrastructure, functions and stress responses of gastropod (Biomphalaria glabrata) rhogocytes.

    PubMed

    Kokkinopoulou, Maria; Güler, M Alptekin; Lieb, Bernhard; Barbeck, Mike; Ghanaati, Shahram; Markl, Jürgen

    2014-01-01

    Rhogocytes are pore cells scattered among the connective tissue of different body parts of gastropods and other molluscs, with great variation in their number, shape and size. They are enveloped by a lamina of extracellular matrix. Their most characteristic feature is the "slit apparatus", local invaginations of the plasma membrane bridged by cytoplasmic bars, forming slits of ca. 20 nm width. A slit diaphragm creates a molecular sieve with permeation holes of 20×20 nm. In blue-blooded gastropods, rhogocytes synthesize and secrete the respiratory protein hemocyanin, and it has been proposed-though not proven-that in the rare red-blooded snail species they might synthesize and secrete the hemoglobin. However, the cellular secretion pathway for respiratory proteins, and the functional role(s) of the enigmatic rhogocyte slit apparatus are still unclear. Additional functions for rhogocytes have been proposed, notably a role in protein uptake and degradation, and in heavy metal detoxification. Here we provide new structural and functional information on the rhogocytes of the red-blooded freshwater snail Biomphalaria glabrata. By in situ hybridization of mantle tissues, we prove that rhogocytes indeed synthesize hemoglobin. By electron tomography, the first three dimensional (3D) reconstructions of the slit apparatus are provided, showing detail of highly dense material in the cytoplasmic bars close to the slits. By immunogold labelling, we collected evidence that a major component of this material is actin. By genome databank mining, the complete sequence of a B. glabrata nephrin was obtained, and localized to the rhogocytes by immunofluorescence microscopy. The presence of both proteins fit the ultrastructure-based hypothesis that rhogocytes are related to mammalian podocytes and insect nephrocytes. Reactions of the rhogocytes to deprivation of food and cadmium toxification are also documented, and a possible secretion pathway of newly synthesized respiratory proteins

  7. In Vitro Fungicidal Activities of Anidulafungin, Caspofungin, and Micafungin against Candida glabrata, Candida bracarensis, and Candida nivariensis Evaluated by Time-Kill Studies

    PubMed Central

    Gil-Alonso, Sandra; Jauregizar, Nerea; Cantón, Emilia; Eraso, Elena

    2015-01-01

    Anidulafungin, caspofungin, and micafungin killing activities against Candida glabrata, Candida bracarensis, and Candida nivariensis were evaluated by the time-kill methodology. The concentrations assayed were 0.06, 0.125, and 0.5 μg/ml, which are achieved in serum. Anidulafungin and micafungin required between 13 and 26 h to reach the fungicidal endpoint (99.9% killing) against C. glabrata and C. bracarensis. All echinocandins were less active against C. nivariensis. PMID:25801575

  8. Genome size estimates for two important freshwater molluscs, the zebra mussel (Dreissena polymorpha) and the schistosomiasis vector snail (Biomphalaria glabrata).

    PubMed

    Gregory, T Ryan

    2003-10-01

    The haploid genome sizes of two important molluscs were assessed by Feulgen image analysis densitometry. The genome size of the zebra mussel (Dreissena polymorpha), a prolific invader of North American lakes, was estimated to be 1C = 1.70 +/- 0.03 pg, and that of the freshwater snail Biomphalaria glabrata, the predominant intermediate vector of the human parasite Schistosoma mansoni, was estimated at 0.95 +/- 0.01 pg. These estimates will be important in future efforts in molluscan genomics, which at present lags far behind work being carried out with vertebrate and arthropod models. B. glabrata in particular, which has one of the smallest known gastropod genomes, is recommended as a highly suitable target for future genome sequencing. PMID:14608401

  9. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance.

    PubMed

    Zimbeck, Alicia J; Iqbal, Naureen; Ahlquist, Angela M; Farley, Monica M; Harrison, Lee H; Chiller, Tom; Lockhart, Shawn R

    2010-12-01

    Candida glabrata is the second leading cause of candidemia in the United States. Its high-level resistance to triazole antifungal drugs has led to the increased use of the echinocandin class of antifungal agents for primary therapy of these infections. We monitored C. glabrata bloodstream isolates from a population-based surveillance study for elevated echinocandin MIC values (MICs of ≥0.25 μg/ml). From the 490 C. glabrata isolates that were screened, we identified 16 isolates with an elevated MIC value (2.9% of isolates from Atlanta and 2.0% of isolates from Baltimore) for one or more of the echinocandin drugs caspofungin, anidulafungin, and micafungin. All of the isolates with elevated MIC values had a mutation in the previously identified hot spot 1 of either the glucan synthase FKS1 (n = 2) or FKS2 (n = 14) gene. No mutations were detected in hot spot 2 of either FKS1 or FKS2. The predominant mutation was mutation of FKS2-encoded serine 663 to proline (S663P), found in 10 of the isolates with elevated echinocandin MICs. Two of the mutations, R631G for FKS1 and R665G for FKS2, have not been reported previously for C. glabrata. Multilocus sequence typing indicated that the predominance of the S663P mutation was not due to the clonal spread of a single sequence type. With a rising number of echinocandin therapy failures reported, it is important to continue to monitor rates of elevated echinocandin MIC values and the associated mutations. PMID:20837754

  10. Fucoidan stimulates cell division in the amebocyte-producing organ of the schistosome-transmitting snail Biomphalaria glabrata

    PubMed Central

    Sullivan, John T.; Belloir, Joseph A.; Beltran, Roxxana V.; Grivakis, Aris; Ransone, Kathryn A.

    2014-01-01

    Adult Salvador (schistosome-resistant) strain Biomphalaria glabrata snails were injected with 5 μl of 10 mg/ml solutions of the sulfated polysaccharides λ carageenan, dextran sulfate, fucoidan, and heparin, the nonsulfated polysaccharide laminarin, and the monosaccharides L-fucose and L-galactose, and mitotic activity in the amebocyte-producing organ (APO) was measured in histological sections at 24h post injection. Among the substances tested, only fucoidan induced elevated mitotic activity. Desulfated fucoidan was not mitogenic, indicating that sulfate groups are required for activity. Schistosome-susceptible M-line snails possessed minimal or no hematopoietic tissue in their APO, which did not respond to fucoidan. Immersion of juvenile Salvador snails in 1 or 10 mg/ml solutions of fucoidan for 3h did not elevate mitotic activity at 24h post immersion, suggesting that the external and digestive tract epithelia of B. glabrata are impermeable to this molecule. These results provide support for the hypothesis that fucosylated glycans on the tegument and in excretory-secretory products of sporocysts of Schistosoma mansoni are in part responsible for increased mitotic activity in the APO of B. glabrata infected with this trematode or injected with its extracts. PMID:25233872

  11. Evolutionary history and phylogeography of the schistosome-vector freshwater snail Biomphalaria glabrata based on nuclear and mitochondrial DNA sequences.

    PubMed

    Mavárez, J; Steiner, C; Pointier, J-P; Jarne, P

    2002-10-01

    The phylogeography of the freshwater snail Biomphalaria glabrata remains poorly known, although this species is the major vector of schistosomiasis in the New World. It was here investigated in South America and the Lesser Antilles, based on partial mitochondrial large ribosomal subunit (16S rDNA) and nuclear internal transcribed spacer-2 (ITS-2) gene sequences. Sampling included 17 populations from a large part of the current geographic range of the species (Brazil, Venezuela and Lesser Antilles). Substantial variability was detected, as well as a high amount of phylogenetically informative signal. The molecular phylogeny inferred splits B. glabrata into Northern and Southern clades separated by the Amazon river, and may even suggest a supra-specific status for B. glabrata. Brazilian populations were the most diverse and appeared basal to the other populations. Venezuelan haplotypes formed a single clade, albeit not strongly supported. Two Venezuelan haplotypes appear rather similar to Brazilian haplotypes. Similarly, Lesser Antilles haplotypes clustered in the same monophyletic clade, which suggests that the recent colonisation of the Antilles has a northern South American origin. However, the estimated divergence time between Antilles and Venezuelan sequences is extremely large (conservatively higher than 10(5) years). These results are discussed in the light of (i) phylogeographic patterns at South American scale, and (ii) recurrent introduction of molluscs, especially in the Antilles, as a consequence of human activities. PMID:12242642

  12. Probing the Active Site of Candida Glabrata Dihydrofolate Reductase with High Resolution Crystal Structures and the Synthesis of New Inhibitors

    SciTech Connect

    Liu, J.; Bolstad, D; Smith, A; Priestley, N; Wright, D; Anderson, A

    2009-01-01

    Candida glabrata, a fungal strain resistant to many commonly administered antifungal agents, has become an emerging threat to human health. In previous work, we validated that the essential enzyme, dihydrofolate reductase, is a drug target in C. glabrata. Using a crystal structure of dihydrofolate reductase from C. glabrata bound to an initial lead compound, we designed a class of biphenyl antifolates that potently and selectively inhibit both the enzyme and the growth of the fungal culture. In this work, we explore the structure-activity relationships of this class of antifolates with four new high resolution crystal structures of enzyme:inhibitor complexes and the synthesis of four new inhibitors. The designed inhibitors are intended to probe key hydrophobic pockets visible in the crystal structure. The crystal structures and an evaluation of the new compounds reveal that methyl groups at the meta and para positions of the distal phenyl ring achieve the greatest number of interactions with the pathogenic enzyme and the greatest degree of selectivity over the human enzyme. Additionally, antifungal activity can be tuned with substitution patterns at the propargyl and para-phenyl positions.

  13. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates.

    PubMed

    Yoshino, Timothy P; Wu, Xiao-Jun; Gonzalez, Laura A; Hokke, Cornelis H

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins

  14. Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata

    PubMed Central

    Singh-Babak, Sheena D.; Babak, Tomas; Diezmann, Stephanie; Hill, Jessica A.; Xie, Jinglin Lucy; Chen, Ying-Lien; Poutanen, Susan M.; Rennie, Robert P.; Heitman, Joseph; Cowen, Leah E.

    2012-01-01

    The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the

  15. An immune-enriched oligo-microarray analysis of gene expression in Manila clam (Venerupis philippinarum) haemocytes after a Perkinsus olseni challenge.

    PubMed

    Romero, Alejandro; Forn-Cuní, Gabriel; Moreira, Rebeca; Milan, Massimo; Bargelloni, Luca; Figueras, Antonio; Novoa, Beatriz

    2015-03-01

    Parasites of the genus Perkinsus cause high mortality and economic losses in bivalves commonly produced in global aquaculture. Although the immune responses of oysters and clams naturally infected with Perkinsus marinus or Perkinsus olseni have been extensively studied, there is not much information on host response at the early stages of infection. In this study, we analysed how P. olseni influences the gene expression profiles of haemocytes from the Manila clam (Venerupis philippinarum) using temporal experimental infections and an immune-enriched microarray. We identified an early phase of infection that was characterised by no mortality and by the increased expression of genes associated with pathogen recognition, production of nitrogen radicals and antimicrobial activity. Cellular processes such as inhibition of serine proteases and proliferation were also involved in this early response. This phase was followed by an intermediate stage, when the pathogen was most likely multiplying and infecting new areas of the body, and animals began to die. In this stage, many genes related to cell movement were over-expressed. Thirty days after infection metabolic pathway genes were the most affected. Apoptosis appears to be important during pathogenesis. Our results provide novel observations of the broader innate immune response triggered by P. olseni at different infection stages. PMID:25555813

  16. Assessment of the genotoxic potential along the Danube River by application of the comet assay on haemocytes of freshwater mussels: The Joint Danube Survey 3.

    PubMed

    Kolarević, Stoimir; Kračun-Kolarević, Margareta; Kostić, Jovana; Slobodnik, Jaroslav; Liška, Igor; Gačić, Zoran; Paunović, Momir; Knežević-Vukčević, Jelena; Vuković-Gačić, Branka

    2016-01-01

    In this study we assessed the level of genotoxic pollution along the Danube River by measuring the level of DNA damage in the haemocytes of freshwater mussels of Unio sp. (Unio pictorum/Unio tumidus) and Sinanodonta woodiana. The comet assay was used for the assessment of DNA damage. The research was performed on 34 out of 68 sites analysed within the Joint Danube Survey 3 - the world's biggest river research expedition of its kind in 2013. During research, 2285 river kilometres were covered with an average distance of 68 km between the sites. The complex data set on concentrations of various substances present in water, suspended particulate matter and sediment on investigated sites gave the opportunity to identify the groups of xenobiotics which mostly affect the studied biomarker - DNA damage. The highest levels of DNA damage were recorded in the section VI (Panonnian Plain), which is under the impact of untreated wastewater discharges. Both positive and negative influences of the large tributaries on the level of genotoxicity in the Danube River were evident. Significant correlation in response was detected between the studied species of freshwater mussels. The level of DNA damage in mussels correlated with concentrations of compounds from the group of hazardous priority substances (polycyclic aromatic hydrocarbons), persistent organic pollutants (dioxins) and emerging pollutants (Oxazepam, Chloridazon-desphenyl). PMID:26117499

  17. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae.

    PubMed

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40  μ g·mL(-1) (11.1460  μ g·mL(-1) and 25.8689  μ g·mL(-1), resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40  μ g·mL(-1) (29.018  μ g·mL(-1) and 17.230  μ g·mL(-1), resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277  μ g·mL(-1) and 706.990  μ g·mL(-1)) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  18. Characterization of the myoglobin and its coding gene of the mollusc Biomphalaria glabrata.

    PubMed

    Dewilde, S; Winnepenninckx, B; Arndt, M H; Nascimento, D G; Santoro, M M; Knight, M; Miller, A N; Kerlavage, A R; Geoghagen, N; Van Marck, E; Liu, L X; Weber, R E; Moens, L

    1998-05-29

    A cDNA clone isolated from a Biomphalaria glabrata (Mollusca, Gastropoda) neural cDNA library was identified as encoding a myoglobin-like protein of 148 amino acids with a single domain and a calculated mass of 16,049.29. Alignment with globin sequences with known tertiary structure confirms its overall globin nature. The expressed myoglobin was identified in the radular muscle and isolated. Oxygen equilibrium measurements on the protein reveal a high oxygen affinity. Val-B10 and Gln-E7, important residues for the determination of the oxygen affinity, are strikingly different from the standard molluscan pattern (Conti, E., Moser, C., Rizzi, M., Mattevi, A., Lionetti, C., Coda, A., Ascenzi, P., Brunori, M., Bolognesi, M. (1993) J. Mol. Biol. 233, 498-508). The single gene encoding the globin chain is interrupted by three introns at positions A3.2, B12.2, and G7.0. Comparison with other nonvertebrate globin genes reveals on the one hand conservation (B12.2 and G7.0) and on the other hand variability of the insertion positions (A3.2). The Biomphalaria myoglobin sequence was used together with all other molluscan globin sequences available to assess the origin and phylogeny of the phylum. Our results confirm the doubts raised about monophyletic origin of the Mollusca, which was first observed using SSU rRNA as a molecular marker. PMID:9593695

  19. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae

    PubMed Central

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M.; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'Ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40 μg·mL−1 (11.1460 μg·mL−1 and 25.8689 μg·mL−1, resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40 μg·mL−1 (29.018 μg·mL−1 and 17.230 μg·mL−1, resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277 μg·mL−1 and 706.990 μg·mL−1) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  20. Determination and quantification of Schistosoma mansoni cercarial emergence from Biomphalaria glabrata snails.

    PubMed

    Tucker, Matthew S; Lewis, Fred A; Driver, James D; Granath, Willard O

    2014-12-01

    Living and fixed samples of Schistosoma mansoni -infected Biomphalaria glabrata snails were used to determine the relative contributions of different snail tissues to cercarial emergence (shedding). Three methods of observations were employed: (1) direct microscopical observations of shedding snails; (2) microscopic analysis of 5 μm serial sections (H&E stained) of actively shedding snails; and (3) scanning electron microscopic (SEM) observations of snails that were fixed while actively shedding. For this investigation, there were advantages and disadvantages to using each method. We confirmed the results of others that there were 3 tissues of the snail that contributed most prominently to cercarial release (mantle collar, pseudobranch, and headfoot). Based on histological analysis of cercarial accumulations in presumed shedding sites in these 3 tissues, 57% of the cercariae could be seen in the mantle collar, 30.6% in the pseudobranch, and 12.5% in the headfoot. Other anterior structures were involved to a much lesser extent. SEM observations clearly showed cercariae emerging either body first, tail first, or likely emerging en masse from blebs, especially from the mantle collar. These studies provide a more quantitative appraisal of the role the different anterior snail tissues play in cercarial emergence. PMID:25019357

  1. Development of the Statocyst in the Freshwater Snail Biomphalaria Glabrata (Pulmonata, Basommatophora)

    NASA Technical Reports Server (NTRS)

    Gao, Wenyuan; Wiederhold, Michael; Hejl, Robert

    1997-01-01

    The development of the statocyst of the freshwater snail Biomphalaria glabrata has been examined from embryo to adult. Special emphasis was put on the growth of the statoconia in the statocysts. In the statocysts of embryonic snails (90-120 h after oviposition) there is not a single statolith but an average of 40-50 statoconia per statocyst. The number of statoconia increases to 385-400 when the snails reach a shell diameter of 4 mm and remains relatively constant thereafter, irrespective of shell size. Small statoconia are found in supporting cells, which suggests that the statoconia are produced within these cells. The average diameter of statoconia and the total mass of statoconia increase with increasing shell diameter. The average number of large statoconia (diameter greater than 7 micrometers) per statocyst continues to increase from 2 to 10 mm animals while the number of small ones (diameter less than 4 micrometers) initially rises and then decreases after 4 mm. These results demonstrate continuous growth of the statoconia in the cyst lumen of Biomphalaria. The single statoconia vibrate in a regular pattern in vivo, indicating beating of the statocyst cilia. The statoconia sink under the influence of gravity to load and stimulate receptor cells which are at the bottom. The length of cilia and the size of statocyst gradually increase as the animal grows. However, the increase in the volume of the statocyst is relatively small compared with the increase in body weight during normal development.

  2. Identification of Genes in Candida glabrata Conferring Altered Responses to Caspofungin, a Cell Wall Synthesis Inhibitor

    PubMed Central

    Rosenwald, Anne G.; Arora, Gaurav; Ferrandino, Rocco; Gerace, Erica L.; Mohammednetej, Maedeh; Nosair, Waseem; Rattila, Shemona; Subic, Amanda Zirzow; Rolfes, Ronda

    2016-01-01

    Candida glabrata is an important human fungal pathogen whose incidence continues to rise. Because many clinical isolates are resistant to azole drugs, the drugs of choice to treat such infections are members of the echinocandin family, although there are increasing reports of resistance to these drugs as well. In efforts to better understand the genetic changes that lead to altered responses to echinocandins, we screened a transposon-insertion library of mutants for strains to identify genes that are important for cellular responses to caspofungin, a member of this drug family. We identified 16 genes that, when disrupted, caused increased tolerance, and 48 genes that, when disrupted, caused increased sensitivity compared to the wild-type parental strain. Four of the genes identified as causing sensitivity are orthologs of Saccharomyces cerevisiae genes encoding proteins important for the cell wall integrity (CWI) pathway. In addition, several other genes are orthologs of the high affinity Ca2+ uptake system (HACS) complex genes. We analyzed disruption mutants representing all 64 genes under 33 different conditions, including the presence of cell wall disrupting agents and other drugs, a variety of salts, increased temperature, and altered pH. Further, we generated knockout mutants in different genes within the CWI pathway and the HACS complex, and found that they too exhibited phenotypes consistent with defects in cell wall construction. Our results indicate that small molecules that inhibit the CWI pathway, or that the HACS complex, may be an important means of increasing the efficacy of caspofungin. PMID:27449515

  3. Candida glabrata binds to glycosylated and lectinic receptors on the coronary endothelial luminal membrane and inhibits flow sense and cardiac responses to agonists.

    PubMed

    Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael

    2016-01-01

    Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. PMID:26491100

  4. Distribution and Schistosoma mansoni infection of Biomphalaria glabrata in different habitats in a rural area in the Jequitinhonha Valley, Minas Gerais, Brazil: environmental and epidemiological aspects.

    PubMed

    Kloos, Helmut; Passos, Liana Kanovaloff Janotti; Loverde, Philip; Oliveira, Rodrigo Correa; Gazzinelli, Andréa

    2004-11-01

    This paper examines the distribution and infection of Biomphalaria glabrata with Schistosoma mansoni in all aquatic snail habitats in a rural area in the state of Minas Gerais, Brazil, in relation to physico/biotic and behavioral factors. Snail and environmental surveys were carried out semi-annually between July 2001 and November 2002 at 106 sites. Collected snails were examined in the laboratory for infection. B. glabrata densities were highest in overflow ponds, irrigation ponds, springs, canals and wells, and lowest in fishponds and water tanks. Snail densities were higher during the hot, rainy season except for streams and canals and were statistically associated with the presence of fish, pollution, and vegetation density. Tilapia fish and an unidentified Diptera larva were found to be predators of B. glabrata but ducks were not. Twenty-four of the 25 infected snails were collected in 2001(1.4% infection rate) and only one in 2002, after mass chemotherapy. The occurrence of B. glabrata in all 11 snail habitats both at and away from water contact sites studied indicates widespread risk of human infection in the study area. In spite of the strong association between B. glabrata and tilapia in fishponds we do not recommend its use in schistosomiasis control for ecological reasons and its relative inefficiency in streams and dams. PMID:15654420

  5. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    SciTech Connect

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  6. Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni.

    PubMed

    Arican-Goktas, Halime D; Ittiprasert, Wannaporn; Bridger, Joanna M; Knight, Matty

    2014-09-01

    Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in

  7. The Structure of the Statocyst of the Freshwater Snail Biomphalaria Glabrata (Pulmonata, Basommatophora)

    NASA Technical Reports Server (NTRS)

    Gao, Wenyuan; Wiederhold, Michael L.

    1997-01-01

    The structure of the statocyst of the freshwater snail Biomphalaria glabrata has been examined by light and electron microscopy. The two statocysts are located on the dorsal-lateral side of the left and right pedal ganglion. The statocysts are spherical, fluid-filled capsules with a diameter of approximately 60 microns for young and 110 microns for adult snails. The wall of the cyst is composed of large receptor cells and many smaller supporting cells. The receptor cells bear cilia which are evenly distributed on the apical surface. The cilia have the typical 9+2 internal tubule configuration. Striate rootlets originate from the base of the basal body and run downward into the cytoplasm. Side-roots arise from one side of the basal body and a basal foot from the other. For each receptor cell, the basal foot always points to the periphery of the surface, indicating that the receptor cell is non-polarized. The receptor cells contain cytoplasmic organelles such as mitochondria, ribosomes, rough and smooth endoplasmic reticulum, compact Golgi bodies and multivesicular bodies. Supporting cells bearing microvilli are interposed between the receptor cells. The junction complex between the supporting cells and the receptor cells is composed of adherens and septate junctions, while between supporting cells only the adherens junctions are present. The static nerve arises from the lateral side of the cyst and contains axons in which parallel neurotubules and mitochondria are found. The axons arise directly from the base of the receptor cells without synapse. In the cyst lumen there are unattached statoconia. The statoconia have a plate-like or concentric membranous ring structure. Based on the morphology, the function of the statocyst in Biomphalaria is discussed.

  8. A multiplex PCR protocol for rapid identification of Candida glabrata and its phylogenetically related species Candida nivariensis and Candida bracarensis.

    PubMed

    Romeo, Orazio; Scordino, Fabio; Pernice, Ida; Lo Passo, Carla; Criseo, Giuseppe

    2009-10-01

    We have developed a multiplex PCR protocol for the detection of Candida glabrata and its closely related species Candida nivariensis and Candida bracarensis. The method uses four PCR primers, targeting the ITS1 region and the 5.8S ribosomal RNA gene. The combination of these primers yielded unique results to all Candida species tested. The PCR assay we developed was found to be a rapid, specific and easy to perform method and it will be useful for characterizing large numbers of isolates for epidemiological studies. PMID:19635503

  9. cDNA cloning, characterization and expression analysis of a novel antimicrobial peptide gene penaeidin-3 (Fi-Pen3) from the haemocytes of Indian white shrimp Fenneropenaeus indicus.

    PubMed

    Shanthi, S; Vaseeharan, B

    2012-03-20

    A new member of antimicrobial peptide genes of the penaeidin family, penaeidin 3, was cloned from the haemocytes of Indian white shrimp Fenneropeneaus indicus (F. indicus), by reverse transcription PCR (RT-PCR) and rapid amplification of cDNA end (RACE-PCR) methods. The complete nucleotide sequence of cDNA clone of Indian white shrimp F. indicus Penaeidin 3 (Fi-Pen3) was 243bp long and has an open reading frame which encodes 80 amino acid peptide. The homology analysis of Fi-Pen3 sequence with other Penaeidins 3 shows higher similarity with Penaeus monodon (92%). The theoretical 3D structure generated through ab initio modelling indicated the presence of two-disulphide bridges in the alpha-helix. The signal peptide sequence of Fi-Pen3 is almost entirely homologous to that of other Penaeidin 3 of crustaceans, while differing relatively in the N-terminal domain of the mature peptide. The mature peptide has a predicted molecular weight of 84.9kDa, and a theoretical pI of 9.38. Phylogenetic analysis of Fi-Pen3 shows high resemblance with other Pen-3 from P. monodon, Litopenaeus stylirostris, Litopenaeus vannamei and Litopenaeus setiferus. Fi-Pen3 found to be expressed in haemocytes, heart, hepatopancreas, muscles, gills, intestine, and eyestalk with higher expression in haemocytes. Microbial challenge resulted in mRNA up-regulation, up to 6h post injection of Vibrio parahemolyticus. The Fi-Pen3 mRNA expression of F. indicus in the premolt stage (D(01) and D(02)) was significantly up-regulated than the postmolt (A and B) and intermolt stages (C). The findings of the present paper underline the involvement of Fi-Pen3 in innate immune system of F. indicus. PMID:21885268

  10. Identification and Comparative Analysis of the Tegillarca granosa Haemocytes MicroRNA Transcriptome in Response to Cd Using a Deep Sequencing Approach

    PubMed Central

    Bao, Yongbo; Zhang, Lili; Dong, Yinghui; Lin, Zhihua

    2014-01-01

    Background MicroRNAs (miRNAs) are endogenous non-coding small RNAs (sRNAs) that can base pair with their target mRNAs, which represses their translation or induces their degradation in various biological processes. To identify miRNAs regulated by heavy metal stress, we constructed two sRNA libraries for the blood clam Tegillarca granosa: one for organisms exposed to toxic levels of cadmium (Cd) and one for a control group. Results Sequencing of the two libraries and subsequent analysis revealed 215 conserved and 39 new miRNAs. Most of the new miRNAs in T. granosa were up- or down-regulated in response to Cd exposure. There were significant differences in expression between the Cd and control groups for 16 miRNAs. Of these, five miRNAs were significantly up-regulated and 11 were significantly down-regulated in the Cd stress library. Potential targets were predicted for the 16 differential miRNAs in pre-miRNAs identified according to sequence homology. Some of the predicted miRNA targets are associated with regulation of the response to stress induced by heavy metals. Five differentially expressed miRNAs (Tgr-nmiR-8, Tgr-nmiR-21, Tgr-miR-2a, Tgr-miR-10a-5p, and Tgr-miR-184b) were validated by qRT-PCR. Conclusion Our study is the first large-scale identification of miRNAs in T. granosa haemocytes. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in the responses of this species to environmental heavy metal stresses. PMID:24690903

  11. Recurrent Episodes of Candidemia Due to Candida glabrata with a Mutation in Hot Spot 1 of the FKS2 Gene Developed after Prolonged Therapy with Caspofungin

    PubMed Central

    Gago, Sara; Gómez-López, Alicia; Cuenca-Estrella, Manuel; Jiménez Díez-Canseco, Leticia; Gómez-Garcés, José Luis

    2012-01-01

    We report two episodes of recurrent candidemia caused by echinocandin-resistant Candida glabrata in a 69-year-old patient who underwent repeated abdominal surgery. In the first episode of candidemia, an echinocandin-susceptible Candida glabrata strain was isolated, and the patient was treated with caspofungin. The isolates from the later episodes showed resistance to echinocandins. Analysis of the HS1 region of the FKS2 gene showed the amino acid substitution S663P. Microsatellite analysis demonstrated a strong genetic relationship between the isolates. PMID:22391532

  12. Biocatalytic reduction of racemic 2-arenoxycycloalkanones by yeasts P. glucozyma and C. glabrata: one way of achieving chiral 2-arenoxycycloalcohols.

    PubMed

    Andreu, Cecilia; Peña, Miguel; Del Olmo, Marcel Lí

    2016-06-01

    Chiral β-aryloxy alcohols are interesting building blocks that form part of drugs like β adrenergic antagonists. Acquiring cyclic rigid analogs to obtain more selective drugs is interesting. Thus, we used whole cells of yeast strains Pichia glucozyma and Candida glabrata to catalyze the reduction of several 2-arenoxycycloalkanones to produce chiral 2-arenoxycycloalcohols with good/excellent enantioselectivity. In both cases, the alcohol configuration that resulted from the carbonyl group reduction was S. Yeast P. glucozyma allowed the conversion of both enantiomers of the starting material to produce 2-arenoxycycloalcohols with configuration (1S, 2R) and (1S, 2S). The reaction with C. glabrata nearly always allowed the kinetic resolution of the starting ketone, recovering 2-arenoxycycloalkanone with configuration S and (1S, 2R)-2-arenoxycycloalcohol.All the four possible stereoisomers of 2-phenoxycyclohexanol and the two enantiomers of 2-phenoxycyclohexanone were obtained by combining the biocatalyzed reaction with the oxidation/reduction of the chiral compounds with standard reagents. This is a simple approach for the synthesis of the rigid chiral moiety 2-arenoxycycloalcohols contained in putative β-blockers 2-arenoxycycloalkanepropanolamines. PMID:26754816

  13. Identification of signature volatiles to discriminate Candida albicans, glabrata, krusei and tropicalis using gas chromatography and mass spectrometry.

    PubMed

    Hertel, Moritz; Hartwig, Stefan; Schütte, Eyke; Gillissen, Bernhard; Preissner, Robert; Schmidt-Westhausen, Andrea Maria; Paris, Sebastian; Kastner, Isabell; Preissner, Saskia

    2016-02-01

    Oral candidiasis is the most frequent fungal infection of the oral cavity. Clinical diagnoses require mycological confirmation, which is time-consuming in case of culture testing. The aim of the study was to identify signature volatiles to develop a chairside breath test to diagnose oral candidiasis. Headspaces above Candida albicans, glabrata, tropicalis, krusei cultures, and growth media as control were analysed after eight and 24 h using offline gas chromatography and mass spectrometry. The identification of signature volatiles was assisted using various microbial databases. Retrieved volatile patterns enabled Candida species discrimination in vitro. For C. albicans 3-methyl-2-butanone and styrene and for C. krusei a combination of p-xylene, 2-octanone, 2-heptanone and n-butyl acetate were found to be specific. 1-hexanol was found in C. tropicalis, but is emitted by a variety of other microorganisms. C. glabrata was characterised through the absence of these volatiles. The development of a breath test is a promising approach in confirming suspicions of oral candidiasis. To confirm the retrieved results in vivo, breath tests in affected and healthy subjects have to be performed. PMID:26667499

  14. Development of a Candida glabrata dominant nutritional transformation marker utilizing the Aspergillus nidulans acetamidase gene (amdS).

    PubMed

    Fu, Jianmin; Blaylock, Morganne; Wickes, Cameron F; Welte, William; Mehrtash, Adrian; Wiederhold, Nathan; Wickes, Brian L

    2016-05-01

    The gene encodingAspergillus nidulansacetamidase (amdS) was placed under control ofCandida albicans ACT1promoter and terminator sequences and then cloned into a plasmid containingC. glabrata ARS10,CEN8orARS10+CEN8sequences. All plasmids transformedC. glabratawild-type cells to acetamide+, with theARS-only containing plasmid transforming cells at the highest frequencies (>1.0 × 10(4)transformants μg(-1)). Plasmids were rapidly lost under non-selective conditions with the frequency dependent on chromosomal element, thus recycling the acetamide- phenotype. TheamdSplasmid was used to transform a set of clinical isolates resistant to a variety of antifungal drugs. All strains were successfully transformed to the acetamide+ phenotype at high frequency, confirming that this plasmid construct could be used as a simple dominant marker on virtually any strain. Gap repair experiments demonstrated that just as inSaccharomyces cerevisiae, gap repair functions efficiently inC. glabrata, suggesting thatC. glabratahas numerous similarities toS. cerevisiaewith regard to ease of molecular manipulation. TheamdSsystem is inexpensive and efficient, and combined with existingC. glabrataplasmid elements, confers a high transformation frequency forC. glabratawith a phenotype that can be easily recycled. PMID:26975388

  15. Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni

    PubMed Central

    Tennessen, Jacob A.; Bonner, Kaitlin M.; Bollmann, Stephanie R.; Johnstun, Joel A.; Yeh, Jan-Ying; Marine, Melanie; Tavalire, Hannah F.; Bayne, Christopher J.; Blouin, Michael S.

    2015-01-01

    Background New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails. Methodology/Principal Findings Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD) markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected) is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected). Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1) with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated. Conclusions/Significance The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation. PMID:26372103

  16. Production of white colonies on CHROMagar Candida BD by species in the C. glabrata clade, and other species with overlapping phenotypic traits.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromogenic agars are important diagnostic media used in the clinical mycology laboratory. Candida spp. that produced white colonies on CHROMagar Candida (Becton Dickinson) (CAC) were found during a study designed to detect and identify C. bracarensis, a newly-described species in the C. glabrata c...

  17. Identification of Components of the SUMOylation Machinery in Candida glabrata: ROLE OF THE DESUMOYLATION PEPTIDASE CgUlp2 IN VIRULENCE.

    PubMed

    Gujjula, Rahul; Veeraiah, Sangeetha; Kumar, Kundan; Thakur, Suman S; Mishra, Krishnaveni; Kaur, Rupinder

    2016-09-01

    Regulation of protein function by reversible post-translational modification, SUMOylation, is widely conserved in the eukaryotic kingdom. SUMOylation is essential for cell growth, division, and adaptation to stress in most organisms, including fungi. As these are key factors in determination of fungal virulence, in this study, we have investigated the importance of SUMOylation in the human pathogen, Candida glabrata We identified the enzymes involved in small ubiquitin-like modifier conjugation and show that there is strong conservation between Saccharomyces cerevisiae and C. glabrata We demonstrate that SUMOylation is an essential process and that adaptation to stress involves changes in global SUMOylation in C. glabrata Importantly, loss of the deSUMOylating enzyme CgUlp2 leads to highly reduced small ubiquitin-like modifier protein levels, and impaired growth, sensitivity to multiple stress conditions, reduced adherence to epithelial cells, and poor colonization of specific tissues in mice. Our study thus demonstrates a key role for protein SUMOylation in the life cycle and pathobiology of C. glabrata. PMID:27382059

  18. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni.

    PubMed

    Pila, Emmanuel A; Tarrabain, Mahmoud; Kabore, Alethe L; Hanington, Patrick C

    2016-03-01

    Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which

  19. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni

    PubMed Central

    Pila, Emmanuel A.; Tarrabain, Mahmoud; Kabore, Alethe L.; Hanington, Patrick C.

    2016-01-01

    Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which

  20. Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata.

    PubMed

    Monti, Simona Maria; Maresca, Alfonso; Viparelli, Francesca; Carta, Fabrizio; De Simone, Giuseppina; Mühlschlegel, Fritz A; Scozzafava, Andrea; Supuran, Claudiu T

    2012-01-15

    A series of N-mono- and N,N-disubstituted dithiocarbamates have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the fungal pathogens Cryptococcus neoformans, Candida albicans and Candida glabrata, that is, Can2, CaNce103 and CgNce103, respectively. These enzymes were inhibited with efficacies between the subnanomolar to the micromolar range, depending on the substitution pattern at the nitrogen atom from the dithiocarbamate zinc-binding group. This new class of β-CA inhibitors may have the potential for developing antifungal agents with a diverse mechanism of action compared to the clinically used drugs for which drug resistance was reported, and may also explain the efficacy of dithiocarbamates as agricultural antifungal agents. PMID:22209456

  1. Accurate initiation of mRNA synthesis in extracts from Schizosaccharomyces pombe, Kluyveromyces lactis and Candida glabrata.

    PubMed

    Woontner, M; Jaehning, J A

    1993-12-01

    We demonstrate the successful adaptation to other yeast species of a protocol previously described for production of transcriptionally active whole cell extracts from Saccharomyces cerevisiae (Woontner and Jaehning, 1990, J. Biol. Chem. 265, 8979-8982). Extracts prepared from Schizosaccharomyces pombe, Kluyveromyces lactis and Candida glabrata were all capable of initiating transcription from a template containing the S. cerevisiae CYC1 TATA box fused to a G-less cassette. Transcription in all of the extracts was sensitive to inhibition by alpha-amanitin, indicating that it was catalysed by RNA polymerase II, and was dramatically stimulated by the chimeric activator GAL4/VP16. The different extracts used different subsets of a group of three initiation sites. PMID:8154183

  2. Phenotypic Switching in Candida glabrata Accompanied by Changes in Expression of Genes with Deduced Functions in Copper Detoxification and Stress

    PubMed Central

    Srikantha, Thyagarajan; Zhao, Rui; Daniels, Karla; Radke, Josh; Soll, David R.

    2005-01-01

    Most strains of Candida glabrata switch spontaneously between a number of phenotypes distinguishable by graded brown coloration on agar containing 1 mM CuSO4, a phenomenon referred to as “core switching.” C. glabrata also switches spontaneously and reversibly from core phenotypes to an irregular wrinkle (IWr) phenotype, a phenomenon referred to as “irregular wrinkle switching.” To identify genes differentially expressed in the core phenotypes white (Wh) and dark brown (DB), a cDNA subtraction strategy was employed. Twenty-three genes were identified as up-regulated in DB, four in Wh, and six in IWr. Up-regulation was verified in two unrelated strains, one a and one α strain. The functions of these genes were deduced from the functions of their Saccharomyces cerevisiae orthologs. The majority of genes up-regulated in DB (78%) played deduced roles in copper assimilation, sulfur assimilation, and stress responses. These genes were differentially up-regulated in DB even though the conditions of growth for Wh and DB, including CuSO4 concentration, were identical. Hence, the regulation of these genes, normally regulated by environmental cues, has been usurped by switching, presumably as an adaptation to the challenging host environment. These results are consistent with the suggestion that switching provides colonizing populations with a minority of cells expressing a phenotype that allows them to enrich in response to an environmental challenge, a form of rapid adaptation. However, DB is the most commonly expressed phenotype at sites of host colonization, in the apparent absence of elevated copper levels. Hence, up-regulation of these genes by switching suggests that in some cases they may play roles in colonization and virulence not immediately obvious from the roles played by their orthologs in S. cerevisiae. PMID:16087748

  3. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata.

    PubMed Central

    Pfaller, M A; Houston, A; Coffmann, S

    1996-01-01

    CHROMagar Candida is a new differential culture medium that allows selective isolation of yeasts and simultaneously identifies colonies of Candida albicans, C. tropicalis, and C. krusei. We evaluated the use of this medium with 316 yeast isolates including 247 isolated directly on CHROMagar from clinical material. Over 95% of stock and clinical isolates of C. albicans, C. tropicalis, and C. krusei were correctly identified on the basis of colony morphology and pigmentation on CHROMagar. Additionally, CHROMagar also allowed the identification of C. (Torulopsis) glabrata at a similar level of accuracy. The overall agreement between two observers in reading the CHROMagar plates was 95%. Growth of Candida sp. isolates on CHROMagar had no adverse effect on antifungal MICs or Vitek identification results. In parallel, cultures of 548 stool and rectal swab specimens set up on CHROMagar and Sabouraud glucose agar (SGA) were positive in 234 instances. CHROMagar was positive and SGA was negative for 11 specimens, and CHROMagar was negative and SGA was positive for 18 specimens. A single yeast species was isolated on both media from 162 specimens, and in 146 (90%) of these specimens the same species was detected on both CHROMagar and SGA. A total of 43 of the 234 positive cultures contained mixtures of yeast species. Twenty (47%) of these mixed cultures were detected only on CHROMagar. CHROMagar is extremely useful in making a rapid presumptive identification of common yeast species. This capability plus the ability to detect mixed cultures of Candida spp. promises to improve and streamline the work flow in the mycology and clinical microbiology laboratory. PMID:8748273

  4. Identification and characterization of two novel types of non-clip domain serine proteases (PtSP and PtSPH1) from cDNA haemocytes library of swimming crab Portunus trituberculatus.

    PubMed

    Li, Qianqian; Cui, Zhaoxia; Liu, Yuan; Wang, Shuangyan; Song, Chengwen

    2012-05-01

    In our previous studies, five serine proteases containing clip domain were characterized from the swimming crab Portunus trituberculatus. To further investigate the characterization and function of serine proteases, one serine protease (PtSP) and one serine protease homolog (PtSPH1) without clip domain were identified from haemocytes cDNA library in this paper. They both possessed an SP or SP-like domain at the C-terminal. In contrast to PtSP, absence of Ser catalytic residue resulted in the loss of serine protease activity of PtSPH1. Phylogenetic analysis suggested either SPs or SPHs might not have a single origin in gene evolution. Six introns presented in PtSP genomic DNA with one uncommon splice site (GG) was discovered at exon 1/intron 1 boundary region. Four introns with common splice sites were found in PtSPH1 genomic DNA. RT-PCR results showed that PtSP mRNA was mainly distributed in haemocytes, gill and eyestalk, whereas PtSPH1 transcript was mainly expressed in stomach. PtSP showed slight increase during the first 48 h compared to control groups except 8 h point after Micrococcus luteus challenge. However, significant up-regulation was observed in the expression level of PtSPH1 challenged by Gram-negative bacteria Vibrio alginolyticus, Gram-positive bacteria M. luteus and fungi Pichia pastoris during the first 48 h. It indicates that PtSPH1 might be more sensitive to microorganism challenges compared with PtSP. PMID:22289714

  5. Molecular evidence supports an african affinity of the neotropical freshwater gastropod, Biomphalaria glabrata, say 1818, an intermediate host for Schistosoma mansoni.

    PubMed

    Campbell, G; Jones, C S; Lockyer, A E; Hughes, S; Brown, D; Noble, L R; Rollinson, D

    2000-12-01

    Freshwater snails of the genus Biomphalaria, Preston 1910, are the most important and widely distributed intermediate hosts of Schistosoma mansoni, the blood fluke responsible for human intestinal schistosomiasis, in Africa and the Neotropics. S. mansoni is thought to have been imported repeatedly into the Americas during the last 500 years with the African slave trade. Surprisingly considering that the New and Old World separated 95-106 million years (Myr) ago, the disease rapidly became established due to the presence of endemic susceptible hosts. Reconstructing the phylogenetic relationships within Biomphalaria may provide insights into the successful intercontinental spread of S. mansoni. Parsimony and distance analyses of mitochondrial and nuclear sequences show African taxa to be monophyletic and Neotropical species paraphyletic, with Biomphalaria glabrata forming a separate clade from other Neotropical Biomphalaria, and ancestral to the African taxa. A west to east trans-Atlantic dispersal of a B. glabrata-like taxon, possibly as recently as the Plio-Pleistocene (1.8-3.6 Myr ago) according to a general mitochondrial clock, would fit these observations. Vicariance or an African origin for B. glabrata followed by multiple introductions to South America over the past 500 years with the African slave trade seem unlikely explanations. Knowledge of the phylogenetic relationships among important intermediate host species may prove useful in furthering control measures which exploit genetic differences in susceptibility to parasites, and in elucidating the evolution of schistosome resistance. PMID:11133023

  6. Gain-of-Function Mutations in PDR1, a Regulator of Antifungal Drug Resistance in Candida glabrata, Control Adherence to Host Cells

    PubMed Central

    Vale-Silva, Luís; Ischer, Françoise; Leibundgut-Landmann, Salomé

    2013-01-01

    Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence. PMID:23460523

  7. Epigenetic modulation, stress and plasticity in susceptibility of the snail host, Biomphalaria glabrata, to Schistosoma mansoni infection.

    PubMed

    Knight, Matty; Ittiprasert, Wannaporn; Arican-Goktas, Halime D; Bridger, Joanna M

    2016-06-01

    Blood flukes are the causative agent of schistosomiasis - a major neglected tropical disease that remains endemic in numerous countries of the tropics and sub-tropics. During the past decade, a concerted effort has been made to control the spread of schistosomiasis, using a drug intervention program aimed at curtailing transmission. These efforts notwithstanding, schistosomiasis has re-emerged in southern Europe, raising concerns that global warming could contribute to the spread of this disease to higher latitude countries where transmission presently does not take place. Vaccines against schistosomiasis are not currently available and reducing transmission by drug intervention programs alone does not prevent reinfection in treated populations. These challenges have spurred awareness that new interventions to control schistosomiasis are needed, especially since the World Health Organization hopes to eradicate the disease by 2025. For one of the major species of human schistosomes, Schistosoma mansoni, the causative agent of hepatointestinal schistosomiasis in Africa and the Western Hemisphere, freshwater snails of the genus Biomphalaria serve as the obligate intermediate host of this parasite. To determine mechanisms that underlie parasitism by S. mansoni of Biomphalaria glabrata, which might be manipulated to block the development of intramolluscan larval stages of the parasite, we focused effort on the impact of schistosome infection on the epigenome of the snail. Results to date reveal a complex relationship, manifested by the ability of the schistosome to manipulate the snail genome, including the expression of specific genes. Notably, the parasite subverts the stress response of the host to ensure productive parasitism. Indeed, in isolates of B. glabrata native to central and South America, susceptible to infection with S. mansoni, the heat shock protein 70 (Bg-HSP70) gene of this snail is rapidly relocated in the nucleus and transcribed to express HSP70

  8. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels.

    PubMed

    Li, Y; Chen, J; Lun, S Y; Rui, X S

    2001-06-01

    A multi-vitamin auxotroph, Torulopsis glabrata strain WSH-IP303, which can use ammonium chloride as a sole nitrogen source for pyruvate production, was selected. To optimize pyruvate yield and productivity, a simple but useful, orthogonal design method, was used to investigate the relationship between thiamine, nicotinic acid, pyridoxine, biotin, and riboflavin. Thiamine was confirmed to be the most important factor affecting pyruvate production. When the concentration of thiamine was 0.01 mg/l or 0.015 mg/l, glucose consumption was improved by increasing the nicotinic acid concentration. When the concentrations of nicotinic acid, thiamine, pyridoxine, biotin, and riboflavin were 8.0, 0.015, 0.4, 0.04, and 0.1 mg/l, respectively, pyruvate concentration and yield reached 52 g/l and 0.52 g/g, respectively, in a 48-h flask culture. By employing a combination of the optimum vitamin concentrations, a batch culture was conducted in a 2.5-l fermentor with an initial glucose concentration of 112 g/l; and the pyruvate concentration reached 69 g/l after 56 h (yielding 0.62 g/g). PMID:11525614

  9. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    PubMed Central

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  10. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti

    PubMed Central

    dos Santos, Edilson Alves; de Carvalho, Cenira M.; Costa, Ana L. S.; Conceição, Adilva S.; Moura, Flávia de B. Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC50 83.426 mg/L and LC50 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC50 0.94 mg/L, LC50 13.51 mg/L, and LC50 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  11. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    SciTech Connect

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K.

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.

  12. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti.

    PubMed

    Dos Santos, Edilson Alves; de Carvalho, Cenira M; Costa, Ana L S; Conceição, Adilva S; Moura, Flávia de B Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC(50) 83.426 mg/L and LC(50) 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC(50) 0.94 mg/L, LC(50) 13.51 mg/L, and LC(50) 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  13. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata.

    PubMed

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called "immune priming" or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  14. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes†||‡

    PubMed Central

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-01-01

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain, and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 Å apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5-β-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product. PMID:20968298

  15. Study of the snail intermediate hosts for Schistosoma mansoni on Itamaracá Island in northeast Brazil: spatial displacement of Biomphalaria glabrata by Biomphalaria straminea.

    PubMed

    Barbosa, Constança S; Barbosa, Verônica S; Nascimento, Wheverton C; Pieri, Otavio S; Araújo, Karina C G M

    2014-05-01

    In 2012 a malacological survey of the breeding sites of Biomphalaria glabrata and B. straminea , the two intermediate host snails of Schistosoma mansoni , was carried out on Itamaraca Island in Pernambuco, Brazil. This study has now been extended by studying the competition between the two species. Snails were collected and dissected to identify the species and tests were performed to verify S. mansoni infection. Student's t test was used to compare the proportion between the two species and their breeding sites and a parasitological survey was conducted among local residents, using the Kato-Katz method. The spatial distribution of the two snail species was determined using TerraView, while a snail density map was constructed by Kernel estimate. The survey identified two breeding sites for B. glabrata with 17 specimens and 19 breeding sites for B. straminea with 459 snails, all of them negative for S. mansoni infection. The statistical analysis revealed that the proportion of the numbers of specimens and breeding sites of B. straminea (37.84 ± 9.01) were significantly greater than those of B. glabrata (8.50 ± 6.50). Parasitological examinations from 41 residents diagnosed two cases of schistosomiasis with parasite loads of 60 and 84 eggs per 1 g of stool, respectively. This indiction of a competitive process between the two snail species requires monitoring of schistosomiasis in the resident and travelling human populations occupying this environment, which could potentially result in social and economic changes on the island risking its attraction as a centre for eco-tourism. PMID:24893012

  16. Pivotal Role for a Tail Subunit of the RNA Polymerase II Mediator Complex CgMed2 in Azole Tolerance and Adherence in Candida glabrata

    PubMed Central

    Borah, Sapan; Shivarathri, Raju; Srivastava, Vivek Kumar; Ferrari, Sélène; Sanglard, Dominique

    2014-01-01

    Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals. PMID:25070095

  17. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  18. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata.

    PubMed

    Tanaka, Yutaka; Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  19. Chemoattraction and penetration of Echinostoma trivolvis and E. caproni cercariae in the presence of Biomphalaria glabrata, Helisoma trivolvis, and Lymnaea elodes dialysate.

    PubMed

    Fried, B; Frazer, B A; Reddy, A

    1997-01-01

    A petri-dish bioassay was used to study the chemoattraction and penetration of the cercariae of Echinostoma trivolvis and E. caproni in the presence of snail dialysates from Helisoma trivolvis (Pennsylvania and Colorado strains). Biomphalaria glabrata, and Lynmaea elodes. Significant chemoattraction was seen with E. trivolvis cercariae in the presence of all snail dialysates released from nonperforated dialysis sacs with a molecular-weight exclusion of 12,000. Under the same conditions, E. caproni was significantly attracted to B. glabrata and H. trivolvis (CO strain) but not to L. elodes or H. trivolvis (PA strain). Dialysis sacs were perforated with needles to allow the release of snail substances of all molecular weights into the bioassay. Cercariae of both species were significantly attracted to all snail dialysates released from perforated sacs. Moreover, cercariae entered these sacs and penetrated the snails, and 24 h later the percentage of cysts per snail species ranged from 70% to 83% for E. trivolvis and from 73% to 93% for E. caproni. Dialysates released from intact sacs were extracted in choloroform-methanol (2:1) to obtain hydrophilic and lipophilic fractions. When these extracts were placed on agar plugs in the bioassay, the lipophilic fraction, but not the hydrophilic fraction, was mainly chemoattractive. PMID:9039703

  20. In vitro activity of Caspofungin combined with Fluconazole on mixed Candida albicans and Candida glabrata biofilm.

    PubMed

    Pesee, Siripen; Angkananuwat, Chayanit; Tancharoensukjit, Sudarat; Muanmai, Somporn; Sirivan, Pattaraporn; Bubphawas, Manita; Tanarerkchai, Nissara

    2016-05-01

    The objective of this study was to evaluate the antifungal effect of caspofungin (CAS) combined with fluconazole (FLU) on the biofilm biomass and cultivable viability and microstructure ofCandida albicansandCandida glabratamixed biofilmin vitro.Biofilms were formed in a 96-well microtiter plate for crystal violet assay and colony forming unit (CFU) method and grown on plastic coverslip disks for scanning electron microscopy. MIC50of CAS and FLU against singleCandida spp.and mixedCandida spp.biofilms were evaluated using crystal violet assay. Additional,C. albicansandC. glabratamixed biofilms were incubated with subinhibitory CAS concentration plus FLU and their percentages ofCandidabiofilm reduction were calculated. We found that percentages of biofilm reduction were significantly decreased when CAS at 0.25MIC and FLU (0.25 or 0.5MIC) were combined (P< .05) but not different when CAS at 0.5 MIC combined with FLU at 0.25 or 0.5MIC, compared to CAS treatment alone. Structural analyses revealed that CAS/FLU combination-treated biofilms showed less hyphae and blastospores with some aberrant cells compared to control group. Although it was evident that a greater CFU ofCandida glabratawere demonstrated in every group, the total viable cells derived from CAS/FLU combination-treated biofilms at any ratio were not significantly different from positive control. Overall, CAS/FLU combinations appeared to affect the quantity and cell architecture, but number of viable cell, ofCandida albicansandCandida glabratamixed biofilm. This antifungal effect was CAS concentration dependent. PMID:26768371

  1. Multifunctional role of β-1, 3 glucan binding protein purified from the haemocytes of blue swimmer crab Portunus pelagicus and in vitro antibacterial activity of its reaction product.

    PubMed

    Anjugam, Mahalingam; Iswarya, Arokiadhas; Vaseeharan, Baskaralingam

    2016-01-01

    β-1, 3 glucan binding protein (β-GBP) was isolated from the haemocytes of blue swimmer crab, Portunus pelagicus and purified by laminarin coupled Sephadex G-100 affinity column chromatography. The purified β-GBP has the molecular mass of 100 kDa, confirmed by SDS-PAGE. The X-ray diffraction analysis of purified β-GBP indicates the crystalline nature of the protein and also the presence of single peak confirming the existence of β-glucan molecule. The results of agglutination assay showed that the purified β-GBP had the ability to agglutinate with yeast cell, Saccharomyces cerevisiae and mammalian erythrocytes. β-GBP can agglutinate with yeast cells at the concentration of 50 μg/ml. The phagocytic and encapsulation activity of purified β-GBP from P. pelagicus was determined with yeast cell S. cerevisiae and sepharose bead suspension respectively. This reveals that, β-GBP have the ability to detect the pathogen associated molecular patterns (PAMP) found on the surface of fungi and bacteria. The recognition of invading foreign substances and in the involvement of functional activities induces the activation of prophenoloxidase. This revealed that β-GBP play a major role in the innate immune system of crustaceans by stimulating the prophenoloxidase system. Moreover, it was obvious to note that β-GBP reaction product exhibited antibacterial and antibiofilm activity against Gram positive and Gram negative bacteria. This study concludes the functional aspects of β-GBP purified from P. pelagicus and its vital role in the stimulation of prophenoloxidase cascade during the pathogenic infection. PMID:26611720

  2. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    SciTech Connect

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika; Sanglard, Dominique; Prasad, Rajendra

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns

  3. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein

    PubMed Central

    Zeng, Yong; Loker, Eric S.

    2013-01-01

    Peptidoglycan (PGN) recognition proteins (PGRPs) and gram-negative bacteria binding proteins (GNBPs) play an essential role in Toll/Imd signaling pathways in arthropods. The existence of homologous pathways involving PGRPs and GNBPs in other major invertebrate phyla such as the Mollusca remains unclear. In this paper, we report four full-length PGRP cDNAs and one full-length GNBP cDNA cloned from the snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, designated as BgPGRPs and BgGNBP, respectively. Three transcripts are generated from a long form PGRP gene (BgPGRP-LA) by alternative splicing and one from a short form PGRP gene (BgPGRP-SA). BgGNBP encodes a putative secreted protein. Northern blots demonstrated that expression of BgPGRP-SA and BgGNBP was down-regulated in B. glabrata at 6 h after exposure to three types of microbes. No significant changes in expression were observed in snails at 2 days post-exposure (dpe) to the trematodes Echinostoma paraensei or S. mansoni. However, up-regulation of BgPGRP-SA in M line snails at later time points of infection with E. paraensei (i.e., 12 and 17 dpe) was observed. Our study revealed that exposure to either microbes or trematodes did not alter the expression levels of BgPGRP-LAs, which were consistently low. This study provides new insights into the potential pathogen recognition capabilities of molluscs, indicates that further studies of the Toll/Imd pathways in this phylum are in order, and provides additional ways to judge the importance of this pathway in the evolution of internal defense across the animal phyla. PMID:17805526

  4. Using lysosomal membrane stability of haemocytes in Ruditapes philippinarum as a biomarker of cellular stress to assess contamination by caffeine, ibuprofen, carbamazepine and novobiocin.

    PubMed

    Aguirre-Martínez, Gabriela V; Buratti, Sara; Fabbr, Elena; DelValls, Angel T; Martín-Díaz, M Laura

    2013-07-01

    Although pharmaceuticals have been detected in the environment only in the range from ng/L to microg/L, it has been demonstrated that they can adversely affect the health status of aquatic organisms. Lysosomal membrane stability (LMS) has previously been applied as an indicator of cellular well-being to determine health status in bivalve mussels. The objective of this study is to evaluate LMS in Ruditapes philippinarum haemolymph using the neutral red retention assay (NRRA). Clams were exposed in laboratory conditions to caffeine (0.1, 5, 15, 50 microg/L), ibuprofen (0.1, 5, 10, 50 microg/L), carbamazepine and novobiocin (both at 0.1, 1, 10, 50 microg/L) for 35 days. Results show a dose-dependent effect of the pharmaceuticals. The neutral red retention time measured at the end of the bioassay was significantly reduced by 50% after exposure to environmental concentrations (p < 0.05) (caffeine = 15 microg/L; ibuprofen = 10 microg/L; carbamazepine = 1 microg/L and novobiocin = 1 microg/L), compared to controls. Clams exposed to these pharmaceuticals were considered to present a diminished health status (retention time < 45 min), significantly worse than controls (96 min) (p < 0.05). The predicted no environmental effect concentration (PNEC) results showed that these pharmaceuticals are very toxic at the environmental concentrations tested. Measurement of the alteration of LMS has been found to be a sensitive technique that enables evaluation of the health status of clams after exposure to pharmaceuticals under laboratory conditions, thus representing a robust Tier-1 screening biomarker. PMID:24218854

  5. Identification and characterisation of functional expressed sequence tags-derived simple sequence repeat (eSSR) markers for genetic linkage mapping of Schistosoma mansoni juvenile resistance and susceptibility loci in Biomphalaria glabrata

    PubMed Central

    Ittiprasert, Wannaporn; Miller, André; Su, Xin-zhuan; Mu, Jianbing; Bhusudsawang, Ganlayarat; Ukoskit, Kitipat; Knight, Matty

    2013-01-01

    Biomphalaria glabrata susceptibility to Schistosoma mansoni has a strong genetic component, offering the possibility for investigating host–parasite interactions at the molecular level, perhaps leading to novel control approaches. The identification, mapping and molecular characterisation of genes that influence the outcome of parasitic infection in the intermediate snail host is, therefore, seen as fundamental to the control of schistosomiasis. To better understand the evolutionary processes driving disease resistance/susceptibility phenotypes, we previously identified polymorphic random amplification of polymorphic DNA and genomic simple sequence repeats from B. glabrata. In the present study we identified and characterised polymorphic expressed simple sequence repeats markers (Bg-eSSR) from existing B. glabrata expressed sequence tags. Using these markers, and with previously identified genomic simple sequence repeats, genetic linkage mapping for parasite refractory and susceptibility phenotypes, the first known for B. glabrata, was initiated. Data mining of 54,309 expressed sequence tag, produced 660 expressed simple sequence repeats of which dinucleotide motifs (TA)n were the most common (37.88%), followed by trinucleotide (29.55%), mononucleotide (18.64%) and tetranucleotide (10.15%). Penta- and hexanucleotide motifs represented <3% of the Bg-eSSRs identified. While the majority (71%) of Bg-eSSRs were monomorphic between resistant and susceptible snails, several were, however, useful for the construction of a genetic linkage map based on their inheritance in segregating F2 progeny snails derived from crossing juvenile BS-90 and NMRI snails. Polymorphic Bg-eSSRs assorted into six linkage groups at a logarithm of odds score of 3. Interestingly, the heritability of four markers (Prim1_910, Prim1_771, Prim6_1024 and Prim7_823) with juvenile snail resistance were, by t-test, significant (P < 0.05) while an allelic marker, Prim24_524, showed linkage with the

  6. New Insights into the Structure of (1→3,1→6)-β-D-Glucan Side Chains in the Candida glabrata Cell Wall

    PubMed Central

    Lowman, Douglas W.; West, Lara J.; Bearden, Daniel W.; Wempe, Michael F.; Power, Trevor D.; Ensley, Harry E.; Haynes, Ken; Williams, David L.; Kruppa, Michael D.

    2011-01-01

    β-glucan is a (1→3)-β-linked glucose polymer with (1→6)-β-linked side chains and a major component of fungal cell walls. β-glucans provide structural integrity to the fungal cell wall. The nature of the (1–6)-β-linked side chain structure of fungal (1→3,1→6)-β-D-glucans has been very difficult to elucidate. Herein, we report the first detailed structural characterization of the (1→6)-β-linked side chains of Candida glabrata using high-field NMR. The (1→6)-β-linked side chains have an average length of 4 to 5 repeat units spaced every 21 repeat units along the (1→3)-linked polymer backbone. Computer modeling suggests that the side chains have a bent curve structure that allows for a flexible interconnection with parallel (1→3)-β-D-glucan polymers, and/or as a point of attachment for proteins. Based on these observations we propose new approaches to how (1→6)-β-linked side chains interconnect with neighboring glucan polymers in a manner that maximizes fungal cell wall strength, while also allowing for flexibility, or plasticity. PMID:22096604

  7. Localization of Tyrosine Hydroxylase-like Immunoreactivity in the Nervous Systems of Biomphalaria glabrata and Biomphalaria alexandrina, Intermediate Hosts for Schistosomiasis

    PubMed Central

    Vallejo, Deborah; Habib, Mohammed R.; Delgado, Nadia; Vaasjo, Lee O.; Croll, Roger P.; Miller, Mark W.

    2014-01-01

    Planorbid snails of the genus Biomphalaria are major intermediate hosts for the digenetic trematode parasite Schistosoma mansoni. Evidence suggests that levels of the neurotransmitter dopamine (DA) are reduced during the course of S. mansoni multiplication and transformation within the snail. This investigation used immunohistochemical methods to localize tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, in the nervous system of Biomphalaria. The two species examined, Biomphalaria glabrata and Biomphalaria alexandrina, are the major intermediate hosts for S. mansoni in sub-Saharan Africa, where more than 90% of global cases of human intestinal schistosomiasis occur. TH-like immunoreactive (THli) neurons were distributed throughout the central nervous system (CNS) and labeled fibers were present in all commissures, connectives, and nerves. Some asymmetries were observed, including a large distinctive neuron (LPeD1) in the pedal ganglion described previously in several pulmonates. The majority of TH-like immunoreactive neurons were detected in the peripheral nervous system (PNS), especially in lip and foot regions of the anterior integument. Independent observations supporting the dopaminergic phenotype of THli neurons included 1) block of LPeD1 synaptic signaling by the D2/3 antagonist sulpiride, and 2) the similar localization of aqueous aldehyde (FaGlu) induced fluorescence. The distribution of THli neurons indicates that, as in other gastropods, dopamine functions as a sensory neurotransmitter and in the regulation of feeding and reproductive behaviors in Biomphalaria. It is hypothesized that infection could stimulate transmitter release from dopaminergic sensory neurons and that dopaminergic signaling could contribute to modifications of both host and parasite behavior. PMID:24477836

  8. Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    PubMed

    Rinaldi, Gabriel; Yan, Hongbin; Nacif-Pimenta, Rafael; Matchimakul, Pitchaya; Bridger, Joanna; Mann, Victoria H; Smout, Michael J; Brindley, Paul J; Knight, Matty

    2015-07-01

    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. PMID:25907768

  9. Clotrimazole Drug Resistance in Candida glabrata Clinical Isolates Correlates with Increased Expression of the Drug:H+ Antiporters CgAqr1, CgTpo1_1, CgTpo3, and CgQdr2

    PubMed Central

    Costa, Catarina; Ribeiro, Jonathan; Miranda, Isabel M.; Silva-Dias, Ana; Cavalheiro, Mafalda; Costa-de-Oliveira, Sofia; Rodrigues, Acácio G.; Teixeira, Miguel C.

    2016-01-01

    For years, antifungal drug resistance in Candida species has been associated to the expression of ATP-Binding Cassette (ABC) multidrug transporters. More recently, a few drug efflux pumps from the Drug:H+ Antiporter (DHA) family have also been shown to play a role in this process, although to date only the Candida albicans Mdr1 transporter has been demonstrated to be relevant in the clinical acquisition of antifungal drug resistance. This work provides evidence to suggest the involvement of the C. glabrata DHA transporters CgAqr1, CgQdr2, CgTpo1_1, and CgTpo3 in the clinical acquisition of clotrimazole drug resistance. A screening for azole drug resistance in 138 C. glabrata clinical isolates, from patients attending two major Hospitals in Portugal, was performed. Based on this screening, 10 clotrimazole susceptible and 10 clotrimazole resistant isolates were selected for further analysis. The transcript levels of CgAQR1, CgQDR2, CgTPO1_1, and CgTPO3 were found to be significantly up-regulated in resistant isolates when compared to the susceptible ones, with a level of correlation that was found to be similar to that of CgCDR2, an ABC gene known to be involved in the clinical acquisition of resistance. As a proof-of-concept experiment, the CgTPO3 gene was deleted in an azole resistant C. glabrata isolate, exhibiting high levels of expression of this gene. The deletion of CgTPO3 in this isolate was found to lead to decreased resistance to clotrimazole and fluconazole, and increased accumulation of azole drugs, thus suggesting the involvement of this transporter in the manifestation of azole resistance. PMID:27148215

  10. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxification in the amebocyte-producing organ of the snail Biomphalaria glabrata.

    PubMed

    Zhang, Si-Ming; Loker, Eric S; Sullivan, John T

    2016-03-01

    The anterior pericardial wall of the snail Biomphalaria glabrata has been identified as a site of hemocyte production, hence has been named the amebocyte-producing organ (APO). A number of studies have shown that exogenous abiotic and biotic substances, including pathogen associated molecular patterns (PAMPs), are able to stimulate APO mitotic activity and/or enlarge its size, implying a role for the APO in innate immunity. The molecular mechanisms underlying such responses have not yet been explored, in part due to the difficulty in obtaining sufficient APO tissue for gene expression studies. By using a modified RNA extraction technique and microarray technology, we investigated transcriptomic responses of APOs dissected from snails at 24 h post-injection with two bacterial PAMPs, lipopolysaccharide (LPS) and peptidoglycan (PGN), or with fucoidan (FCN), which may mimic fucosyl-rich glycan PAMPs on sporocysts of Schistosoma mansoni. Based upon the number of genes differentially expressed, LPS exhibited the strongest activity, relative to saline-injected controls. A concurrent activation of genes involved in cell proliferation, immune response and detoxification metabolism was observed. A gene encoding checkpoint 1 kinase, a key regulator of mitosis, was highly expressed after stimulation by LPS. Also, seven different aminoacyl-tRNA synthetases that play an essential role in protein synthesis were found to be highly expressed. In addition to stimulating genes involved in cell proliferation, the injected substances, especially LPS, also induced expression of a number of immune-related genes including arginase, peptidoglycan recognition protein short form, tumor necrosis factor receptor, ficolin, calmodulin, bacterial permeability increasing proteins and E3 ubiquitin-protein ligase. Importantly, significant up-regulation was observed in four GiMAP (GTPase of immunity-associated protein) genes, a result which provides the first evidence suggesting an immune role of Gi

  11. Flooding modifies the genotoxic effects of pollution on a worm, a mussel and two fish species from the Sava River.

    PubMed

    Aborgiba, Mustafa; Kostić, Jovana; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Elbahi, Samia; Knežević-Vukčević, Jelena; Lenhardt, Mirjana; Paunović, Momir; Gačić, Zoran; Vuković-Gačić, Branka

    2016-01-01

    Extreme hydrological events, such as water scarcity and flooding, can modify the effect of other stressors present in aquatic environment, which could result in the significant changes in the ecosystem functioning. Presence and interaction of various stressors (genotoxic pollutants) in the environment can influence the integrity of DNA molecules in aquatic organisms which can be negatively reflected on the individual, population and community levels. Therefore, in this study we have investigated the impact of flooding, in terms of genotoxicity, on organisms belonging to different trophic levels. The study was carried out on the site situated in the lower stretch of the Sava River which faced devastating effects of severe flooding in May 2014. The flooding occurred during our field experiment and this event provided a unique opportunity to assess its influence to the environment. The in situ effects of this specific situation were monitored by measuring physical, chemical and microbiological parameters of water, and by comparing the level of DNA damage in coelomocytes and haemocytes of freshwater worms Branchiura sowerbyi, haemocytes of freshwater mussels Unio tumidus and blood cells of freshwater fish Abramis bjoerkna/Abramis sapa, by means of the comet assay. Our study indicated that the flooding had a significant impact on water quality by decreasing the amount and discharge rate of urban wastewaters but simultaneously introducing contaminants from the nearby fly ash disposal field into river by runoff, which had diverse effects on the level of DNA damage in the studied organisms. This indicates that the assessment of genotoxic pollution in situ is strongly affected by the choice of the bioindicator organism. PMID:25861862

  12. Genotoxic effects of two nickel-compounds in somatic cells of Drosophila melanogaster.

    PubMed

    Carmona, Erico R; Creus, Amadeu; Marcos, R

    2011-01-10

    In view of the scarcely available information on the in vivo mutagenic and co-mutagenic activity of nickel, the genotoxic potential of two nickel-compounds, nickel chloride (NiCl(2)) and nickel sulphate (NiSO(4)), was assessed in Drosophila melanogaster by measuring two different genetic endpoints. On the one hand, we used the wing-spot assay, which is based on the principle that the loss of heterozygosity of two suitable recessive markers, multiple wing hairs (mwh) and flare-3 (flr(3)), can lead to the formation of mutant clones in the imaginal disks of larval cells. On the other hand, the in vivo comet assay, which detects single- and double-strand DNA breaks, was also used with larval haemocytes. These cells offer several advantages: they are highly sensitive to genotoxic agents, the sampling and processing methodologies are quite simple and the level of basal DNA damage is relatively low. No significant increases in the frequencies of the three categories of mutant spots (i.e. small single spots, large single spots, and twin spots) were observed in the wing-spot assay; however, NiSO(4) induced significant dose-dependent increases in DNA damage in the comet assay. In addition, the combined treatments with gamma-radiation and NiCl(2) and NiSO(4) showed a slight but significant increase in the frequency of the three categories of mutant spots compared with the frequency induced by gamma-radiation alone, indicating that both nickel compounds have a synergistic interaction. These results support the assumption that both nickel compounds could act as co-mutagens interfering with DNA-repair processes and that the in vivo comet assay is a sensitive and effective method for detecting the DNA damage induced by NiSO(4) in haemocytes of D. melanogaster. PMID:21073980

  13. Effective immunosuppression with dexamethasone phosphate in the Galleria mellonella larva infection model resulting in enhanced virulence of Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Torres, Miquel Perez; Entwistle, Frances; Coote, Peter J

    2016-08-01

    The aim was to evaluate whether immunosuppression with dexamethasone 21-phosphate could be applied to the Galleria mellonella in vivo infection model. Characterised clinical isolates of Escherichia coli or Klebsiella pneumoniae were employed, and G. mellonella larvae were infected with increasing doses of each strain to investigate virulence in vivo. Virulence was then compared with larvae exposed to increasing doses of dexamethasone 21-phosphate. The effect of dexamethasone 21-phosphate on larval haemocyte phagocytosis in vitro was determined via fluorescence microscopy and a burden assay measured the growth of infecting bacteria inside the larvae. Finally, the effect of dexamethasone 21-phosphate treatment on the efficacy of ceftazidime after infection was also noted. The pathogenicity of K. pneumoniae or E. coli in G. mellonella larvae was dependent on high inoculum numbers such that virulence could not be attributed specifically to infection by live bacteria but also to factors associated with dead cells. Thus, for these strains, G. mellonella larvae do not constitute an ideal infection model. Treatment of larvae with dexamethasone 21-phosphate enhanced the lethality induced by infection with E. coli or K. pneumoniae in a dose- and inoculum size-dependent manner. This correlated with proliferation of bacteria in the larvae that could be attributed to dexamethasone inhibiting haemocyte phagocytosis and acting as an immunosuppressant. Notably, prior exposure to dexamethasone 21-phosphate reduced the efficacy of ceftazidime in vivo. In conclusion, demonstration of an effective immunosuppressant regimen can improve the specificity and broaden the applications of the G. mellonella model to address key questions regarding infection. PMID:26920133

  14. In vivo effects of LCO soluble fraction on immune-related functions and gene transcription in the Pacific oyster, Crassostrea gigas (Thunberg).

    PubMed

    Bado-Nilles, Anne; Renault, Tristan; Faury, Nicole; Le Floch, Stéphane; Quentel, Claire; Auffret, Michel; Thomas-Guyon, Hélène

    2010-05-01

    The effects of a soluble fraction of light cycle oil (LCO) on haemocyte parameters, phenoloxidase (PO) activity and mRNA expression of immune-related genes, in the Pacific oyster, Crassostrea gigas, were tested after seven days of exposure and two weeks of recovery period. Five polycyclic aromatic hydrocarbons (PAHs) out of ten detected in tank water had bioaccumulated at the end of the contamination period. The concentration of PAHs in oyster tissues decreased during the recovery period and 14 days after the exposure, 69% of bioaccumulated PAHs were detected in contaminated oysters. The exposure induced severe oyster mortality (21%), external and internal green colouration of the shell and a significant decrease of PO activity. The mRNA expression of several genes was altered. As a conclusion, a modulation of immune-related parameters was demonstrated using three different approaches, namely cellular (flow cytometry), biochemical (spectrophotometry) and genomics (gene transcription) in oysters after contact with soluble fraction of LCO. PMID:19800699

  15. Strong negative effects of simulated heat waves in a tropical butterfly.

    PubMed

    Fischer, Klaus; Klockmann, Michael; Reim, Elisabeth

    2014-08-15

    Climate change poses a significant challenge to all natural systems on Earth. Especially increases in extreme weather events such as heat waves have the potential to strongly affect biodiversity, though their effects are poorly understood because of a lack of empirical data. Therefore, we here explore the sensitivity of a tropical ectotherm, which are in general believed to have a low warming tolerance, to experimentally simulated climate change using ecologically realistic diurnal temperature cycles. Increasing the mean temperature permanently by 3°C had mostly minor effects on developmental traits in the butterfly Bicyclus anynana. Simulated heat waves (strongly elevated temperatures for some time though retaining the same overall temperature mean), in contrast, caused strong negative effects by prolonging development time (by up to 10%) and reducing body mass (-21%), especially when combined with reduced relative humidity. Detrimental effects were carried over into the adult stage, diminishing subsequent performance. Most strikingly, higher temperatures suppressed adult immune function (haemocytes: -54%, lysozyme activity: -32%), which may potentially change the way species interact with antagonists. Heat waves thus reduced fitness parameters by 10-25% for development time and body mass and by up to 54% for immune parameters even in this plastic and widespread butterfly, exemplifying the potentially dramatic impact of extreme weather events on biodiversity. PMID:24902752

  16. Thermal and physical stresses induce a short-term immune priming effect in Galleria mellonella larvae.

    PubMed

    Browne, Niall; Surlis, Carla; Kavanagh, Kevin

    2014-04-01

    Exposure of larvae of Galleria mellonella larvae to mild physical (i.e. shaking) or thermal stress for 24h increased their ability to survive infection with Aspergillus fumigatus conidia however larvae stressed in a similar manner but incubated for 72h prior to infection showed no elevation in their resistance to infection with A. fumigatus. Stressed larvae demonstrated an elevated haemocyte density 24h after initiation of the stress event but this declined at 48 and 72h. Larval proteins such as apolipophorin, arylophorin and prophenoloxidase demonstrated elevated expression at 24h but not at 72h. Larvae maintained at 37°C showed increased expression of a range of antimicrobial and immune-related proteins at 24h but these decreased in expression thereafter. The results presented here indicate that G. mellonella larvae are capable of altering their immune response following exposure to mild thermal or physical stress to mount a response capable of counteracting microbial infection which reaches a peak 24h after the initiation of the priming event and then declines by 72h. A short-term immune priming effect may serve to prevent infection but maintaining an immune priming effect for longer periods may be metabolically costly and unnecessary while living within the colony of another insect. PMID:24561359

  17. Effect of Mobile Phone Radiation on Cardiovascular Development of Chick Embryo.

    PubMed

    Ye, W; Wang, F; Zhang, W; Fang, N; Zhao, W; Wang, J

    2016-06-01

    The biological effects on cardiovascular development of chicken embryos were examined after radiation exposure using mobile phone (900 MHz; specific absorption rate˜1.07 W/kg) intermittently 3 h per day during incubation. Samples were selected by morphological and histological methods. The results showed the rate of embryonic mortality and cardiac deformity increased significantly in exposed group (P < 0.05). No any histological pathological changes were observed on Day 5-7 (D5-D7) of incubation. A higher distribution of lipid droplets was unexpectedly present in myocardial tissue from the exposure groups on D10-D13. Soon afterwards, myofilament disruption, atrioventricular valve focal necrosis, mitochondria vacuolization and atrial natriuretic peptide (ANP) decrease appeared on D15-D21 of incubation. Comet assay data showed the haemocyte mean tail in the exposed group was significantly larger than that of the control (P < 0.01). The arterial vascular wall of exposed group was thicker (P < 0.05) than that of the control on D13, which was reversed to normal in later stages. Our findings suggest that long-term exposure of MPR may induce myocardium pathological changes, DNA damage and increased mortality; however, there was little effect on vascular development. PMID:26171674

  18. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments

    PubMed Central

    Ritzinger, C. H. S. P.; McSorley, R.; Gallaher, R. N.

    1998-01-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop. PMID:19274256

  19. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments.

    PubMed

    Ritzinger, C H; McSorley, R; Gallaher, R N

    1998-12-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop. PMID:19274256

  20. Synergistic Antifungal Effect of Glabridin and Fluconazole

    PubMed Central

    Liu, Wei; Li, Li Ping; Zhang, Jun Dong; Li, Qun; Shen, Hui; Chen, Si Min; He, Li Juan; Yan, Lan; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2014-01-01

    The incidence of invasive fungal infections is increasing in recent years. The present study mainly investigated glabridin (Gla) alone and especially in combination with fluconazole (FLC) against Cryptococcus neoformans and Candida species (Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis and Candida Glabratas) by different methods. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) indicated that Gla possessed a broad-spectrum antifungal activity at relatively high concentrations. After combining with FLC, Gla exerted a potent synergistic effect against drug-resistant C. albicans and C. tropicalis at lower concentrations when interpreted by fractional inhibitory concentration index (FICI). Disk diffusion test and time-killing test confirming the synergistic fungicidal effect. Cell growth tests suggested that the synergistic effect of the two drugs depended more on the concentration of Gla. The cell envelop damage including a significant decrease of cell size and membrane permeability increasing were found after Gla treatment. Together, our results suggested that Gla possessed a synergistic effect with FLC and the cell envelope damage maybe contributed to the synergistic effect, which providing new information for developing novel antifungal agents. PMID:25058485

  1. Effect of experimental exposure to differently virulent Aphanomyces astaci strains on the immune response of the noble crayfish Astacus astacus.

    PubMed

    Becking, Thomas; Mrugała, Agata; Delaunay, Carine; Svoboda, Jiří; Raimond, Maryline; Viljamaa-Dirks, Satu; Petrusek, Adam; Grandjean, Frédéric; Braquart-Varnier, Christine

    2015-11-01

    European crayfish are sensitive to the crayfish plague pathogen, Aphanomyces astaci, carried by North American crayfish species due to their less effective immune defence mechanisms against this disease. During a controlled infection experiment with a susceptible crayfish species Astacus astacus using three A. astaci strains (representing genotype groups A, B, and E), we investigated variation in their virulence and in crayfish immune defence indicators (haemocyte density, phenoloxidase activity, and production of reactive oxygen species). Experimental crayfish were exposed to two dosages of A. astaci spores (1 and 10 spores mL(-1)). The intensity and timing of the immune response differed between the strains as well as between the spore concentrations. Stronger and faster change in each immune parameter was observed in crayfish infected with two more virulent strains, indicating a relationship between crayfish immune response and A. astaci virulence. Similarly, the immune response was stronger and was observed earlier for the higher spore concentration. For the first time, the virulence of a strain of the genotype group E (isolated from Orconectes limosus) was experimentally tested. Total mortality was reached after 10 days for the two higher spore dosages (10 and 100 spores mL(-1)), and after 16 days for the lowest (1 spore mL(-1)), revealing equally high and rapid mortality as caused by the genotype group B (from Pacifastacus leniusculus). No mortality occurred after infection with genotype group A during 60 days of the experimental trial. PMID:26410255

  2. Using biochemical markers to assess the effects of imposed temperature stress on freshwater decapod crustaceans: Cherax quadricarinatus as a test case.

    PubMed

    Bone, J W P; Renshaw, G M C; Furse, J M; Wild, C H

    2015-04-01

    The effects of thermal stress can impact negatively on the abundance and distribution of temperature-sensitive species, particularly freshwater crustaceans. This study investigated the effects of thermal stress on physiological and biochemical parameters at five treatment temperatures resulting in minimal (25 °C), moderate (27, 29 °C) or severe (31, 33 °C) thermal stress in the common tropical freshwater crayfish Cherax quadricarinatus. The aim was to develop a suite of stress-sensitive assays to use on threatened populations of freshwater crustaceans, particularly those restricted to cooler temperatures and only found in high altitude refugia. Significant increases in indicators of oxidative and metabolic stress were observed at 29 °C and were elevated further at 33 °C. After a 50-day acclimation to an imposed temperature stress, significant changes in the level of total glutathione, total lipids, muscular protein, total haemocyte count, lipid peroxidation and protein carbonyls were observed between treatments while superoxide dismutase activity and haemolymph protein concentrations did not change. The data provided proof of concept that measuring key biochemical responses to high temperature can provide a means of contrasting the level of thermal stress experienced between individuals of the same species adapted to different temperatures. The methods developed are expected to be of use in research on wild populations of other freshwater poikilothermic organisms, particularly those susceptible to increased environmental temperatures associated with climate change. PMID:25528146

  3. The effect of leaf biopesticide Mirabilis jalapa and fungi Metarhizium anisopliae to immune response and mortality of Spodoptera exigua instar IV

    NASA Astrophysics Data System (ADS)

    Suryani, A. Irma; Anggraeni, Tjandra

    2014-03-01

    Spodoptera exigua is one of insect causing damage in agriculture sector. This insect can be controlled by a natural biopesticide by combining two agents of biological control, biopesticides Mirabilis jalapa and entomopathogenic fungi Metarhizium anisopliae, considered to be virulent toward a wide range of insects. The objective of research was to determine the effect of biopesticides M. jalapa and fungi M. anisopliae against immune system and mortality of S. exigua. This research used a complete randomized block design with five concentrations Mirabilis jalapa and optimum dose of M. anisopliae. A high dose of M. jalapa (0.8% w/v) is the most effective one to decrease total haemocytes especially granulocyt and plasmatocyt (cellular immune) and decrease the concentration of lectin (humoral immune) from S. exigua (p < 0.05). The combination of M. jalapa (0, 8% w/v) and lethal dose of M. anisopliae 2.59 × 107 spore/ml were significant to increase mortality of S. exigua within 48 hours (p < 0.05).

  4. Haemocytic periodicity and periodic disorders: Periodic neutropenia, thrombocytopenia, lymphocytosis and anaemia

    PubMed Central

    Reimann, Hobart A.

    1971-01-01

    Evidence has accumulated of rhythmic numerical oscillation of each of the blood cells either independently or in combinations. The cyclic changes originate in the marrow of some normal persons and animals without causing illness, and can be induced experimentally. In more than 100 reported instances, periodic oscillations of various cells were accompanied by respective episodes of the disorders named in the title. The disorders may be transitory but usually recur throughout life and occasionally are fatal. All resist therapy. Features in common suggest an interrelationship of the haemal disorders and other disparate heritable periodic diseases. Theoretically, the rhythms are regulated by ubiquitous, inherent, intracellular bioclocks controlled hypothalamically or neurohumorally in relation to a feedback mechanism. Reactions to long cycles are of greater clinical importance than disturbances arising from the circadian rhythm. PMID:4397784

  5. Drug-Resistant Candida glabrata Infection in Cancer Patients

    PubMed Central

    Farmakiotis, Dimitrios; Tarrand, Jeffrey J.

    2014-01-01

    Cancer patients are at risk for candidemia, and increasing Candida spp. resistance poses an emerging threat. We determined rates of antifungal drug resistance, identified factors associated with resistance, and investigated the correlation between resistance and all-cause mortality rates among cancer patients with ≥1 C. glabrata–positive blood culture at MD Anderson Cancer Center, Houston, Texas, USA, during March 2005–September 2013. Of 146 isolates, 30 (20.5%) were resistant to fluconazole, 15 (10.3%) to caspofungin, and 10 (6.8%) to multiple drugs (9 caspofungin-resistant isolates were also resistant to fluconazole, 1 to amphotericin B). Independently associated with fluconazole resistance were azole preexposure, hematologic malignancy, and mechanical ventilation. Independently associated with caspofungin resistance were echinocandin preexposure, monocytopenia, and total parenteral nutrition. Fluconazole resistance was highly associated with caspofungin resistance, independent of prior azole or echinocandin use. Caspofungin resistance was associated with increased 28-day all-cause mortality rates. These findings highlight the need for good stewardship of antifungal drugs. PMID:25340258

  6. The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae.

    PubMed

    Muralisankar, Thirunavukkarasu; Saravana Bhavan, Periyakali; Radhakrishnan, Subramanian; Seenivasan, Chandirasekar; Srinivasan, Veeran

    2016-03-01

    The present study was performed to assess the effects of dietary supplementation of copper nanoparticles (Cu-NPs) on growth, biochemical constituents, digestive enzyme activities, antioxidant, metabolic enzyme levels, and non specific immune response of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The Cu-NPs (200 nm) were synthesized by facile and environmental friendly hydrothermal method. Cu-NPs were supplemented at 0, 10, 20, 40, 60, and 80 mg kg(-1) with the basal diets. These Cu-NPs supplemented diets were fed to M. rosenbergii PL for 90 days. Results showed significant (P<0.05) improvements were observed in survival, growth, digestive enzyme activities, concentrations of biochemical constituents and total and differential haemocytes count of prawns fed with 20 mg Cu-NPs kg(-1) supplemented feed. Prawns fed with 40-80 mg Cu-NPs kg(-1) supplemented feed showed negative performance. Activity of antioxidants and metabolic enzymes in the muscle and hepatopancreas of prawns showed no significant alterations (P>0.05) prawns fed with up to 20 mg Cu-NPs kg(-1) supplemented feeds. Whereas, prawns fed with 40-80 mg Cu-NPs kg(-1) supplemented feed showed significant (P<0.05) elevations in antioxidant and metabolic enzymes activities. Hence, 40-80 mg Cu-NPs kg(-1) diets may have toxic effect to M. rosenbergii. Hence, present study suggests that 20 mg Cu-NPs kg(-1) can be supplemented for regulating better survival, growth and immune response of M. rosenbergii PL. PMID:26854244

  7. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species.

    PubMed

    Galpert, Deborah; Del Río, Sara; Herrera, Francisco; Ancede-Gallardo, Evys; Antunes, Agostinho; Agüero-Chapin, Guillermin

    2015-01-01

    Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification. PMID:26605337

  8. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species

    PubMed Central

    Galpert, Deborah; del Río, Sara; Herrera, Francisco; Ancede-Gallardo, Evys; Antunes, Agostinho; Agüero-Chapin, Guillermin

    2015-01-01

    Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification. PMID:26605337

  9. Effect of thermal stress on protein expression in the mussel Mytilus galloprovincialis Lmk.

    PubMed

    González-Riopedre, M; Novás, A; Dobaño, E; Ramos-Martínez, J I; Barcia, R

    2007-07-01

    The exposure of organisms to stressing agents may affect the level and pattern of protein expression. Certain proteins with an important role in protein homeostasis and in the tolerance to stress, known as stress proteins, are especially affected. Different tissues and cells show a range of sensitivities to stress, depending on the habitat to which organisms have adapted. The response of different tissues and cells from the mussel Mytilus galloprovincialis Lmk. to heat shock has been studied in this work using different exposure times and temperatures. During the assays, protein expression was observed to vary depending on the tissue studied, the temperature or the exposure time used. But maybe the most prominent thing is the different response obtained from the cultured haemocytes and those freshly obtained from stressed mussels, which makes us think that the extraction procedure is the main cause of the response of non-cultured cells, although the haemolymph may contain components that modulate haemocyte response. PMID:17462933

  10. Relative sensitivity of two marine bivalves for detection of genotoxic and cytotoxic effects: a field assessment in the Tamar Estuary, South West England.

    PubMed

    Dallas, Lorna J; Cheung, Victoria V; Fisher, Andrew S; Jha, Awadhesh N

    2013-04-01

    The input of anthropogenic contaminants to the aquatic environment is a major concern for scientists, regulators and the public. This is especially relevant in areas such as the Tamar valley in SW England, which has a legacy of contamination from industrial activity in the nineteenth and twentieth centuries. Following on from previous laboratory validation studies, this study aimed to assess the relationship between genotoxic and cytotoxic responses and heavy metal concentrations in two bivalve species sampled from locations along the Tamar estuary. Adult cockles, Cerastoderma edule, and blue mussels, Mytilus edulis, were sampled from five locations in the Tamar and one reference location on the south Devon coast. Bivalve haemocytes were processed for comet and neutral red retention (NRR) assays to determine potential genotoxic and cytotoxic effects, respectively. Sediment and soft tissue samples were analysed for metal content by inductively coupled plasma mass spectrometry. Sediment concentrations were consistent with the physico-chemical nature of the Tamar estuary. A significant correlation (P = 0.05) was found between total metal concentration in sediment and C. edule soft tissues, but no such correlation was found for M. edulis samples. DNA damage was elevated at the site with highest Cr concentrations for M. edulis and at the site with highest Ni and Pb concentrations for C. edule. Analysis of NRR revealed a slight increase in retention time at one site, in contrast to comet data. We conclude that the comet assay is a reliable indicator of genotoxic damage in the field for both M. edulis and C. edule and discuss reasons for the apparent discrepancy with NRR. PMID:22890867