Science.gov

Sample records for glaciales tierra del

  1. Do crustal deformations observed by GPS in Tierra del Fuego (Argentina) reflect glacial-isostatic adjustment?

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Richter, A.; Hormaechea, J. L.; Perdomo, R.; Del Cogliano, D.; Dietrich, R.; Fritsche, M.

    2010-09-01

    Vertical site velocities determined by geodetic GPS observations in the Lago Fagnano area, Tierra del Fuego main island, are interpreted with respect to their potential relation with the glacial-isostatic crustal response to ice mass changes. The spatial pattern of the uplift rates, in combination with the horizontal crustal deformation pattern, point towards a fault-tectonic rather than glacial-isostatic origin of the determined vertical crustal deformations. This implies rather small GIA effects pointing towards relatively small Holocene ice-mass changes in Tierra del Fuego. However, these findings are considered to be preliminary. They should be confirmed by additional observations covering an extended area with GPS sites.

  2. Erratic boulder trains and cosmogenic exposure dating of former glacial limits: A case-study from Tierra del Fuego, southernmost South America

    NASA Astrophysics Data System (ADS)

    Darvill, Christopher; Stokes, Chris; Bentley, Mike

    2014-05-01

    Erratic Boulder Trains (EBTs) are a spectacular yet poorly-understood glacial geomorphological feature. These linear clusters of glacial erratic boulders help to illustrate the flow-lines of former glaciers by pin-pointing the parent rock from which they have originated and are often used as targets for cosmogenic nuclide exposure dating. Consequently, there is a need to understand their geomorphological significance to improve ice-sheet reconstructions and provide important contextual information for dating studies. The EBTs in Tierra del Fuego are some of the finest examples of this feature in the world, and this paper presents the first comprehensive mapping and physical assessment of four boulder trains. Unlike most other examples, they were deposited laterally rather than medially and are tightly clustered, presenting linear features only a few kilometres long that contain hundreds to thousands of huge boulders (often >8 m in diameter). The size and angularity of the boulders strongly supports the hypothesis that they were deposited as a supraglacial rock avalanche. The boulders have been the subject of previous cosmogenic dating, which have yielded anomalously young ages from deposits thought to be hundreds of thousands of years old. Analysis of weathering proxies shows little difference between boulder trains thought to be of radically different ages, with important implications for the timing of glaciations and potentially contradicting previous age constraints on glacial limits in the region.

  3. Geomorphology and weathering characteristics of erratic boulder trains on Tierra del Fuego, southernmost South America: Implications for dating of glacial deposits

    NASA Astrophysics Data System (ADS)

    Darvill, Christopher M.; Bentley, Michael J.; Stokes, Chris R.

    2015-01-01

    Erratic boulder trains (EBTs) are a useful glacial geomorphological feature because they reveal former ice flow trajectories and can be targeted for cosmogenic nuclide exposure dating. However, understanding how they are transported and deposited is important because this has implications for palaeoglaciological reconstructions and the pre-exposure and/or erosion of the boulders. In this study, we review previous work on EBTs, which indicates that they may form subglacially or supraglacially but that large angular boulders transported long distances generally reflect supraglacial transport. We then report detailed observations of EBTs from Tierra del Fuego, southernmost South America, where their characteristics provide a useful framework for the interpretation of previously published cosmogenic nuclide exposure dates. We present the first comprehensive map of the EBTs and analyse their spatial distribution, size, and physical appearance. Results suggest that they were produced by one or more supraglacial rock avalanches in the Cordillera Darwin and were then transported supraglacially for 100 s of kilometres before being deposited. Rock surface weathering analysis shows no significant difference in the weathering characteristics of a sequence of EBTs, previously hypothesized to be of significantly different age (i.e., different glacial cycles). We interpret this to indicate that the EBTs are much closer in age than previous work has implied. This emphasises the importance of understanding EBT formation when using them for cosmogenic nuclide exposure dating.

  4. Tierra del Fuego, Argentina, South America

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Mitre Peninsula is the easternmost tip of Tierra del Fuego, Argentina, (54.5S, 65.5W). Early winter snow can be seen on this south tip of the Andes Mountains. These same mountains continue underwater to Antarctica. The Strait of Magellan, separating the South American mainland from Tierra del Fuego is off the scene to the north and west, but the Strait of LeMaire, separating Tierra del Fuego from the Isla de los Estados can be seen.

  5. Late Quaternary vegetation and climate of southern Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Heusser, Calvin J.

    1989-05-01

    Vegetation and climate over approximately the past 13,000 yr are reconstructed from fossil pollen in a 9.4-m mire section at Caleta Róbalo on Beagle Channel, Isla Navarino (54°56'S, 67°38'W), southern Tierra del Fuego. Fifty surface samples reflecting modern pollen dispersal serve to interpret the record. Chronologically controlled by nine radiocarbon dates, fossil pollen assemblages are: Empetrum-Gramineae- Gunnera-Tubuliflorae (zone 3b, 13,000-11,850 yr B.P.), Gramineae- Empetrum-assorted minor taxa (zone 3a, 11,850-10,000 yr B.P.), Nothofagus-Gramineae-Tubuliflorae-Polypodiaceae (zone 2, 10,000-5000 yr B.P.), Nothofagus-Empetrum (zone 1b, 5000-3000 yr B.P.), and Empetrum-Nothofagus (zone 1a, 3000-0 yr B.P.). Assemblages show tundra under a cold, dry climate (zone 3), followed by open woodland (zone 2), as conditions became warmer and less dry, and later, with greater humidity and lower temperatures, by closed forest and the spread of mires (zone 1). Comparisons drawn with records from Antarctica, New Zealand, Tasmania, and the subantarctic islands demonstrate broadly uniform conditions in the circumpolar Southern Hemisphere. The influences of continental and maritime antarctic air masses were apparently considerable in Tierra del Fuego during cold late-glacial time, whereas Holocene climate was largely regulated by interplay between maritime polar and maritime tropical air.

  6. Extreme Environments in Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Schultz, C.; D'Antoni, H.; Burgess, S.; Zamora, J.; Skiles, J.

    2007-12-01

    The upper timberline of the Andes Cordillera on the island of Tierra del Fuego at the tip of South America is an environment subject to extreme conditions. In order to further understand this environment, ecosystem parameters were measured within two transects of the Andes at Glaciar Martial and Cerro Guanaco. The measurements included pH, soil temperature, soil moisture, nitrogen, sodium and potassium concentration, chlorophyll absorbance, and irradiance in the ultraviolet range (200-400 nm). These data comprise a survey that serves as a baseline for an intensive research program. Chlorophyll concentration and soil data were within the range of our observations at several other sites, from Lapataia Bay on the southwestern boundary with Chile, through the eastern end of Lake Fagnano. However, unusual levels of solar irradiance were found in the open sites of both transects while those in the forest exhibited lower UV values, suggesting strong absorption and/or reflection by the forest canopy. High levels of UV radiation damage important biomolecules and may be partially responsible for the presence of life forms such as the krummholz belt in the upper timberline. These UV values may be due to the effects of global ozone depletion and the ozone hole. The low temperatures, strong winds, snow and ice-covered soil and especially the exposure to UV radiation make this area an extreme environment for life.

  7. Bryophyte-Cyanobacteria Associations during Primary Succession in Recently Deglaciated Areas of Tierra del Fuego (Chile)

    PubMed Central

    Arróniz-Crespo, María; Pérez-Ortega, Sergio; De los Ríos, Asunción; Green, T. G. Allan; Ochoa-Hueso, Raúl; Casermeiro, Miguel Ángel; de la Cruz, María Teresa; Pintado, Ana; Palacios, David; Rozzi, Ricardo; Tysklind, Niklas; Sancho, Leopoldo G.

    2014-01-01

    Bryophyte establishment represents a positive feedback process that enhances soil development in newly exposed terrain. Further, biological nitrogen (N) fixation by cyanobacteria in association with mosses can be an important supply of N to terrestrial ecosystems, however the role of these associations during post-glacial primary succession is not yet fully understood. Here, we analyzed chronosequences in front of two receding glaciers with contrasting climatic conditions (wetter vs drier) at Cordillera Darwin (Tierra del Fuego) and found that most mosses had the capacity to support an epiphytic flora of cyanobacteria and exhibited high rates of N2 fixation. Pioneer moss-cyanobacteria associations showed the highest N2 fixation rates (4.60 and 4.96 µg N g−1 bryo. d−1) very early after glacier retreat (4 and 7 years) which may help accelerate soil development under wetter conditions. In drier climate, N2 fixation on bryophyte-cyanobacteria associations was also high (0.94 and 1.42 µg N g−1 bryo. d−1) but peaked at intermediate-aged sites (26 and 66 years). N2 fixation capacity on bryophytes was primarily driven by epiphytic cyanobacteria abundance rather than community composition. Most liverworts showed low colonization and N2 fixation rates, and mosses did not exhibit consistent differences across life forms and habitat (saxicolous vs terricolous). We also found a clear relationship between cyanobacteria genera and the stages of ecological succession, but no relationship was found with host species identity. Glacier forelands in Tierra del Fuego show fast rates of soil transformation which imply large quantities of N inputs. Our results highlight the potential contribution of bryophyte-cyanobacteria associations to N accumulation during post-glacial primary succession and further describe the factors that drive N2-fixation rates in post-glacial areas with very low N deposition. PMID:24819926

  8. Bryophyte-cyanobacteria associations during primary succession in recently Deglaciated areas of Tierra del Fuego (Chile).

    PubMed

    Arróniz-Crespo, María; Pérez-Ortega, Sergio; De Los Ríos, Asunción; Green, T G Allan; Ochoa-Hueso, Raúl; Casermeiro, Miguel Ángel; de la Cruz, María Teresa; Pintado, Ana; Palacios, David; Rozzi, Ricardo; Tysklind, Niklas; Sancho, Leopoldo G

    2014-01-01

    Bryophyte establishment represents a positive feedback process that enhances soil development in newly exposed terrain. Further, biological nitrogen (N) fixation by cyanobacteria in association with mosses can be an important supply of N to terrestrial ecosystems, however the role of these associations during post-glacial primary succession is not yet fully understood. Here, we analyzed chronosequences in front of two receding glaciers with contrasting climatic conditions (wetter vs drier) at Cordillera Darwin (Tierra del Fuego) and found that most mosses had the capacity to support an epiphytic flora of cyanobacteria and exhibited high rates of N2 fixation. Pioneer moss-cyanobacteria associations showed the highest N2 fixation rates (4.60 and 4.96 µg N g-1 bryo. d-1) very early after glacier retreat (4 and 7 years) which may help accelerate soil development under wetter conditions. In drier climate, N2 fixation on bryophyte-cyanobacteria associations was also high (0.94 and 1.42 µg N g-1 bryo. d-1) but peaked at intermediate-aged sites (26 and 66 years). N2 fixation capacity on bryophytes was primarily driven by epiphytic cyanobacteria abundance rather than community composition. Most liverworts showed low colonization and N2 fixation rates, and mosses did not exhibit consistent differences across life forms and habitat (saxicolous vs terricolous). We also found a clear relationship between cyanobacteria genera and the stages of ecological succession, but no relationship was found with host species identity. Glacier forelands in Tierra del Fuego show fast rates of soil transformation which imply large quantities of N inputs. Our results highlight the potential contribution of bryophyte-cyanobacteria associations to N accumulation during post-glacial primary succession and further describe the factors that drive N2-fixation rates in post-glacial areas with very low N deposition. PMID:24819926

  9. Phytoseiid mites (Acari: Phytoseiidae) from Patagonia and Tierra del Fuego.

    PubMed

    Ferragut, Francisco; Navia, Denise

    2015-01-01

    Predatory phytoseiid mites have been intensively studied and surveyed in the last decades because of their economic importance as biocontrol agents of agricultural pests. However, many regions of the world remain unexplored and the diversity of the family worldwide is still fragmentary. Up to date no phytoseiid species have been collected in the southernmost part of the Earth down to latitude 45º S. In this study Phytoseiidae were sampled from native vegetation in southern Argentina and Chile in the regions of Patagonia and Tierra del Fuego Island. Thirteen species were collected, five of which were previously described and eight, Chileseius australis n. sp., Neoseiulus mapuche n. sp., Typhlodromips valdivianus n. sp., T. fissuratus n. sp., Amblyseius grandiporus n. sp., A. caliginosus n. sp., Typhlodromus (Anthoseius) anomalos n. sp. and Metaseiulus parabrevicollis n. sp. are proposed as new to science and are described and diagnosed. PMID:26250248

  10. [Epidemiology of dog bite lesions in Tierra del Fuego, Argentina].

    PubMed

    Zanini, Fabián; Padinger, Patricia; Elissondo, María C; Pérez, Héctor

    2008-01-01

    The coexistence between man and dog has resulted in mutual benefits during thousands of years, nevertheless some problems have recently arisen where bite injuries have an important role. The aim of this work was to describe the epidemiological characteristics of dog bite lesions which occurred during a year in Tierra del Fuego. A descriptive observational, transversal study of patients who were admitted with dog bite injuries to clinic and pediatric emergency services of hospitals and health centers was carried out between 3/1/05 and 3/1/06. A total of 382 records were made. The children group represents 49.5%. The group between 5 and 9 year-old was the most affected (44.4%; IC95% 37.2-51.8). In the adult group, that between 15 and 24 year-old was the most affected (29.5%; IC95% 23.2-36.5). More lesions were registered in men (57.6%) than in women (42.4%) (chi2 = 8.6, p = 0.003). During spring and summer months, 56.5% of the lesions were registered. A 72.8% of the incidents occurred on the public highway. Dogs of big size were responsible of 49.7% (IC95% 44.6-54.9) of the injuries. The 89.8% of the incidents were caused by another person's dog. Of the lesions, 55.8% (IC95% 50.6-60.8) were registered in lower extremities and 11% (IC95% 8.1-14.7) in head and neck. These data show that dog bite lesions affect the health and impact in the quality of life of the population of Tierra del Fuego, Argentina. PMID:18416313

  11. The Geologic and Geochemical Setting of Lago Fagnano, Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Tingle, D.; Odle, K.; Knettel, P.; Redding, S.; Perry, E.; Ellins, K.; Ormiston, C.; Dovzak, N.; Anderson, S.

    2005-12-01

    Lago Fagnano, Tierra del Fuego, Argentina is the largest and southernmost ice-free lake on Earth. The isolated lake is unique because the geographic and geologic context provides information relating to the westerly wind patterns, interaction of multiple water sources (hot springs, glacial meltwater, precipitation, groundwater), and tectonic dynamics along a major transform fault. In March, 2005, four students and three teachers from Boerne High School, south-central Texas joined scientists from the United States, Argentina and Switzerland engaged in a geophysical survey of this lake. Lago Fagnano potentially contains within its sediments an undisturbed record of the geotectonic and global climate variability of past 20,000 years. The science team imaged the lake floor with a boat specially equipped to collect both high resolution data (high frequency), imaging the upper 10-15 meters of the sediment, and long range data (low frequency), penetrating 100 or more meters into the sediment. The group conducted field research of existing tectonic features at the eastern end of Tierra del Fuego, an activity directly tied to the research objectives of the science team. They also collected water and soil samples to assess chemical and isotopic trends in the Lago Fagnano region. The research performed can help to characterize the modern geochemical setting of the lake. Analyses of dissolved oxygen, NH4+, PO42-, pH (water) and N, P, and pH (soils) demonstrate a link between low nutrient levels and low biodiversity (which was confirmed by observation) in Tierra del Fuego. Water and soil data are incorporated into a database to facilitate comparisons to North American samples collected and analyzed during the Boerne High School summer field courses. Twenty-three ^18O and ^D analyses yielded a south-north isotopic trend across the Lago Fagnano region. ^18O and ^D transition from -11.92 to -3.53% and -87.81 to -40.26%, respectively, moving south to the Beagle Channel. These

  12. Epidemiological surveillance of ovine hydatidosis in Tierra del Fuego, Patagonia Argentina, 1997-1999.

    PubMed

    Zanini, Fabián; Gonzalo, Roberto; Pérez, Héctor; Aparici, Inés; Soto, Ximena; Guerrero, Juvenal; Cerrone, Gloria; Elissondo, Celina

    2006-06-15

    Cystic echinococcosis is the most prevalent zoonosis in Tierra del Fuego province, Argentina, with important economic, productive and public health consequences. The present work was performed to determine the ovine prevalence in Tierra del Fuego, Argentina, as well as to evaluate the quality of diagnostic systems in slaughterhouses. Moreover, genetic analyses to characterize the strain of Echinococcus granulosus involved in the region were done. The first actions to perform a diagnosis of the epidemiological situation of hydatidosis in Tierra del Fuego were done between 1976 and 1977. A canine prevalence of 80% and an ovine prevalence of 55% results were obtained. Since 1979 the control program of Hydatidosis of Tierra del Fuego was implemented. It was based on semiannual canine anthelmintic treatment with praziquantel at dose of 5mg/kg, and complemented with sanitary education and canine and ovine epidemiological surveillance. During May 1997-January 1999: 5,916 sheep coming from 20 farms of the programmatic area were evaluated. In the lamb category, hydatid cysts were not found. In the adults category, 62 infected animals were found (3.2%). The ovine prevalence was 1.1% and there was 100% of coincidence between diagnosis in the slaughterhouse, re-inspection in the laboratory and histopathological study. The marked decrease in the prevalence observed for sheep infection evidenced a destabilization of the biological cycle of the parasite. This could be explained by the application of a control program with uninterrupted systematic actions. Polymerase chain reaction-ribosomal ITS-1 DNA (rDNA) restriction fragment length polymorphism (PCR-RFLP) analysis and partial sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to characterize E. granulosus isolates collected from different regions of Tierra del Fuego to determine which genotypes occurred in this region. The results revealed the presence of the G1 genotype (sheep-dog strain

  13. Mitochondrial DNA diversity of feral pigs from Karukinka Natural Park, Tierra del Fuego Island, Chile.

    PubMed

    Aravena, P; Skewes, O; Gouin, N

    2015-01-01

    Control or eradication of exotic species is one of the greatest challenges facing biodiversity and ecosystem conservation. Domestic pigs (Sus scrofa domestica) were released and became feral in the southern region of Chilean Tierra del Fuego Island in the 1900s. Currently, they inhabit part of Karukinka Natural Park, an area of global conservation concern. To gain insight into the control of this invasive species, we analyzed genetic variation in the mitochondrial DNA control region to determine the origin and population subdivision of feral pigs in Tierra del Fuego. Sequences from a sample of 42 feral pigs, 10 domestic pigs from local farms, and references from other countries and commercial breeds revealed 2 highly differentiated populations, 1 in the western and the other in the eastern area of the park, each harboring a different haplotype, suggesting no connectivity between populations. Comparison of these haplotypes with reference sequences from other countries and commercial breeds indicated that feral pigs from Chilean Tierra del Fuego are of European origin, very likely from 2 separate introduction events. The haplotype found in the western feral population was also identified in domestic pigs from a farm. This raises concerns regarding the possible connectivity between stocks from local farms and the wild population. Based on these results, we recommend the development of strategies for controlling the population of this invasive species in Karukinka Natural Park. PMID:25966196

  14. Loss of helminth species diversity in the large hairy armadillo Chaetophractus villosus on the Tierra del Fuego Island, Argentina.

    PubMed

    Ezquiaga, M C; Abba, A M; Navone, G T

    2016-03-01

    The aim of this work is to compare the taxonomic diversity of parasite species of the large hairy armadillo Chaetophractus villosus in its native range and in another recently introduced population (Tierra del Fuego island), and to evaluate whether the isolation of the latter determines a decrease in its parasitic diversity. Forty specimens from Buenos Aires and Tierra del Fuego Provinces were collected and examined for helminths. Eleven parasite species were found in the native population, and only one species was present in Tierra del Fuego (Trichohelix tuberculata). This may be explained because isolation and climatic conditions prevent encounters between potential host species and infective forms of parasites. Further sampling will be needed throughout the entire Patagonia steppe to confirm how the characteristic parasitic fauna of C. villosus behaves across the armadillo's southern distribution. PMID:25673233

  15. [Tierra del Fuego: the scientific-political construction of exclusion and counter-image of the ideal city dweller].

    PubMed

    Nacach, Gabriela

    2012-01-01

    Due to its late incorporation into the national State, the social, economic and political setting of the Argentine province Tierra del Fuego differed from that of the rest of the national territory. In the construction of dependent otherness, objectifications and representations were imposed by state-related and non-state-related institutions, among other agencies. In this context, the Salesian mission of La Candelaria and Ushuaia's Jail for recidivists stand out as spaces in which biopolitics was concretised. The native population and criminals in Tierra del Fuego were those to be subjugated. The thesis of the extinction of the Indian and the simultaneous exaltation of the criminal as the subject of progress identified the scientific and political mechanisms by which the exclusion of certain social groups (Tierra del Fuego's indigenous population) and the inclusion of others (criminals) were regulated. PMID:22849216

  16. Holocene paleoclimate characterization in Lago Fagnano (Tierra del Fuego) using sedimentary, physical and geochemical proxies

    NASA Astrophysics Data System (ADS)

    Vizcaino Marti, A.; Dunbar, R. B.; Wahl, D.; Moy, C. M.; Mucciarone, D. A.; Anderson, L.; Guilderson, T. P.

    2010-12-01

    Tierra del Fuego is the world's southernmost landmass outside of Antarctica. Two features of ocean circulation control the climate of Tierra del Fuego: the Southern Ocean circumpolar flow and the South Pacific Gyre. Together with Patagonia, Tierra del Fuego is the only terrestrial region directly influenced by the southern hemisphere westerly winds. This region is also a tectonically active area affected by volcanic and seismic activity related to South American and Scotia-Antarctic plate boundaries. Accommodated along the Magallanes-Fagnano fault system, as part of the plate boundary, the Lago Fagnano is the largest lake in Tierra del Fuego. This E-W trending lake is 100 km long and 5-15 km wide. Our investigations were carried out on the upper 4 meters of an 8.4 m long piston core obtained at 69 m water depth in Bahía Grande (LF06-PC8); a southwestern lake sub-basin separated from the main lake by a shallow sill. Our studies are based on the integration of sediment description, physical properties, pollen, and geochemical analyses including C and N isotopes (1cm interval) and XRF scan (1mm interval). The age model for the core is based on radiocarbon ages and tephrochronology. Additionally, a 800 km long grid of high resolution seismic profiles support the sedimentary analyses and allow the correlation with other cores from within the lake basin. LF06-PC8 yields continuous and high accumulation-rate sedimentary sections for Lago Fagnano. The presented sediment record corresponds to a laminated hemipelagite with presence of a single but complex mass transport deposit interval. An accurate sedimentological interpretation of the core together with the radiocarbon ages and tephra dates allow to identify and characterize the main sedimentary processes occurring in the lake over the last 8 kyr. In addition, proxy data (C and N isotopes and XRF scan data) from the laminated hemipelagic interval provide a reliable record of past variability in the westerly wind field as

  17. Epidemiological surveillance of cystic echinococcosis in rural population of Tierra del Fuego, Argentina, 1997-2006.

    PubMed

    Zanini, Fabián; Suárez, Carlos; Pérez, Héctor; Elissondo, María C

    2009-03-01

    Cystic echinococcosis (CE) is the most prevalent zoonosis in Tierra del Fuego. In 1997, ulrasonography (US) was selected as the method of choice for the development of population surveys for epidemiological surveillance and early diagnosis in rural population. The aim of this work was to present the results of the epidemiological surveillance of CE by means of US in rural population of Tierra del Fuego, Argentina between 1997 and 2006. The ultrasonographic diagnostic was realized once a year. The population was stratified in children (4 to 17 years) and adults. From each individual, name, age, sex, actual residence and origin were registered. The images compatible with cysts were graded according to location, number and characteristics. A total of 1400 rural inhabitants were examined for CE. From the total of studied individuals, 27 (1.9%) exhibited images compatible with cysts on the abdominal ultrasound scan. Thirteen of these persons were finally diagnosed as having CE. The overall prevalence of CE was 0.9%. This value is in accordance with the decrease in the prevalence observed in the definitive host and the intermediate hosts (sheep and cattle). The absence of cases in children during the studied period, evidence no transmission of the disease to humans in the recent past. PMID:18996221

  18. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands.

    PubMed

    Schmidt, Bertram; Sánchez, Leandro A; Fretschner, Till; Kreps, Gastón; Ferrero, Marcela A; Siñeriz, Faustino; Szewzyk, Ulrich

    2014-11-01

    Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies. PMID:25098830

  19. Atmospheric background trace elements deposition in Tierra del Fuego region (Patagonia, Argentina), using transplanted Usnea barbata lichens.

    PubMed

    Conti, Marcelo Enrique; Finoia, Maria Grazia; Bocca, Beatrice; Mele, Giustino; Alimonti, Alessandro; Pino, Anna

    2012-01-01

    Lichen, Usnea barbata, transplants taken from Tierra del Fuego (south Patagonia, Argentina) were tested as potential biomonitors of atmospheric airborne deposition in an apparently pristine environment. In 2005, lichens were sampled in a reference site (n = 31) and transplanted in the northern Region of Tierra del Fuego. After, respectively, 1 month and 1 year of exposure, we collected them. The aim of the study was to determine the bioaccumulation of 26 elements in order to evaluate the background levels in the selected area. Samples were analyzed by the sector field inductively coupled plasma mass spectrometry. Discriminant analysis on principal component analysis factors was applied in order to explore the relationship among the different elements as far as time and spatial variation in transplants regards. The analysis was tested by Monte Carlo test based on 999 replicates. The most important contamination source resulted to be the atmospheric soil particle deposition. Furthermore, the results were compared with those obtained from the lichens collected in central and southern Tierra del Fuego. This study confirms the ability of U. barbata to reflect the background levels of the 26 elements in that environment. Compared with other background sites in the world, we did confirm that Tierra del Fuego lichens have a low content of the studied elements. Tierra del Fuego turned out not to be a pristine environment as supposed, but it can be considered as a reference basal ecosystem for useful comparisons among different geographical areas. These findings can be very relevant and useful for environmental conservation programs. PMID:21409357

  20. Saprolegnia oliviae sp. nov. isolated from an Argentine river (Tierra del Fuego Province, Argentina).

    PubMed

    Steciow, Mónica Mirta

    2003-02-28

    Saprolegnia oliviae sp. nov. is described from litter (floating dead twigs, leaves and roots) in the Olivia River, Ushuaia Department, Tierra del Fuego Province (Argentina). The new species is illustrated and compared with other species of the genus. Distinguishing characteristics of S. oliviae are the production of smooth oogonia (with some lateral or terminal projections) and the absence of antheridial branches on the majority of the oogonia, but when present, they are mostly diclinous, at times oogonia are supplied with androgynous and monoclinous antheridial branches. The oogonial stalks are predominantly short and straight or long and bent, curved or many times coiled; oospores are distinctive subcentric, (1-) 15-50 (-70) per oogonium. Morphological details of the new species and its comparison with other described species are discussed here. PMID:12620629

  1. Heavy metal concentrations in litteral sediments from the Beagle Channel, Tierra del Fuego, Argentina.

    PubMed

    Amin, O; Ferrer, L; Marcovecchio, J

    1996-07-01

    For the first time the concentration of trace metals (Fe, Pb, Cu, Zn, Cd and total Hg) of sediments from the coastal zone of the Beagle Channel (Tierra del Fuego, in Southern Argentina) were measured. Atomic absorption spectrophotometry was utilized in order to determine the metal contents. The level of metals as observed in the sediments was recognized as the natural background, even though the use of normalization of lead, copper, and zinc to iron allowed the identification of the main sources of metal pollution for this environment. In order to develop future environmental monitoring programmes for the area of Ushuaia city and the Beagle Channel, the present results need to be considered. PMID:24193396

  2. Three new species and one new record of Tullbergiidae (Collembola: Onychiuroidea) from Tierra del Fuego.

    PubMed

    Arbea, Javier I

    2016-01-01

    Three new species, Tullbergia rapoporti sp. nov., Dinaphorura nerudai sp. nov. and Dinaphorura najtae sp. nov., and one new record, Tullbergia meridionalis Cassagnau & Rapoport, 1962 are described based on specimens from Tierra del Fuego. Tullbergia rapoporti sp. nov. is similar to T. crozetensis, but can be distinguished from it by the presence of an empodial appendage and the chaetotaxy of Abd VI. Dinaphorura nerudai sp. nov. is diagnosed by the dorsal pso formula, the seven spiniform processes on Abd VI, an elongate PAO, the absence of vesicle on Ant IV and the dorsal chaetotaxy. Dinaphorura najtae sp. nov. is characterised by the dorsal pso formula, the seven spiniform processes on Abd VI, a triangular PAO, the absence of vesicle on Ant IV and the dorsal chaetotaxy. PMID:27394481

  3. Iridium, platinum and rhodium baseline concentration in lichens from Tierra del Fuego (South Patagonia, Argentina).

    PubMed

    Pino, Anna; Alimonti, Alessandro; Conti, Marcelo Enrique; Bocca, Beatrice

    2010-10-01

    Lichen samples of Usnea barbata were used as possible biomonitors of the atmospheric background level of iridium (Ir), platinum (Pt) and rhodium (Rh) in the remote region of Tierra del Fuego (South Patagonia, Argentina). Lichens were collected in 2006 at 53 sites covering 7 different areas of the region (24 transplanted lichens of the northern region and 29 native lichen samples of the central-southern region). A microwave acidic digestion procedure was used to mineralize the samples and a sector field inductively coupled plasma mass spectrometry method was developed to quantify the elements. The study of the influence of interferences on analyte signals and a quality control procedure were carried out. The analytical protocol was further applied to evaluate Ir, Pt and Rh bioaccumulation in lichens. The detection limits obtained were 0.010 ng g⁻¹, 0.013 ng g⁻¹ and 0.030 ng g⁻¹ for Ir, Pt and Rh, respectively. Recoveries at different fortification levels were between 96.3% and 106% and precision was 3.3% on average. The metals concentration (as dry weight) spanned the following ranges: Ir, <0.010-1.011 ng g⁻¹; Pt, 0.016-2.734 ng g⁻¹; and Rh, 0.063-1.298 ng g⁻¹. Data on 7 areas were similar suggesting that no specific source, for example traffic or anthropogenic activity, influenced directly the metal concentrations in Tierra del Fuego. Values detected are more likely influenced by the long-range atmospheric transport of these pollutants and, in comparison with densely populated areas in the world, they can represent the baseline for low impacted areas. PMID:20830409

  4. Epidemiological studies on intestinal helminth parasites of the patagonian grey fox (Pseudalopex griseus) in Tierra del Fuego, Patagonia Argentina.

    PubMed

    Zanini, Fabián; Laferrara, Miguel; Bitsch, Matías; Pérez, Héctor; Elissondo, Maria Celina

    2006-03-31

    The present work was performed to study the intestinal helminths of the patagonian grey fox (Pseudalopex griseus) and to obtain information about its possible role in the sylvatic life cycle of Echinococcu granulosus in Tierra del Fuego, Patagonia Argentina. Eighty-one foxes were captured and subject to post-mortem analysis. Thirty-one foxes (38.3%) harboured helminths. A total of six helminth species were recovered. Only one adult of E. granulosus was found in the studied samples. The current study is the first report of the intestinal helminths of the patagonian grey fox in Tierra del Fuego, Argentina and showed that this specie is probably not an important reservoir host for E. granulosus. PMID:16414190

  5. Large residuals on geoidal heights determined on the Fagnano Lake, Tierra del Fuego-Argentina

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Del Cogliano, D.; Perdomo, R.

    2013-05-01

    A new geoid model was developed in Tierra del Fuego and it was evaluated in the area of Fagnano Lake. The model was developed by means of the Equivalent Source Technique combining gravity data, levelling information measured on the province and observations of a GPS buoy on the Fagnano Lake. Those GPS buoy measurements provide information of the mean lake level surface (Del Cogliano et al., 2007). A cross validation process was realized in order to evaluate the model on the lake. What allowed determining a 6 cm geoid in the area of Fagnano Lake. Also, an evaluation of the EGM2008 (Pavlis et al., 2008) was made on the lake. Its behaviour was compared to that observed on the levelling lines. Differences of several decimetres were found when EGM2008 undulations were compared to observed geoid undulations in the lake area. In the regions where EGM2008 has included real gravimetric observations, differences between model and observations were only of a few centimetres. Such model has the particularity that includes fill-in gravity in that region. The above mentioned evaluation derived in an analysis of the effect that not representative gravity information could have on the estimation of geoid undulations in high mountainous regions. We found that this effect could be significant if there is no real information in the computing area (Gomez et al, 2012).

  6. Lichen Usnea barbata as biomonitor of airborne elements deposition in the Province of Tierra del Fuego (southern Patagonia, Argentina).

    PubMed

    Conti, Marcelo Enrique; Pino, Anna; Botrè, Francesco; Bocca, Beatrice; Alimonti, Alessandro

    2009-05-01

    Lichen Usnea barbata was tested as a possible biomonitor of atmospheric deposition in a supposedly pristine environment Tierra del Fuego (Argentina). Lichen samples were collected in 2005 and again in 2006 in 71 sites covering almost the entire region. The aim of the study was to evaluate the bioaccumulation of 26 elements in order to define the background levels in the region. The quantification was carried out by the sector field inductively coupled plasma mass spectrometry. No relevant temporal accumulation patterns between 2005 and 2006 sampling campaigns were observed. Then, the results were submitted to multivariate statistical analysis (cluster and principal component analyses). Cluster analysis produced a dendrogram where the 71 sites were divided into four clusters at (Dlink/Dmax)100<30. The areas and the elements were correlated according to the element concentrations by principal component analysis. Four significant components that accounted for 67% were obtained. Cluster 1 was mainly composed of sites of Ushuaia-Road 3 (E area) and it was characterized by high levels of Cd, Co, Ni, Pb, Sb, and W in lichens. The present study has revealed the good capacity of U. barbata to reflect the baseline levels of elements in the environment at a regional scale level. The presence of certain level of elements in lichens agrees with the hypothesis that Tierra del Fuego is not a relatively pristine environment as occasionally supposed. However, when comparing our results with other countries, Tierra del Fuego lichens have a very low content of the measured elements. PMID:19232724

  7. Rock Magnetic Properties of Laguna Carmen (Tierra del Fuego, Argentina): Implications for Paleomagnetic Reconstruction

    NASA Astrophysics Data System (ADS)

    Gogorza, C. G.; Orgeira, M. J.; Ponce, F.; Fernández, M.; Laprida, C.; Coronato, A.

    2013-05-01

    We report preliminary results obtained from a multi-proxy analysis including paleomagnetic and rock-magnetic studies of two sediment cores of Laguna Carmen (53°40'60" S 68°19'0" W, ~83m asl) in the semiarid steppe in northern Tierra del Fuego island, Southernmost Patagonia, Argentina. Two short cores (115 cm) were sampled using a Livingstone piston corer during the 2011 southern fall. Sediments are massive green clays (115 to 70 cm depth) with irregularly spaced thin sandy strata and lens. Massive yellow clay with thin sandy strata continues up to 30 cm depth; from here up to 10 cm yellow massive clays domain. The topmost 10 cm are mixed yellow and green clays with fine sand. Measurements of intensity and directions of Natural Remanent Magnetization (NRM), magnetic susceptibility, isothermal remanent magnetization, saturation isothermal remanent magnetization (SIRM), back field and anhysteretic remanent magnetization at 100 mT (ARM100mT) were performed and several associated parameters calculated (ARM100mT/k and SIRM/ ARM100mT). Also, as a first estimate of relative magnetic grain-size variations, the median destructive field of the NRM (MDFNRM), was determined. Additionally, we present results of magnetic parameters measured with vibrating sample magnetometer (VSM). The stability of the NRM was analyzed by alternating field demagnetization. The magnetic properties have shown variable values, showing changes in both grain size and concentration of magnetic minerals. It was found that the main carrier of remanence is magnetite with the presence of hematite in very low percentages. This is the first paleomagnetic study performed in lakes located in the northern, semiarid fuegian steppe, where humid-dry cycles have been interpreted all along the Holocene from an aeolian paleosoil sequence (Orgeira et el, 2012). Comparison between paleomagnetic records of Laguna Carmen and results obtained in earlier studies carried out at Laguna Potrok Aike (Gogorza et al., 2012

  8. Paleoseismic observations of an onshore transform boundary: The Magallanes-Fagnano fault, Tierra del Fuego, Argentina

    USGS Publications Warehouse

    Costa, C.H.; Smalley, R., Jr.; Schwartz, D.P.; Stenner, H.D.; Ellis, M.; Ahumada, E.A.; Velasco, M.S.

    2006-01-01

    We present preliminary information on the geomorphologic features and paleoseismic record associated with the ruptures of two Ms 7.8 earthquakes that struck Tierra del Fuego and the southernmost continental margin of South America on December 17, 1949. The fault scarp was surveyed in several places cast of Lago Fagnano and a trench across a secondary fault trace of the Magallanes-Fagnano fault was excavated at the Ri??o San Pablo. The observed deformation in a 9 kyr-old peat bog sequence suggests evidence for two, and possibly three pre-1949 paleoearthquakes is preserved in the stratigraphy. The scarp reaches heights up to 11 m in late Pleistocene-Holocence(?) deposits, but the vertical component of the 1949 events was always less than ???1 m. This observation also argues for the occurrence of previous events during the Quaternary. Along die part of the fault we investigated east of Lago Fagnano, the horizontal component of the 1949 rupture does not exceed 4 m and is likely lower than 0.4 m, which is consistent with the kinematics of a local releasing bend, or at the end of a strike-slip rupture zone. ?? 2006 Revista de la Asociacio??n Geolo??gica Argentina.

  9. Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.

    2015-05-01

    The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.

  10. Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego, southernmost South America

    NASA Astrophysics Data System (ADS)

    Richter, Andreas; Mendoza, Luciano; Perdomo, Raúl; Hormaechea, José Luis; Savcenko, Roman; Bosch, Wolfgang; Dietrich, Reinhard

    2012-07-01

    Based on pressure tide gauge observations at three sites off the Atlantic coast of Tierra del Fuego main island, time series spanning one to seven months of bottom pressure and sea-level variations are derived and analysed to reveal the major driving mechanisms. Ocean tides account for 99.5% of the total energy of the sea-level variations. The amplitudes and phases of a comprehensive set of tidal constituents resulting from a harmonic tidal analysis are presented. Exceptionally large shallow-water tides are identified. The second largest contribution is due to the local inverse barometer model accounting for up to 65% of the variance of the tide residual sea-level variations. Close to the shore a significant topographic modulation of the sea-level variations is revealed. The in situ observations are compared with six recent global ocean tide models, official tide tables, and sea-surface heights derived from satellite altimetry data. The amplitudes and phases predicted by the ocean tide models for the semidiurnal and diurnal constituents agree with those derived from our tide gauge records on average within 2 cm and 5°, respectively. In the time domain the tidal signal represented by the models deviates typically by a few decimetres from that extracted from our records. Absolute altimeter biases were determined for the Jason-2, Jason-1 extended mission, and Envisat satellite altimeters. Relative sea-level variations are represented by the altimetry data with an accuracy of the order of 5 cm.

  11. Baseline trace metals in gastropod mollusks from the Beagle Channel, Tierra del Fuego (Patagonia, Argentina).

    PubMed

    Conti, Marcelo Enrique; Stripeikis, Jorge; Finoia, Maria Grazia; Tudino, Mabel Beatriz

    2012-05-01

    With the aim to evaluate the mollusk Nacella (P)magellanica as biomonitor of elemental pollution in seawater of the Beagle Channel, more than one hundred individuals of the gastropod were sampled, separated in viscera and muscle, and then examined with respect to the accumulation of Cd, Cr, Cu, Ni, Pb and Zn. Collection was performed in seven strategic locations along 170 km of the coastal area of the Beagle Channel (Tierra del Fuego, Argentina) in two campaigns during 2005 and 2007. Samples of surrounding seawater in the different sites were obtained and tested for the same metals as well. The accumulation capacity of Nacella (P)magellanica and thus its aptitude as biomonitor, was evaluated through the calculus of the preconcentration factors of the metals assayed. A discussion involving the comparison with other mollusks previously tested will be given. Several statistical approaches able to analyze data with environmental purposes were applied. Non parametric univariate tests such as Kruskal-Wallis and Mann-Whitney were carried out to assess the changes of the metal concentrations with time (2005 and 2007) in each location. Multivariate methods (linear discriminant analysis on PCA factors) were also applied to obtain a more reliable site classification. Johnson's probabilistic method was carried out for comparison between different geographical areas. The possibility of employing these results as heavy metals' background levels of seawater from the Beagle Channel will be debated. PMID:22350107

  12. New species of dictyostelids from Patagonia and Tierra del Fuego, Argentina.

    PubMed

    Vadell, Eduardo M; Cavender, James C; Romeralo, Maria; Edwards, Sally M; Stephenson, Steven L; Baldauf, Sandra L

    2011-01-01

    In late Jan and early Feb 2005 samples for isolation of dictyostelid cellular slime molds (dictyostelids) were collected in five different provinces and from six national parks (all located 39-55°S) in Patagonia and Tierra del Fuego, Argentina. Southern beech (Nothofagus) forests represented the primary vegetation type investigated, but some samples were obtained from Patagonian steppe, alpine meadows, Valdivian temperate rainforests and coniferous forests dominated by Araucaria, Austrocedrus and Fitzroya. Among the dictyostelids isolated from the samples we collected were seven species new to science. These species (Dictyostelium austroandinum, D. chordatum, D. fasciculoideum, D. gargantuum, D. leptosomopsis, D. valdivianum and Polysphondylium patagonicum) are described herein on the basis of both morphology and molecular (SSU rDNA) data. One of the new species, D. gargantuum, is one of the largest representatives of the group reported to date. Another unusual species, D. chordatum, produces long interwoven sorocarps that do not appear to respond to a spacing gas similar to the condition first noted in D. implicatum. PMID:20943559

  13. The Patagonian Orocline: New paleomagnetic data from the Andean magmatic arc in Tierra del Fuego, Chile

    NASA Astrophysics Data System (ADS)

    Cunningham, W. Dickson; Klepeis, Keith A.; Gose, Wulf A.; Dalziel, Ian W. D.

    1991-09-01

    The Hardy Formation is a 1300-m-thick succession of Upper Jurassic-Lower Cretaceous volcaniclastic sedimentary rocks interbedded with lava flows on Hoste Island at the southernmost tip of South America (55.5°S, 291.8°E). The strata are gently folded and metamorphosed to the prehnite-pumpellyite grade. A well-defined characteristic direction of magnetization, carried by magnetite, was readily identified in 95 samples from seven sites. At a given site, the directions group slightly better without structural correction. However, the means of the seven sites cluster better without tilt correction at the 99% significance level, implying that the magnetization postdates the folding event. It is most likely that the magnetization was acquired during the mid- to Late Cretaceous Andean orogeny that involved the folding and emplacement of the Patagonian Batholith. The fact that all samples are normally magnetized supports this age assignment. The pole position of 42.9°N, 156.6°E, α95=3.3° implies that the sampling area has rotated counterclockwise relative to cratonic South America by 90.1±11.9° with no significant flattening of inclination (F=1.9 ± 3.7°). Geologic considerations indicate that the rotation involved the entire Andean magmatic arc in Tierra Del Fuego. The results support interpretation of the Hardy Formation as part of the Andean magmatic arc deposited on the Pacific side of the Late Jurassic-Early Cretaceous Rocas Verdes marginal basin. Oroclinal bending of the arc in southernmost South America accompanied inversion of the marginal basin and the development of a Late Cretaceous-Cenozoic left-lateral transform system (South America-Antarctica) that later developed into the North Scotia Ridge.

  14. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age. PMID:27610313

  15. Depth Seismic-Migration Modeling Offshore `Tierra Del Fuego', Argentina (54° 25' S)

    NASA Astrophysics Data System (ADS)

    Comínguez, A. H.; Flores, J.; Tassone, A.

    2007-05-01

    Within the framework of the TESAC Project (Tectonic Evolution of the South America-Scotia plate boundary during the Cenozoic), about 900 km of multichannel seismic reflection profiles were acquired off the Atlantic coast of the Tierra del Fuego Island. The profiles cut across the South America-Scotia plate boundary, a transform margin which traverses in an E-W direction the Island. Data processing and interpretation of a seismic reflection profile is presented in this contribution. A robust post-stack technique involved depth-migration of the seismic section, using an interval-velocity model of the upper Crust adjusted by iterative processing. An interpreted seismic- velocity section (which trends roughly NW-SE), shows a complex superposition of different tectonic structures, with presence of extensional, compressional and transtensional features in the area located to the north of Isla de los Estados. The profile, which crosses the offshore part of the Magallanes fold-and-thrust belt, images the deep structural framework of part of this tectonic province. The identification of acoustic fabrics and seismic discontinuities allowed us to recognize four main units. Overlaying the acoustic basement (Seismic unit 1), there is another unit (Seismic unit 2) which exhibits some reflector packages of high amplitude; this unit must be related to the volcanic and volcaniclastic sequences of Tobífera/Lemaire Fms. The Seismic Unit 3 displays internal reflector configurations of moderate amplitude and continuity and low-to-moderate frequency; the Yaghán/Beauvoir Fms must be the onshore equivalent of this unit. An uppermost seismic layer (Unit 4) may be correlated with the Tertiary sediments of the Magallanes foreland basin which were involved in the fold and thrust belt. A major structure identified in the studied seismic profile is a SE structural high (which involves the units 1, 2 and 3) and a NW down-faulted area. The latter display folds of kilometric size (3-4 km

  16. Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile [corrected].

    PubMed

    Fernández-Martínez, M A; de Los Ríos, A; Sancho, L G; Pérez-Ortega, S

    2013-08-01

    Global warming is causing ice retreat in glaciers worldwide, most visibly over the last few decades in some areas of the planet. One of the most affected areas is the region of Tierra del Fuego (southern South America). Vascular plant recolonisation of recently deglaciated areas in this region is initiated by Gunnera magellanica, which forms symbiotic associations with the cyanobacterial genus Nostoc, a trait that likely confers advantages in this colonisation process. This symbiotic association in the genus Gunnera is notable as it represents the only known symbiotic relationship between angiosperms and cyanobacteria. The aim of this work was to study the genetic diversity of the Nostoc symbionts in Gunnera at three different, nested scale levels: specimen, population and region. Three different genomic regions were examined in the study: a fragment of the small subunit ribosomal RNA gene (16S), the RuBisCO large subunit gene coupled with its promoter sequence and a chaperon-like protein (rbcLX) and the ribosomal internal transcribed spacer (ITS) region. The identity of Nostoc as the symbiont was confirmed in all the infected rhizome tissue analysed. Strains isolated in the present study were closely related to strains known to form symbioses with other organisms, such as lichen-forming fungi or bryophytes. We found 12 unique haplotypes in the 16S rRNA (small subunit) region analysis, 19 unique haplotypes in the ITS region analysis and 57 in the RuBisCO proteins region (rbcLX). No genetic variability was found among Nostoc symbionts within a single host plant while Nostoc populations among different host plants within a given sampling site revealed major differences. Noteworthy, interpopulation variation was also shown between recently deglaciated soils and more ancient ones, between eastern and western sites and between northern and southern slopes of Cordillera Darwin. The cell structure of the symbiotic relationship was observed with low-temperature scanning

  17. Effect of resource spatial correlation and hunter-fisher-gatherer mobility on social cooperation in Tierra del Fuego.

    PubMed

    Santos, José Ignacio; Pereda, María; Zurro, Débora; Álvarez, Myrian; Caro, Jorge; Galán, José Manuel; Briz i Godino, Ivan

    2015-01-01

    This article presents an agent-based model designed to explore the development of cooperation in hunter-fisher-gatherer societies that face a dilemma of sharing an unpredictable resource that is randomly distributed in space. The model is a stylised abstraction of the Yamana society, which inhabited the channels and islands of the southernmost part of Tierra del Fuego (Argentina-Chile). According to ethnographic sources, the Yamana developed cooperative behaviour supported by an indirect reciprocity mechanism: whenever someone found an extraordinary confluence of resources, such as a beached whale, they would use smoke signals to announce their find, bringing people together to share food and exchange different types of social capital. The model provides insight on how the spatial concentration of beachings and agents' movements in the space can influence cooperation. We conclude that the emergence of informal and dynamic communities that operate as a vigilance network preserves cooperation and makes defection very costly. PMID:25853728

  18. Solar ultraviolet irradiance at Tierra Del Fuego: Comparison of measurements and calculations over a full annual cycle

    NASA Astrophysics Data System (ADS)

    Diaz, Susana B.; Frederick, John E.; Lucas, Timothy; Booth, C. Rocky; Smolskaia, Irina

    A spectroradiometer located at Ushuaia, Tierra del Fuego, Argentina obtained a high quality data set on the solar ultraviolet (UV) spectral irradiance for a full annual cycle during 1992. The unique aspect of the ground-based irradiances is their ability to characterize the effects of cloudiness. Measured irradiances at 340 nm can be used to characterize the attenuation provided by cloudy skies. When irradiances at shorter wavelengths, 302.5-320.0 nm, are adjusted for this attenuation, they show good agreement with radiative transfer calculations which assume clear skies and utilize data from the Total Ozone Mapping Spectrometer (TOMS) as inputs. The differences which exist are qualitatively consistent with the neglect of spherical geometry in the calculated irradiances.

  19. Effect of Resource Spatial Correlation and Hunter-Fisher-Gatherer Mobility on Social Cooperation in Tierra del Fuego

    PubMed Central

    Santos, José Ignacio; Pereda, María; Zurro, Débora; Álvarez, Myrian; Caro, Jorge; Galán, José Manuel; Briz i Godino, Ivan

    2015-01-01

    This article presents an agent-based model designed to explore the development of cooperation in hunter-fisher-gatherer societies that face a dilemma of sharing an unpredictable resource that is randomly distributed in space. The model is a stylised abstraction of the Yamana society, which inhabited the channels and islands of the southernmost part of Tierra del Fuego (Argentina-Chile). According to ethnographic sources, the Yamana developed cooperative behaviour supported by an indirect reciprocity mechanism: whenever someone found an extraordinary confluence of resources, such as a beached whale, they would use smoke signals to announce their find, bringing people together to share food and exchange different types of social capital. The model provides insight on how the spatial concentration of beachings and agents’ movements in the space can influence cooperation. We conclude that the emergence of informal and dynamic communities that operate as a vigilance network preserves cooperation and makes defection very costly. PMID:25853728

  20. Long-range Receiver Function Profile of Crustal and Mantle Discontinuities From the Aleutian Arc to Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Sawade, Lucas

    2016-04-01

    The Circum-Pacific belt, also called the Pacific Ring of Fire, is the most seismically active region on Earth. Multiple plate boundaries form a zone characterized by frequent volcanic eruptions and seismicity. While convergent plate boundaries such as the Peru-Chile trench dominate the Circum-Pacific belt, divergent and transform boundaries are present as well. The eastern section of the Circum-Pacific belt extends from the Aleutian arc, through the Cascadia subduction zone, San Andreas Fault, middle America trench and the Andean margin down to Tierra del Fuego. Due to the significant hazards posed by this tectonic activity, the region has been densely instrumented by thousands of seismic stations deployed across fifteen countries, over a distance of more than 15000 km. Various seismological studies, including receiver function analyses, have been carried out to investigate the crustal and mantle structure beneath local segments of the eastern Circum-Pacific belt (i.e., at ~100-500 km scale). However, to the best of our knowledge, no study to date has ever attempted to combine all available seismic data from the eastern Circum-Pacific belt to generate a continuous profile of seismic discontinuities extending from the Aleutians to Tierra del Fuego. Here, we use results from the "Global Imaging using Earthquake Records" (GLImER) P-wave receiver function database to create a long-range profile of crustal and upper mantle discontinuities across the entire eastern portion of the Circum-Pacific belt. We image intermittent crustal and mantle discontinuities along the profile, and examine them with regard to their behaviour and properties across transitions between different tectonic regimes.

  1. Rare earth element and Nd isotope geochemistry of an ombrotrophic peat bog at Karukinka (Chile, 53.9° S): a palaeo-record of Holocene dust deposition in Tierra del Fuego.

    NASA Astrophysics Data System (ADS)

    Vanneste, Heleen; De Vleeschouwer, François; Vanderstraeten, Aubry; Mattielli, Nadine; Triquet, Delphine; Piotrowska, Natalia; Le Roux, Gael

    2013-04-01

    The value of ombrotrophic peat bogs as past atmospheric dust records, has been increasingly recognized over the past 10 years. Their high accumulation rates provide high resolution archives of natural atmospheric dust deposition since the Late Glacial, often missing in marine, lake and ice core records. Consequently, peat deposits can be used as a proxy for atmospheric circulation patterns and thus palaeoclimate. In the Southern Hemisphere, the climate is considered to be driven by the Southern Westerly Wind belt (SSW), as it significantly affects the Antarctic Circumpolar Current and hence atmospheric CO2 levels. Palaeo SSW belt migrations have been observed in palaeoclimate records but, reconstructions of SSW shifts and associated climatic changes are incoherent, in particular for the Holocene. As peatlands thrive in southwest Tierra del Fuego due to its high annual precipitation, a remote ombrotrophic peat bog at Karukinka (southwest on the Isla Grande de Tierra del Fuego) was sampled, to investigate the Holocene palaeoclimate in southern South America based on dust deposition records. A 4,5 m long Russian D-core was recovered and subsequently subsampled for elemental and isotope geochemistry in addition to density and radiocarbon dating measurements. Initial results show a number of layers enriched in scandium, indicating the presence of lithogenic material, i.e. dust. Rare earth element patterns indicate at least 2 different sources. The most significant dust peak occurs at the base of the core at ~7300 Cal years B.P and has a neodymium isotopic composition of 2.2, suggesting a volcanic origin.

  2. A Geochemical and Sedimentary Record of High Southern Latitude Holocene Climate Evolution from Lago Fagnano, Tierra del Fuego

    SciTech Connect

    Moy, C M; Dunbar, R B; Guilderson, T P; Waldmann, N; Mucciarone, D A; Recasens, C; Austin, J A; Anselmetti, F S

    2010-11-19

    Situated at the southern margin of the hemispheric westerly wind belt and immediately north of the Antarctic Polar Frontal zone, Tierra del Fuego is well-positioned to monitor coupled changes in the ocean-atmosphere system of the high southern latitudes. Here we describe a Holocene paleoclimate record from sediment cores obtained from Lago Fagnano, a large lake in southern Tierra del Fuego at 55{sup o}S, to investigate past changes in climate related to these two important features of the global climate system. We use an AMS radiocarbon chronology for the last 8,000 years based on pollen concentrates, thereby avoiding contamination from bedrock-derived lignite. Our chronology is consistent with a tephrochronologic age date for deposits from the middle Holocene Volcan Hudson eruption. Combining bulk organic isotopic ({delta}{sup 13}C and {delta}{sup 15}N) and elemental (C and N) parameters with physical sediment properties allow us to better understand sediment provenance and transport mechanisms and to interpret Holocene climate and tectonic change during the last 8,000 years. Co-variability and long-term trends in C/N ratio, carbon accumulation rate, and magnetic susceptibility reflect an overall Holocene increase in the delivery of terrestrial organic and lithogenic material to the deep eastern basin. We attribute this variability to westerly wind-derived precipitation. Increased wind strength and precipitation in the late Holocene drives the Nothofagus forest eastward and enhances run-off and terrigenous inputs to the lake. Superimposed on the long-term trend are a series of abrupt 9 negative departures in C/N ratio, which constrain the presence of seismically-driven mass flow events in the record. We identify an increase in bulk {delta}{sup 13}C between 7,000 and 5,000 cal yr BP that we attribute to enhanced aquatic productivity driven by warmer summer temperatures. The Lago Fagnano {delta}{sup 13}C record shows similarities with Holocene records of sea surface

  3. A geochemical and sedimentary record of high southern latitude Holocene climate evolution from Lago Fagnano, Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Moy, Christopher M.; Dunbar, Robert B.; Guilderson, Thomas P.; Waldmann, Nicolas; Mucciarone, David A.; Recasens, Cristina; Ariztegui, Daniel; Austin, James A.; Anselmetti, Flavio S.

    2011-02-01

    Situated at the southern margin of the hemispheric westerly wind belt and immediately north of the Antarctic Polar Frontal zone, Tierra del Fuego is well-positioned to monitor coupled changes in the ocean-atmosphere system of the high southern latitudes. Here we describe a Holocene paleoclimate record from sediment cores obtained from Lago Fagnano, a large lake in southern Tierra del Fuego at 55°S, to investigate past changes in climate related to these two important features of the global climate system. We use an AMS radiocarbon chronology for the last 8000 yr based on pollen concentrates, thereby avoiding contamination from bedrock-derived lignite. Our chronology is consistent with a tephrochronologic age date for deposits from the middle Holocene Volcán Hudson eruption. Combining bulk organic isotopic (δ13C and δ15N) and elemental (C and N) parameters with physical sediment properties allows us to better understand sediment provenance and transport mechanisms and to interpret Holocene climate and tectonic change during the last 8000 yr. Co-variability and long-term trends in C/N ratio, carbon accumulation rate, and magnetic susceptibility reflect an overall Holocene increase in the delivery of terrestrial organic and lithogenic material to the deep eastern basin. We attribute this variability to westerly wind-derived precipitation. Increased wind strength and precipitation in the late Holocene drives the Nothofagus forest eastward and enhances run-off and terrigenous inputs to the lake. Superimposed on the long-term trend are a series of abrupt 9 negative departures in C/N ratio, which constrain the presence of seismically-driven mass flow events in the record. We identify an increase in bulk δ13C between 7000 and 5000 cal yr BP that we attribute to enhanced aquatic productivity driven by warmer summer temperatures. The Lago Fagnano δ13C record shows similarities with Holocene records of sea surface temperature from the mid-latitude Chilean continental

  4. CO2 and CH4 fluxes of contrasting pristine bogs in southern Patagonia (Tierra del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Münchberger, Wiebke; Blodau, Christian; Kleinebecker, Till; Pancotto, Veronica

    2015-04-01

    South Patagonian peatlands cover a wide range of the southern terrestrial area and thus are an important component of the terrestrial global carbon cycle. These extremely southern ecosystems have been accumulating organic material since the last glaciation up to now and are - in contrast to northern hemisphere bogs - virtually unaffected by human activities. So far, little attention has been given to these pristine ecosystems and great carbon reservoirs which will potentially be affected by climate change. We aim to fill the knowledge gap in the quantity of carbon released from these bogs and in what controls their fluxes. We study the temporal and spatial variability of carbon fluxes in two contrasting bog ecosystems in southern Patagonia, Tierra del Fuego. Sphagnum-dominated bog ecosystems in Tierra del Fuego are similar to the ones on the northern hemisphere, while cushion plant-dominated bogs can almost exclusively be found in southern Patagonia. These unique cushion plant-dominated bogs are found close to the coast and their occurrence changes gradually to Sphagnum-dominated bogs with increasing distance from the coast. We conduct closed chamber measurements and record relevant environmental variables for CO2 and CH4 fluxes during two austral vegetation periods from December to April. Chamber measurements are performed on microforms representing the main vegetation units of the studied bogs. Gas concentrations are measured with a fast analyzer (Los Gatos Ultraportable Greenhouse Gas Analyzer) allowing to accurately record CH4 fluxes in the ppm range. We present preliminary results of the carbon flux variability from south Patagonian peat bogs and give insights into their environmental controls. Carbon fluxes of these two bog types appear to be highly different. In contrast to Sphagnum-dominated bogs, cushion plant-dominated bogs release almost no CH4 while their CO2 flux in both, photosynthesis and respiration, can be twice as high as for Sphagnum

  5. Hepatic and renal metallothionein concentrations in Commerson's dolphins (Cephalorhynchus commersonii) from Tierra del Fuego, South Atlantic Ocean.

    PubMed

    Cáceres-Saez, Iris; Polizzi, Paula; Romero, Belén; Dellabianca, Natalia A; Ribeiro Guevara, Sergio; Goodall, R Natalie P; Cappozzo, H Luis; Gerpe, Marcela

    2016-07-15

    The Commerson's dolphin is the most common endemic odontocete of subantarctic waters of Tierra del Fuego, Argentina incidentally caught in fishing nets. The species is classified as "Data Deficient" by the IUCN. Metallothioneins (MTs) are considered as suitable biomarkers for health and environmental monitoring. The aims of the study were to assess MT concentrations in the liver and kidney of bycaught specimens. Moreover, correlations with Zn, Se, Cd, Ag and Hg, and the molar ratios of MT:metals were estimated to evaluate if there is an indication of their respective protective role against metal toxicity in tissues. Hepatic and renal MT concentrations were similar, ranging from 11.6 to 29.1nmol·g(-1) WW, and Kidney/Liver ratios ranging from 0.73 to 1.93 corresponded to normal ranges. Results suggest that MTs are related to physiological ranges for the species. This information constitutes the first MT report on Commerson's dolphins and possibly considered as baseline for species' conservation. PMID:27072824

  6. U-Pb zircon constraints on the age and provenance of the Rocas Verdes basin fill, Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Barbeau, David L.; Gombosi, David J.; Zahid, Khandaker M.; Bizimis, Michael; Swanson-Hysell, Nicholas; Valencia, Victor; Gehrels, George E.

    2009-12-01

    The Late Jurassic to Early Cretaceous Rocas Verdes basin constitutes one of the most poorly understood components of the southernmost Andes. As a result, accurate reconstructions and interpretations of deformation associated with the Andean orogeny and the kinematics of Scotia arc development also remain poorly constrained. In this data brief, we report U-Pb zircon ages from sandstones of the Rocas Verdes basin fill and from a crosscutting pluton in the southernmost Andes of Argentine Tierra del Fuego. Detrital samples contain predominant Early to early Middle Cretaceous (circa 130-105 Ma) U-Pb zircon age populations, with very small or single-grain middle Mesozoic and Proterozoic subpopulations. A very small subpopulation of Late Cretaceous ages in one sample raises the unlikely possibility that parts of the Rocas Verdes basin are younger than perceived. A sample from a crosscutting syenitic pegmatite yields a crystallization age of 74.7 +2.2/-2.0 Ma. The data presented herein encourage further geochronologic evaluation of the Rocas Verdes basin in order to better constrain the depositional ages and provenance of its contents.

  7. Assessment of land influence on a high-latitude marine coastal system: Tierra del Fuego, southernmost Argentina.

    PubMed

    Amin, Oscar; Comoglio, Laura; Spetter, Carla; Duarte, Claudia; Asteasuain, Raúl; Freije, Rubén Hugo; Marcovecchio, Jorge

    2011-04-01

    The study deals with the determination of physico-chemical parameters, inorganic nutrients, particulate organic matter, and photosynthetic pigments on a monthly basis during an annual cycle from nine sampling sites of the coastal zone of a high-latitude ecosystem (Tierra del Fuego, Argentina). Nitrites and phosphates concentrations were similar to other systems of the south Atlantic coast (median, 0.30 and 1.02 μM, respectively), while nitrates were higher in all sampling periods (median, 45.37 μM), and silicates were significantly smaller (median, 7.76 μM). Chlorophyll a and phaeopigments have shown median values of 0.38 and 0.85 mg m(-3), respectively, while saturated values of dissolved oxygen were recorded throughout the study. The analysis reflected that nutrient enrichment seems to be linked to an anthropogenic source, the presence of peatlands areas, and a sink of Nothofagus pumilio woods. The area could be characterized in three zones related to (1) high urban influence, (2) natural inputs of freshwater, and (3) mixed inputs coming from moderate urban impacts. PMID:20473562

  8. [Impact of school closings on the influenza A (H1N1) outbreak in Tierra del Fuego, Argentina].

    PubMed

    Orellano, Pablo Wenceslao; Grassi, Aurora; Reynoso, Julieta Itatí; Palmieri, Abel; Uez, Osvaldo; Carlino, Orestes

    2010-03-01

    The impact of school closings on reducing the number of cases of influenza-like illness during an outbreak of influenza A (H1N1), which reached pandemic proportions, was assessed, along with other control measures, in the two main cities of Tierra del Fuego Province in southern Argentina. The incidence before and after the school closings in 2009 was compared by means of the t-test for related samples. By week 40, 6 901 cases of influenza-like illness had been detected, 281 of which were confirmed as influenza A (H1N1) through laboratory tests; 38 patients were hospitalized. After the intervention, there were nearly 10 times fewer cases than the average recorded in the health centers. The results indicate that closing schools during the influenza A (H1N1) outbreak resulted in a significantly lower incidence of influenza-like illness. However, the impact of other measures, such as case management and protection against exposure, should not be ignored. Timely implementation of this intervention, together with other measures, can help minimize the spread of influenza outbreaks. PMID:20414512

  9. Hydro-Geomorphologic Effects Of Large Wood Jams On A Third-Order Stream (Tierra Del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Mao, L.; Andreoli, A.; Comiti, F.; Lenzi, M. A.; Iturraspe, R.; Burns, S.; Novillo, M. G.

    2007-05-01

    Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase of stream morphological diversity and complexity also exerts also an important ecological role. This work reports on geomorphic role of large wood pieces and jams in a third order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old-growth nothofagus forested basin not influenced by the beavers damming activity. Even if the in-stream number of wood pieces (length > 1m; diameter > 0.1 m) is comparable to what observed in other climatic areas, the slow growth of the nothofagus forest causes a lower wood abundance in terms of volumetric load. Since the relatively small dimensions of the surveyed large wood pieces, almost the 70% of them demonstrated to have been fluvial transported and the also wood jams reflect the apparent dynamic of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost the half of the drop caused by steps and being responsible for the creation of 30% of the pools. The LW-forced pool volume is strongly and positively correlated to the height of the LW jam, and a significant inverse relationship between pool spacing and wood density within is evident if only the LW-forced pools are considered. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity.

  10. Environmental context shapes the bacterial community structure associated to Peltigera cyanolichens growing in Tierra del Fuego, Chile.

    PubMed

    Ramírez-Fernández, Lía; Zúñiga, Catalina; Carú, Margarita; Orlando, Julieta

    2014-03-01

    The structure of the associated bacterial community of bipartite cyanolichens of the genus Peltigera from three different environmental contexts in the Karukinka Natural Park, Tierra del Fuego, Chile, was assessed. The sampling sites represent different habitat contexts: mature native forest, young native forest and grassland. Recently it has been determined that the bacterial community associated to lichens could be highly structured according to the mycobiont or photobiont identities, to the environmental context and/or to the geographic scale. However, there are some inconsistencies in defining which of these factors would be the most significant on determining the structure of the microbial communities associated with lichens, mainly because most studies compare the bacterial communities between different lichen species and/or with different photobiont types (algae vs. cyanobacteria). In this work bipartite lichens belonging to the same genus (Peltigera) symbiotically associated with cyanobacteria (Nostoc) were analyzed by TRFLP to determine the structure of the bacterial community intimately associated with the lichen thalli and the one present in the substrate where they grow. The results indicate that the bacterial community intimately associated differs from the one of the substrate, being the former more influenced by the environmental context where the lichen grows. PMID:24165746

  11. First evidence of testate amoebae in Lago Fagnano (54° S), Tierra del Fuego (Argentina): Proxies to reconstruct environmental changes

    NASA Astrophysics Data System (ADS)

    Caffau, Mauro; Lenaz, Davide; Lodolo, Emanuele; Zecchin, Massimo; Comici, Cinzia; Tassone, Alejandro

    2015-12-01

    We report here the first findings of testate amoebae at high southern latitudes (54° S) from four gravity cores recovered in the Lago Fagnano (Tierra del Fuego, Argentina), where twelve taxa have been recognized. Among them, Centropyxis constricta "constricta", Centropyxis elongata, Difflugia globulus, Difflugia oblonga "oblonga", and Difflugia protaeiformis "amphoralis" are always present, while other taxa are randomly distributed. According to the sand/silt ratio in the different cores, the Total Organic Carbon content and the Carbon/Nitrogen ratio, as well as the presence/disappearance and abundance of testate amoebae from cluster analysis, we infer a correlation between major textural/granulometrical changes found in the cores and environmental changes. A seismic event occurred on 1949, which substantially modified the morphology of the eastern Lago Fagnano shoreline and the supply pattern from two main eastern tributaries of the lake, is recorded in the studied cores. This event has in part modified the distribution of testate amoebae taxa within the studied cores. Present results show that testate amoebae represent important indicators to detect changes occurring in the environment in which they live.

  12. Holocene Paleoglacier History of Glaciar Dalla Vedova, Cordillera DARWIN, Tierra del Fuego, Chile

    NASA Astrophysics Data System (ADS)

    Reynhout, S.

    2015-12-01

    Southernmost South America is unique in its position immediately north of the present-day Antarctic Convergence, making it ideally suited for the evaluation of Antarctic influences on terrestrial paleoclimate. Here we present a glacial geomorphic interpretation of the paleoglacial history of Glaciar Dalla Vedova in Bahía Blanca, Cordillera Darwin, Chile (53°S). This interpretation is further constrained by radiocarbon dating, cosmogenic dating, dendrochronology, and historical photogrammetry. Preliminary field work suggests that Holocene glacier fluctuations have been constrained to within 3 km of the present glacier boundary, punctuated by rapid recent glacier retreat over the past century. By comparing the observed chronology with the record contained further north in Patagonia, we will evaluate possible mechanisms of regional climate variability over the Holocene across southernmost South America.

  13. Sand dispersal in the southeastern Austral Basin, Tierra del Fuego, Argentina: Outcrop insights from Eocene channeled turbidite systems

    NASA Astrophysics Data System (ADS)

    Torres Carbonell, Pablo J.; Olivero, Eduardo B.

    2012-02-01

    We made a detailed facies analysis of well exposed Eocene foredeep and wedge-top successions in the SE Austral Basin of eastern Tierra del Fuego, Argentina, contributing to a better understanding of its patterns of sand dispersal. The analysis reveals that these successions constitute portions of turbidite systems with recurrent facies associations, interpreted as channel, channel-margin and levée depositional elements. The channel facies, paleocurrents and interpreted paleogeography suggest that the studied successions form the transfer zone of the turbidite systems that fed the foreland basin. We hypothesize that the SE Austral Basin, which forms the transition between the Austral and Malvinas Basins, acted as an east-west conduit for sediments sourced at the Fuegian Andes and transported to a deeper depositional zone in the SW Malvinas Basin. The fill of the channels in the transfer zone involved a large amount of turbidity flows, which in addition to the evidence of levée confinement in the studied deposits suggests that the sandier portion of the flows was able to reach the depositional zone, were mostly unconfined (sheeted) sand bodies may have formed. In addition, overbank sand bodies were deposited within the transfer zone, associated to processes of flow overspill. Both types of sand bodies constitute potential reservoirs in this hydrocarbon producing basin, implying that the Eocene SE Austral Basin, and the ultimate zone of deposition in the SW Malvinas Basin may constitute major prospects for hydrocarbon exploration. The proposed model define a new perspective for future research on the sedimentologic and stratigraphic evolution of the SE portion of the Austral Basin.

  14. Present-day crustal deformation along the Magallanes-Fagnano Fault System in Tierra del Fuego from repeated GPS observations

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Perdomo, R.; Hormaechea, J. L.; Del Cogliano, D.; Fritsche, M.; Richter, A.; Dietrich, R.

    2011-03-01

    The present-day deformation of the earth crust in the Argentine part of Tierra del Fuego main island (southernmost South America) is here investigated based on repeated geodetic GPS observations. The island is traversed by the active transform boundary between the South American and Scotia tectonic plates, represented by the Magallanes-Fagnano fault system. Since 1993 a regional network comprising to date 29 GPS sites has been observed almost every year. The complete set of accumulated observations was processed using the Bernese GPS software and state-of-the-art processing strategies and models. The utilization of homogeneous GPS products resulting from a reprocessing of the global IGS network warrants a stable realization of a global reference frame. For each GPS site 3-D positions and linear velocities with error estimates were obtained. A strain analysis of the horizontal velocity components revealed the zones of major deformation activity. A 30-km-wide deformation belt centred on the main trace of the fault system was identified. This belt is bordered to the north (South America) and south (Scotia) by geodynamically stable zones, which move horizontally with a relative average velocity of 4.4 ± 0.6 (east) and -0.3 ± 0.4 (north) mm a-1. Within the deformation belt a maximum strain rate in the order of 0.25 μstrain per year has been detected. A pronounced change in the deformation style from transtension (east) to transpression (west) is observed. The area of predominating shortening of the crust coincides with a local rotation minimum and relative uplift. Throughout the period covered by the GPS observations the displacements and deformations occurred to be linear with time.

  15. Linking invasive exotic vertebrates and their ecosystem impacts in Tierra del Fuego to test theory and determine action

    NASA Astrophysics Data System (ADS)

    Valenzuela, Alejandro E. J.; Anderson, Christopher B.; Fasola, Laura; Cabello, José L.

    2014-01-01

    Understanding processes and impacts of biological invasions is fundamental for ecology and management. Recent reviews summarized the mechanisms by which invasive species alter entire ecosystems, but quantitative assessments of these mechanisms are lacking for actual assemblages to determine their relative importance, frequency and patterns. We updated information on introduced vertebrates in the Tierra del Fuego Archipelago (TDF) via an exhaustive literature review and new data to evaluate ecosystem impact mechanisms and provide management recommendations. To date, 24 exotic vertebrates have naturalized in TDF, outnumbering natives nearly 2:1, with the North American beaver (Castor canadensis) and muskrat (Ondatra zibethica) being the most widely distributed species and also impacting the ecosystem through the greatest number of mechanisms. Introduced vertebrates occupied most parts of the archipelago with human-inhabited islands having greater taxa richness. All exotics potentially altered ecosystems by one or more mechanisms: 100% food webs, 92% invasional meltdown, 42% habitat modification, 38% disease or parasite transmission, 21% soil property and disturbance regime changes. Impact to habitat structure was the main clustering criterion for this assemblage. Within the species that physically alter habitats, we found two sub-groups: 1) large herbivores and 2) "others" including beavers and muskrats. Species that did not alter habitat were divided further into those with predatory trophic effects (carnivorous mammals and trout, sub-group 4) and the rest with assorted impacts (sub-group 3). By establishing high quality information on archipelago-wide assemblage, distribution, impacts and mechanisms for exotic vertebrates, we recommend, based on ecological criteria, prioritizing the management of sub-group 2. A secondary priority might be given to the carnivores in sub-group 4, while species in sub-groups 1 and 3 are less urgent. As the first systematic survey of

  16. The Last Glacial Maximum and Termination in the Torres del Paine Region, Southern South America

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Hall, B. L.; Kaplan, M. R.; Vega, R. M.; Binnie, S.; Gómez, G.; Santana, F.

    2012-12-01

    Deciphering the timing, structure and termination of the local last glacial maximum (LGM) throughout Patagonia (42-55 S) remains one of the key unsolved paleoclimate questions in Quaternary sciences. During the last glaciation, the Patagonian ice sheet formed one ice body along the Patagonian Andes (42-55 S) in southern South America, but previous work has revealed different spatiotemporal ice dynamics along the eastern and western ice margins. The Patagonian Andes is the only landmass that exists at this latitude confronting the southern westerly wind belt, which seems to have played a key role in past glacial and climate changes. Therefore, reconstructing southern Andes glacier history constitutes a key element for understanding the causes of glaciations in the Southern Hemisphere. Major progress has been made to document the local Late-Pleistocene glacier history, particularly in response to recent application of exposure-cosmogenic dating technique in the region, although only sparse well-dated paleoclimate records exist in this vast area. LGM moraine-based records in south Patagonia (~48-55 S) have been developed for the Strait of Magellan area, where full glacial conditions seems to have occurred between ~28.0 - 17.5 ka. Despite that these data seem to confirm previous glacial chronologies developed in north Patagonia and the Chilean Lake District (40-42 S), recent works in Torres del Paine and Última Esperanza basins (50-51 S), suggest that glacial maximum conditions may have occurred earlier (i.e., during Marine Isotope Stage 3) and that ice extent could have been twice the size of previously thought. Here, we discuss paleoclimatological implications from our 10Be and 26Al-dating program of moraines in the Torres del Paine region in southern Patagonia. We focused our efforts in the previously undated Río de las Viscachas (RV) I and II moraines, which occur distal to the late-glacial TDP II, III and IV moraines that enclose present lake bodies at the

  17. A second, cryptic species of the soft coral genus Incrustatus (Anthozoa: Octocorallia: Clavulariidae) from Tierra del Fuego, Argentina, revealed by DNA barcoding

    NASA Astrophysics Data System (ADS)

    McFadden, Catherine S.; van Ofwegen, Leen P.

    2013-03-01

    The encrusting soft coral Incrustatus comauensis is a common denizen of hard substrates in the shallow sub-tidal zone from the central Chilean fjords to the Cape Horn region of southern South America. DNA barcoding of specimens collected from the Beagle Channel, Tierra del Fuego, Argentina, revealed the presence of a second, cryptic species of Incrustatus that is syntopic with I. comauensis. We describe Incrustatus niarchosi, a new species that can be distinguished morphologically from I. comauensis by differences in the microscopic ornamentation of the coenenchymal sclerites. To date, I. niarchosi n. sp. is known only from the Beagle Channel. A population of I. comauensis discovered in the intertidal zone in eastern Tierra del Fuego represents a new record of the species for that habitat and geographic region. Although the intertidal population is also distinct genetically, it is morphologically indistinguishable from sub-tidal Chilean populations of I. comauensis, and at present, there is insufficient evidence to support its status as a separate species.

  18. Pathogenic and enzyme activities of the entomopathogenic fungus Tolypocladium cylindrosporum (Ascomycota: Hypocreales) from Tierra del Fuego, Argentina.

    PubMed

    Scorsetti, Ana C; Elíades, Lorena A; Stenglein, Sebastián A; Cabello, Marta N; Pelizza, Sebastián A; Saparrat, Mario C N

    2012-06-01

    Tolypocladium cylindrosporum is an entomopathogenic fungi that has been studied as a biological control agent against insects of several orders. The fungus has been isolated from the soil as well as from insects of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera. In this study, we analyzed the ability of a strain of T cylindrosporum, isolated from soil samples taken in Tierra del Fuego, Argentina, to produce hydrolytic enzymes, and to study the relationship of those activities to the fungus pathogenicity against pest aphids. We have made the traditional and molecular characterization of this strain of T cylindrosporum. The expression of hydrolase activity in the fungal strain was estimated at three incubation temperatures (4 degreeC, 12 degreeC and 24 degreeC), on different agar media supplemented with the following specific substrates: chitin azure, Tween 20, casein, and urea for chitinase, lipase, protease, and urease activity, respectively. The hydrolytic-enzyme activity was estimated qualitatively according to the presence of a halo of clarification through hydrolase action, besides was expressed semi-quantitatively as the ratio between the hydrolytic-halo and colony diameters. The pathogenicity of the fungus was tested on adults of the aphid Rhopalosiphum padi at three temperatures of incubation (4 degree C, 12 degree C and 24 degree C). The suspension was adjusted to a concentration of 1x10(7) conidia/ml. In pathogenicity assays at seven days post-inoculation, the fungus caused the mortality of adults of Ropalosiphum padi at different temperatures also showed a broad ability to grow on several agar-culture media, supplemented with different carbon sources at the three incubation temperatures tested. Although, the growth was greater with higher incubation temperatures (with maximum levels at 24 degreeC), the fungus reached similar colony diameters after 15 days of incubation on the medium supplemented with Tween 20 at the lower two incubation

  19. Glacial geomorphology of the Torres del Paine region (southern Patagonia): Implications for glaciation, deglaciation and paleolake history

    NASA Astrophysics Data System (ADS)

    García, Juan-Luis; Hall, Brenda L.; Kaplan, Michael R.; Vega, Rodrigo M.; Strelin, Jorge A.

    2014-01-01

    The processes affecting paleoclimate variability and Pleistocene glacial landscape development in the southern mid-latitudes remain poorly understood, in part because of the scarcity of comprehensive, well-studied records. Glacial landforms are invaluable for reconstructing past ice-sheet, climate, and associated environmental changes along the southern Andes, but there are significant spatial and temporal gaps in existing data. In this paper, we present new geomorphic and sedimentologic analyses, including surficial maps, for the Torres del Paine region (51°S, 73°W), southern South America. Our findings provide a new framework for understanding changes in the regional glacier history and Pleistocene landscape development. Glacial extent during the local last glacial maximum (LGM) remains unknown but new chronological data supported by geomorphic evidence afford evidence for a larger ice sheet at Torres del Paine than previously assumed. Deglaciation from the local LGM was underway by 17,400 ± 200 (1σ) cal. yr. BP. As opposed to previous suggestions, we have found that most of the moraines fringing the lakes in the Torres del Paine national park were deposited during a late-glacial expansion that occurred between 14,100 and 12,500 cal. yr. BP. Late-glacial advances also have been documented recently for the Última Esperanza and Lago Argentino basins to the south and north of Torres del Paine, respectively, suggesting an overall regional ice response to a climate signal. The Tehuelche paleolake accompanied each of the ice-sheet fluctuations in Torres del Paine. New data document at least three main phases of this paleolake, which drained eastward to the Atlantic Ocean, while the Andes gaps were blocked with ice. During the late phase of glacial lake formation, when water levels reached 125-155 m a.s.l., the lake likely merged with paleolake Consuelo in the Última Esperanza area at the end of the last glaciation. Lake Tehuelche in Torres del Paine had drained

  20. Teleseismic receiver function analysis in Tierra del Fuego Island: an estimation of crustal thickness and Vp/Vs velocity ratio

    NASA Astrophysics Data System (ADS)

    Buffoni, C.; Sabbione, N. C.; Schimmel, M.; Rosa, M. L.

    2012-04-01

    Tierra del Fuego Island (TdF) is situated in the southern part of South America, where the transform tectonic boundary between the Scotia and South America plates divides the island into two continental blocks. This boundary is represented by a mainly strike-slip lineament known as Magallanes-Fagnano fault system that runs from the western part of the north Scotia ridge to the Chile trench south of 50° S. This fault system is composed of many splays and diverse subparallel faults that overprint the fold-and-thrust belt and are the responsible for the complex tectonic setting that has TdF. Only a few studies have been carried out to constrain the crustal structure and Moho depth in TdF. We present the preliminary estimations on Moho depth and Vp/Vs velocity ratio in TdF Argentinian Island, from teleseismic receiver function analysis with data recorded at five permanent seismic stations. We analyzed data and selected among 40 and 120 events for each seismic station, according to data availability and quality. Earthquakes with magnitudes greater than 5.5 mb and epicentral distances between 30° and 90° were selected. We used Seismic Analysis Code software to pre-process the seismograms. After removing the mean and trend, the data were band-pass filtered using different ranges of frequencies: 0.5-2Hz, 0.08-2Hz and 0.02-1Hz. We applied an iterative deconvolution technique in order to isolate the P-to-S converted waves and obtain the Receiver Functions (RFs). A Gaussian factor of a= 2.5 ( ~1Hz) was selected to reduce the noise and improve the signal coherence in the RFs. Crustal thickness and Vp/Vs ratio were estimated using the H-K stacking method. Since our RFs were not as clear as those typically obtained for simple tectonic settings, we performed different resample techniques to asses the robustness of our results. RFs from clustered events were stacked to increase the signal-to-noise ratio. For this purpose we divided the events into three clusters according event

  1. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica.

    PubMed

    Llorca, Marta; Farré, Marinella; Tavano, Máximo Sebastián; Alonso, Bruno; Koremblit, Gabriel; Barceló, Damià

    2012-04-01

    In this study, the presence of 18 perfluorinated compounds was investigated in biota and environmental samples from the Antarctica and Tierra de Fuego, which were collected during a sampling campaign carried out along February and March 2010. 61 samples were analysed including fish, superficial soils, guano, algae, dung and tissues of Papua penguin by liquid chromatography coupled to tandem mass spectrometry. The concentrations of PFCs were ranging from 0.10 to 240 ng/g for most of the samples except for penguin dung, which presented levels between 95 and 603 ng/g for perfluorooctane sulfonate, and guano samples from Ushuaia, with concentration levels of 1190-2480 ng/g of perfluorohexanoic acid. PFCs acids presented, in general, the highest levels of concentration and perfluorooctanesulfonate was the most frequently found compound. The present study provides a significant amount of results, which globally supports the previous studies, related to the transport, deposition, biodegradation and bioaccumulation patterns of PFCs. PMID:22325444

  2. [Obesity and sedentary lifestyles in four-years old children attending two pre-schools in the city of Río Grande, Tierra del Fuego, Argentina].

    PubMed

    Berghtein, Ileana Ruth

    2014-12-01

    The precocious start of the adipocyte rebound, such as sedentarism, increases the risk of developing obesity and its comorbidities at later ages. The city of Río Grande is located in the Northwestern part of Tierra del Fuego and its monthly average temperature is the lowest in all of Argentina. It also possesses the largest juvenile population (in proportion to the total) as well as a very low mortality rate. According to the 2006 National Health and Nutrition Survey, the prevalence of obesity among its children was also one of the highest in the country. The objective of this investigation was to determine the prevalence of obesity and sedentarism in 4-year-old children; the sample was taken from two local kindergartens. In order to achieve this, the children were weighed and measured, their body mass index and waist perimeter, as well as their percentiles, were calculated. A structured questionnaire was applied to characterize the average weekly time allotted to sedentary activities. In this study, 27.3% of children were deemed to be overweight, while 18.2% were classified as obese. Furthermore, 23.6% presented a waist circumference in the > 90 percentile or higher and 70.1% fell in the sedentary classification. Both the predominance of sedentarism and the pattern of fat distribution are a clear alert towards the need to deepen the search for metabolic-risk syndrome factors in vulnerable groups. PMID:25362907

  3. Transferring Knowledge Gained From a Field Experience in Tierra del Fuego, the Uttermost Part of the Earth, to Central Texas Science Classrooms

    NASA Astrophysics Data System (ADS)

    Ormiston, C.; Dovzak, N.; Anderson, S.; Perry, E.; Ellins, K.; Tingle, D.; Knettel, P.; Redding, S.; Odle, K.

    2005-12-01

    As part of the UTIG's Teachers in the Field program, we, three teachers from Boerne High School in south-central Texas, and four of our students, collaborated with an international team of geoscientists studying the tectonic and climatic evolution of the Lago Fagnano region in Tierra del Fuego, Argentina, in March 2005. This unique field experience allowed us to participate in all aspects of the scientific process: the consideration of research questions, development of a research plan, collection of field data and observations, and synthesis and presentation of results. In addition to field work and reconnaissance tied directly to the project objectives, we characterized the modern chemical/physical soil and water parameters (temperature, pH, dissolved oxygen, NH4 content, etc.) and isotopic (18O and D) composition of the Lago Fagnano watershed. These data are now integrated into an existing database of comparable chemical/physical information gathered for North American sites through our summer field courses. We will utilize this rich data set to make Texas-Tierra del Fuego ecosystem comparisons with our classes. The level of mentoring, preparation and follow-up provided by an NSF GK-12 Fellow was a key factor contributing to the success of our experience and an important element in helping us transfer components of this challenging experience to our students. Before, during, and following a two-week field season at Lago Fagnano, we and our students were actively engaged as learners and as scientists. We acquired concepts and skills that are readily applicable in a classroom setting: geologic mapping, GIS applications, isotopic data collection and analysis, tectonics concepts, and a general understanding of how science is truly conducted. Other factors that contributed to a positive experience included the team of dynamic scientists, who encouraged, helped and inspired us, the strong support that we received from our high school campus and district level

  4. Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuna Area), Tierra del Fuego, southern Chile

    SciTech Connect

    Alvarez-Marron, J.; McClay, K.R. ); Harambour, S.; Rojas, L.; Skarmeta, J. )

    1993-11-01

    The Magallanes foreland thrust and fold belt is a thin-skinned foreland thrust and fold belt of Paleocene to Oligocene age that deforms Upper Jurassic through Tertiary volcanic, volcaniclastic, and siliciclastic strata of the Magallanes basin, southern Andean Cordillera, Chile. This paper is a detailed description and analysis of the geology and structural evolution of the thrust front (Vicuna area of southern Tierra del Fuego). Reflection seismic and well data, together with 1:50,000 scale geological mapping, have been used in the analysis. In the southern part of the Vicuna area, two different thrust systems have been found: an upper imbricate fan that deforms Upper Jurassic and Cretaceous strata, and a younger, lower duplex composed of Cretaceous and probably Upper Jurassic rocks. The imbricate fan is characterized by fault-propagation folding in which listric thrust faults merge downward into a sole thrust that probably is located within the Upper Jurassic stratigraphy. The sole thrust of the upper imbricates forms the roof thrust of the underlying duplex. In the northern part of the Vicuna area, the syntectonic sedimentary wedge of the foredeep consists of Late Cretaceous through Tertiary siliciclastics that have been deformed and uplifted by passive back thrusting at the triangle zone. The structural style in the foreland region shows three main subhorizontal detachment levels located within the sedimentary wedge as a result of the progressive transfer of slip from the thrust belt to the foreland. Minor blind thrusts produce stacked [open quotes]pop up[close quotes] and triangle structures that result in complex geometries in the cores of anticlines. A forward-breaking sequence of thrusting is interpreted. During deformation, the active foredeep wedge migrated at least 10 km northward. Balanced geological cross sections indicate approximately 60% (-30 km) shortening for this part of the Magallanes thrust belt.

  5. Multi-proxy analyses of a peat bog on Isla de los Estados, easternmost Tierra del Fuego: a unique record of the variable Southern Hemisphere Westerlies since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Björck, Svante; Rundgren, Mats; Ljung, Karl; Unkel, Ingmar; Wallin, Åsa

    2012-05-01

    We have analyzed an almost 14,000 year old peat sequence on the island of Isla de los Estados (55° S, 64° W), east of Tierra del Fuego, in the core of the Southern Hemisphere Westerlies. A multitude of methods have been used: high resolution 14C dating; detailed lithologic descriptions including humification degree; loss on ignition; magnetic susceptibility; bulk density; pollen and spore analysis and determination of Aeolian sand influx. By combining proxies for wind and precipitation we have been able to reconstruct how the westerlies have varied over time in the Atlantic sector of the Southern Ocean. It shows that this westerly wind belt was most intense at the onset of the record, 13,600-13,200 cal BP, coinciding with the mid to late part of the Antarctic Cold Reversal, followed by a gradual decline. At 12,200 cal BP the westerlies seem to have shifted to a position south of Tierra del Fuego and this phase, the calmest and driest period on the island throughout the sequence, ended at 10,000 cal BP when the westerlies moved equatorward again. Since then the westerlies have been present but with a variable impact on the 55° S latitude of the Atlantic. Mostly conditions have been fairly similar to today, but occasionally with a wider or narrower and/or weaker or stronger wind belt. At 7200 cal BP wind intensity began to increase and between 4500 and 3500 cal BP these southern latitudes experienced a distinct wind and precipitation maximum, both in terms of perseverance and intensity. Our results show a both wide and strong wind belt, with possible niveo-aeolian activity in Tierra del Fuego in winter, and possibly creating milder summers around the Antarctic Peninsula. In the later part of the Holocene, expansion-contraction phases of the wind belt, especially in winter, seem to have been a common phenomenon.

  6. Records of environmental changes during the Holocene from Isla de los Estados (54.4°S), southeastern Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Unkel, Ingmar; Fernandez, Marilen; Björck, Svante; Ljung, Karl; Wohlfarth, Barbara

    2010-12-01

    Southernmost Patagonia, located at the relatively narrow passage between Antarctica and South America, is a highly sensitive region for recording meridional and zonal changes in the pattern of oceanic and atmospheric circulation. The island of Isla de los Estados, situated at 54.5°S, 64°W, east of Argentinean Tierra del Fuego, provides an exceptional possibility, to investigate terrestrial records of atmospheric conditions in an oceanic setting during the last deglaciation and the Holocene. Here we present geochemical and diatom analyses from 10 600 to c. 1500 cal BP of one sequence (LGB) with peat, lake sediments and lagoon deposits at the northern coast of the island, and a lake sediment sequence (CAS) 3 km further inland. The data comprise TC, TN, loss on ignition analyses and continuous XRF scanning as well as age-depth modeling based on AMS- 14C dating on both cores. Diatom analysis of the CAS record complements the geochemical proxies. During the Holocene, our two sites have been impacted by two different forcings: changes in the regional climate regime largely influenced by the varying strength and position of the Southern Hemisphere Westerlies (SHW), while relative sea-level changes affected the deposits of the coastal site. In concert with the onset of the Antarctic thermal optimum, our data suggest fairly warm conditions and the establishment of denser peat and forest vegetation on the island c. 10 600 cal BP. Between 8500 and 4500 cal BP geochemistry and diatoms from the CAS record indicate stronger Westerlies at this latitude, which means higher wind speed or higher storm frequency and more precipitation, resulting in more pronounced surface run-off. After 4500 cal BP, the geochemical proxies and large changes in diatom assemblages indicate a decrease in precipitation, weaker winds and possibly cooler conditions, probably as an effect of weaker SHW and/or a latitudinal shift. The depositional environment of CAS changed from gyttja to peat around 1000

  7. Los ojos de la NASA sobre la Tierra

    NASA Video Gallery

    La NASA cuenta con más de una decena de satélites que estudian la Tierra. Conoce la información que recaban los satélites, junto con Gilberto Colón, asistente especial del subdirector del Centro de...

  8. Current treatment and future prospects for the management of acute coronary syndromes: consensus recommendations of the 1997 ushuaia conference, tierra del fuego, Argentina.

    PubMed

    Gurfinkel, E

    1998-01-01

    Management of acute coronary syndromes, particularly unstable angina, acute myocardial infarction and non-Q-wave myocardial infarction, is one of the most common and costly problems facing modern medicine. Furthermore, the increasing availability of new research and clinical information relevant to the treatment of these conditions means that continuing reappraisal of management strategies is necessary. Accordingly, the Ushuaia conference, Tierra Del Fuego, Argentina, was convened to discuss current approaches and future treatment prospects for patients with these conditions. The conference was comprised of leading Argentinian cardiologists whose primary aim was to formulate consensus recommendations regarding the management of patients with acute coronary syndromes. The first of the major recommendations for the pharmacological management of acute coronary syndromes arising from the Ushuaia Consensus Conference was that aspirin (200 to 500mg initially, then 100 to 325 mg/day) should be administered to all patients except those for whom aspirin is absolutely (or relatively, depending on the clinician's discretion) contraindicated. In such cases, ticlopidine is a suitable alternative. Intravenous nitrates are indicated for patients with angina pain (24 to 48 hours' duration), ECG changes, recurrence of angina, or signs of heart failure; in other cases, oral, transdermal or sublingual nitrates may be administered. Use of beta-blockers is recommended except when absolutely contraindicated or when there is a strong suspicion of vasospasm as a dominant mechanism in angina. Intravenous administration of these agents is preferred in patients with tachycardia, arterial hypertension or angina. Calcium antagonists are generally not recommended as first choice therapy, but can be indicated (preferably using agents that decrease heart rate) when beta-blockers are contraindicated or when there is a strong suspicion of vasospasm as a dominant mechanism in angina. Calcium

  9. The effect of natural UV-B radiation on a perennial Salicornia salt-marsh in Bahía San Sebastián, Tierra del Fuego, Argentina: a 3-year field study.

    PubMed

    Bianciotto, O A; Pinedo, L B; San Roman, N A; Blessio, A Y; Collantes, M B

    2003-07-01

    The Antarctic ozone hole and a general depletion of the stratospheric ozone layer cause increased levels of ultraviolet-B solar radiation (UV-B) over Tierra del Fuego, the southernmost tip of South America. For three consecutive growing seasons (1997-2000), we studied the biological impacts (morphology, physiology, demography and phenology) of natural UV-B radiation on a perennial Salicornia ambigua Michx. community in San Sebastian Bay (53 degrees S and 68 degrees W), Tierra del Fuego, Argentina. This is the first UV-B screening experiment on a subantarctic halophytic community. The shortwave UV-B spectrum (280 to 320 nm) was excluded by covering plots with UV-B blocking film (Mylar). These plots were compared to controls covered with UV-B transparent (Aclar) plastic screens, and unscreened plots. Shoot length in Salicornia was not affected by UV-B. Exposure to natural UV-B reduced biomass and density (by 17% and 38%, respectively). Concentration of UV-shielding pigments and cuticle thickness were both significantly higher (25-48% and 21-40%, respectively) in plants receiving ambient UV-B. The increase in cuticle thickness persisted throughout the growing season, whereas pigment concentration was higher at the beginning of the growing season. Also, the number of dead shoots was higher in plants exposed to UV-B. At the end of the growing season (March) shoot mortality was higher in plants exposed to ambient UV-B, and post-flowering senescence was 30 days earlier. Slight changes in the relative composition of Salicornia to Puccinellia were seen. The reduction observed in Salicornia shoot density under ambient UV-B was cumulative over time; 23% in the first growing-season, rising to 38% by the third growing-season. A similar incremental increase in pigment absorption at 305 nm was seen; 25% in the first and 48% in the third growing season. PMID:12962642

  10. La Enseñanza/Aprendizaje del Modelo Sol-Tierra Análisis de la Situación Actual y Propuesta de Mejora Para la Formación de los Futuros Profesores de Primaria

    NASA Astrophysics Data System (ADS)

    Martínez Sebastià, Bernat

    2004-12-01

    This work is an extened summary of the autor's PhD thesis. It deals with the teaching of astronomy (day/night, seasons) in primary school. At first, students teachers' undestanding of astronomical concepts related to Sun-Earth system have been analysed. Taking into account the results of the previous analysis and using a socio-constructivist approach a teaching sequence has been designed. This sequence has been tested with different groups of students teachers showing an improvement in their undestanding of elementary astronomical concepts. El trabajo que presentamos es un resumen extenso de la tesis doctoral del autor. El enfoque utilizado ha sido tratar de ligar la investigación sobre las ideas, razonamientos y obstáculos de los profesores de primaria con la planificación de la enseñanza del modelo Sol-Tierra que permite explicar el ciclo día/noche y las estaciones. En primer lugar, se ha procedido a realizar un análisis crítico de los resultados que se obtienen en el aprendizaje de los contenidos astronómicos en la enseñanza habitual. En segundo lugar se ha diseñado un curriculum potencialmente superador de esta situación desde una orientación que concibe la enseñanza y el aprendizaje como un proceso de construcción de conocimientos en una estructura problematizada. Finalmente, esta secuencia didáctica ha sido experimentada con diferentes grupos de estudiantes de magisterio, mostrando una mejora relevante en la comprensión de los conceptos astronómicos fundamentales.

  11. Modern rates of glacial sediment accumulation along a 15° S-N transect in fjords from the Antarctic Peninsula to southern Chile

    NASA Astrophysics Data System (ADS)

    Boldt, Katherine V.; Nittrouer, Charles A.; Hallet, Bernard; Koppes, Michele N.; Forrest, Brittany K.; Wellner, Julia S.; Anderson, John B.

    2013-12-01

    of glacial erosion in temperate climates rank among the highest worldwide, and the sedimentary products of such erosion record climatic and tectonic signals in many glaciated settings, as well as temporal changes in glacier behavior. Glacial sediment yields are expected to decrease with increasing latitude because decreased temperature and meltwater production reduce glacial sliding, erosion, and sediment transfer; however, this expectation lacks a solid supportive database. Herein we present modern 210Pb-derived sediment accumulation rates on decadal to century time scales for 12 fjords spanning 15° of latitude from the Antarctic Peninsula to southern Chile and interpret the results in light of glacimarine sediment accumulation worldwide. 210Pb records from the Antarctic Peninsula show surprisingly steady sediment accumulation throughout the past century at rates of 1-7 mm yr-1, despite rapid warming and glacial retreat. Cores from the South Shetland Islands reveal accelerated sediment accumulation over the past few decades, likely due to changes in the thermal state of the glaciers in this region, which straddles the boundary between subpolar and temperate conditions. In Patagonia and Tierra del Fuego, sediment accumulates faster (11-24 mm yr-1), and previously collected seismic profiles show that rates reach meters per year close to the glacier termini. This increase in sediment accumulation rates with decreasing latitude reflects the gradient from subpolar to temperate climates and is consistent with glacial erosion being much faster in the temperate climate of southern Chile than in the polar climate of the Antarctic Peninsula.

  12. Trace elements deposition in the Tierra del Fuego region (south Patagonia) by using lichen transplants after the Puyehue-Cordón Caulle (north Patagonia) volcanic eruption in 2011.

    PubMed

    Conti, Marcelo Enrique; Jasan, Raquel; Finoia, Maria Grazia; Iavicoli, Ivo; Plá, Rita

    2016-04-01

    Lichen Usnea barbata transplants were tested as a biomonitor of atmospheric deposition in an apparently pristine environment that is Tierra del Fuego region (Patagonia, Argentina). The present survey is connected with the volcanic eruption that started in north Patagonia on June 4, 2011 from the Puyehue-Cordón Caulle volcano, Chile (north Patagonia, at 1700 km of distance of our sampling sites). Lichens were collected in September 2011 (one month of exposure) and September 2012 (1 year of exposure) in 27 sites covering the northern region of the province where trees are not present. The atmospheric deposition of 27 elements by using Neutron Activation Analysis (NAA) was determined in the collected samples. The first aim of the study was to evaluate the influence of the volcanic eruption on the regional atmospheric deposition comparing our results with baseline data we determined in U. barbata in 2006 in the same sites. The second aim was to test possible patterns of bioaccumulation between the two sampling campaigns after the volcanic eruption. With respect to 2006 baseline levels, we found significant higher levels for As, Ba, Co, Cr, Cs, Na, Sb and U in lichens collected after 1 month of exposure (first sampling campaign--2011). Between the two sampling campaigns (2011-2012) after the eruption, lichens reflected the natural contamination by volcanic ashes with significantly higher median levels of Br, Cr, Fe, K, Na, Sc, and Se. Results confirmed the very good aptitude of U. barbata to reflect the levels of elements in the environment at global scale and to reflect the volcanic emissions at distant places. Volcanic eruptions cause the emission in the atmosphere of elevated levels of particulate matter. In this regard, our findings demonstrate the importance to evaluate the metal composition of the particles to avoid possible health effects. PMID:26637301

  13. Recent Deglaciation of Darwin Mountains (Tierra de Fuego) after Little Ice Age: monitoring by photogrammetry, lichenometry, dendrochronology and field studies.

    NASA Astrophysics Data System (ADS)

    García-Sancho, L.; Palacios, D.; Zamorano, J. J.; Green, A.; Vivas, M.; Pintado, A.

    2012-04-01

    behaviour detected at the Pia glacial terminus results from a combination of climatic factors and elements derived from the dynamics of the glacial flow. García-Sancho, L. Palacios, D., Green, T.G.A., Vivas, M., Pintado, A. (2011): Extreme lichen growth rates detected in recent deglaciated areas in Tierra del Fuego. Polar Biology, 34 (6): 813-822. DOI: 10.1007/s00300-010-0935-4. Research funded by POL20060840 & CGL2009-7343 projects, Government of Spain.

  14. Mineralogical, IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo, Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Biel, C.; Subías, I.; Acevedo, R. D.; Yusta, I.; Velasco, F.

    2012-04-01

    The Arroyo Rojo Zn-Pb-Cu volcanogenic massive sulfide deposit is the main deposit of the Fin del Mundo District in the Fuegian Andes, Argentina. This deposit is hosted by a Middle Jurassic volcanic and volcanoclastic sequence forming the Lemaire Formation. The latter consists, from the base up, of the following: rhyolitic and dacitic porphyritic rocks, ignimbrite, tuff, and flow. It is underlain by a pre-Jurassic basement and overlain by the hyaloclastic andesites of the Yahgán Formation. The Arroyo Rojo consists of stacked lenticular lenses that are associated with disseminated mineralization in both the footwall and the hanging wall. The internal structure of the ore lenses is marked by the occurrence of massive, semi-massive and banded facies, along with stringer and brecciated zones and minor ore disseminations. The mineral assemblage comprises mainly pyrite and sphalerite, with minor amounts of galena and chalcopyrite and rare pyrrhotite, arsenopyrite, tetrahedrite and bournonite. The ores and the volcanic host rocks have metamorphosed to greenschist facies and were overprinted by a penetrative tectonic foliation, which led to the development of mylonitic, and cataclastic textures, recrystallization and remobilization. Primary depositional characteristics and regional and hydrothermal alteration patterns were preserved despite deformation and metamorphism. Therefore, primary banding was preserved between facies boundaries. In addition, some remnants of magmatic origin are recognizable in preserved phenocrysts and volcaniclastic phenoclasts. Most of the volcanic and volcaniclastic rocks of the host sequence show a rhyolitic to rhyo-dacitic composition. Regional seafloor alteration, characterized by the presence of clinozoisite, Fe-chlorite and titanite, along with quartz and albite, is partially obliterated by hydrothermal alteration. The hydrothermal alteration is stratabound with the following assemblages, which developed from the base to top: (1) Quartz

  15. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America

    PubMed Central

    Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-01-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739

  16. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America.

    PubMed

    Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-01-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739

  17. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America

    NASA Astrophysics Data System (ADS)

    Vanneste, Heleen; de Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-07-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions.

  18. La Memoria De Nuestra Tierra: Colorado

    ERIC Educational Resources Information Center

    Baca, Judy

    2005-01-01

    La Memoria de Nuestra Tierra combines a meticulously hand-painted landscape with historic photographs in a seamless blend imprinted on the holographic-like surface of a metallic coated substrate. The mural for the Denver International Airport, entitled La Memoria de Nuestra Tierra is a breakthrough in digital murals, printed digitally on a…

  19. Deforestation in Tierras Bajas, Bolivia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This false-color image shows the gradual conversion of forest lands for agricultural use in the Tierras Bajas region of Santa Cruz, Bolivia, as observed by the Enhanced Thematic Mapper Plus (ETM+) flying aboard Landsat 5. Forest and woodland are represented as grey tones from Channel 5 in this ETM+ scene, collected in 1998. Other colors indicate the first year in which a site was developed for agriculture (see color scale in the image, which corresponds to years of development). In this scene, land use types are delineated with lines. Solid white lines show the locations of planned colonies, dashed white lines show spontaneous colonies, and dotted white lines show Mennonite colonies. All other regions of development are non-Mennonite industrial soybean farms. Natural vegetation formations in this image are delineated with black lines. Solid black lines show the locations of Northern Chaco Woodlands and dashed black lines show Cerrado regions. For more information, see this previous Image of the Day regarding Bolivian deforestation. Image courtesy Marc Steininger, NASA GSFC

  20. Tierra Nueva -- A passive solar cohousing project

    SciTech Connect

    Haggard, K.; Cooper, P.

    1999-10-01

    California architects take on the formidable challenges of designing a cohousing project, and discover that the end result is well worth the effort. The Tierra Nueva Cohousing Project consists of living units, a common house, community orchard, community gardens, community play space, space for a future shop and at the periphery of the site, parking, carports and garages. The units use thermal mass, solar heating, passive solar cooling, perimeter insulation on slabs. Design was agreed to by the community as a whole.

  1. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    NASA Astrophysics Data System (ADS)

    Albani, Samuel; Mahowald, Natalie M.; Delmonte, Barbara; Maggi, Valter; Winckler, Gisela

    2012-05-01

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum.

  2. Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia?

    PubMed Central

    2011-01-01

    Background A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (Lontra provocax). Results We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of L. provocax from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for L. provocax in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes. Conclusions Our data support the hypothesis of the persistence of L. provocax in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred L. provocax differentiation between the two environments. PMID:21356052

  3. Timescale dependence of glacial erosion rates: A case study of Marinelli Glacier, Cordillera Darwin, southern Patagonia

    NASA Astrophysics Data System (ADS)

    Fernandez, Rodrigo A.; Anderson, John B.; Wellner, Julia S.; Hallet, Bernard

    2011-03-01

    Erosion rates have been estimated for a number of glaciated basins around the world, mostly based on modern observations (last few decades) of sediment fluxes to fjords. We use time-constrained sediment volumes delivered by Marinelli Glacier (55°S), an outlet glacier of the Cordillera Darwin ice cap, southern Patagonian Andes, Tierra del Fuego, to determine erosion rates across different timescales. Sediment volumes are derived using a dense grid of high- and low-frequency single channel seismic data and swath bathymetry data along with piston and Kasten cores. Our results show dramatic differences in erosion rates over different timescales. Erosion rates at Marinelli Glacier diminish about 80% (or by factor of ˜5) with each ten-fold increase in the time span over which erosion rates are averaged: 29.3 mm/yr for the last 45 years, 5.3 mm/yr for the last 364 years, and 0.5 mm/yr for the last 12,500 years. These results indicate that modern sediment yields and erosion rates from temperate tidewater glaciers can exceed long-term values over the time of deglaciation after the Last Glacial Maximum (centennial and millennial timescales) by up to 2 orders of magnitude. In view of the low exhumation rates of Cordillera Darwin (˜0.07 mm/yr average for the last 30 Myr), modern erosion rates could be up to 3 orders of magnitude higher than rates over geological time. We conclude that the pattern of erosion rate variation with time reflects the sensitivity of glaciers to climate variability.

  4. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes. PMID:14558899

  5. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  6. Revealing the eruptive dynamics of post-glacial effusive volcanism in the western part of Laguna del Maule Volcanic Field: Insights into a complex magmatic system

    NASA Astrophysics Data System (ADS)

    Cáceres, F.; Castruccio, A.; Parada, M. Á.

    2015-12-01

    In this study we analyzed six Quaternary lava flows and one lava dome from Laguna del Maule Volcanic Field, in the Chilean Andes, in order to create a volcano-petrological eruptive model to get ideas about pre- and syn-eruptive stages, the main factors that control the broad distribution of vents and the architecture of magma reservoir. We estimated eruptive parameters such as effusion rates and erupted volumes, extrinsic and intrinsic lava flows emplacement controlling factors, magma ascent rates and pre-eruptive thermodynamics conditions to determine different stages in magma evolution from magma reservoir to emplacement of lava at surface. The analyzed lavas have andesitic-to-rhyolitic compositions, blocky morphology with volumes about a few cubic kilometers, thicknesses up to 140 m, maximum widths of 5 km and maximum lengths of 10 km. Modeling of the advance of these flows gives effusion rates of 10-1-102 m3s-1 and eruptions of a few months to years. Petrologic studies which include quantitative textural analyses and mineral and glass compositions, reveal similar provenance and crystalizing temperatures of similar minerals, coupled with similar pressures, H2O content and oxygen fugacity by similar lava composition, meanwhile individual chamber size estimations show an overlap sharing volume in near chambers indicating the equivalent provenance. Our main results about dynamics of lava flows suggest a crustal yield strength control in the emplacement over the internal viscosity of the flow for each lava. On the other hand, non-rhyolitic units appear to come from chambers located in similar depths and with coinciding volumes which indicate that the eruptions were triggered by the injection of different magma batches into a crystal-rich magma reservoir that could be divided into many sub-compartments which could explain the broad distribution of the vents. In addition, rhyolitic units also show similar thermodynamics conditions and coming from equivalent chambers.

  7. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  8. Kennebunk glacial advance: A reappraisal

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey W.

    1981-06-01

    Evidence for the Kennebunk glacial advance (readvance) in southwestern Maine is discussed in light of recent geologic mapping. Orientations of glacially produced lineations record the response of ice to major topographic controls and do not indicate glacial readvance. Minor end moraines and large stratified end moraines associated with deformed marine sediments of the Presumpscot Formation occur throughout the southwestern coastal zone. These features outline the general pattern of ice retreat from this part of the coastal zone and suggest that withdrawal of the last ice from southwestern Maine occurred with minor stillstands and local frontal fluctuations but without significant readvance. The Kennebunk glacial advance (readvance) appears to have been one of many local fluctuations of the ice front during general recession, occurring at about 13,200 yr B.P.

  9. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  10. Applications of TIERRAS for underground particle cascade simulations

    SciTech Connect

    Tueros, M. J.

    2010-11-24

    In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

  11. Extraterrestrial accretion and glacial cycles

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1994-01-01

    We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.

  12. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow. PMID:17806883

  13. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  14. Espectroscopia del Cometa Halley

    NASA Astrophysics Data System (ADS)

    Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.

    1987-05-01

    Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.

  15. Record of glacial Lake Missoula floods in glacial Lake Columbia, Washington

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Clague, John J.

    2016-02-01

    During the last glaciation (marine oxygen isotope stage 2), outburst floods from glacial Lake Missoula deposited diagnostic sediments within glacial Lake Columbia. Two dominant outburst flood lithofacies are present within glacial Lake Columbia deposits: a flood expansion bar facies and a finer-grained hyperpycnite facies. We conclude that the flood sediments have a glacial Lake Missoula source because: (1) current indicators indicate westward flow through the lake, and upvalley flow followed by downvalley flow in tributary valleys; (2) no flood sediments are found north of a certain point; (3) there is a dominance of Belt-Purcell Supergroup clasts in a flood expansion bar; and (4) some of the finer-grained beds have a pink colour, reflective of glacial Lake Missoula lake-bottom sediments. A new radiocarbon age of 13,400 ± 100 14C BP on plant detritus found below 37 flood beds helps constrain the timing of outburst flooding from glacial Lake Missoula.

  16. Observational and Model Constraints on Glacial Erosion

    NASA Astrophysics Data System (ADS)

    Ehlers, T. A.; Enkelmann, E.; Yanites, B. J.

    2012-12-01

    Quantifying the controls on glacial erosion over geologic timescales is necessary to understand the role of Cenozoic climate change on the development of modern mountain belts. Unfortunately, understanding the spatial distribution of glacial erosion during repeated glaciations has proven difficult. We present results that integrate bedrock and detrital thermochronometer cooling ages with a glacial landscape evolution model. We use this to quantify the spatial distribution and temporal variability of glacial erosion in the Coast Mountains, British Columbia, Canada. A total of 100 apatite (U-Th)/He and 106 fission track single grain ages are presented from modern outwash of the Tiedemann Glacier whose catchment elevations range from 530-3960 m a.s.l.. Detrital thermochronometer ages utilize the tendency of thermochronometer cooling ages to increase with elevation and provide a sediment tracer for the elevation that eroded sediment is derived from. Bedrock ages used include 79 apatite (U-Th)/He ages collected in multiple catchments. Erosion rates derived from bedrock ages are compared to predicted erosion rates from a shallow-ice approximation glacial landscape evolution model of the region. Results from the observed distribution of detrital ages indicate that maximum glacial erosion occurs between elevations of 1200-1800m. Furthermore, near-uniform erosion is documented beneath the glacier with nearly all sediment derived from between elevations of 650- 3000 m a.s.l. Second, comparison of erosion rates derived from bedrock thermochronometer ages with the landscape evolution model suggest that a linear glacial sliding velocity is the primary control on erosion (r2=0.6). This result is important as it provides observational validation of the linear slide velocity erosion rule for million-year timescales. Finally, comparison of model and thermochronometer derived erosion rates reveals that active subglacial erosion occurs for only ~10-20% of a glacial-interglacial cycle

  17. Glacial migrations of plants: island biogeographical evidence.

    PubMed

    Simpson, B B

    1974-08-23

    Analyses of the floras of the high north Andean habitat islands (paramos) and the Galápagos Islands show that plant species diversity conforms to the MacArthur and Wilson model of island biogeography but that immigration occurred primarily during glacial periods. Modern plant species diversity is more significantly correlated with area and distance measures of the glacial forms of the islands than with similar measures of the present-day islands. PMID:17736375

  18. Analysis of recent glacial earthquakes in Greenland

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2015-12-01

    Large calving events at Greenland's outlet glaciers produce teleseismically detectable glacial earthquakes. These events are observed in the seismic record for the past 22 years, but the complete catalog of glacial earthquakes still numbers only ~300. The annual occurrence of these long-period events has increased over time, which makes recent years especially valuable in expanding the global dataset. Glacial earthquakes from 1993- 2010 have been analyzed systematically (Tsai and Ekström, 2007; Veitch and Nettles, 2012). Here, we analyze more recent events using the same centroid—single-force (CSF) approach as previous authors, focusing initially on data from 2013. In addition, we perform a focused study of selected events from 2009-2010 to assess the reliability of the force azimuths obtained from such inversions. Recent spatial and temporal patterns of glacial earthquakes in Greenland differ from those in previous years. In 2013, three times as many events occurred on the west coast as on the east, and these events originated predominantly from two glaciers: Jakobshavn Glacier on the west coast and Helheim Glacier on the east. Kangerdlugssuaq Glacier, on the east coast, produced no glacial earthquakes in 2013, though it produced many events in earlier years. Previous CSF results for glacial earthquakes show force azimuths perpendicular to the glacier front during a calving event, with force plunges near horizontal. However, some azimuths indicate forces initially oriented upglacier, while others are oriented downglacier (seaward). We perform a set of experiments on events from 2009 and 2010 and find two acceptable solutions for each glacial earthquake, oriented 180° apart with plunges of opposite sign and centroid times differing by approximately one half of the assumed duration of the earthquake time function. These results suggest the need for a more complex time function to model glacial earthquakes more accurately.

  19. A fresh look at glacial foods

    USGS Publications Warehouse

    Colman, Steven M.

    2002-01-01

    Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.

  20. Periodic floods from glacial Lake Missoula into the Sanpoil arm of glacial Lake Columbia, northeastern Washington.

    USGS Publications Warehouse

    Atwater, B.F.

    1984-01-01

    At least 15 floods ascended the Sanpoil arm of glacial Lake Columbia during a single glaciation. Varves between 14 of the flood beds indicate one backflooding every 35 to 55 yr. This regularity suggests that the floods came from an ice-dammed lake that was self-dumping, probably glacial Lake Missoula, Montana. -from Author

  1. Tierra de Oportunidad Implementation Handbook. LAES: Latino Adult Education Services Project.

    ERIC Educational Resources Information Center

    Kissam, Ed; Dorsey, Holda

    This handbook is intended to help administrators and instructors of adult basic education and English-as-a-Second-Language programs use the 30 Tierra de Oportunidad (Land of Opportunity) instructional modules, which address four strands or clusters relating to the different major domains in which adults function: work life, family life, community,…

  2. Glacial history of Tranquilo glacier (Central Patagonia) since the Last Glacial Maximum through to the present.

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Araya, P. S.; Schaefer, J. M.; Kaplan, M. R.; Kelly, M. A.; Lowell, T. V.; Aravena, J. C.

    2014-12-01

    Deciphering the timing and the inter-hemispheric phasing of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we present a detailed chronology of glacial fluctuations for Río Tranquilo glacier (47°S), since the LGM, including up to the present. Río Tranquilo is a small glacial valley located on the northern flank of Monte San Lorenzo, an isolated granitic massif, ~70 km to the east of the southern limit of the Northern Patagonian Icefield. Although Mt. San Lorenzo is located on the leeward side of the Andes, it is one of the most glacierized mountains in the region, with an ice surface area of ~140 km2. Geomorphic evidence suggests that during past episodes of climate change several small glaciers that today occupy the headwalls of Río Tranquilo valley expanded and coalesced, depositing a series of moraines complexes along the flanks and bottom of the valley. We used two independent dating techniques to constrain the age of the glacial history of the area. 10Be surface exposure ages from boulders located atop moraine ridges reveal that Río Tranquilo valley underwent glacial expansion/stabilization during at least the LGM (late LGM?), Late glacial (ACR and Younger Dryas) and Mid-Holocene. Within the Mid-Holocene limits, tree-ring based chronology indicates that Río Tranquilo glacier expanded during the Late Holocene as well. Our results are the first detailed chronology of glacial fluctuations from a single valley glacier, spanning the entire period from the (end of the) LGM up to the present, in southern South America. By identifying different glacial episodes within a single alpine valley, this study provides baseline data for studying the relative magnitude of the climate events responsible for these glacial events.

  3. Geomorphical and Geochronological Constrains of the Last Glacial Period in Southern Patagonia, Southern South America

    NASA Astrophysics Data System (ADS)

    García, J.; Hall, B. L.; Kaplan, M. R.; Vega, R. M.; Binnie, S. A.; Hein, A.; Gómez, G. N.; Ferrada, J. J.

    2013-12-01

    Despite the outer limits of the former Patagonian ice sheet (PIS, ~38-55S) having been extensively mapped, it remains unknown if the Patagonian glaciers fluctuated synchronously or asynchronously during the last glacial period. Previous work has revealed asynchronous spatiotemporal ice dynamics along the eastern and western ice-margins at the end of the last glaciation but it is not well understood if the northern and southern parts of the PIS reached concurrent maximum glaciation during the last glacial cycle. The Patagonian Andes is the only landmass involving the southern westerly wind belt latitudinal range, which is thought to have played a key role in past glacial and climate changes. Therefore, reconstructing southern Andes glacier history constitutes a key element for understanding the cause of glaciations in Patagonia and the role of the westerlies in climate change. Here, we discuss paleoglaciological and paleoclimatological implications of new 10Be and 14C data obtained from moraines and strategically selected mires in two contiguous glacially molded basins of south Patagonia (48-55S): Torres del Paine (51S) and Última Esperanza (52S). In this region, we focused our 10Be cosmogenic-dating efforts in the previously undated outer moraines deposited (supposedly) during the last glacial cycle. In order to crosscheck cosmogenic data we collected boulders embedded in moraines and cobbles from the main glaciofluvial plains grading from the outermost moraines. Geomorphic and cosmogenic dating affords evidence for glacial maximum conditions occurring between 40-50 ka (ka = thousand of years before present) in southern Patagonia, which is different from other chronologies within southern South America. We obtained 14C basal ages from sites located within moraine depressions and on former paleolake shorelines and thus these may provide key data on deglaciation and debated regional paleolake history.

  4. Last Glacial loess in the conterminous USA

    USGS Publications Warehouse

    Bettis, E. Arthur, III; Muhs, Daniel R.; Roberts, Helen M.; Wintle, Ann G.

    2003-01-01

    The conterminous United States contains an extensive and generally well-studied record of Last Glacial loess. The loess occurs in diverse physiographic provinces, and under a wide range of climatic and ecological conditions. Both glacial and non-glacia lloess sources are present, and many properties of the loess vary systematically with distance from loess sources. United States' mid-continent Last Glacial loess is probably the thickest in the world, and our calculated mass accumulation rates (MARs) are as high as 17,500 g/m2/yr at the Bignell Hill locality in Nebraska, and many near-source localities have MARs greater than 1500 g/m2/yr. These MARs are high relative to rates calculated in other loess provinces around the world. Recent models of LastGlacial dust sources fail to predict the extent and magnitude of dust flux from the mid-continent of the United States. A better understanding of linkages between climate, ice sheet behaviour, routing of glacial meltwater, land surface processes beyond the ice margin, and vegetation is needed to improve the predictive capabilities of models simulating dust flux from this region.

  5. Millennial-scale sea ice variability in the southern Indian Ocean during the last glacial

    NASA Astrophysics Data System (ADS)

    Ikehara, M.; Katsuki, K.; Yamane, M.; Yokoyama, Y.

    2014-12-01

    The Southern Ocean has played an important role in the evolution of the global climate system. Sea ice coverage on sea surface strongly affects the climate of the Southern Hemisphere through its impacts on the energy and gas budget, on the atmospheric circulation, on the hydrological cycle, and on the biological productivity. In this study, we have conducted fundamental analyses of ice-rafted debris (IRD) and diatom assemblage to reveal a rapid change of sea ice distribution in the glacial southern Indian Ocean. Piston cores COR-1bPC and DCR-1PC were collected from the Conrad Rise and Del Caño Rise, Indian sector of the Southern Ocean. Age models of the cores were established by radiocarbon dating and oxygen isotope stratigraphy of planktic and benthic foraminifers. Records of IRD concentration suggest millennial-scale pulses of IRD delivery during the last glacial period. The depositions of rock-fragment IRD excluding volcanic glass and pumice were associated with increasing of sea-ice diatoms, suggesting that the millennial-scale events of cooling and sea-ice expansion were occurred in the southern Indian Ocean during the last glacial period. Provenance study of IRD grains suggest that the source of IRD in the southern Indian Ocean was mainly volcanic arc in the South Atlantic, based on chemical compositions of rock-fragment IRD grains. Thus prominent IRD layers in the glacial Southern Ocean suggest episodes of sea ice expansion and cooling in the Indian sectors of the Southern Ocean.

  6. Quaternary evolution of glaciated gneiss terrains: pre-glacial weathering vs. glacial erosion

    NASA Astrophysics Data System (ADS)

    Krabbendam, Maarten; Bradwell, Tom

    2014-07-01

    Vast areas previously covered by Pleistocene ice sheets consist of rugged bedrock-dominated terrain of innumerable knolls and lake-filled rock basins - the ‘cnoc-and-lochan' landscape or ‘landscape of areal scour'. These landscapes typically form on gneissose or granitic lithologies and are interpreted (1) either to be the result of strong and widespread glacial erosion over numerous glacial cycles; or (2) formed by stripping of a saprolitic weathering mantle from an older, deeply weathered landscape. We analyse bedrock structure, erosional landforms and weathering remnants and within the ‘cnoc-and-lochan' gneiss terrain of a rough peneplain in NW Scotland and compare this with a geomorphologically similar gneiss terrain in a non-glacial, arid setting (Namaqualand, South Africa). We find that the topography of the gneiss landscapes in NW Scotland and Namaqualand closely follows the old bedrock-saprolite contact (weathering front). The roughness of the weathering front is caused by deep fracture zones providing a highly irregular surface area for weathering to proceed. The weathering front represents a significant change in bedrock physical properties. Glacial erosion (and aeolian erosion in Namaqualand) is an efficient way of stripping saprolite, but is far less effective in eroding hard, unweathered bedrock. Significant glacial erosion of hard gneiss probably only occurs beneath palaeo-ice streams. We conclude that the rough topography of glaciated ‘cnoc-and-lochan' gneiss terrains is formed by a multistage process: 1) Long-term, pre-glacial chemical weathering, forming deep saprolite with an irregular weathering front; 2) Stripping of weak saprolite by glacial erosion during the first glaciation(s), resulting in a rough land surface, broadly conforming to the pre-existing weathering front (‘etch surface'); 3) Further modification of exposed hard bedrock by glacial erosion. In most areas, glacial erosion is limited, but can be significant beneath palaeo

  7. Geochronology, structural evolution of the Tierra Colorada area, and tectonic implications for southern Mexico and Chortís block connections

    NASA Astrophysics Data System (ADS)

    Solari, L. A.; Torres de Leon, R.; Hernandez Pineda, G.; Sole', J.; Solis Pichardo, G.; Hernandez Treviño, T.

    2006-05-01

    The Tierra Colorada area is considered the best exposure of the northern limit between the Xolapa Complex and the Paleozoic-Precambrian Mixteca and Zapotecan terranes of southern Mexico. Geochemistry (major, trace, and REE) and geochronology on deformed granitoids in Tierra Colorada area show evidence of subduction-related magmatism during Mesozoic and Cenozoic. El Pozuelo granite, dated at 129 Ma (concordant U-Pb single-zircon age) is a foliated body, with local porphyric facies. Foliation is penetrative and characterized by oriented micas and stretched quartz. Geochemically it shows a metaluminous character, with arc-related trace and REE patterns. Because it cuts across high-grade gneisses of the Xolapa Complex, its intrusion postdates the second phase of metamorphism in the Xolapa Complex (> 130 Ma), which generated the orthogneisses-migmatites sequence. El Salitre granite (55 Ma, Rb-Sr 4 point isochron) is a foliated peraluminous body with a pronounced negative Zr anomaly. The protomylonitic Las PiÑas granite (54 +/- 6 Ma, U-Pb lower intercept) is characterized by ductile fabric, recognized by cinematic indicators such as mica fish, and indicates a top-to-the NNW sense of shear, dated at 50 +/- 1 Ma and 45.3 +/- 2 Ma (K-Ar on Bt, and Rb-Sr Bt-WR isochron, respectively), ages that indicate the time of ductile deformation along La Venta shear zone, as N-dipping detachment under low greenschist facies conditions. El Salitre and Las PiÑas granites are linked because of their similar HREE patterns. The Tierra Colorada, Xaltianguis and San Juan del Reparo granites, with calcalkaline subduction-related geochemistry, lack of penetrative deformation, and their ages of 30-34 Ma (U-Pb on zircons) constitute the last recognized granitic pulse in this area, post-dating the S-verging thrust of the Morelos limestones on top of sheared granites and volcanics. Together with previously published ages of magmatism in the studied area, we demonstrate here that calcalkaline

  8. QBO modulation of the mesopause gravity wave momentum flux over Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.

    2016-04-01

    The interannual variability of the mesosphere and lower thermosphere (MLT) gravity wave momentum flux over southern midlatitudes (53.7°S) has been studied using more than 7 years of meteor radar observations at Río Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of zonal as well as meridional momentum. The QBO signal is largest in the zonal component during summer and is in phase with the stratospheric QBO at 50 hPa (˜21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity wave forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity wave forcing anomalies as hypothesized in the interhemispheric coupling mechanism.

  9. Growth and production of the venerid bivalve Eurhomalea exalbida in the Beagle Channel, Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Lomovasky, Betina J.; Brey, Thomas; Morriconi, Elba; Calvo, Jorge

    2002-11-01

    Growth, mortality and productivity of the hard clam Eurhomalea exalbida from Ushuaia Bay, Beagle Channel, were investigated. The parameters of the von Bertalanffy growth function were estimated to be H ∞ = 74 mm, K = 0.18 y -1, t 0 = 0.15 y. Maximum individual production amounted to 2.74 g shell-free wet mass (SFWM) at 49.5 mm shell height. Animals between 40 mm and 70 mm shell height contributed most to overall population somatic production P of 134 g SFWM m -2 y -1. Mean annual biomass B amounted to 1123 g SFWM m -2 y -1. Annual P/B ratio and mortality rate Z were estimated to be 0.12 y -1 and 0.14 y -1, respectively. Slow growth and low turnover make this population less suitable for sustainable commercial exploitation.

  10. Latest Pleistocene and Holocene glacier fluctuations in southernmost Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Menounos, Brian; Clague, John J.; Osborn, Gerald; Davis, P. Thompson; Ponce, Federico; Goehring, Brent; Maurer, Malyssa; Rabassa, Jorge; Coronato, Andrea; Marr, Rob

    2013-10-01

    Some researchers propose that summer insolation controls long-term changes in glacier extent during the Holocene. If this hypothesis is correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Although the chronology of Holocene glacier fluctuations in the Northern Hemisphere is well established, much uncertainty remains in the ages of Holocene glacier fluctuations in the Southern Hemisphere, especially South America. Here we report on latest Pleistocene and Holocene glacier fluctuations at the southern end of the Andes north and west of Ushuaia, Argentina. Surface exposure ages (10Be) from glaciated bedrock beyond cirque moraines indicate that alpine areas were free of ice by ca 16.9 ka. One, and in some cases two, closely spaced moraines extend up to 2 km beyond Little Ice Age moraines within many of the cirques in the region. The mean age of five 10Be ages from two pre-Little Ice Age moraines is 14.27-12.67 ka, whereas a minimum limiting radiocarbon age for a smaller, recessional moraine in one cirque is 12.38-12.01 ka. Our ages imply that, following glacier retreat beginning about 18.52-17.17 ka, cirque glaciers first advanced during the Antarctic Cold Reversal (14.5-12.9 ka) and may have later advanced or stabilized in the Younger Dryas Chronozone (12.9-11.7 ka). Based on the distribution of thick, geochemically distinct, and well-dated Hudson tephra, no Holocene moraines appear to be older than 7.96-7.34 ka. At some sites, there is evidence for one or more advances of glaciers sometime between 7.96-7.34 ka and 5.29-5.05 ka to limits only tens of meters beyond Little Ice Age maximum positions. Taken together, the data: 1) do not support the summer insolation hypothesis to explain Holocene glacier fluctuations in southernmost Patagonia; 2) confirm paleobotanical evidence for a warm, dry early Holocene; and 3) suggest that some glaciers in the region reached extents comparable to those of the Little Ice Age shortly before 5.29-5.05 ka.

  11. Central Michigan University's Glacial Park: Instruction through Landscaping.

    ERIC Educational Resources Information Center

    Pape, Bruce; Francek, Mark A.

    1992-01-01

    Describes the creation of a glacial park on a university campus. Suggests that the park is a useful instructional resource that helps students relate classroom material to outdoor phenomena by visualizing and identifying glacial landforms, recognizing their spatial relationships, and understanding how glacial features originated. Offers advice for…

  12. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  13. Potential flood volume of Himalayan glacial lakes

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A. B.; Sawagaki, T.; Yamanokuchi, T.

    2013-01-01

    Glacial lakes are potentially dangerous sources of glacial lake outburst floods (GLOFs), and represent a serious natural hazard in Himalayan countries. Despite the development of various indices aimed at determining the risk of such flooding, an objective evaluation of the thousands of Himalayan glacial lakes has yet to be completed. In this study we propose a single index, based on the depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). We test our approach on five lakes in Nepal, Bhutan, and Tibet using images taken by the declassified Hexagon KH-9 satellite before these lakes flooded. All five lakes had a steep lakefront area (SLA), on which a depression angle was steeper than our proposed threshold of 10° before the GLOF event, but the SLA was no longer evident after the events. We further calculated the potential flood volume (PFV); i.e. the maximum volume of floodwater that could be released if the lake surface was lowered sufficiently to eradicate the SLA. This approach guarantees repeatability because it requires no particular expertise to carry out. We calculated PFVs for more than 2000 Himalayan glacial lakes using the ASTER data. The distribution follows a power-law function, and we identified 49 lakes with PFVs of over 10 million m3 that require further detailed field investigations.

  14. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  15. Glacial-marine and glacial-lacustrine sedimentation in Sebago Lake, Maine: Locating the marine limit

    SciTech Connect

    Johnston, R.A.; Kelley, J.T. ); Belknap, D. . Dept. of Geological Sciences)

    1993-03-01

    The marine limit in Maine marks a sea-level highstand at approximately 13 ka. It was inferred to cross Sebago Lake near Frye Island by Thompson and Borns (1985) on the Surficial Geological Map of Maine, dividing the lake into a northern glacial-lacustrine basin and a southern glacial-marine basin. This study examined the accuracy of the mapped marine limit in the lake and the nature of glacial-lacustrine and glacial-marine facies in Maine. Recognition of the marine limit is usually based on mapped shorelines, glacial-marine deltas, and contacts with glacial-marine sediments. This study, in Maine's second largest lake, collected 100 kilometers of side-scan sonar images, 100 kilometers of seismic reflection profiles, and one core. Side-scan sonar records show coarse sand and gravel and extensive boulder fields at an inferred grounding-line position near Frye Island, where the marine limit was drawn. ORE Geopulse seismic reflection profiles reveal a basal draping unit similar to glacial-marine units identified offshore. Later channels cut more than 30 m into the basal stratified unit. In addition, till and a possible glacial-tectonic grounding-line feature were identified. Slumps and possible spring disruptions are found in several locations. The top unit is an onlapping ponded Holocene lacustrine unit. Total sediment is much thicker in the southern basin; the northern basin, >97 m deep, north of the marine limit appears to have been occupied by an ice block. Retrieved sediments include 12 meters of rhythmites. Microfossil identifications and dating will resolve the environments and time of deposition in this core.

  16. In-Stream Metabolism Differences Between Glacial and Non-Glacial Streams in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Nassry, M. Q.; Scott, D.; Vermilyea, A.; Hood, E. W.

    2011-12-01

    As glacier ice gives way to successional vegetation, streams located in glacier-containing watersheds receive decreased contributions from glacial meltwater and increased contributions from terrestrial landscapes. These changes result in increased water temperature, increased shading from vegetation, and changes in the composition and concentration of organic matter delivered to the stream from the landscape. Organic matter and source water contributions from the surrounding landscape can influence in-stream metabolism through both biotic and abiotic factors. The impact of these landscape controls on the in-stream cycling of carbon and nutrients is not well understood in glacial systems. Here, we are focusing on understanding the differences in processing of organic carbon by heterotrophic microbial communities between glacial and non-glacial streams. In this study, the metabolism in streams receiving glacial meltwater was compared to the metabolism of streams located in nearby non-glaciated watersheds to determine the effect of changing inputs of glacial meltwater on stream metabolism. In particular, we tested the hypothesis that decreased inputs of glacier meltwater will result in increased net ecosystem metabolism (NEM) in coastal streams in southeast Alaska. Dissolved oxygen and carbon dioxide measurements as well as temperature and PAR values were collected at 10-minute increments at each study site for 4 days. This data was used to generate diel curves to establish community respiration (CR24) and gross primary production (GPP) estimates. Lab-scale mesocosms containing sediment and stream water from each end-member stream were used to quantify the relative importance of glacial contributions to respiration rates in the surface sediments. Ultimately, this will provide a better understanding of the changing in-stream processing capabilities in watersheds affected by land cover changes resulting from glacial recession.

  17. Potential flood volume of Himalayan glacial lakes

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A. B.; Sawagaki, T.; Yamanokuchi, T.

    2013-07-01

    Glacial lakes are potentially dangerous sources of glacial lake outburst floods (GLOFs), and represent a serious natural hazard in Himalayan countries. Despite the development of various indices aimed at determining the outburst probability, an objective evaluation of the thousands of Himalayan glacial lakes has yet to be completed. In this study we propose a single index, based on the depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). We test our approach on five lakes in Nepal, Bhutan, and Tibet using images taken by the declassified Hexagon KH-9 satellite before these lakes experienced an outburst flood. All five lakes had a steep lakefront area (SLA), on which a depression angle was steeper than our proposed threshold of 10° before the GLOF event, but the SLA was no longer evident after the events. We further calculated the potential flood volume (PFV); i.e., the maximum volume of floodwater that could be released if the lake surface was lowered sufficiently to eradicate the SLA. This approach guarantees repeatability to assess the possibility of GLOF hazards because it requires no particular expertise to carry out, though the PFV does not quantify the GLOF risk. We calculated PFVs for more than 2000 Himalayan glacial lakes using visible band images and DEMs of ASTER data. The PFV distribution follows a power-law function. We found that 794 lakes did not have an SLA, and consequently had a PFV of zero, while we also identified 49 lakes with PFVs of over 10 million m3, which is a comparable volume to that of recorded major GLOFs. This PFV approach allows us to preliminarily identify and prioritize those Himalayan glacial lakes that require further detailed investigation on GLOF hazards and risk.

  18. North Atlantic Deep Water Production during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-06-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  19. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  20. Glacial curvilineations: gradual or catastrophic origin?

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Livingstone, Stephen

    2016-04-01

    Glacial curvilineations (GCLs) are enigmatic landforms that have recently been discovered in Poland (Lesemann et al., 2010, 2014). They comprise parallel sets of sinuous ridges separated by troughs that are found in tunnel valleys and replicate the morphology and pattern of the valley sides. The sedimentology for some has been reported to indicate that the sediment composition relates to a pre-GCL phase. So far just one theory for their formation exists - erosion by longitudinal-vortices within high-energy subglacial meltwater flows (Lesemann et al., 2010). Here, we provide an alternative hypothesis for their formation developed from observations of GCLs found along the southern sector of the Laurentide Ice Sheet. In all cases GCLs were found associated with tunnel valley widenings or hollows and occur as distinct parallel sets that mimic each other in terms of nicks and cusps. Using analogies from tree-rings and coral growth we take such mimicry as indicating either incremental growth or development from a template over time. Although without a strong physical explanation we find it much less likely that a series of parallel water channels would maintain such strong mimicry. We instead suggest that subglacial thawing of frozen ground in association with discrete water bodies (tunnel valleys or subglacial lakes) resulted in retrogressive bank failure, possibly along a glide plane provided by a frozen surface. References: Lesemann, J.-E., Piotrowski, J. a, Wysota, W., 2010. "Glacial curvilineations": New glacial landforms produced by longitudinal vortices in subglacial meltwater flows. Geomorphology 120, 153-161. Lesemann, J.-E., Piotrowski, J. a, Wysota, W., 2014. Genesis of the "glacial curvilineation" landscape by meltwater processes under the former Scandinavian Ice Sheet, Poland. Sediment. Geol. 312, 1-18.

  1. Glacial bed forms at Findelengletscher, Zermatt, Switzerland

    NASA Astrophysics Data System (ADS)

    Madella, Andrea; Nyffenegger, Franziska; Schlüchter, Christian

    2013-04-01

    The current glacier meltdown is increasingly unveiling the glacial bed forms produced by the most recent glacial advance of the 1980ies, such as flutes, mega-flutes and drumlins. This is a challenging opportunity to study these morphologies and the processes involved in their formation; in addition, our observation suggests a new question to be answered: why can't any of these features in units belonging to previous glacial advances be recognised? Similar forms could either have been washed away already, or never been built during LGM and since. The most beautiful and evident of the forms under investigation are the flutes and mega-flutes: elongated streamlined ridges of sediments either starting from an obstacle or just sticking out of the basal lodgement till. The way flutes have been initiated and then evolve is still partially unknown, due to their variety in shape, size and material. The glacial forefield at Findelengletscher under investigation deglaciated over the past two years, offers a well-preserved variety of such forms at all scales. Their material (basal lodgement till) is homogeneous and consistent all over the site, as well as their fabric. In addition, this silty sand shows a low plasticity index. These preliminary results support the idea that flutes build up very quickly during repeated seasonal advances in thin ice conditions with retreating trend (Coray, 2007), and that they could be equally easily and rapidly washed away. References: Coray Sandro (2007): Genesis and significance of flutes at Findelengletscher, Valais, Switzerland, Institute of Geological Sciences, University of Bern.

  2. Glacial hydrology and erosion patterns: A mechanism for carving glacial valleys

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beaud, Flavien; Champagnac, Jean-Daniel; Lemieux, Jean-Michel; Sternai, Pietro

    2011-10-01

    Most glacial erosion models assume that erosion rates are proportional to ice-sliding velocity. While recent studies have shown that water plays a major role in modulating sliding velocities, the impact it might have on erosion rates is still unclear. Here we incorporate subglacial hydrology into a glacial erosion model that is based on a sliding rule. Our results explicitly highlight that adding subglacial hydrology has profound impacts on the temporal and spatial patterns of glacial erosion. First, it suggests that erosion might mainly occur during melting seasons, when subglacial water pressure is large and effective pressure is low (i.e., before the channels fully develop and reduce the water pressure at the ice bedrock interface), which promotes sliding and erosion. Second, the distribution of erosion is bimodal with a peak at the equilibrium line altitude and, as we demonstrate, enhanced erosion at much lower altitudes within the ablation area where water due to melting abounds. This has important implications because it explains why glacial erosion can simultaneously set a limit on the mean elevation of mountain ranges and carve large fjords or glacial lakes.

  3. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    of glacial lakes and their hazard potential. This phase of glacial lake hazard assessment aims to be geographically comprehensive in order to identify potentially dangerous lakes that may have previously been ignored. A second phase of analysis that includes site visits will be necessary for a thorough analysis at each lake to determine the potential hazard for downstream communities. The objective of the work presented here is to identify potentially dangerous lakes that warrant further study rather than provide a final hazard assessment for each lake of the glacial lake inventory in the Cordillera Blanca. References: Emmer, A. and Vilímek, V.: New method for assessing the potential hazardousness of glacial lakes in the Cordillera Blanca, Peru, Hydrol. Earth Syst. Sci. Discuss., 11, 2391-2439, 2014. UGRH - Unidad de Glaciologia y Recursos Hidricos. Inventario de Lagunas Glaciares del Peru. Ministerio de Agricultura y Riego, Autoridad Nacional del Agua, Direcccion de Conservacion y Planeamiento de Recursos Hidricos, Huaraz, Peru, 2014. Wang, W., Yao, T., Gao, Y., Yang, X., and Kattel, D. B.: A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau, Mountain Res. Develop., 31, 122-130, 2011.

  4. Late Glacial ice advances in southeast Tibet

    NASA Astrophysics Data System (ADS)

    Strasky, Stefan; Graf, Angela A.; Zhao, Zhizhong; Kubik, Peter W.; Baur, Heinrich; Schlüchter, Christian; Wieler, Rainer

    2009-03-01

    The sensitivity of Tibetan glacial systems to North Atlantic climate forcing is a major issue in palaeoclimatology. In this study, we present surface exposure ages of erratic boulders from a valley system in the Hengduan Mountains, southeastern Tibet, showing evidence of an ice advance during Heinrich event 1. Cosmogenic nuclide analyses ( 10Be and 21Ne) revealed consistent exposure ages, indicating no major periods of burial or pre-exposure. Erosion-corrected (3 mm/ka) 10Be exposure ages range from 13.4 to 16.3 ka. This is in agreement with recalculated exposure ages from the same valley system by [Tschudi, S., Schäfer, J.M., Zhao, Z., Wu, X., Ivy-Ochs, S., Kubik, P.W., Schlüchter, C., 2003. Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne. Journal of Asian Earth Sciences 22, 301-306.]. Thus this indicates that local glaciers advanced in the investigated area as a response to Heinrich event 1 cooling and that periglacial surface adjustments during the Younger Dryas overprinted the glacial morphology, leading to deceptively young exposure ages of certain erratic boulders.

  5. Constraints on the glacial erosion rule

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric

    2016-04-01

    It is thought that glaciers erode their underlying bedrock mainly through abrasion and quarrying. Theories predict erosion to be proportional to ice-sliding velocity raised to some power: ˙e = Kguls (1) where ė is the erosion rate, and Kg a proportionality constant and l an exponent. By implementing such a rule in numerical models, it has been possible to reproduce typical glacial landscape features, such as U-shape valleys, hanging valleys, glacial cirques or fjords. Although there have been great advances in the level of sophistication of these models, for example through the inclusion of high-order ice dynamics and subglacial hydrology, the proportionality constant, and the exponent have remained poorly constrained parameters. Recently, two independent studies in the Antarctic Peninsula and Patagonian Andes (Koppes et al., 2015) and the Franz Josef Glacier, New Zealand (Herman et al., 2015) simultaneously collected erosion rate and ice velocity data to find that erosion depends non-linearly on sliding velocity, and that the exponent on velocity is about 2. Such a nonlinear rule is appealing because it may, in part, explain the observed variations in erosion rates globally. Furthermore, an exponent about 2 closely matches theoretical predictions for abrasion. Although it is tempting to argue that abrasion is the dominant process for fast flowing glaciers like the Franz Josef Glacier, there is a clear need for more data and better quantification for the role of quarrying. Both studies also led to very similar values for the proportionality constant Kg. These new results therefore imply that glacial erosion processes might be better constrained than previously thought. Given that glacial velocity can nowadays be measured and modeled at an unprecedented resolution, it may potentially become possible to use glacial erosion models in a predictive manner. Herman, F. et al. "Erosion by an Alpine glacier." Science 350.6257 (2015): 193-195. Koppes, M. et al. "Observed

  6. Glacial Retreat and Associated Glacial Lake Hazards in the High Tien Shan

    NASA Astrophysics Data System (ADS)

    Smith, T. T.

    2013-12-01

    A number of studies have identified glacial retreat throughout the greater Himalayan region over the past few decades, but the Karakorum region remains an anomaly with large stagnating or advancing glaciers. The glacial behavior in the Tien Shan is still unclear, as few studies have investigated mass balances in the region. This study focuses on the highest peaks of the Tien Shan mountain range, in the region of Jengish Chokusu along the Kyrgyzstan-China-Kazakhstan border. In a first step, a 30-year time series of Landsat imagery (n=27) and ASTER imagery (n=10) was developed to track glacial growth and retreat in the region. Using a combination of spectral and topographic information, glacial outlines are automatically delineated. As several important glaciers in the study region contain medium to high levels of debris cover, our algorithm also improves upon current methods of detecting debris-covered glaciers by using topography, distance weighting methods, river networks, and additional spectral data. Linked to glacial retreat are glacial lake outburst floods (GLOFs) that have become increasingly common in High Mountain Asia over the last few decades. As glaciers retreat, their melt water is often trapped by weakly bonded moraines. These moraines have been known to fail due to overtopping caused by surge waves created by avalanches, rockslides, or glacial calving. A suite of studies throughout High Mountain Asia have used remotely-sensed data to monitor the formation and growth of glacial lakes. In a second step of the work, lake-area changes over the past 15 years were tracked monthly and seasonally using dense Landsat/ASTER coverage (n=30) with an automatic procedure based on spectral and topographic information. Previous work has identified GLOFs as a significant process for infrastructural damage in the southern Tien Shan/northern Pamir, as well as in the better studied Himalaya region. Lake identification and quantification of lake-growth rates is a valuable

  7. Glacial Events Spanning the Last Glacial Cycle in the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Thackray, G. D.; Rittenour, T. M.; Shulmeister, J.; Hyatt, O.

    2012-12-01

    The Rakaia, Rangitata, and Clutha River basins of the Southern Alps were major ice pathways for Southern Alps outlet glaciers during the last glaciation. While extensive CRN dating of moraine boulders has constrained the timing of a major ice advance to around the time of the Northern Hemisphere ice sheet maximum ("LGM"), extensive stratigraphic exposures permit extension of glacial records to important earlier phases of the last glaciation. Those exposures, present in most valleys, yield an extensive and detailed sedimentologic record and a closely linked luminescence chronology of glacial events spanning the entire last glacial cycle. Recently published work from the Rakaia drainage demonstrates multiple ice advances into the middle Rakaia Valley and uppermost Canterbury Plains during the last glacial cycle. Prominent ice advances there are documented largely in glacial-lacustrine and glacial-fluvial sediments, in a coarsening-upward, basin-filling sequence. Those ice advances occurred during MIS 5b (ca. 100-90 ka), MIS 5a/4 (ca. 80 ka), MIS 3 (ca. 48 ka and 40 ka), and MIS 2 (ca. 25-15 ka). In the central Rangitata valley, a spectacular kame terrace sequence superposes LGM and deglacial-phase sediments on extensive MIS 3 and possible MIS 4 sediments. At three distinct locations, provisional OSL ages indicate a prominent ice advance during MIS 3 (ca. 30-50 ka). Near surface sediments associated with kame terraces indicate enhanced fluvial activity around the LGM, and indicate that deglaciation was well under way by 13 ka. Further south in the Clutha valley, exposures at Lakes Wanaka and Hawea demonstrate ice advances during MIS 3 and MIS 2, largely associated with ice-proximal lacustrine deposition. Extensive outwash sequences 2-15 km downvalley reveal a detailed record of glacial-fluvial activity that appears to extend through the last glacial cycle. These valley records demonstrate that, in particular, MIS 3 featured extensive ice advances, with ice extent

  8. Periodic floods from glacial Lake Missoula into the Sanpoil arm of glacial Lake Columbia, northeastern Washington

    NASA Astrophysics Data System (ADS)

    Atwater, Brian F.

    1984-08-01

    At least 15 floods ascended the Sanpoil arm of glacial Lake Columbia during a single glaciation. Varves between 14 of the flood beds indicate one backflooding every 35 to 55 yr. This regularity suggests that the floods came from an ice-dammed lake that was self-dumping. Probably the self-dumping lake was glacial Lake Missoula, Montana, because the floods accord with inferred emptyings of that lake in frequency and number, apparently entered Lake Columbia from the east, and produced beds resembling backflood deposits of Lake Missoula floods in southern Washington.

  9. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  10. Hypsometric analysis to identify spatially variable glacial erosion

    NASA Astrophysics Data System (ADS)

    Sternai, P.; Herman, F.; Fox, M. R.; Castelltort, S.

    2011-09-01

    Relatively little research has been undertaken on the use of digital elevation models to recognize the spatially variable glacial imprint of a landscape. Using theoretical topographies and a landscape evolution model, we investigate to what extent the hypsometric analysis of digital elevation models may be used to recognize the glacial signature of mountain ranges. A new morphometric parameter, which we term the hypsokyrtome (from the Greek: ipsos = elevation, kyrtoma = curvature), is derived from the gradient of the hypsometric curve. The efficacy of the hypsometric integral and hypsokyrtome is tested through the study of the Ben Ohau Range, New Zealand, whose glacial imprint has been described previously. With a numerical model we further test the geomorphic parameters in describing the morphologies of regions subject to diverse climatic and tectonic conditions. The hypsokyrtome is highly sensitive to glacial erosion, and the maps produced provide insights into the spatial distribution of glacial erosion. We use SRTM data and focus on two alternative geomorphic settings: the European Alps and the Apennines. The former has been affected by both fluvial and glacial erosion while the latter mainly exhibits a fluvially dominated morphology. The correlation between elevations with increased glacial erosion and Last Glacial Maximum (LGM) equilibrium line altitudes (ELAs) suggests the prevalence of a "glacial buzz saw" in the Alps, indicating that climate may put a limit on alpine topography.

  11. Glacial isostatic uplift of the European Alps

    NASA Astrophysics Data System (ADS)

    Mey, Juergen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.

    2016-04-01

    Present-day vertical movements of the Earth's surface are mostly due to tectonic deformation, volcanic processes, and crustal loading/unloading. In tectonically stable regions of North America and Scandinavia, vertical movements are almost entirely attributable to glacial isostatic rebound after the melting of the Laurentide and Fennoscandian ice sheets. In contrast, the Pleistocene Alpine icecap grew on a younger mountain belt that formed by collision of the European and African plates, still subject to shortening. Therefore, measured uplift is potentially a composite signal of tectonic shortening and unloading after deglaciation and concomitant erosion. Deciphering the contributions of tectonics and crustal unloading to present-day uplift rates in formerly-glaciated mountain belts is a prerequisite to using uplift data to estimate the viscosity structure of the Earth's mantle, a key variable in geodynamics. We evaluate the post-LGM glacial-isostatic rebound of the Alps following a 4-tiered procedure. First, we estimated the thickness distribution of sedimentary valley fills to create a bedrock map of the entire mountain belt. Second, this map was used as topographic basis for the reconstruction of the Alpine icecap using a numerical ice-flow model. Third, we estimated the equilibrium deflection of the Alpine lithosphere, using the combined loads of ice and sediments with a variable effective elastic thickness. Finally, we used an exponential decay function to infer the residual deflection and the present-day uplift rate for a range of upper mantle viscosities. Our analysis shows that virtually all of the geodetically measured surface uplift in the Swiss and the Austrian Alps can be attributed to glacial unloading and redistribution of sediments, assuming an upper-mantle viscosity lower than that inferred for an old craton (e.g., Fennoscandia), but higher than that for a region with recent crustal thinning (e.g., Basin and Range province).

  12. Outburst floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Clarke, G. K. C.; Mathews, W. H.; Pack, R. T.

    1984-11-01

    The Pleistocene outburst floods from glacial Lake Missoula, known as the "Spokane Floods", released as much as 2184 km 3 of water and produced the greatest known floods of the geologic past. A computer simulation model for these floods that is based on physical equations governing the enlargement by water flow of the tunnel penetrating the ice dam is described. The predicted maximum flood discharge lies in the range 2.74 × 10 6-13.7 × 10 6 m 3 sec -1, lending independent glaciological support to paleohydrologic estimates of maximum discharge.

  13. Resolving Large Pre-glacial Valleys Buried by Glacial Sediment Using Electric Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.

    2004-05-01

    Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI

  14. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    PubMed

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions. PMID:23218457

  15. Fault activation due to glacially induced stresses

    NASA Astrophysics Data System (ADS)

    Steffen, R.; Lund, B.; Wu, P. P.

    2013-12-01

    Melting glaciers worldwide have an effect on sea level, but also on the stability of pre-existing faults. The load due to continental ice sheets or glaciers depresses the surface below, leading to changes in the lithospheric stresses. The accumulation of ice mass increases the vertical stress, and the horizontal stresses increase due to the accompanying flexure of the lithosphere. During deglaciation, ice-mass loss causes a simultaneous decrease in vertical stress; however, horizontal stresses decrease only slowly due to the slow readjusting of the Earth. After the end of deglaciation, only the induced horizontal stresses remain as the process of glacial isostatic adjustment (GIA) proceeds visco-elastically. The modelling of this process and the estimation of fault slip is enabled by a new GIA-fault model. However, this finite-element model is only available in two dimensions, and the extension to three dimensions is a necessary step further to allow the comparison of obtained fault slips to observations of glacially induced faults in Europe and North America. The model has several input parameters, which affect the activation time of faults and their resulting slip (e.g. ice history, rheology of the Earth, frictional properties, pore-fluid pressure). We will present the results of the new 3D model and show the sensitivity of faults with respect to modelling parameters. Furthermore, a comparison to observations will be presented.

  16. Fault activation due to glacially induced stresses

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Lund, Björn

    2014-05-01

    Melting glaciers worldwide have an effect on sea level, but also on the stability of pre-existing faults. The load due to continental ice sheets or glaciers depresses the surface below, leading to changes in the lithospheric stresses. The accumulation of ice mass increases the vertical stress, and the horizontal stresses increase due to the accompanying flexure of the lithosphere. During deglaciation, ice-mass loss causes a simultaneous decrease in vertical stress; however, horizontal stresses decrease only slowly due to the slow readjusting of the Earth. After the end of deglaciation, only the induced horizontal stresses remain as the process of glacial isostatic adjustment (GIA) proceeds visco-elastically. The modelling of this process and the estimation of fault slip is enabled by a new GIA-fault model. However, this finite-element model is only available in two dimensions, and the extension to three dimensions is a necessary step further to allow the comparison of obtained fault slips to observations of glacially induced faults in Europe and North America. The model has several input parameters, which affect the activation time of faults and their resulting slip (e.g. ice history, rheology of the Earth, frictional properties, pore-fluid pressure). We will present the results of the new 3D model and show the sensitivity of faults with respect to modelling parameters. Furthermore, a comparison to observations will be presented.

  17. Glacial isostasy - possible tilting of petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Fjeldskaar, Willy; Amantov, Aleksey

    2015-04-01

    Scandinavia has experienced major uplift after the last ice age. The rate of uplift along the coasts is so high that its effects have been observed within one generation. Glaciers, sediments and erosion act as loads on the Earth's surface - positive or negative. When a load is applied to the lithosphere covering the asthenosphere, part of the applied load will be supported by the elastic stiffness of the lithosphere, and part by the buoyant forces of the asthenosphere. This process is called isostasy, and the rebound over the last thousands of years has revealed how the Earth reacts to loads. Prior to the last glaciation, northern Europe has experienced more than 30 glaciations. Glacial erosion and repeated ice loading over the last millions of years has significantly influenced the temperature history of sedimentary basins, and associated hydrocarbon maturation in potential source rocks. In addition, repeated loading of glaciers leads to an isostatic response of the lithosphere, which may cause tilting of potential reservoirs, and possible remigration of hydrocarbons. The effects of glaciations are assumed to have caused parts of the accumulation in the Johan Sverdrup field (Utsira High) due to changed migration pathways. Glacial isostasy will lead to tilting of potential reservoirs on the entire Norwegian Continental Shelf. In the western Barents Sea and offshore mid Norway the tilts could exceed 4 m/km, dipping towards east during the glaciations.

  18. Interhemispheric correlation of late pleistocene glacial events

    SciTech Connect

    Lowell, T.V.; Heusser, C.J.; Andersen, B.G.

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and {ge}33,500 carbon-14 years before present ({sup 14}C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000 {sup 14}C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720 {sup 14}C yr B.P., and at the beginning of the Younger Dryas at 11,050 {sup 14}C yr B.P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges. 51 refs., 3 figs., 1 tab.

  19. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  20. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  1. Estimating the volume of Alpine glacial lakes

    NASA Astrophysics Data System (ADS)

    Cook, S. J.; Quincey, D. J.

    2015-09-01

    Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of measured glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated (r2 = 0.38), and that although lake volume and area are well correlated (r2 = 0.91), there are distinct outliers in the dataset. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume, and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion, and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled dataset to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.

  2. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this “geothermal glacial refugia” hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  3. Contrasting scaling properties of interglacial and glacial climates

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Ditlevsen, Peter D.

    2016-03-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H~0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H~1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles.

  4. Contrasting scaling properties of interglacial and glacial climates

    PubMed Central

    Shao, Zhi-Gang; Ditlevsen, Peter D.

    2016-01-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084

  5. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  6. Contrasting scaling properties of interglacial and glacial climates.

    PubMed

    Shao, Zhi-Gang; Ditlevsen, Peter D

    2016-01-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084

  7. Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Serrano, E.; González-Trueba, J. J.; Pellitero, R.; González-García, M.; Gómez-Lende, M.

    2013-08-01

    The glacial evolution of the Cantabrian Mountains is not well known. Previous studies have focused on the extent of the glacial maximum and the presence of younger features in several massifs. Recently, efforts have been made to date glacial periods, particularly the glacial maximum. This work presents a reconstruction of the glacial evolution in the Cantabrian Mountains, providing data on the environmental characteristics and timing of the different stages from the Quaternary glacial maximum to the Little Ice Age. The study area covers 3000 km2 between the 4°58'W and 3°34'W and includes eleven massifs of the central area of the Cantabrian Mountains. The selected sectors have an Atlantic and Atlantic-Mediterranean transitional climate and include the highest massifs (above 2600 m) and low-altitude glacierised massifs (lower than 2000 m). Glacial extent and evolution have been reconstructed on the basis of detailed geomorphological and morphostratigraphic mapping. The equilibrium line altitude (palaeo-ELA) has been estimated for the different stages of each tongue. The ELA has been assessed by the AAR and modified Kurowski methods and altitude methods have been considered. A numerical chronological framework is proposed using 17 AMS radiocarbon and one OSL data obtained in lake and bog deposits from three massifs. Four main glacial stages have been differentiated, between 38,000 BP and the Little Ice Age. They correspond to different cold environments, and the number of glacial stages varies from one to four among the different massifs. Conclusions are analysed in the context of the Quaternary glacial evolution of other Iberian mountains.

  8. Global Inventory of Terrestrial Glacial Megafloods

    NASA Astrophysics Data System (ADS)

    Baker, V. R.

    2010-12-01

    After centuries of geological controversy it is now well-established that the last major deglaciation of planet Earth involved huge fluxes of water from the wasting continental ice sheets, and that much of this water was delivered as floods of immense magnitude and relatively short duration. These late Quaternary megafloods had short-term peak flows comparable in discharge to the more prolonged fluxes of ocean currents. (The discharges for both ocean currents and megafloods generally exceed one million cubic meters per second, hence the prefix “mega.”) Some outburst floods likely induced very rapid, short-term effects on Quaternary climates. The late Quaternary megafloods also greatly altered drainage evolution and the planetary patterns of water and sediment movement to the oceans. The classic Channeled Scabland region is now seen a but a small component in a source-to-sink system extending from ice-marginal lacustrine (glacial lakes Columbia and Missoula) and possible subglacial sources beneath the Cordilleran Ice Sheet, through the scabland intermediate zone, and on to sink relationships on the abyssal plain of the Pacific Ocean. Other North American glacial megaflood landscapes are now recognized in the Columbia and Snake River drainages of the northwestern U.S.; in the spillway systems of the upper Mississippi Basin; near the Great Lakes and adjacent St. Lawrence Basin; the Hudson River Basin; the Mackenzie Basin; the Yukon Basin (Porcupine River); the Sustina and Copper River Basins (Alaska); and the Hudson Strait. South American megafloods in the Santa Cruz River system (Argentina) emanated from the Patagonian Ice Sheet, and other Patagonian megaflooding probably occurred on the Chilean side. In Eurasia, the megaflooding from the margins of the Fennoscandian Ice Sheet spilled through the English Channel. In the mountain areas of central northern Asia, there were megaflood outbursts from the Issyk-Kul area, the Altai Mountains (upper Ob drainage), and the

  9. The influence of glacial ice sheets on Atlantic meridional overturning circulation through atmospheric circulation change under glacial climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2016-04-01

    Recent coupled modeling studies have shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). Since this may play an important role in maintaining a strong AMOC over the last glacial period, which is suggested by recent reconstruction study, it is very important to understand the process by which glacial ice sheets intensify the AMOC. Here, a decoupled simulation is conducted to investigate the effect of wind change due to glacial ice sheets on the AMOC, the crucial region where wind modifies the AMOC and the mechanism, which remained elusive in previous studies. First, from atmospheric general circulation model (AGCM) experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model (OGCM) experiments, the influence of the wind stress change on the AMOC is evaluated by applying only the changes in the surface wind as a boundary condition, while leaving surface heat and freshwater fluxes unchanged. Moreover, several sensitivity experiments are conducted. Using the AGCM, glacial ice sheets are applied individually. Using the OGCM, changes in the wind are applied regionally or at different magnitudes, ranging from the full glacial to modern levels. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress curl mainly at the North Atlantic mid-latitudes. This intensification is caused by the increased Ekman upwelling and gyre transport of salt while the change in sea ice transport works as a negative, though minor, feedback.

  10. Understanding Antarctic Climate and Glacial History

    NASA Astrophysics Data System (ADS)

    DeConto, Rob; Escutia, Carlota

    2010-01-01

    First Antarctic Climate Evolution Symposium; Granada, Spain, 7-11 September 2009; Antarctic Climate Evolution (ACE; http://www.ace.scar.org), a scientific research project of the Scientific Committee on Antarctic Research and a core International Polar Year project, held its first international symposium in Spain in September 2009. ACE's mission is to facilitate the study of Antarctic climate and glacial history through integration of numerical modeling with geophysical and geological data. Nearly 200 international scientists from the fields of climate, ocean, and ice modeling joined geologists, geophysicists, and geochemists for 5 days of intense interaction. Oral sessions were plenary and were limited to allow time for poster viewing, discussion, and workshops (http://www.acegranada2009.com/).

  11. Characterization methods for fractured glacial tills

    USGS Publications Warehouse

    Haefner, R.J.

    2000-01-01

    This paper provides a literature review of methods successfully employed to characterize finegrained and fractured or unfractured glacial deposits. Descriptions and examples are given for four major categories of characterization methods: physical, hydraulic, chemical, and indirect. Characterization methods have evolved significantly within the past ten years; however, there still exists uncertainty about the reliability of individual characterization methods applied to till deposits. Therefore, a combination of methods is best, the choice of which depends on the objectives of the work. Sampling methods, sampling scales, and reporting methods are extremely important and should be considered when interpreting and comparing results between sites. Recognition of these issues is necessary to ensure that decisions regarding the transport of fluids in fractured tills are not based on the assumption that poorly permeable tills are always an inhibitor of subsurface flow.

  12. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  13. Glacial onset predated Late Ordovician climate cooling

    NASA Astrophysics Data System (ADS)

    Pohl, Alexandre; Donnadieu, Yannick; Le Hir, Guillaume; Ladant, Jean-Baptiste; Dumas, Christophe; Alvarez-Solas, Jorge; Vandenbroucke, Thijs R. A.

    2016-06-01

    The Ordovician glaciation represents the acme of one of only three major icehouse periods in Earth's Phanerozoic history and is notorious for setting the scene for one of the "big five" mass extinction events. Nevertheless, the mechanisms that drove ice sheet growth remain poorly understood and the final extent of the ice sheet crudely constrained. Here using an Earth system model with an innovative coupling method between ocean, atmosphere, and land ice accounting for climate and ice sheet feedback processes, we report simulations portraying for the first time the detailed evolution of the Ordovician ice sheet. We show that the emergence of the ice sheet happened in two discrete phases. In a counterintuitive sequence of events, the continental ice sheet appeared suddenly in a warm climate. Only during the second act, and set against a background of decreasing atmospheric CO2, followed steeply dropping temperatures and extending sea ice. The comparison with abundant sedimentological, geochemical, and micropaleontological data suggests that glacial onset may have occurred as early as the Middle Ordovician Darriwilian, in agreement with recent studies reporting third-order glacioeustatic cycles during the same period. The second step in ice sheet growth, typified by a sudden drop in tropical sea surface temperatures by ˜8°C and the further extension of a single, continental-scale ice sheet over Gondwana, marked the onset of the Hirnantian glacial maximum. By suggesting the presence of an ice sheet over Gondwana throughout most of the Middle and Late Ordovician, our models embrace the emerging paradigm of an "early Paleozoic Ice Age."

  14. Late Glacial lakes - uniform or contrasting ecosystems?

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Rzodkiewicz, Monika; Noryśkiewicz, Agnieszka M.; Obremska, Milena; Ott, Florian; Kramkowski, Mateusz; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Climate changes are one of the most investigated topic in paleolimnology. The Late Glacial and Early Holocene time are specially interesting as than most abrupt changes happened. Lake sediments are known to be great source of information of the past environments. They are functioning as natural archives because in them preserve animal and plants remains. In this study we investigated three cores of the biogenic sediments from the lakes located in close vicinity in Tuchola Forest (Northern Poland): paleolake Trzechowskie, Lake Czechowskie-deepest part and Lake Czechowskie-bay. We made Cladocera, diatom and pollen analysis, the chronology was determined by varve counting, Laacher See Tephra (12,880 yrs BP) and 14C dating. The aim of our research was to find out the response of zooplankton, phytoplankton, lake and catchment vegetation to abrupt climate changes. We were interested in similarities and differences between those three locations in response of entire communities but also species composition. The preliminary results revealed that the Cladocera, diatoms and plants communities were sensitive to climatic shifts and it is well shown in the results of ordination method (PCA). However in the Cladocera and diatoms assemblages, which reflect well lake environment conditions, the dominant species and total number of species present, were different in all three locations. Especially great difference was noted between paleolake Trzechowskie and Lake Czechowskie (core from the deepest part). The results of our research shows that in Late Glacial time landscape in Lake Czechowskie region (Tuchola Forest, Northern Poland) had mosaic character. Local factors such as relief, edaphic conditions strongly modified type of vegetation and in close vicinity existed lakes that had very diverse environments.

  15. Numerical simulation of Glacial Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Miglio, E.

    2015-12-01

    In the Earth's crust, stress can be subdivided into tectonic background stress, overburden pressure, and pore-fluid pressure. The superposition of the first two and the variation of the third part are key factors in controlling movement along faults. Furthermore, stresses due to sedimentation and erosion contribute to the total stress field. In deglaciated regions, an additional stress must be considered: the rebound stress, which is related to rebounding of the crust and mantle after deglaciation. During the growth of a continental ice sheet, the lithosphere under the iceload is deformed and the removal of the ice load during deglaciation initiates a rebound process. The uplift is well known in formerly glaciated areas, e.g.North America and Scandinavia, and in currently deglaciating areas, e.g.Alaska, Antarctica, and Greenland. The whole process of subsiding and uplifting during the growth and melting of an iceload and all related phenomena is known as glacial isostatic adjustment. During the process of glaciation, the surface of the lithosphere is depressed underneath the ice load and compressional flexural stresses are induced in the upper lithosphere, whereas the bottom of the lithosphere experiences extensional flexural stresses; an additional vertical stress due to the ice load is present and it decreases to zero during deglaciation. During rebound, flexural stresses relax slowly. These stresses are able to change the original stress directions and regime.In this work we aim to study the effect of the GIA process in the context of petroleum engineering. The main aspect we will focus on is the mathematical and numerical modeling of the GIA including thermal effects. We plan also to include a preliminary study of the effect of the glacial erosion. All these phenomena are of paramount importance in petroleum engineering: for example some reservoir have been depleted due to tilting caused by both GIA, erosion and thermal effects.

  16. Estimating the volume of Alpine glacial lakes

    NASA Astrophysics Data System (ADS)

    Cook, S. J.; Quincey, D. J.

    2015-12-01

    Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated (r2 = 0.38) and that although lake volume and area are well correlated (r2 = 0.91), and indeed are auto-correlated, there are distinct outliers in the data set. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled data set to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.

  17. Conversation with Lara about the Earth and Land. (Spanish Title: Conversando con Lara sobre la Tierra y la Teirra.) Conversando com Lara sobre a Terra e a Terra

    NASA Astrophysics Data System (ADS)

    da Conceição Barbosa-Lima, Maria

    2010-12-01

    The present article is the analysis of a conversation between the author and Lara, a four-yearold- girl, enrolled in nursery school, while she makes a drawing of the Earth. It took place outside school environment and without any other person around to avoid interference during the interview. According to Ferreira & Silva (2004), a researcher can only comprehend a child's drawing, or form, by listening to him/her while he/she is creating it. Lara presented the traditional flat drawing, picturing the sky parallel to the ground, as reported by Nardi & Carvalho (1996). However, when asked to draw the World - term used by Butterworth et al. (2002), in order to avoid unnecessary confusion - she represented it by a circle, with herself on the surface. Her drawings led to the conclusion that such girl does not know yet the World in which she lives is the Earth, and probably because of that, within her age and consequent maturity, she accurately differentiates the concepts of land and Earth. El presente artículo analiza una entrevista libre, mientras una niña de 4 años y 4 meses, matriculada en el pregrado, dibuja la Tierra. Esta entrevista se realizó fuera del ambiente escolar y sin otra persona alrededor que pudiera interferir. De acuerdo con Ferreira Silva (2004), para quien investiga es posible conocer realmente lo que un niño o una niña pone en el papel a través de grafismos y/o dibujos si se lo escucha durante el proceso de creación de la escritura con imágenes. La niña, en este caso, representa la Tierra con el tradicional dibujo plano y el "cielo" paralelo al suelo, conforme analizaron Nardi & Carvalho (1996). Pero, cuando se Le solicita dibujar el "Mundo" - palabra empleada en un trabajo de Butterworth et al. (2002), con intención de no provocar "confusiones" innecesarias a sus sujetos de investigación- lo representa de forma circular, poniéndose sobre su superficie. Sus dibujos llevan a concluir que esta niña aún no tiene conocimiento que el mundo

  18. Glacial-Interglacial period in Lago Sarmiento (Chilean Patagonia) using high resolution seismic

    NASA Astrophysics Data System (ADS)

    Vizcaino Marti, A.; Dunbar, R. B.; Mucciarone, D. A.; LeRoy, S.; Stadnyk, A. D.

    2011-12-01

    geomorphological features indicate a displacement of the ice northward. Despite the fact that the exact timing of late glacial ice advance and extent is not known yet, this new study in Lago Sarmiento will accurately date the ice retreat evolution in the eastern part of Torres del Paine National Park (Chile).

  19. High-resolution Geophysical Mapping of Submarine Glacial Landforms

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.; Mayer, L. A.

    2014-12-01

    Glacial landforms are generated from the activity of glaciers and display spatial dimensions ranging from below one meter up to tens of kilometers. Glacial landforms are used as diagnostic features of past activity of ice sheets and glaciers; they are specifically important in the field of palaeoglaciology. Mapping of submarine glacial landforms is largely dependent on geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full "global" seafloor mapping coverage, equivalent to what exists for land elevation, is to-date only achieved by the powerful method of deriving bathymetry from altimeters on satellites like GEOSAT and ERS-1. The lateral resolution of satellite derived bathymetry is, however, limited by the footprint of the satellite and the need to average out local wave and wind effects resulting in values of around 15 km. Consequently, mapping submarine glacial landforms requires for the most part higher resolution than is achievable by satellite derived bathymetry. The most widely-used methods for mapping submarine glacial landforms are based on echo-sounding principles. This presentation shows how the evolution of marine geophysical mapping techniques, in particular the advent of side-scan and multibeam bathymetric sonars, has made it possible to study submarine glacial landforms in unprecedented detail. Examples are shown from the Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, which will be published in late 2015 in the Memoir Series of the Geological Society of London.

  20. Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Jansen, John D.; Gurinov, Artem L.; Codilean, Alexandru T.; Fink, David; Preusser, Frank; Reznichenko, Natalya V.; Mifsud, Charles

    2016-01-01

    Successively smaller glacial extents have been proposed for continental Eurasia during the stadials of the last glacial period leading up to the Last Glacial Maximum (LGM). At the same time the large mountainous region east of Lake Baikal, Transbaikalia, has remained unexplored in terms of glacial chronology despite clear geomorphological evidence of substantial past glaciations. We have applied cosmogenic 10Be exposure dating and optically stimulated luminescence to establish the first quantitative glacial chronology for this region. Based on eighteen exposure ages from five moraine complexes, we propose that large mountain ice fields existed in the Kodar and Udokan mountains during Oxygen Isotope Stage 2, commensurate with the global LGM. These ice fields fed valley glaciers (>100 km in length) reaching down to the Chara Depression between the Kodar and Udokan mountains and to the valley of the Vitim River northwest of the Kodar Mountains. Two of the investigated moraines date to the Late Glacial, but indications of incomplete exposure among some of the sampled boulders obscure the specific details of the post-LGM glacial history. In addition to the LGM ice fields in the highest mountains of Transbaikalia, we report geomorphological evidence of a much more extensive, ice-cap type glaciation at a time that is yet to be firmly resolved.

  1. Glacial and periglacial buzzsaws: fitting mechanisms to metaphors

    NASA Astrophysics Data System (ADS)

    Hall, Adrian M.; Kleman, Johan

    2014-03-01

    The buzzsaw hypothesis refers to the potential for glacial and periglacial processes to rapidly denude mountains at and above glacier Equilibrium Line Altitudes (ELAs), irrespective of uplift rates, rock type or pre-existing topography. Here the appropriateness of the buzzsaw metaphor is examined alongside questions of the links between glacial erosion and ELAs, and whether the glacial system can produce low-relief surfaces or limit summit heights. Plateau fragments in mountains on both active orogens and passive margins that have been cited as products of glacial and periglacial buzzsaw erosion instead generally represent dissected remnants of largely inherited, pre-glacial relief. Summit heights may correlate with ELAs but no causal link need be implied as summit erosion rates are low, cirque headwalls may not directly abut summits and, on passive margins, cirques are cut into pre-existing mountain topography. Any simple links between ELAs and glacial erosion break down on passive margins due to topographic forcing of ice-sheet growth, and to the km-scale vertical swaths through which ELAs have shifted through the Quaternary. Glaciers destroy rather than create low-relief rock surfaces through the innate tendency for ice flow to be faster, thicker and warmer along valleys. The glacial buzzsaw cuts down.

  2. Probability of moraine survival in a succession of glacial advances.

    USGS Publications Warehouse

    Gibbons, A.B.; Megeath, J.D.; Pierce, K.L.

    1984-01-01

    Emplacement of glacial moraines normally results in obliteration of older moraines deposited by less extensive glacial advances, a process we call 'obliterative overlap'. Assuming randomness and obliterative overlap, after 10 glacial episodes the most likely number of surviving moraines is only three. The record of the Pleistocene is in agreement with the probability analysis: the 10 glaciations during the past 0.9 Myr inferred from the deep-sea record resulted in moraine sequences in which only two or three different-aged moraine belts can generally be distinguished. -from Authors

  3. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    NASA Astrophysics Data System (ADS)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment

  4. Isotopic evidence for reduced productivity in the glacial Southern Ocean

    SciTech Connect

    Shemesh, A. ); Macko, S.A. ); Charles, C.D. ); Rau, G.H. )

    1993-10-15

    Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.

  5. The taphonomy of human remains in a glacial environment.

    PubMed

    Pilloud, Marin A; Megyesi, Mary S; Truffer, Martin; Congram, Derek

    2016-04-01

    A glacial environment is a unique setting that can alter human remains in characteristic ways. This study describes glacial dynamics and how glaciers can be understood as taphonomic agents. Using a case study of human remains recovered from Colony Glacier, Alaska, a glacial taphonomic signature is outlined that includes: (1) movement of remains, (2) dispersal of remains, (3) altered bone margins, (4) splitting of skeletal elements, and (5) extensive soft tissue preservation and adipocere formation. As global glacier area is declining in the current climate, there is the potential for more materials of archaeological and medicolegal significance to be exposed. It is therefore important for the forensic anthropologist to have an idea of the taphonomy in this setting and to be able to differentiate glacial effects from other taphonomic agents. PMID:26917542

  6. What happened to the coal forests during Pennsylvanian glacial phases?

    SciTech Connect

    Falcon-Lang, H.J.; Dimichele, W.A.

    2010-09-15

    Sequence stratigraphic analysis of Pennsylvanian coal-bearing strata suggests that glacial-interglacial fluctuations at high latitudes drove cyclic changes in tropical biomes. A literature review of plant assemblages in this paleoclimatic context suggests that coal forests dominated during humid interglacial phases, but were replaced by seasonally dry vegetation during glacial phases. After each glacial event, coal forests reassembled with largely the same species composition. This remarkable stasis implies that coal-forest refugia existed across the equatorial landscape during glacial phases, expanding to repopulate lowlands during and following deglaciation. One possibility is that refugia comprised small pockets of wetland forest strung out along valleys at some sites, but data are currently insufficient to test this hypothesis. The model presented here, if accepted, dramatically alters our understanding of the coal forests and helps explain aspects of their dynamics.

  7. New exposure ages for the Last Glacial Cycle in the Sanabria Lake region (northwestern Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María Jose; Rinterknecht, Vincent; Pallàs, Raimon; Braucher, Régis; Bourlès, Didier; Valero-Garcés, Blas

    2013-04-01

    ., 2011. Last deglaciation in northwestern Spain: New chronological and geomorphologic evidence from the Sanabria region. Geomorphology 135, 48-65. Palacios, D., Andrés, N., Úbeda, J., Alcalá, J., Marcos, J., Vázquez-Selem, L., 2012. The importance of poligenic moraines in the paleoclimatic interpretation from cosmogenic dating. Geophysical Research Abstracts 14, EGU2012-3759-1. Pérez-Alberti, A., Valcárcel-Díaz, M., Martini, I.P., Pascucci, V., Andrucci, S., 2011. Upper Pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW Spain. In: Martini, I.P., French, H.M., Pérez-Alberti, A. (Eds.), Ice-Marginal and Periglacial Processes and Sediments. Geological Society (London) Special Publication 354, pp. 93-110. Research funded by the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE (CSD2007-00067) of the Spanish Inter-Ministry Commission of Science and Technology (CICYT). Additional funding was provided by the Fundación Patrimonio Natural de Castilla y León through the project "La investigacion en el Lago de Sanabria dentro del proyecto CALIBRE: perspectivas y posibilidades", and by the projects Consolider Ingenio 2006 (CSD2006-0041, Topo-Iberia), 2003 PIRA 00256, HF02.4, and RISKNAT (2009SGR520). L. Rodríguez-Rodríguez has developed her research under a Severo Ochoa Programme fellowship (FICYT- Asturias).

  8. Glacial morphology and depositional sequences of the Antarctic Continental Shelf

    USGS Publications Warehouse

    ten Brink, U.S.; Schneider, Christopher

    1995-01-01

    Proposes a simple model for the unusual depositional sequences and morphology of the Antarctic continental shelf. It considers the regional stratal geometry and the reversed morphology to be principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the ice grounding line. The model offers several guidelines for stratigraphic interpretation of the Antarctic shelf and a Northern Hemisphere shelf, both of which were subject to many glacial advances and retreats. -Authors

  9. Oceanographic gradients and seabird prey community dynamics in glacial fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeff; Hillgruber, N.

    2012-01-01

    Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish

  10. Early Circum-Arctic Glacial Decay Following the Last Glacial Maximum?

    NASA Astrophysics Data System (ADS)

    Snow, T.; Alonso-Garcia, M.; Flower, B. P.; Shevenell, A.; Roehl, U.; Goddard, E.

    2012-12-01

    Recent rapid warming, glacial retreat, and sea ice reduction observed in the Arctic suggest extreme regional environmental sensitivity to ongoing anthropogenic climate change. To place these recent environmental changes in context and better understand the forcings and feedbacks involved in Arctic climate change, regional studies of past intervals of rapid warming are required. Paleoceanographic studies from the high-latitude North Atlantic indicate close relationships between meltwater discharges from circum-Arctic ice sheets, perturbations of Atlantic Meridional Overturning Circulation (AMOC), and global climate variations on sub-orbital timescales during the Late Quaternary. During the last glacial-interglacial transition (25-10 ka), when atmospheric temperatures over Greenland warmed 10-15°C and the AMOC experienced millennial-scale variability, low-resolution stable isotope studies from Fram Strait sediment cores indicate that the circum-Arctic ice sheets began to melt earlier than lower latitude Northern Hemisphere ice sheets, discharging their meltwater into the high latitude North Atlantic. Fram Strait, located at the gateway between the Atlantic and Arctic Oceans, is the only region where Arctic meltwater can exchange with the world oceans on both glacial and interglacial timescales. Thus, high-resolution paleoceanographic studies of Fram Strait sediments are critically required for understanding changes in Arctic meltwater flux to the North Atlantic on sub-orbital timescales. Here we present the first high-resolution (<100 yr) multi-proxy dataset from Fram Strait (ODP Site 986; 77°20.43'N, 9°04.66'E; water depth: 2063 m) to assess the timing of circum-Arctic ice sheet decay since the Last Glacial Maximum. Foraminiferal isotopic and elemental, scanning X-Ray Fluorescence, and ice-rafted debris records are used to isolate Arctic meltwater and iceberg discharge signals. Sharp increases in productivity and changes in water mass ventilation are inferred

  11. Rapid loss of glacial ice reveals stream community assembly processes

    PubMed Central

    Brown, Lee E; Milner, Alexander M

    2012-01-01

    Glacial retreat creates new habitat which is colonized and developed by plants and animals during the process of primary succession. While there has been much debate about the relative role of deterministic and stochastic processes during terrestrial succession, evidence from freshwater ecosystems remains minimal and a general consensus is lacking. Using a unique 27 years record of community assembly following glacial recession in southeast Alaska, we demonstrate significant change in the trait composition of stream invertebrate communities as catchment glacial cover decreased from ∼70% to zero. Functional diversity increased significantly as glacier cover decreased and taxonomic richness increased. Null modelling approaches led to a key finding that niche filtering processes were dominant when glacial cover was extensive, reflecting water temperature and dispersal constraints. Thereafter the community shifted towards co-occurrence of stochastic and deterministic assembly processes. A further novel discovery was that intrinsic functional redundancy developed throughout the study, particularly because new colonizers possessed similar traits to taxa already present. Rapid glacial retreat is occurring in Arctic and alpine environments worldwide and the assembly processes observed in this study provide new fundamental insights into how glacially influenced stream ecosystems will respond. The findings support tolerance as a key primary successional mechanism in this system, and have broader value for developing our understanding of how biological communities in river ecosystems assemble or restructure in response to environmental change.

  12. Glacial-Lake Outburst Erosion of the Grand Valley, Michigan, and Impacts on Glacial Lakes in the Lake Michigan Basin

    NASA Astrophysics Data System (ADS)

    Kehew, Alan E.

    1993-01-01

    Geomorphic and sedimentologic evidence in the Grand Valley, which drained the retreating Saginaw Lobe of the Laurentide Ice Sheet and later acted as a spillway between lakes in the Huron and Erie basins and in the Michigan basin, suggests that at least one drainage event from glacial Lake Saginaw to glacial Lake Chicago was a catastrophic outburst that deeply incised the valley. Analysis of shoreline and outlet geomorphology at the Chicago outlet supports J H Bretz's hypothesis of episodic incision and lake-level change. Shoreline features of each lake level converge to separate outlet sills that decrease in elevation from the oldest to youngest lake phases. This evidence, coupled with the presence of boulder lags and other features consistent with outburst origin, suggests that the outlets were deepened by catastrophic outbursts at least twice. The first incision event is correlated with a linked series of floods that progressed from Huron and Erie basin lakes to glacial Lake Saginaw to glacial Lake Chicago and then to the Mississippi. The second downcutting event occurred after the Two Rivers Advance of the Lake Michigan Lobe. Outbursts from the eastern outlets of glacial Lake Agassiz to glacial Lake Algonquin are a possible cause for this period of downcutting at the Chicago outlets.

  13. Status of glacial Lake Columbia during the last floods from glacial Lake Missoula

    USGS Publications Warehouse

    Atwater, B.F.

    1987-01-01

    The last floods from glacial Lake Missoula, Montana, probably ran into glacial Lake Columbia, in northeastern Washington. In or near Lake Columbia's Sanpoil arm, Lake Missoula floods dating from late in the Fraser glaciation produced normally graded silt beds that become thinner upsection and which alternate with intervals of progressively fewer varves. The highest three interflood intervals each contain only one or two varves, and about 200-400 successive varves conformably overlie the highest flood bed. This sequence suggests that jo??kulhlaup frequency progressively increased until Lake Missoula ended, and that Lake Columbia outlasted Lake Missoula. The upper Grand Coulee, Lake Columbia's late Fraser-age outlet, contains a section of 13 graded beds, most of them sandy and separated by varves, that may correlate with the highest Missoula-flood beds of the Sanpoil River valley. The upper Grand Coulee also contains probable correlatives of many of the approximately 200-400 succeeding varves, as do nearby parts of the Columbia River valley. This collective evidence casts doubt on a prevailing hypothesis according to which one or more late Fraser-age floods from Lake Missoula descended the Columbia River valley with little or no interference from Lake Columbia's Okanogan-lobe dam. ?? 1987.

  14. Status of glacial Lake Columbia during the last floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Atwater, Brian F.

    1987-03-01

    The last floods from glacial Lake Missoula, Montana, probably ran into glacial Lake Columbia, in northeastern Washington. In or near Lake Columbia's Sanpoil arm, Lake Missoula floods dating from late in the Fraser glaciation produced normally graded silt beds that become thinner upsection and which alternate with intervals of progressively fewer varves. The highest three interflood intervals each contain only one or two varves, and about 200-400 successive varves conformably overlie the highest flood bed. This sequence suggests that jökulhlaup frequency progressively increased until Lake Missoula ended, and that Lake Columbia outlasted Lake Missoula. The upper Grand Coulee, Lake Columbia's late Fraser-age outlet, contains a section of 13 graded beds, most of them sandy and separated by varves, that may correlate with the highest Missoula-flood beds of the Sanpoil River valley. The upper Grand Coulee also contains probable correlatives of many of the approximately 200-400 succeeding varves, as do nearby parts of the Columbia River valley. This collective evidence casts doubt on a prevailing hypothesis according to which one or more late Fraser-age floods from Lake Missoula descended the Columbia River valley with little or no interference from Lake Columbia's Okanogan-lobe dam.

  15. Biogeochemistry of glacial runoff along the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E.; Scott, D.; Vermilyea, A.; Stubbins, A.; Raymond, P.; Spencer, R.

    2012-04-01

    Glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system and glacier ecosystems cover 10% of the Earth, however the biogeochemistry of glacier discharge has not been well characterized. Preliminary investigations have shown that runoff from glaciers can be an important contributor of dissolved organic carbon (DOC) and macro- and micro- nutrients such as P and Fe to downstream aquatic ecosystems. There is also mounting evidence that glacier ecosystems may be a source of anthropogenically derived constituents such as fossil fuel combustion by-products and persistent organic pollutants that are deposited in precipitation and released in melting glacier ice. As a result, it is critical to develop our understanding of glacial biogeochemistry, particularly in near-shore marine ecosystems along glacially-dominated coastal margins that receive large volumes of glacial runoff. To examine the spatial and temporal variability in the biogeochemical properties of glacial runoff, we sampled snow, ice melt, and glacial runoff at the Mendenhall Glacier near Juneau, Alaska during the summer of 2012. Mendenhall Glacier extends from near-sea level to >1700 m.a.s.l. and encompasses ~120 km2 of the 3900 km2 Juneau Icefield. The main sub-glacial drainage channel was sampled weekly throughout the glacier melt season (May-October) for a suite of physical (temperature, conductivity, suspended sediment) and biogeochemical (C, N, P, Fe and trace metals) parameters. In addition, we did opportunistic sampling of snow in the glacier accumulation zone and supra-glacial meltwater streams on the glacier surface. We also analyzed particulate and dissolved Hg in glacial runoff to quantify the export of Hg to downstream aquatic ecosystems. Preliminary results show that concentrations of dissolved organic carbon in snow, ice melt, and sub-glacial runoff were typically low (<0.5 mg C/L) and not well correlated with discharge. Recent research has shown that

  16. Should precise numerical dating overrule glacial geomorphology?

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2016-04-01

    Numerical age dating techniques, namely different types of terrestrial cosmogenic nuclide dating (TCND), have achieved an impressive progress in both laboratory precision and regional calibration models during the past few decades. It is now possible to apply precise TCND even to young landforms like Late Holocene moraines, a task seemed hardly achievable just about 15 years ago. An increasing number of studies provide very precise TCND ages for boulders from Late Holocene moraines enabling related reconstruction of glacier chronologies and the interpretation of these glacial landforms in a palaeoclimatological context. These studies may also solve previous controversies about different ages assigned to moraines obtained by different dating techniques, for example relative-age dating techniques or techniques combining relative-age dating with few fixed points derived from numerical age dating. There are a few cases, for example Mueller Glacier and nearby long debris-covered valley glacier in Aoraki/Mt.Cook National Park (Southern Alps, New Zealand), where the apparent "supremacy" of TCND-ages seem to overrule glacial geomorphological principles. Enabled by a comparatively high number of individual boulders precisely dated by TCND, moraine ridges on those glacier forelands have been primarily clustered on basis of these boulder ages rather than on their corresponding morphological position. To the extreme, segments of a particular moraine complex morphologically and sedimentologically proven to be formed during one event have become split and classified as two separate "moraines" on different parts of the glacier foreland. One ledge of another moraine complex contains 2 TCND-sampled boulders apparently representing two separate "moraines"-clusters of an age difference in the order of 1,500 years. Although recently criticism has been raised regarding the non-contested application of the arithmetic mean for calculation of TCND-ages for individual moraines, this

  17. Neoproterozoic Glacial Extremes: How Plausible is the

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.

    2004-05-01

    The suggestion that the glaciation events of the Neoproterozoic could have been global in extent, so-called "snowball" glaciations, during which the oceans were entirely covered by sea ice and the continents by massive continental ice sheets, is an idea tha is recurrent in the geological and climate dynamics literature. It is an idea that haa both critics and defenders but concensus concerning it's plausiblity has yet to emerge. Previous work on this problem has led to the suggestion that a more likely scenario than the "hard snowball" is one in which open water continues to persist at the equator, thus enabling biological evolution into the Cambrian to proceed, perhaps stimulated by the transition from the cold conditions of the Neoproterozoic to the warm condition of the Cambrian, thus leading to the Cambrian "explosion of life". We will discuss recent extensions of our previous efforts to model the extreme climate of the Neoproterozoic, using both the University of Toronto Glacial Systems Model and the NCAR Community Climate System Model. With an appropriate choice for the albedo of sea ice, the former model conntinues to deliver hysteresis in the surface temperature vs. CO2 concentration space when solar luminosity is reduced by 6% below modern, and thus continues to suggest the existence of the previously hypothesized "CO2 attractor". We argue here that the system could be locked onto this attractor by the strong "out of equilibrium" effects of the carbon cycle recently discussed by Rothman et al. (PNAS, 2003). The open water solution is confirmed as the preferred mode of the system by the detailed CCSM integrations that we have performed.

  18. Preformed Nitrate in the Glacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  19. Geochemical Weathering in Glacial and Proglacial Environments

    NASA Astrophysics Data System (ADS)

    Tranter, M.

    2003-12-01

    It seems counterintuitive that chemical erosion in glaciated regions proceeds at rates comparable to those of temperate catchments with comparable specific runoff (Anderson et al., 1997). All the usual factors that are associated with elevated rates of chemical weathering ( Drever, 1988, 1994), such as water, soil, and vegetation, are either entirely absent or absent for much of the year. For example, glaciated regions are largely frozen for significant periods each year, the residence time of liquid water in the catchment is low ( Knight, 1999), there are thin, skeletal soils at best, and vegetation is either absent or limited ( French, 1997). Other chapters in this volume have highlighted how these factors are important in other, more temperate and tropical environments. Even so, chemical erosion rates in glaciated terrain are usually near to or greater than the continental average ( Sharp et al., 1995; Wadham et al., 1997; Hodson et al., 2000). This is because glaciated catchments usually have high specific runoff, there are high concentrations of freshly comminuted rock flour, which is typically silt sized and coated with microparticles, and adsorbed organic matter or surface precipitates that may hinder water-rock interactions are largely absent ( Tranter, 1982). In short, the rapid flow of water over fine-grained, recently crushed, reactive mineral surfaces maximizes both the potential rates of chemical weathering and chemical erosion.A range of both lab- and field-based studies of glacial chemical weathering have been undertaken, mainly on the smaller glaciers of Continental Europe (e.g., Brown et al., 1993a, b), Svalbard (e.g., Hodson et al., 2002), and North America (e.g., Anderson et al., 2000). The field-based studies typically generate hydrographs of glacier runoff, which show a characteristic diurnal cycle during summer in low latitudes ( Figure 1), and more subdued diurnal cycles at high latitudes (Figure 2 and Figure 3). The concentration of ions in

  20. Aspects of conducting site investigations in glacial terrain

    SciTech Connect

    Schilling, K.E. )

    1993-03-01

    Much of northern US is mantled by Pleistocene glacial drift consisting of heterogeneous deposits of fine to coarse-textured sediments. Hazardous waste site investigations in glacial settings can often present unique design and implementation considerations. Complex glacial stratigraphy encountered during drilling activities demands flexibility built into work plans to allow for field decisions based on field conditions. Continuous cores should be collected from boreholes on a routine basis for stratigraphic purposes with particular importance assigned to field identification of relative permeabilities of stratigraphic units. Selection of appropriate field screening methodology should be based on site conditions. Utilization of open borehole groundwater sampling is recommended for fine-textured glacial settings where soil gas and well point sampling are ineffective. Installation of boreholes allows for collection of stratigraphic information and enables more surface area exposed beneath the water table for groundwater recharge and sampling. Water level determinations can be made on open boreholes for an initial assessment of the horizontal direction of groundwater flow. Placement of screens for monitoring wells should be based on field determination of likely groundwater flow paths. Nested wells are necessary to define the vertical groundwater flow system at most sites. Evaluation of the vertical flow system can often dominate site investigations in fine-textured glacial terrain. Two case studies from Iowa illustrate the usefulness of incorporating the above considerations in planning and implementing in fine-textured glacial sediments. Field investigations utilizing open borehole groundwater sampling successfully delineated site glacial geology and hydrogeology for determination of the nature and extent of groundwater contamination and better located the horizontal and vertical placement of monitoring wells.

  1. Simulated Last Glacial Maximum Δ14CATM and the Deep Glacial Ocean Reservoir

    NASA Astrophysics Data System (ADS)

    Mariotti, V.; Paillard, D.; Roche, D. M.; Bouttes, N.; Bopp, L.

    2012-12-01

    Δ14Catm has been estimated at 420 ± 80‰ (INTCAL09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of cosmogenic production in high atmosphere and of carbon cycling in the Earth system (through carbon exchange with the superficial reservoirs, ocean and continental biosphere). 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ at the LGM. The remaining 220‰ of Δ14Catm variation between the LGM and preindustrial times have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010) proposed to explain most of the difference in atmospheric pCO2 between glacial and interglacial times by brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that can store Dissolved Inorganic Carbon (DIC) in the deep ocean. During glacial times, the sinking of brines is enhanced and more DIC is stored in the deep ocean, lowering atmospheric pCO2. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al., 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both sinking of brines and cosmogenic production, alongside iron and vertical diffusion mechanisms to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only the sinking of brine mechanism is consistent with past Δ14C data but also it explains most of the differences in atmospheric pCO2 and Δ14C between LGM and preindustrial times.

  2. Precise prediction of glacial cycle with its rhythm

    NASA Astrophysics Data System (ADS)

    Lai, C.; Tseng, Y.; Yu, W.; Chueh, P.

    2010-12-01

    An ability to explain and predict the paleoclimatic cycles is one of necessary conditions for reliable predictions of future climate without and with anthropogenic forcing. Here, we solved a big puzzle. Quaternary glacial cycles, as represented by climate proxy data of benthic δ18O, can be divided into four typical periods (TP) with four characteristic points (CP). The cyclic sequence of them goes in the following order: (1) Onset point of glacial termination, (2) Glacial termination period, (3) Zip point of glacial termination, (4) Inter-glacial period, (5) Inception point of glaciations, (6) Period for glacial maturation, (7) Glacial maximum point, and (8) Period for glacial hibernation. The glacial termination (GT) is a swift transition period of about 6,500 years only. A precise prediction of its onset point is a great challenge to the theorem of orbital-forcing that is being developed since Milankovitch. We consider the climate system as a stack of heat capacitors that get warmed up by absorbing part of the insolation and cooled down via gray-body radiation. Part of the insolation is transformed into chemical energy through photosynthesis (CETP) and eventually gets accumulated in the clathrate hydrate (CH) in seawater. We found that, during the last 1.7 million years, every Onset point of GT falls in a very precise time-window defined with three conditions: (1) the eccentricity (E) of Earth’s orbit is increasing, (2) the obliquity (T) is also increasing, and (3) the phase angle of precession (P) falls between 7π/8 and 5π/4. The CETP is converted into sensible heat via oxidation of gases released from dissociated CH. The dissociation of CH depends on its floating level and dissociating level. Those levels are controlled by seawater temperature and the density of CH. The Zip point of GT comes when the average temperature of seawater at 150 m depth is about 18 C, which is mostly influenced by the H2S in the CH. We define the Inception point of glaciations as

  3. Evaluating Object-Based Image Analysis on Glacial Micromorphology

    NASA Astrophysics Data System (ADS)

    Chin, K. S.; Sjogren, D. B.

    2007-12-01

    Micromorphology has recently been applied more in analyzing glacial sediments at a microscopic level. It provides additional information and details that may help to explain glacial processes in areas where macro- scale observations cannot yield sufficient information. However, the process of interpreting thin sections has been very subjective, and reaching general consensus about glacial processes is difficult. Remote sensing technology is increasingly helpful in the development and advancement of many sciences; the concepts that lie behind the technology in object cognition used in other fields, such as landscape ecology, can be applied to micromorphology. Similar to what has been done to landscape ecology in the past, automating the process of interpreting objects in glacial sediments may potentially simplify and decrease the subjectivity of the process. Definiens Professional 5 is an object-based image analysis program that imitates human cognitive methods; it is used in this study to identify objects apart from background matrices in multiple thin section images of glacial sediments. The program's initial results proved that more work was needed to be done for better results, but overall the software produced promising results. The method is repeatable and continues to generate consistent results with no bias or ambiguity, so the application of this method to micromorphology and other areas alike will be valuable.

  4. Obliquity pacing of the late Pleistocene glacial terminations.

    PubMed

    Huybers, Peter; Wunsch, Carl

    2005-03-24

    The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past approximately 700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (approximately 40,000 yr; approximately 40 kyr), orbital eccentricity (approximately 100 kyr) and precessional (approximately 20 kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing. PMID:15791252

  5. Deglaciation and post-glacial environmental evolution in the Western Massif of Picos de Europa

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Oliva, Marc; García, Cristina; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2014-05-01

    This study examines the process of deglaciation of the Western Massif of Picos de Europa through field work, geomorphological mapping, sedimentary records and absolute datings of 14C. This massif has several peaks over 2,400 m a.s.l. (Peña Santa de Castilla, 2,596 m; Torre Santa María, 2,486 m; Torre del Mediu, 2,467 m). It is composed mainly by Carboniferous limestones. This area has been intensively affected by karstic dissolution, Quaternary glaciers and fluvio-torrential processes (Miotke, 1968; Moreno et al, 2010; Ruiz-Fernández et al, 2009; Ruiz-Fernández, 2013). At present day, periglacial processes are active at the highest elevations (Ruiz-Fernández, 2013). We have identified four main glacial stages regarding the deglaciation of the massif: (i) maximum advance corresponding to the Last Glaciation, (ii) retreat and stabilization after the maximum advance, (iii) Late Glacial, and (iv) Little Ice Age. Sedimentological studies also contribute data to the understanding of the chronological framework of these environmental changes. The datings of the bottom sediments in two long sequences (8 and 5.4 m) provided a minimum age of 18,075 ± 425 cal BP for the maximum advance stage and 11,150 ± 900 cal BP for retreat and stabilization in the phase following the maximum advance. The ongoing analyses of these sequences at very high resolution will provide new knowledge about the environmental conditions prevailing since the deglaciation of the massif. References Miotke, F.D. (1968). Karstmorphologische studien in der glazial-überformten Höhenstufe der Picos de Europa, Nordspanien. Hannover, Selbtverlag der Geografischen Gessellschaft, 161 pp. Moreno, A., Valero, B.L., Jiménez, M., Domínguez, M.J., Mata, M.P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P. & Rico, M. (2010). The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Ruiz

  6. Crevassing and calving of glacial ice

    NASA Astrophysics Data System (ADS)

    Kenneally, James Patrick

    Calving of ice is a relatively new area of research in the still young field of glaciology. In the short time that calving has been studied, it has been mainly treated as an afterthought, with the predominant mode of thinking being that it will happen so to concern oneself with why is not important. Many studies dealt with observations of calving front positions over time vs. ice velocity in an attempt to quantify the calving rate as the difference between the two, while others have attempted to deduce some empirical relationship between calving rate and variables such as water depth or temperature. This study instead addresses the question of why, where, and when ice will first become crevassed, which is an obviously necessary condition for a later calving event to occur. Previous work examining the causes of calving used ideas put forth from a variety of fields, including civil engineering, materials science, and results from basic physics and mechanics. These theories are re-examined here and presented as part of a larger whole. Important results from the field of fracture mechanics are utilized frequently, and these results can be used as a predictor of ice behavior and intrinsic properties of ice, as well as properties like back stresses induced by local pinning points and resistive shears along glacial ice boundaries. A theory of fracture for a material experiencing creep is also presented with applications to ice shelves and crevasse penetration. Finally, a speculative theory regarding large scale iceberg formation is presented. It is meant mainly as an impetus to further discussion on the topic, with the hope that a model relating crevasse geometries to flow parameters can result in crevasse spacings that could produce the tabular icebergs which are so newsworthy. The primary focus of this thesis is to move away from the "after the fact" studies that are so common in calving research, and instead devote energy to determining what creates the conditions that

  7. Tectonic control on the persistence of glacially sculpted topography

    PubMed Central

    Prasicek, Günther; Larsen, Isaac J.; Montgomery, David R.

    2015-01-01

    One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 104 years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain. PMID:26271245

  8. Early local last glacial maximum in the tropical Andes.

    PubMed

    Smith, Jacqueline A; Seltzer, Geoffrey O; Farber, Daniel L; Rodbell, Donald T; Finkel, Robert C

    2005-04-29

    The local last glacial maximum in the tropical Andes was earlier and less extensive than previously thought, based on 106 cosmogenic ages (from beryllium-10 dating) from moraines in Peru and Bolivia. Glaciers reached their greatest extent in the last glacial cycle approximately 34,000 years before the present and were retreating by approximately 21,000 years before the present, implying that tropical controls on ice volumes were asynchronous with those in the Northern Hemisphere. Our estimates of snowline depression reflect about half the temperature change indicated by previous widely cited figures, which helps resolve the discrepancy between estimates of terrestrial and marine temperature depression during the last glacial cycle. PMID:15860623

  9. Tectonic control on the persistence of glacially sculpted topography.

    PubMed

    Prasicek, Günther; Larsen, Isaac J; Montgomery, David R

    2015-01-01

    One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 10(4) years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain. PMID:26271245

  10. Glacial geology of the Hellas region on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Strom, Robert G.; Johnson, Natasha

    1991-01-01

    A glacial geologic interpretation was recently presented for Argyre, which is herein extended to Hellas. This glacial event is believed to constitute an important link in a global cryohydric epoch of Middle Amazonian age. At glacial maximum, ice apparently extended far beyond the regions of Argyre and Hellas, and formed what is termed as the Austral Ice Sheet, an agglomeration of several ice domes and lobes including the Hellas Lobe. It is concluded that Hellas was apparently heavily glaciated. Also glaciation was young by Martian standards (Middle Amazonian), and ancient by terrestrial standards. Glaciation appears to have occurred during the same period that other areas on Mars were experiencing glaciation and periglacial activity. Glaciation seems to have occurred as a geological brief epoch of intense geomorphic activity in an era characterized by long periods of relative inactivity.

  11. Giant glacial cirques of non-mountainous terrains

    NASA Astrophysics Data System (ADS)

    Amantov, A.; Amantova, M.

    2012-04-01

    Cirques are usually considered as specific landforms of hill and mountain terrains produced by alpine glaciers, and/or slope failures (landslides). However, glacial cirques seem to be present also in non-mountainous terrains that underwent extensive Pleistocene ice-sheet glaciations and strong glacial and fluvio-glacial erosion. The largest form in the Baltic region is Severoladozhsky (North Lake Ladoga) cirque, probably the world's largest representative, with the length and width close to 100 km. Another example is the deepest Landsort basin of the Baltic Sea. In those cases Meso-Neoproterozoic sediments were subject to selected erosion, with evident overdeepening of the bedrock surface in comparison with surrounding crystalline frame. The bowl headwall shape of the cirque-like landforms was determined by the outline of the margin of exhumed basin. The origin of the major basins of margins of the Baltic and Canadian shields are similar. However, direct analogues of giant cirques are not well developed in this part of North America due to geological deviations and dominant directions of ice movement. Comparable landforms (like the South Chippewa basin of the Lake Michigan) are therefore less mature. We define glacial cirque as an amphitheatre-shape depression with comparable values of length and width, steep headwall with adjacent side slopes and gentle lip with commonly increased glacial accumulation. They are usually located within an ice stream that created typical relief profile with normal horseshoe overdeepening, and in areas predefined by geological and geomorphological peculiarities. This definition likely fits both classic mountain cirques, and giant ones created in favorable conditions in domains that underwent extensive glaciations and relevant selective glacial erosion. Length/width ratio typical for giant cirques group is close to 1:1, being comparable with classical alpine ones. Major differences (like length/height ratio of other order and possible

  12. Is rate of glacial retreat accelerated in Indian Himalaya? (Invited)

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. V.

    2013-12-01

    The Himalaya has one of the largest concentration of glaciers and rivers like Indus, Ganga and Bramhputra originate from this region. The snow and glacier melt is an important source of water for these rivers. However, this source of water may get affected in the near future due to changes in the cryosphere. Therefore, retreat of Himalayan glaciers are discussed extensively in scientific and public forums in India. Conventionally health of glaciers is assessed using changes in glacial length, as it is widely measured. However changes in glacial length and loss in areal extent near terminus needs to be interpreted carefully, as these changes can be influenced by numerous terrain and climatically sensitive parameters. The terrain parameters which can influence glacial retreat are slope, area altitude distribution, debris cover and orientation. In addition, climatically sensitive parameters like mass balance, glacial lakes and black carbon can also influence glacier retreat. These multiple influences can produce a complex pattern of glacial retreat. In this paper long-term glacier retreat in three river basins in the Indian Himalaya as Tista, Baspa and Parbati will be discussed. These basins are located in different climatically sensitive regions and each basin has unique dominant process of mass wasting. In addition to terrain parameters, influence of process like formation and expansion of moraine dammed lakes in Tista basin, deposition of black carbon on accumulation area in Baspa basin and debris cover in Parbati basin will also be discussed. This will provide understanding on varying influence of different mass wasting processes on glacial retreat during last five decades in the Indian Himalaya.

  13. The southernmost Andean Mountain soils: a toposequence from Nothofagus Forest to Sub Antarctic Tundra at Ushuaia, Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Firme Sá, Mariana M.; Schaefer, Carlos E.; Loureiro, Diego C.; Simas, Felipe N.; Francelino, Marcio R.; Senra, Eduardo O.

    2015-04-01

    Located at the southern tip of the Fuegian Andes Cordilhera, the Martial glacier witnessed a rapid process of retreat in the last century. Up to now little is known about the development and genesis of soils of this region. A toposequence of six soils, ranging from 430-925 m a.s.l, was investigated, with emphasis on genesis, chemical and mineralogical properties. The highest, youngest soil is located just below the Martial Glacier Martial Sur sector, and the lowest soils occur on sloping moraines under Nothofagus pumilio forests. Based on chemical, physical and mineralogical characteristics, the soils were classified according to the Soil taxonomy, being keyed out as Inceptisols and Entisols. Soil parent material of the soil is basically moraines, in which the predominant lithic components dominated by metamorphic rocks, with allochthonous contributions of wind-blown materials (very small fragments of volcanic glass) observed by hand lens in all horizons, except the highest profile under Tundra. In Nothofagus Deciduous Forests at the lowest part of the toposequence, poorly developed Inceptisols occur with Folistic horizons, with mixed "andic" and "spodic" characters, but with a predominance of andosolization (Andic Drystrocryepts). Under Tundra vegetation, Inceptisols are formed under hydromorphism and andosolization processes (Oxiaquic Dystrocrepts and Typic Dystrocrepts). On highland periglacial environments, soils without B horizon with strong evidence of cryoturbation and cryogenesis occur, without present-day permafrost down to 2 meters (Typic Cryorthents and Lithic Haploturbels). The mountain soils of Martial glacier generalize young, stony and rich in organic matter, with the exception of barely vegetated Tundra soils at higher altitudes. The forest soils are more acidic and have higher Al3+activity. All soils are dystrophic, except for the highest profile of the local periglacial environment. The organic carbon amounts are higher in forest soils and decrease with altitude. Clay content is low and varies little along the topossequence, indicating an overall low chemical weathering. The clay mineralogy indicates predominance of primary minerals and high proportion of low crystalline Fe and Al minerals, bound to organic matter.

  14. Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina).

    PubMed

    Commendatore, Marta G; Nievas, Marina L; Amin, Oscar; Esteves, José L

    2012-03-01

    The environmental quality of Ushuaia Bay, located at the southernmost tip of South America, is affected by the anthropogenic pressure of Ushuaia city. In this study, levels and sources of hydrocarbons in coastal sediments were assessed. Aliphatic hydrocarbon fractions ranged between 5.5 and 1185.3 μg/g dry weight and PAHs from not detected to 360 ng/g. Aliphatic diagnostic indices, the nalkanes homologous series occurrence, Aliphatic Unresolved Complex Mixtures (AliUCMs), and pristane and phytane isoprenoids indicated a petrogenic input. Some sites showed biogenic features masked by the anthropogenic signature. Particularly in port areas biodegradation processes were evident. PAH ratios showed a mixture of petrogenic and pyrogenic sources. Aliphatic and aromatic UCMs were strongly correlated, reflecting chronic pollution. Three areas were distinguished inside the bay: (1) east, with low hydrocarbons impact; (2) central, where hydrocarbons accumulation was related to source proximity and sediment characteristics; (3) south-west, where sediment characteristics and current circulation favour hydrocarbons accumulation. PMID:22189069

  15. Early diagnosis of congenital Trypanosoma cruzi infection, using shed acute phase antigen, in Ushuaia, Tierra del Fuego, Argentina.

    PubMed

    Mallimaci, María Cristina; Sosa-Estani, Sergio; Russomando, Graciela; Sanchez, Zunilda; Sijvarger, Carina; Alvarez, Isabel Marcela; Barrionuevo, Lola; Lopez, Carlos; Segura, Elsa Leonor

    2010-01-01

    Chagas' disease, or American trypanosomiasis, is caused by the protozoan parasite Trypanasoma cruzi. It is estimated that 15,000 new cases of congenital T. cruzi transmission occur in the Americas each year. The aim of this study was to estimate the rate of congenital T. cruzi infection in infants born to infected women living in Ushuaia, Argentina, as well to assess a serologic test using Shed Acute Phase Antigen (SAPA) for a timely diagnosis of congenital infection. The rate of congenital infection among children in the study was 4.4% (3/68). Our results show that for infants younger than 30 days of age, matched blood samples from mother and infant were capable of identifying congenital transmission of infection using an enzyme-linked immunosorbent assay with SAPA. For infants older than 3 months, congenital infection could be ruled out using the same procedure. PMID:20064996

  16. Early Diagnosis of Congenital Trypanosoma cruzi Infection, Using Shed Acute Phase Antigen, in Ushuaia, Tierra del Fuego, Argentina

    PubMed Central

    Mallimaci, María Cristina; Sosa-Estani, Sergio; Russomando, Graciela; Sanchez, Zunilda; Sijvarger, Carina; Alvarez, Isabel Marcela; Barrionuevo, Lola; Lopez, Carlos; Segura, Elsa Leonor

    2010-01-01

    Chagas' disease, or American trypanosomiasis, is caused by the protozoan parasite Trypanasoma cruzi. It is estimated that 15,000 new cases of congenital T. cruzi transmission occur in the Americas each year. The aim of this study was to estimate the rate of congenital T. cruzi infection in infants born to infected women living in Ushuaia, Argentina, as well to assess a serologic test using Shed Acute Phase Antigen (SAPA) for a timely diagnosis of congenital infection. The rate of congenital infection among children in the study was 4.4% (3/68). Our results show that for infants younger than 30 days of age, matched blood samples from mother and infant were capable of identifying congenital transmission of infection using an enzyme-linked immunosorbent assay with SAPA. For infants older than 3 months, congenital infection could be ruled out using the same procedure. PMID:20064996

  17. Polynuclear aromatic and chlorinated hydrocarbons in mussels from the coastal zone of Ushuaia, Tierra del Fuego, Argentina.

    PubMed

    Amin, Oscar A; Comoglio, Laura I; Sericano, José L

    2011-03-01

    Mussels (Mytilus edulis chilensis) were collected from 12 coastal locations in Ushuaia Bay, Argentina, and the surrounding area in October 1999 and again in October 2003. Concentrations of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and selected chlorinated pesticides were determined to assess the impact of a fast-growing population in the area. Total PAH concentrations ranged from 2.24 to an extremely high concentration of 2,420 µg/g lipid measured in mussels collected near an oil jetty used to discharge to shore storage tanks. The composition of PAHs in these samples indicates that the source of these compounds inside Ushuaia Bay is predominantly petrogenic, with some pyrogenic background, whereas mostly pyrogenic-related PAHs were evident in areas outside the bay. Total concentrations of PCBs ranged between 12.8 and 8,210 ng/g lipid, with the highest concentration, detected inside Ushuaia harbor, representing a 10-fold increase when compared with historical data. Chlorinated pesticides were detected at comparatively lower concentrations, with 4-4'- 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene being the most common. The aggressive increase in population and related activities observed in the city of Ushuaia over the last two decades might have affected the environmental quality of the local bay. Moreover, the oceanographic and atmospheric conditions existing in Ushuaia Bay and surrounding areas may favor the accumulation and long-term presence of these organic pollutants in all compartments of this fragile environment. PMID:21128271

  18. The glacial iron cycle from source to export

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A. J.; Nienow, P. W.; Telling, J.; Bagshaw, E.; Simmons, S. L.

    2014-12-01

    Nutrient availability limits primary production in large sectors of the world's oceans. Iron is the major limiting nutrient in around one third of the oceanic euphotic zone, most significantly in the Southern Ocean proximal to Antarctica. In these areas the availability of bioavailable iron can influence the amount of primary production, and thus the strength of the biological pump and associated carbon drawdown from the atmosphere. Despite experiencing widespread iron limitation, the Polar oceans are among the most productive on Earth. Due to the extreme cold, remoteness and their perceived "stasis", ice sheets have previously been though of as insignificant in global biogeochemical cycles. However, large marine algal blooms have been observed in iron-limited areas where glacial influence is large, and it is possible that these areas are stimulated by glacial bioavailable iron input. Here we discuss the importance of the Greenland and Antarctic ice sheets in the global iron cycle. Using field collected trace element data, bulk meltwater chemistry and mineralogical analysis, including photomicrographs, EELS and XANES, we present, for the first time, a conceptual model of the glacial iron cycle from source to export. Using this data we discuss the sources of iron in glacial meltwater, transportation and alteration through the glacial system, and subsequent export to downstream environments. Data collected in 2012 and 2013 from two different Greenlandic glacial catchments are shown, with the most detailed breakdown of iron speciation and concentrations in glacial areas yet reported. Furthermore, the first data from Greenlandic icebergs is presented, allowing meltwater-derived and iceberg-derived iron export to be compared, and the influence of both in marine productivity to be estimated. Using our conceptual model and flux estimates from our dataset, glacial iron delivery in both the northern and southern hemisphere is discussed. Finally, we compare our flux

  19. Morphologic Map of Glacial and Periglacial Features in the Northwestern Argyre Basin, Mars

    NASA Astrophysics Data System (ADS)

    Raack, J.; Hiesinger, H.; Reiss, D.

    2010-03-01

    We produced a morphological map of the northwestern rim of the Argyre Basin with focus on glacial and periglacial features. We report on features such as gullies, pingo-like forms and glacial remnants which are observed.

  20. Last Glacial - Present Glacial Activity in East Greenland Fjords Inferred from Swath Bathymetry and High-Resolution Seismic Data

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Laberg, J. S.; Husum, K.; Olsen, I. L.

    2014-12-01

    Swath bathymetry and high-resolution penetration echo sounder (chirp) data from fjords and sounds between Kong Oscars Fjord and Bredefjord, East Greenland, reveal glacial landforms and sedimentary processes that can be used to infer glacial activity from the last glacial to the present. Relatively straight, linear features oriented parallel to the fjord axes, as well as beyond the mouths of some fjords, are interpreted to be glacial lineations providing evidence of fast-flowing grounded ice draining the eastern parts of the Greenland Ice Sheet during the last glacial. In some areas, the glacial lineations are the only preserved glacigenic landfjorms (e.g. beyond the mouth of Bredefjord). However, in other areas, they are covered with multiple transverse ridges interpreted to be small terminal moraines (e.g. in Youngsund). Whereas the absence of such moraines is suggested to represent a rapid ice retreat due to lift-up and disintegration during parts of the deglaciation, their presence reflects that multiple halts and/or re-advances interrupted the retreat. Acoustically stratified sediment sequences dominate the fjord-fill stratigraphies (up to 180 ms two-way travel time). These deposits are suggested to reflect repeatedly changing lithological compositions in a glacimarine environment where deposition mainly occurred from suspension fall-out, in addition to ice rafting from icebergs calving off from tidewater glaciers, and sea ice. The stratified deposits form often relatively uniform drapes indicating that the tidewater glaciers were mainly located near the fjord heads since the last deglaciation. However, acoustically transparent bodies with irregular geometries, intercalated within the stratified deposits, occur in some of the inner fjords. These are suggested to be glacigenic sediment wedges (debris-flow lobes) that formed during relatively recent advances of tidewater glaciers (e.g. in Nordfjord and Moskusoksefjord).

  1. Glacial landforms of the southern Ungava Bay region (Canada): implications for the late-glacial dynamics and the damming of glacial Lake Naskaupi

    NASA Astrophysics Data System (ADS)

    Dube-Loubert, Hugo; Roy, Martin

    2014-05-01

    The Laurentide ice sheet played an important role in the late Pleistocene climate, notably through discharges of icebergs and meltwater. In this context, the Ungava Bay region in northern Quebec-Labrador appears particularly important, especially during the last deglaciation when the retreating ice margin dammed major river valleys, creating large proglacial lakes (e.g., McLean, aux Feuilles). The history of these lakes is closely related to the temporal evolution of the Labrador-Quebec ice dome. There are, however, large uncertainties regarding the position of its ice divide system through time, thereby limiting our understanding of the history of these glacial lakes. Here we focus on glacial and deglacial landforms present in the George River valley, south of Ungava Bay, in order to bring additional constraints on the late-glacial ice dynamics of this region, which also comprised glacial Lake Naskaupi. This work is based on surficial mapping using aerial photos and satellite imagery, combined with extensive fieldwork and sediment sampling. Our investigation showed significant differences in the distribution of glacial landforms across the region. The area east of the George River is characterized by well-developed Naskaupi shorelines while the elevated terrains show a succession of geomorphological features indicative of cold-based ice or ice with low basal velocities. In the easternmost part of this sector, ice flow directional data indicate that the ice was flowing towards ENE, against the regional slope. Eskers show paleocurrent directions indicating a general ice retreat from east to west. In the western part of this sector, near the George River valley, eskers are absent and the region is covered by felsenmeer and ground moraine that likely reflect the presence of a residual ice mass that was no longer dynamic. The presence of a stagnant ice represents the best mechanism to explain the formation of glacial lakes in the George River valley and its main

  2. The Influence of Glacial Ice Sheets on Atlantic Meridional Overturning Circulation Through Atmospheric Circulation Change under Glacial Climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, S.; Abe-Ouchi, A.; Yoshimori, M.; Oka, A.; Chan, W. L.

    2014-12-01

    It is well known that glacial ice sheets (Laurentide, Fennoscandian and Antarctic ice sheets) exert a large influence on the climate including the atmospheric circulation. Moreover, recent climate modeling studies suggest that glacial ice sheets have a large impact on the Atlantic meridional overturning circulation (AMOC). However, the process by which the ice sheets impact on the AMOC is not yet fully understood. On the other hand, recent studies showed that surface wind changes play a crucial role on changes to the AMOC under glacial climate. Therefore, in this study, we investigate in detail, the process by which the ice sheet modifies the AMOC through surface wind change. Here we conduct numerical experiments using an atmospheric general circulation model (AGCM) and an ocean general circulation model (OGCM) separately. Our method consists of 2 steps. First, from AGCM experiments, we evaluate the effect of glacial ice sheets on the surface wind. Second, from OGCM experiments, we evaluate the influence of the wind stress change on the AMOC by applying the surface wind change as a boundary condition, while leaving other boundary conditions (surface heat and water fluxes) unchanged. In addition, we conduct several sensitivity experiments. Using the AGCM, we explore individual ice sheet effect, ice sheet topography effect and albedo effect on surface wind change. Moreover, using the OGCM, we change the surface wind gradually or apply the surface wind change only at a specific region in order to explore the wind change effect in detail. We find that glacial ice sheets largely intensify the AMOC by surface wind change under glacial climate. Compare to other regions, it reveals that the wind change at the North Atlantic (NA) is a key region. There, the northern glacial ice sheet topography intensifies the Icelandic Low and anti-cyclonic circulation over the Laurentide ice sheet. However, this wind effect is effective only when the NA is not widely covered by sea ice

  3. Glacial melting: an overlooked threat to Antarctic krill.

    PubMed

    Fuentes, Verónica; Alurralde, Gastón; Meyer, Bettina; Aguirre, Gastón E; Canepa, Antonio; Wölfl, Anne-Cathrin; Hass, H Christian; Williams, Gabriela N; Schloss, Irene R

    2016-01-01

    Strandings of marine animals are relatively common in marine systems. However, the underlying mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an increased occurrence of suspended particles in the sea, which is known to affect the physiology of aquatic organisms. Here, we study the effect of suspended inorganic particles on krill in relation to krill mortality events observed in Potter Cove, Antarctica, between 2003 and 2012. The experimental results showed that large quantities of lithogenic particles affected krill feeding, absorption capacity and performance after only 24 h of exposure. Negative effects were related to both the threshold concentrations and the size of the suspended particles. Analysis of the stomach contents of stranded krill showed large quantities of large particles ( > 10(6 )μm(3)), which were most likely mobilized by glacial meltwater. Ongoing climate-induced glacial melting may impact the coastal ecosystems of Antarctica that rely on krill. PMID:27250339

  4. Obliquity Control On Southern Hemisphere Climate During The Last Glacial

    PubMed Central

    Fogwill, C.J.; Turney, C.S.M.; Hutchinson, D.K.; Taschetto, A.S.; England, M.H.

    2015-01-01

    Recent paleoclimate reconstructions have challenged the traditional view that Northern Hemisphere insolation and associated feedbacks drove synchronous global climate and ice-sheet volume during the last glacial cycle. Here we focus on the response of the Patagonian Ice Sheet, and demonstrate that its maximum expansion culminated at 28,400 ± 500 years before present (28.4 ± 0.5 ka), more than 5,000 years before the minima in 65°N summer insolation and the formally-defined Last Glacial Maximum (LGM) at 21,000 ± 2,000 years before present. To investigate the potential drivers of this early LGM (eLGM), we simulate the effects of orbital changes using a suite of climate models incorporating prescribed and evolving sea-ice anomalies. Our analyses suggest that Antarctic sea-ice expansion at 28.5 ka altered the location and intensity of the Southern Hemisphere storm track, triggering regional cooling over Patagonia of 5°C that extends across the wider mid-southern latitudes. In contrast, at the LGM, continued sea-ice expansion reduced regional temperature and precipitation further, effectively starving the ice sheet and resulting in reduced glacial expansion. Our findings highlight the dominant role that orbital changes can play in driving Southern Hemisphere glacial climate via the sensitivity of mid-latitude regions to changes in Antarctic sea-ice extent. PMID:26115344

  5. Ecology of invasive Melilotus alba on Alaskan glacial river floodplains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White sweetclover has recently invaded glacial river floodplains in Alaska. We sampled vegetation and measured environmental variables along transects located along the Nenana, Matanuska, and Stikine Rivers to describe plant communities and to determine the effects of white sweetclover on other plan...

  6. A new benchmark study for post-glacial rebound codes

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio

    2010-05-01

    Modern modelling approaches to post-glacial rebound (PGR) are based on several techniques ranging from purely analytical formulations to fully numerical methods. Various European teams nowadays are independently working on the post-glacial rebound process in order to constrain the rheological profile of the mantle and the extent and chronology of the late-Pleistocene ice sheets which are prerequisites for the determination of the PGR contribution to geodetic observables. With the aim of i) testing the codes currently in use by the various teams, ii) to establish a minimum set of agreed results, iii) correct possible systematic errors embedded in the various physical formulations and/or computer implementations, and iv) facilitate the dissemination of numerical tools for surface loading studies to the geodynamical community and to young scientists, we present a set of benchmark computations mainly based on models with spherical symmetry and viscoelastic rheology but also including inputs from finite elements modelers. This study is performed within the Working Group 4 of the ESF COST Action ES0701 "Improved constraints on models of Glacial Isostatic Adjustment" and focuses on i) load Love numbers and relaxation spectra, ii) the deformation and gravity variations driven by surface loads characterized by simple geometry and time-history, and iii) the rotational fluctuations in response to glacial unloading.

  7. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  8. Glacial melting: an overlooked threat to Antarctic krill

    PubMed Central

    Fuentes, Verónica; Alurralde, Gastón; Meyer, Bettina; Aguirre, Gastón E.; Canepa, Antonio; Wölfl, Anne-Cathrin; Hass, H. Christian; Williams, Gabriela N.; Schloss, Irene R.

    2016-01-01

    Strandings of marine animals are relatively common in marine systems. However, the underlying mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an increased occurrence of suspended particles in the sea, which is known to affect the physiology of aquatic organisms. Here, we study the effect of suspended inorganic particles on krill in relation to krill mortality events observed in Potter Cove, Antarctica, between 2003 and 2012. The experimental results showed that large quantities of lithogenic particles affected krill feeding, absorption capacity and performance after only 24 h of exposure. Negative effects were related to both the threshold concentrations and the size of the suspended particles. Analysis of the stomach contents of stranded krill showed large quantities of large particles ( > 106 μm3), which were most likely mobilized by glacial meltwater. Ongoing climate-induced glacial melting may impact the coastal ecosystems of Antarctica that rely on krill. PMID:27250339

  9. Obliquity Control on Southern Hemisphere Climate during the Last Glacial

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Hutchinson, D. K.; Turney, C. S.; Taschetto, A.; England, M. H.

    2015-12-01

    Recent paleoclimate reconstructions have challenged the traditional view that Northern Hemisphere insolation and associated feedbacks drove synchronous global climate and ice-sheet volume during the last glacial cycle. Here we focus on the response of the Patagonian Ice Sheet, and demonstrate that its maximum expansion culminated at 28,400 ± 500 years before present (28.4 ± 0.5 ka), more than 5,000 years before the minima in 65°N summer insolation and the formally-defined Last Glacial Maximum (LGM) at 21,000 ± 2,000 years before present. To investigate the potential drivers of this early LGM (eLGM), we simulate the effects of orbital changes using a suite of climate models incorporating prescribed and evolving sea-ice anomalies. Our analyses suggest that Antarctic sea-ice expansion at 28.5 ka altered the location and intensity of the Southern Hemisphere storm track, triggering regional cooling over Patagonia of 5°C that extends across the wider mid-southern latitudes. In contrast, at the LGM, continued sea-ice expansion reduced regional temperature and precipitation further, effectively starving the ice sheet and resulting in reduced glacial expansion. Our findings highlight the dominant role that orbital changes can play in driving Southern Hemisphere glacial climate via the sensitivity of mid-latitude regions to changes in Antarctic sea-ice extent.

  10. Terrestrial glacial eskers: Analogs for Martian sinuous ridges

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Strom, Roger G.

    1991-01-01

    A glacial model was introduced last year for the Argyre region, a concept which is now extended, and which was recently integrated with a Global Hydrologic Model incorporating many other aspects of Martian geology. Despite wide agreement that the Martian ridges strongly resemble glacial eskers, this hypothesis has been presented with great equivocation due to a perceived lack of other glacial landforms. Quite to the contrary, it is shown that the Martian ridges actually do occur in logical ordered sequences with many other types of characteristically glacial appearing landforms. Herein, the esker hypothesis is further supported in isolation from considerations of regional landform assemblages. It is concluded that Martian sinuous ridges are similar in every respect to terrestrial eskers: scale, morphology, planimetric pattern, and associations with other probable glaciogenic landforms. It is found that the esker hypothesis is well supported. Eskers are glaciofluvial structures, and owe their existence to large scale melting of stagnant temporate glaciers. Thus, eskers are indicators of an ameliorating climatic regime after a protracted episode of cold, humid conditions.

  11. Sulfur/Carbonate Springs and Life in Glacial Ice

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Grasby, S.; Longazo, T.

    2001-01-01

    Glacial springs are useful analogs to channels and seeps issuing from frozen strata on Mars. Mineralized water can move through, and discharge from, solid ice. This water, even near freezing, can support microbial life and bring it to the surface. Additional information is contained in the original extended abstract.

  12. Remote Wetland Assessment for Missouri Coteau Prairie Glacial Basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Missouri Coteau prairie glacial wetlands are subject to numerous anthropogenic disturbances, such as cultivation, construction, and chemical inputs from upland land-use practices. High wetland density and temporal variability among these ecosystems necessitate synoptic tools for watershed-scale wetl...

  13. Glacial Influences on Solar Radiation in a Subarctic Sea.

    EPA Science Inventory

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  14. Alaskan mountain glacial melting observed by satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Tapley, B. D.; Wilson, C. R.

    2006-08-01

    We use satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) as an indication of mass change to study potential long-term mountain glacial melting in southern Alaska and West Canada. The first 3.5 yr of GRACE monthly gravity data, spanning April 2002-November 2005, show a prominent glacial melting trend in the mountain regions around the Gulf of Alaska (GOA). GRACE-observed surface mass changes correlate remarkably well with available mass balance data at Gulkana and Wolverine, two benchmark glaciers of the U.S. Geological Survey (USGS), although the GRACE signals are smaller in magnitude. In addition, terrestrial water storage (TWS) changes estimated from an advanced land surface model show significant mass loss in this region during the same period. After correcting for the leakage errors and removing TWS contributions using model estimates, we conclude that GRACE-observed glacial melting in the GOA mountain region is equivalent to ˜ - 101 ± 22 km 3/yr, which agrees quite well with the assessment of ˜ - 96 ± 35 km 3/yr based on airborne laser altimetry data, and is consistent with an earlier estimate based on the first 2 yr of GRACE data. This study demonstrates the significant potentials of satellite gravity measurements for monitoring mountain glacial melting and regional climate change.

  15. Impacts of alpine glacial erosion on the shapes of glacial valleys, heights of mountains, and sediment delivery to the foreland

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Dühnforth, M.; Anderson, L. S.; Colgan, W.

    2012-12-01

    Glacial erosion not only generates characteristic landforms at a variety of spatial scales, but also drastically influences the rate of sediment delivery to the foreland landscape. Prior glacial erosion models have explored the transition from V to U shaped valley cross sections, the flattening of along-valley profiles, and the steepening of headwalls. In tectonically inactive landscapes, repeated glacial erosion lowers the elevation of the valley, resulting in a long-term decline in glacier surface mass balance. As a consequence, earlier glacial periods often produce terminal moraines well beyond the moraines of more recent glaciations. In valleys with resistant rock, oversteepening of head and sidewalls leads to avalanching, which protects ridges from erosion. If rock uplift is significant, this feedback and the potential that higher elevations promote reduced erosion associated with cold basal glacial conditions, can promote the emergence of very tall mountains. While many first order features of glacial erosional landscapes have been replicated by coarse-resolution glacial erosion models, few models explicitly assess the role of rock type and fracture density in modulating local subglacial erosion. We explore the potential influence of rock properties on landscape evolution using a new finer-resolution numerical model of glacial erosion in which quarrying and abrasion are explicitly treated over a bed that is discretized into fracture-bounded blocks. Time varying subglacial cavity geometry at the ice-bed interface results from a prescribed sliding history. The quarrying of blocks from upvalley edges of subglacial cavities allows sharp edges to migrate upvalley, while abrasion operates on all portions of the bed that are in intimate contact with glacier. The model suggests that roche moutonées emerge as the characteristic landform, and migrate upvalley. As the discretization interval of the model approximates the length scale of fracture-bounded blocks, we can

  16. Oxygen-isotope variations in post-glacial Lake Ontario

    NASA Astrophysics Data System (ADS)

    Hladyniuk, Ryan; Longstaffe, Fred J.

    2016-02-01

    The role of glacial meltwater input to the Atlantic Ocean in triggering the Younger Dryas (YD) cooling event has been the subject of controversy in recent literature. Lake Ontario is ideally situated to test for possible meltwater passage from upstream glacial lakes and the Laurentide Ice Sheet (LIS) to the Atlantic Ocean via the lower Great Lakes. Here, we use the oxygen-isotope compositions of ostracode valves and clam shells from three Lake Ontario sediment cores to identify glacial meltwater contributions to ancient Lake Ontario since the retreat of the LIS (∼16,500 cal [13,300 14C] BP). Differences in mineralogy and sediment grain size are also used to identify changes in the hydrologic regime. The average lakewater δ18O of -17.5‰ (determined from ostracode compositions) indicates a significant contribution from glacial meltwater. Upon LIS retreat from the St. Lawrence lowlands, ancient Lake Ontario (glacial Lake Iroquois) lakewater δ18O increased to -12‰ largely because of the loss of low-18O glacial meltwater input. A subsequent decrease in lakewater δ18O (from -12 to -14‰), accompanied by a median sediment grain size increase to 9 μm, indicates that post-glacial Lake Ontario received a final pulse of meltwater (∼13,000-12,500 cal [11,100-10,500 14C] BP) before the onset of hydrologic closure. This meltwater pulse, which is also recorded in a previously reported brief freshening of the neighbouring Champlain Valley (Cronin et al., 2012), may have contributed to a weakening of thermohaline circulation in the Atlantic Ocean. After 12,900 cal [11,020 14C] BP, the meltwater presence in the Ontario basin continued to inhibit entry of Champlain seawater into early Lake Ontario. Opening of the North Bay outlet diverted upper Great Lakes water from the lower Great Lakes causing a period (12,300-8300 cal [10,400-7500 14C] BP) of hydrologic closure in Lake Ontario (Anderson and Lewis, 2012). This change is demarcated by a shift to higher δ18Olakewater

  17. Glacial geology, glacial recession, proglacial lakes, and postglacial environments, Fishers Island, New York

    SciTech Connect

    Sirkin, L. ); Funk, R.E. . Anthropological Survey)

    1993-03-01

    The Fishers Island Moraine, a complex of three parallel ice margin depositional trends, forms the west-central segment of a major recessional moraine of the Connecticut-Rhode Island Lobe of the late Wisconsinan glacier. As such, the moraine links the Orient Point Moraine of eastern Long Island and the Charlestown Moraine of western Rhode Island and marks a prominent recessional ice margin. The moraine is correlative with the Roanoke Point Moraine of the Connecticut Lobe of northeastern Long Island. Pollen stratigraphy of >13,180 ka bog sediments begins early in the spruce (A) pollen zone with evidence of a cold, late-glacial climate. The pine (B) pollen zone, beginning prior to 11,145 ka, and the oak (C) pollen zone, dating from about 9,000 ka with hickory and hemlock subzones, are well represented. However, after about 2,000 ka, the stratigraphic record in the bog sections is missing in most cases due to peat harvesting. Pollen spectra from several archeological sites fall within the late oak pollen zone, well within the land clearing interval with evidence of hardwood forests and locally holly and cedar. Evidence of cultigens in the pollen record is sparse. Marine deposits over fresh water bog and proglacial lake sediments show that some coastal bogs were drowned by sea level rise.

  18. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials. PMID:25119027

  19. Abrupt glacial climate shifts controlled by ice sheet changes

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-01

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

  20. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  1. Interglacial geomorphic dynamics during the Quaternary: Does glacial erosion dominates interglacial adjustment?

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Johnson, E. A.

    2012-04-01

    High mountains are generally sculptured by glacial erosion, which resulted in the formation of glacial cirques and U-shaped valleys with strongly over-steepened hillslopes and widespread glacial deposits. The abundance of glacial (erosion and depositional) landforms in high mountains has been attributed to very effective glacial erosion and sediment transfer. Furthermore, it has been argued that geomorphic activity remains increased after the retreat of valley glaciers at the transition between glacial and interglacial periods. Thus, geologists and geomorphologist generally tend to look at glaciers as geomorphic agents that strongly enhance erosion and sediment fluxes. An important aspect of glacial erosion is the affect of glacial erosion on the decoupling of headwater basins from main river systems. Strong glacial erosion results in flat valley bottoms and glacial over-deepenings, with reduced transport capacities of the interglacial rivers draining formerly glaciated headwaters. While this effect has been described earlier, quantitative estimates of the degree of decoupling of glacial headwaters are missing. In this paper, we will present evidences of decreased sediment yields in glacial headwaters, which results from the transition of glacial to peri-/paraglacial process regimes. These evidences are derived from geomorphomteric analysis, numerical sediment flux models and sediment budget approaches, which were conducted in the Kananaskis Valley (Canadian Rocky Mountains). Furthermore, we will compare the duration of glacial and interglacial periods during the Quaternary and the calculated interglacial erosion rates with glacial rates. We discuss the wider implications of the results with respect to the landform evolution of glaciated mountains during the Quaternary.

  2. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  3. A first 10Be cosmogenic glacial chronology from the High Atlas, Morocco, during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Fink, David; Hughes, Philip; Fenton, Cassie

    2014-05-01

    Glacial geomorphological mapping, 10Be cosmogenic exposure ages of 21 erratics from cirque-valley systems and paleo-glacier climate modelling in the High Atlas Mountains, Morocco (31.1° N, 7.9° W), provides new and novel insights as to the history and evolution of the largest desert region on Earth. The Atlas Mountains display evidence of extensive and multiple Late Pleistocene glaciations whose extent is significantly larger than that recognised by previous workers. The largest glaciers formed in the Toubkal massif where we find 3 distinct phases of glacial advances within the last glacial cycle. The oldest moraines occurring at the lowest elevations have yielded eight 10Be ages ranging from 30 to 88 ka. Six of eight samples from moraines at intermediate elevations gave ages of 19 to 25 ka (2 outliers) which correlates well with the global Last Glacial Maximum (ca. 26-21 ka) and the last termination during marine isotope stage 2. Five erratics from the youngest and most elevated moraines yielded a suite of normally distributed exposure ages from 11 to 13 ka which supports a correlation with the northern hemisphere Younger Dryas (12.9-11.7 ka). The glacial record of the High Atlas effectively reflects moisture supply to the north-western Sahara Desert and can provide an indication of shifts between arid and pluvial conditions. The plaeo equilibrium line altitudes (ELA) of these three glacier phases was more than 1000 m lower than the predicted ELA based on today's temperatures. Glacier-climate modelling indicates that for each of these glacier phases climate was not only significantly cooler than today, but also much wetter. The new evidence on the extent, timing and palaeoclimatic significance of glaciations in this region has major implications for understanding moisture transfer between the North Atlantic Ocean and the Sahara Desert during Pleistocene cold stages.

  4. Modeling the Glacial Buzzsaw in the Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Tomkin, J. H.

    2006-12-01

    Modeling the Glacial Buzzsaw in the Patagonian Andes The concept of a "glacial buzzsaw" was spawned by Steve Porter's observation in 1977 and 1988 that the "equilibrium line altitude" (ELA) for alpine glaciation in the Andes parallels the summit elevations of the range. The modern ELA in the Patagonian Andes drops from about 4.5 km at 30 S to about 1 km at 50 S, due to colder temperatures at higher latitudes. The summit elevations decrease steadily by a similar amount over this 2200 km distance. The landscape of the western side of the Patagonian Andes clearly shows that it has long been dominated by glacial erosion. Locally preserved tills indicate that alpine glaciation was active at 7 to 4.6 Ma, if not earlier. The idea of a glacial buzzsaw is that erosion by alpine glaciers is aggressive enough to limit the height of a mountain range. Fission-track cooling ages indicate modest long-term erosion rates (~0.5 to 1 km/Ma) for the Patagonian Andes, which precludes the possibility that the range was trimmed down to size by Quaternary- age glaciations. Furthermore, the range shows clear evidence of growth by continental subduction and tectonic accretion along its eastern margin. Evidence for recent tectonic shortening is based on the observation that the range has an approximately constant taper, as expected for a critical wedge. The width of the range decreases southward in parallel with the decreasing summit elevations. We have developed a general analytical model for coupled wedge growth and glacial erosion that accounts for much of the tectonic evolution of the Patagonian Andes. The model is based on an actively accreting wedge that maintains a constant taper geometry. The size of the wedge is controlled by competition between accretion and glacial erosion. Recent work by one of us (JHT) and Gerard Roe shows that the erosional yield caused by alpine glaciation is approximately proportional to the local elevation difference between the summit of the range and the

  5. Simulation and understanding the nature of Quaternary glacial cycles

    NASA Astrophysics Data System (ADS)

    Ganopolski, A.; Calov, R.

    2012-04-01

    Although it is generally accepted that, as postulated by the Milankovitch theory, Earth's orbital variations play an important role in Quaternary climate dynamics, the mechanism of glacial cycles still remains poorly understood. Among remaining scientific challenges are an understanding of the nature of 100 kyr cycles that dominated global ice volume and climate variability over the late part of Quaternary and the causes of the transition from the "40 kyr world" to the "100 kyr world" around one million years ago. Using the Earth system model of intermediate complexity CLIMBER-2, we demonstrate that both strong 100 kyr periodicity in the ice volume variations and the timing of glacial terminations during past 800 kyr can be successfully simulated as direct, strong nonlinear responses of the climate-cryosphere system to orbital forcing alone. We show that the sharp 100 kyr peak in the power spectrum of ice volume results from the phase locking of the long glacial cycles to the corresponding eccentricity cycles. Variations in obliquity and CO2 concentration are not required to simulate strong 100 kyr cyclicity if the atmospheric CO2 concentration stays below its typical interglacial value. The existence of long glacial cycles is primarily attributed to the North American ice sheet and it requires the presence of a large continental area with exposed rocks. In case when the continents are completely covered by a thick sediment layer, for the realistic range of CO2 concentrations (180-300 ppm), the long glacial cycles can not be simulated. In the experiment with fixed CO2 concentration, ice volume variations contain both strong precessional and obliquity cycles, which apparently is in odd with empirical data that suggest complete dominance of the obliquity cycle. However, in the experiments with interactive carbon cycle, simulated obliquity component becomes much stronger, especially, in the deep ocean temperature. This is explained by the direct and indirect (via the

  6. Seasonality controls on glacial erosion in the Himalaya and Karakoram

    NASA Astrophysics Data System (ADS)

    Scherler, D.; Bookhagen, B.; Strecker, M. R.

    2009-04-01

    The waxing and waning of mountain glaciers during the Quaternary left a clear imprint of glacial erosion in form of deeply incised, U-shaped valleys in many mountain ranges around the world. Temperature changes and the availability of moisture are generally thought of as the limiting factors for the geomorphic work that glaciers accomplish. Here, we present evidence that the seasonality of moisture supply strongly affects glacial flow velocities, and thus the erosional efficiency of glaciers. We used ASTER satellite imagery to measure flow velocities of glaciers in the Himalaya and Karakoram during the last decade. Being situated in the transition between moisture sources rooted in the Indian Summer Monsoon and the Northern Hemisphere Westerlies, this region provides a natural laboratory to study the influence of seasonally different moisture sources on glacier dynamics. We interpret the measured surface velocities to reflect ice flux, and use them as a proxy for glacial erosion. We tie our observations to east-west gradients in climate and how they affect the mass balance of glaciers. In the central Himalaya, glaciers characterized by summer accumulation, flow at generally lower velocities compared to glaciers in the Karakoram in a winter accumulation regime. The data also show that most ice flux occurs near the equilibrium line altitude (ELA), and thereby provide empirical support for focused glacial erosion at distinct, climate controlled altitudinal sectors. These zones are presently located at approx. 4.8-5 +/- 0.5 km in the Karakoram and western Himalaya, and at approx. 5.5 +/- 0.5 km in the central and eastern Himalaya. A mean position of the Quaternary ELA, depressed by approx. 500 m, delineates a zone of focused glacial erosion that corresponds well with areas of <0.5 m annual rainfall, but high local relief. These areas dominate the western end of the Asian highlands, including the western Himalaya, the Karakoram, eastern Hindukush, and the Pamir. Here

  7. Sediment core and glacial environment reconstruction - a method review

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Paasche, Øyvind

    2010-05-01

    Alpine glaciers are often located in remote and high-altitude regions of the world, areas that only rarely are covered by instrumental records. Reconstructions of glaciers has therefore proven useful for understanding past climate dynamics on both shorter and longer time-scales. One major drawback with glacier reconstructions based solely on moraine chronologies - by far the most common -, is that due to selective preservation of moraine ridges such records do not exclude the possibility of multiple Holocene glacier advances. This problem is true regardless whether cosmogenic isotopes or lichenometry have been used to date the moraines, or also radiocarbon dating of mega-fossils buried in till or underneath the moraines themselves. To overcome this problem Karlén (1976) initially suggested that glacial erosion and the associated production of rock-flour deposited in downstream lakes could provide a continuous record of glacial fluctuations, hence overcoming the problem of incomplete reconstructions. We want to discuss the methods used to reconstruct past glacier activity based on sediments deposited in distal glacier-fed lakes. By quantifying physical properties of glacial and extra-glacial sediments deposited in catchments, and in downstream lakes and fjords, it is possible to isolate and identify past glacier activity - size and production rate - that subsequently can be used to reconstruct changing environmental shifts and trends. Changes in average sediment evacuation from alpine glaciers are mainly governed by glacier size and the mass turnover gradient, determining the deformation rate at any given time. The amount of solid precipitation (mainly winter accumulation) versus loss due to melting during the ablation-season (mainly summer temperature) determines the mass turnover gradient in either positive or negative direction. A prevailing positive net balance will lead to higher sedimentation rates and vice versa, which in turn can be recorded in downstream

  8. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  9. Microbial Succession in Glacial Foreland Soils of the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Kazemi, S.; Lanoil, B. D.

    2014-12-01

    The Canadian arctic has experienced increasing temperatures over the past century leading to heightened rate of glacial retreat. Glacial retreat leads to subsequent exposure of foreland soils to atmospheric conditions, thus creating a sequence of change in these ecosystems. Microbes are critical for soil development and nutrient dynamics in glacial systems as they are the primary colonizers of these soils and have been demonstrated to play a role in geochemical weathering and nutrient cycling beneath the glacier. Although viable microbial communities exist beneath glaciers and are known to be important for the glacial ecosystem, the impact of glacial retreat on these communities and development of the resulting foreland ecosystem is not well understood. Here, we investigate how microbial communities respond to changing conditions brought on by glacial retreat and whether a pattern of succession, such as those found in well characterized plant systems, occurs along a soil foreland in these microbial communities. We hypothesis that time since deglaciation is the major determinant of structure and composition of microbial assemblages. To test this, soil samples were collected along two glacier forelands, Trapridge Glacier and Duke River Glacier, located in Kluane National Park, Yukon Territory. Chronosequence dating of satellite images using geographic information system software revealed sampling sites have been ice-free from ~30 years to over 60 years. Soil chemistry analysis of major nutrients revealed no change in chemical parameters along the chronosequence, suggesting that presence of microbes after exposure from subglacial environments does not significantly alter soil characteristics in the timeframe observed. Furthermore, next-generation IonTorrentTM sequencing performed on soil samples revealed over five million sequencing reads, suggesting prominent microbial presence within these soils. Further analysis on sequencing data is needed to establish the

  10. Glacially induced stresses in sedimentary rocks of northern Poland

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Dąbrowski, Marcin

    2016-04-01

    During the Pleistocene large continental ice sheets developed in Scandinavia and North America. Ice-loading caused bending of the lithosphere and outward flow in the mantle. Glacial loading is one of the most prominent tectono-mechanical event in the geological history of northern Poland. The Pomeranian region was subjected several times to a load equivalent of more than 1 km of rocks, which led to severe increase in both vertical and horizontal stresses in the upper crustal rocks. During deglaciation a rapid decrease in vertical stress is observed, which leads to destabilization of the crust - most recent postglacial faults scarps in northern Sweden indicate glacially induced earthquakes of magnitude ~Mw8. The presence of the ice-sheet altered as well the near-surface thermal structure - thermal gradient inversion is still observable in NW Poland. The glacially related processes might have left an important mark in the sedimentary cover of northern Poland, especially with regard to fracture reopening, changes in stress state, and damage development. In the present study, we model lithospheric bending caused by glacial load, but our point of interest lies in the overlying sediments. Typical glacial isostatic studies model the response of (visco-) elastic lithosphere over viscoelastic or viscous asthenosphere subjected to external loads. In our model, we introduce viscoelastic sedimentary layers at the top of this stack and examine the stress relaxation patterns therein. As a case study for our modelling, we used geological profiles from northern Poland, near locality of Wejherowo, which are considered to have unconventional gas potential. The Paleozoic profile of this area is dominated by almost 1 km thick Silurian-Ordovician shale deposits, which are interbedded with thin and strong limestone layers. This sequence is underlain by Cambrian shales and sandstones, and finally at ~3 km depth - Precambrian crystalline rocks. Above the Silurian there are approximately

  11. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  12. Glacial Features on the Northern Insular Margin of Iceland

    NASA Astrophysics Data System (ADS)

    Helgadóttir, G.; Brandsdóttir, B.; Detrick, R. S.; Driscoll, N.

    2003-12-01

    The iceberg scoured insular margin of Iceland is incised by several major fjords which mark the pathways of major outlet glaciers during recent glaciations. New Simrad EM300 multibeam bathymetric and Chirp sonar data from the northern insular margin have revealed glacial and glaciotectonic formations some of which, to our knowledge, have not been previously recognized. The iceberg scoured bank areas are mostly devoid of loose sediments which has accumulated within the fjords. Glacial erosion along the Kolbeinsey Ridge indicates that the Iceland ice cap extended beond 67° N during the last glacial maximum. Multiple marginal moraines exist at 400--500 m depth within a 3--6 km wide, U-shaped valley along the western margin of the ridge (at 66° 55'N). The region east of the ridge is dominated by large volcanic complexes which bear the marks of glacial erosion, however, volcanic deposits from postglacial eruptions have blanketed all glacial features in this region. Scoured bedrock surfaces and eskers reflect the direction of two major outlet glaciers, into Skagafjördur-Skagafjardardjúp and Eyjafjördur-Eyjafjardaráll. The region between 66° 20'N and 66° 35'N in Eyjafjardaráll is dominated by a system of a Λ -shaped highly reflective (till?) ridges, which are characteristically up to 1 km long and 300--500 m wide and open towards the presumed glacial flow. The northernmost ridges strike NNE-SSW, parallel to a 10 km long lateral moraine, which most likely separated the two main outlet glaciers in this region, i.e. from Skagafjördur and Eyjafjördur. Further south, they change direction gradually, along with the fjord curvature. The Λ -shaped ridges most likely represent glaciotectonic features formed during repeated glacier advances. They are not drumlins as drumlins generally increase in volume up-glacier but the ridges down-glacier. Instead they represent some sort of composite ridges intervening depressions conforming to the general shape of the glacier

  13. The Post-Glacial Species Velocity of Picea glauca following the Last Glacial Maximum in Alaska.

    NASA Astrophysics Data System (ADS)

    Morrison, B. D.; Napier, J.; Kelly, R.; Li, B.; Heath, K.; Hug, B.; Hu, F.; Greenberg, J. A.

    2015-12-01

    Anthropogenic climate change is leading to dramatic fluctuations to Earth's biodiversity that has not been observed since past interglacial periods. There is rising concern that Earth's warming climate will have significant impacts to current species ranges and the ability of a species to persist in a rapidly changing environment. The paleorecord provides information on past species distributions in relation to climate change, which can illuminate the patterns of potential future distributions of species. Particularly in areas where there are multiple potential limiting factors on a species' range, e.g. temperature, radiation, and evaporative demand, the spatial patterns of species migrations may be particularly complex. In this study, we assessed the change in the distributions of white spruce (Picea glauca) from the Last Glacial Maxima (LGM) to present-day for the entire state of Alaska. To accomplish this, we created species distribution models (SDMs) calibrated from modern vegetation data and high-resolution, downscaled climate surfaces at 60m. These SDMs were applied to downscaled modern and paleoclimate surfaces to produce estimated ranges of white spruce during the LGM and today. From this, we assessed the "species velocity", the rate at which white spruce would need to migrate to keep pace with climate change, with the goal of determining whether the expansion from the LGM to today originated from microclimate refugia. Higher species velocities indicate locations where climate changed drastically and white spruce would have needed to migrate rapidly to persist and avoid local extinction. Conversely, lower species velocities indicated locations where the local climate was changing less rapidly or was within the center of the range of white spruce, and indicated locations where white spruce distributions were unlikely to have changed significantly. Our results indicate the importance of topographic complexity in buffering the effects of climate change

  14. Glacial landscape evolution on Hall Peninsula, Baffin Island, since the Last Glacial Maximum: insights into switching glacial dynamics and thermo-mechanical conditions

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Ross, M.

    2012-12-01

    Ice cover in north central Hall Peninsula, Baffin Island has evolved from full Laurentide Ice Sheet (LIS) cover during the Last Glacial Maximum (LGM) to a thin ice cap that now covers about 800 km2 in the northeast sector. The exposed subglacial landscape consists of contrasting geomorphological zones which allude to complex spatial and temporal changes in basal ice dynamics and thermal regime since LGM. We used satellite imagery, field observations, a large till geochemical database, and terrestrial cosmogenic isotopes to get new insights into subglacial erosion intensity, ice flow dynamics, and glacial history. Fields of streamlined bedrock-cored ridges (e.g. drumlins) have been mapped and their elongation ratios calculated. The density of bedrock-controlled lakes, which has traditionally been used as a proxy for subglacial erosion intensity on Baffin Island, has been re-examined using modern GIS techniques. This work has revealed a mosaic of glacial terrain zones each consisting of characteristics that are distinct from the other zones. Five glacial terrain zones (GTZ) have been recognized. One zone (GTZ 1) is characterized by a broad flowset of northeast trending streamlined hills and parallel paleo-flow indicators. It also has the highest streamlined hill density, longest elongation ratios, and the highest lake density of the study area. This northeast flowset is crosscut locally by ice flow indicators that converge into troughs that now form a series of fjords. Landforms and ice flow indicators of this younger system (GTZ 2) are traced inland showing propagation of the channelized system into this portion of the LIS. The central area of the peninsula contains a zone of thicker till and rolling topography (GTZ 3) as well as a zone consisting of southeast trending features and associated perpendicular moraines (GTZ 4). The modern ice cap and its past extension form the last zone (GTZ 5). The preservation of the northeast system (GTZ 1) outside of the

  15. Representations of Mexican American Migrant Childhood in Rivera's "...y no se lo trago la tierra" and Viramontes's "Under the Feet of Jesus"

    ERIC Educational Resources Information Center

    Beck, Scott A.; Rangel, Dolores E.

    2009-01-01

    This article gives an analysis of two books: Thomas Rivera's "...y no se lo trago la tierra" and Helena Maria Viramontes's "Under the Feet of Jesus". The two books are strong and important literary texts that stand in close relation to each other. Both texts treat the subject of migrant childhood by affirming central themes of Chicano literature.…

  16. Evidence for Obliquity Forcing of Glacial Termination II

    NASA Astrophysics Data System (ADS)

    Drysdale, R. N.; Hellstrom, J. C.; Zanchetta, G.; Fallick, A. E.; Sánchez Goñi, M. F.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I.

    2009-09-01

    Variations in the intensity of high-latitude Northern Hemisphere summer insolation, driven largely by precession of the equinoxes, are widely thought to control the timing of Late Pleistocene glacial terminations. However, recently it has been suggested that changes in Earth’s obliquity may be a more important mechanism. We present a new speleothem-based North Atlantic marine chronology that shows that the penultimate glacial termination (Termination II) commenced 141,000 ± 2500 years before the present, too early to be explained by Northern Hemisphere summer insolation but consistent with changes in Earth’s obliquity. Our record reveals that Terminations I and II are separated by three obliquity cycles and that they started at near-identical obliquity phases.

  17. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Strom, R. G.

    1992-01-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  18. Glacial cycles drive variations in the production of oceanic crust

    NASA Astrophysics Data System (ADS)

    Crowley, John W.; Katz, Richard F.; Huybers, Peter; Langmuir, Charles H.; Park, Sung-Hyun

    2015-03-01

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth’s interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor.

  19. Glacial cycles drive variations in the production of oceanic crust.

    PubMed

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2015-03-13

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. PMID:25766231

  20. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Strom, R. G.

    1992-12-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  1. The Role of Glacial Erosion in Limiting Ice Sheet Extents

    NASA Astrophysics Data System (ADS)

    Jamieson, S.; Hulton, N.

    2007-12-01

    We aim to identify and quantify feedbacks between ice dynamics and glacial erosion. Whilst geological and geomorphological evidence indicates that ice sheets generally oscillate in time with orbital forcing, their extents are not necessarily a direct function of the amplitude of this forcing. Benthic δ18O records document glacial-interglacial fluctuations and indicate that maximum Pleistocene global ice volume occurs around 400 ka. However, geomorphological evidence in a number of regions is contradictory, with the most extensive ice masses often occurring 100's of kyrs prior to peaks in the δ18O record. For example, the glacial landforms of Patagonia preserve a record of just such behaviour with each successive glacial advance since 1.15 Ma covering an area less extensive than the previous expansion. This implies that other processes are modifying the linkages between ice sheets and climate. We ask: Could glacial erosion of bedrock have caused ice sheets to self-regulate their extents? Ground-breaking experiments by Oerlemans (1984) demonstrated that erosion induced margin retreat was indeed possible. He showed that retreat could be achieved but only where eroding ice streams were smaller in width than the wavelength of lithospheric response. In Patagonia however, the scales of retreat are much larger than this lithospheric wavelength - but could erosion still be an important factor? We use the GLIMMER 3-D thermomechanical ice sheet model (Payne, 1999) with an added erosion component to simulate long-term landscape evolution under theoretical ice sheets (Jamieson et al., 2007). We show that models of glacial erosion can generate feedbacks on a significant scale such that ice sheets can self-limit their extents over periods of 105 - 106 years regardless of the flexural response of the land surface. Erosion around the ELA enables increasingly efficient ice drainage, and the mass balance of the ice sheet thus shifts towards a more negative state. At the same time

  2. Mercury fluxes out of glacial and non-glacial streams, as determined by continuous measurements of turbidity and CDOM

    NASA Astrophysics Data System (ADS)

    Vermilyea, A.; Nagorski, S. A.; Lamborg, C. H.; Scott, D.; Hood, E. W.

    2011-12-01

    Glaciers and icefields along the Alaskan coast contribute nearly half of the freshwater discharge to the Gulf of Alaska and can play an important role in near-shore marine ecosystems. In southeastern Alaska, glaciers are rapidly thinning and retreating and are being replaced by temperate forests and wetlands. This ongoing landscape evolution is altering the sensitivity of coastal watersheds to atmospheric Hg inputs. The influence of glacial runoff with high suspended sediment loads on in-stream mercury fluxes and dynamics is poorly understood. In contrast, numerous studies have shown that streams with large contributions from wetlands typically carry high dissolved organic matter (DOM) and filtered methylmercury (FMHg) loads. This study compares and contrasts the mercury concentrations, fluxes, partitioning, and speciation in two coastal watersheds in southeastern Alaska. The two watersheds are separated by only 23 km and are relatively similar in area, however one is heavily glaciated (Lemon Creek) and one is dominated by temperate forest and wetlands (Peterson Creek). Grab samples for unfiltered total mercury (UTHg), particulate total mercury (PTHg), filtered total mercury (FTHg), and FMHg were taken during three, 4-day sampling periods within the glacial melt season (May-Sept) while continuously monitoring in-situ chromophoric dissolved organic matter (CDOM) fluorescence and stream turbidity. While UTHg concentration-discharge relationships were poor (R2=0.38-0.55) in both streams, flux estimates for UTHg were greatly improved using CDOM fluorescence (R2=0.82) for Peterson Creek, and turbidity (R2=0.81) for Lemon Creek. UTHg concentrations were consistently greater in Peterson Creek (factor of 1.7-2.3); however, the watershed area normalized UTHg flux was 3-6 times greater in glacial Lemon Creek than Peterson Creek across all time periods. In Peterson Creek, the majority of the UTHg was in the filtered phase, whereas in Lemon Creek the majority of the mercury

  3. Sedimentary architecture of the Amundsen Sea Embayment shelf, West Antarctica, from pre-glacial to glacial processes

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Uenzelmann-Neben, Gabriele; Hillenbrand, Claus-Dieter; Larter, Robert; Nitsche, Frank

    2013-04-01

    Studies of the sedimentary architecture and characteristics of Antarctic shelves provide clues of past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport history from pre-glacial times to early glaciation and to the most recent glacial periods. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between outcropping basement of the inner shelf and basement ridges and highs beneath the outer shelf. A middle shelf sub-basin exists which may have formed as a result of motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata has been eroded from the present inner shelf and coastal hinterland by ice sheet advances since the onset of glaciation. Some of the eroded sediments were deposited as a progradational wedge extending the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. Comparing the observed seismic characteristics with those of other Antarctic shelf sequences, we assign an Early Cretaceous age for bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age for unit ASS-2, an Early to Mid-Miocene age for unit ASS-3, a Mid-Miocene age for unit ASS-4, a Late Miocene to Early Pliocene age for unit ASS-5, and a Pliocene to Pleistocene age for the top unit ASS-6. The survival of buried grounding zone wedges in the upper part of unit ASS-5 of the outer shelf is consistent with the onset of a long warming phase and a retreated ice sheet in the early Pliocene as observed for the Ross Sea shelf and reconstructed from paleo-ice sheet models. Our data also reveal that the paleo-ice flow paths of the central Pine Island Trough system have remained stationary across the

  4. Pre-glacial, Early Glacial, and Ice Sheet Stratigraphy Cored During NBP1402, Sabrina Coast, East Antarctic Margin

    NASA Astrophysics Data System (ADS)

    Domack, E. W.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Frederick, B.; Lavoie, C.; Leventer, A.; Shevenell, A.; Saustrup, S., Sr.; Bohaty, S. M.; Sangiorgi, F.

    2014-12-01

    Western Wilkes Land provides an unusual setting with regard to passive margin subsidence and exposure of Cenozoic sedimentary units across the continental shelf, due to the unique rift to drift history off of the Australian-Antarctic Discordance and subsequent deep glacial erosion of the evolved continental shelf. The first factor has provided extensive accommodation space for the preservation of stratigraphic sequences that in turn represent critical periods in the climate evolution of Antarctica. Glacial erosion has then provided access to this stratigraphy that is usually inaccessible to all but deep drilling programs. Such stratigraphies are well exposed to within cm of the seafloor off the Sabrina Coast. Cruise NBP1402 investigated this region via a combination of multi-channel seismic imaging and innovative, strategic coring. The geophysical data imaged the geologic evolution of the margin, which exhibits a continuum from non-glacial, partly glaciated, to fully glaciated depo- and erosional systems. Based on the seismic stratigraphy, we collected dredges and one barrel Jumbo Piston Cores (JPCs) across areas of outcropping strata imaged seismically, a unique strategy that allowed us to identify and sample specific reflectors. The stratigraphically deepest coring targeted sections for which the seismic character suggested a pre-glacial context, with non-glaciated continental margin sequences including deltas. Coring recovered dark organic rich siltstones and sandy mudstones, and a large concretion whose center contained a cm-sized plant fossil. In addition, the sediments contain a fossil snail. These fossils provide a glimpse into the pre-glacial terrestrial environment in Antarctica. Overlying this section, coring recovered similar dark siltstones with a 20 cm thick horizon with abundant large angular clasts of variable lithology, interpreted to be ice-rafted debris and indicative of early glacial ice in Antarctica. Finally, JPCs targeting a younger part of

  5. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NASA Astrophysics Data System (ADS)

    Omta, Anne Willem; Kooi, Bob W.; van Voorn, George A. K.; Rickaby, Rosalind E. M.; Follows, Michael J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from 40 to 100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables, one of which exhibits sawtooth oscillations, resembling the glacial-interglacial cycles, whereas the other variable exhibits spikes at the rapid transitions. When applying a sinusoidal forcing with a fixed period, there emerges a rich variety of cycles with different periodicities, each being a multiple of the forcing period. Furthermore, the dominant periodicity of the system can change, while the forcing periodicity remains fixed, due to either random variations or different frequency components of the orbital forcing. Two key relationships stand out as predictions to be tested against observations: (1) the amplitude and the periodicity of the cycles are approximately linearly proportional to each other, a relationship that is also found in the δ ^{18}O temperature proxy. (2) The magnitude of the spikes increases with increasing periodicity and amplitude of the sawtooth. This prediction could be used to identify one or more currently hidden spiking variables driving the glacial-interglacial transitions. Essentially, the quest would be for any proxy record, concurrent with a dynamical model prediction, that exhibits deglacial spikes which increase at times when the amplitude/periodicity of the glacial cycles increases. In the specific context of our calcifier-alkalinity mechanism, the records of interest would be calcifier productivity and calcite accumulation. We believe that such a falsifiable hypothesis should provide a strong motivation for the collection of further records.

  6. The INTIMATE event stratigraphy of the last glacial period

    NASA Astrophysics Data System (ADS)

    Olander Rasmussen, Sune; Svensson, Anders

    2015-04-01

    The North Atlantic INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) group has previously recommended an Event Stratigraphy approach for the synchronisation of records of the Last Termination using the Greenland ice core records as the regional stratotypes. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. In addition to presenting the updated event stratigraphy, we make a series of recommendations on how to refer to these periods in a way that promotes unambiguous comparison and correlation between different proxy records, providing a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is a part of a newly published paper in an INTIMATE special issue of Quaternary Science Reviews: Rasmussen et al., 'A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event

  7. Glacial History of the Pirrit Hills, West Antarctica

    NASA Astrophysics Data System (ADS)

    Spector, P. E.; Stone, J. O.

    2014-12-01

    We present new ice-thickness constraints from the Pirrit Hills, a small, far-flung group of nunataks located in the Weddell Sector. At the Pirrit Hills, fresh glacial erratics indicate ice levels ~350-450 m above present during the last ice age. The highest erratics have preliminary 10Be exposure ages of ~16 ka, and the ages generally decrease with decreasing elevation, recording the thinning of the ice in the region. Despite the evidence of thicker ice, weathered bedrock extends down to the present ice level, implying prolonged subaerial weathering prior to the last ice age. These features, and the lack of evidence for wet-based glacial erosion, indicate cold-based and non-erosive ice cover. Over the elevation range in which we found glacial erratics, bedrock 10Be, 26Al, and 21Ne concentrations are consistent with modest ice cover, and have exposure ages ranging from ~0.3-1.5 Myr. Around 450 m above the present ice level, bedrock 10Be, 26Al, and 21Ne concentrations increase by a factor of ~4-5 and do not indicate past ice cover. This height coincides with a break in the otherwise steep slopes of the Pirrit Hills, and the bedrock above is more weathered than the bedrock below. This transition marks the height above which ice cover, if it has occurred in the past few million years, has been very rare, brief, and cold-based. This feature may relate to the trimline imprinted on ridges in the Ellsworth Mountains. In both cases, alpine landscapes have been preserved by a polar climate and glacial highstands rising only partway up the mountain flanks.

  8. Ocean Cooling Pattern at the Last Glacial Maximum

    DOE PAGESBeta

    Zhuang, Kelin; Giardino, John R.

    2012-01-01

    Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.

  9. Glacial Isostatic Adjustment Observed with VLBI and SLR

    NASA Technical Reports Server (NTRS)

    Argus, D.; Peltier, W.; Watkins, M.

    1999-01-01

    In global geodetic solutions vertical rates of site motion are usually estimated relative to the geocenter (center of figure) of the solid earth. The velocity of the geocenter is estimated assuming that the plates are rigid, that the velocities of the plates equal those in NUVEL-1A (DeMets et al. 1990, 1994) and that the uplift, subsidence, and intraplate deformation due to glacial isostatic adjustment is negligible.

  10. An Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.

    2014-12-01

    In the past two decades there have been several advances that make the production of an atlas of submarine glacial landforms timely. First is the development of high-resolution imaging technologies; multi-beam echo-sounding or swath bathymetry that allows the detailed mapping of the sea floor at water depths of tens to thousands of metres across continental margins, and 3-D seismic methods that enable the visualisation of palaeo-continental shelves in Quaternary sediments and ancient palaeo-glacial rocks (e.g. Late Ordovician of Northern Africa). A second technological development is that of ice-breaking or ice-strengthened ships that can penetrate deep into the ice-infested waters of the Arctic and Antarctic, to deploy the multibeam systems. A third component is that of relevance - through both the recognition that the polar regions, and especially the Arctic, are particularly sensitive parts of the global environmental system and that these high-latitude margins (both modern and ancient) are likely to contain significant hydrocarbon resources. An enhanced understanding of the sediments and landforms of these fjord-shelf-slope systems is, therefore, of increasing importance to both academics and industry. We are editing an Atlas of Submarine Glacial Landforms that presents a series of individual contributions that describe, discuss and illustrate features on the high-latitude, glacier-influenced sea floor. Contributions are organised in two ways: first, by position on a continental margin - from fjords, through continental shelves to the continental slope and rise; secondly, by scale - as individual landforms and assemblages of landforms. A final section provides discussion of integrated fjord-shelf-slope systems. Over 100 contributions by scientists from many countries contain descriptions and interpretation of swath-bathymetric data from both Arctic and Antarctic margins and use 3D seismic data to investigate ancient glacial landforms. The Atlas will be

  11. Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake Missoula.

    USGS Publications Warehouse

    Waitt, R.B., Jr.

    1985-01-01

    Lake Missoula (2500 km3) remained sealed as long as any segment of the glacial dam remained grounded; when the lake rose to a critical level c.600 m in depth, the glacier bed at the seal became buoyant, initiating underflow from the lake. Subglacial tunnels then grew exponentially, leading to catastrophic discharge. Calculations of the water budget for the lake basin (including input from the Cordilleran ice sheet) suggest that the lake filled every three to seven decades. -from Author

  12. Uncovering the glacial history of the Irish continental shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Dunlop, P.; Benetti, S.; OCofaigh, C.

    2013-12-01

    In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.

  13. Sulfur/Carbonate Springs and Life in Glacial Ice

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Grasby, Stephen; Longazo, Teresa

    2001-01-01

    Ice in the near subsurface of Mars apparently discharges liquid water on occasion. Cold-tolerant microorganisms are known to exist within terrestrial glacial ice, and may be brought to the surface as a result of melting events. We are investigating a set of springs that deposit sulfur and carbonate minerals, as well as evidence of microbial life, on the surface of a glacier in the Canadian arctic. Additional information is contained in the original extended abstract.

  14. Tectonic stress feedback loop explains U-shaped glacial valleys

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the shadow of the Matterhorn, the broad form of the Matter Valley—like so many throughout the Alps—is interrupted by a deep U-shaped glacial trough. Carved into a landscape reflecting millennia of tectonic uplift and river erosion, growing evidence suggests the 100-meter-deep U-shaped groove was produced shortly after a shift toward major cycles of Alpine glaciation almost a million years ago. Subsequent glaciations may have therefore had little effect on the landscape.

  15. Evidence of strong ocean heating during glacial periods

    NASA Astrophysics Data System (ADS)

    Zimov, S. A.; Zimov, N.

    2013-12-01

    Numerous hypotheses have addressed glacial-interglacial climatic dynamics, but none of them explain the sharp 25C temperature increase in Greenland in the last deglaciation (Cuffey et al. 1995; Dahl-Jensen et al. 1998). These robust data were obtained through analyzing the temperature profile in the Greenland ice sheet where cold from the last glaciation is preserved in the depth of the glacial sheet. We suggest that during glaciations the ocean accumulated energy: interior ocean water heated up to ~20-30C and during deglaciation this energy is released. In the analogy with reconstructing the ice sheet temperature profiles, the most reliable proof of ocean interior warming during the last glaciation is the heat flux profiles in the bottom sediments. In the final reports based on temperature measurements conducted during the DSDP (Deep Sea Drilling Project) it is stated that heat flux in the bottom sediments doesn't vary with depth and consequently there were no substantial temperature changes in the ocean interior during the last glacial cycle, and heat flux on the surface of the ocean bottom is the geothermal heat flux (Erickson et al., 1975, Hyndman et al., 1987). However, we have critically investigated data in all initial reports of all deep sea drilling projects and have noticed that all temperature data show that heat flow decreases strongly with depth (a minimum of 40 mW/m2), i.e. most of the heat flux detected on the surface of the ocean floor is not the geothermal heat flux but remaining heat that bottom sediments release. Sharp shifts in heat flow are seen within boreholes at depths crossing gas hydrate bottom. All this means that during the last glacial period interior water temperature was on 25-30C degrees warmer. Conversely, in isolated seas heat flow in the sediments shows little change with depth.

  16. Human population dynamics in Europe over the Last Glacial Maximum

    PubMed Central

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  17. Holocene glacial discharge fluctuations and recent instability in East Antarctica

    NASA Astrophysics Data System (ADS)

    Crespin, Julien; Yam, Ruth; Crosta, Xavier; Massé, Guillaume; Schmidt, Sabine; Campagne, Philippine; Shemesh, Aldo

    2014-05-01

    Antarctica holds the largest ice sheet in the world, the East Antarctic Ice Sheet (EAIS), and plays a significant role in both local and global climate through the interactions between ice sheets, ocean, sea ice, and atmosphere. Our understanding of East Antarctica Holocene climate variability relies mainly on ice cores that however do not document glacial discharge history. Here, we present the first high resolution δ18Odiatom record derived from two marine sediment cores retrieved on the East Antarctic continental shelf to reconstruct glacial discharge off Adélie Land and George V Land (AL-GVL) over the last 11,000 years from decadal to centennial resolution. Our results suggest multi-centennial glacier advances and retreats until 2000 cal yr BP, followed by a period of relative instability marked by two major glacial retreats centered at ˜1700 cal yr BP and ˜1980 CE. We suggest that the multi-centennial oscillations during the Early/Mid-Holocene reflect glacier fluctuations in response to long-term local seasonal insolation and short-term solar variability. We also propose that δ18Odiatom variability over the last 2000 years was the result of a recent change in the AL-GVL region to increasing atmospheric influence, linked to ENSO intensification and teleconnections strengthening between low and high latitudes.

  18. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms

    NASA Astrophysics Data System (ADS)

    Falcon-Lang, Howard J.

    2004-08-01

    Pennsylvanian tropical rain forests flourished during an icehouse climate mode. Although it is well established that Milankovitch-band glacial-interglacial rhythms caused marked synchronous changes in Pennsylvanian tropical climate and sea level, little is known of vegetation response to orbital forcing. This knowledge gap has now been addressed through sequence- stratigraphic analysis of megafloral and palynofloral assemblages within the Westphalian D Cantabrian Sydney Mines Formation of eastern Canada. This succession was deposited in a low- accommodation setting where sequences can be attributed confidently to glacio-eustasy. Results show that long-lived, low-diversity peat mires dominated by lycopsids were initiated during deglaciation events, but were mostly drowned by rising sea level at maximum interglacial conditions. Only upland coniferopsid forests survived flooding without significant disturbance. Mid- to late interglacial phases witnessed delta-plain progradation and establishment of high-diversity, mineral-substrate rain forests containing lycopsids, sphenopsids, pteridosperms, cordaites, and tree ferns. Renewed glaciation resulted in sea-level fall, paleovalley incision, and the onset of climatic aridity. Glacial vegetation was dominated by cordaites, pteridosperms, and tree ferns; hydrophilic lycopsids and sphenopsids survived in paleovalley refugia. Findings clearly demonstrate the dynamic nature of Pennsylvanian tropical ecosystems and are timely given current debates about the impact of Quaternary glacial-interglacial rhythms on the biogeography of tropical rain forest.

  19. Glacial aridity in central Indonesia coeval with intensified monsoon circulation

    NASA Astrophysics Data System (ADS)

    Konecky, Bronwen; Russell, James; Bijaksana, Satria

    2016-03-01

    The Last Glacial Maximum was cool and dry over the Indo-Pacific Warm Pool (IPWP), a key region driving global oceanic-atmospheric circulation. Both low- and high-latitude teleconnections with insolation, ice sheets, and sea level have been suggested to explain the pervasive aridity observed in paleoecological and geomorphic data. However, proxies tracking the H- and O-isotopic composition of rainfall (e.g., speleothems, sedimentary biomarkers) suggest muted aridity or even wetter conditions than the present, complicating interpretations of glacial IPWP climate. Here we use multiproxy reconstructions from lake sediments and modern rainfall isotopic measurements from central Indonesia to show that, contrary to the classical "amount effect," intensified Australian-Indonesian monsoon circulation drove lighter H- and O-isotopic composition of IPWP rainfall during the LGM, while at the same time, dry conditions prevailed. Precipitation isotopes are particularly sensitive to the apparent increase in monsoon circulation and perhaps also decreased moisture residence time implied by our data, explaining contrasts among proxy records while illuminating glacial IPWP atmospheric circulation, a key target for climate models.

  20. Human population dynamics in Europe over the Last Glacial Maximum.

    PubMed

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-07-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  1. Hydraulic properties of three types of glacial deposits in Ohio

    USGS Publications Warehouse

    Strobel, M.L.

    1993-01-01

    The effects of thickness, grain size, fractures, weathering, and atmosphericconditions on vertical ground-water flow in glacial deposits were studied at three sites that represent ground moraine, end moraine, and lacustrine depositional environments. Vertical hydraulic conductivities computed from pumped-well tests were 3.24 x 10-1 to 6.47 x 10-1 ft/d (feet per day) at the site representing end moraine and 1.17 ft/d at the site representing lacustrine deposits. Analysis of test data for the ground moraine site did not yield estimates of hydraulic conductivities, but did indicate that ground water flows through the total thickness of deposits in response to discharge from a lower gravel unit. Vertical hydraulic conductivities computed from pumped-well tests of nested wells and data from drill-core analyses indicate that fractures affect the migration of ground water downward through the glacial deposits at these sites. Flow through glacial deposits is complex; it is controlled by fractures, gram-size distribution, clay content, thickness, and degree of weathering, and atmospheric conditions.

  2. Glacial flour in lacustrine sediments: Records of alpine glaciation in the western U.S.A. during the last glacial interval

    NASA Astrophysics Data System (ADS)

    Rosenbaum, J. G.; Reynolds, R. L.

    2010-12-01

    Sediments in Bear Lake (UT/ID) and Upper Klamath Lake (OR) contain glacial flour derived during the last glacial interval from the Uinta Mountains and the southern Cascade Range, respectively. Magnetic properties provide measures of glacial-flour content and, in concert with elemental and grain-size analyses, yield high-resolution records of glacial growth and decay. Creation and preservation of such records requires that (1) properties of glacial flour contrast with those of other sedimentary components and (2) magnetic minerals are neither formed nor destroyed after deposition. In the Bear Lake watershed, glaciers were confined to a small headwater area of the Bear River underlain by hematite-rich rocks of the Uinta Mountain Group (UMG), which are not exposed elsewhere in the catchment. Because UMG detritus is abundant only in Bear Lake sediments of glacial age, hard isothermal remanent magnetization (a measure of hematite content) provides a proxy for glacial flour. In contrast, the entire Upper Klamath Lake catchment, which lies to the east of the Cascade Range in southern Oregon, is underlain largely by basalt and basaltic andesite. Magnetic properties of fresh titanomagnetite-rich rock flour from glaciers on a composite volcano contrast sharply with those of detritus from unglaciated areas in which weathering destroyed some of the titanomagnetite. Ideally, well-dated records of the flux of glacial flour can be compared to ages of glacial features (e.g., moraines). For Upper Klamath Lake, quantitative measures of rock-flour content (from magnetic properties) and excellent chronology allow accurate calculation of flux. However, ages of glacial features are lacking and mafic volcanic rocks, which weather rapidly in this environment, are not well suited for cosmogenic exposure dating. At Bear Lake, estimates of glacial-flour content are less quantitative and chronology within the glacial interval must be interpolated from radiocarbon ages above and below the

  3. Towards successful OSL sampling strategies in glacial environments: deciphering the influence of depositional processes on bleaching of modern glacial sediments from Jostedalen, Southern Norway

    NASA Astrophysics Data System (ADS)

    King, G. E.; Robinson, R. A. J.; Finch, A. A.

    2014-04-01

    The optically stimulated luminescence (OSL) signals of quartz and K-feldspar are known to bleach poorly within some glacial settings, and can present a major challenge to dating applications. However, because the OSL signal is extremely sensitive to sunlight exposure history, the residual luminescence signals of modern glacial sediments also encode information about transport and depositional processes. Through examination of the residual luminescence properties (equivalent dose (De) and overdispersion values) of a suite of modern glacial sediments from different depositional settings (sandar, proglacial delta and main meltwater channel), this study provides insights not only into which sediments are likely to be fully bleached within glacial settings, but also into how OSL can be used to trace different depositional processes across sedimentary landforms. Improved understanding of the processes of sediment bleaching will enable better sample selection and may improve the accuracy and precision of OSL dating of glacial sediments.

  4. Climatic Instability and Regional Glacial Advances in the Late Ediacaran

    NASA Astrophysics Data System (ADS)

    Hannah, J. L.; Stein, H. J.; Marolf, N.; Bingen, B.

    2014-12-01

    The Ediacaran Period closed out the environmentally raucous Neoproterozoic Era with the last of multiple glacial events and the first ephemeral glimmer of multicellular life. As such, evolution of Earth's biosphere and the marine environments that nurtured this nascent biota are of particular interest. Because the Ediacaran biota appear in the stratigraphic record just above tillites in many localities, inferences are naturally drawn to link glaciation to bioevolution. Here we review known controls on the timing and extent of the late Ediacaran Gaskier and Varanger glacial events, bolstered by new constraints on the Moelv tillite of South Norway. The elusive mid-Ediacaran glacial strata are poorly dated, patchy in distribution, and relatively limited in thickness. The type Gaskier glaciogenic units in Newfoundland are 582 to 584 Ma, based on U-Pb zircon ages from intercalated ash beds [1]. The Varanger glaciogenic deposits in northern Norway, in contrast, remain only roughly constrained to ca. 630 to 560 Ma. Post-Gaskier negative carbon isotope excursions (CIEs) have been reported from multiple localities in both China and SW United States, suggesting climatic instability in the late Ediacaran. Although most localities lack solid geochronology, paleontologic constraints place the Hongtiegou glacial diamictite and accompanying CIE in the Chaidam Basin, NW China, in the latest Ediacaran, ca. 555 Ma [2]. We previously suggested that the Moelv tillite in south Norway was roughly equivalent to the Gaskier, based on an imprecise Re-Os age of ~560 Ma [3] for the underlying Biri shale. Reanalysis of these data shows that the upper part of the shale section was disturbed by a redox front during the Caledonian orogeny. The undisturbed lower part of the section yields a more precise Model 1 isochron age of 559.5 ± 6.2 Ma, clearly post-dating the Gaskier event well outside analytical uncertainty. These new results bolster arguments that the Gaskier glaciation was not a global

  5. Optically Stimulated Luminescence Dating of Glacial Outwash Spanning the Last Glacial Cycle on the Western Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Marshall, K. J.; Thackray, G. D.; Rittenour, T. M.

    2012-12-01

    Valley glaciers in the Olympic Mountains, Washington coalesced and advanced onto the Pacific coastal lowlands six times during Late Pleistocene time. With each advance, the valley glaciers constructed extensive landforms and thick stratigraphic sequences. Along the coast of the Olympic Peninsula, between the Hoh and Queets Rivers, wave-cut sea cliffs expose alternating sequences of outwash fans formed during periods of glacial advance and marine transgressive facies formed during periods of sea-level high stand. Previous work, encompassing geomorphic mapping of inland and coastal outcrops, stratigraphy, stratigraphic correlation, and radiocarbon dating, established a provisional glacial chronology for the Olympic coast, but was limited to the range of radiocarbon dating. Within the sea cliffs, three primary units of outwash were identified: the Hoh Oxbow (MIS 3), Lyman Rapids (MIS 4 or 5b), and Steamboat Creek outwash (MIS 6 or older). The outwash units are generally bounded by interglacial sea-level high stand sediments or interstadial terrestrial sediment. Our new investigations utilize detailed sedimentology and stratigraphy, mapping of geomorphic sequences, and optically stimulated luminescence (OSL) dating to extend and solidify the coastal glacial chronology. OSL methods provide a means to date outwash sequences directly and enable dating of previously undateable older sediments. The quartz in these sediments appears to be fully bleached and retains the luminescence signal. Furthermore, at two locations where both radiocarbon and OSL methods were applied on the same sediments, the ages are indistinguishable, indicating that OSL is reliable in these settings. Preliminary OSL ages from the outwash units indicate valley glacier advances on the Olympic Peninsula during Hoh Oxbow (MIS 3, ca. 30-50 ka), Lyman Rapids (MIS 4, ca. 50-80 ka), and Steamboat Creek (MIS 5d or older, >/= 105 ka). Additionally, general sediment fining up-section suggests a decrease in

  6. Paleolimnology of Lake Ontario: AN Assessment of Glacial Meltwater Influx

    NASA Astrophysics Data System (ADS)

    Hladyniuk, R.; Longstaffe, F. J.

    2010-12-01

    The timing and extent of glacial meltwater outbursts from the Laurentide Ice Sheet (LIS) may provide insight into their potential role in initiating and/or sustaining the Younger Dryas (YD) cooling event. It has been previously proposed that meltwater from the LIS suppressed thermohaline circulation in the Atlantic Ocean, leading to an abrupt change in climate (Broecker et al. 1989). Several pathways for transport of glacial meltwater to the Atlantic Ocean have been suggested in the past, including eastern flow through the St. Lawrence River system and discharge into the Arctic Ocean via a northwestern outlet (Murton et al. 2010). Glacial meltwater contributions to Lake Ontario and its ancient equivalents during the last ~14,000 cal BP have been evaluated using the oxygen-isotope compositions of ostracode shells from three sediment cores in Lake Ontario. Glacial Lake Iroquois (~12,500 cal BP) δ18O values as low as -18‰ suggest significant contribution of glacial meltwater runoff from the LIS. This glacial sediment is characterized by occasional grains of sand and gravel. These ice-rafted particles indicate how far icebergs floated and suggest close proximity to the LIS. Early Lake Ontario sediment (~12,000 cal BP) exhibits thicker laminations, suggestive of increased winter ice cover and perhaps a colder climate, and is characterized by slightly lower δ18O values (-19.5‰). The end of glacial-dominated sedimentation at ~11,800 cal BP is demarcated by a significant increase in lakewater δ18O values (-12.0‰), reflecting mixing between regional precipitation in the watershed and upstream inflow into Lake Ontario. At ~10,800 cal BP, the δ18O value of Lake Ontario decreased to ~-15‰. This change reflects the main Algonquin highstand in Lake Huron, which flooded into Lake Ontario from both the Fenelon Falls and Port Huron outlets at this time. Shortly thereafter, the opening of the North Bay outlet and isostatic rebound at the Port Huron outlet limited

  7. Timing the last interglacial-glacial transition in glacial sedimentary sequences of the Hudson Bay lowlands (Canada)

    NASA Astrophysics Data System (ADS)

    Roy, M.; Allard, G.; Ghaleb, B.; Lamothe, M.

    2010-12-01

    Paleoclimate records (oxygen isotopes and speleothems) indicate that the onset of the last glacial cycle was characterized by rapid and large-scale growth of continental ice sheets. The timing of the inception of the Laurentide ice sheet (LIS) and its subsequent evolution (extent) remain, however, largely unconstrained. The depositional record of the Hudson Bay Lowlands (HBL) is of particular interest to these issues because this region is located near the former geographic center of the LIS. The presence of nonglacial deposits in HBL glacial sedimentary sequences thus implies drastic changes in ice sheet configuration, but constraining these ice volume changes through absolute dating of nonglacial sediments has been so far inconclusive. Here we use radiocarbon, U-series, and optical stimulated luminescence (OSL) methods to constrain the age of an extensive nonglacial unit containing abundant wood fragments enclosed in compacted clay lying below several meters of glacial deposits along the Nottaway River, in the southeastern sector of the HBL. This region is particularly interesting because it lies near one of the inception centers of the LIS. Radiocarbon dating of a wood fragment yielded a nonfinite 14C age of >55.2 ka, in agreement with similar dating attempts throughout the HBL. Measurements of U and Th concentrations and isotope ratios on fossil wood samples revealed consistent 230Th/U ages, indicating that the wood fragments were subject to a single episode of uranium uptake, with apparently no subsequent disturbance of the geochemical system. Despite mechanical cleaning of the wood outer surfaces, non-authigenic 230Th was found in most samples and correction for this detrital contamination yielded an isochron age of 106.8 (+12.3, -10.3) ka, which represents a minimum age for this unit. The 230Th/U age constraint is nonetheless supported by a series of OSL ages obtained for the overlying fluvial sands, thereby assigning the Nottaway nonglacial unit to the end

  8. A new record of post-glacial sedimentation in a glacial trough, offshore sub-Antarctic South Georgia

    NASA Astrophysics Data System (ADS)

    Meisel, Ove; Graham, Alastair; Kuhn, Gerhard

    2014-05-01

    Past studies of South Georgia's climatic history were constrained to land-based sedimentary records, such as peat bogs and coastal lakes, or to terrestrial geomorphology, such as terminal moraines. Hence, the current state of knowledge on past climatic changes in South Georgia is characterised by a complete absence of records from sedimentary marine archives in the fjords or coastal embayments of the region. This study comprises detailed examination of one of the first marine sediment cores recovered on its northeastern shelf in Royal Bay Glacial Trough. Alongside the analysis of new acoustic sub-bottom data, it is the first work to deliver extensive insight into South Georgia's post-glacial climatic history from a marine perspective. The glacial troughs on the South Georgia shelf radiate from the coast towards the shelf edge and represent major sediment traps as they form the only key large-scale depressions in the shelf bathymetry. Sedimentary records, covering a period since at least the Last Glacial Maximum, are thought likely to be recorded in most of them. The sediment core of this study covers sedimentation dated from a maximum of 15,346 ± 492 cal. yr BP until the present day. Physical core parameters indicate a major change in climatic conditions around 14,000 cal. yr BP, the time of the Antarctic Cold Reversal. Holocene climate variabilities are also recorded in the trough infill. The acoustic data show a major change in sedimentation and a pronounced unconformity at the core site, which appears to have had a widespread effect over a large area of the shelf. The origin of the unconformity remains unclear, though several hypotheses, including bottom-current erosion, glacial overriding and earthquake activity, are proposed and discussed. Another important finding at the core site is the presence of methane-derived authigenic carbonates. They form either as secondary precipitates in the subsurface or syndepositional at the seafloor as individual minerals or

  9. Interannual physiological responses of glacial trees to changes in atmospheric [CO2] since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Gerhart, L. M.; Harris, J. M.; Ward, J. K.

    2009-12-01

    During the Last Glacial Maximum, atmospheric [CO2] were as low as 180 ppm and have currently risen to a modern value of 385 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced the physiology of trees over the last 50,000 years, we analyzed carbon isotope ratios of individual tree rings from juniper wood specimens from the Rancho La Brea tar pits in southern California and kauri wood specimens from peat bogs in New Zealand (North Island). Modern trees from different altitudes were compared to account for changes in precipitation and temperature through time in order to isolate the effects of changing [CO2]. We hypothesized that over the last 50,000 years, the ratio of ci (intracellular [CO2]) to ca (atmospheric [CO2]) would be maintained within each species. Consequently, ci values would be significantly lower in glacial trees due to lower ca levels during the LGM. In addition, we hypothesized that low [CO2] (which does not vary between years during the LGM) dominated tree physiology during the LGM as evidenced by low levels of inter-annual variation in ci/ca ratios relative to modern trees (which are known to respond to high frequency variation in water and temperature between years). In both kauri and juniper trees, mean ci/ca values remained constant throughout 50,000 years despite major climatic and [CO2] changes, indicating that there is a long-term physiological set point in these species. Limitations on the ci values of glacial junipers suggest that 90 ppm CO2 represents a survival compensation point for this species. In addition, glacial trees showed very low inter-annual variation in ci/ca values compared to modern trees. This suggests that glacial tree physiology may have been dominated by low CO2 that was constant between years, whereas modern trees may be dominated by climatic factors that vary substantially between years. Consequently, while each species maintained mean ci/ca values over time

  10. The stratotype and facies of the glacial Lower Vendian Nichatka Formation, Chara River basin, Central Siberia

    NASA Astrophysics Data System (ADS)

    Chumakov, N. M.; Kernitskii, V. V.

    2016-07-01

    Sediments of the Nichatka Formation are facially studied and thoroughly described, the sections are correlated, and the subformations are recognized. The formation represents a key stratigraphic unit to reveal the origin of the Central Siberian glacial horizon and to correlate it with glacial horizons in other regions of the world, namely, with the Laplandian Horizon of the Lower Vendian, Nantou and Marino tillites, etc. The Nichatka Formation is correlated with the glacial Bolshoi Patom (Dzhemkukan) Formation of the Vendian reference section at the Ura Uplift. Unlike the latter, it is mainly composed of continental glacial deposits and is marked by a complex facies composition. The glacial origin of the Nichatka Formation is reliably determined on the basis of a set of diagnostic characters. This permits a more complete reconstruction of the Early Vendian depositional environments. In addition to typical basal tillites and marginal moraine deposits, the formation includes glaciolacustrine and fluvioglacial sediments along with aquatillites, allotillites, and the glacial fan, including subaqueous, deposits.

  11. Glacial inception during the late Holocene without carbon emissions from early agriculture: lessons from the stage-19 glacial inception

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Tzedakis, P. C.

    2013-12-01

    Decreases in orbitally-forced summer insolation along with downward trends in greenhouse gases (GHG) have been precursors to incipient glaciation in the past. In the last several thousand years of the current interglacial, while summer insolation has decreased, there was a reversal of the downward trends in CH4 and CO2 concentration within the Holocene around 5,000 and 7,000 years ago. While the cause of this reversal remains unresolved, a leading hypothesis is Ruddiman's Early Anthropogenic Hypothesis that early agriculture, starting several thousand years ago, caused emissions of GHG large enough to reverse natural downward trends in CO2 and CH4 and kept Earth's climate anomalously warm, with the corollary that this may have prevented incipient glaciation during the late Holocene. Here we use the 1-degree, fully coupled Community Climate System Model version 4 (CCSM4) with climate forcings (orbital parameters and GHG) of a previous glacial inception to investigate whether glacial inception should have occurred prior to the industrial revolution if the concentrations of CH4 and CO2 had followed their natural downward trends throughout the Holocene. Tzedakis et al. [2012] show that for the previous eight interglacials, Stage 11 and Stage 19 are the best analogs of the Holocene because of their low eccentricities, and Stage 19 is a better analog than Stage 11 for the Holocene due to the in-phase relationship between obliquity and precession. Furthermore, their study suggests that 777 ka BP (777,000 years before present) is the timing of glacial inception for Stage 19, based on the occurrence of the earliest bipolar seesaw event associated with glacial melting. Not only do the orbital parameters at 777 ka BP resemble pre-industrial conditions, but the concentrations of CO2 at that time were essentially the same as their expected 'natural' pre-industrial values in the absence of anthropogenic greenhouse emissions. Our multi-millennial coupled CCSM4 simulations show

  12. The state and their implication of Himalayan glacial lake changes from satellite observations

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C.

    2015-12-01

    Glacial lake outburst floods (GLOFs)generally result in catastrophic damages and fatalities. The Himalayas, the world's highest mountains hosting large number of glaciers, have frequently suffered from GLOFs events in the past decades. Climatic warming-induced melting and retreating glaciers make glacial lakes expand obviously and urge the potential risk of GLOFs in Himalayas. However, our knowledge on the state of glacial lakes in the entire Himalayas is still limited. This study conducts a systematically satellite-based inventory to firstly reveal the evolution complex, regional difference and causes of Himalayan glacial lake changes in the whole Himalayas. Hundreds of Landsat images and Google Earth high resolution imagery were employed to extract the extents of glacial lakes at four epochs (circa1990, circa 2000, circa 2005 and circa 2010). Object-oriented mapping method was used to automatically map the lakes. In association with published glacier data (e.g., China Glacier Inventory, Randolph and GLIMS Glacier data), visual inspections and iterative checks for individual lake guarantee the accuracy of our results. This study demonstrates the spatial and topographic distributions, differences, heterogeneity of glacial lake changes and their causes. Our results show that Himalayan glacial lakes present a rapidly expanding state in general. Both disappeared lakes and new-formed lakes were observed, however, pre-existing glacial lakes contributed most to the total areal expansion. Himalayan glacial lakes appeared a clear altitudinal difference between north side and south side of main range. Evolutions of glacial lakes between eastern, western and central Himalaya were different, and the most rapidly expanding areas need to be more concerned. Climatic and geomorphic controls result in the heterogeneity of glacial lake changes. This study will help assess the potential risk of GLOFs and promote the public awareness of glacial disasters in high mountain areas.

  13. [Distribution patterns of canopy and understory tree species at local scale in a Tierra Firme forest, the Colombian Amazonia].

    PubMed

    Barreto-Silva, Juan Sebastian; López, Dairon Cárdenas; Montoya, Alvaro Javier Duque

    2014-03-01

    The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme

  14. Mid-late Pleistocene glacial evolution in the Grove Mountains, East Antarctica, constraints from cosmogenic 10Be surface exposure dating of glacial erratic cobbles

    NASA Astrophysics Data System (ADS)

    Dong, Guocheng; Huang, Feixin; Yi, Chaolu; Liu, Xiaohan; Zhou, Weijian; Caffee, Marc W.

    2016-08-01

    Glacial histories from the East Antarctic Ice Sheet (EAIS) provide keys to understanding correlations between the EAIS and global climate. They are especially helpful in the assessment of global sea level change, and as a means of quantifying the magnitude of past glacial activity and the rate at which ice responded to climate change. Given the significance of EAIS glacial histories, it is imperative that more glacial chronologic data for this region be obtained, especially for the mid-to-late Pleistocene. We report cosmogenic 10Be surface exposure dating results from glacially transported cobbles embedded in blue-ice moraine material at Mount Harding, the Grove Mountains, EAIS. Forty exotic cobbles sampled along two profiles (A and B) on this blue-ice moraine present apparent exposure-ages ranging from 7.2 to 542.2 ka. We explore this scattered dataset by using Principal Component Analysis (PCA) to identify statistically significant trends in the data. We identify a correlation between exposure-age and distance of the cobbles from Mount Harding. In profile A, cobbles further from Mount Harding yield older exposure-ages than those that are relatively close. In profile B, cobbles closer to Mount Harding are found to have relatively older exposure-ages. In term of glacial history we suggest that the direction of ice flow changed during the period from ∼60 to 200 ka, and that multiple glacial fluctuations occurred in the mid-late Pleistocene.

  15. About forty last-glacial Lake Missoula jokulhlaups through southern Washington.

    USGS Publications Warehouse

    Waitt, R.B., Jr.

    1980-01-01

    The rhythmic Touchet Beds in the Walla Walla and lower Yakima valleys resulted from many separate backfloodings by hydraulically ponded glacial Lake Missoula water. At least once this episodic lake briefly contained half the 2130km3 of water that catastrophically drained the largest glacial Lake Missoula. The lack of weathering or soil within the Touchet Beds suggests that all rhythmites are late Wisconsin. Bottom sediment of glacial Lake Missoula in Montana consists of rhythmites each interpreted as the record of a gradually deepening lake. 40 superposed rhythmites record about 40 late-Wisconsin fillings and emptyings of glacial Lake Missoula. -from Author

  16. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils

    NASA Astrophysics Data System (ADS)

    Juřičková, Lucie; Horáčková, Jitka; Ložek, Vojen

    2014-07-01

    Although there is evidence from molecular studies for the existence of central European last glacial refugia for temperate species, there is still a great lack of direct fossil records to confirm this theory. Here we bring such evidence in the form of fossil shells from twenty strictly forest land snail species, which were recorded in radiocarbon-dated late glacial or older mollusc assemblages of nine non-interrupted mollusc successions situated in the Western Carpathians, and one in the Bohemian Massif. We proposed that molluscs survived the last glacial period in central Europe in isolated small patches of broadleaf forest, which we unequivocally demonstrate for two sites of last glacial maximum age.

  17. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence.

    PubMed

    Gosse, J C; Klein, J; Lawn, B; Middleton, R; Evenson, E B

    1995-06-01

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 +/- 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 +/- 500 beryllium-10 years. PMID:17778979

  18. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence

    SciTech Connect

    Gosse, J.C. |; Klein, J.; Evenson, E.B.

    1995-06-02

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 {+-} 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 {+-} 500 beryllium-10 years.

  19. Glacial hazards: communicating the science and managing the risk

    NASA Astrophysics Data System (ADS)

    Reynolds, J. M.

    2009-04-01

    The recession of glaciers worldwide has received huge media coverage over the last few years in association with the issue of climate change. Young people at schools and colleges are increasingly aware of the environmental pressures due to ‘global warming'. Yet simultaneously, there appears to be an increasing move away from studying science both at pre-university and undergraduate levels. One of the oft cited reasons is that students cannot see the application of the subjects being taught them. Glacial hazards are one of the most obvious adverse effects of climate change, with many, often poor, communities in remote mountain areas being the most affected by frequently devastating Glacial Lake Outburst Floods (GLOFs). When students are exposed to examples of these hazards and the science behind them, many become enthused by the subject and want to study it further. There has been a huge increase in the number of students selecting projects on glacial hazards as well as a large increase in the number of institutions offering to teach modules on this subject. In an effort to provide a basic visualisation, Peter Kennett has taken the principle of GLOFs and developed a cheap but highly visual demonstration of the potentially devastating effect of melting ice within a moraine leading to subsidence and subsequent dam failure. This is available on www.earthlearningidea.com as ‘Dam burst danger - modelling the collapse of a natural dam in the mountains - and the disaster that might follow'. Furthermore, the methods by which glacial hazards are assessed provide excellent applications of geophysics, geology, geography (physical and Human), engineering, mathematics, and glaciology. By exploring the potential vulnerability of communities downstream, the applications can be extended to include sociology, economics, geopolitics and even psychology. Glacial hazards have been the subject of presentations to the Earth Science Teachers Association (ESTA) in the UK to demonstrate

  20. Caribbean Salinity Variation During the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Spero, H. J.; Lea, D. W.

    2003-12-01

    Evaporation exceeds precipitation in the tropical Atlantic, resulting in a net freshwater removal across the Central American Isthmus. Because most of the north Atlantic's subtropical gyre water circulates through the Caribbean before flowing north to sub-polar regions via the Gulf Stream, changes in tropical atmospheric circulation have the potential to affect the salinity and density structure of the entire north Atlantic, thereby influencing glacial-interglacial oscillations in North Atlantic Deep Water (NADW) formation. Here, we combine Mg/Ca measurements (a proxy for the temperature of calcification) and δ 18O analyses of shells from the surface-dwelling foraminifera Globigerinoides ruber s.s. (white var.) from the western Caribbean Colombian Basin at ODP Site 999A (2827m; 4cm/ka sed. rate) and VM28-122 (3623m; 4-10cm/ka sed. rate) to produce the first continuous record of western tropical Atlantic δ 18OSEAWATER (δ 18OSW) during the last 130ka. In order to generate a record for sea surface salinity (SSS) due to regional hydrological change, we removed the δ 18OSW signal due to glacial ice volume variation and normalized the residual to the modern δ 18OSW value for the Colombian Basin (0.8‰ ). The resulting ice volume-free (Δ δ 18OIVF-SW) record shows that Caribbean Δ δ 18OIVF-SW increased by ˜0.5‰ during the Last Glacial Maximum and Marine Isotope Stage 4. Using a modern western Caribbean δ 18OSW:SSS relationship, these enriched δ 18OSW values suggest glacial Caribbean salinities were 2.3 - 2.8‰ higher than modern after removing the influence of ice-volume. Our data supports the hypothesis that the tropics might have been in a state more similar to the modern El Nino mode, characterized by a more southerly position of the ITCZ, during cold phases of the last glacial cycle. Within the resolution of our Δ δ 18OIVF-SW record from VM28-122, elevated glacial Caribbean salinity decreased to modern levels at the onset of the Bolling-Allerod (B

  1. Glacial-topographic interactions in the Teton Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Foster, David; Brocklehurst, Simon H.; Gawthorpe, Rob L.

    2010-03-01

    Understanding interactions among tectonics, topography, climate, and erosion is fundamental to studies of mountainous landscapes. Here, we combine topographic analyses with modeled distributions of precipitation, insolation, and flexural isostasy to present a conceptual model of topographic evolution in the Teton Range, Wyoming, and test whether efficient glacial relief production has contributed to summit elevations. The conceptual model reveals a high degree of complexity inherent in even a relatively small, glaciated, mountain range. Back tilting has caused topographic asymmetry, with the greatest relief characterizing eastern catchments in the center of the range. Two high summits, Grand Teton and Mount Moran, rise hundreds of meters above the surrounding landscape; their elevations set by the threshold hillslope angle and the spacing between valleys hosting large, erosionally efficient glaciers. Only basins >20 km2 held glaciers capable of eroding sufficiently rapidly to incise deeply and maintain shallow downvalley gradients on the eastern range flank. Glacial erosion here was promoted by (1) prevailing westerly winds transporting snow to high-relief eastern basins, leading to cross-range precipitation asymmetry; (2) the wind-blown redistribution of snow from open western headwaters into sheltered eastern cirques, with the associated erosion-driven migration of the drainage divide increasing eastern accumulation areas; and (3) tall, steep hillslopes providing shading, snow influx from avalanching, and insulating debris cover from rockfalls to valley floor glaciers. In comparison, the topographic enhancement of glacial erosion was less pronounced in western, and smaller eastern, basins. Despite dramatic relief production, insufficient rock mass is removed from the Teton Range to isostatically raise summit elevations.

  2. Supraglacial rock avalanches and their effect on glacial deposition

    NASA Astrophysics Data System (ADS)

    Reznichenko, N.; Davies, T. R. H.; Shulmeister, J.; Winkler, S.

    2012-04-01

    Although rock avalanches occur commonly in glaciated valleys, it is only recently that their effects on the regime and final deposits of debris-covered glaciers have been recognized. The supraglacially-emplaced rock avalanche deposits are distinct features on glacial surfaces due to their different sedimentology and greater depth than other debris covers. The metre-scale thickness and large areal extent of these deposits significantly impact the glacier mass balance by preventing ice-surface ablation (Reznichenko et al., 2011). These effects are often neglected in estimating the total change of glacial mass balance and its response to the catastrophic event. A supraglacial rock avalanche deposit can cause a glacier to form a moraine that will not reflect any current climate forcing. It is likely that only larger rock avalanche events (with respect to the size of the glacier) will result in a significant glacial response (e.g. advance or cessation of retreat). However, all supraglacially transported rock avalanche sediment will be recycled into moraines. The climatic signals extracted from the moraine chronologies of such glaciers may consequently have significant errors. The specific sedimentary characteristics of rock avalanche sediment such as agglomerates produced under high stress conditions (Reznichenko et al., in press) can be used to identify moraines that may have been formed from rock avalanche effect. Reznichenko, N.V., Davies, T.R.H. and Alexander, D.J., 2011. Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology, v. 132, is.3-4, p. 327-338 Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and Larsen S.H. Accepted. A new technique for identifying rock-avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology.

  3. SEM microfabric analysis of glacial varves, Geneseo, N. Y

    SciTech Connect

    Pietraszek, S.R. . Geology Dept.)

    1993-03-01

    A detailed study of the microfabric of Pleistocene varved silty-clay from Geneseo Valley (Geneseo, N.Y.) indicates rapid deposition of sediment in a flocculated state into a glacial lake. Ten varve couplets of a 10 cm thick sample were studied using the Scanning Electron Microscope to determine their microfabric. Each varve ranges from 0.5 cm to 2.0 cm and represents an annual ( ) deposit. Varves consists of a lower light colored, coarse zone of silt and clay, and an upper darker colored, organic fine clayey zone. Graded bedding is observed in each couplet, and random clay particle orientation is dominant throughout a varve, with the exception of the top 0.5 mm of the fine layer. The upper and lower contacts are sharp. Fabric features are instrumental in reconstructing a depositional environment. Microfabric results of the glacial unit indicate that an initial heavy concentration of clay and silt was introduced into the basin in a single pulse during spring runoff. The majority of silt settled together with clay in a flocculated or aggregated state, forming the lower coarse zone of random orientation. As the silt concentration diminished, the clay continued to flocculate and settled as a fine clay aggregate. It is proposed that the settling took place during the spring and summer months. Finally, during the winter months, the sediment surface of the varve was disturbed by nemotode burrows, which reoriented the clay flakes into a zone of preferred fabric. Microfabric analysis of these glacial varves, thus suggests that sediment was rapidly deposited in a flocculated state.

  4. Reversed North Atlantic gyre dynamics in present and glacial climates

    NASA Astrophysics Data System (ADS)

    Montoya, Marisa; Born, Andreas; Levermann, Anders

    2011-03-01

    The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland-Scotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.

  5. Linking the Holocene glacial and oceanographic variability in northern Spitsbergen

    NASA Astrophysics Data System (ADS)

    Bartels, Martin; Hebbeln, Dierk

    2015-04-01

    The Svalbard area can be considered as a key region for Arctic heat transfer. The archipelago is located where relatively warm Atlantic Water is reaching further north than at any other Arctic location at similar latitudes. The Holocene variability of Atlantic Water advection is well documented for the western coasts of Spitsbergen whereas records from northern Svalbard are still rare. Here we present a sedimentary record from Woodfjorden in northern Spitsbergen where the influence of Atlantic Water is fading out and glaciers are responding much more sensitive to oceanographic variations than at the western coasts of Spitsbergen. We analyzed the foraminiferal fauna and the distribution of Ice Rafted Debris (IRD) to trace the interplay between the oceanographic and glacial variability, respectively. The appearance of Nonionellina labradorica, a species which is adapted to warm Atlantic Water, shows that the advection of Atlantic-derived water correlates positively with summer insolation. The amount of IRD - increasing during the Allerød interstadial - diminished subsequently with intensifying inflow of Atlantic Water. During the Mid-Holocene, the strong influence of these relative warm water masses concurs with very low IRD values, possibly reflecting the retreat of tidewater glaciers from the coast to a further inland position disconnecting glacier dynamics from the respective marine archives at that time. With declining inflow of Atlantic Water during the late Holocene sea ice expanded, indicated by increased percentages of Islandiella norcrossi. The appearance of this species shows a similar trend as reported for sea-ice biomarkers in the eastern Fram Strait. Thus, variations of Atlantic Water inflow directly affected glacial activity as well as sea-ice coverage. Combining marine and terrestrial proxies enabled us to reconstruct regional (sea-ice) as well as local (glacial expansion) changes over time.

  6. Analysis of glacial and periglacial processes using structure from motion

    NASA Astrophysics Data System (ADS)

    Piermattei, L.; Carturan, L.; de Blasi, F.; Tarolli, P.; Dalla Fontana, G.; Vettore, A.; Pfeifer, N.

    2015-11-01

    Close-range photo-based surface reconstruction from the ground is rapidly emerging as an alternative to lidar (light detection and ranging), which today represents the main survey technique in many fields of geoscience. The recent evolution of photogrammetry, incorporating computer vision algorithms such as Structure from Motion (SfM) and dense image matching such as Multi-View Stereo (MVS), allows the reconstruction of dense 3-D point clouds for the photographed object from a sequence of overlapping images taken with a digital consumer camera. The objective of our work was to test the accuracy of the ground-based SfM-MVS approach in calculating the geodetic mass balance of a 2.1 km2 glacier in the Ortles-Cevedale Group, Eastern Italian Alps. In addition, we investigated the feasibility of using the image-based approach for the detection of the surface displacement rate of a neighbouring active rock glacier. Airborne laser scanning (ALS) data were used as benchmarks to estimate the accuracy of the photogrammetric DTMs and the reliability of the method in this specific application. The glacial and periglacial analyses were performed using both range and image-based surveying techniques, and the results were then compared. The results were encouraging because the SfM-MVS approach enables the reconstruction of high-quality DTMs which provided estimates of glacial and periglacial processes similar to those achievable by ALS. Different resolutions and accuracies were obtained for the glacier and the rock glacier, given the different survey geometries, surface characteristics and areal extents. The analysis of the SfM-MVS DTM quality allowed us to highlight the limitations of the adopted expeditious method in the studied alpine terrain and the potential of this method in the multitemporal study of glacial and periglacial areas.

  7. Last Glacial Maximum and deglaciation of the Iberian Central System.

    NASA Astrophysics Data System (ADS)

    Palacios, D.; Andrés, N.; Vieira, G.; Marcos, J.; Vázquez-Selem, L.

    2012-04-01

    The Central System runs E-W across the centre of the Iberian Peninsula and is composed mainly of crystalline rocks. A glacial morphology is well preserved on many of its most important summit areas especially towards the Atlantic. Research has recently been carried out in three of the sierras of this mountain system, with the aim of establishing the absolute chronology of the maximum glacial advance and of the deglaciation in the whole system. The method used is cosmogenic 36Cl surface exposure dating of moraine boulders and glacially polished outcrops. The selected areas are the Sierra de Guadarrama (Palacios et al. 2012) close to Peñalara Peak (40°51'N, 3°57'W; 2428 m), the Sierra de Gredos (Palacios et al. 2011) close to Almanzor Peak (40°14'N, 5°17'W; 2592 m), and the Sierra de la Estrela (Vieira and Palacios, 2010) close to Alto de la Torre summit (40°20'N, 7°34'W; 1993 m). These areas are representative of the whole Central System from west to east. The results are highly homogeneous. Moraines dating from earlier than the last glaciation were not found in any of the sierras. On the contrary, in all cases the oldest moraines from the last glaciation rest on intensely weathered crystalline surfaces. The oldest moraines date from between 31 and 26 ka. In most cases, the deposition of these moraine ridges was followed by minor advances and retreats which left a sequence of ridges very close together, lasting until 18-16 ka. A fast retreat occurred after 16-15 ka, when glaciers completely abandoned the valleys, disappearing in most cases by 13-14 ka. The ice lasted until 11-10 ka, but only in small cirques found on sheltered rock-walls below the highest peaks.

  8. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales. PMID:19020618

  9. Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing

    NASA Astrophysics Data System (ADS)

    Huybers, Peter

    2006-07-01

    Long-term variations in Northern Hemisphere summer insolation are generally thought to control glaciation. But the intensity of summer insolation is primarily controlled by 20,000-year cycles in the precession of the equinoxes, whereas early Pleistocene glacial cycles occur at 40,000-year intervals, matching the period of changes in Earth's obliquity. The resolution of this 40,000-year problem is that glaciers are sensitive to insolation integrated over the duration of the summer. The integrated summer insolation is primarily controlled by obliquity and not precession because, by Kepler's second law, the duration of the summer is inversely proportional to Earth's distance from the Sun.

  10. Bathymetry and temperature of some glacial lakes in Wyoming

    PubMed Central

    Leopold, Luna B.

    1980-01-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9°C. PMID:16592797

  11. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C. PMID:16592797

  12. Dendroclimatic trend and glacial fluctuations in the Central Italian Alps

    NASA Astrophysics Data System (ADS)

    Pelfini, M.; Santilli, M.; D Agata, C.; Diolaiuti, G.; Smiraglia, C.

    2003-04-01

    In the Alpine environment, one of the main limiting factors for tree growth is the thermal conditions of the vegetative season. The conifers at high altitude, if not subject to others disturbs, such as geomorphological processes or biological interferences, undergo a development, from which the width of annual rings depends. Five chronologies few centuries long, obtained for the species Larix decidua Mill. and Pinus cembra L. from different valleys of the Central Italian Alps (Alpisella, Valfurva, Gavia and Solda) in proximity of timberline (2000-2550 m of altitude), were analysed and their climatic signal gained; this last one was then related to the recent glacial fluctuations. The chronologies are the averages of many dendrochronological indicized curves obtained from dominant trees with regular growth and extended from 13th-17th century up to the present. The time intervals of the chronologies are the following ones: Pinus cembra: 1752-1999 for Valfurva; 1607-1999 for Gavia; 1593-1999 for Val Solda. With regard to Larix decidua: 1252-1998 for Val Solda; 1784-2001 for Alpisella. The good correspondence between the various chronologies allows to consider them representative of the climatic regional signal. In order to evidence climatic evolution, linear trends based on running mean with period of 11 years have been constructed. Those curves have been compared between them and then overlapped and mediated in order to obtain a climatic signal of regional value that excludes eventual local anomalies. Finally, the growth variations in the chronologies have been compared to known alpine climatic variations and glacial fluctuations. In particular time-distance curves (curves of cumulated frontal variations) of some glaciers from the Ortles-Cevedale Group were utilized. The periods of tree rings growth rate reduction appear well correlated to glacial advancing phases of the Little Ice Age and of the following phases. In particular, growth rate reductions are observable

  13. Glacial processes and morphologies in the southern hemisphere of Mars

    NASA Astrophysics Data System (ADS)

    Banks, Maria Elaine

    2009-06-01

    Understanding the history of ice on Mars provides important insight into Martian geologic and climatic history. A model capable of ice reconstruction that requires few input parameters, and a detailed analyses of landforms in an area with hypothesized glacial modification, Argyre Planitia, provide further understanding of Martian ice. A threshold-sliding model was developed to model perfectly-plastic deformation of ice that is applicable to ice bodies that deform when a threshold basal shear stress is exceeded. The model requires three inputs describing bed topography, ice margins, and a function defining the threshold basal shear stress. The model was tested by reconstructing the Greenland ice sheet and then used to reconstruct ice draping impact craters on the margins of the Martian South Polar Layered Deposits using an average constant basal shear stress of ~0.6 bars for the majority of Martian examples. This inferred basal shear stress value is almost 1/3 of the average basal shear stress calculated for the Greenland ice sheet. Reasons for the lower Martian basal shear stress are unclear but could involve the strain-weakening behavior of ice. The threshold- sliding model can be used for ice reconstruction and forward modeling of erosion and deposition to provide further insight into the history of ice on Mars. To test the glacial hypothesis in the Argyre region, landforms are examined using images from the High Resolution Imaging Science Experiment (HiRISE) and other Martian datasets. Linear grooves and streamlined hills are consistent with glacial erosion. Deep semi-circular embayments in mountains resemble cirques. U-shaped valleys have stepped longitudinal profiles and tributary valleys have hanging valley morphology similar to terrestrial glacial valleys. Boulders blanketing a valley floor resemble ground moraine. Sinuous ridges cross topography, have layers, occur in troughs, and have variations in height that appear related to the surrounding surface

  14. Glacial-to-interglacial Changes in NADW Fluxes?

    NASA Technical Reports Server (NTRS)

    Mix, A. C.; Fairbanks, R. G.

    1984-01-01

    Interglacial gradients in delta 13C between Atlantic and Pacific deep waters reflect differences between low-nutrient, 13C-enriched North Atlantic Deep Water (NADW) and high-nutrient, 13C-depleted Pacific Deep Water. Reduced Atlantic-Pacific delta 13C and cadmium gradients at the last glacial maximum have been used to suggest substantial replacement of NADW with nutrient-rich Antarctic Bottom Water (Boyle and Keigwin, 1982; Shackleton et al., 1983). We show that the Atlantic delta 13C signal is linked directly to North Atlantic polar-front migration, as reflected by planktonic foraminiferal faunas.

  15. Last Glacial vegetation and climate change in the southern Levant

    NASA Astrophysics Data System (ADS)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    Reconstructing past climatic and environmental conditions is a key task for understanding the history of modern mankind. The interaction between environmental change and migration processes of the modern Homo sapiens from its source area in Africa into Europe is still poorly understood. The principal corridor of the first human dispersal into Europe and also later migration dynamics crossed the Middle East. Therefore, the southern Levant is a key area to investigate the paleoenvironment during times of human migration. In this sense, the Last Glacial (MIS 4-2) is particularly interesting to investigate for two reasons. Firstly, secondary expansions of the modern Homo sapiens are expected to occur during this period. Secondly, there are ongoing discussions on the environmental conditions causing the prominent lake level high stand of Lake Lisan, the precursor of the Dead Sea. This high stand even culminated in the merging of Lake Lisan and Lake Kinneret (Sea of Galilee). To provide an independent proxy for paleoenvironmental reconstructions in the southern Levant during the Last Glacial, we investigated pollen assemblages of the Dead Sea/Lake Lisan and Lake Kinneret. Located at the Dead Sea Transform, the freshwater Lake Kinneret is nowadays connected via the Jordan with the hypersaline Dead Sea, which occupies Earth's lowest elevation on land. The southern Levant is a transition area of three different vegetation types. Therefore, also small changes in the climate conditions effect the vegetation and can be registered in the pollen assemblage. In contrast to the Holocene, our preliminary results suggest another vegetation pattern during the Last Glacial. The vegetation belt of the fragile Mediterranean biome did no longer exist in the vicinity of Lake Kinneret. Moreover, the vegetation was rather similar in the whole study area. A steppe vegetation with dwarf shrubs, herbs, and grasses predominated. Thermophilous elements like oaks occurred in limited amounts. The

  16. Atlantic meridional overturning circulation during the Last Glacial Maximum.

    PubMed

    Lynch-Stieglitz, Jean; Adkins, Jess F; Curry, William B; Dokken, Trond; Hall, Ian R; Herguera, Juan Carlos; Hirschi, Joël J-M; Ivanova, Elena V; Kissel, Catherine; Marchal, Olivier; Marchitto, Thomas M; McCave, I Nicholas; McManus, Jerry F; Mulitza, Stefan; Ninnemann, Ulysses; Peeters, Frank; Yu, Ein-Fen; Zahn, Rainer

    2007-04-01

    The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation. PMID:17412948

  17. Iceland Dust Storms Linked to Glacial Outwash Deposits and to Sub-Glacial Flood (Jökulhlaup) Events

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.; Arnalds, Ó.; Olafsson, H.; Bullard, J.; Hodgkins, R.

    2008-12-01

    Studies of Arctic snow and ice cores reveal large temporal changes in dust concentrations, especially over glacial-interglacial cycles. Most efforts to model dust variability with climate have focused on sources in tropical and mid-latitude arid regions and have neglected high latitude emissions because of a lack of information on possible sources. Here we report on aerosol measurements which show that dust storms are common on Iceland and that major events are associated with glacial sedimentary environments. In July 1991 we established an aerosol sampling site on Heimaey, a small island located 18 km off the southeast coast of Iceland, with the objective of studying the transport of pollutant species to the Arctic. We found that although concentrations of nitrate and non-sea-salt sulfate were generally quite low, there were sporadic peaks that were primarily attributed to pollutant transport from Europe [Prospero et al., 1995]. Recently we expanded our analyses to include mineral dust, covering the period 1997 through 2004. Dust is present during much of the year (annual average 3.9 μg m-3) with a strong seasonal cycle (maximum in April, 14.0 μg m-3). However there are many spikes in the dust record, some exceeding 100 μg m-3, which are not associated with pollutant transport peaks. A search of NASA satellite web archives yielded six "dust storm" images that were acquired during our data period. These show prominent dust plumes streaming off the coast of Iceland. Here we show that each image could be closely linked to a major dust peak in our record (although there were many more peaks than satellite images). Most of these dust events were associated with dust emitted from glacial outwash (sandur) deposits. Some of the largest dust peaks were linked to jökulhlaups, an Icelandic term for sub-glacially generated outburst floods. The dust clouds were typically comprised of a series of well-defined plumes emitted from large "point" sources, mostly associated with

  18. The Persistence of Glacial Valleys in the New Zealand Southern Alps

    NASA Astrophysics Data System (ADS)

    Prasicek, G.; Larsen, I. J.; Montgomery, D. R.

    2014-12-01

    One of the most fundamental insights for understanding how landscapes evolve is based on determining whether topography was modified by glaciers or rivers. Alpine landscapes featuring horns, knife-edged ridges, and U-shaped valleys are commonly associated with glacial sculpting, whereas fluvial erosion is known to produce V-shaped valleys via links between river incision and landsliding. Rivers, landslides, and glaciers are all capable of rapid erosion comparable to the highest rates of rock uplift, and there has been progress in modeling fluvial erosion and hillslope response, as well as understanding how landscapes react to the onset of glaciation. However, the timescale involved in the transition from a glacial to a fluvial landscape is poorly constrained and it is unclear how long glacial morphology can survive following deglaciation. We tested whether the fluvial and hillslope erosional response to tectonic forcing controls the timescale over which glacial topography persists into interglacial periods. We used digital terrain data to quantify the degree of glacial imprint on topography by geomorphometric analysis of cross-sectional valley shape across a spatial gradient in rock uplift and erosion rates in the New Zealand Southern Alps. Our results show that tectonic forcing is a first-order control on landscape evolution and on the persistence of glacial morphology. In Earth's most rapidly uplifting mountain ranges the lifespan of glacial topography is on the order of one interglacial period, preventing the development of a cumulative glacial signal from the added erosional impact of subsequent glacial stages. Thus we suggest that the present-day physiographic signature of glaciated landscapes is best expressed in, and limited by the extent of low uplift terrain. In addition, emphasizing that the presence of glacially preconditioned topography greatly influences glacial extent and erosion, our results imply that tectonic forcing governs the impact of climate

  19. Glacial sequence stratigraphy reveal the Weichselian glacial history of the SE sector of the Eurasian Ice Sheet

    NASA Astrophysics Data System (ADS)

    Räsänen, Matti

    2016-04-01

    Reconstructions of the last Weichselian glacial cycle 117,000-11,700 years (kyr) ago propose that S Finland, adjacent Russia and the Baltic countries in the SE sector of the Eurasian Ice Sheet (EIS), were glaciated during the Middle Weichselian time [marine isotope stage (MIS) 4, 71-57 kyr ago] and that this glaciation was preceded in S Finland by an Early Weichselian interstadial (MIS 5c, 105-93 kyr ago) with pine forest. Here glacial sequence stratigraphy (Powell and Cooper 2002) is applied to isolated Late Pleistocene onshore outcrop sections in S Finland. The analysed sedimentary records have traditionally been investigated, interpreted and published separately by different authors without an attempt to a methodologically more systematic survey. By putting new field data and old observations into a regional sequence stratigraphic framework it is shown how previously unnoticed regularities can be found in the lithofacies and fossil successions. It is shown that the proposed Middle Weichselian glaciation or the pine dominated interstadial did not take place at all (Räsänen et al. 2015). The one Late Weichselian glaciation (MIS 2, 29-11 kyr ago) at the SE sector of EIS was preceded in S Finland by a nearly 90 kyr long still poorly known non-glacial period, featuring tundra with permafrost and probably birch forest. The new Middle Weichselian paleoenvironmental scenario revises the configuration and hydrology of the S part of EIS and gives new setting for the evolution of Scandinavian biota. References Powell, R. D., and Cooper, J. M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J. A., and Cofaig, C. Ó. eds., Glacier-Influenced Sedimentation on High-Latitude Continental Margins: The Geological Society of London, London, Geological Society London, Special Publication v. 203, p. 215-244. Räsänen, M.E., Huitti, J.V., Bhattarai, S. Harvey, J. and Huttunen, S. 2015, The SE sector of the Middle

  20. Antarctic Zone nutrient conditions during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Studer, Anja S.; Sigman, Daniel M.; Martínez-García, Alfredo; Benz, Verena; Winckler, Gisela; Kuhn, Gerhard; Esper, Oliver; Lamy, Frank; Jaccard, Samuel L.; Wacker, Lukas; Oleynik, Sergey; Gersonde, Rainer; Haug, Gerald H.

    2015-07-01

    In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the δ15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the δ15Ndb changes are not the result of changing species composition. The pennate and centric assemblage δ15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate δ15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.

  1. Tentative correlation of midcontinent glacial sequence with marine chronology

    SciTech Connect

    Dube, T.E.

    1985-01-01

    A tentative glacial-interglacial 3-million-year chronology is synthesized by regional correlation of Midcontinent tills and paleosols to marine paleotemperature/eustatic cycles and oxygen isotope stages. The paleotemperature curves of Beard et al. (1982), based on planktonic foraminiferal abundances, correspond directly with eustatic cycles during the last 3 Ma. These generalized curves are shown to correlate reasonably well with standard oxygen isotope stages at least for the past 900 ka. This indicates that paleotemperature and Vail-type eustatic cycles have been glacially induced during the last 3 Ma. The chronology developed here utilizes both paleotemperature and oxygen isotope stages; however, below the Jaramillo magnetic subchron, isotope curves are more variable and only paleotemperature stages are used. Tills and paleosols at type localities in the Midcontinent area of the US are correlated to the SPECMAP oxygen isotope time scale. Because mid-Brunhes events are poorly constrained by radiometric dates, alternative correlations are possible. The oldest known Midcontinent tills correlate to the first Plio-Pleistocene cold paleotemperature stage and drop in sea level at 2.4 Ma. This Late Pliocene event also corresponds to the first major isotopic enrichment and the onset of late Cenozoic ice-rafting in the North Atlantic region.

  2. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times.

    PubMed

    Hall, I R; McCave, I N; Shackleton, N J; Weedon, G P; Harris, S E

    2001-08-23

    The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago. PMID:11518963

  3. Mapping of glacial landforms from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1984-01-01

    Glacial landforms in the drumlin drift belt of Ireland and the Alaska Range can be identified and mapped from Seasat synthetic-aperture radar (SAR) images. Drumlins cover 60 percent of the Ireland scene. The width/length ratio of individual drumlins can be measured on the SAR images, allowing regional differences in drumlin shape to be mapped. This cannot be done with corresponding Landsat multispectral scanner (MSS) images because of lower spatial resolution and because of shadowing effects that vary seasonally. The Alaska scene shows the extent and nature of morphological features such as medial and lateral moraines, stagnant ice, and fluted ground moraine in glaciated valleys. Perception of these features on corresponding Landsat MSS images is limited by seasonal diffrences in solar illumination. Because SAR is not affected by such differences or by cloud cover, it is particularly well suited for monitoring glacial movement. The disadvantage of distorted high-relief features on Seasat SAR images can be reduced in future SAR systems by modifying the radar illumination geometry.

  4. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M., Jr.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  5. Glacial Refugium of Pinus pumila (Pall.) Regel in Northeastern Siberia

    SciTech Connect

    Shilo, N A; Lozhkin, A V; Anderson, P M; Brown, T A; Pakhomov, A Y; Solomatkina, T B

    2007-02-10

    One of the most glowing representatives of the Kolyma flora [1], ''Pinus pumila'' (Pall.) Regel (Japanese stone pine), is a typical shrub in larch forests of the northern Okhotsk region, basins of the Kolyma and Indigirka rivers, and high-shrub tundra of the Chukchi Peninsula. It also forms a pine belt in mountains above the forest boundary, which gives way to the grass-underbrush mountain tundra and bald mountains. In the southern Chukchi Peninsula, ''Pinus pumila'' along with ''Duschekia fruticosa'' (Rupr.) Pouzar and ''Betula middendorffii'' Trautv. et C. A. Mey form trailing forests transitional between tundra and taiga [2]. Pinus pumila pollen, usually predominating in subfossil spore-and-pollen spectra of northeastern Siberia, is found as single grains or a subordinate component (up 2-3%, rarely 10%) in spectra of lacustrine deposits formed during the last glacial stage (isotope stage 2) in the Preboreal and Boreal times of the Holocene. Sometimes, its content increases to 15-22% in spectra of lacustrine deposits synchronous to the last glacial stage near the northern coast of the Sea of Okhotsk [3], evidently indicating the proximity of Japanese stone pine thickets.

  6. Successful performance of luminescence dating on glacial sediments

    NASA Astrophysics Data System (ADS)

    Medialdea, Alicia; Bateman, Mark; Evans, David; Roberts, David; Chiverrell, Richard; Clark, Christopher

    2016-04-01

    The use of luminescence dating to establish accurate chronology of sedimentary environments has been exponentially increasing in the last decades. The age range covered and the versatility of the technique have made it become a key in studies of the Quaternary. Nevertheless luminescence dating of glacial sediments has shown to be challenging because of being affected by incomplete bleaching but also due to the complex luminescence behaviour of quartz grain within these sediments. This complexity often causes standard protocols in luminescence dating to be inadequate for this type of material. More than 150 samples from glacial environments are being dated using OSL (optically stimulated luminescence) to provide a base for the BRITICE-CHRONO project which aim is to establish the retreat patterns of the last British and Irish Ice Sheet. This work presents the successful performance of luminescence dating on a selection of these samples for which ages coherent with the LGM have been estimated when applying improved measuring and analysing methods. Comparison with the results obtained using standard protocols showed that implausible ages would have been derived otherwise. In addition, within the B-C project duplicate samples of some sedimentary units have been measured. The coherent results obtained show the reproducibility of these improved methods giving robustness to the age estimates and providing a solid base for the establishing of the ice retreat patterns.

  7. Timing of the Late Vistulian (Weichselian) glacial phases in Poland

    NASA Astrophysics Data System (ADS)

    Marks, Leszek

    2012-06-01

    The Lower Vistula Region in northern Poland is a stratotype area for the Vistulian (Weichselian) glaciation and during Last Glacial Maximum (LGM) the southernmost extension of the Scandinavian ice sheet occurred in western Poland and in eastern Germany. Reinterpretation of the available geochronological data (radiocarbon, 36Cl and 10Be ages), supplied with new field geological evidence, mostly for the Late Vistulian ice sheet limits and movement directions, was focused in three key regions in Poland. During the late Middle Vistulian there was one or two ice sheet advances in the Lower Vistula region. The Late Vistulian maximum ice sheet limit in Poland was time-transgressive and occurred at 24-19 kyrs BP (generally, the younger to the east). Ice sheet limits during the Leszno Phase occurred at 24 cal/10Be/36Cl kyrs, the Poznań Phase ice sheet limit was dated to 19 10Be/36Cl kyrs and the Pomeranian Phase ice sheet limit about 16-17 10Be/36Cl kyrs. Every Late Vistulian glacial phase in Poland was preceded by an ice sheet retreat.

  8. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    USGS Publications Warehouse

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  9. ITRF2008 solution, geodetic parameters and Glacial Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Metivier, L.; Collilieux, X.; Greff-Lefftz, M.; Altamimi, Z.

    2011-12-01

    Glacial Isostatic Adjustment (GIA) leads to long term crust motion, gravity variation, sea level rise and perturbation of Earth rotation. Recent studies have enlightened unexpected differences between a few recent GIA models mostly due to the way GIA induced rotational feedback is modeled. The validity and quality of these models have been essentially discussed with respect to space gravity observations. Here, we investigate what information the up-to-date International Terrestrial Reference Frame solution, ITRF2008, provides on large scale geodetic observables and by extension on Glacial Isostatic Adjustment (GIA) and recent ice melting processes. We particularly focus on the GNSS network of ITRF2008 solution because of the present day high precision of GNSS technique and because of the good density of the GNSS network. From these data, we infer and study large scale geodetic parameters and their time evolutions, such as Earth oblateness and J2 rate, or secular rotational feedback. We also investigate different GIA and recent ice melting models.

  10. Dichotomy Boundary Glaciation Models: Implications for Timing and Glacial Processes

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.

    2008-12-01

    An integrated system with glacial features exists at 34E, 41N in the Deuteronilus-Protonilus Mensae region. This 30,000 km2 valley system is typical of dozens of fretted valleys in this region along the dichotomy boundary. We compare features described in current geological observations with results from the University of Maine Ice Sheet Model (UMISM) that we feel support the glacial interpretation of these features and also allow speculation as to the timing and processes responsible for the formation of these features. Geological observations identify evidence for a number of features that are felt to be indicative of glacial flow. These include: 1) localized alcoves from which emanate narrow, lobate concentric-ridged flows interpreted to be remnants of debris-covered glaciers; 2) alcove depressions perhaps indicating sublimation of material from relict ice-rich accumulation zones; 3) plateau-ridge remnants between alcoves typical of glacially eroded aretes; 4) horseshoe-shaped ridges upstream of topographic obstacles; 5) convergence and merging of LVF fabric in the down-valley direction; 6) deformation, distortion and folding of LVF in the vicinity of convergence; 7) LVF with pits and elongated troughs in distorted areas; 8) distinctive lobe-shaped termini with associated pitting where the LVF emerges into the northern lowlands. This evidence defines a coherent, unified flow regime extending from the upper valley reaches down to the northern lowlands. Additional support for the glacial hypothesis comes from a GCM for a dusty-atmosphere Mars with obliquity set to 35o and a water source in the Tharsis region. The GCM generates a pattern of ice accumulation in good agreement with these geological observations. This climate is what one might expect to follow a high- obliquity excursion of the sort that built ice sheets on the Tharsis volcanoes. UMISM as used here is an adaptation for the Martian environment of a thermo-mechanically coupled shallow- ice approximation

  11. Overdeepening development in a glacial landscape evolution model with quarrying

    NASA Astrophysics Data System (ADS)

    Ugelvig, S. V.; Egholm, D. L.; Brædstrup, C. F.; Iverson, N. R.

    2013-12-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified when considering bed abrasion, where rock debris transported in the basal ice drives erosion. However, the relation is not well supported when considering models for quarrying of rock blocks from the bed. Field observations indicate that the principal mechanism of glacial erosion is quarrying, which emphasize the importance of a better way of implementing erosion by quarrying in glacial landscape evolution models. Iverson (2012) introduced a new model for subglacial erosion by quarrying that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form in the lee of bed obstacles when the sliding velocity is too high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness, which is neglected in previous quarrying models. Sliding rate, effective pressure, and average bedslope are the primary factors influencing the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. The influence of the effective pressure leads naturally to overdeepenings. However, in contrast to previously used erosion models

  12. Causes of strong ocean heating during glacial periods

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2013-12-01

    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface

  13. 78 FR 3909 - Big Oaks National Wildlife Refuge, IN; Glacial Ridge National Wildlife Refuge, MN; Northern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Fish and Wildlife Service Big Oaks National Wildlife Refuge, IN; Glacial Ridge National Wildlife Refuge... conservation plans (CCP) and associated environmental documents for the Big Oaks, Glacial Ridge, Northern... refuge at the following addresses: Attention: Refuge Manager, Big Oaks NWR, 1661 West JPG Niblo...

  14. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; Glacial Energy of Texas, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Glacial Energy of Texas,...

  15. The Southern Glacial Maximum 65,000 years ago and its Unfinished Termination

    NASA Astrophysics Data System (ADS)

    Schaefer, Joerg M.; Putnam, Aaron E.; Denton, George H.; Kaplan, Michael R.; Birkel, Sean; Doughty, Alice M.; Kelley, Sam; Barrell, David J. A.; Finkel, Robert C.; Winckler, Gisela; Anderson, Robert F.; Ninneman, Ulysses S.; Barker, Stephen; Schwartz, Roseanne; Andersen, Bjorn G.; Schluechter, Christian

    2015-04-01

    Glacial maxima and their terminations provide key insights into inter-hemispheric climate dynamics and the coupling of atmosphere, surface and deep ocean, hydrology, and cryosphere, which is fundamental for evaluating the robustness of earth's climate in view of ongoing climate change. The Last Glacial Maximum (LGM, ∼26-19 ka ago) is widely seen as the global cold peak during the last glacial cycle, and its transition to the Holocene interglacial, dubbed 'Termination 1 (T1)', as the most dramatic climate reorganization during this interval. Climate records show that over the last 800 ka, ice ages peaked and terminated on average every 100 ka ('100 ka world'). However, the mechanisms pacing glacial-interglacial transitions remain controversial and in particular the hemispheric manifestations and underlying orbital to regional driving forces of glacial maxima and subsequent terminations remain poorly understood. Here we show evidence for a full glacial maximum in the Southern Hemisphere 65.1 ± 2.7 ka ago and its 'Unfinished Termination'. Our 10Be chronology combined with a model simulation demonstrates that New Zealand's glaciers reached their maximum position of the last glacial cycle during Marine Isotope Stage-4 (MIS-4). Southern ocean and greenhouse gas records indicate coeval peak glacial conditions, making the case for the Southern Glacial Maximum about halfway through the last glacial cycle and only 15 ka after the last warm period (MIS-5a). We present the hypothesis that subsequently, driven by boreal summer insolation forcing, a termination began but remained unfinished, possibly because the northern ice sheets were only moderately large and could not supply enough meltwater to the North Atlantic through Heinrich Stadial 6 to drive a full termination. Yet the Unfinished Termination left behind substantial ice on the northern continents (about 50% of the full LGM ice volume) and after another 45 ka of cooling and ice sheet growth the earth was at inter

  16. Glacial refugia and modern genetic diversity of 22 western North American tree species.

    PubMed

    Roberts, David R; Hamann, Andreas

    2015-04-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r(2) = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  17. Glacial refugia and modern genetic diversity of 22 western North American tree species

    PubMed Central

    Roberts, David R.; Hamann, Andreas

    2015-01-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  18. Glacial evolution of the Ampato Volcanic Complex (Peru)

    NASA Astrophysics Data System (ADS)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  19. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  20. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  1. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  2. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi

  3. Late Glacial and Late Holocene Paleohydrology of Central Asia

    NASA Astrophysics Data System (ADS)

    Aichner, B.; Feakins, S. J.; Mischke, S.; Herzschuh, U.; Liu, X.; Rajabov, I.; Wang, Y.; Heinecke, L.

    2013-12-01

    The goal of this study is to deepen the understanding of past climatological, ecological and hydrological changes in Central Asia, by means of organic geochemical proxies and in close cooperation with other work groups providing biological and sedimentological data. We analysed an 8 m sediment core from Lake Karakuli, a small open freshwater lake situated at an altitude of 3,657 m between the massifs of Muztagh Ata (7,546 m) and Kongur Shan (7,719 m) in western China. Additional work is in progress on a 12 m core derived from Lake Karakul in Tajikistan, a large closed saline lake situated in a tectonic graben structure at an altitude of 3,928 m. The distance between the two lakes is 130 km and basal ages of the cores are ca. 4.7 ka BP (China) and ca. 27 ka BP (Tajikistan). The lake catchments may be classified as alpine steppe to alpine deserts with mean annual temperature of ca. 0 °C and mean annual precipitation of ca. 100 mm, respectively. Summer precipitation, associated with the Indian monsoon, accounts for <30% of the annual total, whereas most precipitation is supplied by mid-latitude Westerlies between March and May. In the small Chinese lake long-chain fatty acids (FAs) were mainly attributed to terrestrial sources by compound-specific carbon isotopic analyses. In contrast δ13C values up to -14‰ for abundant mid-chain FAs suggest aquatic origins in the large Lake Karakul. Hydrogen isotopic variability is ca. 15‰ in the mid-Holocene record and ca. 60‰ in the first data derived from the Late Glacial record. In the latter, the most pronounced change from higher to lower δD-values of aquatic biomarkers is tentatively interpreted as change from arid to more humid conditions at the Late Glacial to Holocene transition. Since in Central Asia isotopic variability of precipitation mainly correlates with temperature, we interpret high resolution δD data of terrestrial long-chain FAs in the younger core to mainly reflect mid-Holocene temperature variations

  4. Glacial Geomorphic Characteristics of the Antarctic Peninsula Fjords

    NASA Astrophysics Data System (ADS)

    Wellner, J. S.; Munoz, Y. P.; Mead, K. A.; Hardin, L. A.

    2011-12-01

    A distinctive suite of subglacial geomorphic features, representing the grounding of an ice sheet and its subsequent retreat, has been well documented for many parts of the Antarctic continental shelf. Geomorphic features include meltwater channels, drumlins, mega-scale glacial lineations, and gullies cut into the upper slope. Many of these same features occur in more recently deglaciated fjords, but at different scales and in different combinations. We have surveyed twelve fjords on the Antarctic Peninsula, from the Graham Land Coast to Hope Bay as well as on Anvers Island and in the South Shetland Islands. Surveys include multibeam swath bathymetry, CHIRP 3.5 kHz seismic, and sediment cores. Recently, we have reprocessed much of the multibeam data using new software allowing higher-resolution imagery. Unlike on the outer continental shelf of the Antarctic Peninsula, where there is a relatively simple suite of geomorphic features and a uniform retreat history, the fjords on the inner shelf show a complex geomorphic pattern representing somewhat unique glacial retreat histories for each fjord. Several fjords have distinctive grounding zone wedge deposits, and some fjords have such wedges in multiple locations, representing multiple pauses in the retreat history, or a stepped retreat of the ice. Drumlins and mega-scale glacial lineations are present in the fjords, but extend for kms rather than the tens of kms that are typical of the outer shelf. If drumlins are interpreted to indicate acceleration of grounded ice, as they are on the outer shelf, then there must have been multiple zones of acceleration across the flow path of the ice as drumlin sets occur in multiple zones in a single flow path. The inner parts of many fjords along the coast of the peninsula are characterized by features interpreted as erosional meltwater channels, although such features are not common in fjords in the islands off the peninsula, despite the similar scale of the fjords themselves

  5. Rising river flows and glacial mass balance in central Karakoram

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit; Khan, Asif

    2014-05-01

    Field observations and geodetic measurements suggest that in the central part of the Karakoram Mountains, glaciers are either stable or expanding since 1990, in sharp contrast to glacier retreats that are prevalent in the Himalayas and adjoining high-altitude terrains of central Asia. Decreased discharge in the rivers originating from Karakoram is cited as a supporting evidence of this somewhat anomalous phenomenon. Here, in contrary to those citations, we show that, river discharge during the melting season of the glaciers in central Karakoram has increased from 1985 to 2010. We have implemented a sophisticated statistical procedure involving non-parametric tests combined with a benchmark smoothing technique that has proven to be a powerful method for empirical trend analysis to remove the stochastic component from the trend component in a time series. Melt water from winter snows is the dominant constituent of June and July flows. Glacial melts predominantly contribute to August and partially to September flows, which are controlled by monsoonal snowfall too at elevations approximately >3500 m. For all four summer months, flows increased from 1985 to 2000. August flows, which actually reflect the states of the glaciers, have continued to rise steadily after 2000 at the same rate as those did for the period 1985-2000. However, the rising trends of June and July flows changed to slightly declining trends from 2000 to 2010. These trends most likely indicate drop in winter snowfall over Karakoram and do not provide direct indications about the states of the glaciers. The rising trend of August discharge is due to change in glacial storage at a steadily decreasing rate of approximately 0.04-0.05 mm/day/year for the period 1985-2010. This rate is nearly equal to the rate of increase in precipitation during the summer months over Karakoram Mountains in recent decades as determined from the ERA-40 and GPCP precipitation datasets. Thereby, this is most plausibly, why the

  6. Last Glacial Maximum in South America: Proxies and Model Results

    NASA Astrophysics Data System (ADS)

    Wainer, I.; Ledru, M. P.; Clauzet, G.; Otto-Bliesner, B.; Brady, E.

    2003-04-01

    The lack of paleo proxies to define Full Glacial conditions in South America (see COHMAP 1988) prevented accurate climatic reconstitution until recently. It is believed that full glacial climates throughout South America were cooler than today by about 5°C with moisture patterns showing distinct regional differences.Results show that from Equator to pole, four areas can be characterized from lacustrine records, travertine and speleothems analysis: the first region, between 0 and 25°S latitude, recorded a hiatus in sedimentation with an absence of organic matter deposition in all lowland records, while the Andes Amazonian-moisture-dependant-forests were drastically reduced and showed the set up of an open vegetation. Climates were defined as drier than today with less precipitation and reduction in soil moisture supply. On the other hand, observations on travertines on the northeastern coastal area of the state of Bahia (also at low latitudes) certify a climate more humid than today. South of 25°S, in the temperate regions of northern Patagonia, lake levels were higher than today, snow precipitation in the Southern Bolivia increased with an accompanying increase in speleothems formations in southern Brazil. This was interpreted as being associated with moister and cooler climates than today in this area. At higher latitudes the low lake-levels recorded, indicate an arid climate. These observations based on paleodata are compared to the analysis from simulation results of the Paleoclimate version of the National Center for Atmospheric Research coupled climate system model (PALEO CCSM) for the Last Glacial Maximum and present day. Analysis of the LGM wind simulation for the tropical Atlantic show that the convergence zone does not extend all the way into the continent. This prevents moisture inflow into the adjacent continental area (equatorial NE Brazil). Paleo proxies results, as explained above, are consistent with this scenario. At higher latitudes (south of 50

  7. Edges and Blocks Matter on Hillslopes, Rivers, and Glacial Landscapes

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.

    2014-12-01

    Many landforms display sharp corners, or edges, that are maintained as they migrate laterally. Our present landscape models, cast largely in terms of patterns of vertical erosion, fail to capture the essence of these landscapes, including flatirons, hogbacks, cliffs, and lumpy outcropped hillslopes; roche moutonée and glacial steps, and river knickpoints. Yet these are the very landscape signatures of rock type and structure. Block sizes, and the fracture distributions that bound the blocks, vary from one rock type or geological setting to another. Removal and transportation of discrete blocks of rock maintains a sharp edge, and results in their upvalley/upslope migration. Our challenge in developing numerical landscapes is to capture the essential variation, noisiness, and roughness of natural landscapes and their dependence on rock type and structure. The rate of lowering of the landscape is governed by the product of the spatial density of edges, their step height, and their rate of migration. I present cellular automata-like models in which I explicitly incorporate blocks, and utilize algorithms for the susceptibility of any block to motion, and the forces imposed on the surface by the environment. Susceptibility of a block to release is governed by its size, the geometry of the pocket in which it sits, the frictional properties of the bounding discontinuities, and the cohesion across these discontinuities. This is akin to coordination number and bond strengths of atoms in mineral dissolution studies; their atoms are our blocks. Removal of a block requires an event of sufficient magnitude to overcome its resistance. The relevant events include fluctuations in water pressure at the bed of glaciers, turbulence and sediment impacts in rivers, and root throw or earthquakes in hillslopes. Preliminary models capture the essence of migrating edges. The systems self-organize to produce suites of steps. In glacial beds, for example, migration of steps produces upvalley

  8. Post-glacial rebound and asthenosphere viscosity in Iceland

    SciTech Connect

    Sigmundsson, F. )

    1991-06-01

    During the Weichselian glaciation Iceland was covered with an ice cap which caused downward flexure of the Earth's surface. The post-glacial rebound in Iceland was very rapid, being completed in about 1,000 years. The length of this time interval constrains the maximum value of asthenosphere viscosity in Iceland to be 1 {times} 10{sup 19} Pa s or less. Further clarification of the ice retreat and uplift history may reveal lower viscosity. Current changes in the mass balance of Icelandic glaciers must lead to measurable elevation changes considering this low viscosity. Expected current elevation changes around the Vatnajoekull ice cap are of the order of 1 cm per year, due to mass balance change in this century.

  9. Patagonian glacier response during the late glacial-Holocene transition.

    PubMed

    Ackert, Robert P; Becker, Richard A; Singer, Brad S; Kurz, Mark D; Caffee, Marc W; Mickelson, David M

    2008-07-18

    Whether cooling occurred in the Southern Hemisphere during the Younger Dryas (YD) is key to understanding mechanisms of millennial climate change. Although Southern Hemisphere records do not reveal a distinct climate reversal during the late glacial period, many mountain glaciers readvanced. We show that the Puerto Bandera moraine (50 degrees S), which records a readvance of the Southern Patagonian Icefield (SPI), formed at, or shortly after, the end of the YD. The exposure age (10.8 +/- 0.5 thousand years ago) is contemporaneous with the highest shoreline of Lago Cardiel (49 degrees S), which records peak precipitation east of the Andes since 13 thousand years ago. Absent similar moraines west of the Andes, these data indicate an SPI response to increased amounts of easterly-sourced precipitation-reflecting changes in the Southern Westerly circulation-rather than regional cooling. PMID:18635799

  10. Modeling East African tropical glaciers during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Doughty, Alice; Kelly, Meredith; Russell, James; Jackson, Margaret; Anderson, Brian; Nakileza, Robert

    2016-04-01

    The timing and magnitude of tropical glacier fluctuations since the last glacial maximum could elucidate how climatic signals transfer between hemispheres. We focus on ancient glaciers of the East African Rwenzori Mountains, Uganda/D.R. Congo, where efforts to map and date the moraines are on-going. We use a coupled mass balance - ice flow model to infer past climate by simulating glacier extents that match the mapped and dated LGM moraines. A range of possible temperature/precipitation change combinations (e.g. -15% precipitation and -7C temperature change) allow simulated glaciers to fit the LGM moraines dated to 20,140±610 and 23,370±470 years old.

  11. Inverse vertical migration and feeding in glacier lanternfish (Benthosema glaciale).

    PubMed

    Dypvik, Eivind; Klevjer, Thor A; Kaartvedt, Stein

    2012-01-01

    A bottom-mounted upward-facing 38-kHz echo sounder was deployed at ~400 m and cabled to shore in Masfjorden (~60(°)52'N, ~5(°)24'E), Norway. The scattering layers seen during autumn (September-October) 2008 were identified by trawling. Glacier lanternfish (Benthosema glaciale) were mainly distributed below ~200 m and displayed three different diel behavioral strategies: normal diel vertical migration (NDVM), inverse DVM (IDVM) and no DVM (NoDVM). The IDVM group was the focus of this study. It consisted of 2-year and older individuals migrating to ~200-270 m during the daytime, while descending back to deeper than ~270 m during the night. Stomach content analysis revealed increased feeding during the daytime on overwintering Calanus sp. We conclude that visually searching glacier lanternfish performing IDVM benefit from the faint daytime light in mid-waters when preying on overwintering Calanus sp. PMID:24391270

  12. Two possible source regions for central Greenland last glacial dust

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs S.; Manning, Christina; Németh, Tibor; Kovács, János; Sweeney, Mark R.; Gocke, Martina; Wiesenberg, Guido L. B.; Markovic, Slobodan B.; Zech, Michael

    2015-12-01

    Dust in Greenland ice cores is used to reconstruct the activity of dust-emitting regions and atmospheric circulation. However, the source of dust material to Greenland over the last glacial period is the subject of considerable uncertainty. Here we use new clay mineral and <10 µm Sr-Nd isotopic data from a range of Northern Hemisphere loess deposits in possible source regions alongside existing isotopic data to show that these methods cannot discriminate between two competing hypothetical origins for Greenland dust: an East Asian and/or central European source. In contrast, Hf isotopes (<10 µm fraction) of loess samples show considerable differences between the potential source regions. We attribute this to a first-order clay mineralogy dependence of Hf isotopic signatures in the finest silt/clay fractions, due to absence of zircons. As zircons would also be absent in Greenland dust, this provides a new way to discriminate between hypotheses for Greenland dust sources.

  13. A Global Ocean State Estimate at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amrhein, D. E.; Wunsch, C. I.

    2015-12-01

    Many features of Earth's climate at the Last Glacial Maximum (LGM, ca. 20,000 years ago) remain a mystery, including the role of the ocean circulation in transporting thermal energy, salinity, and other tracers. Most efforts at reconstructing the ocean state during the LGM have relied either upon integrations of general circulation models under prescribed LGM boundary conditions or the interpretation of climate proxy records without explicit physical constraints. Here we describe a global, primitive equation simulation of the LGM ocean with boundary conditions (wind, surface air temperature, and other atmospheric variables) and mixing parameters derived by a least-squares fit of an ocean general circulation model to observations of deep ocean stable isotopes and sea surface temperatures at the LGM.

  14. Deformation of Eemian and Glacial ice at NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Keegan, Kaitlin; Dahl-Jensen, Dorthe; Montagnat, Maurine; Weikusat, Ilka; Kipfstuhl, Sepp

    2015-04-01

    New findings from deep Greenland ice cores and airborne radio echo sounding (RES) images show that basal ice flow is very unstable, and a basal layer of disturbed ice is often observed. At NEEM, Greenland this folding occurs at the boundary between the Eemian and glacial ice regimes, suggesting that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy (Burke, 1957) and ice (Hammer et al., 1978; Langway et al., 1988; Dahl-Jensen et al., 1997), suggests that impurity content controls grain evolution, and therefore deformation, which we hypothesize to be analogous to the differences in ice flow seen deep in the NEEM ice core. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  15. Hydrogeologic setting of the Glacial Lake Agassiz Peatlands, northern Minnesota

    USGS Publications Warehouse

    Siegel, Donald I.

    1981-01-01

    Seven test holes drilled in the Glacial Lake Agassiz Peatlands indicate that the thickness of surficial materials along a north-south traverse parallel to Minnesota Highway 72 ranges from 163 feet near Blackduck, Minnesota to 57 feet about 3 miles south of Upper Red Lake. Lenses of sand and gravel occur immediately above bedrock on the Itasca moraine and are interbedded with lake clay and till under the peatlands. Vertical head gradients measured in a piezometer nest near Blackduck on the moraine are downward, indicative of recharge to the regional ground-water-flow system. Vertical head gradients are upward in a piezometer nest on a sand beach ridge in the peatlands 12 miles north of Upper Red Lake. Numerical sectional models indicate that this discharge probably comes from local flow systems recharged from ground-water mounds located under large raised bogs.

  16. Late-glacial to late-Holocene shifts in global precipitation δ18O

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Lechler, A.; Pausata, F. S. R.; Fawcett, P. J.; Gleeson, T.; Cendón, D. I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-10-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation δ18O. Here we present a synthesis of 86 globally distributed groundwater (n = 59), cave calcite (n = 15) and ice core (n = 12) isotope records spanning the late-glacial (defined as ~ 50 000 to ~ 20 000 years ago) to the late-Holocene (within the past ~ 5000 years). We show that precipitation δ18O changes from the late-glacial to the late-Holocene range from -7.1 ‰ (δ18Olate-Holocene > δ18Olate-glacial) to +1.7 ‰ (δ18Olate-glacial > δ18Olate-Holocene), with the majority (77 %) of records having lower late-glacial δ18O than late-Holocene δ18O values. High-magnitude, negative precipitation δ18O shifts are common at high latitudes, high altitudes and continental interiors (δ18Olate-Holocene > δ18Olate-glacial by more than 3 ‰). Conversely, low-magnitude, positive precipitation δ18O shifts are concentrated along tropical and subtropical coasts (δ18Olate-glacial > δ18Olate-Holocene by less than 2 ‰). Broad, global patterns of late-glacial to late-Holocene precipitation δ18O shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation δ18O shifts, we compiled simulated precipitation δ18O shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better inter-model and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in

  17. Comparison of glacial periods reveals systematic cold climate variability

    NASA Astrophysics Data System (ADS)

    Bauch, Henning

    2013-04-01

    On a global scale, major variations in Pleistocene temperatures correlate well with glacial-interglacial changes of northern hemisphere ice sheet sizes. While a discharge of icebergs from the ice sheets surrounding the polar North Atlantic region directly reflects the rates of growth and decay of the ice sheet margins at sea level, it is also the result of a rapidly changing climate which affected both the meridional overturning in the ocean and the pattern in ocean-atmosphere circulation. Ice cores and many deep-sea sediment records from this region have demonstrated such complex interrelations between these main environmental processes for the last glaciation (Weichselian). In ice cores, the millennial-scale climate variabilities of the Weichselian are recognized in both hemispheres, albeit with apparently a significant time lag between the southern and northern pole regions. Comparing records of iceberg discharge from the polar and subpolar North Atlantic now reveals a very similar millennial-scale variability between the Weichselian and the penultimate glaciation (Saalian) during which warmer, interstadial times alternated with rather cold polar conditions. Because cold conditions in the polar North were also time-coeval with enhanced aridity and atmospheric dust content (e.g. at least over northern Africa due to changes in the monsoon system), the glacial dust records of Antarctica, which extend back in time much farther than Greenland ice records, could be used to also make an interhemispheric climate comparison. For the last two glaciations such a comparison would indeed indicate a strong linkage between iceberg discharge events in the polar North and increased dust content in the atmosphere.

  18. A benchmark study for glacial isostatic adjustment codes

    NASA Astrophysics Data System (ADS)

    Spada, G.; Barletta, V. R.; Klemann, V.; Riva, R. E. M.; Martinec, Z.; Gasperini, P.; Lund, B.; Wolf, D.; Vermeersen, L. L. A.; King, M. A.

    2011-04-01

    The study of glacial isostatic adjustment (GIA) is gaining an increasingly important role within the geophysical community. Understanding the response of the Earth to loading is crucial in various contexts, ranging from the interpretation of modern satellite geodetic measurements (e.g. GRACE and GOCE) to the projections of future sea level trends in response to climate change. Modern modelling approaches to GIA are based on various techniques that range from purely analytical formulations to fully numerical methods. Despite various teams independently investigating GIA, we do not have a suitably large set of agreed numerical results through which the methods may be validated; a community benchmark data set would clearly be valuable. Following the example of the mantle convection community, here we present, for the first time, the results of a benchmark study of codes designed to model GIA. This has taken place within a collaboration facilitated through European Cooperation in Science and Technology (COST) Action ES0701. The approaches benchmarked are based on significantly different codes and different techniques. The test computations are based on models with spherical symmetry and Maxwell rheology and include inputs from different methods and solution techniques: viscoelastic normal modes, spectral-finite elements and finite elements. The tests involve the loading and tidal Love numbers and their relaxation spectra, the deformation and gravity variations driven by surface loads characterized by simple geometry and time history and the rotational fluctuations in response to glacial unloading. In spite of the significant differences in the numerical methods employed, the test computations show a satisfactory agreement between the results provided by the participants.

  19. Glacial Lake Outburst Flood on Lemon Creek, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Seifert, S. L.; Schwarz, T. C.; Walter, M. T.

    2001-12-01

    A system of small glacial lakes on Lemon Glacier near Juneau, AK was studied to better understand its annual jokulhlaup cycle. Although jokulhlaup behaviors of many supraglacial and glacially-dammed lakes around the world have been studied, some observed relationships among the governing parameters remain mysterious. An associated two-lake system, Lakes Linda and Lynn, which are uniquely small among similar research, provide an opportunity to investigate the applicability of previously developed relationships between discharge magnitude and lake volume to a different spatial scale. The system proved to be interesting in that its behavior does not fit well with established jokulhlaup taxonomy. Additionally, this glacier discharges into Lemon Creek, an important development corridor for Juneau, AK and a productive salmon stream. Understanding how the yearly Lemon Glacier jokulhlaup event impacts this stream is essential to monitoring and meaningfully interpreting water quality data. Historical USGS Lemon Creek streamflow data and icefield observations from the Juneau Icefield Research Program (JIRP) were used to characterize the Lemon Glacier Jokulhlaup and identify changes in system since its discovery in 1962. A detailed field study was carried out from 6/15/01 to 8/2/01 to improve our understanding of the mechanics and thermodynamics of this system. Monitored during this period were lake-levels, lake-temperature profiles, air temperature, surface temperature, relative humidity, precipitation, wind speed/direction, solar radiation, and Lemon Creek streamflow and water-quality. This system has undergone substantial historical changes including the relatively recent development of Lake Lynn, which is now the larger of the two lakes. Continued enlargement of this system is increasing its contribution to peak streamflows in Lemon Creek and thus its impact on stream water quality, especially with respect to sediment loading.

  20. Global Ice-loading History Reconstructed Over Five Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Williams, F. H.; Grant, K. M.; Tamisiea, M. E.; Rohling, E. J.; Hibbert, F. D.

    2014-12-01

    High resolution ice-loading reconstructions are a vital tool not only for palaeoclimate studies, but also for providing a palaeoenvironmental context to human development. Here we present a global ice-loading history developed using the high resolution, Red Sea relative sea-level (RSL) record. (Siddall et al. 2003, Rohling et al. 2009, Grant et al. in submission) We use glacial isostatic adjustment modelling to determine a set of corrections to the Red Sea RSL record, which is then translated into a global mean sea level. This global mean sea level allows us to calculate a global ice volume. Global ice volume is geographically distributed within our ice-loading history according to currently available data regarding ice margins, their timing, and constraints on maximum ice load. Where constraints are sparse we use a combination of ICE-5G (Peltier, 2004) and the de Boer coupled ice sheet model (de Boer et al, 2014) as a template for ice distribution. Although an ice-loading history for the past 5 Myr exists, this is the first time that geographic constraints have been applied to global ice volumes over 5 glacial cycles. Our ice-loading reconstruction is further supported by the high resolution of our source RSL data. Our ice-loading history is tested against a global compilation of coral sea-level indicators (Hibbert et al., in prep.), and compared with ice histories developed from alternate ice volume reconstructions or RSL records, including a global ice history based on that developed by de Boer et al. (2014), the sea-level record of Waelbroeck et al. (2002) and a simple ice history based on the δ18O stack of Lisiecki and Raymo (2005).

  1. Mega-scale glacial lineations and drumlins: a morphological continuum?

    NASA Astrophysics Data System (ADS)

    Spagnolo, M.; Stokes, C. R.; Clark, C. D.; Dunstone, R. B.

    2012-04-01

    Mega-scale glacial lineations (MSGL) are highly elongate ridges that maintain a parallel conformity over length of 10s of km. Investigation of relict MSGL suggests that they form under fast flowing ice streams. This has now been verified by direct imaging of the bed of Rutford ice stream, West Antarctica. However, the mechanism(s) of MSGL formation is rather poorly understood, although some divergent theories and models have been suggested. Some of these theories have developed from concepts and models initially proposed to explain the formation of another glacial bedform, the drumlin. This would support the idea of a subglacial bedform continuum, i.e. that a distinction amongst related bedforms is artificial because each 'type' of landform gradually evolves into the other and they are the expression of the same fundamental process of formation. To date, very few (if any?) studies have attempted to systematically quantify the morphometric (size and shape) differences and similarities between drumlins and MSGL using a large database. In this paper, we present the result of an extensive analysis of drumlins and MSGL that are found within a single flow-set formed by the Dubawnt lake palaeo-ice stream on the central Canadian Shield. Thousands of MSGL and drumlins have been mapped there for analysis of bedform length, width, elongation, shape (planar asymmetry) and spatial distribution. Results are also compared to other published studies. Altogether, they strongly suggest that the morphometric difference between a 'drumlin' and 'MSGL' is subtle and that, for most variables, the frequency distribution of one landform population largely overlap with that of the other. This supports the idea that the same process might indeed be responsible for the formation of both.

  2. Paleoecology of central Kentucky since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Wilkins, Gary R.; Delcourt, Paul A.; Delcourt, Hazel R.; Harrison, Frederick W.; Turner, Manson R.

    1991-09-01

    Pollen grains and spores, plant macrofossils, and sponge spicules from a 7.2-m sediment core from Jackson Pond dating back to 20,000 yr B.P. are the basis for new interpretations of vegetational, limnological, and climatic changes in central Kentucky. During the full-glacial interval (20,400 to 16,800 yr B.P.) upland vegetation was closed spruce forest with jack pine as a subdominant. Aquatic macrophyte and sponge assemblages indicate that the site was a relatively deep, open pond with low organic productivity. During late-glacial time (16,800 to 11,300 yr B.P.) spruce populations continued to dominate while jack pine declined and sedge increased as the vegetation became a more open, taiga-like boreal woodland. Between 11,300 and 10,000 yr B.P., abundances of spruce and oak pollen oscillated reciprocally, possibly reflecting the Younger Dryas oscillation as boreal taxa underwent a series of declines and increases at the southern limit of their ranges before becoming extirpated and replaced by deciduous forest. In the early Holocene (10,000 to 7300 yr B.P.) a mesic deciduous woodland developed; it was replaced by xeric oak-hickory forest during the middle Holocene between 7300 and 3900 yr B.P. Grass increased after 3900 yr B.P., indicating that the presettlement vegetation mosaic of mixed deciduous forest and prairie (the "Kentucky Barrens") became established in central Kentucky after the Hypsithermal interval. Sponge spicules increased in number during the Holocene, reflecting reduced water depths in the pond. Sediment infilling, as well as climatic warming and the expansion of fringing shrub thickets, increased nutrient and habitat availability for freshwater sponges.

  3. Fast Vegetational Responses to Late-Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Post, D. M.; Cwynar, L. C.; Lotter, A. F.; Levesque, A. J.

    2001-12-01

    How rapidly can natural ecosystems respond to rapid climate change? This question can be addressed by studying paired paleoecological and paleoclimatological records spanning the last deglaciation. Between 16 and 10 ka, abrupt climatic oscillations (e.g. Younger Dryas, Gerzensee/Killarney Oscillations) interrupted the general warming trend. Rates of climate change during these events were as fast or faster than projected rates of change for this century. We compiled a dozen high-resolution lacustrine records in North America and Europe with a pollen record and independent climatic proxy, a clear Younger Dryas signal, and good age control. Cross-correlation analysis suggests that vegetation responded rapidly to late-glacial climate change, with significant changes in vegetation composition occurring within the lifespan of individual trees. At all sites, vegetation lagged climate by less than 200 years, and at two-thirds of the sites, the initial vegetational response occurred within 100 years. The finding of rapid vegetational responses is consistent across sites and continents, and is similar to the 100-200 year response times predicted by gap-scale forest models. Likely mechanisms include 1) increased susceptibility of mature trees to disturbances such as fire, wind, and disease, thereby opening up gaps for colonization, 2) the proximity of these sites to late-glacial treeline, where climate may directly control plant population densities and range limits, 3) the presence of herbaceous taxa with short generation times in these plant communities, and 4) rapid migration due to rare long-distance seed dispersals. Our results are consistent with reports that plant ranges are already shifting in response to recent climate change, and suggest that these shifts will persist for the next several centuries. Widespread changes in plant distributions may affect surface-atmosphere interactions and will challenge attempts to manage ecosystems and conserve biodiversity.

  4. On the Timing of Glacial Terminations in the Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Khider, D.; Ahn, S.; Lisiecki, L. E.; Lawrence, C.; Kienast, M.

    2015-12-01

    Understanding the mechanisms through which the climate system responds to orbital insolation changes requires establishing the timing of events imprinted on the geological record. In this study, we investigate the relative timing of the glacial terminations across the equatorial Pacific in order to identify a possible mechanism through which the tropics may have influenced a global climate response. The relative termination timing between the eastern and western equatorial Pacific was assessed from 15 published SST records based on Globigerinoides ruber Mg/Ca or alkenone thermometry. The novelty of our study lies in the accounting of the various sources of uncertainty inherent to paleoclimate reconstruction and timing analysis. Specifically, we use a Monte-Carlo process allowing sampling of possible realizations of the time series that are functions of the uncertainty of the benthic δ18O alignment to a global benthic curve, of the SST uncertainty, and of the uncertainty in the change point, which we use as a definition for the termination timing. We find that the uncertainty on the relative timing estimates is on the order of several thousand years, and stems from age model uncertainty (60%) and the uncertainty in the change point detection (40%). Random sources of uncertainty are the main contributor, and, therefore, averaging over a large datasets and/or higher resolution records should yield more precise and accurate estimates of the relative lead-lag. However, at this time, the number of records is not sufficient to identify any significant differences in the timing of the last three glacial terminations in SST records from the Eastern and Western Tropical Pacific.

  5. Cataclysmic Late pleistocene flooding from glacial Lake Missoula: A review

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.; Bunker, Russell C.

    Late Wisconsin floods from glacial Lake Missoula occurred between approximately 16 and 12 ka BP. Many floods occurred; some were demonstrably cataclysmic. Early studies of Missoula flooding centered on the anomalous physiography of the Channeled Scabland, which J. Harlen Bretz hypothesized in 1923 to have developed during a debacle that he named 'The Spokane Flood'. Among the ironies in the controversy over this hypothesis was a mistaken view of uniformitarianism held by Bretz's adversaries. After resolution of the scabland's origin by cataclysmic outburst flooding from glacial Lake Missoula, research since 1960 emphasized details of flood magnitudes, frequency, routing and number. Studies of flood hydraulics and other physical parameters need to utilize modern computerized procedures for flow modeling, lake-burst simulation, and sediment-transport analysis. Preliminary simulation models indicate the probability of multiple Late Wisconsin jökulhlaups from Lake Missoula, although these models predict a wide range of flood magnitudes. Major advances have been made in the study of low-energy, rhythmically bedded sediments that accumulated in flood slack-water areas. The 'forty floods' hypothesis postulates that each rhythmite represents the deposition in such slack-water areas of separate, distinct cataclysmic floods that can be traced from Lake Missoula to the vicinity of Portland, Oregon. However, the hypothesis has numerous unsubstantiated implications concerning flood magnitudes, sources, routing and sedimentation dynamics. There were multiple great Late Wisconsin floods in the Columbia River system of the northwestern United States. Studies of high-energy, high altitude flood deposits are necessary to evaluate the magnitudes of these floods. Improved geochronologic studies throughout the immense region impacted by the flooding will be required to properly evaluate flood frequency. The cataclysmic flood concept championed by J. Harlen Bretz continues to stimulate

  6. Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula

    USGS Publications Warehouse

    Denlinger, Roger P.; O'Connell, D. R. H.

    2009-01-01

    Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.

  7. The early rise and late demise of New Zealand’s last glacial maximum

    PubMed Central

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-01-01

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  8. The early rise and late demise of New Zealand's last glacial maximum.

    PubMed

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-08-12

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  9. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ciais, P.; Tagliabue, A.; Cuntz, M.; Bopp, L.; Scholze, M.; Hoffmann, G.; Lourantou, A.; Harrison, S. P.; Prentice, I. C.; Kelley, D. I.; Koven, C.; Piao, S. L.

    2012-01-01

    During each of the late Pleistocene glacial-interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40+/-10 Pg C yr-1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

  10. A global compilation of glacial 10Be and 26Al exposure ages

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob

    2015-04-01

    Cosmogenic dating has enabled direct dating of glacial landforms and deposits, greatly improving our understanding of past glaciations in terms of timing as well as glacial erosion and preservation. Over the last 25 years a large (and growing) number of publications have reported cosmogenic exposure ages from glacial landforms around the world. Here a global compilation of glacial 10Be and 26Al exposure ages will be presented aiming at an analysis and quantification of cosmogenic dating uncertainties. The dataset consists of >9300 10Be exposure ages and >1400 26Al exposure ages with full input data (location, elevation, sample type, sample thickness, concentration, standardization etc.). All exposure ages have been recalculated with updated reference production rates and organized in discrete glacial landform groups enabling evaluation of exposure age scatter due to prior and incomplete exposure. Exposure age scatter is common and increase significantly for glacial landforms older than the global last glacial maximum, making precise cosmogenic dating of older glaciations difficult. The data will be used to evaluate exposure dating of different sample types (boulder vs bedrock surfaces) and sample selection based on boulder size. Exposure ages from the paleo-ice sheets will be compared with mountain glacier exposure ages, aiming at picking out the good (well-clustered) exposure ages. The full dataset will eventually be posted online and continuously updated with published exposure age data.

  11. On the glacial and inter-glacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-03-01

    The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.

  12. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000

    NASA Astrophysics Data System (ADS)

    Pflaumann, U.; Sarnthein, M.; Chapman, M.; D'Abreu, L.; Funnell, B.; Huels, M.; Kiefer, T.; Maslin, M.; Schulz, H.; Swallow, J.; van Kreveld, S.; Vautravers, M.; Vogelsang, E.; Weinelt, M.

    2003-09-01

    The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45° and 60°N, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12°C. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by () [1981]. The zonal belt of minimum SST seasonality between 2° and 6°N suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6°-8°C during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37k- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.

  13. Phosphorus burial in the ocean over glacial-interglacial time scales

    NASA Astrophysics Data System (ADS)

    Tamburini, F.; Föllmi, K. B.

    2009-04-01

    The role of nutrients, such as phosphorus (P), and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to most recent ones that changes in the glacial ocean inventory of phosphorus were important but not influential if compared to other macronutrients, such as nitrate. Using new data coming from a selection of ODP sites, we analyzed the distribution of oceanic P sedimentary phases and calculate reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period at these sites. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR) of reactive P show higher variability. If we extrapolate for the analyzed sites, we may assume that in general glacial burial fluxes of reactive P are lower than those during interglacial periods by about 8%, because the lack of burial of reactive P on the glacial shelf reduced in size, was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we evaluate their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 17-40% compared to interglacial stages. Variations in the distribution of sedimentary P phases at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations, which seems to point to P-richer waters at glacial terminations. All these findings would support the Shelf-Nutrient Hypothesis, which assumes that during glacial low stands nutrients are transferred from shallow sites to deep sea with possible

  14. Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: Glacial flow models using GCM-driven climate results and comparisons to geological observations

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.; Forget, Francois; Madeleine, Jean-Baptiste; Marchant, David R.

    2011-11-01

    A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid

  15. Large Glacitectonic structures on the Dogger Bank, southern North Sea; Implications for glacial dynamics, glacial limits, and interplay between the British and Fennoscandinavian Ice Sheets

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Cotterill, Carol; Long, Dave; Ruiter, Astrid; Phillips, Emrys; James, Leo; Forsberg, Carl Fredrik

    2013-04-01

    Recently acquired 2D seismic data (sparker) acquired over the Dogger Bank (DB) reveal large glacitectonic structures associated with late-Pleistocene glacial incursion into the southern North Sea. The densely populated survey data (100m line spacing) collected for the purposes of offshore windfarm development on the DB, allow for pseudo-3D interpretation. The sparker data show discrete thrust faults extending from within ~5 m of the seabed to ~200 m depth, and consistently terminate at one of two décollement surfaces. Preliminary mapping and amplitude extraction maps reveal the thrusts to occur in a series of thrust blocks (5-8 faults), with each set encompassing an area of approximately 6 km along-strike and 2 km at right angles. The overall zone of thrusting is up to 16 x 6 km on the western edge of the DB. The strike of the faults indicates ice-flow from the west. Other deformation structures include: open, recumbent, and fault propagation folds, as well as back thrusts, and pop-up structures. The relief of the DB (dimensions) is entirely accounted for by what has historically been termed the 'DB Formation'. These new data reveal that this seismostratigraphic unit likely consists of deposits from a variety of glacially influenced depositional regimes. The observed thrusts penetrate through the 'DB formation', indicating this phase of intense deformation post-dated the initial construction of the bank. Less pronounced glacial deformation affects much of the rest of the DB, and the products of this deformation (push-moraine complexes?) were possibly integral to the construction of the bank itself. While the style and fabric (NS?) of this deformation is less clear, it is likely there were multiple incursions of glacial ice, from different directions (and sources?), into this area where late-Pleistocene glaciation limits are poorly understood. Several mechanisms for forming such glacitectonic features have been proposed, and the thrust blocks here may have been

  16. A long pollen record from lowland Amazonia: Forest and cooling in glacial times

    SciTech Connect

    Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.

    1996-10-04

    A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23 refs., 22 tabs.

  17. Effect of low glacial atmospheric CO{sub 2} on tropical African montane vegetation

    SciTech Connect

    Jolly, D.; Haxeltine, A.

    1997-05-02

    Estimates of glacial-interglacial climate change in tropical Africa have varied widely. Results from a process-based vegetation model show how montane vegetation in East Africa shifts with changes in both carbon dioxide concentration and climate. For the last glacial maximum, the change in atmospheric carbon dioxide concentration alone could explain the observed replacement of tropical montane forest by a scrub biome. This result implies that estimates of the last glacial maximum tropical cooling based on tree-line shifts must be revised. 30 refs., 2 figs.

  18. Gigantic landslides versus glacial deposits: on origin of large hummock deposits in Alai Valley, Northern Pamir

    NASA Astrophysics Data System (ADS)

    Reznichenko, Natalya

    2015-04-01

    As glaciers are sensitive to local climate, their moraines position and ages are used to infer past climates and glacier dynamics. These chronologies are only valid if all dated moraines are formed as the result of climatically driven advance and subsequent retreat. Hence, any accurate palaeoenvironmental reconstruction requires thorough identification of the landform genesis by complex approach including geomorphological, sedimentological and structural landform investigation. Here are presented the implication of such approach for the reconstruction of the mega-hummocky deposits formation both of glacial and landslide origin in the glaciated Alai Valley of the Northern Pamir with further discussion on these and similar deposits validity for palaeoclimatic reconstructions. The Tibetan Plateau valleys are the largest glaciated regions beyond the ice sheets with high potential to provide the best geological record of glacial chronologies and, however, with higher probabilities of the numerous rock avalanche deposits including those that were initially considered of glacial origin (Hewitt, 1999). The Alai Valley is the largest intermountain depression in the upper reaches of the Amudarja River basin that has captured numerous unidentified extensive hummocky deposits descending from the Zaalai Range of Northern Pamir, covering area in more than 800 km2. Such vast hummocky deposits are usually could be formed either: 1) glacially by rapid glacial retreat due to the climate signal or triggered a-climatically glacial changes, such as glacial surge or landslide impact, or 2) during the landslide emplacement. Combination of sediment tests on agglomerates forming only in rock avalanche material (Reznichenko et al., 2012) and detailed geomorphological and sedimentological descriptions of these deposits allowed reconstructing the glacial deposition in the Koman and Lenin glacial catchments with identification of two gigantic rock avalanches and their relation to this glacial

  19. Instability of glacial climate in a model of the ocean- atmosphere-cryosphere system.

    PubMed

    Schmittner, Andreas; Yoshimori, Masakazu; Weaver, Andrew J

    2002-02-22

    In contrast to the relatively stable climate of the past 10,000 years, during glacial times the North Atlantic region experienced large-amplitude transitions between cold (stadial) and warm (interstadial) states. In this modeling study, we demonstrate that hydrological interactions between the Atlantic thermohaline circulation (THC) and adjacent continental ice sheets can trigger abrupt warming events and also limit the lifetime of the interstadial circulation mode. These interactions have the potential to destabilize the THC, which is already more sensitive for glacial conditions than for the present-day climate, thus providing an explanation for the increased variability of glacial climate. PMID:11823604

  20. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    NASA Astrophysics Data System (ADS)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  1. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt.

    PubMed

    Bizzotto, E C; Villa, S; Vaj, C; Vighi, M

    2009-02-01

    The release of persistent organic pollutants (PCBs, HCB, HCHs and DDTs) accumulated in Alpine glaciers, was studied during spring-summer 2006 on the Frodolfo glacial-fed stream (Italian Alps). Samples were also taken on a non-glacial stream in the same valley, to compare POP contribution from different water sources (glacier ice, recent snow and spring). In late spring and early summer (May, June) recent snow melting is the most important process. POP contamination is more affected by local emissions and transport, and comparable levels have been measured in both streams for all studied compounds. In late summer and autumn (July-October), the contribution of ice melting strongly increases. In the glacial-fed stream the concentration of chlorinated pesticides (HCHs and DDTs) is about one order of magnitude higher than in the non-glacial-fed. A different behaviour was observed for PCBs, characterised by a peak in June showing, in both streams, concentrations three orders of magnitude higher than the background levels measured in May and in October. This result should be attributed to local emissions rather than long range atmospheric transport (LRAT). This hypothesis is supported by the PCB congener profile in June strictly comparable to the most commonly used Aroclor technical mixtures. The different seasonal behaviour observed for the different groups of chemicals indicates the POP loading in glacial streams is a combined role of long range atmospheric transport and local emission. PMID:19054540

  2. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  3. Glacial history and behaviour of Mackay Glacier, Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Selwyn Jones, Richard; Mackintosh, Andrew; Norton, Kevin; Golledge, Nicholas; Fogwill, Christopher

    2014-05-01

    The configuration of Antarctic ice sheets is inherently linked to changes in climate and the encircling oceans. Direct observations of Antarctica have shown that changes are possible on the timescale of years to decades (Pritchard et al., 2012), but ice sheets also respond on longer timescales. Understanding the changes that occurred since the Last Glacial Maximum (LGM) is therefore vital for evaluating longer-term drivers of ice sheet changes. The Ross Sea embayment drains both the marine-based West Antarctic Ice Sheet (WAIS) as well as some of the East Antarctic Ice Sheet (EAIS) through the Transantarctic Mountains. At the LGM, grounded ice extended to the outer continental shelf (Shipp et al., 1999; Anderson et al., 2002). Timing of the subsequent deglaciation currently indicates that deglaciation in the Ross Sea Embayment initiated at ca. 14 ka (Licht et al., 1999), continued during the Holocene and slowed and/or stopped in recent millennia. To the east of the Ross Sea Embayment in West Antarctica, surface-exposure dating indicates thinning was underway by 11 ka (Stone et al., 2003) and in a similar manner to the Ross Sea, continued throughout the Holocene. A very rapid and large global sea level rise, known as Meltwater Pulse 1a, occurred during the last global deglaciation, between around 15 and 14 ka. Existing chronologies appear to indicate that Antarctic deglaciation slightly post-dated this event (e.g. Stone et al., 2003; Bentley et al., 2006; Mackintosh et al., 2011). In contrast, relative sea level evidence (Deschamps et al., 2012) and reinterpretation of geological data (Carlson & Clark, 2012) suggest that Antarctica was a significant contributor. Further direct constraints on the timing of deglaciation from Antarctica are required to test these competing hypotheses. This project aims to better reconstruct the configurations of the EAIS and WAIS in the Transantarctic Mountains region at the LGM, specifically of the Mackay Glacier system which has not

  4. Holocene Glacial Retreat at Walgreen Coast, West Antarctica

    NASA Astrophysics Data System (ADS)

    Lindow, J.; Johnson, J.; Castex, M.; Wittmann, H.; Smith, J.; Lisker, F.; Gohl, K.; Spiegel, C.

    2012-12-01

    The Walgreen Coast of West Antarctica represents one of the most rapidly changing sectors of the West Antarctic Ice Sheet (WAIS). With the fastest ice streams in the whole Antarctic, the WAIS is characterised by rapid thinning and grounding line retreat. Airborne and satellite-based short-term observations show a doubling of the negative net mass balance between 1996-2006 (Rignot et al., 2008). Furthermore, because the WAIS is largely grounded below sea level, continued inland thinning and grounding line retreat could result in rapid ice sheet collapse, which would raise global sea level by between 3-5 m. However, due to remoteness and challenging accessibility, onshore data is limited to a few isolated nunataks making it difficult to assess the long-term evolution of the glacial dynamics along Walgreen Coast. To address this we present new data from two key areas of the Walgreen Coast; the Kohler Range and the Pine Island Bay. Our 10Be surface exposure ages from erratic boulders in the Kohler Range are the first and reveal that this area became ice-free between 8.3 and 12.3 ka. This implies a long-term thinning rate of 3.3 cm/yr and agrees with similar data published from glaciers eastward. Our ages are also consistent with recent deglaciation models which suggest strong thinning after 15 ka and off-shore sediments shows a concurrent lateral ice-shelf front retreat. Our results suggest an ice-cover at least 300 m thicker in the Kohler Range during the early Holocene and that subsequent average thinning occurred on rates one order of magnitude slower than recent satellite measurements show. This implies that the recent trend in ice-sheet thinning results from a recent dynamic changes rather than a response to long-term thinning. To further constrain the lateral deglaciation history along the eastern Walgreen Coast, namely the Pine Island Glacier, we collected additional samples from a chain of islands, located flow-parallel and downstream of the ice-shelf front. We

  5. An inventory of glacial lakes in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Buckel, Johannes; Otto, Jan-Christoph; Keuschnig, Markus; Götz, Joachim

    2016-04-01

    The formation of lakes is one of the consequences of glacier retreat due to climate change in mountain areas. Numerous lakes have formed in the past few decades in many mountain regions around the globe. Some of these lakes came into focus due to catastrophic hazard events especially in the Himalayas and the Andes. Glacial lake development and lifetime is controlled by the complex interplay of glacier dynamics, geomorphological process activity and geological boundary conditions. Besides the hazard potential new lakes in formerly glaciated areas will significantly contribute to a new landscape setting and to changing geomorphologic, hydrologic and ecologic conditions at higher alpine altitudes. We present an inventory of high alpine lakes in the Austrian Alps located above an altitude of 1700 m asl. Most of these lakes are assumed to be of glacial origin, but other causes for development, like mass movements are considered as well. The inventory is a central part of the project FUTURELAKES that aims at modelling the potential development of glacial lakes in Austria (we refer to the presentation by Helfricht et al. during the conference for more details on the modelling part). Lake inventory data will serve as one basis for model validation since modelling is performed on different time steps using glacier inventory data. The purpose of the lake inventory is to get new insights into boundary conditions for lake formation and evolution by analysing existing lake settings. Based on these information the project seeks to establish a model of lake sedimentation after glacier retreat in order to assess the potential lifetime of the new lakes in Austria. Lakes with a minimum size of 1000 m² were mapped using multiple aerial imagery sources. The dataset contains information on location, geometry, dam type, and status of sedimentation for each lake. Additionally, various geologic, geomorphic and morphometric parameters describe the lake catchments. Lake data is related to

  6. Post-glacial sediment instabilities in Hardangerfjorden, Western Norway

    NASA Astrophysics Data System (ADS)

    Bellwald, Benjamin; Hjelstuen, Berit O.; Petter Sejrup, Hans; Haflidason, Haflidi

    2014-05-01

    Submarine mass movements are significant processes in fjord environments and a severe geohazard to infrastructures and populations along fjord coastlines. This study focuses on the 160 km-long Hardangerfjorden system, of which the inner 65 km of the fjord represents the main survey area. With a width varying between 1-10 km and a maximal water depth of 860 m, Hardangerfjorden is deeply cutting into Precambrian rocks. The fjord system was, furthermore, completely covered by ice during the Last Glacial Maximum, and its catchment area is still partly glaciated today by the Folgefonna and Hardangerjøkulen ice caps. The goal of this study is to better understand the triggering mechanisms of slides and turbidity currents within this fjord system. It further aims to reveal new knowledge about mass movement frequencies for the time period since the last glacial. Therefore, to address these questions, we combine TOPAS seismic profiles and densely gridded multibeam data with up to 20 m long sediment cores. In the study area, the general flat fjord bottom rises with a gradient of c. 1° from 860 m to 210 m landwards and is flanked by up to 79° steep sides. The fjord seabed is further cut by several c. 15 m high slide escarpments. Slide escarpments of the same height as those observed at the fjord seabed are also identified along the fjord flanks which have gradients of c. 10°. The sediments deposited in the fjord basins are characterized by acoustically well-laminated glacimarine/hemipelagic units that are interfingered by several acoustically transparent lenses, interpreted to be slide debrites. These slide debrites are commonly deposited along high-reflective seismic stratigraphic horizons and can be linked to the observed slide scars. The different mass movement deposits make up a significant amount of the total sediment package in the fjord. Seismic profiles revealed 8 large slide debrites, up to 16 m in thickness for the uppermost 80 m of the sediment package that is

  7. The glacial geology of southern St. Joseph County, Michigan

    NASA Astrophysics Data System (ADS)

    Nicks, Linda

    The objective of the dissertation was to map the glacial geology in southern St. Joseph County, Michigan. The surficial geology was divided into three distinct land systems which are moraine, outwash and fan deposits. The Sturgis Moraine is the most prominent feature transecting the study area from east to west. The topography is further dissected by southwest-trending channels interpreted as tunnel channels. Thick accumulations of sand and gravel in the study area indicate that glacial meltwater deposition played a dominant role in shaping the landscape. Based on the relative size of the channels and outwash deposits, the largest contribution from meltwater deposition was from the Saginaw Lobe and the least from the Huron-Erie Lobe. This study also demonstrated that geophysical techniques such as gamma ray logging of domestic water wells, ground penetrating radar and high resolution seismic were useful tools to identify sand, gravel and clay in the subsurface and the thickness of these units. Seven subsurface, gamma ray log markers could be traced throughout the study area. The gamma ray log markers were calibrated to four continuous cores from Sturgis. The lowest marker, the Sturgis till, lies above a buried soil of possible Sangamon age and is interpreted as a late Wisconsin till. It is present in all wells that are drilled to an adequate depth. Directly overlying the Sturgis till (between markers F--G), is a thin diamicton of similar color but different clay mineralogy (between markers E--F). This thin diamicton is variable in thickness and sometimes there is a facies change from diamicton to coarser grained material at the same stratigraphic level. This sequence is overlain by a sequence of sand and gravel (between markers A and E). This coarse grained sequence is sometimes punctuated by a sequence (or sequences) of higher gamma ray counts interpreted as finer grained units and these individual markers can be traced throughout the study area (markers A

  8. Glacial cycles drive variations in the production of oceanic crust

    NASA Astrophysics Data System (ADS)

    Katz, R. F.; Crowley, J. W.; Langmuir, C. H.

    2012-12-01

    Glacial cycles redistribute water between the oceans and continents, causing long-wavelength changes of static pressure in the upper mantle. Previous work has shown that subaerial, glaciated volcanoes respond to these changes with variation in eruption rates (Jull & McKenzie 1996, Huybers & Langmuir 2009), and has suggested that the magmatic flux at mid-ocean ridges may vary with changes in sea-level (Huybers & Langmuir 2009, Lund & Asimow 2011). The latter is speculative, however, because previous theory has assumed highly simplified melt transport and neglected the dependence of the ridge thermal structure on spreading rate. Moreover, it remains a challenge to connect model predictions of variations arising from sea-level change with sea-floor observations. Here we present results from a theoretical model of a mid-ocean ridge based on conservation of mass, momentum, energy, and composition for two phases (magma & mantle) and two thermodynamic components (enriched & depleted) (Katz 2008, 2010). The model is driven by imposed variations in the static pressure within the mantle. We consider both the geochemically inferred record of past sea-level variation, as well as simpler harmonic and instantaneous variations. The output of these models is compared with observations of bathymetry at ridges that are undisturbed by off-axis volcanism. The comparison is preliminary but suggests that some abyssal hills on the sea-floor are, at least in part, the result of glacial cycles. To understand the simulation results in more detail, we develop analytical solutions for a reduced-complexity model. This model is derived according to the idea that the melting induced by sea-level changes can be thought of as a small perturbation to a steady-state system. We obtain a Green's function solution for crustal thickness as a function of sea-level change with the associated dependencies on geophysical parameters of the magma/mantle system. We show that this solution captures much of the

  9. What Controls the Pacing of 100-ky Glacial Cycles?

    NASA Astrophysics Data System (ADS)

    Raymo, M. E.; Kawamura, K.; Lisiecki, L.; Thompson, W. G.; Severinghaus, J. P.

    2006-12-01

    Climate variations over the last ~700,000 years are characterized by orbital periodicities of 100, 41 and 23 ky. While 23- and 41-ky components are understood as linear climatic responses to forcing by precession (modulated by eccentricity) and obliquity, respectively, the 100-ky cycle cannot be explained as a linear response to eccentricity. Rather, it has been suggested that the 100-ky cycle is caused by skipping of higher frequency beats which results in the bundling of either 4 or 5 precession cycles (Raymo, Paleoceanography, 1997), or 2 or 3 obliquity cycles (Huybers and Wunsch, Nature, 2005), each grouping resulting in an average 100 ky periodicity. However, verification of these competing hypotheses has not been possible because of the lack of accurately dated climate proxies. Here, using statistical tests of newly established chronologies of Antarctic climate (Kawamura et al., AGU 2006 fall meeting) and sea level high stands (Thompson, in preparation), we show that precession pacing is statistically more significant than obliquity pacing for the last five glacial terminations. We used the timings of Antarctic warmings at terminations from the Dome Fuji ice core for termination I to III, and from the Vostok core for termination IV. The timing of termination V was estimated by shifting the Dome C (EDC2) timescale to match the timing of peak MIS 11.3 with the Vostok record. The time of onset for the sea level high stands of the last four interglacial periods were estimated by correcting radiometric fossil coral ages with open-system age equations (Thompson et al., 2003, EPSL). Our results show that the null hypothesis for precession pacing can be rejected at the 3% significance level for the last five terminations from ice cores and for four terminations from sea level high stands, whereas the null hypothesis for obliquity pacing can be rejected only at >10% significance level. The statistical power of test for obliquity is high (>95% at the 10% significance

  10. Glacial termination hydroclimate in the Indo-Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Wang, X.; Chiang, H. W.; Bijaksana, S.; Jiang, X.; Imran, A. M.; Wicaksono, S. A.

    2014-12-01

    Hydroclimatic change in the Indo-Pacific Warm Pool (IPWP), the largest center of atmospheric deep convection on Earth, can have a profound influence on the global moisture and energy budgets. Although it has been extensively studied, the history of IPWP hydroclimate remains elusive, partially due to the scarcity of well-resolved hydroclimiate records from the region. Here we report a U/Th dated, high-resolution, calcite d18O record on IPWP hydroclimatic change, spanning the last glacial termination (termination-I or T-I) and the interval of time from the Marine Isotope Stage (MIS) 12 to MIS11 (termination-V or T-V). The record was obtained using speleothems collected from Southwest Sulawesi (S5o1', E119o44'), Indonesia. During T-I, the Sulawesi speleothem δ18O shows a few millennial-scale events, possibly a drier climate during the Younger Dryas (YD) and Heinrich Stadial 1 (HS1), but a relatively wet climate during the last glacial maximum (LGM) and the Bolling-Allerod (B-A). The pattern resembles those registered in the speleothem records from eastern China and Borneo. However, the Sulawesi d18O varies from ~ -5.8‰ to ~ -7.3‰ during the last termination, which is much smaller than the magnitudes shown in China and Borneo cave samples (~ 4‰). On the other hand, the Sulawesi cave record is anti-correlated with the Flores speleothem record in terms of their millennial-scale events. Yet, the two Indonesian records share a similar, small d18O variation (~1.5‰). Such observations therefore suggest that the Intertropical Convergence Zone (ITCZ) probably became narrower when responding to the northern high-latitude climatic forcing during the T-I, and it centered zonally between the two Indonesian locations. Interestingly, Sulawesi speleothem d18O has a larger magnitude of shift during T-V, from ~ -5.7‰ in MIS12 to ~ -8.7‰ at the peak of MIS11. Given that Sulawesi cave d18O is not sensitive to sea level change and orbital forcing, we suspect that a much lower

  11. Indonesian Throughflow variability over the last glacial cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Holbourn, A. E.; Kuhnt, W.; Regenberg, M.; Xu, J.; Hendrizan, M.; Schröder, J.

    2013-12-01

    The transfer of surface and intermediate waters from the Pacific Ocean to the Indian Ocean through the Indonesian archipelago (Indonesian Throughflow: ITF) strongly influences the heat and freshwater budgets of tropical water masses, in turn affecting global climate. Key areas for monitoring past ITF variations through this critical gateway are the narrow passages through the Makassar Strait and Flores Sea and the main outflow area within the Timor Sea. Here, we integrate high-resolution sea surface temperature and salinity reconstructions (based on paired planktic foraminiferal Mg/Ca and δ18O) with X-ray fluorescence runoff data and benthic isotopes from marine sediment cores retrieved in these regions during several cruises with RV'Sonne' and RV'Marion Dufresne'. Our results show that high latitude climate variability strongly influenced ITF intensity on millennial to centennial timescales as well as on longer glacial-interglacial timescales. Marked declines in ITF strength occurred during Heinrich events and the Younger Dryas, most likely related to slowdown of the global thermohaline circulation during colder northern hemisphere climate spells, when deep water production decreased and the deep ocean became more stratified. Additionally, the surface component of the ITF strongly reflects regional windstress and rainfall patterns, and thus the spatial extent and intensity of the tropical convection over the Indonesian archipelago. Our runoff and salinity estimates reveal that the development of the tropical convection was intricately linked to the latitudinal migration of the Inter Tropical Convergence Zone (ITCZ). In particular, our data show that the Australian monsoon intensified during the major deglacial atmospheric CO2 rise through the Younger Dryas and earliest Holocene (12.9-10 ka). This massive intensification of the Australian monsoon coincided with a southward shift of the ITCZ, linked to southern hemisphere warming and enhanced greenhouse forcing

  12. Deglaciation and glacial erosion: A joint control on magma productivity by continental unloading

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Caricchi, Luca; Castelltort, Sébastien; Champagnac, Jean-Daniel

    2016-02-01

    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking the solid Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic, and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated regardless of continental unloading by glacial erosion, albeit the density of rock exceeds that of ice by approximately 3 times. Here we present and discuss numerical results involving synthetic but realistic topographies, ice caps, and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading. Our study represents an additional step toward a more general understanding of the links between a changing climate, glacial processes, and the melting of the solid Earth.

  13. Lithological and structural controls for glacial valley development in the Valais, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Valla, P. G.; Herman, F.; Champagnac, J.-D.

    2009-04-01

    Quaternary glaciations affected most modern mountain ranges and shaped glacial landscapes including U-shaped valleys, overdeepenings, cirques and ridgelines. Glacial valley formation has been explained using qualitative morphometric evidence or small-scale models (e.g., MacGregor et al., 2000); however glacial erosion rates and the timing of glacial valley formation are presently poorly understood. Glacial erosion is often approximated by scaling erosion rates to the basal sliding velocity of ice (e.g., Herman and Braun, 2008); and several studies show that the faster erosion occurs at the Equilibrium Line Altitude (ELA, e.g., Anderson et al., 2006). Furthermore it has been proposed that lithology and structural control influence glacial erosion (Harbor, 1995). The Valais in the Swiss Alps is an ideal natural laboratory to better understand these issues. This area is mainly drained by the Rhône valley, a large and overdeepened U-shaped valley; with several high relief transverse valleys. The geology of the area is contrasted, most transverse valleys cut into Penninic metamorphic rocks, whereas the Rhône valley lies mainly on soft Mesozoic sedimentary sequences, highly fracturated by the long-lived Rhône-Simplon fault zone (e.g., Hubbard and Mancktelow, 1992; Champagnac et al., 2003). This context is thus ideal to test potential lithological and/or structural controls on glacial valley formation. We used a 2D numerical model (Herman and Braun, 2008) that is calibrated using the sediment budget record since the Last Glacial Maximum (Hinderer, 2001), LGM ice-surface geometry (Kelly et al., 2004), and field observations. We first explore the effects of initial topographic conditions on the computed erosion patterns. Using a uniform lithology, the predicted glacial erosion patterns do not enable explaining the contrast between the overdeepened Rhône valley and its lateral tributaries. Lithological dependent erosion law is therefore necessary to explain these spatial

  14. Hazard and Risk of Glacial Lake Outburst Floods in the Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Rounce, David; McKinney, Daene

    2016-04-01

    As the climate changes and glaciers continue to melt, the number of glacial lakes and the size of these lakes is rapidly increasing. These glacial lakes are contained by terminal moraines composed of debris, soil, and sometimes ice, which are susceptible to fail catastrophically and cause a glacial lake outburst flood (GLOF). Understanding the hazard and risk associated with these lakes is important for downstream communities and other stakeholders, e.g., hydroelectric companies. Unfortunately, existing methods that are used to assess GLOF hazards yield conflicting classifications, which leads to confusion amongst the stakeholders who these studies are meant to assist. This study assesses existing methods on potentially dangerous glacial lakes in Nepal and uses these methods to develop an objective and holistic risk & action framework that may be used to assist and prioritize risk-mitigation actions.

  15. Glacial landforms in Ius Chasma, Mars — Indicators of Two Glaciation Episodes

    NASA Astrophysics Data System (ADS)

    Dębniak, K. T.; Kromuszczyńska, O.

    2016-06-01

    Results of geomorphological mapping of glacial landforms in Ius Chasma, Valles Marineris, Mars are presented. The results indicate at least two episodes of glaciations which occurred in the trough system.

  16. A comparison of eastern North American seismic strain-rates to glacial rebound strain-rates

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Bent, Allison L.

    1994-01-01

    Glacial rebound strain-rates computed using a simple Laurentide glacial loading model are of the order of 10(exp -9) per year within the region of glaciation and extending several hundred kilometers beyond. The horizontal strain-rates receive approximately equal contributions from horizontal and vertical velocities, a consequence of the spherical geometry adopted for the Earth model. In the eastern United States and southeastern Canada the computed strain-rates are 1-3 orders of magnitude greater than an estimate of the average seismic strain-rate (Anderson, 1986) and approximately 1 order of magnitude greater than predicted erosional strain-rates. The predicted glacial rebound strain-rates are not, in general, oriented in such a way as to augment the observed state of deviatoric stress, possibly explaining why the seismic strain-rates are much smaller than the glacial rebound strain-rates. An exception to this may be seismically active regions in the St. Lawrence valley.

  17. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  18. Perennial mounds in Utopia Planitia: (HiRISE) Evidence of a Glacial Origin

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Osinski, G. R.; Thomson, L.

    2009-03-01

    Here, we use HiRISE and high-resolution MOC images to discuss sub-kilometer pingo-like mounds in Utopia Planita. The mounds show geological characteristics consistent with formation by glacial accumulation, and ablation by sublimation.

  19. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    PubMed

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  20. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Böhm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, B.; Fohlmeister, J.; Frank, N.; Andersen, M. B.; Deininger, M.

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of 231Pa/230Th and 143Nd/144Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods).

  1. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.

    PubMed

    Böhm, E; Lippold, J; Gutjahr, M; Frank, M; Blaser, P; Antz, B; Fohlmeister, J; Frank, N; Andersen, M B; Deininger, M

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of (231)Pa/(230)Th and (143)Nd/(144)Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods). PMID:25517093

  2. Large arctic temperature change at the Wisconsin-Holocene glacial transition

    USGS Publications Warehouse

    Cuffey, Kurt M.; Clow, G.D.; Alley, R.B.; Stuiver, M.; Waddington, E.D.; Saltus, R.W.

    1995-01-01

    Analysis of borehole temperature and Greenland Ice Sheet Project II ice-core isotopic composition reveals that the warming from average glacial conditions to the Holocene in central Greenland was large, approximately 15??C. This is at least three times the coincident temperature change in the tropics and mid-latitudes. The coldest periods of the last glacial were probably 21??C colder than at present over the Greenland ice sheet.

  3. Phosphorus burial in the ocean over glacial-interglacial time scales

    NASA Astrophysics Data System (ADS)

    Tamburini, F.; Föllmi, K. B.

    2008-12-01

    The role of nutrients and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. One of the cornerstones is the role of phosphorus (P; in the form of phosphate). Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to the most recent one that changes in the glacial ocean inventory of phosphorus were small and not influential if compared to other macronutrients, such as nitrogen. Using new data coming from a selection of ODP sites, we illustrate oceanic P sedimentary phases distribution and reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR) show higher variability. On a global scale, glacial burial fluxes of reactive P are lower than those during interglacial periods by 7-10%, because lack of burial of reactive P on the glacial reduced shelf was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we try to infer their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 20-40% compared to interglacial stages. Variations in the C/P reactive ratios and in the P sedimentary phases distribution at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations. This seems to point to P-richer waters at glacial terminations, supporting the shelf-nutrient hypothesis and giving phosphorus a role as a potential player in climate change.

  4. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  5. N2 glacial flow on and onto Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; McKinnon, W. B.; Nimmo, F.; Schenk, P.; White, O. L.; Grundy, W. M.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    Sputnik Planum (SP)[1,2] is the high albedo crater-free western portion of Tombaugh Regio imaged in July by the New Horizons LORRI instrument. The relatively high resolution (400 m/pix) LORRI mosaics of the northern portions of the planum bordered by the Cousteau Rupes (CR) scarp reveal surface patterns highly suggestive of viscous flow dynamics. Spectroscopic measurements of SP taken by the New Horizons LEISA instrument also indicate that SP is a region containing (among others) a significant amount of N2 [2]. Taken together these observations suggest the possibility that the high albedo material on SP is glacial N2 ice atop a bedrock-like substrate and the notable lack of craters on SP means that these processes are acting on relatively fast geologic timescales. Using the known properties of N2 ice in the temperature range of interest, we formulate and implement a numerical landform evolution model in order to examine a number of hypothetical evolutionary scenarios for SP and its environs. [1] All place names on Pluto and Charon are informally known as such as of the writing of this abstract. [2] Stern, S. A et al. 2015 Science.

  6. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    SciTech Connect

    Condron, Alan; Winsor, Peter

    2011-02-10

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburst spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.

  7. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Zhengrong; Raub, Timothy D.; Macdonald, Francis A.; Evans, David A. D.

    2014-10-01

    Neoproterozoic cap carbonates host distinctive geochemical and sedimentological features that reflect prevailing conditions in the aftermath of Snowball Earth. Interpretation of these features has remained contentious, with hypotheses hinging upon timescale and synchronicity of deposition, and whether or not geochemical signatures of cap carbonates represent those of a well-mixed ocean. Here we present new high-resolution Sr and Mg isotope results from basal Ediacaran cap dolostones in South Australia and Mongolia. Least-altered Sr and Mg isotope compositions of carbonates are identified through a novel incremental leaching technique that monitors the purity of a carbonate sample and the effects of diagenesis. These data can be explained by the formation of these cap dolostones involving two chemically distinct solutions, a glacial meltwater plume enriched in radiogenic Sr, and a saline ocean residue with relatively lower 87Sr/86Sr ratios. Model simulations suggest that these water bodies remained dynamically stratified during part of cap-dolostone deposition, most likely lasting for ∼8 thousand years. Our results can potentially reconcile previous conflicts between timescales estimated from physical mixing models and paleomagnetic constraints. Geochemical data from cap carbonates used to interpret the nature of Snowball Earth and its aftermath should be recast in terms of a chemically distinct meltwater plume.

  8. Two contributors to the glacial CO2 decline

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Yu, Jimin; Putnam, Aaron E.

    2015-11-01

    It is generally accepted that the glacial drawdown of atmospheric CO2 content is the sole result of uptake by the ocean. Here we make a case that the reduction of planetary CO2 outgassing made a significant contribution. We propose that the ocean contribution to CO2 reduction closely followed Northern Hemisphere summer insolation and was superimposed on a ramp-like decline resulting from a reduction in the input of planetary CO2. We base this scenario on new records of δ13C and B to Ca ratio in cores from the upper and lower portions of the deep Atlantic. They demonstrate that the waxing and waning of the stratification of Atlantic deep water follows summer insolation. Our thoughts were driven by the observation that over the last 30 kyr the extent of mountain glaciation in both hemispheres appears to have tracked the atmosphere's CO2 content, suggesting that the connection between orbital cycles and land ice cover is via the ocean. Instead of a direct connection between ice extent and summer insolation, the tie is a modulation of the heat and fresh water budgets of the northern Atlantic. Changes in the boundary conditions lead to reorganizations of ocean circulation and, as a consequence, changes in CO2 storage in the ocean.

  9. Late glacial initiation of Holocene eastern Mediterranean sapropel formation.

    PubMed

    Grimm, Rosina; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Schmiedl, Gerhard; Müller-Navarra, Katharina; Adloff, Fanny; Grant, Katharine M; Ziegler, Martin; Lourens, Lucas J; Emeis, Kay-Christian

    2015-01-01

    Recurrent deposition of organic-rich sediment layers (sapropels) in the eastern Mediterranean Sea is caused by complex interactions between climatic and biogeochemical processes. Disentangling these influences is therefore important for Mediterranean palaeo-studies in particular, and for understanding ocean feedback processes in general. Crucially, sapropels are diagnostic of anoxic deep-water phases, which have been attributed to deep-water stagnation, enhanced biological production or both. Here we use an ocean-biogeochemical model to test the effects of commonly proposed climatic and biogeochemical causes for sapropel S1. Our results indicate that deep-water anoxia requires a long prelude of deep-water stagnation, with no particularly strong eutrophication. The model-derived time frame agrees with foraminiferal δ(13)C records that imply cessation of deep-water renewal from at least Heinrich event 1 to the early Holocene. The simulated low particulate organic carbon burial flux agrees with pre-sapropel reconstructions. Our results offer a mechanistic explanation of glacial-interglacial influence on sapropel formation. PMID:26028337

  10. The Last Glacial Maximum experiment in PMIP4-CMIP6

    NASA Astrophysics Data System (ADS)

    Kageyama, Masa; Braconnot, Pascale; Abe-Ouchi, Ayako; Harrison, Sandy; Lambert, Fabrice; Peltier, W. Richard; Tarasov, Lev

    2016-04-01

    The Last Glacial Maximum (LGM), around 21,000 years ago, is a cold climate extreme. As such, it has been the focus of many studies on modelling and climate reconstruction, which have brought knowledge on the mechanisms explaining this climate, in terms of climate on the continents and of the ocean state, and in terms relationships between climate changes over land, ice sheets and oceans. It is still a challenge for climate or Earth System models to represent the amplitude of climate changes for this period, under the following forcings: - Ice sheets, which represent perturbations in land surface type, altitude and land/ocean distribution - Atmospheric composition - Astronomical parameters Feedbacks from the vegetation and dust are also known to have played a role in setting up the LGM climate but have not been accounted for in previous PMIP experiments. In this poster, we will present the experimental set-up of the PMIP4 LGM experiment, which is presently being discussed and will be finalized for March 2016. For more information and discussion of the PMIP4-CMIP6 experimental design, please visit: https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:cmip6:design:index

  11. Ground movement at Somma-Vesuvius from Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana; Fedele, Lorenzo; Morra, Vincenzo

    2012-01-01

    Detailed micropalaeontological and petrochemical analyses of rock samples from two boreholes drilled at the archaeological excavations of Herculaneum, ~ 7 km west of the Somma -Vesuvius crater, allowed reconstruction of the Late Quaternary palaeoenvironmental evolution of the site. The data provide clear evidence for ground uplift movements involving the studied area. The Holocenic sedimentary sequence on which the archaeological remains of Herculaneum rest has risen several meters at an average rate of ~ 4 mm/yr. The uplift has involved the western apron of the volcano and the Sebeto-Volla Plain, a populous area including the eastern suburbs of Naples. This is consistent with earlier evidence for similar uplift for the areas of Pompeii and Sarno valley (SE of the volcano) and the Somma -Vesuvius eastern apron. An axisimmetric deep source of strain is considered responsible for the long-term uplift affecting the whole Somma -Vesuvius edifice. The deformation pattern can be modeled as a single pressure source, sited in the lower crust and surrounded by a shell of Maxwell viscoelastic medium, which experienced a pressure pulse that began at the Last Glacial Maximum.

  12. Late glacial initiation of Holocene eastern Mediterranean sapropel formation

    NASA Astrophysics Data System (ADS)

    Grimm, Rosina; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Schmiedl, Gerhard; Müller-Navarra, Katharina; Adloff, Fanny; Grant, Katharine M.; Ziegler, Martin; Lourens, Lucas J.; Emeis, Kay-Christian

    2015-06-01

    Recurrent deposition of organic-rich sediment layers (sapropels) in the eastern Mediterranean Sea is caused by complex interactions between climatic and biogeochemical processes. Disentangling these influences is therefore important for Mediterranean palaeo-studies in particular, and for understanding ocean feedback processes in general. Crucially, sapropels are diagnostic of anoxic deep-water phases, which have been attributed to deep-water stagnation, enhanced biological production or both. Here we use an ocean-biogeochemical model to test the effects of commonly proposed climatic and biogeochemical causes for sapropel S1. Our results indicate that deep-water anoxia requires a long prelude of deep-water stagnation, with no particularly strong eutrophication. The model-derived time frame agrees with foraminiferal δ13C records that imply cessation of deep-water renewal from at least Heinrich event 1 to the early Holocene. The simulated low particulate organic carbon burial flux agrees with pre-sapropel reconstructions. Our results offer a mechanistic explanation of glacial-interglacial influence on sapropel formation.

  13. Eyjabakkajokull Glacial Landsystem, Iceland: Geomorphic Impact of Multiple Surges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, O.; Schomacker, A.; Benediktsson, I.

    2013-12-01

    A new glacial geomorphological map of the Eyjabakkajökull forefield in Iceland is presented. The map covers c. 60 km2 and is based on high-resolution aerial photographs recorded in August 2008 as well as field checking. Landforms are manually registered in a geographical information system (ArcGIS) based on inspection of orthorectified imagery and digital elevation models of the area. We mapped subglacially streamlined landforms such as flutes and drumlins on the till plain, supraglacial landforms such as ice-cored moraine, pitted outwash, and concertina eskers, and ice-marginal landforms such as the large, multi-crested 1890 surge end moraine and smaller single-crested end moraines. The glaciofluvial landforms are represented by outwash plains, minor outwash fans, and sinuous eskers. Extramarginal sediments were also registered and consist mainly of old sediments in wetlands or locally weathered bedrock. Eyjabakkajökull has behaved as a surge-type glacier for 2200 years; hence, the mapped landforms originate from multiple surges. Landforms such as large glaciotectonic end moraines, hummocky moraine, long flutes, crevasse-fill ridges, and concertina eskers are characteristic for surge-type glaciers. The surging glacier landsystem of Eyjabakkajökull serves as a modern analog to the landsystems of terrestrial paleo-ice streams.

  14. Late glacial-Holocene paleocceanography of Hinlopen Strait, northern Svalbard

    NASA Astrophysics Data System (ADS)

    Koc, N.; Kristensen, D. K.; Slubowska, M.; Rasmussen, T.

    2003-04-01

    Timing and structure of the late and post glacial development of the northern Svalbard margin, together with the initial influx of the Atlantic water into the Arctic Ocean are still very poorly constrained. We investigated a sediment core (NP94-51) from a high accumulation area on the continental shelf north of Hinlopen Strait with the purpose of resolving the timing and structure of the last deglaciation. Detailed analyses of ice rafted detritus, benthic and planktic foraminiferal fauna, diatom flora, grain size and radiocarbon dates are used to reconstruct the paleoceanographic evolution of the area. Our results indicate that the disintegration of Hinlopen Strait ice and possibly the northern margin of the Svalbard ice sheet commenced between 13.7 - 13.9 14C Ky BP. Influx of subsurface Atlantic waters into the area (12.6 14C Ky BP) and the retreat of the sea-ice cover with the accompanying opening of the surface waters (10.8 14C Ky BP) happened at different times and both much later than the disintegration of the ice sheets. The transition into the Holocene shows a two-step warming.

  15. Self-organization of mega-scale glacial lineations

    NASA Astrophysics Data System (ADS)

    Martin, Carlos; Hilmar Gudmundsson, G.; Hogan, Kelly A.; King, Edward; Stokes, Chris R.

    2015-04-01

    Mega-scale glacial lineations (MSGL) are elongate corrugations in sediment that develop under fast-flowing regions in ice sheets. Their distinctive shape and distribution contains information about ice and sediment that is essential to understand the mass imbalance of present and past glaciated areas. Here we use a high-resolution full-Stokes numerical model of coupled flow of ice and sediment to investigate the genesis and evolution of MSGL. We compare our results with field examples from the base of Rutford Ice Stream, Antarctica, and from the now-exposed beds of paleo-ice streams at Anvers Trough, West Antarctic Peninsula, Dotson-Getz Trough, Amundsen Sea, and Dubawnt Lake in the Canadian Shield. We show that the origin of MSGL could be explained by naturally occurring perturbations in the geometry or mechanical properties of the sediment. These original perturbations grow, redistribute and elongate, as the sediment is transported downstream, until they reach a steady configuration. We find that MSGL amplitude is dependent of the strength of the original perturbation; their length is related to the time elapsed from the genesis of the feature; and the lateral spacing between lineations depends mainly on the macroscopic mechanical properties of the sediment. Finally, we conclude that MSGL can be understood as a self-organized system as their geometry and distribution is determined by local interactions between individual lineations and not as a response to the global flow of ice and sediment.

  16. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale.

    PubMed

    Dypvik, Eivind; Røstad, Anders; Kaartvedt, Stein

    2012-01-01

    The seasonal variations in glacier lanternfish (Benthosema glaciale) vertical distribution and diel vertical migration (DVM) were studied by use of a bottom-mounted upward-facing 38 kHz echo sounder deployed at 392 m depth and cabled to shore in Masfjorden (~60°52'N, ~5°24'E), Norway. Acoustic data from July 2007-October 2008 were analyzed, and scattering layers below ~220 m during daytime were attributed to glacier lanternfish based on net sampling in this, and previous studies, as well as from analysis of the acoustic data. At these depths, three different diel behavioral strategies were apparent: normal diel vertical migration (NDVM), inverse DVM (IDVM), and no DVM (NoDVM). NoDVM was present all year, while IDVM was present in autumn and winter, and NDVM was present during spring and summer. The seasonal differences in DVM behavior seem to correlate with previously established seasonal distribution of prey. We hypothesize that in regions with seasonally migrating zooplankton, such as where calanoid copepods overwinter at depth, similar plasticity in DVM behavior might occur in other populations of lanternfishes. PMID:24391274

  17. A fundamental Precambrian-Phanerozoic shift in earth's glacial style?

    NASA Astrophysics Data System (ADS)

    Evans, D. A. D.

    2003-11-01

    It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene-Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian-Permian, Ordovician-Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic-Cambrian "explosion" of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth's longterm climate, superimposed by developing regulatory feedbacks involving an increasingly complex biosphere.

  18. A singularity free approach to post glacial rebound calculations

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1994-01-01

    Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.

  19. Remote sensing for defining aquifers in glacial drift

    NASA Technical Reports Server (NTRS)

    Myers, V. I.

    1970-01-01

    Investigations were undertaken to determine the properties of shallow aquifers and related features that influence electromagnetic energy, to determine how these properties can be detected remotely, and to establish remote sensing procedures for aiding in ground water mapping. The direct influence of aquifier characteristics on surface thermal contrasts is discussed. Conclusions reached for late summer, predawn missions were: (1) Dynamic thermal changes near the surface can be used for thermal infrared sensing to detect shallow aquifers in glacial drift. (2) Under ideal conditions, surface temperatures may be used to predict certain features related to the occurrence of shallow aquifers. (3) The timing of missions and the optimum meteorological conditions occurring prior to and during the mission are critical for night thermal missions. (4) Repetitive flights made under variable conditions provide additional evidence to verify the occurrence of shallow aquifers. (5) Imagery from this investigation, along with ERTS-simulated imagery, indicates the feasibility of applying ERTS A and B data to reconnaissance studies for detection of shallow aquifers.

  20. Sea-level fluctuations during the last glacial cycle.

    PubMed

    Siddall, M; Rohling, E J; Almogi-Labin, A; Hemleben, Ch; Meischner, D; Schmelzer, I; Smeed, D A

    2003-06-19

    The last glacial cycle was characterized by substantial millennial-scale climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. Highstands of sea level can be reconstructed from dated fossil coral reef terraces, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios at millennial-scale resolution or higher. Records based on oxygen isotopes, however, contain uncertainties in the range of +/-30 m, or +/-1 degrees C in deep sea temperature. Here we analyse oxygen isotope records from Red Sea sediment cores to reconstruct the history of water residence times in the Red Sea. We then use a hydraulic model of the water exchange between the Red Sea and the world ocean to derive the sill depth-and hence global sea level-over the past 470,000 years (470 kyr). Our reconstruction is accurate to within +/-12 m, and gives a centennial-scale resolution from 70 to 25 kyr before present. We find that sea-level changes of up to 35 m, at rates of up to 2 cm yr(-1), occurred, coincident with abrupt changes in climate. PMID:12815427

  1. The cryosphere and glacial permafrost as its integral component

    NASA Astrophysics Data System (ADS)

    Dobiński, Wojciech

    2012-12-01

    Since Earth sciences have undertaken studies of other celestial bodies, its various fields have moved beyond the scope of study assigned to them by name. Interest in space makes it necessary to abandon research geocentrism and reverse relations when comparing the structure of the Earth with other celestial bodies. As an exceptional place in the universe, it should not be the Earth which constitutes a reference point, especially in cryospheric research, but rather the other celestial bodies of our planetary system. This approach, referred to as "Spatial Uniformitarianism," is the basis for determining the place of ice in the environment and for assigning it to the lithosphere. Ice can be penetrated by frost just as other minerals and rocks, so the occurrence of permafrost may yet be attributed to glaciers and ice-caps. In the article, the occurrence of glacial permafrost has been worked out on the basis of a thermal classification of glaciers with a thorough understanding of the phenomenon. This allows us to specify permafrost's presence beneath glaciers and ice-caps, a concept which had been needlessly vague. Further, by considering rock glaciers as a mixture of two types of rocks, and by understanding the importance of movement in their evolution, we are now closer to fruitfully determining their role in the environment, their geomorphological significance.

  2. Bioprospecting glacial ice for plant growth promoting bacteria.

    PubMed

    Balcazar, Wilvis; Rondón, Johnma; Rengifo, Marcos; Ball, María M; Melfo, Alejandra; Gómez, Wileidy; Yarzábal, Luis Andrés

    2015-08-01

    Glaciers harbor a wide diversity of microorganisms, metabolically versatile, highly tolerant to multiple environmental stresses and potentially useful for biotechnological purposes. Among these, we hypothesized the presence of bacteria able to exhibit well-known plant growth promoting traits (PGP). These kinds of bacteria have been employed for the development of commercial biofertilizers; unfortunately, these biotechnological products have proven ineffective in colder climates, like the ones prevailing in mountainous ecosystems. In the present work, we prospected glacial ice collected from two small tropical glaciers, located above 4.900 m in the Venezuelan Andes, for cold-active PGP bacteria. The initial screening strategy allowed us to detect the best inorganic-P solubilizers at low temperatures, from a sub-sample of 50 bacterial isolates. Solubilization of tricalcium phosphate, aluminum- and iron-phosphate, occurred in liquid cultures at low temperatures and was dependent on medium acidification by gluconic acid production, when bacteria were supplied with an appropriate source of carbon. Besides, the isolates were psychrophilic and in some cases exhibited a broad range of growth-temperatures, from 4 °C to 30 °C. Additional PGP abilities, including phytohormone- and HCN production, siderophore excretion and inhibition of phytopathogens, were confirmed in vitro. Nucleotidic sequence analysis of 16S rRNA genes allowed us to place the isolates within the Pseudomonas genus. Our results support the possible use of these strains to develop cold-active biofertilizers to be used in mountainous agriculture. PMID:26211959

  3. Glacial Atlantic overturning increased by wind stress in climate models

    NASA Astrophysics Data System (ADS)

    Muglia, Juan; Schmittner, Andreas

    2015-11-01

    Previous Paleoclimate Model Intercomparison Project (PMIP) simulations of the Last Glacial Maximum (LGM) Atlantic Meridional Overturning Circulation (AMOC) showed dissimilar results on transports and structure. Here we analyze the most recent PMIP3 models, which show a consistent increase (on average by 41 ± 26%) and deepening (663 ± 550 m) of the AMOC with respect to preindustrial simulations, in contrast to some reconstructions from proxy data. Simulations run with the University of Victoria (UVic) ocean circulation model suggest that this is caused by changes in the Northern Hemisphere wind stress, brought about by the presence of ice sheets over North America in the LGM. When forced with LGM wind stress anomalies from PMIP3 models, the UVic model responds with an increase of the northward salt transport in the North Atlantic, which strengthens North Atlantic Deep Water formation and the AMOC. These results improve our understanding of the LGM AMOC's driving forces and suggest that some ocean mechanisms may not be correctly represented in PMIP3 models or some proxy data may need reinterpretation.

  4. Numerical modelling of iceberg calving force responsible for glacial earthquakes

    NASA Astrophysics Data System (ADS)

    Sergeant, Amandine; Yastrebov, Vladislav; Castelnau, Olivier; Mangeney, Anne; Stutzmann, Eleonore; Montagner, Jean-Paul

    2016-04-01

    Glacial earthquakes is a class of seismic events of magnitude up to 5, occurring primarily in Greenland, in the margins of large marine-terminated glaciers with near-grounded termini. They are caused by calving of cubic-kilometer scale unstable icebergs which penetrate the full-glacier thickness and, driven by the buoyancy forces, capsize against the calving front. These phenomena produce seismic energy including surface waves with dominant energy between 10-150 s of period whose seismogenic source is compatible with the contact force exerted on the terminus by the iceberg while it capsizes. A reverse motion and posterior rebound of the terminus have also been measured and associated with the fluctuation of this contact force. Using a finite element model of iceberg and glacier terminus coupled with simplified fluid-structure interaction model, we simulate calving and capsize of icebergs. Contact and frictional forces are measured on the terminus and compared with laboratory experiments. We also study the influence of geometric factors on the force history, amplitude and duration at the laboratory and field scales. We show first insights into the force and the generated seismic waves exploring different scenarios for iceberg capsizing.

  5. Glacial Isostatic Adjustment - a hot topic in cold regions

    NASA Astrophysics Data System (ADS)

    Whitehouse, Pippa

    2016-04-01

    Glacial Isostatic Adjustment (GIA) modelling tackles the classic geodynamical problem of determining the solid Earth response to surface load changes by ice and ocean water whilst at the same time solving for the gravitationally-consistent redistribution of ice sheet meltwater across the global ocean. Understanding this process is important for quantifying both present-day ice mass balance and the response of ice sheets to past and future climatic change. The two fundamental unknowns in this problem are (i) the rheology of the solid Earth, and (ii) the history of global ice sheet change. In this talk I will discuss the myriad of approaches that are used to constrain these two components. In particular, I will focus on Antarctica, where the presence of a continuously-evolving ice sheet, situated on top of one of the most rheologically-diverse regions of the planet, provides us with a challenge that can only be resolved by drawing on knowledge from across the fields of geodynamics, glaciology, geology, geodesy and seismology.

  6. The static contribution of Glacial Isostatic Adjustment on the Geoid

    NASA Astrophysics Data System (ADS)

    Metivier, L.; Greff-Lefftz, M.

    2012-04-01

    The Glacial Isostatic Adjustment (GIA) is due to the unloading of ice on the Earth surface following the last deglaciation period a few thousand years ago. The ice mass redistributions induce an adjustment of the planet. Following this adjustment, there are viscoelastic deformations of the solid Earth, sea level rise, gravity variations, geocenter motions, and also disruption of the Earth's rotation. We investigate here the present-day impact of GIA on the "static" component of the geoid. It is well known that GIA processes induce slow time variations of the gravity and the geoid shape. The total accumulation of the geoid changes since the beginning of the last deglaciation induces a total geoid perturbation that seems today constant in time at the human time scale. We want here to infer precisely the magnitude of this constant component in order to construct a GIA free-geoid. We tested different GIA models and tested different Earth viscosity profiles. We show that the GIA induces a constant perturbation of the geoid that can be quite important over North America and Scandinavia regions, depending on Earth models.

  7. Late Glacial to Holocene relative sea-level change in Assynt, northwest Scotland, UK

    NASA Astrophysics Data System (ADS)

    Hamilton, Christine A.; Lloyd, Jeremy M.; Barlow, Natasha L. M.; Innes, James B.; Flecker, Rachel; Thomas, Caleb P.

    2015-09-01

    Relative sea-level change (RSL), from the Late Glacial through to the late Holocene, is reconstructed for the Assynt region, northwest Scotland, based on bio- and lithostratigraphical analysis. Four new radiocarbon-dated sea-level index points help constrain RSL change for the Late Glacial to the late Holocene. These new data, in addition to published material, capture the RSL fall during the Late Glacial and the rise and fall associated with the mid-Holocene highstand. Two of these index points constrain the Late Glacial RSL history in Assynt for the first time, reconstructing RSL falling from 2.47 ± 0.59 m OD to 0.15 ± 0.59 m OD at c. 14,000-15,000 cal yr BP. These new data test model predictions of glacial isostatic adjustment (GIA), particularly during the early deglacial period which is currently poorly constrained throughout the British Isles. Whilst the empirical data from the mid- to late-Holocene to present matches quite well with the recent GIA model output, there is a relatively poor fit between the timing of the Late Glacial RSL fall and early Holocene RSL rise. This mismatch, also evident elsewhere in northwest Scotland, may result from uncertainties associated with both the global and local ice components of GIA models.

  8. Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    NASA Technical Reports Server (NTRS)

    Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-01-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.

  9. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period

    NASA Astrophysics Data System (ADS)

    Skinner, L.; McCave, I. N.; Carter, L.; Fallon, S.; Scrivner, A. E.; Primeau, F.

    2015-02-01

    It has been proposed that the ventilation of the deep Pacific carbon pool was not significantly reduced during the last glacial period, posing a problem for canonical theories of glacial-interglacial CO2 change. However, using radiocarbon dates of marine tephra deposited off New Zealand, we show that deep- (> 2000 m) and shallow sub-surface ocean-atmosphere 14C age offsets (i.e. "reservoir-" or "ventilation" ages) in the southwest Pacific increased by ˜1089 and 337 yrs respectively, reaching ˜2689 and ˜1037 yrs during the late glacial. A comparison with other radiocarbon data from the southern high-latitudes suggests that broadly similar changes were experienced right across the Southern Ocean. If, like today, the Southern Ocean was the main source of water to the glacial ocean interior, these observations would imply a significant change in the global radiocarbon inventory during the last glacial period, possibly equivalent to an increase in the average radiocarbon age > 2 km of ˜ 700 yrs. Simple mass balance arguments and numerical model sensitivity tests suggest that such a change in the ocean's mean radiocarbon age would have had a major impact on the marine carbon inventory and atmospheric CO2, possibly accounting for nearly half of the glacial-interglacial CO2 change. If confirmed, these findings would underline the special role of high latitude shallow sub-surface mixing and air-sea gas exchange in regulating atmospheric CO2 during the late Pleistocene.

  10. Intermittent glacial sliding velocities explain variations in long-timescale denudation

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Ehlers, Todd A.

    2016-09-01

    Quantifying controls on glacial erosion over geologic timescales is central to understanding the role of Cenozoic climate change on the development of modern mountain belts, yet the mechanisms that produce the distinct relief and topography visible in glaciated regions remain poorly constrained. We test the hypothesis that commonly assumed glacial sliding parameterizations control denudation rates over geologic timescales. We do this by modeling glacier dynamics over a glacial-interglacial cycle and compare with a dense dataset of (U-Th)/He thermochronometer derived denudation rates from the southern Coast Mountains, BC. Results indicate zones of rapid Quaternary erosion correspond to locations where the model predicts the highest averaged sliding velocities. The results are consistent with the hypothesis that sliding influences the rate of glacial erosion. Regression between sliding predicted by the model and erosion rates shows a statistically significant correlation (r2 = 0.6). The coefficient of the regression (10-5) is smaller than previous estimates based on data from much shorter timescales. The model results also reveal that for a specific location, active subglacial sliding, and hence erosion, occurs for only ∼10-20% of a glacial-interglacial cycle, suggesting high temporal variations in erosion rates. This intermittency of erosion requires instantaneous erosion rates to be greater than long term averages, explaining how timescale averaging can impact estimates of glacial erosion rates.

  11. Last glacial aeolian dynamics at the Titel loess plateau (Vojvodina, Serbia)

    NASA Astrophysics Data System (ADS)

    Marković, S. B.; Bokhorst, M. P.; Machalett, B.; Štrbac, D.; Hambach, U.; Basarin, B.; Svirčev, Z.; Stevens, T.; Frechen, M.; Vandenberghe, J.

    2009-04-01

    The Titel loess plateau (Vojvodina, Serbia) is situated at the confluence of the rivers Danube and Tisa, in the southeastern part of the Bačka subregion. Various phases of fluvial erosion have shaped the ellipsoid form of the plateau, which is characterized by steep slopes on the margins. The Titel loess plateau is a unique geomorphologic feature, further emphasising the wide diversity of the loess landforms. The plateau is an island of loess with a maximum length of about 16 km and a maximum width of 7.2 km. Thick loess deposits of between 35 and 55 m are intercalated by 5 main pedocomplexes likely deposited thought the last 5 glacial/interglacial cycles. Steep loess cliffs expose several important sections for understanding climatic and environmental change during the middle and late Pleistocene in the region. The succession of palaeosols through the sequence strongly suggests a transition from humid interglacial climates in the middle Pleistocene, to drier interglacial climates in the late Pleistocene. Past aeolian dynamics have been reconstructed using magnetic susceptibility, grain size, geochemical and malacological investigations by depth in the thick last glacial unit. Luminescence dating and magnetic susceptibility inter-profile correlation provide the chronological framework. Lower last glacial loess unit V-L1L2 is loosely cemented porous sandy loess, with occasional fine laminations and thin, fine sand beds. Identified malacofauna indicates very dry climatic conditions and poor steppic vegetation. It is hypothesized that while the last glacial vegetation cover is extremely sparse, significant sedimentation rates during the lower last glacial can be explained by the presence of a cyanobacterial crust. Protection of loess sediments from deflation by the presence of a cyanobacterial crust is observed at present in loess quarries (Ruma, Crvenka, Petrovaradin). The middle glacial was warmer and relatively moist, as indicated by an increase in clay content

  12. Mapping Glacial Lakes on the Tibetan Plateau with Landsat TM/ETM+ Imagery

    NASA Astrophysics Data System (ADS)

    Li, J.; Sheng, Y.

    2009-12-01

    With a pronounced temperature rise of 0.16oC per decade, the Tibetan plateau is one of the world’s most vulnerable areas responding to global change. Glaciers and glacial lakes serve as sensitive indicators to these regional climate and water cycle variations. Recent study shows that glaciers on the plateau have retreated dramatically, leading to the expansion of the existing glacial lakes and the emergence ofnew glacial lakes. The existence of these lakes increases the possibility of outburst floods to the downstream areas during the ice melting season. Mapping and monitoring these glacial lakes will facilitate our understanding of the glacier-related hazards and regional climate changes. However, rigorous field surveys of glacial lake dynamics are prohibitive in high-mountainous areas on the plateau due to their low accessibility. Satellite remote sensing provides an efficient and objective tool to analyze the status and variations of glacial lakes. Theoretically, lakes and other surface open water bodies are readily identified in satellite images owing to their very low reflectance in near-infrared (NIR) channels of Landsat sensors. In the mountain regions where glacial lakes are located, cloud shadows, mountain shadows, melting glaciers or even lakes under different conditions (e.g., ice lakes, salt lakes, turbid lakes) could become disturbing factors and create problems to glacial lake delineation. We use normalized difference water index (NDWI), the normalized ratio index between the green and near infrared spectral bands, to differentiate water bodies from other land features. As lake features are on the relatively flat areas, topographic features such as terrain slope and hill shades derived from digital elevation model (DEM) are also used to remove the shadows from lakes. Based on NDWI and topographic characteristics, We have developed an automated hierarchical method to monitor glacial lakes using Landsat TM/ETM+ imagery. Firstly, lakes are roughly

  13. Linking glacial deposits and lake sediments for paleoclimate studies in the Northern Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Zamosteanu, Andrei; Mindrescu, Marcel; Anselmetti, Flavio; Akçar, Naki; Lowick, Sally E.; Vogel, Hendrik

    2015-04-01

    Timing and extent of glaciations in the Carpathian mountains are still controversely discussed, mostly due to the lack of well dated geomorphological and geochronological studies. We present the preliminary results of geomorphological and sedimentological analyses of glacial and lacustrine deposits in Bistricioara Valley located in the Rodna Mountains (Northern Romanian Carpathians). Most of the glacial deposits in the Romanian Carpathians, such as moraines, typically occur above 1600 m a.s.l. marking the maximum lowering of past glaciations. Most of the glacial lakes occur between 1800 and 2000 m a.s.l. Field surveys included mapping of moraines and erratic boulders using detailed topographical maps and aerial photos. A Digital Elevation Model (DEM) was derived using GIS (ArcMap 10.1) from 1:25000 topographic maps, which was further completed by field survey data. The resulting geomorphological map shows a series of moraines, which indicate the occurrence of several glacial phases in the study area. Sediment samples were collected from a peat bog (1630 m a.s.l.) dammed by a large lateral moraine within Bistricioara Mare, one of the largest glacial cirques in the Romanian Carpathians. A Russian corer was used to extract the sediment profile from the peat bog (approx. 5 m long sediment core). A X-ray computed tomography (CT) system was employed for the study of sedimentary and deformation structures and X-ray fluorescence spectroscopy (XRF) for multi-element analysis at high resolution. Glacial deposits from the lateral moraine in front of the peat bog were also sampled, as well as from the frontal moraines, upstream and downstream of the peat bog. This set of samples from multiple archives allows to link and merge the chronologies and the paleoenvironmental records of glacial deposits and lake sediments. Moreover, we employed cosmogenic nuclide dating for the reconstruction of glacial stages and their paleoclimatic implications during deglaciation in this area of

  14. Quaternary glacial landforms and evolution in the Cantabrian Mountains (Northern Spain): a synthesis from current data

    NASA Astrophysics Data System (ADS)

    Serrano, Enrique; José González-Trueba, Juan; Pellitero, Ramón; González-García, María; Gómez-Lende, Manuel

    2014-05-01

    In Northern Iberian Peninsula are located the Cantabrian Mountains, a mountain system of 450 km length, reaching 2648 m in the Picos de Europa. It is an Atlantic mountain in the North slope, with a Atlantic Mediterranean transitional climate in the South slope.More than thirty-five massifs developed glaciers during the Pleistocene. Studies on glacial morphology are known from the XIX century and they have focused mainly on the maximum extent of glaciers. Nowadays there are detailed geomorphological maps, morphostratigraphic surveys and estimation of Equilibrium Line Altitude in different massifs and on different stages. During the last decade studies on glacial evolution and glaciation phases have been made, and the first chronological data have been published. In this work we presents the reconstruction of the glacial evolution in the Cantabrian Mountains during the Pleistocene and Holocene, based on recent chronological data (30 dates made using OSL, AMS and C14) and morphostratigraphic correlations obtained by several research groups. The number of reconstructed glacial stages varies among the different massifs, form one to four different stages. The highest massifs located in the central portion of the Cantabrian Mountains have the most complex glacial features, with at least four different moraine complexes stepped between the 400 m a.s.l in the Northern slope and 800 m a.s.l. in the Southern slope for the lowest moraine complexes, and the highest and youngest, located above 2100 m a.s.l. An ancient glacial phase has been pointed to MIS 12 -more than 400 ka-, disconnected from the present day glacial morphology. During Upper Pleistocene three main stages have been identified. The first one, the local glacial maximum, could be prior to the LGM, as all dates refer to chronologies prior to 28-38 ka. Some authors locate this stage prior to 45 and 65 ka, during the 50-70 ka cold stage. It could be a wet stage, when the main fronts reached the Iberian Peninsula from

  15. Glacial landscape evolution and sediment export: insights from digital topographic analyses and numerical modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Brocklehurst, S. H.; MacGregor, K. R.

    2013-12-01

    Sediment accumulation rates in the Gulf of Alaska and low-temperature thermochronology from the European Alps, amongst other lines of evidence, indicate accelerated glacial incision and sediment export associated with the Middle Pleistocene Transition (MPT), ~1 Ma. At this time, the change from symmetrical 40-kyr temperature cycles to larger amplitude, asymmetric 100-kyr cycles would have allowed larger, longer lived glaciers to develop, which is inferred as a key contributor to accelerated glacial erosion. Digital topographic analyses comparing glaciated drainage basins of different sizes in the Southern Alps, New Zealand, and Teton Range, western US, amongst others, indicate the importance of scale in glacial landscape development. In smaller drainage basins, or those at the limit of glaciation, landscape modification is primarily restricted to carving characteristic cirques at the heads of valleys. Glaciers may have occasionally spilled from these to carve U-shaped cross-sections downvalley, but without substantial vertical incision. In larger drainage basins with a longer history of glacial occupation, glacial incision has produced shallower downvalley profiles with characteristic glacial steps, presumably accompanied by greater sediment export. A numerical glacial longitudinal profile evolution model, driven by temperature cycles representing either side of the MPT, is used to compare glacial erosion and sediment export from initial Pleistocene glaciations with post-MPT behaviour. The modelled landscape response to the MPT is strongly dependent on the tectonic setting and the behaviour of the fluvial system downstream of the glacier. With no imposed tectonic rock uplift, the major change in the landscape is the carving of cirque forms and glacial longitudinal profiles at the start of the Pleistocene; the MPT would have had little impact on landscape morphology or sediment export. Imposing tectonic as well as isostatic rock uplift, alongside inefficient fluvial

  16. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    NASA Astrophysics Data System (ADS)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  17. Spatial and temporal variations of glacial erosion in the European Alps: numerical models and implications for slope stability (Invited)

    NASA Astrophysics Data System (ADS)

    Sternai, P.; Herman, F.; Willett, S.; Champagnac, J.; Fox, M.; Valla, P.; Salcher, B.

    2013-12-01

    Glacial erosion in alpine landscapes can be highly variable in space and time and lead to significant morphologic modification and mass redistribution at virtually all scales. Because they affect the near-surface stress and strain distribution by producing cyclic variations of the surface load, removing and abrading rocks, storing/releasing sediments and affecting the surface and subsurface hydrology, glaciations have multiple effects on slope stability. Understanding how glacial erosion evolves in space and time is thus important for investigating potential feedbacks between glacial erosion and deep-seated gravitational slope deformation (DSGSD). The present-day topography of the European Alps shows evidence of intense glacial erosion. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low-temperature thermochronology and reconstructions of the pre-glacial Alpine topography suggest high erosion towards low altitudes and formation of overdeepnenings, in turn indicating an increase of local relief in response to glacial processes. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. Numerical modeling provides estimates of the patterns and magnitudes of glacial erosion through time. Modeling results on an advanced reconstruction of the pre-glacial topography and the

  18. Relative contribution of structural inheritance and glacial morphology on the post-glacial slope destabilization. The Séchilienne slope case study (French western Alps).

    NASA Astrophysics Data System (ADS)

    Schwartz, Stéphane; Zerathe, Swann; Audin, Laurence; Dumont, Thierry; Jarre, Raphael; Jongmans, Denis; Carcaillet, Julien; Dubois, Laurent

    2016-04-01

    In the main Alpine valleys, the chronological constraints about the onset of the slope movements following glacial retreat are scarse. The southern part of the Belledonne massif (French western Alps) along the Romanche valley is affected by numerous slope destabilizations. A detailed geomorphological study using a high resolution LIDAR digital model elevation, allows to characterize the structural framework, the evolution of the glacial retreat and the distribution of the gravitational instabilities. The systematic survey of (i) the main fracturing and (ii) the glacial and gravity morphological witness along the slopes of the Romanche valley coupled with (iii) cosmogenic 10Be dating provides a regional view of the dynamics of slope destabilisation in this area. The proposed scenario allows to evaluate the relative influence of different triggering factors such as seismo-tectonic stresses and climatic changes. These data also allow to propose a consistent dynamic destabilization model of a major lanslide (> 100×106 m3) in relation with the last episode of glacial retreat ~ 21ka ago.

  19. Late glacial 10Be ages for glacial landforms in the upper region of the Taibai glaciation in the Qinling Mountain range, China

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Liang; Chen, Yixin; Liu, Beibei; Harbor, Jonathan M.; Cui, Zhijiu; Liu, Rui; Liu, Xiao; Zhao, Xu

    2016-01-01

    Glacial landforms are well preserved on Taibai Mountain (3767 m), the main peak of the Qinling mountain range located south of the Loess Plateau and east of the Qinghai-Tibet Plateau. The timing and extent of Quaternary glaciation in the study area is important for reconstructing Quaternary environmental change however numerical ages for glaciation in this study area have not previously been well resolved. Using terrestrial in situ cosmogenic nuclides we dated four samples collected from two glacially eroded rock steps in the upper part of a valley near the main peak, in an area previously identified as having been occupied by ice during the Taibai glaciation. The 10Be results are all late glacial in age: 18.6 ± 1.1 ka, 16.9 ± 1.0 ka, 16.9 ± 1.1 ka and 15.1 ± 1.0 ka. The spatial pattern of ages in the valley suggests fast retreat, with horizontal and vertical retreat rates estimated to be on the order of 0.4 and 0.09 m a-1, respectively. A simple extrapolation of these retreat rates from the ages at the two sample sites suggests that the glacier retreat began during Last Glacial Maximum and that glaciers disappeared from the main peak by about 15 ka.

  20. On the issue of equifinality in glacial geomorphology

    NASA Astrophysics Data System (ADS)

    Möller, Per; Dowling, Thomas; Cleland, Carol; Johnson, Mark

    2016-04-01

    A contemporary trend in glacial geomorphology is the quest for some form of unifying theory for drumlin and/or ribbed moraine formation: there MUST be ONE explanation. The result of this is attempts to apply 'instability theory' to the formation of all drumlinoid and ribbed moraine formation or, as an alternative to this, the 'erodent layer hypothesis' for single processes driven formation. However, based on field geology evidence on internal composition and architecture and the internals relation to the exterior, i.e. the shape of drumlins or ribbed moraine, many glacial sedimentologists would argue that it is instead different processes in their own or in combination that lead to similar form, i.e. look-alike geomorphologic expression or equifinality in spite of different process background for their formation. As expressed by Cleland (2013) from a philosophical point of view of a 'common cause explanation', as exemplified with mass extinctions through geologic time, there is probably a 'common cause explanation' for the K/T boundary extinction (massive meteorite impact on Earth), but this is not a common explanation for every other mass extinction. The parallel to our Quaternary enigma is that there can of course be a single common cause for explaining a specific drumlinoid flow set (a particular case), but that does not have to be the explanation of another flow set showing other sedimentological/structural attributes, in turn suggesting that the particular case cause cannot be used for explaining the general case, i.e. all drumlins over glaciated terrain on the globe. We argue in the case of streamlined terrain, which often have considerable morphologic difference between features at local landscape scale whilst still remaining part of the drumlinoid continuum on regional scale, is a product of different processes or process combinations (erosion/deformation/accumulation) in the subglacial system, tending towards the most efficient obstacle shape and thus

  1. Conditions of formation of glacial lakes in Mt Everest region

    NASA Astrophysics Data System (ADS)

    Salerno, F.; Thakuri, S.; D'Agata, C.; Smiraglia, C.; Manfredi, E. C.; Viviano, G.; Tartari, G.

    2012-04-01

    Mount Everest (southern central Himalayas) is the region most characterized by glacial lakes in the Hindu Kush-Himalaya range and also by wide debris-covered glaciers. This study provides a complete mapping of both these water resources (October 2008). Considering that these kind of measurements are essential in recent climate change impact studies, the analysis on uncertainty of measurements is discussed with the aim of proving a reference study when lakes are delineated using remote sensing imagery. Moreover, attention is focused on the conditions of formation of lakes, the greatest evidence of climate change impact at high altitudes characterized by debris covered glaciers. To achieve this goal, an ALOS image (October 2008) with medium-high resolution (10 m) was used. A total of 29 glaciers (356.2 ±2% km2) was plotted. The total number of lakes is 624, corresponding to an overall surface area of 7.43 (±18%) km2. We examine the analysis in depth, underlining the capability of ALOS imagery to properly characterize 64% of lakes (error <15%) in terms of surface whereas, concerning glaciers, this sensor allows correctly characterizing the whole resource (error 2%). Concerning the surfaces of lakes not directly connected with glaciers (unconnected-glacial lakes), we found they are correlated with the dimension of their drainage basin, while no correlation was found with the glacier cover in the basin. Considering the evaporation/precipitation ratio at these altitudes is around 0.34 the evolution of these lakes appears to be a helpful sign for detecting the precipitation trend. Regarding the formation process of supraglacial lakes on debris-covered glaciers, the main factors which seem responsible are the low velocity and high ablation rates at the glacier terminus. Our findings confirm that the slope of the glacier where lakes are located, mainly influencing the first factor, provides the boundary condition favourable for lake formation. Otherwise the novelty of

  2. Glacial retreat between the Late-Glacial and Early Holocene sequences in the Southern French Alps : definition of an accurate pattern by new Cosmic Ray Exposure ages.

    NASA Astrophysics Data System (ADS)

    Cossart, Etienne; Fort, Monique; Bourlès, Didier; Braucher, Régis; Carcaillet, Julien; Perrier, Romain; Siame, Lionel; Gribenski, Natacha

    2010-05-01

    The Southern French Alps, characterized by many climatic influences (oceanic, continental and mediterranean), remain a scientific problem for palaeo-environmental studies. Indeed, the lack of chronological benchmarks hitherto hampered the definition of sequences of glacier variations since the Last Glacial Maximum (LGM), even if a scenario was based upon an extensive fieldwork realized in the Ubaye valley. This scenario was then considered as a regional model by many geomorphologists, but this valley is not necessarily representative of the entire region. Firstly, this valley is the driest area within the Southern French Alps due the sheltering effect of relief against humid fluxes. Secondly, topography (altitudes, slopes and shapes) of the upper part of watersheds are not particularly prone to snow accumulation into the cirques. The established scenario is as follows. Glaciers shrank and decayed between the LGM and the Late-Glacial periods and glaciers were restricted in cirques areas during the Late-Glacial and Holocene glaciations. We try to discuss this model thanks to geomorphic investigations and new chronological benchmarks acquired in Briançonnais area, in the upper part of Durance watershed. The upper part of the Durance watershed was chosen because it corresponds to the accumulation zone of the main glacier of the Southern French Alps during the LGM. Thanks to extensive fieldwork and geomorphic mapping of remnants of past glaciations, and thanks to new chronological data (about 35 cosmic ray exposure -CRE- ages, acquired in 2004 and 2009) we propose here the first absolute scenario established in the very upper part of the catchment. To assess CRE ages, we sampled glacially-polished surfaces, along both longitudinal and transverse valley cross-sections, in order to assess both the retreat of the front and the thinning rate of the glacial tongue. We also paid attention to knobs located at the outlet of glacial cirques, and some morainic ridges. The

  3. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes

    NASA Astrophysics Data System (ADS)

    Song, Chunqiao; Sheng, Yongwei; Ke, Linghong; Nie, Yong; Wang, Jida

    2016-09-01

    Glacial lakes, as an important component of the cryosphere in the southeastern Tibetan Plateau (SETP) in response to climate change, pose significant threats to the downstream lives and properties of people, engineering construction, and ecological environment via outburst floods, yet we currently have limited knowledge of their distribution, evolution, and the driving mechanism of rapid expansions due to the low accessibility and harsh natural conditions. By integrating optical imagery, satellite altimetry and digital elevation model (DEM), this study presents a regional-scale investigation of glacial lake dynamics across two river basins of the SETP during 1988-2013 and further explores the glacial-hydrogeomorphic process of rapidly expanding lakes. In total 1278 and 1396 glacial lakes were inventoried in 1988 and 2013, respectively. Approximately 92.4% of the lakes in 2013 are not in contact with modern glaciers, and the remaining 7.6% includes 27 (1.9%) debris-contact lakes (in contact with debris-covered ice) and 80 (5.7%) cirque lakes. In categorizing lake variations, we found that debris-contact proglacial lakes experienced much more rapid expansions (∼75%) than cirque lakes (∼7%) and non-glacier-contact lakes (∼3%). To explore the cause of rapid expansion for these debris-contact lakes, we further investigated the mass balance of parent glaciers and elevation changes in lake surfaces and debris-covered glacier tongues using time-series Landsat images, ICESat altimetry, and DEM. Results reveal that the upstream expansion of debris-contact proglacial lakes was not directly associated with rising water levels but with a geomorphological alternation of upstream lake basins caused by melting-induced debris subsidence at glacier termini. This suggests that the hydrogeomorphic process of glacier thinning and retreat, in comparison with direct glacial meltwater alone, may have played a dominant role in the recent glacial lake expansion observed across the

  4. Radar remote sensing of glacial features, Malaspina Glacier, Alaska

    SciTech Connect

    Molnia, B.F.; Jones, J.E. )

    1990-05-01

    Two types of radar investigations were conducted at Malaspina glacier, the largest piedmont glacier lobe in North America. Digital x-band side-looking airborne radar (SLAR) data were collected to image surface features; ice-surface, ice-penetrating radar was employed to measure ice thickness and to identify the configuration of subglacial bed rock SLAR revealed a complex pattern of surface backscatter responses related to three types of channellike features on the glacier surface, which mimic the configuration of its underlying bed rock. The features resemble (1) glacially eroded valleys with cirque-like indentations, (2) dendritic stream valleys, and (3) a greater than 40-km-long, arcuate, east-west lineament that corresponds to the Fairweather fault. Field examinations of the three types of features were made to determine relief, slope, and other conditions. The channel-like features had elevations as much as 40 m lower than adjacent high areas and were characterized by fewer crevasses, minimal surface relief, a sediment veneer, and standing and running water. Hundred-m-spaced ice-penetrating radar soundings showed that the ice thickness over these low areas is much greater than over adjacent highs. About 50 ice-thickness measurements were made elsewhere on the glacier. The maximum ice thickness measured exceeded 850 m, whereas the minimum thickness was less than 150 m. Comparison of ice-thickness measurements and ice-surface elevations at each site suggests that the Malaspina Glacier occupies a deep basin or series of basins extending well below sea level.

  5. Tropical Cyclones in Simulations of the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Zamora, R. A.; Korty, R. L.; Camargo, S. J.

    2015-12-01

    How tropical cyclones respond to large-scale changes in climate is an important and complex question. Here we study the question using the response to the climate forcing of the Last Glacial Maximum (LGM). Utilizing two detecting and tracking algorithms of tropical cyclones (TC), we assess the sensitivity of the genesis and frequency of TCs in a 1° x 1° simulation of a global climate model (CCSM), a limited-area simulation (western north Pacific; WNP) of the higher resolution WRF model (36 km horizontal resolution), and the statistical downscaling approach developed by Emanuel. We assess how changes between the LGM and 20th century climatology of TCs are related to changes in the large-scale environmental variables known to be important to TCs (e.g. vorticity, wind shear, and available moisture). Several facets of the TC climatology at the LGM are similar across all three modeling techniques: regions that spawn TCs and their seasonal cycle at the LGM is similar to the present-day distribution, while the total counts are slightly reduced at the LGM. The average intensity in the WRF model (which features resolution high enough to resolve strong storms) is similar between the two climates, though the distribution of intensity is more concentrated at the LGM (there are fewer weak events and fewer of the strongest events at the LGM). Conditions are similarly favorable in much of the deep tropics at the LGM compared to the 20th century, particularly in the central and western Pacific, but conditions become more hostile at the subtropical margins. We compare the resulting climatology with the underlying changes in environmental factors, and empirically derive a genesis index to identify the best fit between changes in the factors and climatology of events.

  6. Structures and fabrics in glacial ice: A review

    NASA Astrophysics Data System (ADS)

    Hudleston, Peter J.

    2015-12-01

    Glaciers, ice sheets and ice caps represent tectonic systems driven by gravity. Their movement can be studied in real time and the rheological properties and strength of ice determined from laboratory experiments and field measurements. All glacial ice has primary stratification, exhibited by variations in grain size, bubble content and debris content. As it deforms, with deformation dominated by plastic flow and recrystallization, accompanied locally by fracture under tension, a suite of structures develops that reflects the primary fabric of the ice and the anisotropy that develops as a result of cumulative deformation. Initial variations in solid impurity content and strain dependent anisotropy as a result of a crystallographic fabric give rise to effective viscosity increases or decreases compared to isotropic polycrystalline ice of about a factor of ten. Foliation develops from inherited (mostly stratification) or introduced (mostly ice veins or fracture traces) fabric elements and from dynamic recrystallization. It is largely dependent on the accumulated strain, which is highest at the base and near the margins of glaciers, ice sheets and ice streams. Folds develop largely passively due to initial amplification of irregularities in the primary stratification, to variations in flow with time or to inhomogeneous flow associated with shear zones and ductile accommodation around open fractures. Buckle folds and boudinage, mostly on a small scale, occur where viscosity contrast is large, mostly in basal ice. Thrusting and wrench faulting are documented in surging glaciers but theoretically most unlikely and rare or absent elsewhere. Many structures interpreted as faults are not due to shear failure but rather result from shear displacements during opening and closing of tensile fractures.

  7. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    DOE PAGESBeta

    Condron, Alan; Winsor, Peter

    2011-02-10

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburstmore » spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.« less

  8. Evolution and paleohydrology of glacial Lakes Barlow and Ojibway

    NASA Astrophysics Data System (ADS)

    Veillette, J. J.

    The evolution of Lakes Barlow and Ojibway, two large ice-contact glacial lakes that covered parts of northern Ontario and western Québec from about 10.1-8.0 ka BP, during the retreat of the Laurentide Ice Sheet, was reconstructed using deglaciation landforms, ice-flow indicators inscribed on bedrock, 14C dates of early postglacial vegetation accumulated in lake basins, the distribution of Mysis relicta (a biological indicator of lacustrine submergence), varve chronology, and a detailed photogrammetric survey of the lake limit. Although the rate of ice retreat varied greatly throughout the basin, the average rate in Lake Barlow-Ojibway was 450 m/year. Rates of ice retreat deduced from varve chronology were assessed using predictable relationships between the lake limit, the shoreline gradient, and the rate of relative uplift. Over a 590 km long profile, the gradient on the maximum elevation of the lake defines a parabola that is attributed to restrained rebound, although in part it could be due to the position of the profile with respect to the overall uplift pattern generated by the ice sheet. The life span of the lake determined from varve chronology (2110 years) shows excellent agreement with the age difference obtained between that of marine shells overlying Lake Ojibway sediments at its northern end in Hudson Bay, and the oldest radiocarbon ages on basal organics in lakes in the southern part of the Barlow-Ojibway basin. Both lakes drained eastward through the Ottawa River between 10.1 and 8.0 ka BP, and the average yearly discharge to the North Atlantic Ocean during the last 1000-1500 years is estimated at about 946 km3. At break-up of the ice sheet in southern Hudson Bay at about 8.0 ka BP, Lake Ojibway drained abruptly, releasing an estimated 114,396 km3 of freshwater into the Tyrrell Sea and raising sea level by about 30 cm.

  9. Distortions of glacial landform sizes by manual mapping

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Smith, Mike J.

    2016-04-01

    Mapped topographic features are important for understanding processes that sculpt the Earth's surface. Subjective manual techniques are commonly used for mapping, yet how effective they are in quantitative terms is poorly constrained. Here 12,121 outlines drawn by 25 interpreters searching for a total of 21,625 drumlins in 5 synthetic DEMs are interpreted in terms of how the manual mapping process distorts the height (H), width (W) and length (L) of the reported features. Bias in the size-frequency distributions is caused by the sub-set of the forms 'found', even assuming perfect extraction of sizes, and is governed by H driving detectability. Bias is then compounded in sizes that are extracted using the mapped outlines but, remarkably, the size-frequency distribution is not altered further when mappers' incorrect guesses (i.e. outline corresponds to no input synthetic drumlin) are then included; it seems possible that, once mappers have their 'eye in' based on the most clearly defined features, they are very effective at identifying similar morphologies. Of the metrics available to quantify the size of a population, maximum size and λ, the exponent of its tail, are the most robust to these distortions. The drumlins in the study area resemble UK drumlins, permitting extrapolation of the conclusions. These are the first results to give such granular insights into the impacts of the various stages in manually mapping glacial landforms, permitted by the development of the synthetic DEMs. Arguments will always exist about how realistic any synthetic is, but this work demonstrates another use of synthetic DEMs that may be applied more widely in geomorphology.

  10. Paleoceanography and glacial runoff along the St. Lawrence valley system

    SciTech Connect

    Rodrigues, C.G. . Dept. of Geology); Vilks, G. )

    1992-01-01

    Radiocarbon-dated foraminiferal zones in cores from the Gulf of St. Lawrence show that cold saline bottom-water was present in the Goldthwait Sea between 13.6 and 12.9 ka BP and was followed by a salinity minimum from ca. 12.1 to 8.6 ka BP, and then increasing salinity and temperature resulting in the modern, deep, watermass layer by 8 ka BP. During the salinity minimum, glacial Lake St. Lawrence drained east into the Goldthwait Sea before the beginning of the Champlain Sea (11.6--11.4 ka BP). Meltwater flowed through the Champlain and Goldthwait seas between 11 and 10 ka BP when Lake Agassiz water was diverted to the North Atlantic Ocean through Ottawa and St. Lawrence valleys and Gulf of St. Lawrence; this coincides with the decrease in salinity of the Champlain Sea between 10.7 and 10.4 ka BP. A later discharge of meltwater to the North Atlantic Ocean (9.5--8 ka BP) occurred during the final stage of the salinity minimum in the Goldthwait Sea and postdates or coincides with the end of the Champlain Sea. The discharge of meltwater to the North Atlantic Ocean may have cause the freshening of the Champlain Sea. However, it does not appear to have affected the deep water in the Goldthwait Sea and was probably part of the surface outflow to the North Atlantic Ocean through the Gulf of St. Lawrence. The variations in salinity of the deep water of the Goldthwait Sea are related to changes in the composition of the water entering the sea from the North Atlantic Ocean.

  11. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  12. Providing a virtual tour of a glacial watershed

    NASA Astrophysics Data System (ADS)

    Berner, L.; Habermann, M.; Hood, E.; Fatland, R.; Heavner, M.; Knuth, E.

    2007-12-01

    SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research. Seamonster is leveraging existing open-source software and is an implementation of existing sensor web technologies intended to act as a sensor web testbed, an educational tool, a scientific resource, and a public resource. The primary focus area of initial SEAMONSTER deployment is the Lemon Creek watershed, which includes the Lemon Creek Glacier studied as part of the 1957-58 IPY. This presentation describes our year one efforts to maximize education and public outreach activities of SEAMONSTER. During the first summer, 37 sensors were deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments are important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we are developing an interactive website. This web portal will supplement and enhance environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we are developing an interactive virtual tour of the Lemon Glacier and its watershed. This effort will include Google Earth as a means of real-time data visualization and will take advantage of time-lapse movies, photographs, maps, and satellite imagery to promote an understanding of these unique natural systems and the role of sensor webs in education.

  13. Organic carbon in glacial fjords of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  14. Changing glacial coverage influences stream dissolved organic matter signatures in coastal watersheds of southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fellman, J. B.; Hood, E. W.; Stubbins, A.; Spencer, R. G.; Raymond, P.

    2012-12-01

    Glacier runoff is a major source of freshwater to Arctic and sub-Arctic streams and coastal marine zones. However, relatively little is known about how glacier runoff influences stream biogeochemical signatures, especially with regard to dissolved organic matter (DOM). We collected streamwater weekly to fortnightly during the glacial runoff season of 2012 from four coastal watersheds in southeast Alaska that ranged in glacier coverage from 0 to 63% and a glacier outflow stream. This allowed us to determine how changing glacier coverage influences the chemical signature of DOM. We also used δ18O of streamwater, snow/glacial icemelt, and rainfall to elucidate how the origin of streamwater influences stream DOM signatures. All streams showed a decrease in δ18O in early May coincident with snowmelt. By the end of May, δ18O in the non-glacial stream increased reflecting the increasing contribution of rainfall and groundwater to streamflow. However, δ18O in the glacial-fed streams remained depleted well into the summer months of July and August. This seasonal shift in δ18O was reflected in the DOM signatures for all streams. Glacier-fed streams showed an overall decrease in dissolved organic carbon (DOC) concentration from May through July, but concentrations increased in the non-glacial stream during the same period. Similarly, stream specific ultraviolet absorbance (SUVA254) and fluorescence index (FI) values decreased during the glacial meltwater season reflecting the decreasing contribution of plant derived, aromatic carbon to the bulk DOM pool. Overall, δ18O was significantly related to DOC concentration, SUVA254, and FI (all p<0.05) for all streams, which provides quantitative evidence of the hydrologic influence on DOM signatures in these watersheds. Our findings show that continued glacial recession and subsequent changes in freshwater input to streamflow could substantially influence the biogeochemistry of freshwater and coastal marine ecosystems by

  15. Persistence of full glacial conditions in the central Pacific until 15,000 years ago.

    PubMed

    Blard, P-H; Lavé, J; Pik, R; Wagnon, P; Bourlès, D

    2007-10-01

    The magnitude of atmospheric cooling during the Last Glacial Maximum and the timing of the transition into the current interglacial period remain poorly constrained in tropical regions, partly because of a lack of suitable climate records. Glacial moraines provide a method of reconstructing past temperatures, but they are relatively rare in the tropics. Here we present a reconstruction of atmospheric temperatures in the central Pacific during the last deglaciation on the basis of cosmogenic 3He ages of moraines and numerical modelling of the ice cap on Mauna Kea volcano, Hawaii--the only highland in the central Pacific on which moraines that formed during the last glacial period are preserved. Our reconstruction indicates that the Last Glacial Maximum occurred between 19,000 and 16,000 years ago in this region and that temperatures at high elevations were about 7 degrees C lower than today during this interval. Glacial retreat began about 16,000 years ago, but temperatures were still about 6.5 degrees C lower than today until 15,000 years ago. When combined with estimates of sea surface temperatures in the central Pacific Ocean, our reconstruction indicates that the lapse rate during the Last Glacial Maximum was higher than at present, which is consistent with the proposal that the atmosphere was drier at that time. Furthermore, the persistence of full glacial conditions until 15,000 years ago is consistent with the relatively late and abrupt transition to warmer temperatures in Greenland, indicating that there may have been an atmospheric teleconnection between the central Pacific and North Atlantic regions during the last deglaciation. PMID:17914394

  16. Paleoclimate at the last glacial maximum revealed by a global database of fossil groundwaters

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Fawcett, P. J.; Gleeson, T. P.; Sharp, Z. D.; Lechler, A.; Galewsky, J.

    2013-12-01

    Natural climate warming since the last ice age provides an analogue to current warming likely due to human greenhouse gas and black carbon releases. Assessing the impacts of warming since the last glacial period has been aided by site-specific studies of the chemistry of groundwaters that recharged aquifers >20ka. Here we present the first comprehensive and global compilation of δ18O and δ2H values, corrected radiocarbon ages and noble gas concentrations for more than 100 major aquifers that contain water that recharged during the last glacial period. We estimate the global δ18O value of groundwater recharge during the last glacial maximum to be ~1 ‰ lower than modern. Recharge at individual aquifers during the last glacial period have δ18O values ranging from -6 to +2 relative to modern, with positive excursions limited to coastal aquifers influenced by proximity to the ~1 ‰ higher oceanic δ18O value that were present during Quaternary glaciations. Spatial patterns of δ18O values for last glacial period waters show similar patterns to modern recharge δ18O values over the continental USA, suggesting that the major continental-scale moisture sources of today were also important sources during the last glacial period. This dataset can be used in conjunction with other isotopic archives (e.g., lake sediments, speleothems) to help decouple confounding effects of shifting temperatures and isotope compositions. Further, this dataset provides a valuable constraint for isotope-enabled global climate model reconstructions of the last glacial maximum and can be used to delimit the global extent of fossil groundwater resources which are unsustainably extracted in a number of regions.

  17. The impact of glaciations and glacial processes on groundwater flow dynamics: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Sterckx, A.; Lemieux, J. M.; Vaikmae, R.

    2015-12-01

    Numerical models are widely used to investigate the impact of glaciations on groundwater flow systems because they can simulate complex glacial processes. However, it isn't clear which of these processes are relevant to adequately capture groundwater flow dynamics. Given the complexity of representing these processes in a numerical model and the paucity of field data available for their validation, it is of prime interest to assess how they impact groundwater flow and if any of these processes could be neglected. In order to assess the specific impact of glacial processes on groundwater flow dynamics, those processes were included in the numerical model FEFLOW and simulations were conducted in a simple conceptual model representing a 21 ky glacial cycle in a sedimentary basin. The following processes have been simulated: subglacial recharge, linear and non-linear compaction of the porous medium under the weight of the ice, isostasy, proglacial lakes, as well as permafrost. Solute transport was simulated along with groundwater flow to track groundwater originating from the ice-sheet. To interpret the results, a base case scenario considering only subglacial recharge was selected and compared with the other scenarios, where individual glacial processes were simulated. When comparing the results at the end of the simulations, it appears that most of the aforementioned glacial processes don't lead to a significant difference in meltwater distribution with respect to the base case. Only hydromechanical coupling brings some noticeable change. Conversely, the type and the value of the boundary condition applied at the base of the ice-sheet play a major role in groundwater flow dynamics. The presence of confining hydrogeological units also seems to be a key to understand the long-term effect of glaciations. These results suggest that some of the glacial processes may be neglected for the simulation of groundwater flow dynamics during a glacial period.

  18. Determining Erosion Rates and Processes in the Pro-Glacial Area over a 28-Year Period

    NASA Astrophysics Data System (ADS)

    Delaney, I. A.; Huss, M.; Weidmann, Y.

    2015-12-01

    Glacially fed hydropower reservoirs in the Swiss Alps have experienced substantial increases in sedimentation recently. This sedimenation causes reduced reservoir capacity, turbine abrasion and increased need for sediment flushing, all of which reduce the e ciency and economic viability of hydropower in the region. Although the issue is largely attributed to regional glacier retreat, there is a need for greater understanding of the speci c processes that contribute to the increased sedimentation. To evaluate these processes, we examine the Griesgletscher catchment, which lies in the central Swiss Alps and its runoff feeds a hydropower reservoir. The recent exposure of the glacier's fore-fi eld (roughly 1986) due to the glacier's retreat beyond the reservoir's margin, along with its simple catchment area make it an ideal location to examine pro-glacial erosion. Here we present a time-series from 1986 to 2014 of digital elevation models (DEM) created from aerial photographs of the Griesgletscher's fore- field from each year except for 2. Comparison of DEMs from subsequent years yields erosion volumes and sediment balance over the 28 year period for the pro-glacial area. Bathymetry of the pro-glacial reservoir for select years allows us to speculate if the erosion of the recently exposed glacier fore-fi eld is the sole source of sediment to the reservoir, or if alternative processes such as increased glacial erosion or mobilization of sub-glacial sediments could contribute. We correlate erosion amounts with runo ff volumes from the Griesgletscher and changes in the the glacier's morophology and coverage. Additionally, implimentation of the Glacier Evolution Runoff Model allows us to examine the variability in the glacier's runoff on the hourly to daily scale. By examining these relationships we constrain the processes contributing to the erosion of the Griesgletscher's pro-glacial area.

  19. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change

    PubMed Central

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier

    2015-01-01

    Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we

  20. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change.

    PubMed

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier

    2015-01-01

    Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we

  1. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  2. Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Herman, Frédéric; Valla, Pierre; Champagnac, Jean-Daniel; Willett, Sean

    2013-04-01

    The present-day topography of the European Alps shows evidence of intense glacial reshaping. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low temperature thermochronology suggest high erosion towards low altitudes, leading to an increase of local relief in response to glacial erosion. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. We focus on the Rhône valley (Swiss Alps), and use a numerical model to estimate patterns and magnitudes of glacial erosion. Comparing modeling results on an advanced reconstruction of the pre-glacial topography (Sternai et al., 2012) and the present-day landforms, we found that erosion propagates headward as the landscape evolves from a fluvial to a glacial state, leading to an initial increase of local relief in the major valley trunk followed by subsequent erosion at high elevations. We also test the mid-Pleistocene transition hypothesis by running a 2Myr numerical experiment including a shift from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations at 1Myr. Although the change of climate periodicity may have produced an intensification of glacial erosion, our results suggest that other factors such as an increase of rock uplift and/or progressive climate cooling are required to explain enhanced valley

  3. Modeling the Impact of Glacial Runoff on Fjord Circulation and Submarine Melt Rate using a New Parameterization for Glacial Plumes

    NASA Astrophysics Data System (ADS)

    Cowton, T. R.; Slater, D. A.; Sole, A. J.; Goldberg, D. N.; Nienow, P. W.

    2014-12-01

    The injection at depth of ice sheet runoff into fjords may be an important control on the frontal melt rate of tidewater glaciers. Runoff influences submarine melt rate directly, by generating buoyant plumes adjacent to the ice front, and indirectly, by influencing the circulation of heterogeneous water masses within the fjord. Understanding these processes has been held back, however, by the computational expense of modeling both the fine scale turbulent processes occurring within the buoyant plumes and the coarser scale circulation throughout the remainder of the fjord. Here, we develop a new parameterization for ice marginal plumes within the Massachusetts Institute of Technology General Circulation Model (MITgcm), allowing three-dimensional simulation of large (500 km2) glacial fjords on annual (or longer) timescales. We find that for an idealised fjord (without shelf-driven circulation), subglacial runoff produces a thin, strong and warm down-fjord current in the upper part of the water column, balanced by a thick and slow up-fjord current at greater depth. Submarine melt rates increase with runoff due to higher melt rates where the plume is in contact with the ice front. We find however that annual submarine melt rate across the ice front is relatively insensitive to variability in annual runoff. Better knowledge of the spatial distribution of runoff, controls on melt rate in those areas not directly in contact with plumes and feedback mechanisms linking submarine melting and iceberg calving are necessary to more fully understand the sensitivity of glacier mass balance to runoff-driven fjord circulation.

  4. Interrelated Glacial, Volcanic and Hydrologic Processes on the Tharsis Montes, Olympus Mons and Hecates Tholus, Mars

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Marchant, D. R.; Shean, D. E.; Fassett, C. I.; Wilson, L.

    2005-12-01

    Volcanic, hydrological and glacial processes are prominent in the geological history of Mars and assessment of areas where their relationships can be established provides important information on their nature and intensity. An effort to examine these interrelationships is motivated by the uncertainties that exist in atmospheric general circulation models concerning the homogeneous or heterogeneous distribution of water ice during periods of high obliquity and resulting transport of polar volatiles equatorward. Geological evidence for distinctive and very large tropical mountain glacial deposits on the NW flanks of the Tharsis Montes shows that the emplacement of ice in the equatorial regions is heterogeneous and is intimately linked to the presence of large volcanic edifices on the broad Tharsis rise. Accumulation of ice and formation of glaciers is likely caused by adiabatic cooling of water-laden polar air masses and precipitation and accumulation on the NW volcano flanks (F. Forget, personal communication). The resulting glacial deposits show interesting relationships to volcanic deposits formed prior to, during and subsequent to glaciation. Evidence that the glacial deposits formed from cold-based glaciation comes from the lack of modification of delicate structures associated with underlying lava flows (seen in detrended altimetry data). Evidence that volcanism occurred during glaciation is five-fold: 1) narrow linear ridges in the glacial deposits radial to the volcano are interpreted as dikes that were intruded into the glacier, rapidly melting the adjacent ice and collapsing, as has been proposed for englacial dike intrusions in Iceland; 2) broad, steep-sided, thick lobate flow-like features are interpreted to represent sill-like subglacial lava flows at the volcano-glacial interface; 3) circular donut-like annuli surround vent-like craters suggesting localized subglacial explosive eruptions; 4) steep asymmetric lava flows at glacial deposit margins are

  5. Technical Note: Glacial influence in tropical mountain hydrosystems evidenced by the diurnal cycle in water levels

    NASA Astrophysics Data System (ADS)

    Cauvy-Fraunié, S.; Condom, T.; Rabatel, A.; Villacis, M.; Jacobsen, D.; Dangles, O.

    2013-12-01

    Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Determining the influence of glacial runoff to streams is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier-stream system interface. Here we propose quantifying the diurnal cycle amplitude of the streamflow to determine the glacial influence in glacierized catchments. We performed water-level measurements using water pressure loggers over 10 months at 30 min time steps in 15 stream sites in 2 glacier-fed catchments in the Ecuadorian Andes (> 4000 m a.s.l.) where no perennial snow cover is observed outside the glaciers. For each stream site, we performed wavelet analyses on water-level time series, determined the scale-averaged wavelet power spectrum at 24 h scale and defined three metrics, namely the power, frequency and temporal clustering of the diurnal flow variation. The three metrics were then compared to the percentage of the glacier cover in the catchments, a metric of glacial influence widely used in the literature. As expected, we found that the diurnal variation power of glacier-fed streams decreased downstream with the addition of non-glacial tributaries. We also found that the diurnal variation power and the percentage of the glacier cover in the catchment were significantly positively correlated. Furthermore, we found that our method permits the detection of glacial signal in supposedly non-glacial sites, thereby revealing glacial meltwater resurgence. While we specifically focused on the tropical Andes in this paper, our approach to determine glacial influence may have potential applications in temperate and arctic glacierized catchments. The measure of diurnal water

  6. Luminescence dating of glacial deposits near the eastern Himalayan syntaxis using different grain-size fractions

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Yi, Chao-Lu; Zhang, Jia-Fu; Liu, Jin-Hua; Jiang, Tao

    2015-09-01

    Numerical dating of glacial deposits is important for understanding Quaternary glacial evolution. Optically stimulated luminescence (OSL) dating is one of the techniques widely used on such sediments. Owing to the short distances traveled before deposition, the incomplete bleaching of luminescence signals in glacial sediments may introduce serious dating problems vis-à-vis glacial and any associated sediments. Here, we report a comparison of OSL ages obtained from the fine (4-11 μm) and medium (38-63 μm) grain size fractions of quartz extracted from glaciofluvial sediments and from glacial tills in the Basongcuo catchment near the eastern Himalayan syntaxis. Initially, four glacial stages were identified based on field observations of moraine distribution and geomorpho-stratigraphic relations. A total of 39 OSL samples were then collected from glaciofluvial sand layers or lenses and from till. Quartz grains in the fine (4-11 μm) and medium (38-63 μm) size fractions were extracted from each sample, and dated using the single-aliquot regeneration (SAR) protocol. The modern supraglacial sediment sample was dated to ˜0.2 (fine grain) to ˜0.7 (medium grain) ka, suggesting that the sediment was not completely bleached on deposition. Contrary to previous experience suggesting that coarse grains are usually better bleached than fine grains prior to deposition, our results show that estimated OSL ages for fine grains are generally younger than those for medium grains. This suggests that the two fractions may have come from different sources and thus have different bleaching histories, and that fine-grained quartz may be more suitable for OSL dating of these materials. Applying the minimum age model to data from medium-grained quartz yields ages close to those obtained from fine-grained quartz, suggesting that both can be used for dating glacial advances. The OSL dates suggest that glaciers in the studied area advanced at 0.1-1.3 ka, ˜7.5 ka and 11-13 ka, and were

  7. The Influence of Glacial-Interglacial Cycles on the Erosion of Orogens

    NASA Astrophysics Data System (ADS)

    Yanites, Brian; Ehlers, Todd

    2010-05-01

    The evolution of mountain topography and sediment flux to adjacent basins is dictated by variations in the rates of rock-uplift, climate, lithology, and vegetation. Currently, many mountainous settings are in a state of a ‘glacial hangover' whereby Quaternary glaciation has dramatically altered catchment morphology and produced non-equilibrium conditions with respect to the environmental conditions preceding this major climatic transition. In this study, we investigate transients in mountain erosion and morphology due to glacial-interglacial cycles imposed on landscapes previously dominated by fluvial and hillslope processes. In our approach, we use a surface process model to produce an equilibrium fluvial landscape for rock uplift rates between 0.25-1.0 mm/yr. The landscapes are then subjected to repeated glacial cycles of different periodicity and intensity. Variations in predicted glacial basal sliding velocity, erosion, topography and sediment flux are tracked. Results indicate that glacial processes increase rates of valley bottom erosion by one to two orders of magnitude higher than fluvial processes, a result consistent with low-temperature thermochronological data from a number of glaciated catchments worldwide. Increased rates of hillslope and ridgetop erosion occur in response to increased glacial erosion and lag behind the onset of glaciation, thereby producing a complicated history of local relief. The timescale of this lag can vary by orders of magnitude and depends on model parametrization. We also find that two broad effects compete to control the evolution of sediment leaving such an orogen: 1) the topographic disequilibrium with glacial processes acts to initially increase sediment production, but as the topography readjusts, the disequilibrium wanes; 2) the initial geometry of the drainage basin is inefficient at providing ice to the sliding portions of the glaciers, thus impeding erosion early on, but as the topography becomes more ‘glacial

  8. Long-term evolution of hillslopes and drainage networks under repeated impact of glacial erosion

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg

    2015-04-01

    The morphology of hillslopes is an important indicator of landscape change and erosion. In nonglacial catchments, its characteristics depend to a large extent on channel processes and are a function of climate, tectonic and underlying bedrock. These factors may however become secondary when affected by glacial erosion as it is the case in many mid- to high-latitude mountain belts. The perturbation of the initial steady state hillslope morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. In the limiting case that fluvial or colluvial readjustments to the topography are smaller than modifications by glacial action, the history of glacial erosion rate may be faithfully archived in the form of hillslopes and the channel network (Salcher et al., 2014). This relation is furthermore important as significant mass is generally mobilized and eroded in the hillslope domain delivering material to the channel system. Here we analyzed the glacially modified topography of the European Central Alps, a region which has been multiply glaciated during the Quaternary and were tectonic processes have largely ceased. The higher elevated catchments suffered a more intense impact of glacial erosion than lower elevated catchments whereas fluvial (steady state) processes dominate the alpine foothills or regions outside the former ice sheets. To investigate variations to the hillslope domain we utilized digital elevation models to define hillslope parameters (area, length relief) as function of channel head locations. Channel heads are then calculated as a function of minimum channel plan curvature. Our results show that hillslope area, relief and length increases with the cumulative impact of glacial action. This relation is however only valid were individual tributary glaciers and associated headward erosion could evolve

  9. Use of biomarkers in resident organisms as a tool for environmental monitoring in a cold coastal system, Tierra del Fuego Island.

    PubMed

    Comoglio, L; Amin, O; Botté, S; Marcovecchio, J

    2011-03-01

    Antioxidant status of Nacella (P) magellanica and Mytilus edulis related with heavy metal in sediment and tissues were analysed in five stations close to Ushuaia city in winter and spring. The principal component analysis produced a two-dimensional pattern of the degree of similarity between sites. The Industrial-Urban Contamination Index (IUCI) showed that the Industrial Zone (IZ) and Oil Marine Station (OMS) represent areas with anthropic inputs. Heavy metals have differential association with biomarkers depending on the species. In limpets, digestive gland presented major activities of enzyme defence in winter and gonads have shown higher values of Catalase (CAT) during spring while lipid peroxidation (LPO) presented higher values in IZ. For mussels CAT and LPO increased in spring time. For superoxide dismutase (SOD) peaks have been detected in IZ and NW stations for winter. Differences in biomarker responses due to seasons did not influence the grouping of the sites into references and contaminated groups. PMID:21035188

  10. [Production of soy bean inoculants. Behavior of supports based on peat from Tierra del Fuego sterilized by vapor and ethylene oxide].

    PubMed

    Balatti, A P; Mazza, L A

    1979-01-01

    The survival of Rhizobium japonicum was studied in neutralized and sterilized peats from Ushuaia and Rio Grande. The carriers were sterilized by ethylene oxide and by autoclaving. Similar counts for Rhizobium (5 x 10(8) cel/g) were obtained in peat-cultures sterilized by both methods, after eight months. A good nodulation and nitrogen fixation capacity was observed with inoculated soybean plants. Using the strain Rhizobium japonicum E-45, no appreciable difference in symbiotic effectiveness was found between the inoculants prepared with the two peats. PMID:263653

  11. Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina).

    PubMed

    Duarte, Claudia A; Giarratano, Erica; Amin, Oscar A; Comoglio, Laura I

    2011-08-01

    The aim of this study was to evaluate the usefulness of oxidative stress biomarkers of pollution in native mussels Mytilus edulis chilensis from the Beagle Channel. Spatial and seasonal variations of catalase, glutathione-S-transferase and lipid peroxidation in gills and digestive gland were analyzed in relation to environmental parameters, heavy metals in sediment and in tissue. Four sites with anthropogenic impact and a control site were selected and monitored during the four seasons of 2007. We found significant differences among sites in concentrations of dissolved nutrients and heavy metals in sediments, with the highest values recorded at sites with anthropogenic pressure. Different patterns were observed between concentrations of metals in tissues and in sediments suggesting differences in bioavailability. There were also significant differences in biomarker responses among sites, despite the strong seasonal variability. Our results showed relatively moderate levels of pollution in the study area as a result of urban influences. PMID:21704346

  12. Millenial-scale lag times in vegetation response to glacial climate in Siberia

    NASA Astrophysics Data System (ADS)

    Herzschuh, Ulrike; Birks, John H.; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-04-01

    Vegetation change on all relevant temporal scales is assumed to be primarily driven by contemporary climate change, which would imply that vegetation-climate feedbacks become effective without long-term delay. However, our results from multivariate analyses of pollen assemblages from Lake Eĺgygytgyn (NE Siberia) and other data covering the Mid-Pliocene-Warm-Period and the Plio-Pleistocene-Transition challenge this concept of broad-scale vegetation-climate equilibrium. Our results indicate that interglacial vegetation during the Plio-Pleistocene transition mainly reflects the condition of the preceding glacial instead of contemporary interglacial climate. We assume that the observed vegetation-climate disequilibrium, in particular the absence of pine and spruce in interglacials following strong glacial stages, originates from the combined effects of permafrost persistence, distant glacial refugia, and fire plus possible interactions. Our results imply that today's widespread larch ecosystem on permafrost is not in climate-equilibrium but rather represents a transient vegetation type which is still responding to the extreme glacial condition of the last glacial. This also implies that feedback between vegetation and climate and between permafrost and climate in northern mid- and high latitudes becomes active with long-term delay, which is of relevance for global climate change.

  13. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios

    PubMed

    Rutberg; Hemming; Goldstein

    2000-06-22

    The global circulation of the oceans and the atmosphere transports heat around the Earth. Broecker and Denton suggested that changes in the global ocean circulation might have triggered or enhanced the glacial-interglacial cycles. But proxy data for past circulation taken from sediment cores in the South Atlantic Ocean have yielded conflicting interpretations of ocean circulation in glacial times--delta13C variations in benthic foraminifera support the idea of a glacial weakening or shutdown of North Atlantic Deep Water production, whereas other proxies, such as Cd/Ca, Ba/Ca and 231Pa/230Th ratios, show little change from the Last Glacial Maximum to the Holocene epoch. Here we report neodymium isotope ratios from the dispersed Fe-Mn oxide component of two southeast Atlantic sediment cores. Both cores show variations that tend towards North Atlantic signatures during the warm marine isotope stages 1 and 3, whereas for the full glacial stages 2 and 4 they are closer to Pacific Ocean signatures. We conclude that the export of North Atlantic Deep Water to the Southern Ocean has resembled present-day conditions during the warm climate intervals, but was reduced during the cold stages. An increase in biological productivity may explain the various proxy data during the times of reduced North Atlantic Deep Water export. PMID:10879531

  14. High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard C.; Hinsch, Ralph; Wagreich, Michael

    2010-10-01

    In this study results from traditional field mapping were merged with precise elevation information from airborne LiDAR (Light detection and ranging) surveys. Morphological and sedimentological data provide new results from the Austrian (eastern) part of the Salzach piedmont glacier during times of and shortly after the Last Glacial Maximum (LGM). The variations in meltwater discharge had a major impact on the development of glacial landforms. In areas with high meltwater supply erosional or debris reworking processes play a major role, represented by drainage channels, drumlins and kettled, low relief hummocky moraine with low slope angles. Low discharge areas are associated with distinct depositional forms such as high relief end moraines (up to 30 m) and hummocky moraine (averaging 20 m) with high slope angles. Isolated conical kames may reach heights up to 45 m. Fluvial activity is supposed to rise towards the end of the glacial cycle causing high melting rates and comprehensive debris reworking. The formation of terminal lakes and associated widespread, inorganic lake clays are the last deposits within the study area before the Salzach Glacier completely receded to its main valley. The survey of glacial landforms through the combination of field mapping and high-resolution DEM derived from airborne LiDAR missions gives precise information on transport and deposition during the last glacial cycle of the eastern Salzach Glacier piedmont lobe.

  15. Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, G.T.; Fagre, D.B.; Gray, S.T.; Graumlich, L.J.

    2004-01-01

    Little Ice Age (14th-19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacial accumulation and summer ablation, respectively, over the past three centuries. These records show that the 1850's glacial maximum was likely produced by ???70 yrs of cool/wet summers coupled with high snowpack. Post 1850, glacial retreat coincides with an extended period (>50 yr) of summer drought and low snowpack culminating in the exceptional events of 1917 to 1941 when retreat rates for some glaciers exceeded 100 m/yr. This research highlights potential local and ocean-based drivers of glacial dynamics, and difficulties in separating the effects of global climate change from regional expressions of decadal-scale climate variability. Copyright 2004 by the American Geophysical Union.

  16. Differentiating Hydrothermal, Pedogenic, and Glacial Weathering in a Cold Volcanic Mars-Analog Environment

    NASA Technical Reports Server (NTRS)

    Scudder, N. A.; Horgan, B.; Havig, J.; Rutledge, A.; Rampe, E. B.; Hamilton, T.

    2016-01-01

    Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range.

  17. An overview of how glacial depositional processes control characteristics of outwash aquifers

    SciTech Connect

    Fraser, G.S. )

    1994-04-01

    Sedimentological processes, acting on a variety of scales, are among the more important factors that determine the hydraulic properties of outwash aquifers. On a regional scale, the heterogeneity imposed on aquifer systems by such processes affects the shape of an aquifer and its relationships to enclosing units, the location and hydraulic properties of discharge and recharge areas, and the occurrence of low-permeable material. At the scale of individual aquifers, sedimentary heterogeneity is commonly a major control on the rate and complexity of groundwater movement. Glacial facies models can provide important insights into the characteristics of aquifers, aquifer systems and confining units. Outwash is produced and transported differently along active glacial margins and on active ice sheets, within stagnant ice sheets, and down glacial sluiceways, and these differences are reflected in regional-scale variations of the characteristics of aquifers and aquifer system. An understanding of such models are especially important to regional planners who must have knowledge of aquifer sensitivity when determining land-use policy. An understanding of how sedimentological processes act within glacial regimes can help determine local variations in aquifer characteristics on intermediate or small scales. Variations in grain size within outwash aquifers are the result of lateral and/or temporal changes in the intensity of the hydraulic regime imposed by proximity to melting ice and variations in meltwater flow. Examples will be provided that show how these processes operated during the evolution of glacial outwash sequences in various terrains in Indiana.

  18. Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2015-11-01

    A striking feature of paleoclimate records is the greater stability of the Holocene epoch relative to the preceding glacial interval, especially apparent in the North Atlantic region. In particular, strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, punctuates the last glaciation, but is absent during the interglacial. Prevailing theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland ice cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model that reproduces a realistic power spectrum of millennial variability, we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene (1 kyr = 1000 yr). Previous modeling studies show that the edge of sea ice in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the AMOC also southward. Here we demonstrate that, by shifting the AMOC with respect to the mean atmospheric precipitation field, such a displacement makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.

  19. Monitoring of a recurring glacial lake outburst flood in north-western Nepal

    NASA Astrophysics Data System (ADS)

    Neckel, Niklas; Kropacek, Jan; Schröter, Benjamin; Tyrna, Bernd; Buchroithner, Manfred

    2014-05-01

    Since 2004 an almost annual recurring glacial lake outburst flood threatens Halji Village, located in Limi valley in one of the most remote regions of north-western Nepal. So far a considerable extent of rare fields and several houses have been destr