Science.gov

Sample records for glancing angle deposited

  1. Argon-Assisted Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Sorge, Jason Brian

    Glancing angle deposition (GLAD) is a physical vapour deposition (PVD) technique capable of fabricating highly porous thin films with controllable film morphology on the 10 nm length scale. The GLAD process is flexible and may be used on virtually any PVD-compatible material. This makes GLAD a useful technique in many applications including photovoltaics, humidity sensing, and photonic devices. Conventional, dense films grown at normal incidence concurrent with ion or energetic neutral bombardment have been reported to have higher film density than unbombarded films. In a similar sense, highly porous GLAD films grown with concurrent bombardment should generate films with new interesting properties and extend the versatility of the GLAD process. The research presented in this thesis investigates the use of energetic neutral bombardment during GLAD film growth to produce new film morphologies. Here, with increasing bombardment, the column tilt increases, film density increases, and specific surface area decreases. A film simultaneously exhibiting high column tilt angle and film density is enabled by incorporating bombardment concurrent with GLAD film growth. This in turn results in films with larger principal refractive indices, but a smaller normalized in plane birefringence. Bombarded films were also found to be compatible with the phisweep process which helps decouple the column tilt angle from film density. Characterization of the bombardment-assisted growth process indicates that both sputtering and bombardment-induced diffusion play a role in the modification of film morphology. The film property modifications which arise as a result of bombardment-assisted growth lead to device improvements in a number of applications. Bombardment was used to fabricate square spiral photonic crystal structures with increased column tilt which bear a closer resemblance to optimized simulated structures than conventionally-grown GLAD films. The increase in column tilt angle and

  2. Helical structured thin films deposited at a glancing angle

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Jheng, Ci-Yao; Chan, San; Tseng, Chien-Hoa

    2015-08-01

    Gold nanohelical structured thin films (NHFs) were tried to be deposited on a glass substrate using glancing angle deposition technique. At a deposition angle of 89°, gold NHFs were fabricated by introducing liquid nitrogen to flow under the backside of BK7 glass substrate holder. The temperature of substrate was reduced to be less than -140°C before deposition. The spin rate was controlled with respect to the deposition rate to grow three different sized nanohelices. The morphology and optical properties of Au NHFs were measured and compared between the three samples. The strong g-factor implies high sensitivity of deposited helixes in biosensing in the future.

  3. Growth of Nanowires by High-Temperature Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Minamitake, Haruhiko; Kita, Ryo; Hamachi, Kenji; Hara, Hideki; Nakajima, Kaoru; Kimura, Kenji; Hsu, Chia-Wei; Chou, Li-Jen

    2013-11-01

    We have demonstrated that nanowires of various metals, Ge, and Ga2O3 can be grown by high-temperature glancing angle deposition (HT-GLAD). The nanowires of metals including Al, Cu, Ag, Au, Mn, Fe, Co, Ni, and Zn are self-catalyzed, while the nanowires of other materials such as Ge and Ga2O3 are catalyzed by Au nanoparticles. However, once the nanowires start to grow, the growth modes of the HT-GLAD nanowires are fundamentally the same, i.e., nanowires with uniform diameter grow only when the vapor is incident at a very high glancing angle and reach a length larger than 1-8 µm even though the number of deposited atoms corresponds to the average thickness of 20-30 nm. This suggests that there is a universal growth mechanism for the nanowires grown by HT-GLAD.

  4. Large-scale Molecular Dynamics Simulations of Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Hubartt, Bradley; Liu, Xuejing; Amar, Jacques

    2013-03-01

    While a variety of methods have been developed to carry out atomistic simulations of thin-film growth at small deposition angles with respect to the substrate normal, due to the complex morphology as well as the existence of multiple scattering of depositing atoms by the growing thin-film, realistically modeling the deposition process for large deposition angles can be quite challenging. Accordingly, we have developed a computationally efficient method based on the use of a single graphical processing unit (GPU) to carry out molecular dynamics (MD) simulations of the deposition and growth of thin-films via glancing angle deposition. Using this method we have carried out large-scale MD simulations, based on an embedded-atom-method potential, of Cu/Cu(100) growth up to 20 monolayers for deposition angles ranging from 50° to 85° and for both random and fixed azimuthal angles. Our results for the thin-film porosity, roughness, lateral correlation length, and density vs height will be presented and compared with experiments. Results for the dependence of the microstructure, grain-size distribution, surface texture, and defect concentration on deposition angle will also be presented. Supported by NSF DMR-0907399

  5. Nanostructured magnetic recording media by patterning and glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Su, Hao

    In order to solve the trilemma problems that perpendicular magnetic recording is facing, advanced approaches such as heat assisted magnetic recording and bit patterned media are being intensively researched. In this work, high coercivity magnetic materials have been studied in the form of nanostructured Co/Pd and FeB/Pt multilayers. Arrays of uniformly spaced nanopillars over large areas were formed by utilizing block copolymer patterning. Uniform nanorods were formed by glancing angle deposition, a unique single-step approach to bit-patterned media. First, a detailed study on Co/Pd multilayered thin films was carried out to optimize the magnetic properties with respect to the thickness ratio, number of bilayers and seed layers. Then a statistical optimization of the patterning of Co/Pd multilayers by nanosphere lithography and block copolymer templating was carried out. The highest measured perpendicular anisotropy for Co/Pd films was 2.8 x 106 ergs/cm3. However, many of the M-H loops for Co/Pd were not saturated at the maximum field of 18 kOe, so the perpendicular anisotropy approaches 107 ergs/cm3. A unique single-step approach to nanostructuring these Co/Pd multilayers was developed: glancing angle deposition (GLAD), which produced Co/Pd nanorods with a coercivity as high as 2.9 kOe, a 123% increase over the flat multilayers. For deposition of FeBPt based granular media, two different techniques were used to sputter FeB/Pt multilayers. A finely alternated layered structure was proven to be more effective in forming L10 structured B-doped FePt. The FeBPt films thus formed were also patterned by block copolymer templating, and their magnetic properties were studied as a function of ion milling and annealing conditions. The highest coercivity achieved for patterned and annealed B-doped FePt films was 14 kOe.

  6. Branched Ta nanocolumns grown by glancing angle deposition

    SciTech Connect

    Zhou, C.M.; Gall, D.

    2006-05-15

    Periodic arrays of Ta nanocolumns, 200 nm wide and 600 nm tall, were grown by glancing angle sputter deposition onto self-assembled close-packed arrays of 260-nm-diameter silica spheres. Each sphere leads to the development of a single Ta column. As growth progresses, roughening of the column top surfaces causes branching of some columns into subcolumns. The measured fraction of branched columns f{sub b} decreases with increasing growth temperature, from 30% at 200 deg. C to 4% at 700 deg. C. This is attributed to the increased adatom mobility at elevated temperatures, leading to a larger average separation of growth mounds and, in turn, lower nucleation probabilities for subcolumns. Branching into 3 and 4 subcolumns exhibits probabilities proportional to f{sub b}{sup 2} and f{sub b}{sup 3}, respectively. A fit of the data with a simple nucleation model provides an effective activation energy for Ta surface diffusion of 2.0 eV.

  7. Roughness of glancing angle deposited titanium thin films: an experimental and computational study.

    PubMed

    Backholm, Matilda; Foss, Morten; Nordlund, Kai

    2012-09-28

    The characterization of roughness at the nanoscale by the means of atomic force microscopy (AFM) was performed on high aspect ratio glancing angle deposited titanium thin films. With the use of scanning electron microscopy as well as x-ray photoelectron spectroscopy, it was shown that the AFM measurements gave rise to incorrect roughness values for the films consisting of the highest aspect ratio structures. By correcting for this experimental artefact, the difference between the saturated roughness value of a film grown with conventional physical vapour deposition and films grown with a glancing angle of deposition was shown to behave as a power law function of the deposition angle, with a saturated roughness exponent of κ = 7.1 ± 0.2. This power law scaling was confirmed by three-dimensional molecular dynamics simulations of glancing angle deposition, where the saturated roughness exponent was calculated to κ = 6.7 ± 0.4. PMID:22948111

  8. Glancing angle sputter deposited nanostructures on rotating substrates: Experiments and simulations

    SciTech Connect

    Patzig, C.; Karabacak, T.; Fuhrmann, B.; Rauschenbach, B.

    2008-11-01

    Ordered arrays of Si nanorods and nanospirals have been produced by ion beam sputter glancing angle deposition of Si on rotating substrates. The substrates were prepatterned with honeycomb and hexagonal-closed-packed arranged Au dots obtained by nanosphere lithography. The effects of template type, substrate rotational speed, height of the artificial Au seeds, and deposition angle {theta} of the incident flux on the growth of the Si nanostructures is examined. Especially for the deposition of Si on honeycomb templates at different deposition angles, it is shown that the structure of the growing film changes drastically. A continuous film with honeycomblike arranged hillocks on top is deposited at normal incidence. With increased {theta}, the structure shifts to almost dense films with a mesh of hexagonally arranged pores ({theta}=70 deg.). Finally, separated rodlike structures with triangular cross section are obtained under glancing angle conditions ({theta}=85 deg.). In addition, the structural evolution of the glancing angle deposited Si films is compared with oblique angle deposition three-dimensional Monte Carlo simulations. Furthermore, the effects of surface diffusion on the growth of spiral Si nanostructures on nontemplated substrates in experiment and simulation are compared and discussed.

  9. Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition

    SciTech Connect

    Patzig, Christian; Rauschenbach, Bernd; Fuhrmann, Bodo; Leipner, Hartmut S.

    2008-01-15

    Regular arrays of Si nanorods with a circular cross section in hexagonal-closed-packed and triangular cross section in honeycomblike arrangements were grown using glancing angle deposition on Si(100) and fused silica substrates that were patterned with Au dots using self-assembled mono- and double layers of polystyrene nanospheres as an evaporation mask. The Au dots were used as an etching mask for the underlying silica substrates in a reactive ion beam etching process, which greatly enhanced the height of the seeding spaces for the subsequent glancing angle deposition. An elongated shadowing length l of the prepatterned nucleation sites and less growth of Si structures between the surface mounds could be achieved this way. Differences in form, height, and diameter of the Si nanorods grown on either hcp or honeycomb arrays are explained by purely geometrical arguments. Different seed heights and interseed distances are found to be the main reasons for the strong distinctions between the grown nanorod arrays.

  10. Nanorods of Co/Pd multilayers fabricated by glancing angle deposition for advanced media

    NASA Astrophysics Data System (ADS)

    Su, Hao; Natarajarathinam, Anusha; Gupta, Subhadra

    2013-05-01

    Perpendicular anisotropy magnetic nanorods composed of Co/Pd multilayers have been successfully fabricated by glancing angle deposition (GLAD) in a planetary sputtering system. Co and Pd layer thickness, ratio, and bilayer number were optimized for both normal and GLAD depositions. Scanning electron micrographs estimated the nanorods to be about 12 nm in diameter. M-H loops showed that the coercivity for the GLAD nanorods increased from 1.3 kOe for the normally deposited continuous films to 2.9 kOe for the GLAD nanorod array, a 123% increase.

  11. Nanorods of Co/Pd multilayers fabricated by glancing angle deposition for advanced media

    SciTech Connect

    Su, Hao; Gupta, Subhadra; Natarajarathinam, Anusha

    2013-05-28

    Perpendicular anisotropy magnetic nanorods composed of Co/Pd multilayers have been successfully fabricated by glancing angle deposition (GLAD) in a planetary sputtering system. Co and Pd layer thickness, ratio, and bilayer number were optimized for both normal and GLAD depositions. Scanning electron micrographs estimated the nanorods to be about 12 nm in diameter. M-H loops showed that the coercivity for the GLAD nanorods increased from 1.3 kOe for the normally deposited continuous films to 2.9 kOe for the GLAD nanorod array, a 123% increase.

  12. Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications

    NASA Astrophysics Data System (ADS)

    Horprathum, M.; Eiamchai, P.; Kaewkhao, J.; Chananonnawathorn, C.; Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.

    2014-09-01

    A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO3), titanium dioxide (TiO2), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO).

  13. Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications

    SciTech Connect

    Horprathum, M. Eiamchai, P. Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.; Kaewkhao, J.; Chananonnawathorn, C.

    2014-09-25

    A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO{sub 3}), titanium dioxide (TiO{sub 2}), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO)

  14. Structural properties of indium tin oxide thin films by glancing angle deposition method.

    PubMed

    Oh, Gyujin; Kim, Seon Pil; Lee, Kyoung Su; Kim, Eun Kyu

    2013-10-01

    We have studied the structural and optical properties of indium tin oxide (ITO) films deposited on sapphire substrates by electron beam evaporator with glancing angle deposition method. The ITO films were grown with different deposition angles of 0 degrees, 30 degrees, 45 degrees, 60 degrees at fixed deposition rate of 3 angstroms/s and with deposition rates of 2 angstroms/s, 3 angstroms/s, and 4angstroms/s at deposition angle of 45 degrees, respectively. From analysis of ellipsometry measurements, it appears that the void fraction of the films increased and their refractive indices decreased from 2.18 to 1.38 at the wavelength of 500 as increasing the deposition angle. The refractive index in the wavelength ranges of 550 nm-800 nm also depends on the deposition rates. Transmittance of ITO film with 235-nm-thickness grown at 60 degrees was covered about 20-80%, and then it was increased in visible wavelength range with increase of deposition angle. PMID:24245214

  15. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    PubMed

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-01

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained. PMID:26954074

  16. Glancing angle deposited villi-like nanostructures for enhanced chemo-resistive performances

    NASA Astrophysics Data System (ADS)

    Moon, Hi Gyu; Jung, Youngmo; Lee, Taikjin; Lee, Seok; Park, Hyung-Ho; Kim, Chulki; Kang, Chong-Yun

    Metal oxide nanostructures have attracted enormous attention for diverse applications such as solar cells, nanogenerators, nanolasers, optoelectronic devices and chemoresistive sensor. To achieve the enhanced electrical properties for these applications, one-dimensional (1D) metal oxide materials including nanowires, nanorods, nanotubes and nanobelts have been widely studied. However, the use of 1D nanomaterials as chemoresistive sensors is still in the beginning stage in how to integrate them. As an alternative, porous thin films based on 1D metal oxide nanostructures are considered as more desirable configuration due to their simplicity in synthesis, high reproducibility. In this study, we propose facile synthesis and self-assembled villi-like nanofingers (VLNF) WO3 thin films with large specific surface area on the SiO2/Si substrate. Room-temperature glancing angle deposition of WO3 by a simple controlling in both polar and azimuthal directions resulted in anisotropic nanostructures with large aspect ratio and porous structures with a relative surface area of 350 m2/g. Glancing angle deposited villi-like nanostructures for enhanced chemo-resistive performances.

  17. Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng; Bai, Fan

    2014-07-01

    Minimization of helices opens a door to impose novel functions derived from the dimensional shrinkage of optical, mechanical and electronic devices. Glancing angle deposition (GLAD) enables one to deposit three-dimensional helical porous thin films (HPTFs) composed of separated spiral micro/nano-columns. GLAD integrates a series of advantageous features, including one-step deposition, wafer-scale production with mono-handedness of spirals, flexible engineering of spiral materials and dimensions, and the adaption to various kinds of substrates. Herein, we briefly review the fabrication of HPTFs by GLAD, specific growth mechanisms, physical properties in structures, mechanics and chiral optics, and the emerging applications in green energy. A prospective outlook is presented to illuminate some promising developments in enantioselection, bio-dynamic analyses, wirelessly-controlled drug delivery and mass production.

  18. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films.

    PubMed

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K; Gray, Stephen K; Gupta, Mool C

    2015-02-15

    Nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Applications for this structure are explored, including a promising application for solar thermal energy systems. PMID:25680136

  19. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    DOE PAGESBeta

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K.; Gray, Stephen K.; Gupta, Mool C.

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control overmore » the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.« less

  20. In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons.

    PubMed

    Hajireza, Parsin; Sorge, Jason; Brett, Michael; Zemp, Roger

    2015-04-01

    In this Letter, reflection-mode optical resolution photoacoustic microscopy (OR-PAM) using glancing angle-deposited (GLAD) nanostructured Fabry-Perot interferometers (FPI) for in vivo applications is reported. GLAD is a single-step physical vapor deposition (PVD) technique used to fabricate porous nanostructured thin films. Using titanium dioxide, a transparent semiconductor with a high refractive index (n=2.4), the GLAD technique can be employed to fabricate samples with tailored nano-porosity, refractive index periodicities, and high Q-factor reflectance spectra. The OR-PAM in vivo images of chorioallantoic membrane (CAM) of 5-day chicken embryo model are demonstrated. The phantom study shows lateral resolution and signal-to-noise ratio better than 7 μm and 35 dB, respectively. The sensitive GLAD FPI allows photoacoustic imaging down to a few-nJ pulse energy. To the best of our knowledge, this is the first time that a FPI-based reflection mode optical resolution photoacoustic imaging technique is demonstrated for in vivo applications. PMID:25831330

  1. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    SciTech Connect

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K.; Gray, Stephen K.; Gupta, Mool C.

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.

  2. Glancing angle deposition of SiO{sub 2} thin film microstructures: Investigations of optical and morphological properties

    SciTech Connect

    Tokas, R. B. E-mail: tokasstar@gmail.com; Jena, S. E-mail: tokasstar@gmail.com; Sarkar, P. E-mail: tokasstar@gmail.com; Thakur, S. E-mail: tokasstar@gmail.com; Sahoo, N. K. E-mail: tokasstar@gmail.com

    2014-04-24

    In present work, the optical and the morphological properties of micro-structured SiO{sub 2} thin films fabricated by using glancing angle deposition (GLAD) technique has been carried out. The results are compared with the normally deposited SiO{sub 2} films for the gained advantages. The influence of the glancing angle on the refractive index of porous SiO{sub 2} film was investigated by the spectral transmission measurement in 400–950 nm wavelength regimes. The refractive index has been found to be 1.14@532 nm for the porous SiO{sub 2} film deposited at a glancing angle of 85°. The density and surface qualities of these samples were primarily investigated by using grazing angle X-ray reflectivity (GIXR) and atomic force microscope (AFM) measurements. Results indicate a substantial decrease in film density and refractive index and increase in surface roughness and grain size for GLAD SiO{sub 2} compared to normally deposited SiO{sub 2} films.

  3. Oxygen partial pressure dependent optical properties of glancing angle deposited (GLAD) Ta2O5 films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Haque, S. Maidul; Rao, K. Divakar; Misal, J. S.; Pratap, C.; Sahoo, N. K.

    2016-05-01

    Experiments were carried out on Ta2O5 oxide thin films by asymmetric bipolar pulsed DC magnetron sputtering using a new hybrid combination of conventional (normal incidence) deposition and glancing angle deposition (GLAD) geometries. The films were prepared with varying O2 partial pressure. The ellipsometry characterization reveals a systematic variation in refractive index, which decreased from 2.2 in the normal films to an average 1.78 in the GLAD films. The bandgap of these GLAD films is slightly higher as compared to normal films. Overall transmission of the GLAD films is increased is by ~ 15 % implying a reduction in the refractive index for potential optical filtering device applications. The results were further supported by X-ray reflectivity measurements which show an effective double layer structure in GLAD consisting of layers with different densities of the same Ta2O5 material.

  4. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  5. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  6. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  7. Substrate temperature control for the formation of metal nanohelices by glancing angle deposition

    SciTech Connect

    Sumigawa, Takashi Sakurai, Atsushi; Iwata, Kazuya; Chen, Shaoguang; Kitamura, Takayuki; Tanie, Hisashi

    2015-11-15

    The targets of this study are to develop a device to precisely control the temperature during glancing angle deposition, to make films consisting of low melting temperature metal nanoelements with a controlled shape (helix), and to explore the substrate temperature for controlling the nanoshapes. A vacuum evaporation system capable of both cooling a substrate and measurement of its temperature was used to form thin films consisting of arrays of Cu and Al nanohelices on silicon substrates by maintaining the substrate temperature at T{sub s}/T{sub m} < 0.22 (T{sub s} is the substrate temperature and T{sub m} is the melting temperature of target material). The critical T{sub s}/T{sub m} to produce Cu and Al nanohelices corresponds to the transitional homologous temperature between zones I and II in the structure zone model for the solid film, where surface diffusion becomes dominant. X-ray diffraction analysis indicated that the Cu and Al nanohelix thin films were composed of coarse oriented grains with diameters of several tens of nanometers.

  8. Study of hafnium oxide thin films deposited by RF magnetron sputtering under glancing angle deposition at varying target to substrate distance

    NASA Astrophysics Data System (ADS)

    Haque, S. Maidul; Rao, K. Divakar; Misal, J. S.; Tokas, R. B.; Shinde, D. D.; Ramana, J. V.; Rai, Sanjay; Sahoo, N. K.

    2015-10-01

    Glancing angle deposition of HfO2 thin films by RF magnetron sputtering technique has been explored with respect to two vital deposition parameters visualizing angle of deposition (at 82° and 86° glancing angles) and target to substrate distance, DTS in the range 70-125 mm. AFM and spectroscopic ellipsometry measurements show that at optimum DTS of 110 mm and glancing angle 82°, the films exhibit nanostructures with an estimated lowest refractive index ∼1.63 at 550 nm. For both the deposition angles, with decrease in DTS the round shaped grains of the film surface as obtained from AFM images are found to coalesce and produce films with elliptical shaped grains at shorter target to substrate distance. With increase in DTS the deposition rate first decreases up to DTS = 110 mm and subsequently increases. The phenomenon has been ascribed to the competition between reduced deposition flux density and increased sticking coefficient due to decrease in adatom kinetic energy with the increase in DTS. GIXRD measurement reveals that all the films exhibit monoclinic crystal structure. At lower DTS, the crystallinity has improved with increase in deposition angle whereas at higher DTS (>90 mm) the crystallinity becomes poorer with increase in deposition angle. The fact has been explained in light of variation of shadowing effect and deposition rate.

  9. Control of Nano-Structure of Photocatalytic TiO2 Films by Oxygen Ion Assisted Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoichi; Yasuda, Yoji; Kitahara, Naoto

    2013-11-01

    Control of the nano-structure of TiO2 photocatalytic films by a glancing angle deposition was investigated using an oxygen ion assisted reactive evaporation (OARE) system. The porosity of the film was increased as the incidence angle of Ti vapor increased, and films with clearly separated columnar grains were obtained at an incident angle above 60°. The increase in the porosity led to a significant decrease in UV reflectance and the film deposited at 60° had a large UV absorptance above 80% at 300 nm. The photocatalytic performance of the film, however, did not improve remarkably, since the crystallinity of the film was degraded by the deposition at a high incidence angle above 60°. To improve the crystallinity of the film, control of energy of the incident oxygen ions was attempted. However, only a slight improvement of photocatalytic properties was observed.

  10. Studies on temperature dependence of current-voltage characteristics of glancing angle deposited indium oxide nanowire on silicon substrate

    NASA Astrophysics Data System (ADS)

    Mondal, Aniruddha; Dey, Anubhab; Das, Amit Kumar; Choudhuri, Bijit

    2016-05-01

    The 1D perpendicular In2-xO3-y nanostructure arrays have been synthesized by using glancing angle deposition (GLAD) technique. A low deposition rate of 0.5 A°/S produced highly porous structure. The current - voltage characteristics for the In2-xO3-ynanocolumnar array based were measured through a gold Schottky contact at different temperatures. The temperature dependent ideality factor was calculated from the observed current - voltage characteristics. The ideality factor was found to vary from 4.19 to 2.75 with a variation in temperature from 313 K to 473 K.

  11. Molecular separations using nanostructured porous thin films fabricated by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, Louis Wentzel

    Biomolecular separation techniques are an enabling technology that indirectly in.uence many aspects of our lives. Advances have led to faster analyses, reduced costs, higher specificity, and new analytical techniques, impacting areas such as health care, environmental monitoring, polymer sciences, agriculture, and nutrition. Further development of separations technology is anticipated to follow the path of computing technology such that miniaturization through the development of microfluidics technology, lab-on-a-chip systems, and other integrative, multi-component systems will further extend our analysis capabilities. Creation of new and improvement of existing separation technologies is an integral part of the pathway to miniaturized systems. the work of this thesis investigates molecular separations using porous nanostructured films fabricated by the thin film process glancing angle deposition (GLAD). Structural architecture, pore size and shape, and film density can be finely controlled to produce high-surface area thin films with engineered morphology. The characteristic size scales and structural control of GLAD films are well-suited to biomolecules and separation techniques, motivating investigation into the utility and performance of GLAD films for biomolecular separations. This project consisted of three phases. First, chromatographic separation of dye molecules on silica GLAD films was demonstrated by thin layer chromatography Direct control of film nanostructure altered the separation characteristics; most strikingly, anisotropic structures provided two-dimensional analyte migration. Second, nanostructures made with GLAD were integrated in PDMS microfluidic channels using a sacrificial etching process; DNA molecules (10/48 kbp and 6/10/20 kbp mixtures) were electrophoretically separated on a microfluidic chip using a porous bed of SiO2 vertical posts. Third, mass spectrometry of proteins and drugs in the mass range of 100-1300 m/z was performed using

  12. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  13. Glancing Angle Deposition of Ag on Si(111)7x7

    NASA Astrophysics Data System (ADS)

    Cobblah, A. N.; Hayden, S. T.; Chen, Yiyao; Kremenak, J.; Gramlich, M. W.; Miceli, P. F.

    2012-02-01

    Ag(111) films were vapor-deposited in ultra-high vacuum on Si(111)7x7 substrates. The angle of deposition was varied from normal incidence to 80 degrees and the films were studied by x-ray reflectivity. It is found that, even for very thin films, the film roughness increased dramatically with the angle of deposition. This poster will highlight experimental results as well as the development of a UHV chamber that enables a laboratory x-ray source to monitor low angle reflectivity during film growth. Funding is acknowledged from the Ronald E. McNair Post-baccalaureate Achievement Program and NSF DMR-0706278. Some measurements were performed on the 6IDC beam line, supported by the US-DOE (through Ames Lab, W-7405-Eng-82), at the Advanced Photon Source (US-DOE, W-31-109-Eng-38) located at Argonne National Laboratory.

  14. Plasmonic gratings with nano-protrusions made by glancing angle deposition for single-molecule super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Chen, B.; Wood, A.; Pathak, A.; Mathai, J.; Bok, S.; Zheng, H.; Hamm, S.; Basuray, S.; Grant, S.; Gangopadhyay, K.; Cornish, P. V.; Gangopadhyay, S.

    2016-06-01

    Super-resolution imaging has been advantageous in studying biological and chemical systems, but the required equipment and platforms are expensive and unable to observe single-molecules at the high (μM) fluorophore concentrations required to study protein interaction and enzymatic activity. Here, a plasmonic platform was designed that utilized an inexpensively fabricated plasmonic grating in combination with a scalable glancing angle deposition (GLAD) technique using physical vapor deposition. The GLAD creates an abundance of plasmonic nano-protrusion probes that combine the surface plasmon resonance (SPR) from the periodic gratings with the localized SPR of these nano-protrusions. The resulting platform enables simultaneous imaging of a large area without point-by-point scanning or bulk averaging for the detection of single Cyanine-5 molecules in dye concentrations ranging from 50 pM to 10 μM using epifluorescence microscopy. Combining the near-field plasmonic nano-protrusion probes and super-resolution technique using localization microscopy, we demonstrate the ability to resolve grain sizes down to 65 nm. This plasmonic GLAD grating is a cost-effective super-resolution imaging substrate with potential applications in high-speed biomedical imaging over a wide range of fluorescent concentrations.Super-resolution imaging has been advantageous in studying biological and chemical systems, but the required equipment and platforms are expensive and unable to observe single-molecules at the high (μM) fluorophore concentrations required to study protein interaction and enzymatic activity. Here, a plasmonic platform was designed that utilized an inexpensively fabricated plasmonic grating in combination with a scalable glancing angle deposition (GLAD) technique using physical vapor deposition. The GLAD creates an abundance of plasmonic nano-protrusion probes that combine the surface plasmon resonance (SPR) from the periodic gratings with the localized SPR of these nano

  15. Plasmonic gratings with nano-protrusions made by glancing angle deposition for single-molecule super-resolution imaging.

    PubMed

    Chen, B; Wood, A; Pathak, A; Mathai, J; Bok, S; Zheng, H; Hamm, S; Basuray, S; Grant, S; Gangopadhyay, K; Cornish, P V; Gangopadhyay, S

    2016-06-16

    Super-resolution imaging has been advantageous in studying biological and chemical systems, but the required equipment and platforms are expensive and unable to observe single-molecules at the high (μM) fluorophore concentrations required to study protein interaction and enzymatic activity. Here, a plasmonic platform was designed that utilized an inexpensively fabricated plasmonic grating in combination with a scalable glancing angle deposition (GLAD) technique using physical vapor deposition. The GLAD creates an abundance of plasmonic nano-protrusion probes that combine the surface plasmon resonance (SPR) from the periodic gratings with the localized SPR of these nano-protrusions. The resulting platform enables simultaneous imaging of a large area without point-by-point scanning or bulk averaging for the detection of single Cyanine-5 molecules in dye concentrations ranging from 50 pM to 10 μM using epifluorescence microscopy. Combining the near-field plasmonic nano-protrusion probes and super-resolution technique using localization microscopy, we demonstrate the ability to resolve grain sizes down to 65 nm. This plasmonic GLAD grating is a cost-effective super-resolution imaging substrate with potential applications in high-speed biomedical imaging over a wide range of fluorescent concentrations. PMID:27250765

  16. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    SciTech Connect

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-28

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the Unreal{sup TM} Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  17. 3-D matrix template-assisted growth of oriented oxide nanowire arrays using glancing angle pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.

    Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.

  18. Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition

    PubMed Central

    Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105

  19. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition.

    PubMed

    Wang, Peng-Yuan; Bennetsen, Dines T; Foss, Morten; Ameringer, Thomas; Thissen, Helmut; Kingshott, Peter

    2015-03-01

    Ordered surface nanostructures have attracted much attention in biotechnology and biomedical engineering because of their potential to modulate cell-surface interactions in a controllable manner. However, the ability to fabricate large area ordered nanostructures is limited because of high costs and low speed of fabrication. Here, we have fabricated ordered nanostructures with large surface areas (1.5 × 1.5 cm(2)) using a combination of facile techniques including colloidal self-assembly, colloidal lithography and glancing angle deposition (GLAD). Polystyrene (722 nm) colloids were self-assembled into a hexagonally close-packed (hcp) crystal array at the water-air interface, transferred on a biocompatible tantalum (Ta) surface and used as a mask to generate an ordered Ta pattern. The Ta was deposited by sputter coating through the crystal mask creating approximately 60-nm-high feature sizes. The feature size was further increased by approximately 200-nm-height respectively using GLAD, resulting in the fabrication of four different surfaces (FLAT, Ta60, GLAD100, and GLAD200). Cell adhesion, proliferation, and osteogenic differentiation of primary human adipose-derived stem cells (hADSCs) were studied on these ordered nanostructures for up to 2 weeks. Our results suggested that cell spreading, focal adhesion formation, and filopodia extension of hADSCs were inhibited on the GLAD surfaces, while the growth rate was similar between each surface. Immunostaining for type I collagen (COL1) and osteocalcin (OC) showed that there was higher osteogenic components deposited on the GLAD surfaces compared to the Ta60 and FLAT surfaces after 1 week of osteogenic culture. After 2 weeks of osteogenic culture, alkaline phosphatase (ALP) activity and the amount of calcium was higher on the GLAD surfaces. In addition, osteoblast-like cells were confluent on Ta60 and FLAT surfaces, whereas the GLAD surfaces were not fully covered suggesting that the cell-cell interactions are

  20. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  1. Optical properties of WO3 thin films modeled by finite-difference time-domain and fabricated by glancing angle deposition.

    PubMed

    Charles, Cédric; Martin, Nicolas; Devel, Michel

    2012-12-01

    Optical transmittance spectra between 1.55 eV (800 nm) and 3.10 eV (400 nm) of tungsten oxide (WO3) thin films nanostructured thanks to the Glancing Angle Deposition technique are investigated both experimentally and theoretically, as a function of geometrical parameters. A Finite-Difference Time-Domain code was used to numerically model the films structure and to calculate their optical properties. The corresponding optical index and porosity are considered. It is found that the optical index of columnar structures always follows Cauchy's law as a function of energy and is reduced as the incident angle increases (alpha = 0 to 80 degrees) from n633 = 2.2 to 1.98 for experimental data against 2.1 to 1.75 for those computed with the Finite-Difference Time-Domain code. For zigzag architectures, an increase of the zigzag number from 0.5 to 8, amplifies interference fringes and improves the measured refractive indices. It agrees with modeled optical characteristics since n633 increases from 2.18 to 2.30. PMID:23447966

  2. Adherence of human mesenchymal stem cells on Ti and TiO2 nano-columnar surfaces fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Motemani, Yahya; Greulich, Christina; Khare, Chinmay; Lopian, Michael; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-02-01

    The interaction of human mesenchymal stem cells (hMSCs) with Ti and TiO2 nano-columnar surfaces fabricated using glancing angle sputter deposition was investigated. The adherence and proliferation of hMSCs on different nano-columnar surfaces, including vertical columns, slanted columns and chevrons, were examined with calcein-acetoxymethyl ester fluorescence staining and scanning electron microscopy. For comparison, adherence of hMSCs on compact, dense films was also studied. After 24 h and 7 days, adherent and viable cells were observed on both, Ti nano-columns as well as dense Ti films, which confirms the biocompatibility of these nanostructures. Very small pseudopodia with width of approximately 20-35 nm and length varying from 20 to 200 nm were observed between the nano-columns, independent of the type of the nano-columnar morphology. Large inter-column spacing and effectively increased surface area make these nanostructures promising candidates for bio-functionalization or drug loading on the surface of Ti-based implants.

  3. Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Leontyev, Viktor; Wakefield, Nicholas G.; Tabunshchyk, Kyrylo; Sit, Jeremy C.; Brett, Michael J.; Kovalenko, Andriy

    2008-11-01

    Columnar thin films exhibiting linear polarization selectivity have been theoretically investigated and fabricated using the glancing angle deposition (GLAD) technique. The film structure employed an s-shaped columnar morphology that may be either smoothly bent or composed of discrete segments. Finite-difference time-domain and frequency-domain methods have been used to model these thin film structures numerically. Simulation results have yielded optimal geometries in which the films exhibit either a single frequency band with polarization-selective transmittance or two separated frequency bands each transmitting one of two orthogonal linearly polarized modes. Based on these designs, a series of TiO2 films were grown by GLAD with continuous and discrete s-shaped columnar morphology. Experimental measurements by spectrophotometry verified the presence of selectivity for the orthogonal linearly polarized modes. Films with more then 24 periods were found to have polarization selectivity approaching unity. The agreement between the simulation and experimental results demonstrates the potential for future theoretical development of highly selective polarization filters based on GLAD thin films.

  4. Response of MG63 osteoblast-like cells to ordered nanotopographies fabricated using colloidal self-assembly and glancing angle deposition.

    PubMed

    Wang, Peng-Yuan; Bennetsen, Dines T; Foss, Morten; Thissen, Helmut; Kingshott, Peter

    2015-01-01

    Ordered surface nanostructures have attracted much attention in different fields including biomedical engineering because of their potential to study the size effect on cellular response and modulation of cell fate. However, the ability to fabricate large-area ordered nanostructures is typically limited due to high costs and low speed of fabrication. Herein, highly ordered nanostructures with large surface areas (>1.5 × 1.5 cm(2)) were fabricated using a combination of facile techniques including colloidal self-assembly, colloidal lithography, and glancing angle deposition (GLAD). An ordered tantalum (Ta) pattern with 60-nm-height was generated using colloidal lithography. A monolayer of colloidal crystal, i.e., hexagonal close packed 720 nm polystyrene particles, was self-assembled and used as a mask. Ta patterns were subsequently generated by evaporation of Ta through the mask. The feature size was further increased by 100 or 200 nm using GLAD, resulting in the fabrication of four different surfaces (FLAT, Ta60, GLAD100, and GLAD200). Cell adhesion, proliferation, and mineralization of MG63 osteoblast-like cells were investigated on these ordered nanostructures over a 1 week period. Our results showed that cell adhesion, spreading, focal adhesion formation, and filopodia formation of the MG63 osteoblast-like cells were inhibited on the GLAD surfaces, especially the initial (24 h) attachment, resulting in a lower cell density on the GLAD surfaces. After 1 week culture, alkaline phosphatase activity and the amount of Ca was higher on the GLAD surfaces compared with Ta60 and FLAT controls, suggesting that the GLAD surfaces facilitate differentiation of osteoblasts. This study demonstrates that ordered Ta nanotopographies synthesized by combining colloidal lithography with GLAD can improve the mineralization of osteoblast-like cells providing a new platform for biomaterials and bone tissue engineering. PMID:26459103

  5. Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures

    SciTech Connect

    Garcia-Martin, J. M.; Cebollada, A.; Alvarez, R.; Romero-Gomez, P.; Palmero, A.

    2010-10-25

    We show that the tilt angle of nanostructures obtained by glancing angle sputtering is finely tuned by selecting the adequate argon pressure. At low pressures, a ballistic deposition regime dominates, yielding high directional atoms that form tilted nanocolumns. High pressures lead to a diffusive regime which gives rise to vertical columnar growth. Monte Carlo simulations reproduce the experimental results indicating that the loss of directionality of the sputtered particles in the gas phase, together with the self-shadowing mechanism at the surface, are the main processes responsible for the development of the columns.

  6. GLANCE

    PubMed Central

    Goodman, A D.; Rossman, H; Bar-Or, A; Miller, A; Miller, D H.; Schmierer, K; Lublin, F; Khan, O; Bormann, N M.; Yang, M; Panzara, M A.; Sandrock, A W.

    2009-01-01

    Objective: To evaluate the safety and tolerability of natalizumab when added to glatiramer acetate (GA) in patients with relapsing multiple sclerosis. The primary outcome assessed whether this combination would increase the rate of development of new active lesions on cranial MRI scans vs GA alone. Methods: This phase 2, randomized, double-blind, placebo-controlled study included patients aged 19 to 55 years who were treated with GA for at least 1 year before randomization and experienced at least one relapse during the previous year. Patients received IV natalizumab 300 mg (n = 55) or placebo (n = 55) once every 4 weeks plus GA 20 mg subcutaneously once daily for ≤20 weeks. Results: The mean rate of development of new active lesions was 0.03 with combination therapy vs 0.11 with GA alone (p = 0.031). Combination therapy resulted in lower mean numbers of new gadolinium-enhancing lesions (0.6 vs 2.3 for GA alone, p = 0.020) and new/newly enlarging T2-hyperintense lesions (0.5 vs 1.3, p = 0.029). The incidence of infection and infusion reactions was similar in both groups; no hypersensitivity reactions were observed. One serious adverse event occurred with combination therapy (elective hip surgery). With the exception of an increase in anti-natalizumab antibodies with combination therapy, laboratory data were consistent with previous clinical studies of natalizumab alone. Conclusion: The combination of natalizumab and glatiramer acetate seemed safe and well tolerated during 6 months of therapy. GLOSSARY AE = adverse event; CONSORT = Consolidated Standards of Reporting Trials; EDSS = Expanded Disability Status Scale; GA = glatiramer acetate; Gd+ = gadolinium-enhancing; GLANCE = Glatiramer Acetate and Natalizumab Combination Evaluation; IFNβ = interferon β; MS = multiple sclerosis; PML = progressive multifocal leukoencephalopathy. PMID:19255407

  7. Strong light coupling effect for a glancing-deposited silver nanorod array in the Kretschmann configuration

    PubMed Central

    2014-01-01

    In this work, three slanted silver nanorod arrays (NRAs) with different thicknesses are fabricated using the glancing angle deposition method. Each silver NRA in the Kretschmann configuration is arranged to form a prism/NRA/air system. Attenuated total reflection occurs over the visible wavelengths and wide incident angles of both s- and p-polarization states. The extinctance is inversely proportional to the thickness of the Ag NRA. The thinnest NRA, with a thickness of 169 nm, exhibits strong extinctance of more than 80% over the visible wavelengths. The associated forward scatterings from the three NRAs are measured and compared under illumination with a laser beam with a wavelength of 632.8 nm. PMID:25352769

  8. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  9. Glancing angle metal evaporation synthesis of catalytic swimming Janus colloids with well defined angular velocity.

    PubMed

    Archer, R J; Campbell, A I; Ebbens, S J

    2015-09-14

    The ability to control the degree of spin, or rotational velocity, for catalytic swimming devices opens up the potential to access well defined spiralling trajectories, enhance cargo binding rate, and realise theoretically proposed behaviour such as chiral diffusion. Here we assess the potential to impart a well-defined spin to individual catalytic Janus swimmers by using glancing angle metal evaporation onto a colloidal crystal to break the symmetry of the catalytic patch due to shadowing by neighbouring colloids. Using this approach we demonstrate a well-defined relationship between the glancing angle and the ratio of rotational to translational velocity. This allows batches of colloids with well-defined spin rates in the range 0.25 to 2.5 Hz to be produced. With reference to the shape and thickness variations across the catalytically active shapes, and their propulsion mechanism we discuss the factors that can lead to the observed variations in rotational propulsion. PMID:26234424

  10. Physical Ion Sputtering At Glancing Angles As A Novel IC De-processing Technique

    SciTech Connect

    Vyatkin, A. F.; Zinenko, V. I.

    2011-01-07

    Failure analysis (de-processing) techniques are becoming more and more important in tackling integrated circuits (IC) process-related problems. Particularly, failure analysis of ICs requires opening and de-layering a chip in a layer by layer mode in order to find hidden defects. Selective chemical etching, reactive ion etching, plasma etching and chemical mechanical polishing or a combination of these techniques are traditionally used for de-processing of IC. In this work a novel technique which is physical ion sputtering at glancing incidence angles allowing precise information about possible reasons of IC failures occurring at different steps of IC processing is proposed.

  11. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  12. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    PubMed Central

    Sarapata, A.; Stayman, J. W.; Finkenthal, M.; Siewerdsen, J. H.; Pfeiffer, F.; Stutman, D.

    2014-01-01

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  13. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.

    PubMed

    Horprathum, M; Srichaiyaperk, T; Samransuksamer, B; Wisitsoraat, A; Eiamchai, P; Limwichean, S; Chananonnawathorn, C; Aiempanakit, K; Nuntawong, N; Patthanasettakul, V; Oros, C; Porntheeraphat, S; Songsiriritthigul, P; Nakajima, H; Tuantranont, A; Chindaudom, P

    2014-12-24

    In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface. PMID:25422873

  14. Photocatalytic properties of porous titania grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Riley, M. J.; Williams, B.; Condon, G. Y.; Borja, J.; Lu, T. M.; Gill, W. N.; Plawsky, J. L.

    2012-04-01

    High surface area nanorods of titanium dioxide were grown by oblique angle deposition on a transparent substrate to investigate their effectiveness as photocatalytic agents for the destruction of organic contaminants in air and water. Optical transmission measurements were made that allowed for an estimation of the porosity of the film (75%-78%). Comparing transmission measurements with those from a dense anatase film showed that the penetration depth for the light into the nanorod film was 2.5 times that in a dense, anatase film. The photocatalytic degradation of indigo carmine dye on the porous films was shown to depend on film thickness and annealing conditions. The effectiveness of the film was assessed by observing the change in absorbance of the dye at 610 nm over time and quantifying the film performance using a pseudo-first-order reaction rate model. Reaction rates increased as the film thickness increased from 600 nm to 1000 nm, but leveled out or decreased at thicknesses beyond 1500 nm. A transport/reaction model was used to show that there exists an optimal geometry that maximizes the overall reaction rate and that such a geometry can be simply produced using glancing angle deposition. The nanorod films were benchmarked against nanoparticle films and were shown to perform as well as 0.73 g/L of 25-nm-diameter anatase nanoparticles with surface area of 50 m2/g.

  15. Glancing-angle ion enhanced surface diffusion on gaAs(001) during molecular beam epitaxy.

    PubMed

    DeLuca, P M; Ruthe, K C; Barnett, S A

    2001-01-01

    We describe the effects of glancing incidence 3-4 keV Ar ion bombardment on homoepitaxial growth on vicinal GaAs(001). The average adatom lifetime on surface terraces, measured during growth using specular ion scattering, decreased monotonically with increasing ion current density. The results indicated that surface diffusivity was increased by the ions. The ion beam also suppressed growth oscillations and decreased the film surface roughness. This indicates a change from two-dimensional island nucleation to step-flow growth due to increased adatom surface diffusivity. A simple model, involving direct momentum transfer from ions to adatoms, is shown to be consistent with the measured enhanced diffusion. PMID:11177806

  16. Electrochromic behavior of W(x)Si(y)O(z) thin films prepared by reactive magnetron sputtering at normal and glancing angles.

    PubMed

    Gil-Rostra, Jorge; Cano, Manuel; Pedrosa, José M; Ferrer, Francisco Javier; García-García, Francisco; Yubero, Francisco; González-Elipe, Agustín R

    2012-02-01

    This work reports the synthesis at room temperature of transparent and colored W(x)Si(y)O(z) thin films by magnetron sputtering (MS) from a single cathode. The films were characterized by a large set of techniques including X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), Fourier transform infrared (FT-IR), and Raman spectroscopies. Their optical properties were determined by the analysis of the transmission and reflection spectra. It was found that both the relative amount of tungsten in the W-Si MS target and the ratio O(2)/Ar in the plasma gas were critical parameters to control the blue coloration of the films. The long-term stability of the color, attributed to the formation of a high concentration of W(5+) and W(4+) species, has been related with the formation of W-O-Si bond linkages in an amorphous network. At normal geometry (i.e., substrate surface parallel to the target) the films were rather compact, whereas they were very porous and had less tungsten content when deposited in a glancing angle configuration. In this case, they presented outstanding electrochromic properties characterized by a fast response, a high coloration, a complete reversibility after more than one thousand cycles and a relatively very low refractive index in the bleached state. PMID:22208156

  17. Enhancement of the photocatalytic property of TiO{sub 2} columnar nanostructured films by changing deposition angle

    SciTech Connect

    Li, Zhengcao Teng, Yi; Xing, Liping; Zhang, Na; Zhang, Zhengjun

    2014-02-01

    Highlights: • Isolated and inclined columnar TiO{sub 2} nanostructures were obtained by sputtering Ti, and subsequently annealing. • The film performed photocatalytic decolorization effectively under UV irradiation. • The photocatalytic efficiency increased with deposition angle, which results in a more porous micro structure of the films. - Abstract: Isolated and inclined columnar nanostructured TiO{sub 2} films were obtained by sputtering titanium with glancing angle deposition method and subsequently annealing in air. Compared with flat film, TiO{sub 2} film fabricated with this method has higher porosity; compared with TiO{sub 2} powder, it overcomes the obstacles of immobilization and recycling. The TiO{sub 2} photocatalysis was evaluated by the degradation of methyl orange under UV light. It was indicated that the photocatalytic performance increased with deposition angle, which changed the porosity of the films. The relationship between deposition angle (the angle between the target and substrate surface) and the TiO{sub 2} columnar inclination angle (the angle between TiO{sub 2} columnar and substrate normal) was discussed.

  18. Self-organized ultrathin FePt nanowires produced by glancing-angle ion-beam codeposition on rippled alumina surfaces

    NASA Astrophysics Data System (ADS)

    Garel, Mathieu; Babonneau, David; Boulle, Alexandre; Pailloux, Frédéric; Coati, Alessandro; Garreau, Yves; Ramos, Aline Y.; Tolentino, Hélio C. N.

    2015-01-01

    Ultradense macroscopic arrays of ferromagnetic alloy nanowires exhibit unique properties that make them attractive both for basic physics studies and for prospective nanodevice applications in various areas. We report here on the production of self-organized equiatomic FePt nanowires produced by glancing-angle ion-beam codeposition on alumina nanoripple patterns at room temperature and subsequent annealing at 600 °C. This study demonstrates that periodically aligned FePt nanowires with tunable size (~10-20 nm width and ~0.5-10 nm height) can be successfully grown as a consequence of shadowing effects and low mobility of Fe and Pt on the rippled alumina surface. Moreover, the structure and magnetic properties of the FePt nanowires, which undergo a phase transition from a disordered A1 (soft) structure to a partially ordered L10 (hard) structure, can be modified upon annealing. We show that this behavior can be further exploited to change the effective uniaxial anisotropy of the system, which is determined by a strong interplay between the shape and magnetocrystalline anisotropies of the nanowires.

  19. X-ray absorption, glancing-angle reflectivity, and theoretical study of the N K- and Ga M{sub 2,3}-edge spectra in GaN

    SciTech Connect

    Lambrecht, W.R.; Rashkeev, S.N.; Segall, B.; Lawniczak-Jablonska, K.; Suski, T.; Gullikson, E.M.; Underwood, J.H.; Perera, R.C.; Rife, J.C.; Grzegory, I.; Porowski, S.; Wickenden, D.K.

    1997-01-01

    A comprehensive study of the nitrogen K edge and gallium M{sub 2,3} edge in gallium nitride is presented. Results of two different experimental techniques, x-ray absorption by total photocurrent measurements and glancing-angle x-ray reflectivity, are compared with each other. First-principles calculations of the (polarization averaged) dielectric response {epsilon}{sub 2}({omega}) contributions from the relevant core-level to conduction-band transitions and derived spectral functions are used to interpret the data. These calculations are based on the local density approximation (LDA) and use a muffin-tin orbital basis for the band structure and matrix elements. The angular dependence of the x-ray reflectivity is studied and shown to be in good agreement with the theoretical predictions based on Fresnel theory and the magnitude of the calculated x-ray optical response functions. The main peaks in the calculated and measured spectra are compared with those in the relevant partial density of conduction-band states. Assignments are made to particular band transitions and corrections to the LDA are discussed. From the analysis of the N K and Ga M{sub 2,3} edges the latter are found to be essentially constant up to {approximately}10 eV above the conduction-band minimum. The differences in spectral shape found between the various measurements were shown to be a result of polarization dependence. Since the c axis in all the measurements was normal to the sample surface, p-polarized radiation at glancing angles corresponds to {bold E}{parallel}{bold c} while s polarization corresponds to {bold E}{perpendicular}{bold c} at all incident angles. Thus, this polarization dependence is a result of the intrinsic anisotropy of the wurtzite structure. Spectra on powders which provide an average of both polarizations as well as separate measurements of reflectivity with s polarization and p polarization were used. {copyright} {ital 1997} {ital The American Physical Society}

  20. Shape-controllable, bottom-up fabrication of microlens using oblique angle deposition.

    PubMed

    Choi, Hee Ju; Kang, Eun Kyu; Ju, Gun Wu; Song, Young Min; Lee, Yong Tak

    2016-07-15

    This Letter reports a novel method for the simple fabrication of microlens arrays with a controlled shape and diameter on glass substrates. Multilayer stacks of silicon dioxide deposited by oblique angle deposition with hole mask patterns enable microlens formation. Precise control of mask height and distance, as well as oblique angle steps between deposited layers, supports the controllability of microlens geometry. The fabricated microlens arrays with designed geometry exhibit uniform optical properties. PMID:27420527

  1. The influence of incident angle on physical properties of a novel back contact prepared by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhao, Yue; Feng, Yue; Shen, Jiesheng; Liang, Xiaoyan; Huang, Jian; Min, Jiahua; Wang, Linjun; Shi, Weimin

    2016-02-01

    In this paper, oblique vacuum thermal evaporation and direct current (DC) magnetron sputtering technique are used to produce a novel back contact electrode (BCE) of CuInS2 solar cell. These novel back contact electrodes (BCEs) are based on a layered structure of Mo/Ag/Mo (MAM). The influence of vapor source incidence angle θ on optical-electrical properties of novel BCE is investigated by X-ray Diffraction (XRD), Surface Profiler, Atomic Force Microscope (AFM), UV-vis-IR Spectrometer, and Four-point Probe Method. According to the analysis of AFM images of BCEs, the variation tendencies of surface roughness and uniformity are closely related to the incidence angle θ. The surface roughness increases with the increase of incidence angle θ, but the uniformity becomes poor at same time. This phenomenon can be attributed to the variation of interlayer Ag films (the density and inclined angle of Ag nanorods). The results of four-point probe test show that the novel BCE deposited by vapor source incidence angle θ equal to 45° owns the lowest resistance value of 3.71 × 10-8 Ω m, which is probably due to a loose and multi-point contact interface between Ag layer and top layer (Mo2). The reflectance of novel BCEs deposited by incident angle less than 45° is higher than that of normal bi-layer Mo (Mo12) BCE. As a result, the efficiency of corresponding solar cell may be upgraded.

  2. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth. PMID:23388989

  3. Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition

    PubMed Central

    2014-01-01

    Nanostructured titanium nitride (TiN) films with varying porosity were prepared by the oblique angle deposition technique (OAD). The porosity of films increases as the deposition angle becomes larger. The film obtained at an incident angle of 85° exhibits the best catalytic activity and sensitivity to hydrogen peroxide (H2O2). This could be attributed to its largest contact area with the electrolyte. An effective approach is thus proposed to fabricate TiN nanostructure as H2O2 sensor by OAD. PMID:24589278

  4. Uniform Plasmonic Response of Colloidal Ag Patchy Particles Prepared by Swinging Oblique Angle Deposition.

    PubMed

    Bradley, Layne; Zhao, Yiping

    2016-05-17

    The plasmonic property of Ag patchy particles fabricated using a colloid monolayer and oblique angle deposition shows significant variations due to the multidomain nature of the monolayer. A swinging oblique angle deposition method is proposed to create uniform patchy particles. Both numerical calculations and experiment show that when the swinging angle is larger than 90°, the resulting plasmonic patchy particles have similar morphology and demonstrate uniform optical response that does not depend on the monolayer domain orientation. These uniform patchy plasmonic particles have great potential for plasmonic-based applications. PMID:27128221

  5. Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al-Nb alloy columnar films

    NASA Astrophysics Data System (ADS)

    Fujii, Takashi; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-07-01

    A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.

  6. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  7. Combinatorial fabrication of composite nanorods using oblique angle co-deposition

    NASA Astrophysics Data System (ADS)

    Larson, Steven; Huang, Weijie; Zhao, Yiping

    2016-09-01

    We demonstrate that oblique angle co-deposition can be used as a versatile combinatory nanofabrication technique to generate a library of nanomaterials. Using the Cu-Fe2O3 system as an example, by carefully characterizing the vapor plumes of the source materials, a composition map can be generated, which is used to design the locations of all the substrate holders. The resulting nanostructures at different locations show different thickness, morphology, crystallinity, composition, as well as inhomogeneity in microstructures, and material maps of all these structural parameters are established. By further oxidizing or reducing the composite nanostructures, their properties—such as band gap, photocatalytic performance, and magnetic properties—can be easily linked to their composition and other structural parameters. Optimal materials for photocatalytic and magnetic applications are efficiently identified. It is expected that oblique angle co-deposition and its variations could become the most powerful combinatory nanofabrication technique for nanomaterial survey.

  8. Tunable optoelectronic properties of pulsed dc sputter-deposited ZnO:Al thin films: Role of growth angle

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Singh, Ranveer; Nandy, Suman; Ghosh, Arnab; Rath, Satchidananda; Som, Tapobrata

    2016-07-01

    In this paper, we investigate the role of deposition angle on the physical properties and work function of pulsed dc sputter-deposited Al-doped zinc oxide (AZO) thin films. It is observed that average grain size and crystal quality increase with higher angle of deposition, yielding improved optical properties. A systematic blue shift as well as a decrease in the resistivity takes place with the increasing growth angle up to 70°, while an opposite trend is observed beyond that. In addition, the work function of AZO films is also measured using Kelvin probe force microscopy, which corroborates well with the optical and structural properties. The observed results are explained in the framework of growth angle induced diffusion and shadowing effects. The films deposited at higher angles will be important for rapid incorporation into new technological applications that require a transparent conductive oxide.

  9. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.; Robert, Francois; Poulsen, K. Howard

    1988-06-01

    Many mesothermal gold-quartz deposits are localized along high-angle reverse or reverse-oblique shear zones within greenstone belt terrains. Characteristically, these fault-hosted vein deposits exhibit a mixed "brittle-ductile" style of deformation (discrete shears and vein fractures as well as a schistose shear-zone fabric) developed under greenschist facies metamorphic conditions. Many of the vein systems are of considerable vertical extent (>2 km); they include steeply dipping fault veins (lenticular veins subparallel to the shear-zone schistosity) and, in some cases, associated flats (subhorizontal extensional veins). Textures of both vein sets record histories of incremental deposition. We infer that the vein sets developed near the roofs of active metamorphic/magmatic systems and represent the roots of brittle, high-angle reverse fault systems extending upward through the seismogenic regime. Friction theory and field relations suggest that the high-angle reverse faults acted as valves, promoting cyclic fluctuations in fluid pressure from supralithostatic to hydrostatic values. Because of their unfavorable orientation in the prevailing stress field, reactivation of the faults could only occur when fluid pressure exceeded the lithostatic load. Seismogenic fault failure then created fracture permeability within the rupture zone, allowing sudden draining of the geopressured reservoir at depth. Incremental opening of flats is attributed to the prefailure stage of supralithostatic fluid pressures; deposition within fault veins is attributed to the immediate postfailure discharge phase. Hydrothermal self-sealing leads to reaccumulation of fluid pressure and a repetition of the cycle. Mutual crosscutting relations between the two vein sets are a natural consequence of the cyclicity of the process. Abrupt fluid-pressure fluctuations from this fault-valve behavior of reverse faults seem likely to be integral to the mineralizing process at this

  10. Chromium Carbide Thin Films Synthesized by Pulsed Nd:YAG Laser Deposition

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Terajima, Ryou; Emura, Masanari

    1999-06-01

    Chromium carbide thin films are synthesized on Si(100)substrates by a pulsed Nd:YAG laser deposition method at differentsubstrate temperatures. Glancing-angle X-ray diffraction shows that acrystalline chromium carbide film can be prepared at the substratetemperature of 700°C. Grain size of the films, examined witha field-emission secondary electron microscope, increases withincreasing substrate temperature.

  11. Estimation of glance from EEG for cursor control.

    PubMed

    Tan, Tele; Hakenberg, Jan Philipp; Guan, Cuntai

    2013-01-01

    The variations in the electrooculogram (EOG) caused by eye motion are roughly proportional to the instantaneous horizontal and vertical glance angle. This linear correlation is exploited in systems using EOG to control software, and hardware such as artificial limbs, or wheelchairs. In these approaches, the drift in the electronics is commonly compensated by applying a high-pass filter. Consequently, the remaining EOG signal contains only blinks and rapid eye movement. However, repeating these eye gestures voluntarily is exhausting. This paper presents an algorithm that estimates the instantaneous glance of a subject from EEG signals. The subject is seated in front of a computer screen to control an application by glance. Because the visual field of interest, in this setting, is the limited area of the monitor, we can compensate the error in the glance estimate by detecting outliers. Because no high-pass filter is applied to the data, the user controls the applications by eye glance, which is comfortable and can be performed over extended periods of time. The numerical evaluation of the experiments with 12 volunteers, and video recordings of EOG controlled applications demonstrate the accuracy of our algorithm. PMID:24110338

  12. TFEB at a glance.

    PubMed

    Napolitano, Gennaro; Ballabio, Andrea

    2016-07-01

    The transcription factor EB (TFEB) plays a pivotal role in the regulation of basic cellular processes, such as lysosomal biogenesis and autophagy. The subcellular localization and activity of TFEB are regulated by mechanistic target of rapamycin (mTOR)-mediated phosphorylation, which occurs at the lysosomal surface. Phosphorylated TFEB is retained in the cytoplasm, whereas dephosphorylated TFEB translocates to the nucleus to induce the transcription of target genes. Thus, a lysosome-to-nucleus signaling pathway regulates cellular energy metabolism through TFEB. Recently, in vivo studies have revealed that TFEB is also involved in physiological processes, such as lipid catabolism. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of murine models of disease, such as Parkinson's and Alzheimer's, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. In this Cell Science at a Glance article and accompanying poster, we present an overview of the latest research on TFEB function and its implication in human diseases. PMID:27252382

  13. Facile Route to NiO Nanostructured Electrode Grown by Oblique Angle Deposition Technique for Supercapacitors.

    PubMed

    Kannan, Vasudevan; Inamdar, Akbar I; Pawar, Sambaji M; Kim, Hyun-Seok; Park, Hyun-Chang; Kim, Hyungsang; Im, Hyunsik; Chae, Yeon Sik

    2016-07-13

    We report an efficient method for growing NiO nanostructures by oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor applications. This facile physical vapor deposition technique combined with OAD presents a unique, direct, and economical route for obtaining high width-to-height ratio nanorods for supercapacitor electrodes. The NiO nanostructure essentially consists of nanorods with varying dimensions. The sample deposited at OAD 75° showed highest supercapacitance value of 344 F/g. NiO nanorod electrodes exhibits excellent electrochemical stability with no degradation in capacitance after 5000 charge-discharge cycles. The nanostructured film adhered well to the substrate and had 131% capacity retention. Peak energy density and power density of the NiO nanorods were 8.78 Wh/kg and 2.5 kW/kg, respectively. This technique has potential to be expanded for growing nanostructured films of other interesting metal/metal oxide candidates for supercapacitor applications. PMID:27322601

  14. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  15. Single-electron devices fabricated using double-angle deposition and plasma oxidation

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Barcikowski, Z. S.; Ramanayaka, A. N.; Stewart, M. D., Jr.; Zimmerman, N. M.; Pomeroy, J. M.; Quantum Processes; Metrology Group Team

    We report on development of plasma oxidized, single-electron transistors (SETs) where we seek low-capacitance and small-area Al/AlOx/Al tunnel junctions with small charge offset drift. Performance of metal-based SET quantum devices and superconducting devices has suffered from long-term charge offset drift, high defect densities and charge noise. We use plasma oxidation to lower defect densities of the oxide layer, and adjustable deposition angles to control the overlapping areas for Al/AlOx/Al tunnel junctions. Current-voltage and charge offset drift measurements are planned for cryogenic temperatures. Other electrical properties will be measured at room temperature. We hope to see Coulomb blockade oscillations on these devices and better charge offset stability than typical Al/AlOx/Al SETs.

  16. Dynamics of Molecular Orientation Observed Using Angle Resolved Photoemission Spectroscopy during Deposition of Pentacene on Graphite.

    PubMed

    Park, Sang Han; Kwon, Soonnam

    2016-04-19

    A real-time method to observe both the structural and the electronic configuration of an organic molecule during deposition is reported for the model system of pentacene on graphite. Structural phase transition of the thin films as a function of coverage is monitored by using in situ angle resolved photoemission spectroscopy (ARPES) results to observe the change of the electronic configuration at the same time. A photoemission theory that uses independent atomic center approximations is introduced to identify the molecular orientation from the ARPES technique. This study provides a practical insight into interpreting ARPES data regarding dynamic changes of molecular orientation during initial growth of molecules on a well-defined surface. PMID:26999332

  17. Use of nanostructures based on silver nanospike prepared by oblique angle deposition as broadband optical polarizer

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Zamani, Mojtaba

    2015-10-01

    Plasmonics have enabled the realization of new optical components in nanostructures such as polarizers. We construct nanostructures by polycarbonate grating comprising silver nanospikes prepared by an oblique angle deposition technique. Surface, wavelength, and polarization properties of these devices have been investigated by atomic force microscopy, fiber-coupled spectrometer, and rotating analyzer, respectively. Our results show that we can reach 31% polarization ratio with the aid of two pieces of metalized gratings placed back to back by index-matching gel. Also, we can reach the broadband optical polarizer in the visible region according to the concentration and direction of nanospike in each of metalized nanogratings, which can open up directions toward cheap and one-dimensional optical polarizers.

  18. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    NASA Astrophysics Data System (ADS)

    Tokas, R. B.; Jena, Shuvendu; Haque, S. Maidul; Rao, K. Divakar; Thakur, S.; Sahoo, N. K.

    2016-05-01

    In present work, HfO2 thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  19. Structural, Morphological and Optical Properties of Sn3Sb2S6 Thin Films Synthesized by Oblique Angle Deposition

    NASA Astrophysics Data System (ADS)

    Larbi, A.; Chaffar Akkari, F.; Dahman, H.; Demaille, D.; Gallas, B.; Kanzari, M.

    2016-06-01

    The oblique angle deposition technique has attracted a lot attention in many different applications due to its unique advantage of programmable nanocolumns. In this work we use this technique to investigate the physical properties of obliquely thermal evaporated Sn3Sb2S6 thin films deposited onto unheated glass and silicon substrates, inclined from the flux vapor source at the deposition angles 0°, 40°, 60°, 75° and 85°. X-ray diffraction (XRD) and UV-Visible and near infrared (UV-Vis-IFR) analysis were used respectively to characterize the structural and optical properties of the layers. The influence of flux angle on the surface morphology and the microstructure was investigated by using scanning electron microscopy. The optical constants were obtained from analysis of the experimental recorded transmission and reflectance spectral data over the wavelength range 300 nm to 1800 nm. The band gaps of the synthesized thin films were found to be direct allowed transitions and increased from 1.44 eV to 1.66 eV with increasing γ from 0° to 85°, respectively. The absorption coefficients of the films are in the range of 105 cm-1 to 106 cm-1. The refractive indexes were evaluated in the transparent region in terms of the envelope method suggested by the Swanepoel model. It has been found that the refractive index decreases from 2.66 to 2.06 with increasing deposition angle from 0° to 85°, respectively. The relationship between the flux incident angles γ and the column angle β was also explored. The oblique angle deposition films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. The effective packing densities of the synthesized Sn3Sb2S6 thin films were calculated using Bruggeman effective medium approximation.

  20. Fabrication of an extreme ultraviolet glancing incidence telescope

    NASA Technical Reports Server (NTRS)

    Fleetwood, C. M.; Mangus, J. D.

    1974-01-01

    A technique is described for use in the fabrication of glancing incidence telescopes which operate at large grazing angles (i.e., 8 to 15 degrees). Precision conic section plunge laps are used in a controlled grinding procedure to initially generate imaging surfaces which have a minimum of subsurface damage. A numerically controlled Moore Number 3 Measuring Machine is used throughout the fabrication procedure. Surface geometry accuracies on the order of one-tenth micron have been achieved.

  1. Reflectance and surface enhanced Raman scattering (SERS) of sculptured silver films deposited at various vapor incident angles

    NASA Astrophysics Data System (ADS)

    Song, Shigeng; Keating, Martin; Chen, Yu; Placido, Frank

    2012-08-01

    By using e-beam evaporation at various oblique angles, silver nanorod arrays were produced on silicon and fused silica substrates. Reflectance of P and S polarizations was measured at an incident angle of 30°, with the data analyzed by using the appropriate optical dispersive model. The surface enhanced Raman scattering (SERS) was investigated using trans-1,2-bis(4-pyridyl)ethene (BPE) as a probe molecule at an excitation wavelength of 633 nm. The Ag-coated surface become rougher as the vapor incident angle is increased. Only the sample deposited at 85° shows clear oblique column structure. Reflectance fitting confirmed the positive rexlation between roughness and deposition angle and showed an increase of porosity in the film with increasing deposition angle. The reflectance measurements also indicate that the sample deposited at 85° has a very high anisotropic effect due to the inclined column structure. In the RS scans, only the 85° samples on Si and silica substrates gave strong SERS with a similar enhancement factor, with a higher background level and noise signal from the silica substrate.

  2. Glancing incidence telescopes for space astronomy

    NASA Technical Reports Server (NTRS)

    Mangus, J. D.

    1972-01-01

    Design optimization is reported for glancing telescopes of increased collecting areas. Considered are nested geometries for X-ray and extreme ultraviolet telescopes, each of which generates only one singular principal surface. In the case of the X-ray telescope, the field curvature of the outer telescope serves as a standard and the focus of each of the inner telescopes is made coplanar by a slight descrease in the collecting area of each of the inner telescopes. In the case of the EUV telescope, a slight change in the maximum slope angle of the inner telescope makes the field curvatures coincide. Five concentric X-ray telescopes form a collecting area of approximately 900 sq cm, and a nested EUV telescope consisting of two concentric telescopes produces a collecting area of about 45 sq cm.

  3. Education at a Glance: Analysis.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    This new annual publication, a companion volume to the fourth edition of "Education at a Glance: OECD Indicators," presents a series of concise analyses on themes relevant to educational policy, based upon selected international education indicators. The analyses are presented in the following four chapters: (1) "An Overview of Enrolment (sic) and…

  4. Informal Learning. At a Glance

    ERIC Educational Resources Information Center

    Halliday-Wynes, Sian; Beddie, Francesca

    2009-01-01

    This "at a glance" publication investigates the idea of "informal learning", which has been described as an iceberg: "mostly invisible at the surface and immense in its mostly submerged informal aspects" (Livingstone 2000). It does so in order to offer some definitional clarity for those needing to uncover that learning. The publication also…

  5. PISA 2009 at a Glance

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2011

    2011-01-01

    "PISA 2009 at a Glance" is a companion publication to "PISA 2009 Results", the six-volume report on the 2009 survey conducted by the OECD's Programme for International Student Assessment (PISA). PISA assesses the extent to which students near the end of compulsory education have acquired some of the knowledge and skills that are essential for full…

  6. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    SciTech Connect

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld

    2013-12-02

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  7. Orientating layers with adjustable pretilt angles for liquid crystals deposited by a linear atmospheric pressure plasma source

    SciTech Connect

    Jian, Shih-Jie; Kou, Chwung-Shan; Hwang, Jennchang; Lee, Chein-Dhau; Lin, Wei-Cheng

    2013-06-15

    A method for controlling the pretilt angles of liquid crystals (LC) was developed. Hexamethyldisiloxane polymer films were first deposited on indium tin oxide coated glass plates using a linear atmospheric pressure plasma source. The films were subsequently treated with the rubbing method for LC alignment. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy measurements were used to characterize the film composition, which could be varied to control the surface energy by adjusting the monomer feed rate and input power. The results of LC alignment experiments showed that the pretilt angle continuously increased from 0 Degree-Sign to 90 Degree-Sign with decreasing film surface energy.

  8. Highlights from Education at a Glance 2010

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2010

    2010-01-01

    "Highlights from Education at a Glance 2010" is a companion publication to the OECD's flagship compendium of education statistics, Education at a Glance. It provides easily accessible data on key topics in education today, including: education levels and student numbers, economic and social benefits of education, education spending, the school…

  9. Education at a Glance 2011: Highlights

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2011

    2011-01-01

    "Education at a Glance 2011: Highlights" offers a reader-friendly introduction to the Organisation for Economic Cooperation and Development's (OECD's) collection of internationally comparable data on education. As the name suggests, it is derived from "Education at a Glance 2011", the OECD's flagship compendium of education statistics. However, it…

  10. Education at a Glance 2012: Highlights

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2012

    2012-01-01

    "Education at a Glance 2012: Highlights" offers a reader-friendly introduction to the Organisation for Economic Cooperation and Development's (OECD's) collection of internationally comparable data on education. As the name suggests, it is derived from "Education at a Glance 2012", the OECD's flagship compendium of education statistics. However, it…

  11. Surface evolution of amorphous nanocolumns of Fe-Ni grown by oblique angle deposition

    SciTech Connect

    Thomas, Senoy; Anantharaman, M. R.; Al-Harthi, S. H.; Ramanujan, R. V.; Liu Yan; Zhao Bangchuan; Wang Lan

    2009-02-09

    The growth of Fe-Ni based amorphous nanocolumns has been studied using atomic force microscopy. The root mean square roughness of the film surface increased with the deposition time but showed a little change at higher deposition time. It was found that the separation between the nanostructures increased sharply during the initial stages of growth and the change was less pronounced at higher deposition time. During the initial stages of the column growth, a roughening process due to self shadowing is dominant and, as the deposition time increases, a smoothening mechanism takes place due to the surface diffusion of adatoms.

  12. Simulation of glancing shock wave and boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao

    1989-01-01

    Shock waves generated by sharp fins, glancing across a laminar boundary layer growing over a flat plate, are simulated numerically. Several basic issues concerning the resultant three-dimensional flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of grid resolution on the origin of the line of separation. Various shock strengths (generated by different fin angles) are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of the secondary separation. The usual interpretations of the flow field from previous studies and new interpretations arising from the present simulation are discussed.

  13. Variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.

  14. A model for pattern deposition from an evaporating solution subject to contact angle hysteresis and finite solubility.

    PubMed

    Zigelman, Anna; Manor, Ofer

    2016-06-29

    We propose a model for the pattern deposition of the solute from an evaporating drop of a dilute solution on a horizontal substrate. In the model we take into account the three-phase contact angle hysteresis and the deposition of the solute whenever its concentration exceeds the solubility limit. The evaporating drop is governed by a film equation. We show that unless for a very small three-phase contact angle or a very rapid evaporation rate the film adopts a quasi-steady geometry, satisfying the Young-Laplace equation to leading order. The concentration profile is assumed to satisfy an advection diffusion equation subject to the standard Fick's law for the diffusive flux. We further use an integral boundary condition to describe the dynamics of the concentration in the vicinity of the three-phase contact line; we replace an exact geometric description of the vicinity of the contact line, which is usually assumed such that mathematical singularities are avoided, with general insights about the concentration and its flux. We use our model to explore the relationships between a variety of deposition patterns and the governing parameters, show that the model repeats previous findings, and suggest further insights. PMID:27279348

  15. Energetic deposition of metal ions: Observation of self-sputtering and limited sticking for off-normal angles of incidence

    SciTech Connect

    Wu, Hongchen; Anders, Andre

    2009-09-15

    The deposition of films under normal and off-normal angle of incidence has been investigated to show the relevance of non-sticking of and self-sputtering by energetic ions, leading to the formation of neutral atoms. The flow of energetic ions was obtained using a filtered cathodic arc system in high vacuum and therefore the ion flux had a broad energy distribution of typically 50-100 eV per ion. The range of materials included Cu, Ag, Au, Ti, and Ni. Consistent with molecular dynamics simulations published in the literature, the experiments show, for all materials, that the combined effects of non-sticking and self-sputtering are very significant, especially for large off-normal angles. Modest heating and intentional introduction of oxygen background affect the results.

  16. Effects of Substrate Hardness and Spray Angle on the Deposition Behavior of Cold-Sprayed Ti Particles

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Suo, Xinkun; Su, Jiaqing; Guo, Zhiwei; Liao, Hanlin; Wang, Xiaofang

    2014-01-01

    In this study, finite element analysis combined with experimental observation was conducted to clarify the effects of substrate hardness and spray angle on the deposition behavior of cold-sprayed Ti particles. It is found that metallurgical bonding is highly possible to occur between the Ti particle and Cu substrate due to the intensive metal jet at the rim of the interface which helps to remove the cracked oxides. Because metallurgical bonding and large interfacial contact area can guarantee high adhesion strength, the thick Ti coating is achieved after deposition on the Cu substrate. As for the soft Al substrate, the first layer Ti particles are embedded in and then trapped by the soft substrate material, which results in the occurrence of mechanical interlock at the interface. As a consequence, the final coating thickness is also relatively large. When using hard stainless steel as the substrate, the essential conditions for forming the mechanical interlock are lacked due to the high hardness of the substrate material. In addition, the metal jet at rim of the interface is less prominent and also the interfacial contact area is smaller in comparison with the Ti-Cu case. Therefore, the particle-substrate bonding strength and the consequent coating thickness are relatively low. Besides, it is also found that the particle deformation and coating quality are significantly affected by the spray angle. The deformation of the particle localizes at only one side due to the additional tangential momentum. Also, such localized deformation becomes increasingly intensive with decreasing the spray angle. Moreover, the coating thickness is found to reduce with the decrease in spay angle, but the coating porosity shows a reverse trend.

  17. Anomalous grazing incidence small-angle x-ray scattering studies of platinum nanoparticles formed by cluster deposition.

    PubMed

    Lee, Byeongdu; Seifert, Sönke; Riley, Stephen J; Tikhonov, George; Tomczyk, Nancy A; Vajda, Stefan; Winans, Randall E

    2005-08-15

    The size evolution of platinum nanoparticles formed on a SiO2/Si(111) substrate as a function of the level of surface coverage with deposited clusters has been investigated. The anisotropic shapes of sub-nanometer-size nanoparticles are changed to isotropic on the amorphous substrate as their sizes increased. Using anomalous grazing incidence small-angle x-ray scattering (AGISAXS), the scattering from nanoparticles on the surface of a substrate is well separated from that of surface roughness and fluorescence. We show that AGISAXS is a very effective method to subtract the background and can provide unbiased information about particle sizes of less than 1 nm. PMID:16229604

  18. Effect of a declination angle of substrate position on magnetron sputter deposition from a YBa sub 2 Cu sub 3 O sub 7 minus x target

    SciTech Connect

    Kageyama, Y.; Taga, Y. )

    1989-09-04

    Thin-film deposition by magnetron sputtering of a multielement target was carried out with respect to the geometrical factors between a target and the substrates. The thin films were deposited on substrates which were located semicircularly over a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} target in several declination angles measured from the normal to the target surface. The deposition rate decreased to about one-third with the change in the angle from 0{degree} to 90{degree}. In the angles of 45{degree}, 60{degree}, and 75{degree}, films showed significant instability in the atmosphere, which appeared to be caused by an excessive concentration of Ba atoms in the films. Target composition was almost reproduced in the films deposited in the angle of 90{degree}.

  19. Experimental and theoretical study of the optical and electrical properties of nanostructured indium tin oxide fabricated by oblique-angle deposition.

    PubMed

    Sood, Adam W; Poxson, David J; Mont, Frank W; Chhajed, Sameer; Cho, Jaehee; Schubert, E Fred; Welser, Roger E; Dhar, Nibir K; Sood, Ashok K

    2012-05-01

    Oblique-angle deposition of indium tin oxide (ITO) is used to fabricate optical thin-film coatings with a porous, columnar nanostructure. Indium tin oxide is a material that is widely used in industrial applications because it is both optically transparent and electrically conductive. The ITO coatings are fabricated, using electron-beam evaporation, with a range of deposition angles between 0 degrees (normal incidence) and 80 degrees. As the deposition angle increases, we find that the porosity of the ITO film increases and the refractive index decreases. We measure the resistivity of the ITO film at each deposition angle, and find that as the porosity increases, the resistivity increases superlinearly. A new theoretical model is presented to describe the relationship between the ITO film's resistivity and its porosity. The model takes into account the columnar structure of the film, and agrees very well with the experimental data. PMID:22852330

  20. Study of the effect of ultrasonic agitation on the defects size in electro-deposited chromium layer by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Hahn, Y. S.; Seong, B. S.; Kim, M.

    2006-11-01

    Ultrasonic agitation during electro-plating results in increasing deposition rate and neutral salt fog spray test (NSFST) life. Small-angle neutron scattering (SANS) showed that improvement of NSFST life is related to homogeneous size distribution of the defects.

  1. Detecting anharmonicity at a glance

    NASA Astrophysics Data System (ADS)

    Giliberti, M.; Stellato, M.; Barbieri, S.; Cavinato, M.; Rigon, E.; Tamborini, M.

    2014-11-01

    Harmonic motion is generally presented in such a way that most of the students believe that the small oscillations of a body are all harmonic. Since the situation is not actually so simple, and since the comprehension of harmonic motion is essential in many physical contexts, we present here some suggestions, addressed to undergraduate students and pre-service teachers, that allow one to find out at a glance the anharmonicity of a motion. Starting from a didactically motivated definition of harmonic motion, and stressing the importance of the interplay between mathematics and experiments, we give a four-point criterion for anharmonicity together with some emblematic examples. The role of linear damping is also analysed in relation to the gradual changing of harmonicity into anharmonicity when the ratio between the damping coefficient and the zero-friction angular frequency increases.

  2. Low-damage high-throughput grazing-angle sputter deposition on graphene

    SciTech Connect

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  3. ERM proteins at a glance.

    PubMed

    McClatchey, Andrea I

    2014-08-01

    The cell cortex is a dynamic and heterogeneous structure that governs cell identity and behavior. The ERM proteins (ezrin, radixin and moesin) are major architects of the cell cortex, and they link plasma membrane phospholipids and proteins to the underlying cortical actin cytoskeleton. Recent studies in several model systems have uncovered surprisingly dynamic and complex molecular activities of the ERM proteins and have provided new mechanistic insight into how they build and maintain cortical domains. Among many well-established and essential functions of ERM proteins, this Cell Science at a Glance article and accompanying poster will focus on the role of ERMs in organizing the cell cortex during cell division and apical morphogenesis. These examples highlight an emerging appreciation that the ERM proteins both locally alter the mechanical properties of the cell cortex, and control the spatial distribution and activity of key membrane complexes, establishing the ERM proteins as a nexus for the physical and functional organization of the cell cortex and making it clear that they are much more than scaffolds. This article is part of a Minifocus on Establishing polarity. PMID:24951115

  4. ERM proteins at a glance

    PubMed Central

    McClatchey, Andrea I.

    2014-01-01

    ABSTRACT The cell cortex is a dynamic and heterogeneous structure that governs cell identity and behavior. The ERM proteins (ezrin, radixin and moesin) are major architects of the cell cortex, and they link plasma membrane phospholipids and proteins to the underlying cortical actin cytoskeleton. Recent studies in several model systems have uncovered surprisingly dynamic and complex molecular activities of the ERM proteins and have provided new mechanistic insight into how they build and maintain cortical domains. Among many well-established and essential functions of ERM proteins, this Cell Science at a Glance article and accompanying poster will focus on the role of ERMs in organizing the cell cortex during cell division and apical morphogenesis. These examples highlight an emerging appreciation that the ERM proteins both locally alter the mechanical properties of the cell cortex, and control the spatial distribution and activity of key membrane complexes, establishing the ERM proteins as a nexus for the physical and functional organization of the cell cortex and making it clear that they are much more than scaffolds. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). ‘Integrins and epithelial cell polarity’ by Jessica Lee and Charles Streuli (J. Cell Sci. 127, 3217–3225). PMID:24951115

  5. Membrane curvature at a glance.

    PubMed

    McMahon, Harvey T; Boucrot, Emmanuel

    2015-03-15

    Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. PMID:25774051

  6. Deposition temperature mediated tunable tilt angle magnetization in Co-Pt/Ni81Fe19 exchange springs

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Tsai, C. L.; Lee, C.-M.

    2015-05-01

    In this study, we investigate the effect of deposition temperature of Co-Pt fixed layer, Td,CoPt (150, 250 and 350 °C) on the tilt angle magnetization (θM) of Ni81Fe19-layer grown at room temperature (RT) and at different thicknesses (tNiFe=0, 1.0, 2.5 and 4.0 nm) in Co-Pt(Td,CoPt)/NiFe(tNiFe) exchange springs. The magnetic studies demonstrated a strong perpendicular magnetic anisotropy (PMA) for the equi-compositional ordered Co-Pt layer grown on glass substrate using the film sequence: Ta(20 nm)/Pt(20 nm)/CoPt(5 nm), regardless of Td,CoPt. The PMA can be retained with the addition of a 4-nm NiFe layer on the top when Td,CoPt≥250 °C. In contrast, relatively a thin layer of Ni-Fe (2.5 nm) can destroy the perpendicular exchange-spring behavior if the Co-Pt layer is deposited at RT. Using 3-D micromagnetic simulation, the interfacial exchange coupling strength (Aij) between the Co-Pt and NiFe-layers was estimated and the Aij value is found to increase rapidly when Td,CoPt is increased from RT to 300 °C. Besides, the magnetization tilted angle (θM) of NiFe can be easily tuned from completely out-of-plane to almost 60° when tNiFe=4.0 nm. Through this study, it is demonstrated that the θM of NiFe-layer can be tuned by not only altering the tNiFe; but also by varying the Td,CoPt.

  7. DNA Sequences at a Glance

    PubMed Central

    Pinho, Armando J.; Garcia, Sara P.; Pratas, Diogo; Ferreira, Paulo J. S. G.

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the “information profile”, which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h− and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  8. DNA sequences at a glance.

    PubMed

    Pinho, Armando J; Garcia, Sara P; Pratas, Diogo; Ferreira, Paulo J S G

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the "information profile", which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h(-) and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  9. Education at a Glance 2008: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2008

    2008-01-01

    Across OECD countries, governments are seeking policies to make education more effective while searching for additional resources to meet the increasing demand for education. The 2008 edition of "Education at a Glance: OECD Indicators" enables countries to see themselves in the light of other countries' performance. It provides a rich, comparable…

  10. Education at a Glance 2011: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2011

    2011-01-01

    Across OECD (Organisation for Economic Cooperation and Development) countries, governments are having to work with shrinking public budgets while designing policies to make education more effective and responsive to growing demand. The 2011 edition of "Education at a Glance: OECD Indicators" enables countries to see themselves in the light of…

  11. Education at a Glance 2012: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2012

    2012-01-01

    "Education at a Glance: OECD Indicators" is the authoritative source for accurate and relevant information on the state of education around the world. It provides data on the structure, finances, and performance of education systems in the OECD's 34 member countries, as well as a number of non-member G20 nations. Featuring more than 140…

  12. Establishing fiducials on glancing incidence mirrors

    NASA Technical Reports Server (NTRS)

    Fleetwood, C. M.; Thomas, R. J.; Wright, G. A.

    1985-01-01

    A method is described for aligning cylindrical glancing incidence mirrors and establishing fiducials prior to axial profile measurements. The residual uncertainty in the absolute axial position is 2.54 microns, and the uncertainty in the absolute radius is 0.812 micron.

  13. Education at a Glance 2015: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing, 2015

    2015-01-01

    "Education at a Glance: OECD Indicators" is the authoritative source for accurate information on the state of education around the world. It provides data on the output of educational institutions; the impact of learning across countries; the financial and human resources invested in education; access, participation and progression in…

  14. Education at a Glance 2013: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing, 2013

    2013-01-01

    "Education at a Glance: OECD Indicators" is the authoritative source for accurate and relevant information on the state of education around the world. It provides data on the structure, finances, and performance of education systems in more than 40 countries, including OECD members and G20 partners. Featuring more than 100 charts, 200…

  15. Wisconsin Public Schools at a Glance

    ERIC Educational Resources Information Center

    Wisconsin Department of Public Instruction, 2014

    2014-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2014-15); (2) Staff (2013-14); (3) Students (2013-14);(4) Report Cards (2013-14); (5) Attendance and Graduation (2012-13); (6) Student Performance (2013-14); and (7) School Funding.

  16. Education at a Glance 2009: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2009

    2009-01-01

    Across OECD countries, governments are seeking policies to make education more effective while searching for additional resources to meet the increasing demand for education. The 2009 edition of "Education at a Glance: OECD Indicators" enables countries to see themselves in the light of other countries' performance. It provides a rich, comparable…

  17. Producing Calculable Worlds: Education at a Glance

    ERIC Educational Resources Information Center

    Gorur, Radhika

    2015-01-01

    The OECD's international education indicators have become very influential in contemporary education policies. Although these indicators are now routinely, annually published in the form of "Education at a Glance," the calculability upon which the indicators depend was an achievement that involved the mobilisation of a huge machinery of…

  18. Education at a Glance 2012: OECD Indicators

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2012

    2012-01-01

    "Education at a Glance: OECD Indicators" is the authoritative source for accurate and relevant information on the state of education around the world. It provides data on the structure, finances, and performance of education systems in the OECD's 34 member countries, as well as a number of non-member G20 nations. Featuring more than 140 charts,…

  19. Single-step process for the deposition of high water contact angle and high water sliding angle surfaces by atmospheric pressure dielectric barrier discharge.

    PubMed

    Boscher, Nicolas D; Duday, David; Verdier, Stéphane; Choquet, Patrick

    2013-02-01

    Fluorine-free surfaces with high water contact angle (WCA) and high adhesion force to water are prepared by the atmospheric pressure dielectric barrier discharge (AP-DBD) of hexamethyldisiloxane on cold rolled aluminum foil. Water droplets, which remained on the plasma-polymerized hexamethyldisiloxane (ppHMDSO) surface with contact angle of 155°, do not slide even when the surface is tilted vertically or turned upside down. Scanning electron microscopy, atomic force microscopy and confocal microscopy highlight the importance of the dual-scale roughness of the ppHMDSO surface. The "sticky" high WCA property is achieved only when the nanometer scale particles generated during the AP-DBD process are present at the surface of the film and combine to the micrometer scale rolling lines of the aluminum substrate. PMID:23339545

  20. Influence of Oblique Angle Deposition on the Nano-structure and Characteristics of ZnO Thin Films Produced by Annealing of Zn Films

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Abbaszadeh, Neda

    2016-07-01

    Zinc oxide films were prepared using oblique angle deposition of Zn at four deposition angles of 0°, 30°, 45°, and 60° and subsequent annealing with the flow of oxygen. Structural characteristics of the films were obtained using atomic force microscopy and field emission scanning electron microscopy while their crystallography was investigated by x-ray diffraction analysis. The largest value of void fraction and the highest preferred orientation were obtained for the ZnO(101) diffraction line for the Zn film deposited at 45°. The former is explained in the published literature on the basis of rearrangement of atoms resulting from the diffusion or thermal vibration and the available crystallographic sites and surface energy on the substrate/growing film surface for relaxation of an adatom. Zn film anisotropy due to the bundling effect resulting from oblique angle deposition was examined by sheet resistivity measurements along x and y directions of the samples. Optical spectra of the samples were measured using both polarized light and unpolarized light from which optical constants were deduced. Both direct and indirect band gap energies were obtained and compared with the reported theoretical calculations. Our results are consistent with the experimental data in the literature; while they are larger than the theoretical reported values.

  1. Influence of Oblique Angle Deposition on the Nano-structure and Characteristics of ZnO Thin Films Produced by Annealing of Zn Films

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Abbaszadeh, Neda

    2016-04-01

    Zinc oxide films were prepared using oblique angle deposition of Zn at four deposition angles of 0°, 30°, 45°, and 60° and subsequent annealing with the flow of oxygen. Structural characteristics of the films were obtained using atomic force microscopy and field emission scanning electron microscopy while their crystallography was investigated by x-ray diffraction analysis. The largest value of void fraction and the highest preferred orientation were obtained for the ZnO(101) diffraction line for the Zn film deposited at 45°. The former is explained in the published literature on the basis of rearrangement of atoms resulting from the diffusion or thermal vibration and the available crystallographic sites and surface energy on the substrate/growing film surface for relaxation of an adatom. Zn film anisotropy due to the bundling effect resulting from oblique angle deposition was examined by sheet resistivity measurements along x and y directions of the samples. Optical spectra of the samples were measured using both polarized light and unpolarized light from which optical constants were deduced. Both direct and indirect band gap energies were obtained and compared with the reported theoretical calculations. Our results are consistent with the experimental data in the literature; while they are larger than the theoretical reported values.

  2. Influence of subaqueous shelf angle on coastal plain-shelf-slope deposits resulting from a rise or fall in base-level

    SciTech Connect

    Wood, L.J.; Ethridge, F.G.; Schumm, S.A. )

    1991-03-01

    Extensive research in the past decade concerning the effects of base-level fluctuations on coastal plain-shelf-slope systems along passive margins has failed to properly assess the influence of the subaqueous shelf angle on the development, character, and preservation of the resulting deposits. A series of experiments were performed in a 4 m by 7 m flume to examine the effect that differing shelf angles have on a simulated coastal plain-shelf-slope system undergoing a cycle of base-level rise and fall. Results of the experiments indicate that the angle of the shelf affects (1) the amount of sediment available for deposition, (2) the timing of the influx of drainage basin sediment into the lower portions of the fluvial system, and (3) the width to depth ratio and sinuosity of fluvial systems that develop on the shelf. Base-level fall over a steep shelf results in deep, narrow, straight fluvial channels on the shelf and fine-grained, thick shelf-margin deltas. Depositional systems show high sedimentation rates, but a low ratio of coarse-grained to fine-grained sediment. Multiple fluvial incisions on the shelf are rapidly abandoned for a single incised valley. In contrast, gentle shelf angles result in shallow, wide, meandering fluvial channels on the shelf and coarser-grained, thinner shelf-margin deltas. Depositional systems have a lower sedimentation rate, but a high ratio of coarse-grained to fine-grained sediment. Multiple fluvial incisions on the shelf are active for a longer period of time. During subsequent base-level rise, deposits have a low potential for preservation owing to their thin nature and the slower rate at which transgression occurs over the shelf.

  3. Glance Information System for ATLAS Management

    NASA Astrophysics Data System (ADS)

    Grael, F. F.; Maidantchik, C.; Évora, L. H. R. A.; Karam, K.; Moraes, L. O. F.; Cirilli, M.; Nessi, M.; Pommès, K.; ATLAS Collaboration

    2011-12-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  4. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Deng, Dewei; Qi, Meng; Zhang, Hongchao

    2016-06-01

    Direct laser fabrication (DLF) developed from laser cladding and rapid prototyping technique has been widely used to fabricate thin-walled parts exhibiting more functions without expending weight and size. Oblique thin-walled parts accompanied with inhomogeneous mechanical properties are common in application. In the present study, a series of AISI316L stainless steel oblique thin-walled parts are successfully produced by DLF, in addition, deposition strategies, microstructure, and mechanical property of the oblique thin-walled parts are investigated. The results show that parallel deposition way is more valuable to fabricate oblique thin-walled part than oblique deposition way, because of the more remarkable properties. The hardness of high side initially increases until the distance to the substrate reaches about 25 mm, and then decreases with the increase of the deposition height. Oblique angle has a positive effect on the tensile property but a negative effect on microstructure, hardness and elongation due to the more tempering time. The maximum average ultimate tensile strength (UTS) and elongation are presented 744.3 MPa and 13.5% when the angle between tensile loading direction and horizontal direction is 45° and 90°, respectively.

  5. Pyruvate kinase M2 at a glance

    PubMed Central

    Yang, Weiwei; Lu, Zhimin

    2015-01-01

    Reprogrammed metabolism is a key feature of cancer cells. The pyruvate kinase M2 (PKM2) isoform, which is commonly upregulated in many human cancers, has been recently shown to play a crucial role in metabolism reprogramming, gene transcription and cell cycle progression. In this Cell Science at a glance article and accompanying poster, we provide a brief overview of recent advances in understanding the mechanisms underlying the regulation of PKM2 expression, enzymatic activity, metabolic functions and subcellular location. We highlight the instrumental role of the non-metabolic functions of PKM2 in tumorigenesis and evaluate the potential to target PKM2 for cancer treatment. PMID:25770102

  6. General surface equations for glancing incidence telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    1987-01-01

    A generalized set of equations are derived for two mirror glancing incidence telescopes using Fermat's principle, a differential form of the law of reflection, the generalized sine condition, and a ray propagation equation described in vector form as a theoretical basis. The resulting formulation groups the possible telescope configurations into three distinct classes which are the Wolter, Wolter-Schwarzschild, and higher-order telescopes in which the Hettrick-Bowyer types are a subset. Eight configurations are possible within each class depending on the sign and magnitude of the parameters.

  7. General surface equations for glancing incidence telescopes.

    PubMed

    Saha, T T

    1987-02-15

    A generalized set of equations are derived for two mirror glancing incidence telescopes using Fermat's principle, a differential form of the law of reflection, the generalized sine condition, and a ray propagation equation described in vector form as a theoretical basis. The resulting formulation groups the possible telescope configurations into three distinct classes which are the Wolter, Wolter-Schwarzschild, and higherorder telescopes in which the Hettrick-Bowyer types are a subset. Eight configurations are possible within each class depending on the sign and magnitude of the parameters. PMID:20454195

  8. Anisotropic TixSn1-xO2 nanostructures prepared by magnetron sputter deposition.

    PubMed

    Chen, Shutian; Li, Zhengcao; Zhang, Zhengjun

    2011-01-01

    Regular arrays of TixSn1-xO2 nanoflakes were fabricated through glancing angle sputter deposition onto self-assembled close-packed arrays of 200-nm-diameter polystyrene spheres. The morphology of nanostructures could be controlled by simply adjusting the sputtering power of the Ti target. The reflectance measurements showed that the melon seed-shaped nanoflakes exhibited optimal properties of antireflection in the entire visible and ultraviolet region. In addition, we determined their anisotropic reflectance in the direction parallel to the surface of nanoflakes and perpendicular to it, arising from the anisotropic morphology. PMID:21711849

  9. Glancing incidence telescopes for space astronomy

    NASA Technical Reports Server (NTRS)

    Alonso, J., Jr.

    1973-01-01

    A technique for determining the state of polarization of a light source by evaluating its image at the focus of a glancing telescope is reported. An analysis of the central disc of the diffraction image reveals if the light source is polarized, the plane of polarization, and the degree of polarization. When polarized light is incident at the aperture of a diffraction limited glancing telescope, the central disc of the diffraction pattern takes on an elliptical configuration. This ellipticity is caused by the tendency of the electric vector component in the plane of incidence to be absorbed by the reflecting material. As the state of polarization goes from plane polarized to decreasing degrees of elliptically polarized light, the ellipticity of the central disc goes from a maximum at plane polarization to zero at circular polarization. These curves give a direct relationship between the degree of polarization of a light source and the ellipticity of the central disc for this particular telescope, independent of the light source wavelength.

  10. Effects of Target-to-Substrate Angle on Off-Axis Sputter Deposition and EPR Studies of Near-Surface Magnetic Properties of YBCO Thin Films

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.; Xia, Y.-M.; Salamon, M. B.; Greene, L. H.

    2000-11-01

    We have determined the dependence of target-to-substrate angle on the elemental concentration of c-axis YBCO thin films. Away from the standard off-axis position, energy distributions of sputtered elements vary spatially within the sputter plume due to the angular dependence of thermalization. Standard materials characterization techniques and angle-dependent Rutherford Backscattering Spectrometry (RBS) demonstrate that films grown away from the standard off-axis geometry produce bulk Y(123) with modified surface morphology and deposition rate. Several thin film planar tunneling experiments are consistent with a broken-time-reversal symmetry (BTRS) state. To compliment tunneling measurements, we measure electron paramagnetic resonance (EPR) of the near-surface region of YBCO thin films. Preliminary data are consistent with the spontaneous formation of magnetic moments at low temperature.

  11. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  12. Cerebral cavernous malformation proteins at a glance.

    PubMed

    Draheim, Kyle M; Fisher, Oriana S; Boggon, Titus J; Calderwood, David A

    2014-02-15

    Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding. PMID:24481819

  13. Autophagosome dynamics in neurodegeneration at a glance.

    PubMed

    Wong, Yvette C; Holzbaur, Erika L F

    2015-04-01

    Autophagy is an essential homeostatic process for degrading cellular cargo. Aging organelles and protein aggregates are degraded by the autophagosome-lysosome pathway, which is particularly crucial in neurons. There is increasing evidence implicating defective autophagy in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and Huntington's disease. Recent work using live-cell imaging has identified autophagy as a predominantly polarized process in neuronal axons; autophagosomes preferentially form at the axon tip and undergo retrograde transport back towards the cell body. Autophagosomes engulf cargo including damaged mitochondria (mitophagy) and protein aggregates, and subsequently fuse with lysosomes during axonal transport to effectively degrade their internalized cargo. In this Cell Science at a Glance article and the accompanying poster, we review recent progress on the dynamics of the autophagy pathway in neurons and highlight the defects observed at each step of this pathway during neurodegeneration. PMID:25829512

  14. Muscle stem cells at a glance.

    PubMed

    Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2014-11-01

    Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment. PMID:25300792

  15. Ubiquitin chain diversity at a glance.

    PubMed

    Akutsu, Masato; Dikic, Ivan; Bremm, Anja

    2016-03-01

    Ubiquitin plays an essential role in modulating protein functions, and deregulation of the ubiquitin system leads to the development of multiple human diseases. Owing to its molecular features, ubiquitin can form various homo- and heterotypic polymers on substrate proteins, thereby provoking distinct cellular responses. The concept of multifaceted ubiquitin chains encoding different functions has been substantiated in recent years. It has been established that all possible ubiquitin linkage types are utilized for chain assembly and propagation of specific signals in vivo. In addition, branched ubiquitin chains and phosphorylated ubiquitin molecules have been put under the spotlight recently. The development of novel technologies has provided detailed insights into the structure and function of previously poorly understood ubiquitin signals. In this Cell Science at a Glance article and accompanying poster, we provide an update on the complexity of ubiquitin chains and their physiological relevance. PMID:26906419

  16. On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles.

    PubMed

    Godinho, V; Moskovkin, P; Álvarez, R; Caballero-Hernández, J; Schierholz, R; Bera, B; Demarche, J; Palmero, A; Fernández, A; Lucas, S

    2014-09-01

    The formation of the porous structure in dc magnetron sputtered amorphous silicon thin films at low temperatures is studied when using helium and/or argon as the processing gas. In each case, a-Si thin films were simultaneously grown at two different locations in the reactor which led to the assembly of different porous structures. The set of four fabricated samples has been analyzed at the microstructural level to elucidate the characteristics of the porous structure under the different deposition conditions. With the help of a growth model, we conclude that the chemical nature of the sputter gas not only affects the sputtering mechanism of Si atoms from the target and their subsequent transport in the gaseous/plasma phase towards the film, but also the pore formation mechanism and dynamics. When Ar is used, pores emerge as a direct result of the shadowing processes of Si atoms, in agreement with Thornton's structure zone model. The introduction of He produces, in addition to the shadowing effects, a new process where a degree of mobility results in the coarsening of small pores. Our results also highlight the influence of the composition of sputtering gas and tilt angles (for oblique angle deposition) on the formation of open and/or occluded porosity. PMID:25120129

  17. Quantitative analysis of nanoripple and nanoparticle patterns by grazing incidence small-angle x-ray scattering 3D mapping

    NASA Astrophysics Data System (ADS)

    Babonneau, D.; Camelio, S.; Vandenhecke, E.; Rousselet, S.; Garel, M.; Pailloux, F.; Boesecke, P.

    2012-06-01

    3D reciprocal space mapping in the grazing incidence small-angle x-ray scattering geometry was used to obtain accurate morphological characteristics of nanoripple patterns prepared by broad beam-ion sputtering of Al2O3 and Si3N4 amorphous thin films as well as 2D arrays of Ag nanoparticles obtained by glancing angle deposition on Al2O3 nanorippled buffer layers. Experiments and theoretical simulations based on the distorted-wave Born approximation make it possible to determine the average 3D shape of the ripples and nanoparticles together with crucial information on their in-plane organization. In the case of nanoparticle arrays, the approach was also used to quantify the growth conformity of an additional capping layer, which proceeds by replication of the buried ripple pattern.

  18. Nanocolumnar interfaces and enhanced magnetic coercivity in preferentially oriented cobalt ferrite thin films grown using oblique-angle pulsed laser deposition.

    PubMed

    Mukherjee, Devajyoti; Hordagoda, Mahesh; Hyde, Robert; Bingham, Nicholas; Srikanth, Hariharan; Witanachchi, Sarath; Mukherjee, Pritish

    2013-08-14

    Highly textured cobalt ferrite (CFO) thin films were grown on Si (100) substrates using oblique-angle pulsed laser deposition (α-PLD). X-ray diffraction and in-depth strain analysis showed that the obliquely deposited CFO films had both enhanced orientation in the (111) crystal direction as well as tunable compressive strains as a function of the film thicknesses, in contrast to the almost strain-free polycrystalline CFO films grown using normal-incidence PLD under the same conditions. Using in situ optical plume diagnostics the growth parameters in the α-PLD process were optimized to achieve smoother film surfaces with roughness values as low as 1-2 nm as compared to the typical values of 10-12 nm in the normal-incidence PLD grown films. Cross-sectional high resolution transmission electron microscope images revealed nanocolumnar growth of single-crystals of CFO along the (111) crystallographic plane at the film-substrate interface. Magnetic measurements showed larger coercive fields (∼10 times) with similar saturation magnetization in the α-PLD-grown CFO thin films as compared to those deposited using normal-incidence PLD. Such significantly enhanced magnetic coercivity observed in CFO thin films make them ideally suited for magnetic data storage applications. A growth mechanism based on the atomic shadowing effect and strain compression-relaxation mechanism was proposed for the obliquely grown CFO thin films. PMID:23829642

  19. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired. PMID:18258282

  20. Multispectral glancing incidence X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1990-01-01

    A multispectral glancing incidence X-ray telescope is illustrated capable of broadband, high-resolution imaging of solar and stellar X-ray and extreme ultraviolet radiation sources which includes a primary optical system preferably of the Wolter I type having a primary mirror system (20, 22). The primary optical system further includes an optical axis (24) having a primary focus (F1) at which the incoming radiation is focused by the primary mirrors. A plurality of ellipsoidal mirrors (30a, 30b, 30cand 30d) are carried at an inclination to the optical axis behind the primary focus (F1). A rotating carrier (32) is provided on which the ellipsoidal mirrors are carried so that a desired one of the ellipsoidal mirrors may be selectively positioned in front of the incoming radiation beam (26). In the preferred embodiment, each of the ellipsoidal mirrors has an identical concave surface carrying a layered synthetic microstructure coating tailored to reflect a desired wavelength of 1.5 .ANG. or longer. Each of the identical ellipsoidal mirrors has a second focus (F2) at which a detector (16) is carried. Thus the different wavelength image is focused upon the detector irregardless of which mirror is positioned in front of the radiation beam. In this manner, a plurality of low wavelengths in a wavelength band generally less than 30 angstroms can be imaged with a high resolution.

  1. The LC3 interactome at a glance.

    PubMed

    Wild, Philipp; McEwan, David G; Dikic, Ivan

    2014-01-01

    Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways - the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or γ-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy. PMID:24345374

  2. Syndecan-4 signaling at a glance

    PubMed Central

    Elfenbein, Arye; Simons, Michael

    2013-01-01

    Summary Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1–FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster. PMID:23970415

  3. Inclined angle-controlled growth of GaN nanorods on m-sapphire by metal organic chemical vapor deposition without a catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Eom, Daeyong; Yoo, Yang-Seok; Cho, Yong-Hoon; Nam, Okhyun

    2015-08-01

    In this study, we have intentionally grown novel types of (11-22)- and (1-10-3)-oriented3 and self-assembled inclined GaN nanorods (NRs) on (10-10) m-sapphire substrates using metal organic chemical vapor deposition without catalysts and ex situ patterning. Nitridation of the m-sapphire surface was observed to be crucial to the inclined angle as well as the growth direction of the GaN NRs. Polarity-selective KOH etching confirmed that both (11-22) and (1-10-3) GaN NRs are nitrogen-polar. Using pole figure measurements and selective area electron diffraction patterns, the epitaxial relationship between the inclined (11-22) and (1-10-3) GaN NRs and m-sapphire substrates was systematically demonstrated. Furthermore, it was verified that the GaN NRs were single-crystalline wurtzite structures. We observed that stacking fault-related defects were generated during the initial growth stage using high-resolution transmission electron microscopy. The blue-shift of the near band edge (NBE) peak in the inclined angle-controlled GaN NRs can be explained by a band filling effect through carrier saturation of the conduction band, resulting from a high Si-doping concentration; in addition, the decay time of NBE emission in (11-22)- and (1-10-3)-oriented NRs was much shorter than that of stacking fault-related emission. These results suggest that defect-free inclined GaN NRs can be grown on m-sapphire without ex situ treatment.

  4. Inclined angle-controlled growth of GaN nanorods on m-sapphire by metal organic chemical vapor deposition without a catalyst.

    PubMed

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Eom, Daeyong; Yoo, Yang-Seok; Cho, Yong-Hoon; Nam, Okhyun

    2015-08-21

    In this study, we have intentionally grown novel types of (11-22)- and (1-10-3)-oriented(3) and self-assembled inclined GaN nanorods (NRs) on (10-10) m-sapphire substrates using metal organic chemical vapor deposition without catalysts and ex situ patterning. Nitridation of the m-sapphire surface was observed to be crucial to the inclined angle as well as the growth direction of the GaN NRs. Polarity-selective KOH etching confirmed that both (11-22) and (1-10-3) GaN NRs are nitrogen-polar. Using pole figure measurements and selective area electron diffraction patterns, the epitaxial relationship between the inclined (11-22) and (1-10-3) GaN NRs and m-sapphire substrates was systematically demonstrated. Furthermore, it was verified that the GaN NRs were single-crystalline wurtzite structures. We observed that stacking fault-related defects were generated during the initial growth stage using high-resolution transmission electron microscopy. The blue-shift of the near band edge (NBE) peak in the inclined angle-controlled GaN NRs can be explained by a band filling effect through carrier saturation of the conduction band, resulting from a high Si-doping concentration; in addition, the decay time of NBE emission in (11-22)- and (1-10-3)-oriented NRs was much shorter than that of stacking fault-related emission. These results suggest that defect-free inclined GaN NRs can be grown on m-sapphire without ex situ treatment. PMID:26222432

  5. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses.

    PubMed

    Xia, Jing; Li, Xuan-Ze; Huang, Xing; Mao, Nannan; Zhu, Dan-Dan; Wang, Lei; Xu, Hua; Meng, Xiang-Min

    2016-01-28

    Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm(-1)) Raman mode reaches the maximum when incident light polarization is parallel to the armchair direction of the 2D SnS flakes, which strongly suggests that the Ag (190.7 cm(-1)) mode can be used to determine the crystallographic orientation of the 2D SnS. In addition, temperature-dependent Raman characterization confirmed that the 2D SnS flakes have a higher sensitivity to temperature than graphene, MoS2 and black phosphorus. These results are useful for the future studies of the optical and thermal properties of 2D orthorhombic SnS. PMID:26698370

  6. Array of Cu{sub 2}O nano-columns fabricated by oblique angle sputter deposition and their application in photo-assisted proton reduction

    SciTech Connect

    Swain, S.; Chatterjee, S.; Chaudhary, Y. S.; Thakur, I.; Kulkarni, N. A.; Ayyub, P.

    2015-01-14

    Nano-columnar arrays of Cu{sub 2}O were grown by the oblique angle sputter deposition technique based on the self-shadowing principle. The as-grown nano-columnar samples are oriented along (111) direction, and they are highly transmitting in the visible range with a low reflectance. In this work, we show the photo-electrochemical activity of nano-columnar array of Cu{sub 2}O, which shows a higher (∼25%) photocurrent density and a two-fold enhancement in the incident-to-photon conversion efficiency as compared to continuous thin film of Cu{sub 2}O in photo-assisted proton reduction type reaction. The improvement in electrochemical activity of nano-columnar Cu{sub 2}O photocathode can be attributed to the change in morphology, crystal structure, as well as electrical property, which shows a higher degree of band bending, increased donor carrier (e−) density and lower width of space charge region as revealed by capacitance measurements and Mott-Schottky analysis.

  7. MCPS Schools at a Glance 2014-2015

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2015

    2015-01-01

    "MCPS Schools at a Glance" provides, in a single document, information about enrollment, staffing, facilities, programs, outcome measures, and personnel costs for each Montgomery County (Maryland) public school. Information on personnel costs for each school includes position salaries for professional and supporting services employees…

  8. MCPS Special Education at a Glance 2011-2012

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2012

    2012-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each Montgomery County (Maryland) public school, including…

  9. MCPS Special Education at a Glance 2010-2011

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2011

    2011-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each Montgomery County (Maryland public school, including…

  10. MCPS Special Education at a Glance 2007-2008

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2008

    2008-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each MCPS school, including enrollment, staffing, special education…

  11. MCPS Special Education at a Glance 2013-2014

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2014

    2014-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each Montgomery County public school, including enrollment,…

  12. MCPS Special Education at a Glance 2009-2010

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2010

    2010-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance." which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs." provides in a single document, information about the special education population at each Montgomery County (Maryland) public school, including…

  13. MCPS Special Education at a Glance 2008-2009

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2009

    2009-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each Montgomery County (Maryland) public school, including…

  14. MCPS Special Education at a Glance 2012-2013

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2013

    2013-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each Montgomery County (Maryland) public school, including…

  15. MCPS School Safety & Security at a Glance 2013-2014

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2014

    2014-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, school climate, local school safety program descriptions, and serious incidents. Information is presented for each Montgomery County (Maryland) public school. While much of this…

  16. MCPS Special Education at a Glance 2006-2007

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2007

    2007-01-01

    Montgomery County Public Schools (MCPS) "Special Education at a Glance," which includes a copy of the "Guide to Planning and Assessing School-Based Special Education Programs," provides in a single document, information about the special education population at each Montgomery County (Maryland) public school, including…

  17. MCPS Special Education at a Glance 2005-2006

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2006

    2006-01-01

    "MCPS Special Education at a Glance" is a direct result of the work of the Special Education Continuous Improvement Team (SECIT), an advisory group to the Montgomery County Public Schools Board of Education Special Education Ad Hoc Subcommittee. During the 2004-2005 school year, the SECIT developed, in collaboration with special…

  18. MCPS School Safety & Security at a Glance 2012-2013

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2013

    2013-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, school climate, local school safety program descriptions, and serious incidents. Information is presented for each Montgomery County (Maryland) public school. While much of this…

  19. MCPS School Safety & Security at a Glance 2011-2012

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2012

    2012-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, school climate, local school safety program descriptions, and serious incidents. Information is presented for each Montgomery County (Maryland) public school. While much of this…

  20. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Li, Xuan-Ze; Huang, Xing; Mao, Nannan; Zhu, Dan-Dan; Wang, Lei; Xu, Hua; Meng, Xiang-Min

    2016-01-01

    Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm-1) Raman mode reaches the maximum when incident light polarization is parallel to the armchair direction of the 2D SnS flakes, which strongly suggests that the Ag (190.7 cm-1) mode can be used to determine the crystallographic orientation of the 2D SnS. In addition, temperature-dependent Raman characterization confirmed that the 2D SnS flakes have a higher sensitivity to temperature than graphene, MoS2 and black phosphorus. These results are useful for the future studies of the optical and thermal properties of 2D orthorhombic SnS.Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm-1) Raman mode reaches the maximum when incident light polarization

  1. Driver's adaptive glance behavior to in-vehicle information systems.

    PubMed

    Peng, Yiyun; Boyle, Linda Ng

    2015-12-01

    The purpose of this study was to examine the adaptive behavior of drivers as they engage with in-vehicle devices over time and in varying driving situations. Behavioral adaptation has been shown to occur among drivers after prolonged use of in-vehicle devices, but few studies have examined drivers' risk levels across different driving demands. A multi-day simulator study was conducted with 28 young drivers (under 30 years old) as they engaged in different text entry and reading tasks while driving in two different traffic conditions. Cluster analysis was used to categorize drivers based on their risk levels and random coefficient models were used to assess changes in drivers' eye glance behavior. Glance duration significantly increased over time while drivers were performing text entry tasks but not for text reading tasks. High-risk drivers had longer maximum eyes-off-road when performing long text entry tasks compared to low-risk drivers, and this difference increased over time. The traffic condition also had a significant impact on drivers' glance behavior. This study suggests that drivers may exhibit negative behavioral adaptation as they become more comfortable with using in-vehicle technologies over time. Results of this paper may provide guidance for the design of in-vehicle devices that adapt based on the context of the situation. It also demonstrates that random coefficient models can be used to obtain better estimations of driver behavior when there are large individual differences. PMID:26406538

  2. What's Your Angle on Angles?

    ERIC Educational Resources Information Center

    Browning, Christine A.; Garza-Kling, Gina; Sundling, Elizabeth Hill

    2007-01-01

    Although the nature of the research varies, as do concepts of angle, research in general supports the supposition that angle is a complex idea, best understood from a variety of perspectives. In fact, the concept of angle tends to be threefold, consisting of: (1) the traditional, static notion of two rays meeting at a common vertex; (2) the idea…

  3. Late Miocene termination of tectonic activity on the detachment in the Alaşehir Rift, Western Anatolia: Depositional records of the Göbekli Formation and high-angle cross-cutting faults

    NASA Astrophysics Data System (ADS)

    Sen, Fatih

    2016-04-01

    Western Anatolia is a well-known province of continental extension in the world. Most distinctive structural elements of the region are E-W trending grabens. The Alaşehir Rift/Graben is an asymmetric rift/graben trending E-W between Ahmetli and Turgutlu in its western part and continues eastwardly in a NW-SE direction to Alaşehir (Philadelphia in ancient Greek). The stratigraphy of the region consists of metamorphic rocks of the Menderes Massif (Paleozoic-lower Cenozoic) and the syn-extensional Salihli granitoid (middle Miocene) forming the basement unit and overlying sedimentary cover rocks of Neogene-Quaternary. These rocks are cut and deformed by the Karadut detachment fault and various low-angle normal faults (antithetic and synthetic faults of the Karadut detachment fault), which are also cut by various younger high-angle normal faults. It is possible to observe two continuous sequences of different time intervals in that Miocene deposits of the first rifting phase are covered by Plio-Quaternary sediments of second rifting phase with a "break-up" unconformity. In lower levels of a measured stratigraphic section (583 m) of the Göbekli formation which has lower age of late Miocene and upper age of early Pliocene, the presence of angular to sub-angular clasts of the blocks and conglomerates suggests alluvial-fun origin during an initial stage of deposition. Existence of normal-reverse graded, cross-bedding, pebble imbrications in layers of the pebbly sandstone demonstrates fluvial environment in following levels of the sequence. Existence of lenses and normal graded conglomerates in pebbly sandstones and fine grained sandstones strata evidences a low energy environment. Observed siltstone-claystone intercalations on the middle levels of the sequence indicate an environment with low dipping morphology to be formed as flat plains during this period. In the uppermost levels of the sequence, existence of the pebble imbrications inside pebbly sandstones overlying

  4. Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics

    NASA Astrophysics Data System (ADS)

    Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.

    Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.

  5. Theoretical study of swift molecular ions specularly reflected from solid surfaces under glancing angle of incidence

    NASA Astrophysics Data System (ADS)

    Song, Yuan-Hong; Wang, You-Nian; Mišković, Z. L.

    2005-04-01

    We develop a theoretical model to study grazing scattering of fast diatomic molecular ions from a solid surface, based on the dielectric response formalism within the specular reflection model, where the plasmon pole approximation for dielectric function is employed to describe the single-particle and the collective excitations of the electron gas at the surface. Evolution of the bound-electron densities at the constituent ions of a molecule in the course of scattering is described by an approach similar to recent implementation of the Brandt-Kitagawa model for single-ion surface grazing scattering. We solve numerically the equations of motion for the constituent ions and obtain the ion scattering trajectories in the presence of Coulomb explosion modified by the surface wake potential, for the initial molecular-axis orientations in either random directions or along the beam. Vicinage effect on the total energy loss is discussed on the basis of analyzing the position-dependent stopping powers of individual ions and the interferences in the electron excitations of the substrate.

  6. The cytotoxic T lymphocyte immune synapse at a glance.

    PubMed

    Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M

    2016-08-01

    The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers. PMID:27505426

  7. Clathrin-mediated endocytosis in budding yeast at a glance.

    PubMed

    Lu, Rebecca; Drubin, David G; Sun, Yidi

    2016-04-15

    Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process. PMID:27084361

  8. Flume studies of mud deposition: Implications for shallow marine mud deposition and the stratigraphic record (Invited)

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2010-12-01

    Racetrack flumes with paddle-belt drives, designed to avoid destruction of floccules, were used to examine mud deposition from swift moving suspensions. At flow velocities that transport and deposit sand (20-35 cm/s, 5 cm flow depth) muddy suspensions produce deposition-prone floccules that form migrating floccule ripples. Mud beds that form as a consequence of floccule ripple accretion appear parallel laminated at first glance, but reveal internal low angle cross-lamination on closer inspection. In plan view, the observed pattern of ripple foresets is identical to rib and furrow structure in sandstones. In experiments at marine salinity, where clays were mixed with quartz silt, uniform as well as gradually decelerating currents produce deposits that show low relief coarser silt ripples at the base, followed by low angle inclined silty laminae and an increasing clay component upwards. Once examined with proper care, the clay-rich upper portion of the deposits shows internal laminae and cross-laminae. We also observed comparable sedimentary features in various ancient shallow marine mudstone successions. When examined at the hand specimen or drill core scale, above experimental deposits show the same features that have been widely reported from fluid-mud event layers in modern shelf settings. The latter have been attributed to gravity flows that are triggered by wave re-suspension of surficial muds. Whereas that model is consistent with the features attributed to the purported process, our experiments point to a potential alternative scenario. In addition to fluid muds, meaning high concentration sediment suspensions with mass concentrations > 10 g/l, the low concentration sediment suspensions (<10 g/l) from our experiments appear to be able to create equivalent deposits when given sufficient time for advective sediment transport. Graded muddy deposits on modern shelves and in ancient shelf successions thus may be of multiple origins. In addition to being the result

  9. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users. PMID:23635203

  10. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    SciTech Connect

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V.; Bommel, Sebastian; Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  11. Studies on hard TaN thin film deposition by R C-Mag technique

    SciTech Connect

    Valleti, Krishna

    2009-07-15

    The physical and mechanical properties of pulsed rotating cylindrical magnetron sputter-grown tantalum nitride (TaN) thin films were studied. Initially, films were grown at ambient substrate temperature by varying the reactive (N{sub 2}) to sputter (Ar) gas ratio (R) at a constant pulsing frequency of the target power (100 kHz). The results were compared with planar magnetron-grown TaN samples. The R C-Mag. grown thin films have properties nearly similar to the high temperature (300 degree sign C) dc planar magnetron sputter deposited samples. In comparison to the planar magnetron deposition, the progression of the phase composition occurs over a wider range of R in the pulsed R C-Mag. deposition. These observed differences for R C-Mag. deposition are attributed to the increased glancing angle deposition of adatoms and pulsing of the target power. To study the effect of pulsing frequency of the target power in R C-Mag., the films were also grown at different frequencies at a fixed R (0.1). With the increase in frequency, the mechanical hardness increased up to 50 kHz and started decreasing beyond 50 kHz. The observed changes in the mechanical hardness are attributed to the increase in stress and to the formation of increased polycrystalline understoichiometric TaN phases.

  12. Pulsed laser deposition of ferroelectric thin films in conjunction with superconducting oxides

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Sengupta, L. C.; Demaree, J. D.; Kosik, W.

    1994-12-01

    The possibility of combining ferroelectrics and superconductors has been of interest for use in memory storage devices. Additionally, superconductors offer crystal structures compatible to the epitaxial growth of the ferroelectric, Ba(0.6)Sr(0.4)TiO3 (BSTO), which is cubic at this stoichiometry. BSTO has a lattice constant of 3.94 A as compared to the superconducting Pr(2 - x)Ce(x)CuO4 tetragonal single crystal which also has a lattice constant of a = 3.94 A. (minor variations with Cerium content). In this study, ferroelectric thin films of BSTO were deposited on single crystals of Pr2CuO4 and Pr(2 - x)Ce(x)CuO4. The optical constants of the substrates, single crystals of Pr2CuO4 and Pr(2 - x)Ce(x)CuO4, were determined using Variable Angle Spectroscopic Ellipsometry (VASE) and the composition and crystal structure were examined using Rutherford Backscattering Spectrometry (RBS) with ion beam channeling. The substrate/film interfaces and the compositional variation in the films were also studied with RBS and with SEM/EDS. Glancing angle x-ray diffraction was used to verify the epitaxial nature of the films. The effect of the deposition parameters (laser repetition rate, oxygen backfill pressure, and deposition geometry) on the quality of the films was experimented with previously and only the optimized parameters were used.

  13. Glancing incidence optics for X-ray and ultraviolet astronomy.

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Neupert, W. M.; Hoover, R. B.

    1971-01-01

    Glancing incidence telescopes of the kind first described by Wolter have now been physically realized, so that it is possible to obtain high-resolution images of celestial objects at all wavelengths greater than about 3 A. The GSFC-MSFC X-ray telescope for the Apollo telescope mount uses Wolter type 1 optics and is capable of forming images of the sun in the 8-70 A region with spatial resolution of the order of one arc second. The GSFC extreme ultraviolet spectroheliometer for OSO H uses type 2 optics and can obtain images of the sun in spectral lines in the 170-400 A region with a spatial resolution of about ten arc seconds. Theoretical (ray trace) and laboratory data on these systems are presented.

  14. Memory Conditions at a Glance | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Memory & Forgetfulness Memory Conditions at a Glance Past Issues / Summer 2013 ... called MCI. It causes people to have more memory problems than other people their age. The signs ...

  15. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  16. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  17. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  18. Subcellular mRNA localisation at a glance.

    PubMed

    Parton, Richard M; Davidson, Alexander; Davis, Ilan; Weil, Timothy T

    2014-05-15

    mRNA localisation coupled to translational regulation provides an important means of dictating when and where proteins function in a variety of model systems. This mechanism is particularly relevant in polarised or migrating cells. Although many of the models for how this is achieved were first proposed over 20 years ago, some of the molecular details are still poorly understood. Nevertheless, advanced imaging, biochemical and computational approaches have started to shed light on the cis-acting localisation signals and trans-acting factors that dictate the final destination of localised transcripts. In this Cell Science at a Glance article and accompanying poster, we provide an overview of mRNA localisation, from transcription to degradation, focusing on the microtubule-dependent active transport and anchoring mechanism, which we will use to explain the general paradigm. However, it is clear that there are diverse ways in which mRNAs become localised and target protein expression, and we highlight some of the similarities and differences between these mechanisms. PMID:24833669

  19. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    SciTech Connect

    Bachhuber, F.; Rothballer, J.; Weihrich, R.; Söhnel, T.

    2013-12-07

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2}, and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.

  20. RAS isoforms and mutations in cancer at a glance.

    PubMed

    Hobbs, G Aaron; Der, Channing J; Rossman, Kent L

    2016-04-01

    RAS proteins (KRAS4A, KRAS4B, NRAS and HRAS) function as GDP-GTP-regulated binary on-off switches, which regulate cytoplasmic signaling networks that control diverse normal cellular processes. Gain-of-function missense mutations in RAS genes are found in ∼25% of human cancers, prompting interest in identifying anti-RAS therapeutic strategies for cancer treatment. However, despite more than three decades of intense effort, no anti-RAS therapies have reached clinical application. Contributing to this failure has been an underestimation of the complexities of RAS. First, there is now appreciation that the four human RAS proteins are not functionally identical. Second, with >130 different missense mutations found in cancer, there is an emerging view that there are mutation-specific consequences on RAS structure, biochemistry and biology, and mutation-selective therapeutic strategies are needed. In this Cell Science at a Glance article and accompanying poster, we provide a snapshot of the differences between RAS isoforms and mutations, as well as the current status of anti-RAS drug-discovery efforts. PMID:26985062

  1. Regulators of actin filament barbed ends at a glance.

    PubMed

    Shekhar, Shashank; Pernier, Julien; Carlier, Marie-France

    2016-03-15

    Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterization of a plethora of barbed-end-regulating proteins. Interestingly, many of these regulators work in tandem with other proteins, which increase or decrease their affinity for the barbed end in a spatially and temporally controlled manner, often through simultaneous binding of two regulators at the barbed ends, in addition to standard mutually exclusive binding schemes. In this Cell Science at a Glance and the accompanying poster, we discuss key barbed-end-interacting proteins and the kinetic mechanisms by which they regulate actin filament assembly. We take F-actin capping protein, gelsolin, profilin and barbed-end-tracking polymerases, including formins and WH2-domain-containing proteins, as examples, and illustrate how their activity and competition for the barbed end regulate filament dynamics. PMID:26940918

  2. Signatures of breast cancer metastasis at a glance.

    PubMed

    Karagiannis, George S; Goswami, Sumanta; Jones, Joan G; Oktay, Maja H; Condeelis, John S

    2016-05-01

    Gene expression profiling has yielded expression signatures from which prognostic tests can be derived to facilitate clinical decision making in breast cancer patients. Some of these signatures are based on profiling of whole tumor tissue (tissue signatures), which includes all tumor and stromal cells. Prognostic markers have also been derived from the profiling of metastasizing tumor cells, including circulating tumor cells (CTCs) and migratory-disseminating tumor cells within the primary tumor. The metastasis signatures based on CTCs and migratory-disseminating tumor cells have greater potential for unraveling cell biology insights and mechanistic underpinnings of tumor cell dissemination and metastasis. Of clinical interest is the promise that stratification of patients into high or low metastatic risk, as well as assessing the need for cytotoxic therapy, might be improved if prognostics derived from these two types of signatures are used in a combined way. The aim of this Cell Science at a Glance article and accompanying poster is to navigate through both types of signatures and their derived prognostics, as well as to highlight biological insights and clinical applications that could be derived from them, especially when they are used in combination. PMID:27084578

  3. Myosin-I molecular motors at a glance.

    PubMed

    McIntosh, Betsy B; Ostap, E Michael

    2016-07-15

    Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications. PMID:27401928

  4. Transcriptional regulation of mammalian autophagy at a glance.

    PubMed

    Füllgrabe, Jens; Ghislat, Ghita; Cho, Dong-Hyung; Rubinsztein, David C

    2016-08-15

    Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell organelles. It is activated  under diverse conditions, including nutrient deprivation and hypoxia. During autophagy, members of the core autophagy-related (ATG) family of proteins mediate membrane rearrangements, which lead to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of autophagy, especially by transcription factors and histone modifiers, has gained increased attention. These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the long-term outcome of autophagy. Now there are more than 20 transcription factors that have been shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic as several have been individually shown to act as major regulators of autophagy. This Cell Science at a Glance article and the accompanying poster highlights the main cellular regulators of transcription involved in mammalian autophagy and their target genes. PMID:27528206

  5. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    NASA Astrophysics Data System (ADS)

    Bachhuber, F.; Rothballer, J.; Söhnel, T.; Weihrich, R.

    2013-12-01

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb2, and the NiAs2 types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB2 structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.

  6. Phase stabilities at a glance: stability diagrams of nickel dipnictides.

    PubMed

    Bachhuber, F; Rothballer, J; Söhnel, T; Weihrich, R

    2013-12-01

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb2, and the NiAs2 types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB2 structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases. PMID:24320392

  7. Classes of phosphoinositide 3-kinases at a glance

    PubMed Central

    Jean, Steve; Kiger, Amy A.

    2014-01-01

    ABSTRACT The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a broadening recognition of the importance of distinct roles for each of the three different PI3K classes (I, II and III), as well as for the different isoforms within each class. Ongoing issues include the need for a better understanding of the in vivo complexity of PI3K regulation and cellular functions. This Cell Science at a Glance article and the accompanying poster summarize the biochemical activities, cellular roles and functional requirements for the three classes of PI3Ks. In doing so, we aim to provide an overview of the parallels, the key differences and crucial interplays between the regulation and roles of the three PI3K classes. PMID:24587488

  8. The TLR and IL-1 signalling network at a glance.

    PubMed

    Cohen, Philip

    2014-06-01

    Toll-like receptors (TLRs) and the receptors for interleukin (IL)-1, IL-18 and IL-33 are required for defence against microbial pathogens but, if hyper-activated or not switched off efficiently, can cause tissue damage and inflammatory and autoimmune diseases. Understanding how the checks and balances in the system are integrated to fight infection without the network operating out of control will be crucial for the development of improved drugs to treat these diseases in the future. In this Cell Science at a Glance article and the accompanying poster, I provide a brief overview of how one of these intricate networks is controlled by the interplay of protein phosphorylation and protein ubiquitylation events, and the mechanisms in myeloid cells that restrict and terminate its activation to prevent inflammatory and autoimmune diseases. Finally, I suggest a few protein kinases that have been neglected as drug targets, but whose therapeutic potential should be explored in the light of recent advances in our understanding of their roles in the innate immune system. PMID:24829146

  9. Hybrid Physical-Chemical Vapor Deposition of Bi2Se3 Thin films on Sapphire

    NASA Astrophysics Data System (ADS)

    Brom, Joseph; Ke, Yue; Du, Renzhong; Gagnon, Jarod; Li, Qi; Redwing, Joan

    2012-02-01

    High quality thin films of topological insulators continue to garner much interest. We report on the growth of highly-oriented thin films of Bi2Se3 on c-plane sapphire using hybrid physical-chemical vapor deposition (HPCVD). The HPCVD process utilizes the thermal decomposition of trimethyl bismuth (TMBi) and evaporation of elemental selenium in a hydrogen ambient to deposit Bi2Se3. Growth parameters including TMBi flow rate and decomposition temperature and selenium evaporation temperature were optimized, effectively changing the Bi:Se ratio, to produce high quality films. Glancing angle x- ray diffraction measurements revealed that the films were c-axis oriented on sapphire. Trigonal crystal planes were observed in atomic force microscopy images with an RMS surface roughness of 1.24 nm over an area of 2μmx2μm. Variable temperature Hall effect measurements were also carried out on films that were nominally 50-70 nm thick. Over the temperature range from 300K down to 4.2K, the carrier concentration remained constant at approximately 6x10^18 cm-3 while the mobility increased from 480 cm^2/Vs to 900 cm^2/Vs. These results demonstrate that the HPCVD technique can be used to deposit Bi2Se3 films with structural and electrical properties comparable to films produced by molecular beam epitaxy.

  10. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries. PMID:26381359

  11. The ALICE Glance Shift Accounting Management System (SAMS)

    NASA Astrophysics Data System (ADS)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  12. On the highway measures of driver glance behavior with an example automobile navigation system.

    PubMed

    Chiang, Dean P; Brooks, Aaron M; Weir, David H

    2004-05-01

    An over-the-road study of visual-manual destination entry using an example original equipment GPS-based navigation system was accomplished in traffic on urban streets and motorways. The evaluation used typical drivers, and a vehicle instrumented to record driver eye glances and fixations, driver control inputs, and lateral lane position. The primary task was to drive in a safe manner, in traffic, while maintaining speed and lateral lane position. As a secondary task, the drivers entered successive destinations while driving, using a touch screen, and at their own pace. They were told there was no need to enter the destination quickly. Results are shown for driver glance behavior, lane keeping performance, and subjective ratings. Overall, the drivers were able to accomplish the destination entry tasks with acceptably short glance durations, acceptable total task times, and with satisfactory subjective ratings for ease of entry. PMID:15145284

  13. A field study on the effects of digital billboards on glance behavior during highway driving.

    PubMed

    Belyusar, Daniel; Reimer, Bryan; Mehler, Bruce; Coughlin, Joseph F

    2016-03-01

    Developments in lighting technologies have allowed more dynamic digital billboards in locations visible from the roadway. Decades of laboratory research have shown that rapidly changing or moving stimuli presented in peripheral vision tends to 'capture' covert attention. We report naturalistic glance and driving behavior of a large sample of drivers who were exposed to two digital billboards on a segment of highway largely free from extraneous signage. Results show a significant shift in the number and length of glances toward the billboards and an increased percentage of time glancing off road in their presence. Findings were particularly evident at the time the billboards transitioned between advertisements. Since rapidly changing stimuli are difficult to ignore, the planned increase in episodically changing digital displays near the roadway may be argued to be a potential safety concern. The impact of digital billboards on driver safety and the need for continued research are discussed. PMID:26745271

  14. Three mirror glancing incidence system for X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1974-01-01

    A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.

  15. A Glance at the Evolution of Native American Education: From Christianization to Self-Determination.

    ERIC Educational Resources Information Center

    Marshall, John D.

    This paper provides a broad, sweeping glance at the early policies, attitudes, and activities surrounding the education of Native Americans. The Indian education efforts of the colonists--involving civilization, Christianization, and literacy--did little to alter Indian culture and were in most cases abandoned by the mid-1700's. During the…

  16. Small Business and Vocational Education and Training. Research at a Glance.

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research, Leabrook (Australia).

    This issue in the series, "Research at a Glance," explores Australian small business and its attitudes to training, needs, how small business becomes involved in training, and how training happens. It begins with an overview of findings, some policy options, and a list of 11 references used in preparation of this publication. Research findings are…

  17. MCPS School Safety and Security at a Glance 2007-2008

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2008

    2008-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, including school climate, local school safety program descriptions, and serious incidents in all Montgomery County (Maryland) Public Schools. The information is presented for…

  18. MCPS School Safety and Security at a Glance 2010-2011

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2011

    2011-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, school climate, local school safety program descriptions, and serious incidents in all Montgomery County (Maryland) Public Schools. The information is presented for each school.…

  19. MCPS School Safety and Security at a Glance 2008-2009

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2009

    2009-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, school climate, local school safety program descriptions, and serious incidents in all Montgomery County (Maryland) Public Schools. The information is presented for each school.…

  20. MCPS School Safety and Security at a Glance 2009-2010

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2010

    2010-01-01

    "MCPS School Safety and Security at a Glance" provides, in a single document, information about the reporting of incidents related to school safety and security, school climate, local school safety program descriptions, and serious incidents in all Montgomery County (Maryland) public schools. The information is presented for each school.…

  1. Analyzing the Deposition of Titanium Dioxide Nanoparticles at Model Rough Mineral Surfaces Using a Quartz Crystal Microbalance with Dissipation Monitoring

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kananizadeh, N.; Rodenhausen, K. B.; Schubert, M.; Bartelt-Hunt, S.

    2015-12-01

    Titanium dioxide nanoparticles (nTiO2) is the most extensively manufactured engineered materials. nTiO2 from sunscreens was found to enter sediments after released into a lake. nTiO2 may also enter the subsurface via irrigation using effluents from wastewater treatment plants. Interaction of nTiO2 with soils and sediments will largely influence their fate, transport, and ecotoxicity. Measuring the interaction between nTiO2 and natural substrates (e.g. such as sands) is particularly challenging due to highly heterogeneous and rough natural sand surfaces. In this study, an engineered controllable rough surface known as three dimensional nanostructured sculptured columnar thin films (SCTFs) has been used to mimic surface roughness. SCTFs were fabricated by glancing angle deposition (GLAD), a physical vapor deposition technique facilitated by electron beam evaporation. Interaction between nTiO2 and SCTF coated surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, a Generalized Ellipsometry (GE) was coupled with the QCM-D to measure the deposition of nTiO2. We found that the typical QCM-D modeling approach, e.g. viscoelastic model, would largely overestimate the mass of deposited nTiO2, because the frequency drops due to particle deposition or water entrapment in rough areas were not differentiated. Here, we demonstrate a new approach to model QCM-D data for nTiO2 deposition on rough surfaces, which couples the viscoelastic model with a model of flow on the non-uniform surface.

  2. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  3. Glancing and Stopping Behavior of Motorcyclists and Car Drivers at Intersections

    PubMed Central

    Muttart, Jeffrey W.; Peck, Louis R.; Guderian, Steve; Bartlett, Wade; Ton, Lisa P.; Kauderer, Chris; Fisher, Donald L.; Manning, Joseph E.

    2012-01-01

    For the past decade, motorcycle fatalities have risen while other motor vehicle fatalities have declined. Many motorcycle fatalities occurred within intersections after a driver failed to see a motorcyclist. However, little is known about the behavior of motorcyclists when they negotiate an intersection. A study was undertaken to compare the behavior at intersections of an experienced group of motorcyclists when they were operating a motorcycle with their behavior when they were driving a car. Each participant navigated a course through low-volume, open roads. Participants wore eye-tracking equipment to record eye-glance information, and the motorcycle and car were instrumented with an onboard accelerometer and Global Positioning System apparatus. Results showed that participants were more likely to make last glances toward the direction of the most threatening traffic before they made a turn when they were driving a car than when they were riding a motorcycle. In addition, motorcyclists were less likely to come to a complete stop at a stop sign than car drivers. These results suggested that motorcyclists were exposing themselves to unnecessary risk. Specifically, motorcyclists frequently failed to make proper glances and practice optimal riding techniques. The behavior of the motorcyclists was compared with the current Motorcycle Safety Foundation curriculum. The results suggested that threat-response and delayed-apex techniques should be added to the training curriculum. PMID:23112436

  4. Glancing and Stopping Behavior of Motorcyclists and Car Drivers at Intersections.

    PubMed

    Muttart, Jeffrey W; Peck, Louis R; Guderian, Steve; Bartlett, Wade; Ton, Lisa P; Kauderer, Chris; Fisher, Donald L; Manning, Joseph E

    2011-01-01

    For the past decade, motorcycle fatalities have risen while other motor vehicle fatalities have declined. Many motorcycle fatalities occurred within intersections after a driver failed to see a motorcyclist. However, little is known about the behavior of motorcyclists when they negotiate an intersection. A study was undertaken to compare the behavior at intersections of an experienced group of motorcyclists when they were operating a motorcycle with their behavior when they were driving a car. Each participant navigated a course through low-volume, open roads. Participants wore eye-tracking equipment to record eye-glance information, and the motorcycle and car were instrumented with an onboard accelerometer and Global Positioning System apparatus. Results showed that participants were more likely to make last glances toward the direction of the most threatening traffic before they made a turn when they were driving a car than when they were riding a motorcycle. In addition, motorcyclists were less likely to come to a complete stop at a stop sign than car drivers. These results suggested that motorcyclists were exposing themselves to unnecessary risk. Specifically, motorcyclists frequently failed to make proper glances and practice optimal riding techniques. The behavior of the motorcyclists was compared with the current Motorcycle Safety Foundation curriculum. The results suggested that threat-response and delayed-apex techniques should be added to the training curriculum. PMID:23112436

  5. Changes over 12 months in eye glances during secondary task engagement among novice drivers.

    PubMed

    O'Brien, Fearghal; Klauer, Sheila G; Ehsani, Johnathon; Simons-Morton, Bruce G

    2016-08-01

    During their first year of driving, crash rates among novice drivers are very high but decline rapidly. However, it is not clear what skills or knowledge they are acquiring in this period. Secondary task engagement while driving is a contributing factor to many traffic collisions and some of the elevated crash risk among novices could be explained by greater prevalence or longer periods of eyes off the road while engaging in these non-driving tasks. The current study looked at the eye glances of novice teen drivers engaging in secondary tasks on a test track at 0 and 12 months of licensure and compared their performance with their parents. Novices improved from 0 to 12 months on their longest single glance off the forward roadway and total percentage of time for eyes off the forward roadway, but parents remained stable. Compared with their parents, the longest single glance off the forward roadway was longer for novices at 0 months, but by 12 months there was no difference between the groups. However, for total percentage of time for eyes off the forward roadway, novices performed the same as their parents at 0 months and actually had shorter times at 12 months. These findings could reflect the combined development of driving skills over 12 months and the relative experience that modern teenagers have with portable electronic devices. The results suggest that novice drivers are particularly poor at engaging with secondary tasks while driving. PMID:27177392

  6. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  7. Perception of Perspective Angles.

    PubMed

    Erkelens, Casper J

    2015-06-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles between bars lying on the floor of the laboratory. Perspective angles were also estimated from pictures taken from the same point of view. Converging and diverging angles were judged to test three models of visual space. Four subjects evaluated the perspective angles by matching them to nonperspective angles, that is, angles between the legs of a compass oriented in the frontal plane. All subjects judged both converging and diverging angles larger than the physical angle and smaller than the angles in the proximal stimuli. A model of shallow visual space describes the results. According to the model, lines parallel to visual lines, vanishing at infinity in physical space, converge to visual lines in visual space. The perceived shape of perspective angles is incompatible with the perceived length and width of the bars. The results have significance for models of visual perception and practical implications for driving and flying in poor visibility conditions. PMID:27433312

  8. Perception of Perspective Angles

    PubMed Central

    2015-01-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles between bars lying on the floor of the laboratory. Perspective angles were also estimated from pictures taken from the same point of view. Converging and diverging angles were judged to test three models of visual space. Four subjects evaluated the perspective angles by matching them to nonperspective angles, that is, angles between the legs of a compass oriented in the frontal plane. All subjects judged both converging and diverging angles larger than the physical angle and smaller than the angles in the proximal stimuli. A model of shallow visual space describes the results. According to the model, lines parallel to visual lines, vanishing at infinity in physical space, converge to visual lines in visual space. The perceived shape of perspective angles is incompatible with the perceived length and width of the bars. The results have significance for models of visual perception and practical implications for driving and flying in poor visibility conditions. PMID:27433312

  9. Circuitry for Angle Measurements

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.

    1983-01-01

    Angle resolver pulsed and read under microprocessor control. Pulse generator excites resolver windings with dual slope pulse. System sequentially reads sine and cosine windings. Microprocessor determines angle through which resolver shaft turned from reference angle. Suitable applications include rate tables, antenna direction controllers, and machine tools.

  10. Extended Visual Glances Away from the Roadway are Associated with ADHD- and Texting-Related Driving Performance Deficits in Adolescents.

    PubMed

    Kingery, Kathleen M; Narad, Megan; Garner, Annie A; Antonini, Tanya N; Tamm, Leanne; Epstein, Jeffery N

    2015-08-01

    The purpose of the research study was to determine whether ADHD- and texting-related driving impairments are mediated by extended visual glances away from the roadway. Sixty-one adolescents (ADHD =28, non-ADHD =33; 62% male; 11% minority) aged 16-17 with a valid driver's license were videotaped while engaging in a driving simulation that included a No Distraction, Hands-Free Phone Conversation, and Texting condition. Two indicators of visual inattention were coded: 1) percentage of time with eyes diverted from the roadway; and 2) number of extended (greater than 2 s) visual glances away from the roadway. Adolescents with ADHD displayed significantly more visual inattention to the roadway on both visual inattention measures. Increased lane position variability among adolescents with ADHD compared to those without ADHD during the Hands-Free Phone Conversation and Texting conditions was mediated by an increased number of extended glances away from the roadway. Similarly, texting resulted in decreased visual attention to the roadway. Finally, increased lane position variability during texting was also mediated by the number of extended glances away from the roadway. Both ADHD and texting impair visual attention to the roadway and the consequence of this visual inattention is increased lane position variability. Visual inattention is implicated as a possible mechanism for ADHD- and texting-related deficits and suggests that driving interventions designed to address ADHD- or texting-related deficits in adolescents need to focus on decreasing extended glances away from the roadway. PMID:25416444

  11. Extended visual glances away from the roadway are associated with ADHD- and texting-related driving performance deficits in adolescents

    PubMed Central

    Kingery, Kathleen M.; Narad, Megan; Garner, Annie A.; Antonini, Tanya N.; Tamm, Leanne; Epstein, Jeffery N.

    2014-01-01

    The purpose of the research study was to determine whether ADHD- and texting-related driving impairments are mediated by extended visual glances away from the roadway. Sixty-one adolescents (ADHD = 28, non-ADHD = 33; 62% male; 11% minority) aged 16–17 with a valid driver’s license were videotaped while engaging in a driving simulation that included a No Distraction, Hands-Free Phone Conversation, and Texting condition. Two indicators of visual inattention were coded: 1) percentage of time with eyes diverted from the roadway; and 2) number of extended (greater than 2 seconds) visual glances away from the roadway. Adolescents with ADHD displayed significantly more visual inattention to the roadway on both visual inattention measures. Increased lane position variability among adolescents with ADHD compared to those without ADHD during the Hands-Free Phone Conversation and Texting conditions was mediated by an increased number of extended glances away from the roadway. Similarly, texting resulted in decreased visual attention to the roadway. Finally, increased lane position variability during texting was also mediated by the number of extended glances away from the roadway. Both ADHD and texting impair visual attention to the roadway and the consequence of this visual inattention is increased lane position variability. Visual inattention is implicated as a possible mechanism for ADHD- and texting-related deficits and suggests that driving interventions designed to address ADHD- or texting-related deficits in adolescents need to focus on decreasing extended glances away from the roadway. PMID:25416444

  12. The effects of focused attention training (FOCAL) on the duration of novice drivers' glances inside the vehicle

    PubMed Central

    Pradhan, A.K.; Divekar, G.; Masserang, K.; Romoser, M.; Zafian, T.; Blomberg, R.D.; Thomas, F.D.; Reagan, I.; Knodler, M.; Pollatsek, A.; Fisher, D.L.

    2011-01-01

    Several studies have documented that the failure of drivers to attend to the forward roadway for a period lasting longer than 2-3 seconds is a major cause of highway crashes. Moreover, several studies have demonstrated that novice drivers are more likely to glance away from the roadway than experienced drivers for extended periods when attempting to do a task inside the vehicle. The present study examines the efficacy of a PC-based training program (FOCAL) designed to teach novice drivers not to glance away for these extended periods of time. A FOCAL-trained group was compared to a placebo-trained group in an on-road test, and the FOCAL-trained group made significantly fewer glances away from the roadway that were more than 2 seconds than the placebo-trained group. Other measures indicated an advantage for the FOCAL-trained group as well. PMID:21973003

  13. Comprehensive study of the conditions for obtaining hydrogenated amorphous erbium- and oxygen-doped silicon suboxide films, a-SiO{sub x}:H Left-Pointing-Angle-Bracket Er,O Right-Pointing-Angle-Bracket , by dc-magnetron deposition

    SciTech Connect

    Undalov, Yu. K. Terukov, E. I.; Gusev, O. B.; Lebedev, V. M.; Trapeznikova, I. N.

    2011-12-15

    The results of a comprehensive study of the conditions for growing a-SiO{sub x}:H Left-Pointing-Angle-Bracket Er,O Right-Pointing-Angle-Bracket films are presented. The effect of the composition of various erbium-containing targets (a-SiO{sub x}:H , ErO{sub x}, Er{sub 2}SiO{sub 5}, Er{sub 2}O{sub 3}, and Er), substrate temperature, and annealing temperatures in argon, air, and under conditions of SiH{sub 4} + Ar + O{sub 2} plasma glow is studied. In order to obtain a-SiO{sub x}:H Left-Pointing-Angle-Bracket Er,O Right-Pointing-Angle-Bracket films with the highest photoluminescence intensity of erbium ions, it is recommended for the following technological conditions to be used: the substrate holder should be insulated from dc-magnetron electrodes and the working gas mixture should include silane, argon, and oxygen. Single-crystal silicon and metal erbium should be used as targets. The erbium target should be placed only in the Si-target erosion zone.

  14. Solar angle reference manual

    SciTech Connect

    Sibson, R.

    1983-01-01

    The introduction is the only text in the volume; the rest of the book contains easy-to-use graphical methods for building design and construction using solar energy. Isogonic charts and solar angle diagrams are included. Isogonic charts. Solar angle diagrams.

  15. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  16. A simulator evaluation of the effects of attention maintenance training on glance distributions of younger novice drivers inside and outside the vehicle

    PubMed Central

    Divekar, Gautam; Pradhan, Anuj K.; Masserang, Kathleen M.; Reagan, Ian; Pollatsek, Alexander; Fisher, Donald L.

    2013-01-01

    Driver distraction inside and outside the vehicle is increasingly a problem, especially for younger drivers. In many cases the distraction is associated with long glances away from the forward roadway. Such glances have been shown to be highly predictive of crashes. Ideally, one would like to develop and evaluate a training program which reduced these long glances. Thus, an experiment was conducted in a driving simulator to test the efficacy of a training program, FOCAL, that was developed to teach novice drivers to limit the duration of glances that are inside the vehicle while performing an in-vehicle task, such as looking for a CD or finding the 4-way flashers. The test in the simulator showed that the FOCAL trained group performed significantly better than the placebo trained group on several measures, notably on the percentage of within-vehicle glances that were greater than 2, 2.5, and 3 s. However, the training did not generalize to glances away from the roadway (e.g., when drivers were asked to attend to a sign adjacent to the roadway, both trained and untrained novice drivers were equally likely to make especially long glances at the sign). PMID:24415905

  17. Photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  18. Deposition and characterization of Cd{sub 1−x}Mg{sub x}Te thin films grown by a novel cosublimation method

    SciTech Connect

    Kobyakov, Pavel S. Swanson, Drew E.; Sampath, Walajabad S.; Moore, Andrew; Raguse, John M.

    2014-03-15

    Photovoltaic cells utilizing the CdS/CdTe structure have improved substantially in the past few years. Despite the recent advances, the efficiency of CdS/CdTe cells is still significantly below their Shockley–Queisser limit. CdTe based ternary alloy thin films, such as Cd{sub 1−x}Mg{sub x}Te (CMT), could be used to improve efficiency of CdS/CdTe photovoltaic cells. Higher band gap Cd{sub 1−x}Mg{sub x}Te films can be the absorber in top cells of a tandem structure or an electron reflector layer in CdS/CdTe cells. A novel cosublimation method to deposit CMT thin films has been developed. This method can deposit CMT films of band gaps ranging from 1.5 to 2.3 eV. The cosublimation method is fast, repeatable, and scalable for large areas, making it suitable for implementing into large-scale manufacturing. Characterization of as-deposited CMT films, with x varying from 0 to 0.35, reveals a linear relationship between Mg content measured by energy dispersive x-ray spectroscopy and the optical band gap. Glancing angle x-ray diffraction (GAXRD) measurements of Cd{sub 1−x}Mg{sub x}Te films show a zinc-blende structure similar to CdTe. Furthermore, increasing Mg content decreases the lattice parameter and the grain size. GAXRD shows the films are under mild tension after deposition.

  19. Reading Angles in Maps

    PubMed Central

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2013-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15–53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare 2D to 3D angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to 2D and 3D displays and that serves to interpret novel spatial symbols. PMID:23647223

  20. Angles, Time, and Proportion

    ERIC Educational Resources Information Center

    Pagni, David L.

    2005-01-01

    This article describes an investigation making connections between the time on an analog clock and the angle between the minute hand and the hour hand. It was posed by a middle school mathematics teacher. (Contains 8 tables and 6 figures.)

  1. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. PMID:23647223

  2. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  3. The influence of spray properties on intranasal deposition.

    PubMed

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including

  4. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis

    PubMed Central

    Meyer, Hemmo; Weihl, Conrad C.

    2014-01-01

    ABSTRACT The ATPase valosin-containing protein (VCP)/p97 has emerged as a central and important element of the ubiquitin system. Together with a network of cofactors, it regulates an ever-expanding range of processes that stretch into almost every aspect of cellular physiology. Its main role in proteostasis and key functions in signaling pathways are of relevance to degenerative diseases and genomic stability. In this Cell Science at a Glance and the accompanying poster, we give a brief overview of this complex system. In addition, we discuss the pathogenic basis for VCP/p97-associated diseases and then highlight in more detail new exciting links to the translational stress response and RNA biology that further underscore the significance of the VCP/p97 system. PMID:25146396

  5. The nuclear pore complex--structure and function at a glance.

    PubMed

    Kabachinski, Greg; Schwartz, Thomas U

    2015-02-01

    Nuclear pore complexes (NPCs) are indispensable for cell function and are at the center of several human diseases. NPCs provide access to the nucleus and regulate the transport of proteins and RNA across the nuclear envelope. They are aqueous channels generated from a complex network of evolutionarily conserved proteins known as nucleporins. In this Cell Science at a Glance article and the accompanying poster, we discuss how transport between the nucleoplasm and the cytoplasm is regulated, what we currently know about the structure of individual nucleoporins and the assembled NPC, and how the cell regulates assembly and disassembly of such a massive structure. Our aim is to provide a general overview on what we currently know about the nuclear pore and point out directions of research this area is heading to. PMID:26046137

  6. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  7. The Rainbow Angle.

    ERIC Educational Resources Information Center

    Sims, B.

    1978-01-01

    Two articles in the "Scientific American" form the background of this note. The rainbow angle for the primary bow of a monochromatic Cartesian rainbow is calculated. Special projects for senior high school students could be patterned after this quantitative study. (MP)

  8. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  9. Yaw Angle Demonstration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Large Angle Magnetic Suspension Test Fixture (LAMSTF) is a 5 degree-of -freedom repulsive force magnetic suspension system designed to study the control of objects over large magnetic gaps. A digital control algorithm uses 6 sets of laser-sheet sensors and 5 control coils to position a cylinder 3' above the plane of electromagnetics

  10. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  11. How does the deposition of gas phase species affect surface pH at frozen salty interfaces?

    NASA Astrophysics Data System (ADS)

    Donaldson, D. J.; Wren, S. N.

    2012-12-01

    Chemical processes occurring on snow and ice surfaces play an important role in controlling the oxidative capacity of the overlying atmosphere. However, efforts to gain a better, mechanistic understanding of such processes are impeded by a poor understanding of the chemical nature of the air-ice interface. In consequence, constraining the substrates that are most relevant to these processes (e.g., new sea ice, first-year ice, frost flowers, brine layers, saline snow) as well as understanding how chemistry will be affected as the areal extent of these substrates succumbs to polar environmental change, remains difficult. In this study, we used glancing-angle laser-induced fluorescence and a surface-active fluorescent pH indicator to investigate how the nature of the ice, whether frozen pure water, salt water or seawater, influences pH changes at the surface. We find that deposition of HCl(g) leads to a very different pH response at the frozen pure water surface than at the frozen salt water surface indicating that these two surfaces present different chemical environments. Results indicate that the frozen salt water surface is covered by a brine layer which behaves like a true liquid layer. On the other hand, the disordered interface at the pure ice surface presents a unique chemical environment. Our results also suggest that the sea ice surface is buffered against pH changes arising from the deposition of gas phase species. These results have important implications for understanding pH-sensitive processes occurring at the air-ice boundary, such as bromine activation.

  12. A Different Angle on Perspective

    ERIC Educational Resources Information Center

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  13. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  14. Angles in the Sky?

    NASA Astrophysics Data System (ADS)

    Behr, Bradford

    2005-09-01

    Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.

  15. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  16. The effect of vapor incidence angle upon thin film columnar growth

    SciTech Connect

    Mazor, A.; Bukiet, B.G.; Srolovitz, D.J.

    1988-01-01

    We present a generalized theory for the growth of columnar microstructure in vapor deposited thin films under the joint influence of a constant uniform deposition flux coming down with arbitrarily chosen incidence angle, and surface diffusion. The dependences of the Zone I to Zone II transition temperature, and the characteristic length scales associated with the unstable modes on the deposition angle are predicted. The surface morphology is obtained as a function of vapor incidence angle. For a specific deposition angle, there is a one-parameter family of steady-state surface profiles which corresponds to a range of possible columnar orientation angles, among which only one angle is associated with the tangent rule. These results agree with experimental observations. 10 refs., 6 figs.

  17. Angle states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.; Iguain, J. L.

    1998-12-01

    Angle states and angle operators are defined for a system with arbitrary angular momentum. They provide a reasonable formalization of the concept of angle provided that we accept that the angular orientation is quantized. The angle operator is the generator of boosts in angular momentum and is, almost everywhere, linearly related to the logarithm of the shift operator. Angle states for fermions and bosons behave differently under parity transformation.

  18. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  19. Differences in glance behavior between drivers using a rearview camera, parking sensor system, both technologies, or no technology during low-speed parking maneuvers.

    PubMed

    Kidd, David G; McCartt, Anne T

    2016-02-01

    This study characterized the use of various fields of view during low-speed parking maneuvers by drivers with a rearview camera, a sensor system, a camera and sensor system combined, or neither technology. Participants performed four different low-speed parking maneuvers five times. Glances to different fields of view the second time through the four maneuvers were coded along with the glance locations at the onset of the audible warning from the sensor system and immediately after the warning for participants in the sensor and camera-plus-sensor conditions. Overall, the results suggest that information from cameras and/or sensor systems is used in place of mirrors and shoulder glances. Participants with a camera, sensor system, or both technologies looked over their shoulders significantly less than participants without technology. Participants with cameras (camera and camera-plus-sensor conditions) used their mirrors significantly less compared with participants without cameras (no-technology and sensor conditions). Participants in the camera-plus-sensor condition looked at the center console/camera display for a smaller percentage of the time during the low-speed maneuvers than participants in the camera condition and glanced more frequently to the center console/camera display immediately after the warning from the sensor system compared with the frequency of glances to this location at warning onset. Although this increase was not statistically significant, the pattern suggests that participants in the camera-plus-sensor condition may have used the warning as a cue to look at the camera display. The observed differences in glance behavior between study groups were illustrated by relating it to the visibility of a 12-15-month-old child-size object. These findings provide evidence that drivers adapt their glance behavior during low-speed parking maneuvers following extended use of rearview cameras and parking sensors, and suggest that other technologies which

  20. Nonsense-mediated mRNA decay in humans at a glance.

    PubMed

    Kurosaki, Tatsuaki; Maquat, Lynne E

    2016-02-01

    Nonsense-mediated mRNA decay (NMD) is an mRNA quality-control mechanism that typifies all eukaryotes examined to date. NMD surveys newly synthesized mRNAs and degrades those that harbor a premature termination codon (PTC), thereby preventing the production of truncated proteins that could result in disease in humans. This is evident from dominantly inherited diseases that are due to PTC-containing mRNAs that escape NMD. Although many cellular NMD targets derive from mistakes made during, for example, pre-mRNA splicing and, possibly, transcription initiation, NMD also targets ∼10% of normal physiological mRNAs so as to promote an appropriate cellular response to changing environmental milieus, including those that induce apoptosis, maturation or differentiation. Over the past ∼35 years, a central goal in the NMD field has been to understand how cells discriminate mRNAs that are targeted by NMD from those that are not. In this Cell Science at a Glance and the accompanying poster, we review progress made towards this goal, focusing on human studies and the role of the key NMD factor up-frameshift protein 1 (UPF1). PMID:26787741

  1. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  2. Cellular functions of the ADF/cofilin family at a glance.

    PubMed

    Kanellos, Georgios; Frame, Margaret C

    2016-09-01

    The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed. PMID:27505888

  3. Dissociation dynamics of fast neutral molecules scattered under glancing incidence conditions from crystal surfaces

    NASA Astrophysics Data System (ADS)

    Snowdon, K. J.; Harder, R.; Nesbitt, A.

    1996-08-01

    When fast ( vthermal ≪ v < vFermi) neutral or ionised atoms or molecules are scattered under glancing incidence conditions from atomically smooth metal single crystal surfaces, translational energy losses of 0.1-1 eV per femtosecond or per Å of the trajectory in the near surface region are not atypical. A large fraction of this energy appears in the electron-hole pair excitation channel. In addition, the orientation distribution of the internuclear co-ordinate of dissociatively scattered molecules is often sharply peaked about the surface normal. Such a distribution could arise if, coincident with vibrational excitation of the intra-molecular co-ordinate, the molecules were preferentially aligned about the surface normal. Alternatively, such a distribution may arise if, following dissolution of the intra-molecular bond, the difference in the surface normal momentum transfer to the two unbound atoms considerably exceeds the difference in the surface parallel momentum transfer. We investigate these two possibilities within a classical simulation of energy transfer from the translational to internal degrees of freedom of the molecule via repeated transitions between different electronic states of the molecule-surface system. These simulations suggest that in general, the observed surface-normal aligned final orientation of dissociatively scattered molecules is caused by strong vibrational excitation in the entrance channel region of the adiabatic ground state potential energy surface describing the interaction of the neutral molecule with the surface.

  4. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance.

    PubMed

    Dennerlein, Sven; Rehling, Peter

    2015-03-01

    Mitochondria provide the main portion of cellular energy in form of ATP produced by the F1Fo ATP synthase, which uses the electrochemical gradient, generated by the mitochondrial respiratory chain (MRC). In human mitochondria, the MRC is composed of four multisubunit enzyme complexes, with the cytochrome c oxidase (COX, also known as complex IV) as the terminal enzyme. COX comprises 14 structural subunits, of nuclear or mitochondrial origin. Hence, mitochondria are faced with the predicament of organizing and controlling COX assembly with subunits that are synthesized by different translation machineries and that reach the inner membrane by alternative transport routes. An increasing number of COX assembly factors have been identified in recent years. Interestingly, mutations in several of these factors have been associated with human disorders leading to COX deficiency. Recently, studies have provided mechanistic insights into crosstalk between assembly intermediates, import processes and the synthesis of COX subunits in mitochondria, thus linking conceptually separated functions. This Cell Science at a Glance article and the accompanying poster will focus on COX assembly and discuss recent discoveries in the field, the molecular functions of known factors, as well as new players and control mechanisms. Furthermore, these findings will be discussed in the context of human COX-related disorders. PMID:25663696

  5. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  6. Glance traceability - Web system for equipment traceability and radiation monitoring for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Évora, L. H. R. A.; Molina-Pérez, J.; Pommès, K.; Galvão, K. K.; Maidantchik, C.

    2010-04-01

    During the operation, maintenance, and dismantling periods of the ATLAS Experiment, the traceability of all detector equipment must be guaranteed for logistic and safety matters. The running of the Large Hadron Collider will expose the ATLAS detector to radiation. Therefore, CERN must follow specific regulations from both the French and Swiss authorities for equipment removal, transport, repair, and disposal. GLANCE Traceability, implemented in C++ and Java/Java3D, has been developed to fulfill the requirements. The system registers and associates each equipment part to either a functional position in the detector or a zone outside the underground area through a 3D graphical user interface. Radiation control of the equipment is performed using a radiation monitor connected to the system: the local background gets stored and the threshold is automatically calculated. The system classifies the equipment as non radioactive if its radiation dose does not exceed that limit value. History for both location traceability and radiation measurements is ensured, as well as simultaneous management of multiples equipment. The software is fully operational, being used by the Radiation Protection Experts of ATLAS and trained users since the first beam of the LHC. Initially developed for the ATLAS detector, the flexibility of the system has allowed its adaptation for the LHCb detector.

  7. Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

    NASA Astrophysics Data System (ADS)

    Wang, Wenjiao B.; Abelson, John R.

    2014-11-01

    Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the V shape. Experimentally, for the Mg(DMADB)2/H2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The

  8. Wide Angle Movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  10. Measurement of the angle of superficial tension by images

    NASA Astrophysics Data System (ADS)

    Yanez M., Javier; Alonso R., Sergio

    2006-02-01

    When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.

  11. Effects of menu structure and touch screen scrolling style on the variability of glance durations during in-vehicle visual search tasks.

    PubMed

    Kujala, Tuomo; Saariluoma, Pertti

    2011-08-01

    The effects of alternative navigation device display features on drivers' visual sampling efficiency while searching forpoints of interest were studied in two driving simulation experiments with 40 participants. Given that the number of display items was sufficient, display features that facilitate resumption of visual search following interruptions were expected to lead to more consistent in-vehicle glance durations. As predicted, compared with a grid-style menu, searching information in a list-style menu while driving led to smaller variance in durations of in-vehicle glances, in particular with nine item displays. Kinetic touch screen scrolling induced a greater number of very short in-vehicle glances than scrolling with arrow buttons. The touch screen functionality did not significantly diminish the negative effects of the grid-menu compared with physical controls with list-style menus. The findings suggest that resumability of self-paced, in-vehicle visual search tasks could be assessed with the measures of variance of in-vehicle glance duration distributions. Statement of Relevance: The reported research reveals display design factors affecting safety-relevant variability of in-vehicle glance durations and provides a theoretical framework for explaining the effects. The research can have a significant methodical value for driver distraction research and practical value for the design and testing of in-vehicle user interfaces. PMID:21846310

  12. Variable angle correlation spectroscopy

    SciTech Connect

    Lee, Y K

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  13. Measures on mixing angles

    SciTech Connect

    Gibbons, Gary W.; Gielen, Steffen; Pope, C. N.; Turok, Neil

    2009-01-01

    We address the problem of the apparently very small magnitude of CP violation in the standard model, measured by the Jarlskog invariant J. In order to make statements about probabilities for certain values of J, we seek to find a natural measure on the space of Kobayashi-Maskawa matrices, the double quotient U(1){sup 2}/SU(3)/U(1){sup 2}. We review several possible, geometrically motivated choices of the measure, and compute expectation values for powers of J for these measures. We find that different choices of the measure generically make the observed magnitude of CP violation appear finely tuned. Since the quark masses and the mixing angles are determined by the same set of Yukawa couplings, we then do a second calculation in which we take the known quark mass hierarchy into account. We construct the simplest measure on the space of 3x3 Hermitian matrices which reproduces this known hierarchy. Calculating expectation values for powers of J in this second approach, we find that values of J close to the observed value are now rather likely, and there does not seem to be any fine-tuning. Our results suggest that the choice of Kobayashi-Maskawa angles is closely linked to the observed mass hierarchy. We close by discussing the corresponding case of neutrinos.

  14. A Note on Angle Construction

    ERIC Educational Resources Information Center

    Francis, Richard L.

    1978-01-01

    The author investigates the construction of angles (using Euclidean tools) through a numerical approach. He calls attention to the surprising impossibility of constructing the conventional units of angle measure--the degree, minute, second, radian, and mil. (MN)

  15. Dancing droplets: Contact angle, drag, and confinement

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  16. Angle performance on optima MDxt

    SciTech Connect

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  17. Glancing and Then Looking: On the Role of Body, Affect, and Meaning in Cognitive Control

    PubMed Central

    Su, Li; Bowman, Howard; Barnard, Philip

    2011-01-01

    In humans, there is a trade-off between the need to respond optimally to the salient environmental stimuli and the need to meet our long-term goals. This implies that a system of salience sensitive control exists, which trades task-directed processing off against monitoring and responding to potentially high salience stimuli that are irrelevant to the current task. Much cognitive control research has attempted to understand these mechanisms using non-affective stimuli. However, recent research has emphasized the importance of emotions, which are a major factor in the prioritization of competing stimuli and in directing attention. While relatively mature theories of cognitive control exist for non-affective settings, exactly how emotions modulate cognitive processes is less well understood. The attentional blink (AB) task is a useful experimental paradigm to reveal the dynamics of both cognitive and affective control in humans. Hence, we have developed the glance–look model, which has replicated a broad profile of data on the semantic AB task and characterized how attentional deployment is modulated by emotion. Taking inspiration from Barnard’s Interacting Cognitive Subsystems, the model relies on a distinction between two levels of meaning: implicational and propositional, which are supported by two corresponding mental subsystems: the glance and the look respectively. In our model, these two subsystems reflect the central engine of cognitive control and executive function. In particular, the interaction within the central engine dynamically establishes a task filter for salient stimuli using a neurobiologically inspired learning mechanism. In addition, the somatic contribution of emotional effects is modeled by a body-state subsystem. We argue that stimulus-driven interaction among these three subsystems governs the movement of control between them. The model also predicts attenuation effects and fringe awareness during the AB. PMID:22194729

  18. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  19. Sun angle calculator

    NASA Technical Reports Server (NTRS)

    Flippin, A.; Schmitt, A. L. (Inventor)

    1976-01-01

    A circular computer and system is disclosed for determining the sun angle relative to the horizon from any given place and at any time. The computer includes transparent, rotatably mounted discs on both sides of the circular disc member. Printed on one side of the circular disc member are outer and inner circular sets of indicia respectively representative of site longitude and Greenwich Mean Time. Printed on an associated one of the rotatable discs is a set of indicia representative of Solar Time. Printed on the other side of the circular disc member are parallel lines representative of latitude between diametral representations of North and South poles. Elliptical lines extending between the North and South poles are proportionally disposed on the surface to scale Solar Time in hours.

  20. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    SciTech Connect

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-11-25

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs.

  1. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  2. Matching a curved focal plane with CCD's - Wide field imaging of glancing incidence X-ray telescopes

    NASA Technical Reports Server (NTRS)

    Nousek, J. A.; Garmire, G. P.; Ricker, G. R.; Bautz, M. W.; Levine, A. M.; Collins, S. A.

    1987-01-01

    The design of a wide field imaging camera suitable for use with a glancing incidence X-ray telescope is complicated by the sharply concave nature of the optimum focal surface of such a telescope. Such a camera made up of a mosaic of CCDs is being designed which is intended for flight aboard the Advanced X-ray Astrophysics Facility (AXAF). The design rationale and tradeoffs are discussed, and the layout for the imaging CCD array is presented. The related issue of optimizing performance of transmission objective gratings is also discussed, and the array of CCD orientations suitable for this problem is presented.

  3. TEXTING WHILE DRIVING: EVALUATION OF GLANCE DISTRIBUTIONS FOR FREQUENT/INFREQUENT TEXTERS AND KEYPAD/TOUCHPAD TEXTERS

    PubMed Central

    Samuel, Siby; Pollatsek, Alexander; Fisher, Donald

    2012-01-01

    Summary The threat that cell-phones pose to driving has been a well researched topic. There are fewer studies of the threat that texting creates for drivers, but the risks are obvious and the few existing studies confirm this. What is not obvious is whether frequent texters will expose themselves to the same risks as infrequent texters. This is important to know because many texters, especially teens who text frequently, may consider themselves immune to the dangers of texting while driving. As such, a comparison of frequent and infrequent texters was undertaken on a driving simulator. It is also not immediately clear what effects the different types of interfaces have on driving performance while text messaging. The interfaces under evaluation included keypad or “qwerty” phones (e.g., Blackberries) and touchpad phones (iPhone). It was found that the frequent and infrequent texters were equally likely to glance at least once for more than 2s inside the vehicle while sending a text message. It was also found that touchpad texters had a larger number of glances above the 2s threshold than keypad users, though this difference was not significant. The implications of this for future public policy are discussed. PMID:25279388

  4. Generalization of the Euler Angles

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  5. Small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice

    2015-10-01

    Small Angle Neutron Scattering (SANS) is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ˜ 1 nm up to ˜ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ˜ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area…) through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer), form factor analysis (I(q→0), Guinier regime, intermediate regime, Porod regime, polydisperse system), structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates), and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast). It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of spectrometer

  6. [Angle-closure chronic glaucoma].

    PubMed

    Lachkar, Y

    2003-10-01

    The incidence of chronic angle closure glaucoma is considerably greater than the incidence of the acute type. This type of glaucoma may mimic primary open angle glaucoma with visual field deterioration, optic nerve alteration and intraocular pressure elevation with a quiet painless eye. Its diagnosis is based on indentation gonioscopy showing peripheral anterior synechiae. The mechanisms of angle closure are the pupillary block, the plateau iris configuration and the creeping form. The treatment of chronic angle closure glaucoma is based on laser peripheral iridotomy. PMID:14646832

  7. The Critical Angle Can Override the Brewster Angle

    ERIC Educational Resources Information Center

    Froehle, Peter H.

    2009-01-01

    As a culminating activity in their study of optics, my students investigate polarized light and the Brewster angle. In this exercise they encounter a situation in which it is impossible to measure the Brewster angle for light reflecting from a particular surface. This paper describes the activity and explains the students' observations.

  8. Surface Finish after Laser Metal Deposition

    NASA Astrophysics Data System (ADS)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  9. Charge collection and SEU from angled ion strikes

    SciTech Connect

    Dodd, P.E.; Shaneyfelt, M.R.; Sexton, F.W.

    1997-03-01

    Single event upsets (SEUs) are caused in semiconductor microcircuits when charge is deposited in a sensitive volume of the circuit by an incident energetic particle. Collection of this charge causes a loss of information stored at the struck circuit node. Sensitive regions of a microcircuit typically consist of reverse-biased junctions which efficiently collect deposited charge through the influence of drift fields. During laboratory SEU testing, angled ion strikes are often used to conveniently mimic normally incident particles of higher linear energy transfer (LET). This practice is based on ion pathlengths through a thin rectangular parallelepiped (RPP) sensitive volume. Specifically, the authors assume that an angled strike deposits 1/cos{theta} more charge in the sensitive volume, which in turn is assumed to lead to 1/cos{theta} more charge collection at the sensitive node, and an increase in the particle`s effective LET to 1/cos{theta} higher than at normal incidence.

  10. Goniometer-rotation-angle recorder

    SciTech Connect

    Shchagin, A.V.

    1985-12-01

    This paper describes a goniometer-rotation-angle recorder with a discrete drive. The rotation angle in a given plane is recorded by bidirectional sign counter of positive and negative drive-actuation numbers for rotations in positive and negative directions. The maximum capacity of the counter is + or - 9 decimal digits.

  11. Angle Insensitive Color Filters in Transmission Covering the Visible Region

    PubMed Central

    Mao, Kening; Shen, Weidong; Yang, Chenying; Fang, Xu; Yuan, Wenjia; Zhang, Yueguang; Liu, Xu

    2016-01-01

    Angle insensitive color filter based on Metal-SiOx-Metal structure is proposed in this paper, which can keep the same perceived transmitted color when the incidence angle changes from 0° to 60°, especially for p-polarization light. Various silicon oxide films deposited by reaction magnetron sputtering with a tunable refractive index from 1.97 to 3.84 is introduced to meet the strict angle insensitive resonance conditions. The angle resolved spectral filtering for both p-polarization light and s-polarization light are quite well, which can be attributed to the different physical origins for the high angular tolerance for two polarizations. Finally, the effect of SiOx absorption and Ag thickness on the peak transmittance are analyzed. PMID:26765544

  12. Angle Insensitive Color Filters in Transmission Covering the Visible Region.

    PubMed

    Mao, Kening; Shen, Weidong; Yang, Chenying; Fang, Xu; Yuan, Wenjia; Zhang, Yueguang; Liu, Xu

    2016-01-01

    Angle insensitive color filter based on Metal-SiOx-Metal structure is proposed in this paper, which can keep the same perceived transmitted color when the incidence angle changes from 0° to 60°, especially for p-polarization light. Various silicon oxide films deposited by reaction magnetron sputtering with a tunable refractive index from 1.97 to 3.84 is introduced to meet the strict angle insensitive resonance conditions. The angle resolved spectral filtering for both p-polarization light and s-polarization light are quite well, which can be attributed to the different physical origins for the high angular tolerance for two polarizations. Finally, the effect of SiOx absorption and Ag thickness on the peak transmittance are analyzed. PMID:26765544

  13. Angle Insensitive Color Filters in Transmission Covering the Visible Region

    NASA Astrophysics Data System (ADS)

    Mao, Kening; Shen, Weidong; Yang, Chenying; Fang, Xu; Yuan, Wenjia; Zhang, Yueguang; Liu, Xu

    2016-01-01

    Angle insensitive color filter based on Metal-SiOx-Metal structure is proposed in this paper, which can keep the same perceived transmitted color when the incidence angle changes from 0° to 60°, especially for p-polarization light. Various silicon oxide films deposited by reaction magnetron sputtering with a tunable refractive index from 1.97 to 3.84 is introduced to meet the strict angle insensitive resonance conditions. The angle resolved spectral filtering for both p-polarization light and s-polarization light are quite well, which can be attributed to the different physical origins for the high angular tolerance for two polarizations. Finally, the effect of SiOx absorption and Ag thickness on the peak transmittance are analyzed.

  14. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  15. Deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  16. Hysteresis during contact angles measurement.

    PubMed

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle. PMID:20060981

  17. From plane to spatial angles: PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Osten, Wolfgang

    2015-10-01

    Electronic autocollimators are utilised versatilely for non-contact angle measurements in applications like straightness measurements and profilometry. Yet, no calibration of the angle measurement of an autocollimator has been available when both its measurement axes are engaged. Additionally, autocollimators have been calibrated at fixed distances to the reflector, although its distance may vary during the use of an autocollimator. To extend the calibration capabilities of the Physikalisch-Technische Bundesanstalt (PTB) regarding spatial angles and variable distances, a novel calibration device has been set up: the spatial angle autocollimator calibrator (SAAC). In this paper, its concept and its mechanical realisation will be presented. The focus will be on the system's mathematical modelling and its application in spatial angle calibrations. The model considers the misalignments of the SAAC's components, including the non-orthogonalities of the measurement axes of the autocollimators and of the rotational axes of the tilting unit. It allows us to derive specific measurement procedures to determine the misalignments in situ and, in turn, to correct the measurements of the autocollimators. Finally, the realisation and the results of a traceable spatial angle calibration of an autocollimator will be presented. This is the first calibration of this type worldwide.

  18. Management of mandibular angle fracture.

    PubMed

    Braasch, Daniel Cameron; Abubaker, A Omar

    2013-11-01

    Fractures through the angle of the mandible are one of the most common facial fractures. The management of such fractures has been controversial, however. This controversy is related to the anatomic relations and complex biomechanical aspects of the mandibular angle. The debate has become even more heated since the evolution of rigid fixation and the ability to provide adequate stability of the fractured segments. This article provides an overview of the special anatomic and biomechanical features of the mandibular angle and their impact on the management of these fractures. PMID:24183373

  19. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  20. Method of and means for testing a glancing-incidence mirror system of an X-ray telescope

    NASA Technical Reports Server (NTRS)

    Dailey, C. C. (Inventor)

    1977-01-01

    An apparatus was designed for measuring the resolution and efficiency of a glancing-incidence mirror system having an even number of coaxial and confocal reflecting surfaces for use in an X-ray telescope. A collimated beam of X-rays is generated by an X-ray laser and directed along the axis of the system so that the beam is incident on the reflecting surfaces and illuminates a predetermined area. An X-ray detector, such as a photographic film, is located at the common focus of the surfaces so that the image produced by the X-rays may be compared with a test pattern interposed between the laser and the system.

  1. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  2. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    SciTech Connect

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  3. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGESBeta

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  4. Angle-tuned, evanescently-decoupled reflector for high-efficiency red light-emitting diode.

    PubMed

    Kim, Sun-Kyung; Cho, Hyun Kyong; Park, Kyung Keun; Jang, Junho; Lee, Jeong Soo; Park, Kyung Wook; Park, Youngho; Kim, Ju-Young; Lee, Yong-Hee

    2008-04-28

    We propose and demonstrate evanescently-decoupled, solid-angle-optimized distributed Bragg reflectors (DBRs) for AlGaInP light-emitting diodes (LEDs). The thickness of each DBR layer is tuned to the wavelength slightly longer than the emission peak of the active medium in order to maximize the radiated power integrated over the top surface. In addition, to increase the horizontal radiation through the side facets, the glancing-angle reflectivity at the AlInP/AlAs interface is improved by employing an AlAs layer thicker than the attenuation length of the evanescent field. With the improved DBR, the integrated output power of AlGaInP LEDs is enhanced by a factor of 1.9 in comparison to those of LEDs with conventional DBRs. Additional 1.25-fold enhancement is observed by incorporating an square-lattice hole array (a=1200nm) into the top GaP surface by a conventional photolithography. PMID:18545303

  5. Giant landslide deposits in northwest Argentina

    SciTech Connect

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 m higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.

  6. Metrology of angles in astronomy

    NASA Astrophysics Data System (ADS)

    Kovalevsky, Jean

    2004-10-01

    In astronomy, measurements of angles play a major role. After defining the units in use in astronomy, three methods of measuring angles are presented, with an application to the transit instrument. The interferometric techniques for measuring large angles are described in optical and radio wavelengths. Due to the atmospheric and mechanical limitation on ground, space astrometry has multiple advantages. The satellite Hipparcos is described and the data reduction procedures and results obtained are sketched. In the future, two new astrometric space missions are approved: GAIA, based on Hipparcos principles and SIM, a space interferometer. They are described and the expected accuracies are presented. To cite this article: J. Kovalevsky, C. R. Physique 5 (2004).

  7. Critical rolling angle of microparticles

    NASA Astrophysics Data System (ADS)

    Farzi, Bahman; Vallabh, Chaitanya K. P.; Stephens, James D.; Cetinkaya, Cetin

    2016-03-01

    At the micrometer-scale and below, particle adhesion becomes particularly relevant as van der Waals force often dominates volume and surface proportional forces. The rolling resistance of microparticles and their critical rolling angles prior to the initiation of free-rolling and/or complete detachment are critical in numerous industrial processes and natural phenomenon involving particle adhesion and granular dynamics. The current work describes a non-contact measurement approach for determining the critical rolling angle of a single microparticle under the influence of a contact-point base-excitation generated by a transient displacement field of a prescribed surface acoustic wave pulse and reports the critical rolling angle data for a set of polystyrene latex microparticles.

  8. Systematic variations in divergence angle.

    PubMed

    Okabe, Takuya

    2012-11-21

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance. PMID:22906592

  9. Discovering the Inscribed Angle Theorem

    ERIC Educational Resources Information Center

    Roscoe, Matt B.

    2012-01-01

    Learning to play tennis is difficult. It takes practice, but it also helps to have a coach--someone who gives tips and pointers but allows the freedom to play the game on one's own. Learning to act like a mathematician is a similar process. Students report that the process of proving the inscribed angle theorem is challenging and, at times,…

  10. Angle between principal axis triples

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2012-09-01

    The principal axis angle ξ0, or Kagan angle, is a measure of the difference between the orientations of two seismic moment tensors. It is the smallest angle needed to rotate the principal axes of one moment tensor to the corresponding principal axes of the other. This paper is a conceptual review of the main features of ξ0. We give a concise formula for calculating ξ0, but our main goal is to illustrate the behaviour of ξ0 geometrically. When the first of two moment tensors is fixed, the angle ξ0 between them becomes a function on the unit ball. The level surfaces of ξ0 can then be depicted in the unit ball, and they give insights into ξ0 that are not obvious from calculations alone. We also include a derivation of the known probability density inline image of ξ0. The density inline image is proportional to the area of a certain surface inline image. The easily seen variation of inline image with t then explains the rather peculiar shape of inline image. Because the curve inline image is highly non-uniform, its shape needs to be considered when analysing distributions of empirical ξ0 values. We recall an example of Willemann which shows that ξ0 may not always be the most appropriate measure of separation for moment tensor orientations, and we offer an alternative measure.

  11. Soil-like deposits observed by Sojourner, the Pathfinder rover

    USGS Publications Warehouse

    Moore, Henry J.; Bickler, Donald B.; Crisp, Joy A.; Eisen, Howard J.; Gensler, Jeffrey A.; Haldemann, Albert F.C.; Matijevic, Jacob R.; Reid, Lisa K.; Pavlics, Ferenc

    1999-01-01

    Most of the soil-like materials at the Pathfinder landing site behave like moderately dense soils on Earth with friction angles near 34°-39° and are called cloddy deposits. Cloddy deposits appear to be poorly sorted with dust-sized to granule-sized mineral or rock grains; they may contain pebbles, small rock fragments, and clods. Thin deposits of porous, compressible drifts with friction angles near 26°-28° are also present. Drifts are fine grained. Cohesions of both types of deposits are small. There may be indurated soil-like deposits and/or coated or crusted rocks. Cloddy deposits may be fluvial sediments of the Ares-Tiu floods, but other origins, such as ejecta from nearby impact craters, should be considered. Drifts are probably dusts that settled from the Martian atmosphere. Remote-sensing signatures of the deposits inferred from rover observations are consistent with those observed from orbit and Earth.

  12. Dissolution dynamics of the calcite-water interface observed in situ by glancing-incidence X-ray scattering

    SciTech Connect

    Sturchio, N.C.; Chiarello, R.P.

    1995-06-02

    Glancing-incidence X-ray scattering measurements made at the National Synchrotron Light Source were used to investigate dissolution dynamics in situ at the calcite-water interface. The relation between calcite saturation state and roughness of the calcite (1014) cleavage surface as a function of time was examined during pH titrations of an initially calcite-saturated solution. Systematic variations in roughness were observed as a function of saturation state as pH was titrated to values below that of calcite saturation. Different steady-state values of roughness were evident at fixed values of {Delta}G{sub r}, and these were correlated with the extent of undersaturation. A significant increase in roughness begins to occur with increasing undersaturation at a {Delta}G{sub r} value of approximately {minus}2.0 kcal/mol. The dissolution rate corresponding to this increase is about 1.5 x 10{sup 7} mmol/cm {center_dot} sec. This increase in roughness is attributed to a transition in the principal rate-determining dissolution mechanism, and is consistent with both powder-reaction studies of dissolution kinetics and single-crystal dissolution studies by atomic force microscopy. These data indicate some important potential applications of GIXS in the study of mineral-water interface geochemistry.

  13. Supercritical Angle Fluorescence Correlation Spectroscopy

    PubMed Central

    Ries, Jonas; Ruckstuhl, Thomas; Verdes, Dorinel; Schwille, Petra

    2008-01-01

    We explore the potential of a supercritical angle (SA) objective for fluorescence correlation spectroscopy (FCS). This novel microscope objective combines tight focusing by an aspheric lens with strong axial confinement of supercritical angle fluorescence collection by a parabolic mirror lens, resulting in a small detection volume. The tiny axial extent of the detection volume features an excellent surface sensitivity, as is demonstrated by diffusion measurements in model membranes with an excess of free dye in solution. All SA-FCS measurements are directly compared to standard confocal FCS, demonstrating a clear advantage of SA-FCS, especially for diffusion measurements in membranes. We present an extensive theoretical framework that allows for accurate and quantitative evaluation of the SA-FCS correlation curves. PMID:17827221

  14. Light Scattering at Various Angles

    PubMed Central

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  15. OPENING ANGLES OF COLLAPSAR JETS

    SciTech Connect

    Mizuta, Akira; Ioka, Kunihito

    2013-11-10

    We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by θ{sub j} ∼ 1/5Γ{sub 0} and infer the initial Lorentz factor of the jet at the central engine, Γ{sub 0}, is a few for existing observations of θ{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this new picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle θ{sub j,{sub max}} ∼ 1/5 ∼ 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.

  16. Role of flow for the deposition of platelets.

    PubMed

    Affeld, Klaus; Schaller, Jens; Wölken, Thies; Krabatsch, Thomas; Kertzscher, Ulrich

    2016-06-01

    Implants inside the cardiovascular system are subjected to blood flow. Platelet deposition usually takes place, eventually leading to thrombus formation. Tests must be performed in order to select a suitable biomaterial, but no generally accepted test method exists for biomaterials in contact with blood. At a first glance, the flow appears to play only a minor role in the complex interaction between platelets and biomaterials. However, experiments and models have indeed demonstrated the importance of flow. Flow is the mechanism by which platelets are transported to the site of deposition, enabling deposition and forming the shape of a growing thrombus. This interaction is investigated here by means of two experimental models. The first model generates the simplest shear flow, the plane Couette flow. It serves to quantify the role of the shear rate. The second model, the stagnation point flow model, features a more complex shear flow. This model is used to understand the influence of a changing flow field along the wall over which the platelets travel. The platelet deposition is observed using the two experimental models, and a numerical model is developed to reproduce and simulate the experimental results. In the numerical model, the movement of platelets is computed with a combination of convective and stochastic movements due to diffusion. The combined motion brings some platelets close to the wall. The deposition of the platelet at the wall is modeled by a stochastic model. Probability determines whether the individual platelet deposits or flows onwards. This probability is the product of three different probabilities, which are the properties of the platelet, the wall, and the flow. The results of the models are compared with the experimental results and are used to understand the experiments. PMID:26984235

  17. Salt deposition at particle contact points

    NASA Astrophysics Data System (ADS)

    Nie, Xiaodong; Evitts, Richard W.; Besant, Robert W.; Kennell, Glyn F.

    2015-09-01

    Caking may occur when granular potash fertilizer with a moisture content greater than 0.25 % (w/w) undergoes drying. Since cake strength is proportional to the mass of crystal deposited per unit volume near contact points (and other factors) the modelling of mass deposition near contact points is important. The Young-Laplace equation for the air-salt-solution interface is used to determine the geometry of a 2-D planar saline film between two cubic potash particles. A 2-D theoretical model is developed and applied for ion diffusion and deposition near the contact point during drying. The numerical predictions of ion diffusion in an initially saturated salt illustrate the transient spatial distribution of new KCl deposits along the solid surfaces near the contact line. These results indicate the average salt deposition commences at the air-liquid-solid intersection, where the liquid film is thinnest, and moves toward the particle contact point with increasing area averaged KCl deposits, causing the formation of crystal deposits and bridges near contact points. It is concluded that the average salt deposit height increases inversely with distance from the contact point and decreases with initial contact angle of the contact region, but the deposition is nearly independent of the evaporation or drying rate near each contact region. Caking strength depends on, among other parameters, the amount of salt deposition near contact points.

  18. Optimized mirror shape tuning using beam weightings based on distance, angle of incidence, reflectivity, and power.

    PubMed

    Goldberg, Kenneth A; Yashchuk, Valeriy V

    2016-05-01

    For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors. PMID:27250372

  19. SASBDB, a repository for biological small-angle scattering data

    PubMed Central

    Valentini, Erica; Kikhney, Alexey G.; Previtali, Gianpietro; Jeffries, Cy M.; Svergun, Dmitri I.

    2015-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands. PMID:25352555

  20. Formation of 2D colloidal crystals by the Langmuir-Blodgett technique monitored in situ by Brewster angle microscopy.

    PubMed

    Gil, Alvaro; Guitián, Francisco

    2007-03-01

    We report a method that combines Brewster angle microscopy and Langmuir-Blodgett films technique to obtain highly ordered 2D colloidal crystals of nanospheres. The deposition of Langmuir-Blodgett films of silica spheres monitored by Brewster angle microscopy allows to determine with accuracy the best physical conditions to transfer highly ordered monolayers of nanoparticles. PMID:17184789

  1. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1998-02-05

    This project attempts to demonstrate the effectivensss of exploiting thin-layered, low energy deposits at the distal margin of a propagating turbinite complex through u se of hydraulically fractgured horizontal of high-angle wells. TGhe combinaton of a horizontal or high-angle weoo and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

  2. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-05-08

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

  3. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1998-05-29

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low energy deposits at the distal end of a protruding turbidite complex through use of hydraulically fractured horizontal of high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the well bore.

  4. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Laue, M.L.

    1999-11-01

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

  5. Nonuniformities in the Angle of Repose and Packing Fraction of Large Heaps of Particles

    NASA Astrophysics Data System (ADS)

    Topić, Nikola; Gallas, Jason A. C.; Pöschel, Thorsten

    2012-09-01

    We report a numerical investigation of the structural properties of very large three-dimensional heaps of particles produced by ballistic deposition from extended circular dropping areas. Very large heaps are found to contain three new geometrical characteristics not observed before: they may have two external angles of repose, an internal angle of repose, and four distinct packing fraction (density) regions. Such characteristics are shown to be directly correlated with the size of the dropping zone. In addition, we also describe how noise during the deposition affects the final heap structure.

  6. Nonuniformities in the angle of repose and packing fraction of large heaps of particles.

    PubMed

    Topić, Nikola; Gallas, Jason A C; Pöschel, Thorsten

    2012-09-21

    We report a numerical investigation of the structural properties of very large three-dimensional heaps of particles produced by ballistic deposition from extended circular dropping areas. Very large heaps are found to contain three new geometrical characteristics not observed before: they may have two external angles of repose, an internal angle of repose, and four distinct packing fraction (density) regions. Such characteristics are shown to be directly correlated with the size of the dropping zone. In addition, we also describe how noise during the deposition affects the final heap structure. PMID:23005988

  7. U.S. Department of Energy Office of Health, Safety and Security Illness and Injury Surveillance Program Worker Health at a Glance, 2000-2009

    SciTech Connect

    2013-01-23

    The Worker Health at a Glance, 2000 – 2009 provides an overview of selected illness and injury patterns among the current DOE contractor workforce that have emerged over the 10-years covered by this report. This report is a roll-up of data from 16 individual DOE sites, assigned to one of three program offices (Office of Environmental Management, Office of Science and the National Nuclear Security Administration). In this report, an absences is defined as 40 or more consecutive work hours (5+ calendar days) off the job. Shorter absences were not included.

  8. Angle-resolved reflectance of obliquely aligned silver nanorods.

    PubMed

    Wang, X J; Abell, J L; Zhao, Y-P; Zhang, Z M

    2012-04-01

    Arrays of silver nanorods (AgNRs) formed by oblique-angle deposition (OAD) are strongly anisotropic, with either metallic or dielectric characteristics depending on the polarization of incident light, and may be used to enhance Raman scattering and surface plasmon polaritons. This work investigates the polarization-dependent reflectance of inclined AgNR arrays at the wavelengths of 635 and 977 nm. The specular reflectance at various incidence angles and the bidirectional reflectance distribution function were measured with a laser scatterometer, while the directional-hemispherical reflectance was measured with an integrating sphere. The AgNR layer is modeled as an effectively homogenous, optically uniaxial material using the effective medium theory to elucidate the dielectric or metallic response for differently polarized incidence. The thin-film optics formulation is modified considering optical anisotropy and surface scattering. This study helps gain a better understanding of optical properties of nanostructured materials. PMID:22505070

  9. 30 CFR 56.19037 - Fleet angles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 56.19037 Section 56.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 56.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  10. 30 CFR 57.19037 - Fleet angles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  11. 30 CFR 57.19037 - Fleet angles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not be greater than one and one-half degrees for smooth drums or two degrees for grooved drums....

  12. [Chronic closed-angle glaucoma].

    PubMed

    Valtot, F

    2004-06-01

    Five times more frequent than the acute form, chronic closed-angle glaucoma often goes unrecognized for a long time, resulting in considerable visual field deficiencies, even in loss of the eye. It is sometimes confused with chronic glaucoma and treated as such, which is inadequate to halt the progression of the disease. Only gonioscopy can diagnose it. If doubt persists, UBM (ultrasound biomicroscopy) can detect goniosynechiae, a malposition of the ciliary body or of the lens, or the existence of iridociliary cysts. Nine times out of ten, pupillary block initiates the process and an iridotomy should always be done to remediate it, even if this procedure alone does not always suffice to solve the problem. PMID:15319750

  13. Quantifying Stream Bed Gravel Mobility from Friction Angle Measurements

    NASA Astrophysics Data System (ADS)

    Meyers, M. A.; Dunne, T.

    2012-12-01

    A method to measure friction angles using force gauges was field tested to determine its utility at quantifying critical shear stress in a gravel bedded reach of the San Joaquin River in California. Predictions of mobility from friction angles were compared with observations of the movement of tagged particles from locations for which local shear stress was quantified with a validated 2-D flow model. The observations of movement, distance of travel, and location of the end of travel were made after extended flow releases from Friant dam. Determining the critical shear stress for gravel bed material transport currently depends upon bedload sampling or tracer studies. Often, such measurements can only be made during occasional and untimely flow events, and at limited, suboptimal locations. Yet, theoretical studies conclude that the friction angle is an important control on the critical shear stress for mobility of any grain size, and therefore of the excess shear stress which strongly influences bedload transport rate. The ability to predict bed mobility at ungauged and unmonitored locations is also an important requirement for planning of flow regimes and channel design. Therefore, a method to measure friction angles that can be performed quickly in low flow conditions would prove useful for river management and research. To investigate this promising method friction angle surveys were performed at two riffle sites where differences in bed material size and distribution, and channel slope were observed. The friction angle surveys are sensitive enough to detect differences between the sites as well as spatially and temporally within a single riffle. Low friction angles were observed along the inside of a long bend where sand content was greater (by ~20%) than other surveyed locations. Friction angles decreased slightly after a depositional event associated with transient large woody debris and bank erosion, and increased again after a 5 year return interval flow

  14. Brewster Angle Polarizing Beamsplitter Laser Damage Competition: P polarization

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Runkel, Jeff

    2012-11-01

    Brewster angle plate polarizing beamsplitters play a critical role in splitting and combining beams within high power laser systems. A laser damage competition of polarizer beamsplitter coatings creates the opportunity to survey the current laser resistance these coatings within private industry, governmental institutions, and universities by a direct comparison of samples tested under identical conditions. The requirements of the coatings are a minimum transmission of 95% at "P" polarization and minimum reflection of 99% at "S" polarization at 1064 nm and 56.4 degrees angle of incidence. The choice of coating materials, design, and deposition method were left to the participant. Laser damage testing was performed according to the ISO 11254 standard utilizing a 1064 nm wavelength laser with a 10 ns pulse length operating at a repetition rate of 20 Hz. A double blind test assured sample and submitter anonymity so only a summary of the results are presented. In addition to the laser resistance results, details of cleaning methods, deposition processes, coating materials and layer count, and spectral results are also shared. Because of the large number of samples that were submitted, damage testing was conducted at "P" polarization only with "S" polarization damage testing reserved for next year on these submitted samples. Also the samples were only tested in the forward propagating direction; specifically samples were irradiated from air as the incident medium, through the thin film, and then through the substrate. In summary, a 6:1 difference existed for "P" polarization damage fluences amongst all of the competitors with the dominate variables that impacted the laser resistance being the deposition materials, deposition process, and cleaning method.

  15. Influence of the incident angle of energetic carbon ions on the properties of tetrahedral amorphous carbon (ta-C) films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Benstetter, Günther; Lodermeier, Edgar; Vancea, Johann

    2003-09-01

    Tetrahedral amorphous carbon (ta-C) films have been grown on Ar+-beam-cleaned silicon substrates by changing the incident angle of energetic carbon ions produced in the plasma of pulsed cathodic vacuum arc discharge. Their surface roughness, deposition rate, composition, and mechanical and frictional properties as a function of the incident angle of energetic carbon ions were reported. The substrate holder can be rotated, and so an angle of deposition was defined as the angle of ion flux with respect to the substrate surface. While the deposition angle is varied from 20° to 59°, the root-mean-square (rms) roughness decreases from 0.5 to 0.1 nm, then it turns to increase at a slow rate when the deposition angle is over 77°. The variation correlates well with the one of hardness with the deposition angle and the films with lower rms roughness exhibit the higher hardness. The soft graphite-like surface layers existing at the surfaces of these films were revealed by atomic force microscopy-based nanowear tests and their thickness increases from 0.35 to 2.9 nm with the deposition angle decreasing from 90° to 30°. The soft surface layer thickness can have a great effect on the sp3 contents measured by x-ray photoelectron spectra. Nanoscale friction coefficient measurements were performed from lateral force microscopy by using a V-shaped Si3N4 cantilever. The low friction coefficients (0.076-0.093) of ta-C films can be attributed to their graphite-like surface structure. The implications of these results on the mechanisms proposed for the film formation were discussed.

  16. Angled Layers in Super Resolution

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers used a special imaging technique with the panoramic camera on NASA's Mars Exploration Rover Opportunity to get as detailed a look as possible at a target region near eastern foot of 'Burns Cliff.' The intervening terrain was too difficult for driving the rover closer. The target is the boundary between two sections of layered rock. The layers in lower section (left) run at a marked angle to the layers in next higher section (right).

    This view is the product of a technique called super resolution. It was generated from data acquired on sol 288 of Opportunity's mission (Nov. 14, 2004) from a position along the southeast wall of 'Endurance Crater.' Resolution slightly higher than normal for the panoramic camera was synthesized for this view by combining 17 separate images of this scene, each one 'dithered' or pointed slightly differently from the previous one. Computer manipulation of the individual images was then used to generate a new synthetic view of the scene in a process known mathematically as iterative deconvolution, but referred to informally as super resolution. Similar methods have been used to enhance the resolution of images from the Mars Pathfinder mission and the Hubble Space Telescope.

  17. Large Angle Satellite Attitude Maneuvers

    NASA Technical Reports Server (NTRS)

    Cochran, J. E.; Junkins, J. L.

    1975-01-01

    Two methods are proposed for performing large angle reorientation maneuvers. The first method is based upon Euler's rotation theorem; an arbitrary reorientation is ideally accomplished by rotating the spacecraft about a line which is fixed in both the body and in space. This scheme has been found to be best suited for the case in which the initial and desired attitude states have small angular velocities. The second scheme is more general in that a general class of transition trajectories is introduced which, in principle, allows transfer between arbitrary orientation and angular velocity states. The method generates transition maneuvers in which the uncontrolled (free) initial and final states are matched in orientation and angular velocity. The forced transition trajectory is obtained by using a weighted average of the unforced forward integration of the initial state and the unforced backward integration of the desired state. The current effort is centered around practical validation of this second class of maneuvers. Of particular concern is enforcement of given control system constraints and methods for suboptimization by proper selection of maneuver initiation and termination times. Analogous reorientation strategies which force smooth transition in angular momentum and/or rotational energy are under consideration.

  18. [Screening in open angle glaucoma].

    PubMed

    Mocanu, Carmen; Mocanu, Andrei

    2012-01-01

    Primary open angle glaucoma (POAG) represents the second cause of mondial cecity, after retinal diabetes complications, with extremely severe implications in quality of life. Screening testing for glaucoma is justified, because only the diagnosis in very incipient stage will preserve the visual function; any treatment will not assure the reversibility of pre-existent optic nerve lesions. Screening of glaucoma, will take into a consideration the costs, the time of investigation, the adverse effects, and the sensitivity and specificity of tests; the last parameter also will strongly influence the positive predictive value. An ideal screening identifies all subjects that present the disease (sensitivity) and will exclude all healthy subjects (specificity). In this moment, in Dolj district, the diagnosis is based on active diagnosis of new cases of glaucoma on the high risk level population, therefore in a 210000 habitants. 4723 patients with glaucoma are diagnosed, screened and follow-up on medical cabinets and on Center of Glaucoma, which coordinates their activity. To better monitored patients, automatized programs with acquisition and storage for different types of medical imaging facilities had become indispensable to any routine practice. PMID:23755511

  19. Chronic open-angle glaucoma

    PubMed Central

    Adatia, Feisal A.; Damji, Karim F.

    2005-01-01

    INTRODUCTION Chronic open-angle glaucoma (COAG) is a leading cause of irreversible blindness worldwide, including in Canada. It presents a challenge in diagnosis, as disease often progresses without symptoms; an estimated 50% of cases are undetected. SOURCES OF INFORMATION MEDLINE searches, reference lists of articles, and expert knowledge from one of the authors (K.F.D.), a glaucoma specialist, were used. MAIN MESSAGE A casefinding approach using early referral to optometrists and ophthalmologists for early detection of COAG is helpful for patients with risk factors such as age above 50, a positive family history, black race, and myopia. Moderate evidence for referral also exists for the following risk factors: hypertension, type 2 diabetes mellitus, hypothyroidism, and sleep apnea. Treatment with intraocular pressure–lowering medication can arrest or slow the course of the disease, permitting patients to retain good visual function. Family physicians should be aware that some intraocular pressure–lowering medications, particularly topical beta-blockers, can pose iatrogenic harm to patients and result in or exacerbate such conditions as asthma, cardiovascular disturbances, depression, and sexual dysfunction. CONCLUSION Appropriate referral patterns and an understanding of common as well as serious side effects of glaucoma medications are important in optimizing management of patients at risk of developing, or who have, COAG. PMID:16190176

  20. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films

    SciTech Connect

    Chen, L.; Lu, T.-M.; Wang, G.-C.

    2012-07-15

    Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. On the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.

  1. Experimental Study of the Angle of Repose of Surrogate Martian Dust

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Baker, L.; Marshall, J.; Castiglione, P.; Kuhlman, K.

    2003-01-01

    Accumulation of wind-blown dust particles on solar cells and instruments will be a great challenge in the exploration of Mars, significantly reducing their lifetime, durability, and power output. For future Mars Lander missions it is crucial to gain information about the ideal angle at which solar panels can be positioned to minimize dust deposition and thus, maximize the power output and lifetime of the solar cells. The major determinant for the optimal panel angle is the angle of repose of the dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. To gain a basic understanding of the physical and chemical processes that govern dust deposition and to get feedback for the design of an experiment suitable for one of the future Mars Lander missions we simulate atmospheric conditions expected on the Mars surface in a controlled chamber, and observe the angle of repose of Mars dust surrogates. Dust deposition and angle of repose were observed on different sized spheres. To cover a range of potential materials we will use spheres made of 7075 aluminum (10 mm, and 15 mm), alumina oxide ceramic (10 mm), and Teflon(trademark) (10 mm) and wafers of gallium arsenide, silicon.

  2. A Clinical Study of Mandibular Angle Fracture

    PubMed Central

    Yoon, Wook-Jae; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek; Lim, Kyung-Seop; Shin, Seung-Min; Kim, Cheol-Man

    2014-01-01

    Purpose: To establish management protocol for mandibular angle fracture, we describe pertinent factors including cause, impacted third molar and recent treatment tendency. Methods: We examined the records of 62 patients who had unilateral mandibular angle fracture. Sixty patients who had open reduction surgery were examined at postoperative weeks 1, 4, 8, 12, and 28. Results: Left mandibular angle fracture is frequent in younger males. Presence of the mandibular third molar can increase fracture risk. Because of attached muscle, favorable fractures occurred primarily in the mandibular angle area. Conclusion: Extracting the mandibular third molar can prevent angle fractures, and open reduction with only one plate adaptation is generally the proper treatment method for mandibular angle fracture. PMID:27489834

  3. Signature extension for sun angle, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, J. A. (Principal Investigator); Berry, J. K.; Heimes, F.

    1975-01-01

    The author has identified the following significant results. Within a restricted zenith sun angle range of 35 - 50 degrees, it was empirically observed that canopy reflectance is mainly Lambertian. Reflectance changes with crop stage were simple shifts in scale in the sun angle range. It was noted that sun angle variations depend on canopy characteristics. Effects of the vegetative canopy were most pronounced at the larger solar zenith angles (20 %). The linear sun angle correction coefficients demonstrate a dependency on both crop stage (15-20 %) and crop type (10-20 %). The use of canopy reflectance modeling allowed for the generation of a simulated data set over an extremely broad envelope of sun angles.

  4. Effect of relative humidity on contact angle of inkjet-printed evaporating colloidal drops

    NASA Astrophysics Data System (ADS)

    Chhasatia, Viral; Joshi, Abhijit; Sun, Ying

    2010-11-01

    The deposition behavior of inkjet-printed aqueous colloidal drops onto glass and polymer (PEN and PET) substrates has been investigated by using fluorescence microscopy, a high-resolution CCD camera, and scanning electron microscopy. Real-time side-view images show that the contact angle of an evaporating colloidal drop is a function of the ambient humidity. The relative humidity also affects the extent to which the drop is able to spread after impacting a substrate, the evaporation rate at the drop surface, and the evaporatively-driven flow inside the drop that drives the suspended particles towards the contact line. The difference between the contact line velocity and liquid velocity at the drop contact line induced by evaporation creates a larger contact angle compared to that of the case without evaporation. This increase in contact angle becomes more significant for a low ambient humidity. Results also show that the particle deposition area and pattern change with the ambient humidity.

  5. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis.

    PubMed

    Hozumi, Atsushi; McCarthy, Thomas J

    2010-02-16

    Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis for probe liquids were prepared by chemical vapor deposition (CVD) of bis((tridecafluoro-1,1,2,2,-tetrahydrooctyl)-dimethylsiloxy)methylsilane (CF(3)(CF(2))(5)CH(2)CH(2)Si(CH(3))(2)O)(2)SiCH(3)H, (R(F)Si(Me)(2)O)(2)SiMeH). Oxidized aluminum surfaces were prepared by photooxidation/cleaning of sputter-coated aluminum on silicon wafers (Si/Al(Al(2)(O(3)))) using oxygen plasma. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) confirmed that this facile CVD method produces a monolayer with a thickness of 1.1 nm on the Si/Al(Al(2)(O(3))) surface without a discernible change in surface morphology. After monolayer deposition, the hydrophilic Si/Al(Al(2)(O(3))) surface became both hydrophobic and oleophobic and exhibited essentially no contact angle hysteresis for water and n-hexadecane (advancing/receding contact angles (theta(A)/theta(R)) = 110 degrees/109 degrees and 52 degrees/50 degrees, respectively). Droplets move very easily on this surface and roll off of slightly tilted surfaces, independently of the contact angle (which is a practical definition of ultralyophobic). A conventional fluoroalkylsilane monolayer was also prepared from 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3), R(F)Si(OMe)(3)) for comparison. The theta(A)/theta(R) values for water and n-hexadecane are 121 degrees/106 degrees and 76 degrees/71 degrees, respectively. The larger hysteresis values indicate the "pinning" of probe liquids, even though advancing contact angles are larger than those of the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers. The (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers have excellent hydrolytic stability in water. We propose that the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers are flexible and liquidlike and that drops in contact with these surfaces experience very low energy barriers between metastable states, leading to the

  6. Best Angle to Orient Two Intersecting Lines

    SciTech Connect

    Awwal, A S; Ferguson, S W; Shull, P B

    2006-07-25

    Fiducials in the form of intersecting straight lines are used to align the target in the final target chamber of the National Ignition Facility of Lawrence Livermore National Laboratory. One of the techniques used to locate these lines is the Hough transform. When two lines intersect at a 90 degree angle, it is tempting to orient the lines to horizontal and vertical directions. There are other possible angles at which the lines may be oriented. One question that arises while designing the fiducials is whether there is a preferred angle or range of angles that leads to higher accuracy. This work attempts to answer this question through detailed computer simulation.

  7. High-speed pitch angle sorter

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Torbert, R. B.; Vandiver, James

    1991-01-01

    A high-speed method was developed to compress the two-dimensional angular distribution of space particles gathered by space plasma instrumentation into the angle distribution, where the pitch angle is polar angle with respect to the ambient magnetic field. The pitch angle sorter can handle rates of up to 2 MHz and it is designed to accommodate high angular resolution plasma analyzers that are placed on a rotating spacecraft. This compression is achieved by relying on digitally encoded lookup tables to eliminate all arithmetic operations while applying the high symmetry of this compression to reduce the amount of digital memory.

  8. Pitch angle of galactic spiral arms

    SciTech Connect

    Michikoshi, Shugo; Kokubo, Eiichiro E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fitting formula. This dependence is explained by the swing amplification mechanism.

  9. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  10. Deposition head for laser

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  11. Statistics at a glance.

    PubMed

    Ector, Hugo

    2010-12-01

    I still remember my first book on statistics: "Elementary statistics with applications in medicine and the biological sciences" by Frederick E. Croxton. For me, it has been the start of pursuing understanding statistics in daily life and in medical practice. It was the first volume in a long row of books. In his introduction, Croxton pretends that"nearly everyone involved in any aspect of medicine needs to have some knowledge of statistics". The reality is that for many clinicians, statistics are limited to a "P < 0.05 = ok". I do not blame my colleagues who omit the paragraph on statistical methods. They have never had the opportunity to learn concise and clear descriptions of the key features. I have experienced how some authors can describe difficult methods in a well understandable language. Others fail completely. As a teacher, I tell my students that life is impossible without a basic knowledge of statistics. This feeling has resulted in an annual seminar of 90 minutes. This tutorial is the summary of this seminar. It is a summary and a transcription of the best pages I have detected. PMID:21302664

  12. Facts at a Glance.

    ERIC Educational Resources Information Center

    Moore, Kristin Anderson, Comp.; Manlove, Jennifer, Comp.; Terry-Humen, Elizabeth, Comp.; Williams, Stephanie, Comp.; Papillo, Angela Romano, Comp.; Scarpa, Juliet, Comp.

    This publication reports trends in teen childbearing in the Nation, in each state, and in large cities using data from the 2000 National Center for Health Statistics (NCHS). Rates of teenage childbearing steadily declined during the 1990s, reaching a record low in 2000. Rates declined for both younger and older teens and for blacks, whites, and…

  13. Herbs at a Glance

    MedlinePlus

    ... iBooks. For Nooks Plug your Nook into your computer, and it will show the folders on it ... directions below to download the eBook to your computer’s desktop . Download the ePub file and save it ...

  14. Information at a glance.

    PubMed

    Dean, Erin

    Symbols are increasingly being displayed above beds in hospitals to indicate patients' specific care needs. Supporters of the scheme say the symbols prompt appropriate care without repeated questioning. Critics argue that symbols label patients and should not be necessary. PMID:22913088

  15. Passionflower: At a Glance

    MedlinePlus

    ... 1159. Passion Flower (Passiflora Incarnata L.). Natural Standard Database Web Site. Accessed at www.naturalstandard.com on September 10, 2012. Passionflower. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on September ...

  16. Divergent-ray projection method for measuring the flapping angle, lag angle, and torsional angle of a bumblebee wing

    NASA Astrophysics Data System (ADS)

    Zeng, Lijiang; Matsumoto, Hirokazu; Kawachi, Keiji

    1996-11-01

    A divergent-ray projection (DRP) method was developed for measuring the flapping angle, lag angle, and torsional angle of bumblebee wing during beating motion. This new method can measure the spatial coordinates of an insect wing by digitizing the images that are projected by two divergent laser rays from different directions. The advantage of the DRP method is its ability to measure those three angles simultaneously using only one high-speed camera. The resolution of the DRP method can be changed easily by adjusting system parameters to meet the needs of different types of objects. The measurement results for these angles of a bumblebee wing probe the effectiveness of the DRP method in studying the flight performance of insects.

  17. Deposit model for volcanogenic uranium deposits

    USGS Publications Warehouse

    Breit, George N.; Hall, Susan M.

    2011-01-01

    The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.

  18. Automatic star-horizon angle measurement system

    NASA Technical Reports Server (NTRS)

    Koerber, K.; Koso, D. A.; Nardella, P. C.

    1969-01-01

    Automatic star horizontal angle measuring aid for general navigational use incorporates an Apollo type sextant. The eyepiece of the sextant is replaced with two light detectors and appropriate circuitry. The device automatically determines the angle between a navigational star and a unique point on the earths horizon as seen on a spacecraft.

  19. Tree branch angle: maximizing effective leaf area.

    PubMed

    Honda, H; Fisher, J B

    1978-02-24

    In a computer simulation of branching pattern and leaf cluster in Terminalia catappa, right and left branch angles were varied, and the effective leaf surface areas were calculated. Theoretical branch angles that result in maximum effective leaf area are close to the values observed in nature. PMID:17757590

  20. Experimental study of crossing angle collision

    SciTech Connect

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-05-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small ({approximately}12mrad) crossing angle is to excite 5Q{sub x}{plus_minus}Q{sub s}=integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle ({approximately}2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured.

  1. Let's Do It! Using Geostrips and "Angle-Fixers" to Develop Ideas About Shapes and Angles

    ERIC Educational Resources Information Center

    Bruni, James V.; Silverman, Helene

    1975-01-01

    Homemade geostrips, "angle-fixers" (cardboard circular sectors) and brass fasteners can be used by students to explore properties of angles, triangles and other polygons. Several games and other activities are suggested. (SD)

  2. Conical for stepwise, glancing for concerted: the role of the excited-state topology in the three-body dissociation of sym-triazine.

    PubMed

    Mozhayskiy, Vadim A; Savee, John D; Mann, Jennifer E; Continetti, Robert E; Krylov, Anna I

    2008-12-01

    The highly debated three-body dissociation of sym-triazine to three HCN products has been investigated by translational spectroscopy and high-level ab initio calculations. Dissociation was induced by charge exchange between the sym-triazine radical cation and cesium. Calculated state energies and electronic couplings suggest that sym-triazine is produced in the 3s Rydberg and pi* <-- n manifolds. Analysis of the topology of these manifolds along with momentum correlation in the dissociation products suggest that the 3s Rydberg manifold characterized by a conical intersection of two potential energy surfaces leads to stepwise dissociation, while the pi* <-- n manifold consisting of a four-fold glancing intersection leads to a symmetric concerted reaction. PMID:18959397

  3. DRY DEPOSITION MODULE FOR REGIONAL ACID DEPOSITION

    EPA Science Inventory

    Methods to compute surface dry deposition velocities for sulfur dioxide, sulfate, ozone, NO plus NO2, and nitric acid vapor over much of the North American continent have been developed for use with atmospheric numerical models of long-range transport and deposition. The resultin...

  4. GLANCE - calculatinG heaLth impActs of atmospheric pollutioN in a Changing climatE

    NASA Astrophysics Data System (ADS)

    Vogel, Leif; Faria, Sérgio; Markandya, Anil

    2016-04-01

    Current annual global estimates of premature deaths from poor air quality are estimated in the range of 2.6-4.4 million, and 2050 projections are expected to double against 2010 levels. In Europe, annual economic burdens are estimated at around 750 bn €. Climate change will further exacerbate air pollution burdens; therefore, a better understanding of the economic impacts on human societies has become an area of intense investigation. European research efforts are being carried out within the MACC project series, which started in 2005. The outcome of this work has been integrated into a European capacity for Earth Observation, the Copernicus Atmospheric Monitoring Service (CAMS). In MACC/CAMS, key pollutant concentrations are computed at the European scale and globally by employing chemically-driven advanced transport models. The project GLANCE (calculatinG heaLth impActs of atmospheric pollutioN in a Changing climatE) aims at developing an integrated assessment model for calculating the health impacts and damage costs of air pollution at different physical scales. It combines MACC/CAMS (assimilated Earth Observations, an ensemble of chemical transport models and state of the art ECWMF weather forecasting) with downscaling based on in-situ network measurements. The strengthening of modelled projections through integration with empirical evidence reduces errors and uncertainties in the health impact projections and subsequent economic cost assessment. In addition, GLANCE will yield improved data accuracy at different time resolutions. This project is a multidisciplinary approach which brings together expertise from natural sciences and socio economic fields. Here, its general approach will be presented together with first results for the years 2007 - 2012 on the European scale. The results on health impacts and economic burdens are compared to existing assessments.

  5. Analysis of factors affecting angle ANB.

    PubMed

    Hussels, W; Nanda, R S

    1984-05-01

    Cephalometric analyses based on angular and linear measurements have obvious fallacies, which have been discussed in detail by Moyers and Bookstein. However, the clinical application of such an analysis by the orthodontic profession in treatment planning is widely accepted. Variations of angle ANB are commonly used to determine relative jaw relationships in most of the cephalometric evaluations. Several authors, including points A and B influences angle ANB, as does rotational growth of the upper and lower jaws. In addition, the authors point out that growth in a vertical direction (distance N to B) and an increase of the dental height (distance A to B) may contribute to changes in angle ANB. For a Class I relation (Wits = 0 mm), a mathematical formula has been developed which enables the authors to study the geometric influence of angle ANB caused by the following four effects: (1) rotation of the jaws and/or occlusal plane relative to the anterior cranial base; (2) anteroposterior position of N relative to point B, (3) vertical growth (distance N to B); (4) increase in dental height (distance A to B). It was observed that, contrary to the common belief that an ANB angle of 2 +/- 3.0 degrees is considered normal for a skeletal Class I relation, the calculated values of angle ANB will vary widely with changes in these four controlling factors under the same skeletal Class I conditions (Wits = 0 mm). Therefore, in a case under consideration, angle ANB must be corrected for these geometric effects in order to get a proper perspective of the skeletal discrepancy. This is facilitated by comparing the measured ANB angle with the corresponding ANB angle calculated by a formula for a Class I relationship. The corresponding calculated angle ANB can be taken from the tables which are based upon the formula using the same values for SNB, omega (angle between occlusal plane and anterior cranial base), b (which is distance N to B) and a (dental height measured as perpendicular

  6. Quantifying the micrometorological controls on fog deposition

    NASA Astrophysics Data System (ADS)

    Farlin, J. P.; Paw U, K. T.; Underwood, J.

    2014-12-01

    Fog deposition has been shown to be a significant water input into many arid ecosystems. However, deposition of fog onto foliage depends on many factors. Previously, characterizing fog droplet size distributions was labor intensive, but currently we can characterize changes in fog droplet composition in the 2-50 μm in 2 μm intervals in real time. Evaluating how droplet size and ambient micrometeorological conditions affect deposition rates will allowing tremendous new insight into fog formation and deposition processes. Previous work has characterized fog deposition as it alters with wind speed in natural systems, but extensively testing how droplet size, wind speed, angle of interception all co-vary would be impossible in a natural setting. We utilized a wind tunnel with artificial fog generating nebulizers to simulate fog events across micrometeorological conditions. Using a weighing lysimeter, we were able to quantify the differential rates of deposition on different theoretical leaf types as droplet size and micrometeorological conditions vary. We hope to inform fog collector designs with this information to ensure we are accurately quantifying the fluxes of fog-derived water into these systems.

  7. Cascadia Tsunami Deposit Database

    USGS Publications Warehouse

    Peters, Robert; Jaffe, Bruce; Gelfenbaum, Guy; Peterson, Curt

    2003-01-01

    The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have been compiled from 52 studies, documenting 59 sites from northern California to Vancouver Island, British Columbia that contain known or potential tsunami deposits. Bibliographical references are provided for all sites included in the database. Cascadia tsunami deposits are usually seen as anomalous sand layers in coastal marsh or lake sediments. The studies cited in the database use numerous criteria based on sedimentary characteristics to distinguish tsunami deposits from sand layers deposited by other processes, such as river flooding and storm surges. Several studies cited in the database contain evidence for more than one tsunami at a site. Data categories include age, thickness, layering, grainsize, and other sedimentological characteristics of Cascadia tsunami deposits. The database documents the variability observed in tsunami deposits found along the Cascadia margin.

  8. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods

    NASA Astrophysics Data System (ADS)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-09-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10-8 refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  9. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    PubMed

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods. PMID:25258602

  10. Branes at angles from worldvolume actions

    NASA Astrophysics Data System (ADS)

    Abbaspur, Reza

    2016-05-01

    We investigate possible stable configurations of two arbitrary branes at general angles using the dynamics of DBI + WZ action. The analysis naturally reveals two types of solutions which we identify as the "marginal" and "non-marginal" configurations. We characterize possible configurations of a pair of identical or non-identical branes in either of these two classes by specifying their proper intersection rules and allowed intersection angles. We also perform a partial analysis of configurations with multiple angles of a system of asymptotically flat curved branes.

  11. Phase-angle controller for Stirling engines

    SciTech Connect

    Frosch, R.A.; McDougal, A.R.

    1980-12-23

    A first embodiment incorporating an actuator including a restraint link adapted to be connected with a pivotal carrier arm for a force transfer gear interposed between the crankshaft for an expander portion of a stirling engine and a crankshaft for the displacer portion of the engine is described. The restraint link is releasably supported against axial displacement by releasably trapped hydraulic fluid for selectively establishing a phase angle relationship between the crankshaft and a second embodiment incorporating a hydraulic coupler for use in varying the phase angle of gear-coupled crankshafts for a Stirling engine whereby phase angle changes are obtainable.

  12. Phase-angle controller for Stirling engines

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R. (Inventor)

    1980-01-01

    An actuator includes a restraint link adapted to be connected with a pivotal carrier arm for a force transfer gear interposed between the crankshaft for an expander portion of a Stirling engine and a crankshaft for the displacer portion of the engine. The restraint link is releasably trapped hydraulic fluid for selectively establishing a phase angle relationship between the crankshaft. A second embodiment incorporates a hydraulic coupler for use in varying the phase angle of gear-coupled crank fpr a Stirling engine whereby phase angle changes are obtainable.

  13. Wide-angle vision for road views

    NASA Astrophysics Data System (ADS)

    Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.

    2013-03-01

    The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.

  14. Smoothing of substrate pits using ion beam deposition for EUV lithography

    NASA Astrophysics Data System (ADS)

    Harris-Jones, Jenah; Jindal, Vibhu; Kearney, Patrick; Teki, Ranganath; John, Arun; Kwon, Hyuk Joo

    2012-03-01

    Mitigation of pit-type defects proves to be a major hurdle facing the production of a defect-free mask blank for EUV lithography. Recent efforts have been directed toward substrate smoothing methods during deposition. The angle of incidence of the substrate is known to have a significant effect on the growth of defects during deposition. It has been shown that shadowing effects for bump-type defects are reduced when depositing Mo/Si films at near-normal incidence, resulting in a Gaussian growth profile in which the height and volume of the defect are minimized. Conversely, operating at off-normal incidence reduces shadowing of pit-type defects. When altering the angle of incidence of the substrate, the target angle must be changed to maintain uniformity. The resulting mask blank must also meet surface roughness specifications post-deposition while maintaining a low defect density. In this study, various substrate angle and target angle combinations were investigated within the Veeco Nexus Low Defect Density tool at SEMATECH to find optimum in situ pit smoothing conditions using ion beam deposition on both quartz and low thermal expansion material (LTEM) substrates. The possible substrate-target angle combinations are limited by the design of the current deposition tool; therefore, a phase space has been mapped out to determine uniform and non-uniform regions. Other deposition parameters including operating pressure and working gas composition were also explored. After deposition, EUV reflectrometry measurements were taken to evaluate uniformity in the wavelength; surface roughness, change in pit depth, change in full width at half maximum, and pit smoothing power were determined using atomic force microscopy (AFM); transmission electron microscopy (TEM) was used to study the effect of film disruption through the multilayer; and the printability of smoothed pits will be measure actinically using SEMATECH's AIT tool. Preliminary results show that positive values for

  15. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  16. Gonioscopy in primary angle closure glaucoma.

    PubMed

    Bruno, Christina A; Alward, Wallace L M

    2002-06-01

    Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae. PMID:15513458

  17. The solid angle through the isosceles triangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the isosceles triangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux(radiant flux or radiant power) is shown.

  18. The solid angle through the inclined rectangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the inclined rectangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux(radiant flux or radiant power) is shown.

  19. The solid angle through the vertical rectangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the vertical rectangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux (radiant flux or radiant power) is shown.

  20. Graphene on Ir(111) characterized by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kralj, Marko; Pletikosić, Ivo; Petrović, Marin; Pervan, Petar; Milun, Milorad; N'Diaye, Alpha T.; Busse, Carsten; Michely, Thomas; Fujii, Jun; Vobornik, Ivana

    2011-08-01

    Angle-resolved photoelectron spectroscopy (ARPES) is extensively used to characterize the dependence of the electronic structure of graphene on Ir(111) on the preparation process. ARPES findings reveal that temperature-programmed growth alone or in combination with chemical vapor deposition leads to graphene displaying sharp electronic bands. The photoemission intensity of the Dirac cone is monitored as a function of the increasing graphene area. Electronic features of the moiré superstructure present in the system, namely, minigaps and replica bands are examined and used as robust features to evaluate graphene uniformity. The overall dispersion of the π band is analyzed. Finally, by the variation of photon energy, relative changes of the π and σ band intensities are demonstrated.

  1. Solar Cell Angle of Incidence Corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    The Mars Pathfinder mission has three different solar arrays each of which sees changes in incidence angle during normal operation. When solar array angle of incidence effects was researched little published data was found. The small amount of-published data created a need to obtain and evaluate such data. The donation of the needed data, which was taken in the fall of 1994, was a major factor in the preparation of this paper.

  2. Nucleation of small-angle boundaries

    SciTech Connect

    Nabarro, F.R.N. |; Wilsdorf, D.K.

    1996-12-01

    The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition, the new boundaries having finite misorientations. The calculated misorientations both of the new boundaries and of the existing boundaries which provoke the transition agree well with observations.

  3. The magic angle: a solved mystery.

    PubMed

    Jouffrey, B; Schattschneider, P; Hébert, C

    2004-12-01

    We resolve the long-standing mysterious discrepancy between the experimental magic angle in EELS--approximately 2theta(E)--and the quantum mechanical prediction of approximately 4theta(E). A relativistic approach surpassing the usually applied kinematic correction yields a magic angle close to the experimental value. The reason is that the relativistic correction of the inelastic scattering cross section in anisotropic systems is significantly higher than in isotropic ones. PMID:15556701

  4. Angle only tracking with particle flow filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.

  5. CKM angle γ measurements at LHCb

    NASA Astrophysics Data System (ADS)

    Vallier, Alexis

    2014-11-01

    The CKM angle γ remains the least known parameter of the CKM mixing matrix. The precise measurement of this angle, as a Standard Model benchmark, is a key goal of the LHCb experiment. We present four recent CP violation studies related to the measurement of γ, including amplitude analysis of B± → DK± decays, the ADS/GLW analysis of B± → DK*0 decays and the time-dependent analysis of B± → DK±sK± decays.

  6. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  7. Viewing angle analysis of integral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Xia; Wu, Chun-Hong; Yang, Yang; Zhang, Lan

    2007-12-01

    Integral imaging (II) is a technique capable of displaying 3D images with continuous parallax in full natural color. It is becoming the most perspective technique in developing next generation three-dimensional TV (3DTV) and visualization field due to its outstanding advantages. However, most of conventional integral images are restricted by its narrow viewing angle. One reason is that the range in which a reconstructed integral image can be displayed with consistent parallax is limited. The other is that the aperture of system is finite. By far many methods , an integral imaging method to enhance the viewing angle of integral images has been proposed. Nevertheless, except Ren's MVW (Maximum Viewing Width) most of these methods involve complex hardware and modifications of optical system, which usually bring other disadvantages and make operation more difficult. At the same time the cost of these systems should be higher. In order to simplify optical systems, this paper systematically analyzes the viewing angle of traditional integral images instead of modified ones. Simultaneously for the sake of cost the research was based on computer generated integral images (CGII). With the analysis result we can know clearly how the viewing angle can be enhanced and how the image overlap or image flipping can be avoided. The result also promotes the development of optical instruments. Based on theoretical analysis, preliminary calculation was done to demonstrate how the other viewing properties which are closely related with the viewing angle, such as viewing distance, viewing zone, lens pitch, and etc. affect the viewing angle.

  8. Primary angle-closure glaucoma: an update.

    PubMed

    Wright, Carrie; Tawfik, Mohammed A; Waisbourd, Michael; Katz, Leslie J

    2016-05-01

    Primary angle-closure glaucoma is potentially a devastating disease, responsible for half of glaucoma-related blindness worldwide. Angle closure is characterized by appositional approximation or contact between the iris and trabecular meshwork. It tends to develop in eyes with shallow anterior chambers, anteriorly positioned or pushed lenses, and angle crowding. Risk of primary angle-closure glaucoma is high among women, the elderly and the hyperopic, and it is most prevalent in Asia. Investigation into genetic mechanisms of glaucoma inheritance is underway. Diagnosis relies on gonioscopy and may be aided by anterior segment optical coherence tomography and ultrasound biomicroscopy. Treatment is designed to control intraocular pressure while monitoring changes to the angle and optic nerve head. Treatment typically begins with medical management through pressure-reducing topical medications. Peripheral iridotomy is often performed to alleviate pupillary block, while laser iridoplasty has been found effective for mechanisms of closure other than pupillary block, such as plateau iris syndrome. Phacoemulsification, with or without goniosynechialysis, both in eyes with existing cataracts and in those with clear lenses, is thus far a viable treatment alternative. Long-term research currently underway will examine its efficacy in cases of angle closure in early stages of the disease. Endoscopic cyclophotocoagulation is another treatment option, which can be combined with cataract surgery. Trabeculectomy remains effective therapy for more advanced cases. PMID:26119516

  9. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  10. Deposition of Atmospheric Pollutants

    NASA Astrophysics Data System (ADS)

    Malet, L. M.

    Deposition of Atmospheric Pollutants, containing the proceedings of a colloquium held at Oberursel/Taunus, FRG, November 9-11, 1981, is divided into three main parts: dry deposition; wet deposition; and deposition on plants and vegetation.The 20 articles in the volume permit a fair survey of present-day knowledge and will be a useful tool to all working on the topic. Pollution by deposition of either the dry or wet sort is very insidious; its importance only appears in the long range, when its effects are or are almost irreversible. That is why concern was so long in emerging from decision makers.

  11. Alfred E. Bergeat (1866-1924): a distinguished volcanologist and ore deposit researching scientist at the mining academies of Freiberg (Saxony) and Clausthal (Harz mountains) in Germany

    NASA Astrophysics Data System (ADS)

    Pfaffl, Fritz A.

    2010-06-01

    Alfred E. Bergeat, originated from a family, who produced gold-glance in a factory (porcelain painting), studied mineralogy and geology at the University of Munich from 1886 to 1892. Due to the results of his habilitation work on the volcanism of island arcs, especially of the Stromboli volcanic island in the Tyrrhenian Sea, he became a recognized volcanologist and specialist in volcanic petrography. He further became an explorer of syngenetic, epigenetic and deuterogenic ore deposits at the mining academies (Bergakademien) of Freiberg (Saxony) and Clausthal (Harz mountains). He described these ore deposits in a two-volume manual (1904-1906) which was summarized again in 1913. After his early death in 1924, the two manuals “Die Vulkane” (1925) and “Vulkankunde” (1927) were posthumously published by his colleague and friend Karl Sapper (1866-1945).

  12. Solar cell angle of incidence corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  13. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    PubMed Central

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (P<0.001 for all variables). Between 2 weeks and 18 months after LPI, a significant decrease in angle width was observed over time in treated eyes (P<0.001 for all variables), although the change over the first 5.5 months was not statistically significant for angle width measured under gonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1

  14. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration

    PubMed Central

    Rajjoub, Lamise Z; Chadha, Nisha; Belyea, David A

    2014-01-01

    This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. PMID:25114497

  15. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    USGS Publications Warehouse

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  16. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    SciTech Connect

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  17. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  18. Formation of a Si Si3N4 nanocomposite from plasma enhanced chemical vapour deposition multilayer structures

    NASA Astrophysics Data System (ADS)

    Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Puzzer, T.; Pink, E.; Conibeer, G.

    2008-07-01

    This work reports on the crystallization of α-Si3N4, β-Si3N4, and silicon in plasma enhanced chemical vapour deposition silicon nitride films grown with SiH4 and NH3 at 400C and annealed at 1150C. Nanometric multilayer structures, composed of alternating layers of silicon nitride and silicon-rich nitride, were used as the starting material. The final product is a thin-film Si-Si3N4 nanocomposite. The formation of this composite is verified using glancing incidence X-ray diffraction, transmission electron microscopy and Fourier transform infra-red spectroscopy. Annealing investigations indicate that the multilayer structure plays a key role in the formation of this composite and for the relatively low temperature formation of α- and β-Si3N4 nanocrystals.

  19. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  20. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  1. Wetting behaviour and contact angles anisotropy of nematic nanodroplets on flat surfaces.

    PubMed

    Vanzo, Davide; Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio

    2016-02-01

    We have studied the wetting behaviour of liquid crystal nanodroplets deposited on a planar surface, modelling the mesogens with Gay-Berne ellipsoids and the support surface with a slab of Lennard-Jones (LJ) spherical particles whose mesogen-surface affinity can be tuned. A crystalline and an amorphous planar surface, both showing planar anchoring, have been investigated: the first is the (001) facet of a LJ fcc crystal, the second is obtained from a disordered LJ glass. In both cases we find that the deposited nanodroplet is, in general, elongated and that the contact angle changes around its contour. Simulations for the crystalline substrate show that the angle of contact turns reversibly from anisotropic to isotropic when crossing the clearing transition. As far as we know this is a novel, not yet explored effect for thermotropic liquid crystals, that we hope will stimulate experimental investigations. PMID:26670582

  2. Comparative morphometry of coxal joint angles.

    PubMed

    Sugiyama, S; Fujiwara, K

    1997-10-01

    The angles related to the coxal joints were comparatively studied in four-limbed walking animals and two-limbed ones including man and birds. Between animals with both types of walking, no significant difference was observed in the neck-shaft angles (NSA), which was equivalent to the acetabulum angles (ACA) at the connection of the femoral head with the acetabulum. The anteversion angles (AVA) were equivalent to the horizontal ACA. Canine species showed two different forms of the femoral neck with or without modification by the femoral AVA, probably being breed-specific and nutrition-dependent. In the narrow-striped wallaby as well as avian species, the femoral head showed a postversion with a minus-version angle for lifting the body axis in the frontal and upward direction to hold the whole body weight on the hind-limbs, in particular at the anterior part of the acetabulum. In man, the connection between the femur and acetabulum greatly varied among individuals, possibly according to differences in the life style. PMID:9353634

  3. A Viewpoint on the Quantity "Plane Angle"

    NASA Astrophysics Data System (ADS)

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  4. Moment-angle relations after specific exercise.

    PubMed

    Ullrich, B; Kleinöder, H; Brüggemann, G P

    2009-04-01

    This study examined the amount and time-course of shifts in the moment-knee angle relation of the quadriceps (QF) and hamstring (HAM) muscles in response to different length-restricted strength training regimens. Thirty-two athletes were divided into three different training groups (G1-3): G1 performed isometric training at knee joint angles corresponding to long muscle-tendon unit (MTU) length for QF and HAM; G2 conducted concentric-eccentric contraction cycles that were restricted to a knee joint range of motion corresponding to predominantly long MTU length for QF and HAM; G3 combined the protocols of G1 and G2. Moment-knee angle and EMG-knee angle relations of QF and HAM were measured on five different occasions: two times before, after five and eight weeks of training and four weeks post training. Moments and EMG-data of each subject were normalized to the largest value produced at any knee joint position [% Max.]. Obtained by curve fitting, the optimal knee joint angle for QF moment production was significantly (P<0.05) shifted to longer MTU length in G1 and G3 after 5 weeks of training and in G2 after 8 weeks of training. Contrary, no significant shifts were detected for HAM. Our data suggest that the predominant MTU length during loading is a major trigger for human force-length adaptations. PMID:19199195

  5. NORAD LOOK ANGLES AND PIO SATELLITE PACKAGE

    NASA Technical Reports Server (NTRS)

    ANONYMOUS

    1994-01-01

    This program package consists of two programs. First is the NORAD Look Angles Program, which computes satellite look angles (azimuth, elevation, and range) as well as the subsatellite points (latitude, longitude, and height). The second program in this package is the PIO Satellite Program, which computes sighting directions, visibility times, and the maximum elevation angle attained during each pass of an earth-orbiting satellite. Computations take into consideration the observing location and the effect of the earth's shadow on the satellite visibility. Input consists of a magnetic tape prepared by the NORAD Look Angles Program and punched cards containing reference Julian date, right ascension, declination, mean sidereal time at zero hours universal time of the reference date, and daily changes of these quantities. Output consists of a tabulated listing of the satellite's rise and set times, direction, and the maximum elevation angle visible from each observing location. This program has been implemented on the GE 635. The program Assembler code can easily be replaced by FORTRAN statements.

  6. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  7. High brightness angled cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-01

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm-2 sr-1 is obtained, which marks the brightest QCL to date.

  8. On the dip angle of subducting plates

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Tang, Xiao-Ming; Toksoz, M. Nafi

    1990-01-01

    A new approximate analytic model is developed for the thermal structure of a subducting plate with a finite length. This model provides the capability of easily examining the thermal and mechanical structure of a subducting plate with different lengths and at different angles. Also, the torque balance of a descending plate can be examined, and effects such as the leading edge effect, the adiabatic compression effect, and the phase change effect can be incorporated. A comparison with observed data indicates that short slabs are likely under torque equilibrium at present, while long slabs are probably dominated by their gravitational torques such that their dip angles are transient, moving toward a steeper dip angle similar to that of the Mariana slab.

  9. Data for phase angle shift with frequency.

    PubMed

    Paul, T; Banerjee, D; Kargupta, K

    2016-06-01

    Phase angle shift between the current and voltage with frequency has been reported for a single phosphoric acid fuel cell in the cell temperature from 100 °C to 160 °C and the humidifier temperature from 40 °C to 90 °C. An electrochemical workbench is employed to find the shift. The figure of phase angle shift shows a peak in high humidifier temperatures. The peak in phase angle shift directs to lower frequency side with decreasing humidifier temperature. The estimation of electrochemical reaction time is also evaluated in the humidifier temperature zone from 50 °C to 90 °C. PMID:27158655

  10. Data for phase angle shift with frequency

    PubMed Central

    Paul, T.; Banerjee, D.; Kargupta, K.

    2016-01-01

    Phase angle shift between the current and voltage with frequency has been reported for a single phosphoric acid fuel cell in the cell temperature from 100 °C to 160 °C and the humidifier temperature from 40 °C to 90 °C. An electrochemical workbench is employed to find the shift. The figure of phase angle shift shows a peak in high humidifier temperatures. The peak in phase angle shift directs to lower frequency side with decreasing humidifier temperature. The estimation of electrochemical reaction time is also evaluated in the humidifier temperature zone from 50 °C to 90 °C. PMID:27158655

  11. Advancing contact angles on large structured surfaces

    NASA Astrophysics Data System (ADS)

    Yoshitake, Yumiko; Itakura, Yoshinori; Gobo, Junichi; Takahashi, Tsutomu

    2014-11-01

    To understand wetting phenomena on complex surfaces, simple modeling experiments in two-dimension system would be one of the most efficient approaches. We develop a new experimental method for wetting dynamics using a large pseudo two- dimensional droplet. This method is useful to examine theoretical studies developed in two dimensional systems. In this study, we examine a pinning and depinning phenomena on millimeter-size structured surface to explain the origin of contact angle hysteresis. Contact lines of the droplet are pinned and deppined at the edge of surface texture. The contact lines can move when the contact angle is equal to the Young's contact angle which are determined by the balance of the surface and interfacial tension immediate vicinity of the contact lines, which is different from the Wenzel's low. Our approach enables to realize a macroscopic modelling experiment of wetting on complex surfaces, which opens a path to design functional surfaces with chemical and physical structure.

  12. Flocking and invariance of velocity angles.

    PubMed

    Liu, Le; Huang, Lihong; Wu, Jianhong

    2016-04-01

    Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints. PMID:27105986

  13. High brightness angled cavity quantum cascade lasers

    SciTech Connect

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  14. A heterodyne interferometer for angle metrology

    SciTech Connect

    Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.

    2010-04-15

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/{radical}(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately {+-}0.15 mrad, and 3 {mu}rad rms, respectively.

  15. Direct deposition of YBCO on polished Ag substrates by pulsed laser deposition.

    SciTech Connect

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Maroni, V. A.; Miller, D. J.; Balachandran, U.

    2002-09-15

    YBCO thin films were directly deposited on mechanically polished nontextured silver (Ag) substrates at elevated temperature by pulsed laser deposition with various inclination angles of 35, 55, and 72. Strong fiber texture, with the c-axis parallel to the substrate normal was detected by X-ray diffraction pole figure analysis. Atomic force microscopy and scanning electron microscopy images revealed that a few a-axis-oriented grains were dispersed on the top surface of the YBCO films. Transmission electron microscopy revealed dense amorphous layer at the interface between the YBCO film and the Ag substrate. Energy dispersive spectrum analysis indicates that the YBCO film deposited on the Ag substrate is slightly Cu-deficient. A YBCO film deposited at 755 C and an inclination angle of 55 exhibited {Tc} = 90 K. Transport critical current density measured by the four-probe method at 77 K in self-field was 2.7 x 10{sup 5}A/cm2. This work demonstrated a simple and inexpensive method to fabricate YBCO-coated conductors with high critical current density.

  16. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  17. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  18. Liquid crystal pretilt angle control using adjustable wetting properties of alignment layers

    SciTech Connect

    Ahn, Han Jin; Kim, Jong Bok; Kim, Kyung Chan; Hwang, Byoung Har; Kim, Jong Tae; Baik, Hong Koo; Park, Jin Seol; Kang, Daeseung

    2007-06-18

    The authors demonstrate the production of amorphous fluorinated carbon (a-C:F) thin film with adjustable wetting properties, inducing variable liquid crystal (LC) pretilt angles. To control the surface wetting properties, they apply a dual radio frequency magnetron system with a controlled power ratio of targets. In this manner we obtain various compositional surfaces with fluorine and carbon components and adjust the surface energy with regard to the various compositions. Whereas the fluorine-rich a-C:F layer shows a preference for homeotropic (vertical) LC alignment, the carbon-rich a-C:F layer shows a planar LC alignment. To achieve uniform LC alignment with a proper pretilt angle, an accelerated Ar{sup +} ion beam irradiates the films after the deposition process. The ion beam selectively destroys the surface bonding of the a-C:F films, yielding an intermediate pretilt angle.

  19. Photometric theory for wide-angle phenomena

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.

    1990-01-01

    An examination is made of the problem posed by wide-angle photographic photometry, in order to extract a photometric-morphological history of Comet P/Halley. Photometric solutions are presently achieved over wide angles through a generalization of an assumption-free moment-sum method. Standard stars in the field allow a complete solution to be obtained for extinction, sky brightness, and the characteristic curve. After formulating Newton's method for the solution of the general nonlinear least-square problem, an implementation is undertaken for a canonical data set. Attention is given to the problem of random and systematic photometric errors.

  20. Ship wakes: Kelvin or Mach angle?

    PubMed

    Rabaud, Marc; Moisy, Frédéric

    2013-05-24

    From the analysis of a set of airborne images of ship wakes, we show that the wake angles decrease as U(-1) at large velocities, in a way similar to the Mach cone for supersonic airplanes. This previously unnoticed Mach-like regime is in contradiction with the celebrated Kelvin prediction of a constant angle of 19.47° independent of the ship's speed. We propose here a model, confirmed by numerical simulations, in which the finite size of the disturbance explains this transition between the Kelvin and Mach regimes at a Froude number Fr=U/√[gL]~/=0.5, where L is the hull ship length. PMID:23745883

  1. Taper Angle Evolution in Taiwan Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Chen, L.; Chi, W.; Liu, C.

    2011-12-01

    Liwen Chena,b, Wu-Cheng Chia, Char-Shine Liuc aInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan bInstitute of Geosciences, National Taiwan University, Taipei, Taiwan cInstitute of Oceanography, National Taiwan University, Taipei, Taiwan The critical taper model, originally developed using onland Taiwan as an example, is governed by force balance of a horizontal compressional wedge. This model has been successfully applied to many mountainous regions around the world. Among them, Taiwan is located in an oblique collision between the Luzon Arc and the Chinese Passive margin. Previous critical taper angle studies of Taiwan are mainly focusing on utilizing land data. In this study we want to extend these studies to offshore region from the subduction zone to collision zone. Here we study the varying taper angles of the double-vergent wedge derived from 1,000 km of reflection seismic profiles in both the pro-wedge and retro-wedge locations. These profiles were collected in the last two decades. For the retro-wedge, the topography slope angle changes from 2 to 8.8 degrees; some of the steep slope suggests that some part of the retrowedge is currently in a super-critical angle state. Such dramatic changes in taper angle probably strongly affect regional sedimentary processes, including slumping, in addition to structural deformation. These complex processes might even help develop a mélange or re-open a closed basin. We are currently working on studying the taper angle evolution of the pro-wedge from subduction to arc-continent collision zone in the offshore region. Though further works are needed, our preliminary results show that the evolution of wedge angles and the geometry of the wedge are closely linked and inseparable. The structures of the subducting plate might have strong influence on the deformation style of the over-riding plate. It would be interesting to combine the angle variation with the structure interpretation of the accretionary wedge

  2. Airfoil Lift with Changing Angle of Attack

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1927-01-01

    Tests have been made in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics to determine the effects of pitching oscillations upon the lift of an airfoil. It has been found that the lift of an airfoil, while pitching, is usually less than that which would exist at the same angle of attack in the stationary condition, although exceptions may occur when the lift is small or if the angle of attack is being rapidly reduced. It is also shown that the behavior of a pitching airfoil may be qualitatively explained on the basis of accepted aerodynamic theory.

  3. Vitroceramic interface deposited on titanium substrate by pulsed laser deposition method.

    PubMed

    Voicu, Georgeta; Miu, Dana; Dogaru, Ionut; Jinga, Sorin Ion; Busuioc, Cristina

    2016-08-30

    Pulsed laser deposition (PLD) method was used to obtain biovitroceramic thin film coatings on titanium substrates. The composition of the targets was selected from SiO2-CaO-P2O5-(CaF2) systems and the corresponding masses were prepared using the sol-gel method. The depositions were performed in oxygen atmosphere (100mTorr), while the substrates were heated at 400°C. The PLD deposited films were analysed through different experimental techniques: X-ray diffraction, scanning (SEM, EDX) and transmission (HRTEM, SAED) electron microscopy and infra-red spectroscopy coupled with optical microscopy. They were also biologically tested by in vitro cell culture and the contact angle was determined. The bioevaluation results indicate a high biocompatibilty of the obtained materials, demonstrating their potential use for biomedical applications. PMID:26546909

  4. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  5. A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing

    NASA Astrophysics Data System (ADS)

    Zeng, Lijiang; Matsumoto, Hirokazu; Kawachi, Keiji

    1996-05-01

    A fringe shadow (FS) method was developed for measuring the flapping angle and torsional angle of a dragonfly wing during beating motion. This new method involves two sets of fringe patterns projected onto the wing from orthogonal directions. The torsional angle is determined using the length of the shadow of the wing chord that is cast by the two sets of fringe patterns. The flapping angle is determined using the shadowgraph of the wing projected by a laser. The advantages of the FS method are its capability (i) to measure the flapping angle and torsional angle of a dragonfly wing simultaneously using only one high-speed camera and (ii) to recognize the spanwise position of a section from the number of fringes, without having to use diffuse marks that are common in current methods. The resolution of the FS method can be changed easily by adjusting the fringe spacing. The measurement results for the torsional angle and flapping angle of a dragonfly wing prove the effectiveness of the FS method in studying the flight performance of dragonflies.

  6. Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns

    ERIC Educational Resources Information Center

    Host, Erin; Baynham, Emily; McMaster, Heather

    2015-01-01

    Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…

  7. Angle at the Medial Border: The Spinovertebra Angle and Its Significance

    PubMed Central

    Oladipo, G. S.; Aigbogun, E. O.; Akani, G. L.

    2015-01-01

    Background. The evolution from quadrupedalism to bipedalism has adjusted the balance of the upper limb to extensive movement at the shoulder. The scapular angles provide the point of attachment and control to various muscles and have been associated with the different movements of the shoulder girdle and joint. This has made the morphometric and anthropometric study of scapula a subject of extensive investigation. Aim. In the present study, the angle at the medial border was measured in the South-Southern Nigerian population and an anatomical name was ascribed to the angle. Method. The study was conducted on 173 scapulae (75 right and 98 left) obtained from various Anatomy Department of South-Sothern Nigerian Universities. The angle at medial border was obtained by pinning the edge of the superior and inferior angles, the lined traced out, and the angle measured using a protractor. SPSS version 20 was used to analyse the data. t-test was used to determine mean angular difference in the sides. Result. The mean ± SD of the medial angle was observed to be 136.88 ± 7.70° (R = 138.13 ± 7.06° : L = 135.92 ± 8.05°). Statistical analysis using the Z-test for mean difference showed the medial angle was found to be higher in the right side of the scapula (mean difference of 2.214 ± 1.152°), but the observed difference was not statistically significant (P > 0.05). The above findings have adjusted the scapula from three to four angles (lateral, superior, inferior, and medial) formed from four borders (lateral, superior, inferior, and superomedial and inferomedial). The medial angle because of its anatomical location was named “spinovertebral” angle, owing to its position at the scapulae spine, and located in medial proximity to the vertebra column. Conclusion. The medial angle (now referred to as the spinovertebral angle) of the right side of the scapula is wider than the left. The representation of the spinovertebral angle is very important, as the

  8. Angle at the Medial Border: The Spinovertebra Angle and Its Significance.

    PubMed

    Oladipo, G S; Aigbogun, E O; Akani, G L

    2015-01-01

    Background. The evolution from quadrupedalism to bipedalism has adjusted the balance of the upper limb to extensive movement at the shoulder. The scapular angles provide the point of attachment and control to various muscles and have been associated with the different movements of the shoulder girdle and joint. This has made the morphometric and anthropometric study of scapula a subject of extensive investigation. Aim. In the present study, the angle at the medial border was measured in the South-Southern Nigerian population and an anatomical name was ascribed to the angle. Method. The study was conducted on 173 scapulae (75 right and 98 left) obtained from various Anatomy Department of South-Sothern Nigerian Universities. The angle at medial border was obtained by pinning the edge of the superior and inferior angles, the lined traced out, and the angle measured using a protractor. SPSS version 20 was used to analyse the data. t-test was used to determine mean angular difference in the sides. Result. The mean ± SD of the medial angle was observed to be 136.88 ± 7.70° (R = 138.13 ± 7.06° : L = 135.92 ± 8.05°). Statistical analysis using the Z-test for mean difference showed the medial angle was found to be higher in the right side of the scapula (mean difference of 2.214 ± 1.152°), but the observed difference was not statistically significant (P > 0.05). The above findings have adjusted the scapula from three to four angles (lateral, superior, inferior, and medial) formed from four borders (lateral, superior, inferior, and superomedial and inferomedial). The medial angle because of its anatomical location was named "spinovertebral" angle, owing to its position at the scapulae spine, and located in medial proximity to the vertebra column. Conclusion. The medial angle (now referred to as the spinovertebral angle) of the right side of the scapula is wider than the left. The representation of the spinovertebral angle is very important, as the directional

  9. {l_angle}110{r_angle} dendrite growth in aluminum feathery grains

    SciTech Connect

    Henry, S.; Rappaz, M.; Jarry, P.

    1998-11-01

    Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of {l_angle}110{r_angle} primary dendrite trunks (e.g., [011{bar 1}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 {micro}m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). The [011{bar 1}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)--a feature probably resulting from a growth competition mechanism similar to that occurring during normal <100> columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along {l_angle}110{r_angle} directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that {l_angle}110{r_angle} branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [{bar 2}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal <100> to a {l_angle}110{r_angle} surface tension/attachment kinetics anisotropy growth mode. Finally, the proposed mechanisms of leathery grain growth are further supported by the observation of {l_angle}110{r_angle} dendrite growth morphologies in thin aluminum-zinc coatings.

  10. Recent Results on the CKM Angle Alpha

    SciTech Connect

    Mihalyi, A.; /Wisconsin U., Madison

    2005-10-18

    The method to measure the CKM angle {alpha} and the modes sensitive to it are discussed. It is shown that the B {yields} {rho}{rho} decays provide the most stringent constraint on {alpha}, which is found to be {alpha} = 96{sup o} {+-} 10{sup o}(stat) {+-} 4{sup o}(syst){+-} 13{sup o}(penguin).

  11. Nonschwannoma tumors of the cerebellopontine angle.

    PubMed

    Friedmann, David R; Grobelny, Bartosz; Golfinos, John G; Roland, J Thomas

    2015-06-01

    Although the preponderance of cerebellopontine angle lesions are schwannomas, focused attention to patient clinical history, imaging studies, and tissue biopsies when indicated will aid in detection of less common lesions that might otherwise be misdiagnosed. This is most critical for pathologies that dictate different management paradigms be undertaken. PMID:26043142

  12. Looking at Faces from a New Angle.

    ERIC Educational Resources Information Center

    Mulkey, Mary McNamara; Malm, Susanne

    2000-01-01

    Describes a fifth grade art activity inspired by a restaurant logo that consisted of angled faces fragmented down the middle, with geometric profiles, in bold colors. Explains the process of creating the abstract split faces, from the initial drawing to adding colors. (CMK)

  13. Transmitting rotary motion at an angle

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1979-01-01

    Transmission consisting of corrugated metal tube that can bend along its axis can transmit torques in range of 100 to 1000 pound-inches at corner angles as great as 180 deg. Possible uses include submerged mechanisms and food processing machinery where sealed drive line without contaminating lubricants is required.

  14. Spirality: Spiral arm pitch angle measurement

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

    2015-12-01

    Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  15. Timolol in operated closed-angle glaucoma.

    PubMed Central

    Phillips, C I

    1980-01-01

    Tonometry in 9 eyes (7 patients) provides some evidence that timolol eye drops are useful in improving control of pressure in eyes operated for closed-angle glaucoma. In cases 1 and 2 (Figs, 1 and 2) this beta 1 and 2 blocker reduced pressure consistently. Case 3 (Fig. 3) showed that timolol 0.5% twice daily was as effective as pilocarpine 2% or 4% with adrenaline 1%. The effect of timolol 0.5% in case 4 (Fig. 4) and case 6 (Fig. 6) was additive to pilocarpine and adrenaline; in case 5 (Fig. 5) it probably improved the effect of adrenaline, but in cases 4 and 5 there may have been some loss of effect with time. Case 7 (Fig. 7) showed a good effect of timolol, reversed on withdrawal, but pressure fell again in spite of continued withholding of timolol. Timolol will be especially valuable in the control of pressure if an operation involving iridectomy has not been completely successful in open-angle glaucoma or more especially in closed-angle glaucoma because it has no effect on the pupil. Miotics will tend to produce posterior pupillary synechiae because aqueous humour will go through the iridectomy, not under the edge of the pupil. The danger will be greater in eyes with closed-angle glaucoma because the pupil is closely applied to the anterior lens surface, which will also tend to produce irritative iridocyclitis. PMID:7387959

  16. Mixed glioma of the cerebellopontine angle.

    PubMed

    Millen, S J; Campbell, B H; Meyer, G A; Ho, K C

    1985-11-01

    A rare case of mixed ependymoma and astrocytoma of the cerebellopontine angle is reported. Its clinical presentation, characteristics on evaluation, and prognosis are compared with those of the acoustic neuroma and glioma. The central form of von Recklinghausen's disease and familial multiple lipomatosis as it applies to the patient is also discussed. PMID:3878094

  17. Improved Beam Angle Control with SPV Metrology

    NASA Astrophysics Data System (ADS)

    Steeples, K.; Tsidilkovski, E.; Bertuch, A.; Ishida, E.; Agarwal, A.

    2008-11-01

    A method of real-time monitoring of implant angle for state-of-the-art ion implant doping in integrated circuit manufacturing has been developed using Surface Photo Voltage measurements on conventional monitor wafers. Measurement results are analyzed and compared to other techniques.

  18. Instrument accurately measures weld angle and offset

    NASA Technical Reports Server (NTRS)

    Boyd, W. G.

    1967-01-01

    Weld angle is measured to the nearest arc minute and offset to one thousandth of an inch by an instrument designed to use a reference plane at two locations on a test coupon. A special table for computation has been prepared for use with the instrument.

  19. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  20. Association between Bolton discrepancy and Angle malocclusions.

    PubMed

    Cançado, Rodrigo Hermont; Gonçalves Júnior, Waldir; Valarelli, Fabrício Pinelli; Freitas, Karina Maria Salvatore de; Crêspo, Janaina Aparecida Lima

    2015-01-01

    This study aimed to assess and compare the overall and anterior ratios of tooth size discrepancies in all Angle malocclusion groups. The following null hypothesis (H0) was tested: no difference between tooth size discrepancies (overall and anterior) would be observed among Angle malocclusion groups. The sample comprised of 711 pre-orthodontic treatment study casts of Brazilian patients with a mean age of 17.42 years selected from private practices in Brazil. The casts were divided into 3 groups according to the type of malocclusion: Class I (n = 321), Class II (n = 324), and Class III patients (n = 66). The measurement of the greatest mesiodistal width of the teeth was performed using a centesimal precision digital caliper directly on the study casts, from the distal surface of the left first molar to the distal surface of the right first molar. The overall and anterior ratios between the maxillary and mandibular teeth were evaluated using Bolton's method. The following statistical tests were applied: chi-square, independent t-test, and one-way ANOVA. Results showed that all Angle malocclusions groups exhibited a ratio compatible with those recommended by Bolton. With respect to the overall and anterior ratios among the malocclusion groups, no statistically significant differences were found. The null hypothesis was accepted because the results showed no differences in the overall and anterior ratios of tooth size discrepancies among different Angle malocclusion groups. PMID:26486769

  1. Incidence angle normalization of radar backscatter data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  2. Partitioning Pythagorean Triangles Using Pythagorean Angles

    ERIC Educational Resources Information Center

    Swenson, Carl E.; Yandl, Andre L.

    2012-01-01

    Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.

  3. Ischemia detection from morphological QRS angle changes.

    PubMed

    Romero, Daniel; Martínez, Juan Pablo; Laguna, Pablo; Pueyo, Esther

    2016-07-01

    In this paper, an ischemia detector is presented based on the analysis of QRS-derived angles. The detector has been developed by modeling ischemic effects on the QRS angles as a gradual change with a certain transition time and assuming a Laplacian additive modeling error contaminating the angle series. Both standard and non-standard leads were used for analysis. Non-standard leads were obtained by applying the PCA technique over specific lead subsets to represent different potential locations of the ischemic zone. The performance of the proposed detector was tested over a population of 79 patients undergoing percutaneous coronary intervention in one of the major coronary arteries (LAD (n  =  25), RCA (n  =  16) and LCX (n  =  38)). The best detection performance, obtained for standard ECG leads, was achieved in the LAD group with values of sensitivity and specificity of [Formula: see text], [Formula: see text], followed by the RCA group with [Formula: see text], Sp  =  94.4 and the LCX group with [Formula: see text], [Formula: see text], notably outperforming detection based on the ST series in all cases, with the same detector structure. The timing of the detected ischemic events ranged from 30 s up to 150 s (mean  =  66.8 s) following the start of occlusion. We conclude that changes in the QRS angles can be used to detect acute myocardial ischemia. PMID:27243441

  4. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  5. Deposition patterns with Turbuhaler.

    PubMed

    Borgström, L

    1994-01-01

    The degree of lung deposition is an important factor in the evaluation of different inhalation flow driven dry powder inhalers. A number of studies using radioactive and non-radioactive methods have been performed with Turbuhaler to assess lung deposition under different conditions. Mean total lung deposition of terbutaline sulfate or budesonide via Turbuhaler in healthy volunteers ranged from 21-32% of the dose when a normal inhalation flow (60L/min) was used. At a low flow (30L/min) a mean 15% of the dose was deposited in the lungs, a similar value as for a well-performed inhalation via a pressurized metered dose inhaler. Regional deposition of inhaled drug can be expressed as the ratio between the amount of drug deposited in the more peripheral parts of the lung relative to the more central parts. In a comparative study, budesonide and terbutaline sulfate were given by inhalation via Turbuhaler to healthy volunteers. The ratio of peripheral to central deposition was 2.03 for terbutaline and 1.72 for budesonide. Thus, both the water-soluble terbutaline sulfate and the non-water soluble budesonide seemed to behave in the same way when inhaled via Turbuhaler. In conclusion, Turbuhaler delivers over 20% of a metered dose to the lungs when inhaled at a normal inhalation flow rate. The regional deposition pattern in the lungs was the same for terbutaline sulfate and budesonide, in spite of differences in water solubility. PMID:10147081

  6. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  7. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.

    1991-01-01

    The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single

  8. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  9. Solution deposition assembly

    SciTech Connect

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  10. Probe Without Moving Parts Measures Flow Angle

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake

    2003-01-01

    The measurement of local flow angle is critical in many fluid-dynamic applications, including the aerodynamic flight testing of new aircraft and flight systems. Flight researchers at NASA Dryden Flight Research Center have recently developed, flight-tested, and patented the force-based flow-angle probe (FLAP), a novel, force-based instrument for the measurement of local flow direction. Containing no moving parts, the FLAP may provide greater simplicity, improved accuracy, and increased measurement access, relative to conventional moving vane-type flow-angle probes. Forces in the FLAP can be measured by various techniques, including those that involve conventional strain gauges (based on electrical resistance) and those that involve more advanced strain gauges (based on optical fibers). A correlation is used to convert force-measurement data to the local flow angle. The use of fiber optics will enable the construction of a miniature FLAP, leading to the possibility of flow measurement in very small or confined regions. This may also enable the tufting of a surface with miniature FLAPs, capable of quantitative flow-angle measurements, similar to attaching yarn tufts for qualitative measurements. The prototype FLAP was a small, aerodynamically shaped, low-aspect-ratio fin about 2 in. (approximately equal to 5 cm) long, 1 in. (approximately equal to 2.5 cm) wide, and 0.125 in. (approximately equal to 0.3 cm) thick (see Figure 1). The prototype FLAP included simple electrical-resistance strain gauges for measuring forces. Four strain gauges were mounted on the FLAP; two on the upper surface and two on the lower surface. The gauges were connected to form a full Wheatstone bridge, configured as a bending bridge. In preparation for a flight test, the prototype FLAP was mounted on the airdata boom of a flight-test fixture (FTF) on the NASA Dryden F-15B flight research airplane.

  11. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    NASA Astrophysics Data System (ADS)

    Reznickova, Alena; Novotna, Zdenka; Kasalkova, Nikola Slepickova; Svorcik, Vaclav

    2013-05-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity.

  12. Optimal Number of Angle Images for Calculating Anterior Angle Volume and Iris Volume Measurements

    PubMed Central

    Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Fuller, Timothy S.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose. We determined the optimal number of angle images required to obtain reliable measurements of trabecular-iris circumferential volume (TICV) and iris volume (IV) using swept-source Fourier domain anterior segment optical coherence tomography (SSFD-ASOCT) scans in narrow angle eyes. Methods. Scleral spur landmarks (SSL) were manually identified on ASOCT angle images from 128 meridians from each of 24 eyes with chronic primary angle closure (PAC) spectrum of disease. The anterior and posterior corneal curves, and the anterior and posterior iris surfaces were identified automatically by the anterior chamber analysis and interpretation (ACAI) software, then manually examined and edited by the reader if required. Trabecular-iris circumferential volume at 750 μm from SSL (TICV750) and IV were subsequently calculated using varying numbers of angle images. Threshold error was determined to be less than the lower 95% confidence limit of mean absolute percent error (MAPE) of the change in TICV or IV resulting from laser peripheral iridotomy, which would be 17% for TICV and 5% for IV, based on previous studies. The optimal number of angle images was the smallest number of images where MAPE was less than this threshold for TICV and IV. Results. A total of 32 equally-spaced angle images (16 meridians) was required to estimate TICV750 and 16 angle images (8 meridians) to estimate IV. Both were within 4.6% and 1.6% of MAPE, respectively. Conclusions. It is possible to determine TICV and IV parameters reliably in narrow angles without evaluating all 128 meridians obtained with SSFD-ASOCT. PMID:25829412

  13. Disorder and broad-angle iridescence from Morpho-inspired structures.

    PubMed

    Song, Bokwang; Eom, Seok Chan; Shin, Jung H

    2014-08-11

    The ordered, lamellae-structured ridges on the wing scales of Morpho butterflies give rise to their striking blue iridescence by multilayer interference and grating diffraction. At the same time, the random offsets among the ridges broaden the directional multilayer reflection peaks and the grating diffraction peaks that the color appears the same at various viewing angles, contrary to the very definition of iridescence. While the overall process is well understood, there has been little investigation into confirming the roles of each factor due to the difficulty of controllably reproducing such complex structures. Here we use a combination of self-assembly, selective etching, and directional deposition to fabricate Morpho-inspired structure with controlled random offsets. We find that while random offsets are necessary, it alone is not sufficient to produce the broad-angle reflection of Morpho butterflies. We identify diffraction as a critical factor for the bright, anisotropic broadening of the reflection peak of Morpho butterflies to a solid angle of 0.23 sr, and suggest random macroscopic surface curvature as a practical alternative, with an isotropic broad reflection peak whose solid angle can reach 0.11 sr at an incident angle of 60°. PMID:25321023

  14. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... angle is within a cone whose apex is at the rear position light and whose elements make an angle of 30... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system dihedral angles. 29... Position light system dihedral angles. (a) Except as provided in paragraph (e) of this section,...

  15. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... angle is within a cone whose apex is at the rear position light and whose elements make an angle of 30... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system dihedral angles. 25... light system dihedral angles. (a) Except as provided in paragraph (e) of this section, each forward...

  16. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... angle is within a cone whose apex is at the rear position light and whose elements make an angle of 30... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system dihedral angles. 23... Equipment Lights § 23.1387 Position light system dihedral angles. (a) Except as provided in paragraph (e)...

  17. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... angle is within a cone whose apex is at the rear position light and whose elements make an angle of 30... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system dihedral angles. 27... light system dihedral angles. (a) Except as provided in paragraph (e) of this section, each forward...

  18. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.

    PubMed

    Caplins, Benjamin W; Mullenbach, Tyler K; Holmes, Russell J; Blank, David A

    2016-04-28

    Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material. PMID:27058732

  19. Thermochromic VO2 nanorods made by sputter deposition: Growth conditions and optical modeling

    NASA Astrophysics Data System (ADS)

    Li, Shu-Yi; Namura, Kyoko; Suzuki, Motofumi; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-07-01

    Reactive dc magnetron sputtering onto glass-based substrates yielded deposits of thermochromic VO2 with well-developed nanorods and nanowires. Their formation was promoted by high substrate temperature (above ˜500 °C), sufficient film thickness, proper inlet of the reactive gas, dispersed gold "seeds," and pronounced substrate roughness. Rutherford back scattering ascertained mass thicknesses, scanning electron microscopy depicted the nanostructures, and glancing incidence X-ray diffraction proved that single-phase VO2 was normally formed. Spectrophotometric measurements of total and diffuse transmittance and reflectance on VO2 thin films, at room temperature and ˜100 °C, allowed us to determine complex dielectric functions below and above the "critical" temperature for thermochromic switching (˜68 °C). These data were then used in computations based on the Bruggeman effective medium theory applied to randomly oriented prolate spheroidal structural units to derive the optical properties of the deposits. Experimental and computed data on spectral absorptance were found to be in good qualitative agreement.

  20. Broadband and wide angle light absorption for an aluminum nanorod array in a prism-coupling system

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Dai, Jia-Wei; Chao, Jung-Hui

    2013-09-01

    Traditional optical thin films exhibit low absorption when light is incident obliquely because the optical path decreases with increasing angle of incidence [1]. A thin film absorber is also a challenge to perform high absorption at oblique incidence. Under the condition of total reflection, a thin metal film with thickness around 40nm in a Kretschmann configuration (prism / metal film / air) enables to absorb light at an extremely small angle range by exciting surface plasmon at the interface of metal/air [2]. In this work, a metamaterial thin film composed of aluminum nanorods is fabricated and used to absorb light in high efficiency. An aluminum nanorod array (Al NRA) deposited obliquely is arranged in a prism-coupling system to observed the reflection under the condition of total reflection of the system: BK7 prism/ Al NRA/ Air. The Al NRA is 184nm thick and tilted at an angle of 35° with respect to the surface normal. The deposition plane defined by the directions of rod and surface normal is orientated at angles of φ=0° and φ=180° with respect to the plane of incidence to measure the reflectance versus incident angles from 45° to 70° and wavelengths from 400nm to 700nm. The definition of the NRAs orientation is shown in Fig. 3. When the deposition plane is the same with the plane of incidence, the reflectance spectra indicate that the Al NRA exhibits strong absorptance over 80% at angles of incidence from 45° to 55° for both p-polarization and s-polarization. The enhanced p-polarized absorptance is extended from 45° to 70°. At φ=90°, the absorptance is weaker at angles of incidence from 55° to 70° compared with other two cases measured at φ=0° and φ=180°°.

  1. Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation.

    PubMed

    Farris, Stefano; Introzzi, Laura; Biagioni, Paolo; Holz, Torsten; Schiraldi, Alberto; Piergiovanni, Luciano

    2011-06-21

    The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses. PMID:21619017

  2. Linkage studies in primary open angle glaucoma

    SciTech Connect

    Avramopoulos, D.; Grigoriadu, M.; Kitsos, G.

    1994-09-01

    Glaucoma is a leading cause of blindness worldwide. The majority of glaucoma is associated with an open, normal appearing anterior chamber angle and is termed primary open angle glaucoma (POAG, MIM 137760). It is characterized by elevated intraocular pressure and onset in middle age or later. A subset of POAG with juvenile onset has recently been linked to chromosome 1q in two families with autosomal dominant inheritance. Eleven pedigrees with autosomal dominant POG (non-juvenile-onset) have been identified in Epirus, Greece. In the present study DNA samples have been collected from 50 individuals from one large pedigree, including 12 affected individuals. Preliminary results of linkage analysis with chromosome 1 microsatellites using the computer program package LINKAGE Version 5.1 showed no linkage with the markers previously linked to juvenile-onset POAG. Further linkage analysis is being pursued, and the results will be presented.

  3. Divert visual angle through eyeball recognition

    NASA Astrophysics Data System (ADS)

    Qi, Cao; Qiao, Yi; Cheng, Yuan; Cui, Honglu; Sun, Li

    2009-10-01

    Thanks to the development of network, video devices are used in various aspects of our lives such as video conference, video call, etc. It is, however, very common that people tend to look at the computer screen instead of the video capture device, which can affect the communication. We present a novel approach to solve this problem. Through estimating the divert head angle and eyeball location recognition, we can estimate the visual angle. By moving the eyeball to adjust visual line, it looks like that we're looking at each other. Our work is on the basis of face alignment and there is a geometric 3D model and novel R -α, K -β relationship analysis methods adopted in this paper.

  4. Fan Stagger Angle for Dirt Rejection

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  5. Choroidal physiology and primary angle closure disease.

    PubMed

    Zhang, Xiulan; Wang, Wei; Aung, Tin; Jonas, Jost B; Wang, Ningli

    2015-01-01

    Primary angle closure disease (PACD), prevalent in Asian countries, is generally associated with a shallower anterior chamber, a shorter axial length, thicker lens, hyperopia, and female sex. Other physiologic factors, however, may be important, especially with regard to triggering acute primary angle closure. Thickening of the choroid has been demonstrated in untreated and treated, acute and chronic PACD eyes. Recently, there has been growing interest in studying the role of the choroid in the pathophysiology of PACD. The emergence of new imaging technology such as the enhanced depth imaging mode of spectral-domain optical coherence tomography and swept-source optical coherence tomography has contributed to understanding PACD pathologies. We summarize the functions of the choroid and choroidal changes in the pathogenesis of PACD, and discuss potential future developments. PMID:26164737

  6. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth

  7. Sun angle, view angle, and background effects on spectral response of simulated balsam fir canopies

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.

    1986-01-01

    An experiment is described that examines the effects of solar zenith angle and background reflectance on the composite scene reflectance of small balsam fir (Abies balsamea (L.) Mill.) arranged in different densities. In this study, the shape, density, and, consequently, the needle area index and phytomass of the canopies, as well as the background reflectance, were controlled. The effects of sun angle, view angle, and background reflectance on the multispectral response of small balsam fir trees were significant. Regression models relating spectral vegetation indices (i.e., normalized difference (ND) and greenness (GR) to phytomass) showed very poor relationships for balsam fir canopies with a grass background. However, strong linear relationships were found for ND and GR with phytomass for a background that simulated the reflectance of snow. Changing solar zenith angle significantly affected the models relating ND to phytomass for the snow background, but was not significant in the model relating GR to phytomass for the snow background

  8. Wireless Orbiter Hang-Angle Inclinometer System

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  9. Low angle resistivity anomaly in layered superconductors

    SciTech Connect

    Koshelev, A.E. |; Vinokur, V.M.

    1993-01-01

    The pinning effect of vortex lines by the layered structure (intrinsic pinning) on resistivity of high-T{sub c}, superconductors in the mixed state is investigated by means of perturbation theory. A sharp drop in the resistivity at small angles for which vortex lines are almost aligned with the ab-planes is shown to occur even in a high-temperature region where the pinning potential is reduced by thermal fluctuations.

  10. The DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-08-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region for the DELPHI experiment at the CERN LEP collider. A veto system composed of two scintillator layers allows to trigger on single photon events and provides e{minus}{gamma} separation. The authors present here some results of extensive measurements performed on part of the calorimeter and the veto system in the CERN test beams prior to installation and report on the performance achieved during the 1994 LEP run.

  11. Experimental Status of the CKM Angle β

    NASA Astrophysics Data System (ADS)

    Hirschauer, James F.

    2009-12-01

    We summarize measurements of the CKM angle β at the B-factories emphasizing a comparison of β measured in the B0→cc¯K(*)0 decay channels and βeff measured in b→qq¯s decay channels, such as B0→ωKS0, B0→η'K0, B0→π0KS0, and B0→S0KS0KS0.

  12. Shuttle Program. Euler angles, quaternions, and transformation matrices working relationships

    NASA Technical Reports Server (NTRS)

    Henderson, D. M.

    1977-01-01

    A brief mathematical development of the relationship between the Euler angles and the transformation matrix, the quaternion and the transformation matrix, and the Euler angles and the quaternion is presented. The analysis and equations presented apply directly to current space shuttle problems. The twelve three-axis Euler transformation matrices are given as functions of the Euler angles, the equations for the quaternion as a funtion of the Euler angles, and the Euler angles as a function of the transformation matrix elements.

  13. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  14. Off-Angle Iris Correction Methods

    SciTech Connect

    Santos-Villalobos, Hector J; Thompson, Joseph T; Karakaya, Mahmut; Boehnen, Chris Bensing

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  15. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  16. Effect of impact angle on vaporization

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  17. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    PubMed

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. PMID:27612817

  18. Prediction of lower extremities' movement by angle-angle diagrams and neural networks.

    PubMed

    Kutilek, Patrik; Farkasova, Barbora

    2011-01-01

    In contemporary science, the analysis of human walking is extensively used. The prediction of leg motion, as well as rehabilitation, can be usable for orthosis and prosthesis programing. Our work is focused on predicting of human walking by angle-angle diagrams, also called cyclograms. The applications of cyclograms in conjunction with artificial intelligence offers wide area of applications in medicine. But until now, this approach has not been studied or applied in practice. PMID:22097908

  19. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.

    PubMed

    Fadnes, Solveig; Ekroll, Ingvild Kinn; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse

    2015-10-01

    Two-dimensional blood velocity estimation has shown potential to solve the angle-dependency of conventional ultrasound flow imaging. Clutter filtering, however, remains a major challenge for large beam-to-flow angles, leading to signal drop-outs and corrupted velocity estimates. This work presents and evaluates a compounding speckle tracking (ST) algorithm to obtain robust angle-independent 2-D blood velocity estimates for all beam-to-flow angles. A dual-angle plane wave imaging setup with full parallel receive beamforming is utilized to achieve high-frame-rate speckle tracking estimates from two scan angles, which may be compounded to obtain velocity estimates of increased robustness. The acquisition also allows direct comparison with vector Doppler (VD) imaging. Absolute velocity bias and root-mean-square (RMS) error of the compounding ST estimations were investigated using simulations of a rotating flow phantom with low velocities ranging from 0 to 20 cm/s. In a challenging region where the estimates were influenced by clutter filtering, the bias and RMS error for the compounding ST estimates were 11% and 2 cm/s, a significant reduction compared with conventional single-angle ST (22% and 4 cm/s) and VD (36% and 6 cm/s). The method was also tested in vivo for vascular and neonatal cardiac imaging. In a carotid artery bifurcation, the obtained blood velocity estimates showed that the compounded ST method was less influenced by clutter filtering than conventional ST and VD methods. In the cardiac case, it was observed that ST velocity estimation is more affected by low signal-to-noise (SNR) than VD. However, with sufficient SNR the in vivo results indicated that a more robust angle-independent blood velocity estimator is obtained using compounded speckle tracking compared with conventional ST and VD methods. PMID:26470038

  20. Methods for making deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1982-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or larger planar surfaces.

  1. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  2. World oil shale deposits

    SciTech Connect

    Hook, C.O.; Russell, P.L.

    1982-01-01

    The article estimates resources in-place and their oil equivalent. The major deposits are described in the U.S., Australia, USSR, Peoples Republic of China, Morocco, Israel, Jordan, Syria, Europe and South America. 2 refs.

  3. Automatic Payroll Deposit System.

    ERIC Educational Resources Information Center

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  4. Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams

    NASA Astrophysics Data System (ADS)

    Beims, Marcus W.; Gallas, Jason A. C.

    2016-01-01

    Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems.

  5. Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams

    PubMed Central

    Beims, Marcus W.; Gallas, Jason A. C.

    2016-01-01

    Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems. PMID:26732416

  6. Implant Angle Monitor System of MC3-II

    SciTech Connect

    Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi

    2008-11-03

    Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.

  7. Modeling atmospheric particle deposition

    NASA Astrophysics Data System (ADS)

    Jackson, Msafiri M.

    Experimentally determined dry deposition velocities for atmospheric particles in the size range of 5-80 μm in diameter have been shown to be greater than predictions made with the current state-of-the-art (Sehmel-Hodgson) model which is based on wind tunnel experiment, particularly at higher wind speed. In this research, a model to predict the atmospheric dry deposition velocities of particles has been developed that is similar to a model developed for particle deposition in vertical pipes. The model uses a sigmoid curve to correlate nondimensional inertial deposition velocity (Vdi+) with dimensionless particle relaxation time (/tau+) and flow Reynolds number (Re). Vdi+ obtained from data collected in the atmosphere with particle size classifier system and a flat greased plate, Re, and /tau+ for particles between 1 and 100 μm diameter were fit with a sigmoid curve using the least square procedure to obtain coefficients for the sigmoid curve. Deposition velocities data for particles between 0.06 and 4 μm diameter developed by Sehmel-Hodgson model were used to introduce a Schmidt number (Sc) term to take care of Brownian diffusion. The atmospheric plate deposition velocity model is a function of Vst (Stokes settling velocity), V* (friction velocity), /tau+, Re, and Sc. Model application to 62 atmospheric data set revealed that: generated flux predictions agreed well with atmospheric measurements, and its performance is better than Sehmel-Hodgson model. By comparing the sigmoid curve coefficients developed for vertical pipe data with the coefficients developed for atmospheric data it is concluded that, the two types of deposition are similar when the effects of Re and /tau+ are properly considered. Sensitivity analysis for the model has revealed three distinct regions based on particle size. Of the three physical parameters (/tau+, Re, Sc) in the model, not more than two controls the deposition in any of the identified regions. The plate deposition model which is

  8. Wall Angle Effects on Nozzle Separation Stability

    NASA Astrophysics Data System (ADS)

    Aghababaie, A.; Taylor, N.

    The presence of asymmetric side loads due to unstable separation within over-expanded rocket nozzles is well documented. Although progress has been made in developing understanding of this phenomenon through numerical and experimental means, the causes of these side loads have yet to be fully explained. The hypothesis examined within this paper is that there is a relationship between nozzle wall angle at the point of separation, and the stability of the flow separation. This was achieved through an experimental investigation of a series of subscale over-expanded conical nozzles with half-angles of 8.3°, 10.4°, 12.6° and 14.8°. All had overall area ratios of 16:1, with separation occurring at approximately half the nozzle length (i.e. area ration of 4:1) under an overall pressure ratio of approximately 7:1 using air as the working fluid. The structure of exhaust flow was observed and analysed by use of an optimised Schlieren visualisation system, coupled with a high speed digital camera. The 12.6° and 14.8° nozzles exhaust flow were seen to be stable throughout the recorded test period of 10 seconds. However, a small number of large fluctuations in the jet angle were seen to be present within the flowfield of the 10.4° nozzle, occurring at apparently random intervals through the test period. The flowfield of the 8.3° nozzle demonstrated near continuous, large angle deviations in the jet, with flow patterns containing thickened shear layers and apparent reattachment to the wall, something not previously identified in conical nozzles. These results were used to design a truncated ideal contour with an exit angle of over 10 degrees, in order to assess the possibility of designing conventional nozzles that separate stably over a wide range of pressure ratios. These tests were successful, potentially providing a simpler, cheaper alternative to altitude compensating nozzle devices. However, more work determining the nature of the separation and its causes is

  9. Gemstone deposits of Serbia

    NASA Astrophysics Data System (ADS)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  10. Universal Cluster Deposition System

    NASA Astrophysics Data System (ADS)

    Qiang, You; Sun, Zhiguang; Sellmyer, David J.

    2001-03-01

    We have developed a universal cluster deposition system (UCDS), which combines a new kind of sputtering-gas-aggregation (SGA) cluster beam source with two atom beams from magnetron sputtering. A highly intense, very stable beam of nanoclusters (like Co, Fe, Ni, Si, CoSm or CoPt) are produced. A quadrupole and/or a new high transmission infinite range mass selector have been designed for the cluster beam. The size distribution (Δd/d) is between 0.05+/-0.10, measured in situ by TOF. A range of mean cluster size is 2 to 10 nm. Usually the deposition rate is about 5 deg/s. The cluster concentration in the film is adjusted through the ratio of cluster and atomic beam deposition rates, as measured in situ with a rotatable quartz microbalance. The UCDS can be used to prepare coated clusters. After exiting from the cluster source, the clusters can be coated first with an atomic or molecular species in an evaporation chamber, and deposited alone or co-deposited with another material. This system is used to deposit simultaneously or alternately mesoscopic thin films or multilayers, and offers the possibility to control independently the incident cluster size and concentration, and thereby the interaction between clusters and cluster-matrix material which is of interest for fundamental research and industry applications. Magnetic properties of Co cluster-assembled materials will be discussed. * Research supported by NSF, DARPA through ARO, and CMRA

  11. Growth Simulation and Structure Analysis of Obliquely Deposited Thin Films

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Izotov, A. V.; Solovev, P. N.

    2016-06-01

    Based on the Monte Carlo method, a model of growth of thin films prepared by oblique angle deposition of particles is constructed. The morphology of structures synthesized by simulation is analyzed. To study the character of distribution of microstructural elements (columns) in the film plane, the autocorrelation function of the microstructure and the fast Fourier transform are used. It is shown that with increasing angle of particle incidence, the film density monotonically decreases; in this case, anisotropy arises and monotonically increases in the cross sections of columns, and the anisotropy of distribution of columns in the substrate plane also increases.

  12. Optical circular dichroism of vacuum-deposited film stacks

    NASA Astrophysics Data System (ADS)

    Fan, B.; Vithana, H. K. M.; Kralik, J. C.; Faris, S. M.

    1998-02-01

    We report on optical circular dichroism of chiral multilayer SiO x films obtained by a novel vacuum deposition technique. The film layers were deposited at an oblique incidence angle to render them optically anisotropic, and were stacked such that the optic axes of the layers spiral in a helical fashion about the substrate normal. The resulting film stacks display both wavelength and polarization selectivity, in analogy with organic cholesteric liquid crystals aligned in the planar texture. Reflectance spectra of two films of opposite chirality are presented. Both film stacks are tuned to reflect in the visible and were prepared using obliquely deposited SiO x. Calculated spectra using a Berreman's 4×4 matrix approach agree well with the experimental findings. It is concluded that vacuum-deposited chiral film stacks hold promise for use as high-efficiency polarizers and other novel optical components.

  13. Microstructure of vapor deposited coatings on curved substrates

    SciTech Connect

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  14. Depositional dynamics and self-organization in travertine sedimentary systems

    NASA Astrophysics Data System (ADS)

    Violante, C.; Marino, G.; Sammartino, S.

    2003-04-01

    Travertines are terrestrial sedimentary systems associated with flowing water oversaturated with respect to calcium carbonate. They form terraced wedge-shaped organogenic bodies, fan-shaped in plan view, with internal achitecture characterized by downslope elongated domal structures (mound), juxtaposed by onlap geometries. Internal features of travertine mounds includes both upward decrease (up to subhorizontal) and downhill increase (up to subvertical) of clinostratification angles suggesting progradational mechanisms. The basic components of travertine deposits are aquatic sessile plants and microbes, developing along water flows. Regardless their role in carbonate precipitation, organisms appear as living templates able to organize primary carbonate encrustations along their growth directions. This results in early-lithified skeletal sedimentary bodies with rapid upward growth. Travertine accumulation transforms original slopes into gently inclined flat areas (travertine terraces), limited downhill by steeper slopes, eventually evolving in subvertical escarpments. Both terraces and escarpments are depositional rather then erosional features, being geomorphic expression of very shallow lacustrine deposits and waterfall structures respectively. Modern to fossil comparison among travertine systems located in southern and central Italy suggest a sedimentary model based on continued feedback between processes and products, which increase the complexity of depositional system over time. Encrusting waters display chemical gradients along their flow, modulating shape and downhill development of resulting travertine deposits. Upward growth gradually decreases original slope angles, so that the water flow is laterally displaced toward adjacent areas of steeper slope, accounting for juxtaposition of travertine mounds. By means of continuous lateral shifting of encrustation process travertine deposition gradually transform original slopes in gently inclined flat areas

  15. Perceptions of tilt angles of an agricultural tractor.

    PubMed

    Görücü, Serap; Cavallo, Eugenio; Murphy, Dennis

    2014-01-01

    A tractor stability simulator has been developed to help study tractor operators' perceptions of angles when the simulator is tilted to the side. The simulator is a trailer-mounted tractor cab equipped with hydraulic lift that can tilt the tractor cabin up to 30 degrees. This paper summarizes data from 82 participants who sat in the simulator while it was tilted. Demographic variables, estimates of tilt angles, and measured tilt angles were collected. The effects of age, gender, tractor driving experience, and frequency of operation on the estimated and measured tilt angles were analyzed. The results showed that about 50% of the participants reported estimations of side tilt angles within ±5 degrees of the actual angles, and nearly the same percentage overestimated the actual side tilt angles. Only a small percentage underestimated the angles. Older, more experienced, and male participants set higher limits on the actual angle at which they felt uncomfortable and would not drive. PMID:24417527

  16. Angle amplifier based on multiplexed volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan

    2008-03-01

    Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.

  17. Study of critical ricochet angle for conical nose shape projectiles

    NASA Astrophysics Data System (ADS)

    Murali, Vijayalakshmi; Law, Manish G.; Naik, Smita D.

    2012-09-01

    The purpose of this research is to formulate a generic analytical model to assess the phenomena of water ricochet for a conical nose shaped projectile. A theoretical model is analyzed to study the critical angle of conical nose shaped projectile entering in water and is extended for different mediums as normal sand and mercury. Numerical Simulation has been carried out to find the effect of tip angle of the conical nose shaped projectile on the critical angle. Critical angle is defined as that angle of impact of the projectile above which ricochet will occur. This angle is obtained by balancing the momentums acting on the projectile at the time of impact on the basis of Newtonian theory. Major factors affecting critical angle are impact velocity, impact angle, density of the projectile and the target. An attempt has been made to study the effect of longitudinal spin of the projectile on the critical angle.

  18. Beam impingement angle effects on secondary electron emission characteristics of textured pyrolytic graphite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.

  19. Ultrasonic estimation of the contact angle of a sessile droplet

    SciTech Connect

    Quintero, R.; Simonetti, F.

    2014-02-18

    Radiation of energy by large amplitude leaky Rayleigh waves is regarded as one of the key physical mechanisms regulating the actuation and manipulation of droplets in surface acoustic wave (SAW) microfluidic devices. The interaction between a SAW and a droplet is highly complex and is presently the subject of extensive research. This paper investigates the existence of an additional interaction mechanism based on the propagation of quasi-Stoneley waves inside sessile droplets deposited on a solid substrate. In contrast with the leaky Rayleigh wave, the energy of the Stoneley wave is confined within a thin fluid layer in contact with the substrate. The hypothesis is confirmed by three-dimensional finite element simulations and ultrasonic scattering experiments measuring the reflection of Rayleigh waves from droplets of different diameters. Moreover, real-time monitoring of the droplet evaporation process reveals a clear correlation between the droplet contact angle and the spectral information of the reflected Rayleigh signal, thus paving the way for ultrasonic measurements of surface tension.

  20. Becquerel Crater Deposit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 28 May 2002) The finely layered deposit in Becquerel crater, seen in the center of this THEMIS image, is slowly being eroded away by the action of windblown sand. Dark sand from a source north of the bright deposit is collecting along its northern edge, forming impressive barchan style dunes. These vaguely boomerang-shaped dunes form with their two points extending in the downwind direction, demonstrating that the winds capable of moving sand grains come from the north. Grains that leave the dunes climb the eroding stair-stepped layers, collecting along the cliff faces before reaching the crest of the deposit. Once there, the sand grains are unimpeded and continue down the south side of the deposit without any significant accumulation until they fall off the steep cliffs of the southern margin. The boat-hull shaped mounds and ridges of bright material called yardangs form in response to the scouring action of the migrating sand. To the west, the deposit has thinned enough that the barchan dunes extend well into the deeply eroded north-south trending canyons. Sand that reaches the south side collects and reforms barchan dunes with the same orientation as those on the north side of the deposit. Note the abrupt transition between the bright material and the dark crater floor on the southern margin. Steep cliffs are present with no indication of rubble from the obvious erosion that produced them. The lack of debris at the base of the cliffs is evidence that the bright material is readily broken up into particles that can be transported away by the wind. The geological processes that are destroying the Becquerel crater deposit appear active today. But it is also possible that they are dormant, awaiting a particular set of climatic conditions that produces the right winds and perhaps even temperatures to allow the erosion to continue.

  1. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  2. Reflection polarized light microscopy and its application to pyrolytic carbon deposits

    NASA Astrophysics Data System (ADS)

    Bortchagovsky, E. G.

    2004-05-01

    The methods for the measurement of extinction angles by reflection polarized light microscopy were analyzed with respect to the investigation of pyrolytic carbon deposits. It is demonstrated that measurements of the extinction angle for deposits with circular morphology (e.g., a pyrolytic carbon layer on a fiber) must be strictly distinguished from the standard measurements of optically uniaxial materials with spatially uniform optical properties, such as a single crystal (e.g., graphite or pyrolytic carbon on a planar substrate). On the basis of the mathematical description of the method, an expression of the extinction angle for materials with a circular morphology is derived. This expression differs from the equation describing measurements of the extinction angle for optically uniaxial materials with spatially uniform properties erroneously applied for circular morphology. It is demonstrated on the basis of the developed formalism that no discrepancy exists between measured extinction angles for circular pyrolytic carbon deposits and single crystalline graphite, which was discussed earlier due to the misinterpretation of data measured by two different methods. The physical meaning of extinction angles is discussed and approaches for the measurement of two meaningful ellipsometric parameters instead of one extinction angle are proposed.

  3. Ion beam deposition processes for improved hard bias magnetic and device properties in the abutted junction configuration

    NASA Astrophysics Data System (ADS)

    Devasahayam, Adrian J.; Wang, Jinsong; Hedge, Hari

    2000-05-01

    Permanent magnet films of Cr/CoCrPt for use in an abutted junction hard bias scheme were deposited by an ion beam deposition (IBD) system. The deposition angle control of IBD systems was employed to yield some excellent material and device related improvements. For films with the structure Cr-50 Å/CoCrPt-250 Å, increasing the deposition angle θ (as measured from the substrate normal) of the Cr layer from 20° to 60°, resulted in an increase in coercivity from 1860 to 1905 Oe. X-ray diffraction measurements showed that this improvement was related to an increase in CoCrPt in-plane texture and a decrease in c-axis perpendicular texture. The reason for this increase in in-plane texture is that there is better epitaxial matching between the CoCrPt and the Cr underlayer brought about by a change in the lattice dimension of Cr as a result of changing stress levels. Another positive effect of depositing the Cr at a larger angle is that the Cr would be thicker farther into the abutted junction and thus delay the onset of poor magnetic properties due to a thinning underlayer. The angle of deposition parameter can be used to further advantage by depositing the lead layer at a larger angle than the permanent magnet layers. This type of scheme would allow the leads to encroach over the permanent magnets and make direct contact with the sensor, yielding low contact resistance.

  4. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  5. Euler angles as torsional flat spaces

    NASA Astrophysics Data System (ADS)

    Trejo-Mandujano, Hector A.

    In this work we use general tensor calculus to compare the geodesic equation of motion and Newton's first law for force-free classical systems that are described by an arbitrary number of generalized coordinates in spaces with and without torsion. We choose as objects of study the flat torsional Euler angle metric spaces for rigid rotators. We tested the equivalence of the two motion equations using computational software that allowed algebraic manipulation. The main result is that the equivalence only holds for torsion-free spaces, and for isotropic force-free rotators. We present analytical calculations for the isotropic case and computational results for the general case.

  6. Junctional angle of a bihanded helix.

    PubMed

    Yang, Jing; Wolgemuth, Charles W; Huber, Greg

    2014-10-01

    Helical filaments having sections of reversed chirality are common phenomena in the biological realm. The apparent angle between the two sections of opposite handedness provides information about the geometry and elasticity of the junctional region. In this paper, the governing differential equations for the local helical axis are developed, and asymptotic solutions of the governing equations are solved by perturbation theory. The asymptotic solutions are compared with the corresponding numerical solutions, and the relative error at second order is found to be less than 1.5% over a range of biologically relevant curvature and torsion values from 0 to 1/2 in dimensionless units. PMID:25375538

  7. Analyzing biomolecular interactions by variable angle ellipsometry

    NASA Astrophysics Data System (ADS)

    Wu, Jiun-Yan; Lee, Chih-Kung; Lee, J. H.; Shiue, Shuen-Chen; Lee, Shu-Sheng; Lin, Shiming

    2001-10-01

    In this paper, an innovative ellipsometer is developed and applied to metrology of the biomolecular interaction on a protein biochip. Both the theory, optical and opto-mechanical configurations of this newly developed ellipsometer and methodologies adopted in system design to improve the system performance are presented. It will be shown that by measuring the ellipsometric parameters, the corresponding concentration variation in biochemical reaction can be calculated according to stoichiometry analysis. By applying the variable angle ellipsometry to analysis of a multi-layered sample, the thickness and concentration are resolved. It is believed that the newly developed ellipsometer biosensor is able to undertake an accurate measurement on biomedical interaction.

  8. X-29 high angle of attack

    NASA Technical Reports Server (NTRS)

    Ishmael, Stephen D.; Smith, Rogers E.; Purifoy, Dana D.; Womer, Rodney K.

    1990-01-01

    Flight test program highlights are discussed for the X-29 high angle-of-attack (AOA) aircraft. The AOA envelope extended from 10 to 66 deg; the X-29 exhibited precise pitch control, allowing AOA to be maintained within 1 deg during stabilized points as well as permitting rapid recoveries from all AOAs. Attention is given to controllability degradation above 40-deg AOA due to asymmetric yawing moments. The use of this aircraft as a fundamental research tool which complements analytical methods is powerfully justified by the obviation of scaling effects.

  9. Neurenteric cysts of the cerebellopontine angle.

    PubMed

    Roder, Constantin; Ebner, Florian H; Schuhmann, Martin U

    2013-12-01

    Neurenteric cysts in the central nervous system are rare developmental malformations. Usually the cysts are located ventral to the high thoracic or low cervical spinal cord. Only a few cases of intracranial neurenteric cysts have been reported in the literature to date. We report two cases of intracranial neurenteric cysts in the cerebellopontine angle with totally different radiographic, macroscopic, and microscopic appearance. As seen in these cases, the imaging spectrum of neurenteric cysts can be diverse, including malignancy-suspecting partial rim-enhancement or low-grade glioma features. Microsurgical therapy should include endoscopic assistance to ensure complete removal of cyst content. PMID:23397125

  10. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  11. Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure

    PubMed Central

    Li, Shi-Wei; Chen, Yan; Wu, Qiang; Lu, Bin; Wang, Wen-Qing; Fang, Jian

    2015-01-01

    AIM To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC) using ultrasound biomicroscopy (UBM). METHODS Patients (n=23, 31 eyes) were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes). Best-corrected visual acuity (BCVA), intraocular pressure (IOP), the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively. RESULTS The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05). IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05), whereas there was no significant difference between the two groups at the latter follow-up (P>0.05). Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05), whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group. CONCLUSION Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery. PMID:26309873

  12. Dirac leptonic angle matrix versus Majorana leptonic angle matrix and their renormalization group running behaviors

    NASA Astrophysics Data System (ADS)

    Luo, Shu

    2012-01-01

    Enlightened by the idea of the 3×3 Cabibbo-Kobayashi-Maskawa angle matrix proposed recently by Harrison , we introduce the Dirac angle matrix Φ and the Majorana angle matrix Ψ in the lepton sector for Dirac and Majorana neutrinos, respectively. We show that in the presence of CP violation, the angle matrix Φ or Ψ is entirely equivalent to the complex Maki-Nakagawa-Sakata matrix V itself, but has the advantage of being real, phase rephasing invariant, directly associated to the leptonic unitarity triangles and do not depend on any particular parametrization of V. In this paper, we further analyzed how the angle matrices evolve with the energy scale. The one-loop renormalization group equations of Φ, Ψ and some other rephasing invariant parameters are derived and a numerical analysis is performed to compare between the case of Dirac and Majorana neutrinos. Different neutrino mass spectra are taken into account in our calculation. We find that apparently different from the case of Dirac neutrinos, for Majorana neutrinos the renormalization group equation evolutions of Φ, Ψ and J strongly depend on the Majorana-type CP-violating parameters and are more sensitive to the sign of Δm312. They may receive significant radiative corrections in the minimal supersymmetric standard model with large tan⁡β if three neutrino masses are nearly degenerate.

  13. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  14. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  15. Empirical Photometric Normalization for the Seven Band UV-VIS Lunar Reconnaissance Orbiter Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Robinson, M. S.; Nuno, R. G.; Sato, H.

    2014-12-01

    We present results on a near-global (80°S to 80°N) seven color Wide Angle Camera (WAC) photometric normalization and color analysis. Over 100,000 WAC color observations were calibrated to reflectance (radiance factor: IoF), and photometric angles (i,e,g), latitude, and longitude were calculated and stored for each WAC pixel. Photometric angles were calculated using the WAC GLD100 [1], and a six-dimensional data set (3 spatial and 3 photometric) was reduced to three by photometrically normalizing the IoF with a global wavelength-dependent, 3rd-order multivariate polynomial. The multispectral mosaic was normalized to a standard viewing geometry (incidence angle=30°, emission angle=0°, phase angle=30°).The WAC has a 60° cross-track field-of-view in color mode, which allows the acquisition of a near global data set each month; however, the phase angle can change by as much as 60° across each image. These large changes in viewing geometry present challenges to the required photometric normalization. In the ratio of the 321 nm and 689 nm wavelengths, the Moon has a standard deviation less than 3% in the highlands and 7% globally; thus to allow confident identification of true color differences, the photometric normalization must be precise. Pyroclastic deposits in Marius Hills, Sinus Aestuum, and Mare Serenitatis are among the least reflective materials, with 643 nm normalized reflectance values less than 0.036.Low-reflectance deposits are generally concentrated close to the equator on the nearside, whereas high-reflectance materials are dispersed globally. The highest reflectance materials occur at Giordano Bruno and Virtanen craters and are attributed to exposure of immature materials. Immature ejecta has shallower spectral slope compared to the mean highlands spectra (321 nm to 689 nm), and UV weathering characteristics can be seen when comparing different aged Copernican ejecta [2]. Copernican ejecta is found to have 643 nm reflectance values greater than 0

  16. (abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films

    NASA Technical Reports Server (NTRS)

    Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.

    1994-01-01

    Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.

  17. Study on self-calibration angle encoder using simulation method

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xue, Zi; Huang, Yao; Wang, Xiaona

    2016-01-01

    The angle measurement technology is very important in precision manufacture, optical industry, aerospace, aviation and navigation, etc. Further, the angle encoder, which uses concept `subdivision of full circle (2π rad=360°)' and transforms the angle into number of electronic pulse, is the most common instrument for angle measurement. To improve the accuracy of the angle encoder, a novel self-calibration method was proposed that enables the angle encoder to calibrate itself without angle reference. An angle deviation curve among 0° to 360° was simulated with equal weights Fourier components for the study of the self-calibration method. In addition, a self-calibration algorithm was used in the process of this deviation curve. The simulation result shows the relationship between the arrangement of multi-reading heads and the Fourier components distribution of angle encoder deviation curve. Besides, an actual self-calibration angle encoder was calibrated by polygon angle standard in national institute of metrology, China. The experiment result indicates the actual self-calibration effect on the Fourier components distribution of angle encoder deviation curve. In the end, the comparison, which is between the simulation self-calibration result and the experiment self-calibration result, reflects good consistency and proves the reliability of the self-calibration angle encoder.

  18. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  19. Venus - Landslide Deposits

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Magellan spacecraft has observed remnant landslide deposits apparently resulting from the collapse of volcanic structures. This image, centered at 45.2 degrees south latitude, 201.4 degrees east longitude, shows a collapse deposit 70 kilometers (43 miles) across. The bright, highly textured deposit near the center of the image probably consists of huge blocks of fractured volcanic rock, many as large as several hundred meters across. A remnant of the volcano itself, about 20 kilometers (12.4 miles) across, is seen at the center of the image. The distorted radar appearance of the volcano is a result of extremely steep slopes on the 'scars' from which the landslide material originated. A field of numerous small volcanic domes can be seen in the northern half of the image. The bright irregular lineaments trending to the north-northwest are ridges caused by regional tectonic deformation of the upper layers of the Venusian crust.

  20. Turbine Airfoil Deposition Models

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1984-01-01

    Gas turbine failures associated with sea-salt ingestion and sulfur-containing fuel impurities have directed attention to alkali sulfate deposition and the associated hot corrosion of gas turbine (GT) blades under some GT operating conditions. These salt deposits form thin, molten films which undermine the protective metal oxide coating normally found on GT blades. The prediction of molten salt deposition, flow and oxide dissolution, and their effects on the lifetime of turbine blades are examined. Goals include rationalizing and helping to predict corrosion patterns on operational GT rotor blades and stators, and ultimately providing some of the tools required to design laboratory simulators and future corrosion-resistant high-performance engines. Necessary background developments are reviewed first, and then recent results and tentative conclusions are presented along with a brief account of the present research plans.