Science.gov

Sample records for glass ionomer ketac

  1. Sealing properties of Ketac-Endo glass ionomer cement and AH26 root canal sealers.

    PubMed

    De Gee, A J; Wu, M K; Wesselink, P R

    1994-09-01

    Sealing capacity, setting shrinkage and setting time of a recently introduced glass ionomer cement Ketac-Endo were compared with that of a conventional sealer AH26. Sixty half-cylinders, 8 mm long, 4 mm in diameter, made from fresh bovine root dentine, had their smear layer removed before being cemented together while separated by 1-mm spacers. This resulted in a group of 15 cylinders cemented with Ketac-Endo and a similar group with AH26. After coating the lateral surface with nail varnish, one end of each cylinder was connected with a tube filled with water under 120 kPa (1.2 atm) pressure. At the other end the fluid leaking through the cemented interface of the cylinders was measured by displacement of an air bubble in an attached standard glass capillary. In this particular set-up where the sealers were used in bulk between two opposing dentine surfaces, Ketac-Endo leaked significantly more than AH26. After shear loading the cemented specimens, it was found that the area of adhesive failure was 88% for Ketac-Endo, and 15% for AH26. The leakage pathways were most probably at the dentine-sealer interface for Ketac-Endo and through cohesive fractures in the sealer for AH26. PMID:7814135

  2. In vitro antibacterial activity of glass-ionomer cements.

    PubMed

    Herrera, M; Carrión, P; Baca, P; Liébana, J; Castillo, A

    2001-01-01

    The in vitro antibacterial activity of the glass-ionomer restorative cements Ketac-Cem, Ketac-Bond, Ketac-Silver and Vitrebond was studied in conjunction with 32 strains of five bacteria involved in the development of caries: Streptococcus spp., Lactobacillus spp., Actinomyces spp., Porphyromonas spp. and Clostridium spp. The agar plate diffusion method was used for the cultures, which included a chlorhexidine positive control. All the glass-ionomer cements tested inhibited bacterial growth, but with considerable differences in the scope of their action. Of the four cements, Vitrebond, a resin-modified glass-ionomer cement, was determined to be the most effective bacterial inhibitor. PMID:11327108

  3. Thermal characterization of glass ionomer/vinyl IPN composites

    SciTech Connect

    Puckett, A.D.; Bennett, B.; Shelby, A. Storey, R.

    1993-12-31

    In and attempt to improve some of the disadvantages of the conventional glass ionomers such as Ketac-fil, two photocurable glass ionomer restoratives have been introduced to the dental profession. The initial objective of this study was to compare the thermal expansion coefficients on the new formulations, Vari-Glass and Fuji II ionomer to the conventional glass ionomer composites using thermal mechanical analysis and to determine the residual monomer contents after photopolymerization using differential scanning calorimetry. Results suggest that these materials exhibit multiphase morphologies. Conventional glass ionomers exhibit two distinct glass transition temperatures. While Fuji II exhibits many of the characteristics of a conventional glass ionomer, Vari-Glass behaves more as a glass-filled resin composite. Fuji II and Ketac-fil exhibit expansion coefficients which are compatible with tooth structure below body temperature, but may cause significant stress on the bond to tooth structure due to shrinkage of the materials at temperatures slightly above body temperature. In contrast, the Vari-Glass formulation exhibits an expansion coefficient which is over three times that of tooth structure and will result in significant stresses above or below body temperature.

  4. Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples.

    PubMed

    Herrera, M; Castillo, A; Bravo, M; Liébana, J; Carrión, P

    2000-01-01

    A total of 103 clinical samples of carious dentin were used to study the antibacterial action of different dental resin adhesive materials (Gluma 2000, Syntac, Prisma Universal Bond 3, Scotchbond Multi-Purpose and Prime&Bond 2.0) glass ionomer cements (Ketac-Cem, Ketac-Bond, Ketac-Silver, Ketac-Fil) resin-modified glass ionomer cements (Fuji II LC, Vitremer and Vitrebond) and a compomer (Dyract). The agar plate diffusion method was used for the microbial cultures and a chlorhexidine control. The growth of the caries-producing microorganisms was effectively inhibited by the Vitremer and Vitrebond cements, and to a lesser extent by the Scotchbond Multi-Purpose adhesive system. Overall, there were statistically significant differences in the antibacterial activity of the products tested. PMID:11203829

  5. Dispersive surface properties of glass-ionomer cements determined by inverse gas chromatography

    NASA Astrophysics Data System (ADS)

    Andrzejewska, E.; Voelkel, A.; Andrzejewski, M.; Limanowska-Shaw, H.

    2005-05-01

    The surface properties of several glass-ionomer cements (GIC), restorative dental materials, (GC-Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated for the first time by means of inverse gas chromatography. This method enables characterization of surface activity in dispersive (non-polar) and acid-base interactions. The ability of the surface of glass-ionomers to participate in dispersive interactions was expressed by the use of the dispersive component of surface free energy γsd. This parameter was determined with satisfactory precision, meaning that the values of γsd can be further used in the discussion of the influence of the type of GIC, its preparation and the storage time on the surface properties. The greatest capacity for dispersive interactions was revealed by Ketac Molar and the lowest by GC-Fuji. Dispersive interactions in the surface activity of glass-ionomers increased with increasing storage time after cement preparation.

  6. Acid base surface properties of glass-ionomers determined by IGC

    NASA Astrophysics Data System (ADS)

    Voelkel, A.; Andrzejewska, E.; Limanowska-Shaw, H.; Andrzejewski, M.

    2005-05-01

    SummaryThe surface properties of several glass-ionomer restorative dental materials (GC Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated by means of inverse gas chromatography. The capacity of the surface of glass-ionomers to undergo specific interactions was expressed using the specific component of free energy Δ Gs as well as the parameters KA and KD to describe the ability of the cement to act both as an electron acceptor and an electron donor, respectively. The character of the examined surface was expressed with the use of the SC parameter. All these parameters were determined with a high degree of precision. It was found that the surface of glass-ionomer cements had a well-marked acidic character. The ability of the cement surface to take part in specific interactions differed with the various types of commercial products. The surface activity of the glass-ionomers investigated changed with the storage time (up to 6 months) indicating an on-going setting reaction.

  7. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  8. Cytotoxicity of dental glass ionomers evaluated using dimethylthiazol diphenyltetrazolium and neutral red tests.

    PubMed

    Lönnroth, E C; Dahl, J E

    2001-02-01

    The purpose of this study was to assess the cytotoxicity of some commonly used glass ionomers. Three chemically cured glass ionomers (Fuji II, Lining cement, and Ketac Silver) and one light-cured (Fuji II LC) were tested. Extracts of mixed non-polymerized materials and polymerized specimens were prepared in accordance with ISO standard 10993-12. The polymerized specimens were cured and placed either directly in the medium (freshly cured), left for 24 h (aged), or aged plus ground before being placed in the medium. The cytotoxicity of extracts was evaluated on mouse fibroblasts (L, 929), using dimethylthiazol diphenyltetrazolium (MTT) and neutral red (NR) assays. Further, the concentrations of aluminum, arsenic and lead were analyzed in aqueous extracts from freshly cured and aged samples, and the fluoride levels analyzed in aqueous extracts from freshly cured samples. All extracts except that of non-polymerized Ketac Silver were rated as severely cytotoxic in both assays. Extracts of polymerized material were significantly more cytotoxic than extracts of non-polymerized material. All freshly cured glass ionomers released aluminum and fluoride concentrations far above what is considered cytotoxic (aluminum >0.2 ppm and fluoride >20 ppm). Extracts from freshly cured Lining Cement contained the highest concentrations of aluminum and fluoride (215 ppm and 112 ppm). Extracts from freshly cured Ketac Silver had the lowest concentrations of aluminum and fluoride but the highest of lead (100 ppm). It can be concluded that all extracts from non-cured, freshly cured, and aged glass ionomers contained cytotoxic levels of substances. Curing did not reduce the toxicity significantly. PMID:11318043

  9. Marginal leakage of class II glass ionomer-composite resin restorations: an in vitro study.

    PubMed

    Hirschfeld, Z; Frenkel, A; Zyskind, D; Fuks, A

    1992-02-01

    This in vitro study assessed the sealing properties of two metal-reinforced glass ionomer cements, used as "extended bases" in glass ionomer-composite resin restorations. Two class II cavities were prepared in the proximal surfaces of 30 molars. The gingival margin of one was prepared in enamel and the other in cementum/dentin. Fifteen teeth (30 cavities) were restored with Ketac Silver material used as an extended base (group A). In the remaining 15 teeth (30 cavities), the extended base was in Miracle Mix material (group B). All occlusal surfaces were restored with Estilux Posterior Material. The restored teeth were thermocycled, immersed in fuchsin, washed in water, embedded, sectioned, and examined under a dissecting microscope. All restorations with margins in cementum/dentin of group A (Ketac Silver) leaked. No microleakage occurred in 12 of the 30 restorations with margins in cementum/dentin of group B (Miracle Mix). In addition, severe microleakage was present in 24 teeth of group A, as opposed to three in group B. It was concluded that the sealing properties of Miracle Mix material are superior to those of Ketac Silver material, in vitro. PMID:1538319

  10. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    PubMed Central

    Khoroushi, Maryam; Keshani, Fateme

    2013-01-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

  11. Comparative wear resistance of reinforced glass ionomer restorative materials.

    PubMed

    Yap, A U; Teo, J C; Teoh, S H

    2001-01-01

    This study investigated the wear resistance of three restorative reinforced glass ionomer cements (Fuji IX GP FAST [FJ], Miracle Mix [MM] and Ketac Silver [KS]). Microfilled (Silux [SX]) and mini-filled (Z100 [ZO]) composites were used for comparison. Six specimens were made for each material. The specimens were conditioned for one week in distilled water at 37 degrees C and subjected to wear testing at 20 MPa contact stress against SS304 counterbodies using a reciprocal compression-sliding wear instrumentation. Distilled water was used as lubricant. Wear depth (microm) was measured using profilometry every 2,000 cycles up to 10,000 cycles. Results were analyzed using ANOVA/Scheffe's test (p<0.05). After 10,000 cycles of wear testing, ranking was as follows: KS>ZO>MM>FJ>SX. Wear ranged from 26.1 microm for SX to 71.5 microm for KS. The wear resistance of KS was significantly lower than FJ, MM and SX at all wear intervals. Although KS had significantly more wear than ZO at 2,000 to 6,000 cycles, no significant difference in wear was observed between these two materials at 8,000 and 10,000 cycles. Sintering of silver particles to glass ionomer cement (KS) did not appear to improve wear resistance. The simple addition of amalgam alloy to glass ionomer may improve wear resistance but results in poor aesthetics (silver-black color). FJ, which relies on improved chemistry instead of metal fillers, showed comparable wear resistance to the composites evaluated and is tooth-colored. It may serve as a potential substitute for composites in low-stress situations where fluoride release is desirable and aesthetic requirements are not high. PMID:11504433

  12. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  13. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

    PubMed Central

    Cabral, Maria Fernanda Costa; Martinho, Roberto Luiz de Menezes; Guedes-Neto, Manoel Valcácio; Rebelo, Maria Augusta Bessa; Pontes, Danielson Guedes

    2015-01-01

    Objectives The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinâmica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinâmica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs. PMID:26295024

  14. [Light-cured glass ionomer cements].

    PubMed

    Nordbø, H

    1989-12-01

    An attempt at improving the properties of glass-ionomer cements is represented by the incorporation of light-cure resin systems. This produces materials which have mechanical properties and moisture sensitivity superior to those of present glass-ionomer cements. Such hybrid materials cure by two different mechanisms: polymerization and salt formation. In particular, the early mechanical properties and water sensitivity of the materials are improved due to the formation of a polymer matrix. The tendency to undergo surface crazing during desiccation is also reduced. Three commercially available products are shortly described. PMID:2640704

  15. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements

    PubMed Central

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-01-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only. PMID:23988173

  16. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements.

    PubMed

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-08-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only. PMID:23988173

  17. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    PubMed

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P < 0.05) and post hoc Newman-Keuls test. All brands of glass-ionomer showed a small inherent setting exotherm in the absence of heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P < 0.05) and did not reflect the nominal power of the lamps, because those lamps have variable cooling systems, and are designed to optimize light output, not heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp. PMID:26411445

  18. Microleakage on Class V glass ionomer restorations after cavity preparation with aluminum oxide air abrasion.

    PubMed

    Corona, Silmara Aparecida Milori; Borsatto, Maria Cristina; Rocha, Renata Andréa Salvitti de Sá; Palma-Dibb, Regina Guenka

    2005-01-01

    This in vitro study assessed the marginal microleakage on class V cavities prepared with aluminum oxide air abrasion and restored with different glass ionomer cements. The cavities were prepared on the buccal and lingual surfaces of 15 sound third molars with an air- abrasion device (Kreativ Mach 4.1; New Image) using a 27.5-microm aluminum oxide particle stream, and were assigned to 3 groups of 10 cavities each. The restorative materials were: group I, a conventional glass ionomer cement (Ketac-Fil); groups II and III, resin-modified glass ionomer cements (Vitremer R and Fuji II LC, respectively). After placement of the restorations, the teeth were stored in distilled water at 37 degrees C for 24 h, polished and then submitted to a thermocycling regimen of 500 cycles, isolated, immersed in 0.2% Rhodamine B solution for 24 h, included and serially sectioned. Microleakage was assessed by viewing the specimens under an optical microscope connected to a color video camera and a computer. The images obtained were digitized and analyzed for microleakage using software that allows for a standard quantitative assessment of dye penetration in millimeters. Statistical analysis was done using the Kruskall-Wallis and Wilcoxon tests. Means of dye penetration (%) were: occlusal - I: 25.76 +/- 34.35, II: 20.00 +/- 42.16, III: 28.25 +/- 41.67; cervical - I: 23.72 +/- 41.84; II: 44.22 +/- 49.69, III: 39.27 +/- 50.74. No statistically significant differences (p>0.05) were observed among either the glass ionomer cements or the margins. In conclusion, class V cavities restored with either conventional or resin-modified glass ionomer cements after preparation with aluminum oxide air abrasion did not show complete sealing at the enamel and dentin/cementum margins. PMID:16113931

  19. Comparative evaluation of microleakage of nano-filled resin-modified glass ionomer: An in vitro study

    PubMed Central

    Eronat, Nesrin; Yilmaz, Emir; Kara, Nazan; Topaloglu, Ak Asli

    2014-01-01

    Objective: This in vitro study evaluated the microleakage of a nano-filled resin-modified glass ionomer and a high viscosity glass-ionomer restorations in class V cavities. Materials and Methods: Thirty-two class V cavities prepared on the buccal and lingual surfaces of 16 sound, third molar teeth were randomly assigned into two groups and restored by one of the glass ionomer material; Group A: A high viscosity (Ketac Molar, 3M ESPE) Group B: A nano-filled resin-modified (Ketac N100, 3M ESPE) glass ionomer. One clinician prepared all the cavities. The materials were used according to the manufacturers’ recommendations. The restored teeth were then stored in distilled water at 37°C for 24 h, thermocycled at 5-55°C for 1000 cycles. The specimens were immersed in aqueous solution of Indian ink dye for 48 h at room temperature. They were embedded in resin polyester and sectioned longitudinally in a buccolingual direction. Microleakage was assessed according to the depth of dye penetration along the restoration. The extent of dye penetration at the occlusal and gingival margins was assessed using a stereo microscope. Randomly selected samples from each group were prepared for scanning electron microscope evaluation. The data were statistically analyzed with Friedman and Wilcoxon signed ranks tests. Results: There were statistically significant differences between the microleakage scores of the two groups for both occlusal and gingival scores (P = 0.001). Occlusal and gingival scores for high viscosity glass ionomer (P = 0.024) and nanoionomer (P = 0.021) using Wilcoxon signed ranks tests showed statistically significant differences. High viscosity glass ionomer showed significantly less microleakage compared to the nano-filled resin-modified glass-ionomer (RMGIs) at occlusal margin (P = 0.001). No significant differences were found between the groups at gingival margin (P = 0.0317). Conclusion: Within the limitations of this in vitro study, nano-filled RMGIs

  20. Clinical applications of glass-ionomer cements.

    PubMed

    McLean, J W

    1992-01-01

    The use of glass-ionomer cements in clinical dentistry is now well established. They have a number of unique properties, including adhesion to moist tooth structure, biological compatibility, and anticariogenic properties due to their fluoride release. Their use in treating early carious or erosion lesions has been widely investigated. Established techniques include fissure filling and sealing, restoration of class 5 erosion lesions without cavity preparation, and the internal occlusal fossa or tunnel restoration. The "sandwich" technique using glass-ionomer cements as "dentin substitutes" has enabled composite restorations to be used with greater safety where pulpal damage may occur. The future probably lies in using a laminate technique where materials that attach to dentin and form a biological seal can be covered by tougher and harder enamel veneers, thus mimicking the structure of the tooth. The deficiencies of glass-ionomer cements are well known, including lack of toughness, early water sensitivity, low abrasion resistance, and porosity leading to poor surface polish. Solving these problems is formidable, since inherently the strength of these cements is related to their water content. The clinician should be aware of these deficiencies and stay within the parameters of the techniques outlined in this paper. In particular, clinical success depends upon early protection of the cement from hydration or dehydration, and the current use of light-cured bonding agents has largely solved this problem. PMID:1470548

  1. Occlusal glass ionomer cermet, resin sandwich and amalgam restorations: a 2-year clinical study.

    PubMed

    Lidums, A; Wilkie, R; Smales, R

    1993-08-01

    This study compared the clinical behavior of a glass ionomer silver cermet (Ketac-Silver), a posterior resin composite (Visio-Molar) used with the "sandwich" technique, and a high-copper amalgam (Dispersalloy) for restoring conventional Class I occlusal cavity preparations. Two dentists placed 116 restorations in the posterior permanent teeth of 35 adults treated at a dental hospital. Restorations were assessed at 6-month intervals over 2 years for bulk loss of material and occlusal wear, surface voids, roughness and cracking, surface and marginal staining, and marginal fracture. Losses of material and surface voids were obvious with the cermet material, with surface crazing or cracking being present in 33% of the restorations. The cermet cannot be recommended as a long-term permanent restorative material if the restorations are likely to be subjected to heavy occlusal stresses and abrasive wear. PMID:7803005

  2. Properties of a glass-ionomer/resin-composite hybrid material.

    PubMed

    Mathis, R S; Ferracane, J L

    1989-09-01

    A small percentage of the liquid resin used in commercial dental composites was added to the liquid used in a commercial glass-ionomer restorative in order to produce a fluoride-containing hybrid restorative-type material that would adhere to dentin while being stronger, less brittle, and less sensitive to desiccation in the oral cavity than glass ionomer. Compressive strength, yield strength, elastic modulus, fracture toughness, and tensile strength were analyzed for this hybrid, light-cured material. In addition, the solubility in water, adhesion to dentin, and surface roughness were also examined in vitro. The results suggest that the early (one-hour) mechanical properties of the hybrid material exceed those of glass ionomer. In addition, the brittleness and solubility of the material are less than those of commercial glass ionomer, while adhesion to dentin is unaffected. Most importantly, surface crazing, a documented problem with some glass ionomers when they become desiccated, is alleviated with this hybrid formulation. PMID:2638281

  3. A Review of Glass-Ionomer Cements for Clinical Dentistry.

    PubMed

    Sidhu, Sharanbir K; Nicholson, John W

    2016-01-01

    This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2-3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature. PMID:27367737

  4. Amino acid containing glass-ionomer cement for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  5. Glass transition(s) of ionomers

    SciTech Connect

    Weiss, R.A.

    1994-09-01

    Ionomers are predominantly nonpolar polymers that contain a small amount of bonded salt groups. Microphase separation of ion-rich microdomains occurs as a consequence of the thermodynamic incompatibility of the salt groups and the polymer matrix and associative interactions between salt groups. Associations of the salt groups usually increase the glass transition of the continuous matrix phase, presumably as a consequence of the inhibition of chain mobility that accompanies physical crosslinking. The central question raised in this paper is whether the dispersed ion-rich microphase exhibits a glass transition. Although no glass transition for the microphase is detected by calorimetry, a dynamic mechanical relaxation is commonly observed above the T{sub g} of the matrix phase. This transition has some of the attributes of a glass transition, but it is not clear what is the actual relaxation process that is measured. This paper discusses the effect of the ionic groups on the matrix glass transition, the origin of the high-temperature dynamic mechanical transition, and the effects of the addition of plasticizers on the T{sub g} of the matrix and the higher temperature mechanical relaxation.

  6. A Comparative Evaluation of Microleakage of Glass Ionomer Cement and Chitosan-modified Glass Ionomer Cement: An in vitro Study

    PubMed Central

    Thomas, Abi Mathew; Chopra, Saroj; Koshy, Stephen

    2014-01-01

    ABSTRACT Objective: To do a comparative study of microleakage of glass ionomer cement (GIC) and chitosan modified glass ionomer cement and evaluate which exhibited lesser microleakage. Materials and methods: Sixty freshly extracted sound primary molar teeth were obtained. Two groups of samples were created for the study which comprised of group I (glass ionomer cement—GIC) and group II (Chitosan modified glass ionomer cement). Class V cavities were prepared on the buccal surfaces. All the tooth surfaces except the restoration and a 1 mm zone adjacent to its margins were covered with two coats of varnish. The specimens were then immersed in 2% basic fuschin dye solution for 24 hours. The teeth were sectioned into two halves buccolingually in an occlusoapical direction. Sections were viewed under stereomicroscope and the degree of microleakage was evaluated using specific scoring criteria. For comparative evaluation of microleakage scores between glass ionomer cement and chitosan modified cement, a nonparametric Mann-Whitney statistical analysis was done. Results: Statistical analysis showed no significant differences between groups I and II with the p-value at >0.05. Conclusion: Chitosan modified GIC holds great promise for general dentistry as a future restorative material with microleakage properties similar to or better than GIC. How to cite this article: Abraham D, Thomas AM, Chopra S, Koshy S. A Comparative Evaluation of Microleakage of Glass Ionomer Cement and Chitosan-modified Glass Ionomer Cement: An in vitro Study. Int J Clin Pediatr Dent 2014;7(1):6-10. PMID:25206230

  7. Evaluation of solubility, disintegration, and dimensional alterations of a glass ionomer root canal sealer.

    PubMed

    Carvalho-Júnior, Jacy Ribeiro; Guimarães, Luiz Fernando L; Correr-Sobrinho, Lourenço; Pécora, Jesus D; Sousa-Neto, Manoel D

    2003-01-01

    The aim of this study was to evaluate the glass ionomer cement Ketac-Endo (K) compared with Endofill (E), N-Rickert (N), and Sealer 26 (S) in terms of disintegration, solubility, and dimensional alteration properties, based on ADA Specification No 57. For dimensional alterations, 12-mm high cylindric specimens measuring 6 mm in diameter were prepared and left to stand for a period corresponding to three times the setting time. These specimens were immersed in 30 ml of deionized distilled water after measuring their length with a caliper. Thirty days later, the sample was removed from the container, dried and measured again for length to determine the percent of dimensional alteration. For solubility and disintegration, 1.5-mm thick cement samples measuring 20 mm in diameter were prepared and left to stand for a period corresponding to three times the setting time. The samples were weighed and immersed in 50 ml of deionized distilled water. After seven days, the samples were removed, dried and weighed again to determine the mass loss of each sample, expressed as percentage of original mass. This was considered to correspond to solubility and disintegration of cement. The results were: dimensional alteration: E (+0.14), K (-0.24), N (+0.23), S (+3.26); for disintegration and solubility: E (3.90), K (9.90), N (3.00), S (0.25). We concluded that the dimensional alteration of all cements conformed to ADA standards; Endofill and Ketac-Endo sealers presented higher values for disintegration and solubility than ADA recommendations. Obturating a root canal with a sealer that presents low disintegration and low contraction could minimize the penetration of fluids into the root canal system, thus sealing the space hermetically. PMID:12964655

  8. Comparison of glass ionomer cement and incus interposition in reconstruction of incus long process defects.

    PubMed

    Dere, Huseyin; Ozdogan, Fatih; Ozcan, K Murat; Selcuk, Adin; Ozcan, Ibrahim; Gokturk, Gokhan

    2011-11-01

    The ossicles may be affected through the mass effect of the pathological tissue in chronic otitis media. Ossicular reconstruction may be accomplished using the patients' own ossicles or with alloplastic materials. Glass ionomer ossiculoplasty is a fast, efficient, safe and cost-effective method and it has been used more frequently in recent years. Forty-six patients who had surgery for chronic otitis media were included in this study. All patients had an incus long process defect and a normal stapes superstructure. Ossicular reconstruction was performed using glass ionomer cement (GIC) (Ketac-Cem, Espe Dental AG, Seefeld, Germany) in 23 patients (group 1), while incus interposition was performed in other 23 patients (group 2). Preoperative and postoperative air pure tone averages of the group 1 patients were 42.8 and 35.2 dB, respectively (p < 0.01). These values were 42.9 and 34.5 dB in group 2 (p < 0.01). Two groups were similar with respect to postoperative hearing gain (p > 0.05). The air bone gap of group 1 was 27 dB preoperatively and 20.7 dB postoperatively. These values were 28.7 and 20.2 dB, respectively, in group 2. The closure of air bone gap was statistically significant in both the groups (p < 0.01, p < 0.01). The comparison of the mean gains of the air bone gap revealed no difference between the groups (p > 0.05). In conclusion, the use of both GIC ossiculoplasty and incus interposition are efficient methods for reconstruction of incus long process and one is not superior to the other. A larger study population may be useful for comparison of these methods. PMID:21340562

  9. Effect of ultrasound application during setting on the mechanical properties of high viscous glass-ionomers used for ART restorations.

    PubMed

    Daifalla, Lamia E; Mobarak, Enas H

    2015-11-01

    This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent. PMID:26644916

  10. Comparative Evaluation of Shear Bond Strength of Three Commercially Available Glass Ionomer Cements in Primary Teeth

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: This study aims to comparatively evaluate the shear bond strength (SBS) of three commercially available glass ionomer cements - Miracle Mix (MM) (GC America Inc., Alsip, USA), Ketac Molar (KM) (3M Corp., Minnesota, USA) and amalgomer CR (AM) (Advanced Healthcare Ltd., Kent, England) in primary teeth and later examine the mode of the adhesive failure at the interface. Materials and Methods: Totally, 90 extracted sound primary molars were selected, and dentin on the buccal surface of crowns was exposed. Specimens were randomly assigned into three groups according to the restorative materials being tested. SBS tests were performed, and the obtained values were statistically analyzed using ANOVA and Tukey tests (P < 0.05). SBS mean values on were recorded in megapascals (MPa) and the mode of failure was assessed using a scanning electron microscope. Results: SBS (in MPa) was - MM-5.39, KM-4.84, AM-6.38. The predominant failure mode was cohesive. Conclusion: Amalgomer CR exhibited statistically significant higher SBS of 6.38 MPa to primary teeth and has better adhesion to the primary teeth compared to the other test materials and can be considered as a restorative material in pediatric dentistry. However, the results of this study should be corroborated with further investigation to reach a definitive conclusion. PMID:26464550

  11. Reinforced glass-ionomer cements: the influence of conditioners on marginal leakage.

    PubMed

    Yap, A U; Mok, B Y

    1997-06-01

    The purpose of this in vitro study was to evaluate the influence of conditioners on the enamel and dentine margin sealing ability of three different reinforced glass-ionomer cements. Two Class V preparations were made on the buccal and lingual surfaces of 36 freshly extracted molar teeth. Preparations were solely in enamel or dentine/cementum. The teeth were randomly divided into three groups of 12 and restored with either Ketac Silver (KS), Hi-Dense (HD) or Miracle-Mix (MM) with and without (-C) their respective conditioners. All materials were capsulated and were manipulated according to the manufacturers' instructions. The restorations were finished as recommended by the manufacturers and then stored in saline at 37 degrees C for 1 week, polished, thermally stressed, subjected to dye penetration, sectioned and scored. Rankings in the order of decreasing leakage were as follows: enamel margin KS > KS-C > HD-C > HD > MM > MM-C; dentine margin KS > HD-C > KS-C > HD > MM-C > MM. At the enamel margins, only HD showed a significant increase in leakage when conditioner was not used. At the dentine margin, however, KS had significantly more leakage than KS-C and HD-C had significantly more leakage than HD. There was no significant difference in leakage for MM both with and without conditioner. The influence of conditioners on marginal leakage appears to be both product and tissue specific. PMID:9219996

  12. A long term study of fluoride release from metal-containing conventional and resin-modified glass-ionomer cements.

    PubMed

    Williams, J A; Billington, R W; Pearson, G J

    2001-01-01

    The objective of this study was to determine long term release of fluoride from a resin-modified glass-ionomer cement (RMGIC) (Fuji II LC (FLC)) compared with that from two conventional acid-base setting cements (HiDense (HD) and KetacSilver (KS)) marketed for similar restorative purposes. Fluoride release from discs of cement immersed in water or artificial saliva was measured for 2.7 years using an ion selective electrode technique. The RMGIC was affected by water if immersed immediately after setting. This is similar to conventional acid-base cements and the experimental method was designed to allow for this. Over the 2.7-year period, the RMGIC and HD released similar amounts of fluoride into both water and artificial saliva. In water, the RMGIC released the most fluoride, while in artificial saliva the highest release was from HD. KS released the least amount of fluoride in both immersing liquids. In artificial saliva, release was reduced to 17-25% of that found in water, with the RMGIC showing the greatest reduction. Both acid-base cured cements showed changes in colour over the 2.7-year span, while the colour of the RMGIC was stable. It was concluded that the RMGIC released equivalent or greater amounts of fluoride than the two acid-base cure glass-ionomers over a period of 2.7 years. PMID:11298908

  13. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  14. Effect of surface coatings on flexural properties of glass ionomers.

    PubMed

    Miyazaki, M; Moore, B K; Onose, H

    1996-01-01

    The purpose of this study was to investigate the change in flexural strength and fracture toughness of light-cured glass ionomer cements after long-term immersion in water, and to investigate the effect of surface coatings on their properties. 2 resin-modified and 1 conventional glass ionomer cements were employed. For the flexural strength, a 25 x 2 x 2 mm stainless steel mold was used. For the fracture toughness (KtC), single edge notch specimens with dimensions 25 x 2.5 x 5 mm and a 0.5 mm notch (a/W = 0.5) were prepared in a stainless steel mold. Specimens were subjected to the 3 point bending at 0.5 mm/min after storage in 37 degrees C water for the periods of 1 h, 24 h, 1 wk, 1 month, and 6 months. The glass ionomer cements tended to exhibit an increase in mechanical properties over the 24-h period and then to maintain a constant strength. The surface protection of the resin-modified glass ionomer cement has some effect on the mechanical properties during early setting reactions, and it is desirable that the cement should be protected from direct water contact for at least 1 h after cement mixing. PMID:9021332

  15. Antibacterial Activity and Fluoride Release of Glass-Ionomer Cement, Compomer and Zirconia Reinforced Glass-Ionomer Cement

    PubMed Central

    Kenchappa, Mallikarjuna; Bhayya, Deepak; Gupta, Shilpi; Saxena, Sudhanshu; Satyarth, Saurabh; Singh, Aishwarya; Gupta, Manoj

    2016-01-01

    Introduction The cariostatic property of glass ionomer cement (GIC) stems from its ability to release fluoride into the oral environment. Recently, zirconia reinforced GIC has been launched which promises the protective benefits of glass ionomer while completely eliminating the hazard of mercury. Aim To evaluate invitro antibacterial activity and fluoride release from two conventional glass ionomer cements (GC II and GC IX), compomer (Compoglass) and a zirconia reinforced glass ionomer cement (Zirconomer). Materials and Methods The antibacterial activity of the cement specimens was evaluated against Streptococcus mutans using the agar inhibition test. Zone of inhibition on Mueller-Hinton agar plates was measured after 48 hours. The fluoride release from the cement specimens in ppm were measured at day 1, 7, 14 and 21 using a fluoride ion selective electrode. Data was analysed using one-way and two-way analysis of variance (ANOVA) followed by LSD post-hoc test. A p-value <0.05 was considered statistically significant. Results Statistically significant largest zone of inhibition was observed with Zirconomer. Also, significant differences were seen in fluoride release of different materials. At all the time intervals maximum fluoride release was observed with Zirconomer and minimum with Compoglass. Conclusion This invitro investigation has revealed that zirconia reinforced GIC (Zirconomer) had maximum antibacterial activity against S.mutans and fluoride release. PMID:27190961

  16. Marginal leakage of visible light-cured glass ionomer restorative materials.

    PubMed

    Crim, G A

    1993-06-01

    This study examined the sealing of two visible light-cured glass ionomer restorative materials and a conventional glass ionomer. Class V cavity preparations were completed at the cementoenamel junction on the facial and lingual surfaces of extracted human molars. The cavity preparations were restored with either VariGlass VLC, GC Fuji II LC, or GC Fuji II glass ionomer cements. The restored teeth were thermocycled, immersed in fuchsin dye for 24 hours, sectioned, and evaluated with a measuring microscope. No microleakage occurred at the enamel/glass ionomer or dentin/glass ionomer cement interfaces of any samples, but the enamel adjacent to the VariGlass glass ionomer cement restorations exhibited crazing and staining. PMID:8320640

  17. Wear of resin-modified glass ionomers: an in vitro study.

    PubMed

    Futatsuki, M; Nozawa, M; Ogata, T; Nakata, M

    2001-01-01

    The purpose of this study was to evaluate the wear resistance and clinical applicability of resin-modified glass ionomer cements as restorative or fissure-sealing materials. The in vitro wear of resin-modified glass ionomers was compared to conventional glass ionomers, a resin-based sealant, and a composite resin. A three-body wear test (enamel block--polymethylmethacrylate powder--experimental dental material) was performed by 20,000 cycles with a load of 4 kgf/cm2. The depth of wear of the experimental materials was measured and calculated using a computerized laser surface scanner. The glass ionomers generally showed more wear than the resin-based sealant and the composite resin, but there was no difference in wear between resin-modified and conventional glass ionomers. Type III ionomers (used for sealant) showed lower wear resistance than type II ionomers (used for restoration). PMID:11497010

  18. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    PubMed Central

    Doozandeh, Maryam; Shafiei, Fereshteh; Alavi, Mostafa

    2015-01-01

    Statement of the Problem Casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC) and marginal sealing of their restorations. Purpose The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of molars with occlusal margins in enamel and gingival margins in root. The cavities were divided into 6 groups. Cavities in group 1 and 2 were restored with Fuji II, group 3 and 4 with Fuji II LC, and group 5 and 6 with Ketac N100 with respect to the manufacturers’ instructions. In groups 2, 4 and 6, CPP-ACP containing paste (MI paste) was placed into the cavities for 3 minutes before being filled with GIC. The teeth were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. Kruskall-Wallis and Chi-Square tests were used to analyze the data. Result There were no statistically significant differences between the control and the CPP-ACP pretreatment groups in enamel and dentin margins. In pairwise comparisons, there were no significant differences between the control and the experimental groups in enamel margin, and in dentin margins of G1 and 2, G5 and 6; however, a significant differences was detected in dentin margins between G3 and 4 (p= 0.041). Conclusion CPP-ACP paste pretreatment did not affect the microleakage of Fuji II and Ketac N100 in enamel or dentin, but decreased the microleakage in dentine margins of Fuji II LC when cavity conditioner was applied before surface treatment. PMID:26331147

  19. Clinical Performance of Viscous Glass Ionomer Cement in Posterior Cavities over Two Years

    PubMed Central

    Frankenberger, Roland; Garcia-Godoy, Franklin; Krämer, Norbert

    2009-01-01

    In this controlled prospective clinical study the highly viscous glass ionomer cement Ketac Molar was clinically assessed in Class I and Class II cavities. Forty-nine subjects (mean age 32.3 years) received 108 restorations placed by six operators in conventional Black I and II type cavities with undercuts after excavating primary lesions or after removing insufficient restorations. At baseline, and after 6, 12, and 24 months, restorations were assessed by two independent investigators according to modified USPHS codes and criteria. Impressions of the restorations were taken and epoxy replicas were made. Between the baseline and the 24-month recall, 51 representative samples were analyzed at 130 × magnification by use of a stereo light microscope (SLM). Recall rates were 83% after 6 months, 50% after 12 months, and 24% after 24 months. Failure rates after 24 months were 8% for Class I and 40% for Class II fillings, mainly due to bulk fracture at occlusally loaded areas (Kaplan Meier survival analysis). Significant changes over time were found for the criteria “surface roughness”, “marginal integrity”, “restoration integrity”, and “overall judgement” (P < .05; Friedman test). SLM analysis revealed statistically significant differences for the following criteria over time (baseline/6 months/12 months (in % of entire evaluable margin length); P < .05; Friedman 2-way ANOVA): perfect margin 37/19/11, negative step formation 26/49/57, gap formation 2/7/9, and overhang 24/11/8. Replicas exhibited mainly negative step formation as main finding due to apparently inferior wear resistance (P < .05). Gap formations were more frequently observed in Class II restorations than in Class I (12% versus 3% after 12 months; P < .05, Mann-Whitney-U test). The evaluated margin lengths were not statistically different (P > .05, Friedman 2-way ANOVA). PMID:20339470

  20. Evaluation on Shear Bond Strength of Different Glass Ionomer and Hydroxy Apatite Cements Used in Ossiculoplasty

    PubMed Central

    Kalcıoğlu, M. Tayyar; Uzun, İsmail Hakkı; Yalçın, Muhammet; Malkoç, Meral Arslan; Öğreten, Ayşe Tuba; Hanege, Fatih Mehmet

    2015-01-01

    Background: Glass ionomer cements (GIC) have been widely used in dentistry for many years. In recent years, GIC have also been used for ossiculoplasty. The bond strength of GIC used in ossiculoplasty and the way they may change over the years in the cementation area are being questioned. The bonding strength of the substance may be of importance for long-term outcomes. Aims: The aim of this study was to investigate the bond strength of different GIC on ossicles. Study Design: In vitro study. Methods: Twenty ossicles were obtained from patients who had undergone ear surgery. All specimens were randomly divided into four subgroups. All specimens were inserted into a specially designed apparatus for shear bond strength (SBS) testing. The tested materials [Aqua Meron (AM), Aqua Cem (AC), Ketac Cem (KC), and Otomimix CPB (OH)] were prepared and applied according to the manufacturer’s instructions. The SBS was tested using a universal testing machine at a crosshead speed of 0.5 mm/min. Results: The mean SBSs were found to be 13.28 MPa, 23.43 MPa, 8.51MPa, and 1.78 MPa for AM, AC, KC, and OH, respectively. AC had the highest SBS, which was statistically significantly different from that of KC and OH (p<0.05). Both AM and KC had higher SBS than OH (p<0.05). Conclusion: The results obtained in this study by investigating the bone-bonding strength of cements widely used in ossiculoplasty demonstrate that some of these substances have a greater ability to bond to ossicles compared to others. Further clinical investigations are needed to test different parameters. PMID:25759768

  1. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate

    PubMed Central

    Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    ABSTRACT Background: Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. Aim: The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Materials and methods: Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. Results: The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. Conclusion: The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103. PMID:27365927

  2. Resin-modified glass ionomers: dentin bond strength versus time.

    PubMed

    Miyazaki, M; Iwasaki, K; Soyamura, T; Onose, H; Moore, B K

    1998-01-01

    Most dentin bond strength tests of resin-modified glass-ionomer cements have been conducted after at least 24 hours' storage in water. In a clinical situation, debonding might occur soon after the restoration was placed if subjected to stress. The purpose of this study was to investigate the rate of development of shear bond strength of resin-modified glass-ionomer cements, two Type IIs of which, Fuji II LC and Vitremer, were used. A conventional glass-ionomer cement, Fuji II, and a resin composite, Herculite XRV/OptiBond system, were also employed as controls. Bovine incisors were mounted in self-curing resin, and the facial surfaces wet ground with 600-grit SiC paper to expose dentin. Materials were condensed into a vinyl mold and bonded following the manufacturers' instructions. The shear bond strengths of 10 specimens per group were measured at a crosshead speed of 1.0 mm/minute after 1, 5, 10, 30, and 60 minutes' and 2, 5, and 24 hours' storage in water at 37 degrees C. One-way ANOVAs followed by the Dunnet test (P < 0.05) were used to test for significant differences between the mean bond strength at 1 minute and each of the other test periods. The test period when there was a significant increase in bond strength was defined as the "initial increasing time." The dentin bond strengths of all the materials tested increased with prolonged storage time. The initial increasing times were 10 minutes for Fuji II LC and OptiBond, 20 minutes for Fuji II, and 60 minutes for Vitremer. The differences in the initial increasing time might have clinical implications if the restoration is subjected to significant stress immediately after placement. PMID:9656926

  3. Reconsidering glass-ionomer cements for direct restorations.

    PubMed

    Pitel, Mark L

    2014-01-01

    Glass-ionomer cements (GICs) have been used in dentistry for a number of applications, primarily as a base or liner under other direct filling materials or indirect restorative materials, for crown buildup/foundation restorations, or as luting cements for indirect restorations. However, GICs have many unique attributes that make them useful for either a full-contour restoration or sandwich/hybrid restorations where they are synergistic with composite resins. This article, which includes two brief case reports, discusses the potential advantages of GIC for some direct applications where composite resin or other materials may not be the most ideal choice. PMID:24571524

  4. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    PubMed

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  5. Clinical evaluation of occlusal glass ionomer, resin, and amalgam restorations.

    PubMed

    Smales, R J; Gerke, D C; White, I L

    1990-10-01

    The purpose of the study was to evaluate four materials (a glass ionomer (polyalkenoate) silver cermet, two composite resin restoratives and a high copper content dental amalgam) placed in either conventional Class I cavities or in modified odontotomy-enameloplasty-sealant (OES) fissure preparations. One experienced operator inserted 438 occlusal. Class I restorations in the posterior permanent teeth of 124 patients in a private dental practice. Restorations were assessed for bulk loss of material, surface voids and cracking, restoration margin fractures and staining, and surface staining and roughness, by using colour transparencies taken at baseline and at recalls for up to 3 years. The glass ionomer cermet was the most difficult material to handle and also gave the least satisfactory clinical result. Loss of material and surface voids were common in the cermet restorations with surface cracking or crazing being seen in 11.4 per cent of the restorations, especially in the larger, conventional Class I preparations. One posterior resin was more viscous and difficult to handle than the other resin and exhibited more surface voids. The amalgam alloy was used in Class I preparations only and showed more restoration margin fractures and surface staining than did the other three materials. However, there were no unsatisfactory clinical assessments given for either restoration margin fracture and staining, or surface staining and roughness for any of the materials. Patient acceptance of the modified OES fissure preparation was extremely good. PMID:2127419

  6. An in vitro comparison of micro leakage in three glass ionomer cements used as retrograde filling materials.

    PubMed

    Rosales, J I; Vallecillo, M; Osorio, R; Bravo, M; Toledano, M

    1996-02-01

    The aim of this study was to evaluate the sealing ability of conventional self-cured glass ionomer cement, silver glass ionomer cement and light-cured glass ionomer cement as retrofilling materials. Micro-leakage was assessed by introducing the samples into a 1 per cent solution of methylene blue for eight days at a constant temperature of 37 degrees C. Dye penetration was greater when silver glass ionomer cement was used in comparison to the other two materials tested; the difference was statistically significant. Conversely, the sealing ability of light-cured glass ionomer cement was significantly higher than that of conventional glass ionomer cement. The condition of the dentine-filling material interface and the marginal adaptation of the glass ionomer cements under study were assessed using scanning electron microscopy. PMID:8744913

  7. Ionomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionomics is the study of elemental accumulation (e.g., Ca, K, P, and metal ions) in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels and modeling of physiological states. In thi...

  8. Bonding of contemporary glass ionomer cements to different tooth substrates; microshear bond strength and scanning electron microscope study

    PubMed Central

    El Wakeel, Aliaa Mohamed; Elkassas, Dina Wafik; Yousry, Mai Mahmoud

    2015-01-01

    Objective: This study was conducted to evaluate the microshear bond strength (μSBS) and ultramorphological characterization of glass ionomer (GI) cements; conventional GI cement (Fuji IX, CGI), resin modified GI (Fuji II LC, RMGI) and nano-ionomer (Ketac N100, NI) to enamel, dentin and cementum substrates. Materials and Methods: Forty-five lower molars were sectioned above the cemento-enamel junction. The occlusal surfaces were ground flat to obtain enamel and dentin substrates, meanwhile the cervical one-third of the root portion were utilized to evaluate the bonding efficacy to cementum substrate. Each substrate received microcylinders from the three tested materials; which were applied according to manufacturer instructions. μSBS was assessed using a universal testing machine. The data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post-hoc test. Modes of failure were examined using stereomicroscope at ×25 magnification. Interfacial analysis of the bonded specimens was carried out using environmental field emission scanning electron microscope. Results: Two-way ANOVA revealed that materials, substrates and their interaction had a statistically significant effect on the mean μSBS values at P values; ˂0.0001, 0.0108 and 0.0037 respectively. RMGI showed statistically significant the highest μSBS values to all examined tooth substrates. CGI and RMGI show substrate independent bonding efficiency, meanwhile; NI showed higher μSBS values to dentin and cementum compared to enamel. Conclusion: Despite technological development of GI materials, mainly the nano-particles use, better results have not been achieved for both investigations, when compared to RMGI, independent of tooth substrate. PMID:26038646

  9. Fracture toughness ov conventional or photopolymerized glass ionomer/dentin interfaces.

    PubMed

    Tam, L E; Dev, S; Pilliar, R M

    1995-01-01

    Several new light-cured glass-ionomer materials have been developed for restorative use. It is not yet clear, however, whether the ability of the conventional glass ionomers to bond chemically to dentin has been preserved in the new light-cured glass ionomers whose chemical compositions have been modified. The fracture toughness test was recently introduced as an appropriate method of measuring the fracture resistance of an interface. We have applied this test to the glass ionomer/dentin interface for the first time. Ten mini short-rod fracture-toughness specimens were fabricated for each group. Each specimen contained a chevron-shaped glass ionomer/dentin interface along its midplane. After 24 hours in 37 degrees C water, the specimens were tested by loading at 0.5 mm/min. The interfacial Kic results (MPa X m (1/2)) (SD), analyzed by ANOVA and Fisher's LSD test (P<0.05), were: Chem-fil II, 0.17 (0.04); Vitremer, 0.18 (0.15); Fuji II LC, 0.33 (0.16). There were no significant differences in interfacial Kic between the conventional and light-cured glass ionomers. Interfacial Kic's for a light-cured glass ionomer were, however, significantly higher when an intermediary dentin bonding agent was used. SEM examinations of the fractured surfaces indicated that crack propagation generally occurred along the bond interface, and indicated the formation of a resin-infiltrated layer when the dentin bonding agents were used. It was concluded that the fracture-toughness test could be a useful measure of the integrity of the glass ionomer/dentin interface. The clinical effect of an intermediary layer between the glass ionomer and the tooth structure is, however, unknown and requires further investigation. PMID:8700782

  10. In-vitro study of resin-modified glass ionomer cements for cementation of orthodontic bands. Isolation, surplus removal and humidity as factors influencing the bond strength between enamel, cement and metal.

    PubMed

    Liebmann, S M; Jost-Brinkmann, P G

    1999-01-01

    The aim of this in vitro study was to investigate different light-cured and chemically cured resin-modified glass ionomer cements used for the cementation of orthodontic bands and to analyze various factors influencing the adhesive strength between enamel, cement and stainless steel. Four resin-modified glass ionomers (Fuji Ortho LC/GC, Fuji Duet/GC, Unitek Multi-Cure Glass Ionomer Orthodontic Band Cement/3M Unitek, Vitremer/3M) and 1 compomer (Band-Lok/Reliance) were examined. Flattened and polished bovine teeth embedded in polyurethane resin were used as enamel specimens. Before cementation, 50% of the specimens were moistened with the aerosol of an inhalation device, while the rest were dried with compressed air. Stainless steel cylinders (CrNi 18 10) were perpendicularly bonded onto the polished enamel using a custom-made cementation device and immediately topped with a pressure of 0.25 MPa. The cement was isolated with either Ketac Glaze/ESPE, Fuji Coat/GC, Cacao Butter/GC, Dryfoil/Jalenko or Final Varnish/VOCO, or was left uncoated. Eight minutes after the beginning of mixing, either the surplus cement was removed with a scalpel or surplus removal was simulated with ultrasound. After 24 hours storage in a water bath at 37 degrees C and 1,000 thermocycles the shear bond strength was determined. Significant differences with respect to the shear bond strength were found among the following cements, ranking from highest to lowest: Fuji Duet, Unitek cement > Fuji Ortho LC > Vitremer > Band-Lok. The application of a barrier coating significantly increased the shear bond strength of all cements except Fuji Ortho LC. The light-cured resin Ketac Glaze proved to be the most effective barrier coating. A dry enamel surface increased the bond strength of all investigated cements except Unitek cement. The use of ultrasound led to no significant reduction in shear bond strength in comparison with surplus removal with a scalpel. PMID:10546417

  11. Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal.

    PubMed

    Almuhaiza, Mohammed

    2016-01-01

    Glass-ionomer cements (GICs) are mainstream restorative materials that are bioactive and have a wide range of uses, such as lining, bonding, sealing, luting or restoring a tooth. Although the major characteristics of GICs for the wider applications in dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They have undergone remarkable changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed to improve their physical properties and diversified their use as a restorative material of great clinical applicability. The light-cured polymer reinforced materials appear to have substantial benefits, while retaining the advantages of fluoride release and adhesion. Further research should be directed towards improving the properties, such as strength and esthetics without altering its inherent qualities, such as adhesion and fluoride releasing capabilities. PMID:27340169

  12. Resin-modified glass-ionomer setting reaction competition.

    PubMed

    Berzins, D W; Abey, S; Costache, M C; Wilkie, C A; Roberts, H W

    2010-01-01

    Resin-modified glass ionomers (RMGI) set by at least 2 mechanisms dependent upon reactant diffusion prior to gelation. Each reaction's kinetics and setting mechanism may rely on and/or compete with the other. In this study, we investigated RMGI setting reaction interactions using differential scanning calorimetry (DSC) by varying light-cure initiation times. A RMGI was analyzed with isothermal and dynamic temperature scan DSC with light-curing occurring immediately, or at 5 or 10 minutes after mixing as well as without light-activation. Results show that as time allowed for the acid-base reaction increased, the light-activation polymerization exotherm decreased. Conversely, analysis of DSC data suggests that earlier light-activation may limit the acid-base reaction and result in a different structured material. During early RMGI development, acid-base and light-polymerization reactions compete with and inhibit one another. PMID:19966038

  13. Cytotoxicity of glass ionomer cements containing silver nanoparticles

    PubMed Central

    Magalhães, Ana-Paula-Rodrigues; Pires, Wanessa-Carvalho; Pereira, Flávia-Castro; Silveira-Lacerda, Elisângela-Paula; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Souza-Costa, Carlos-Alberto; Lopes, Lawrence-Gonzaga; Estrela, Carlos

    2015-01-01

    Background Some studies have investigated the possibility of incorporating silver nanoparticles (NAg) into dental materials to improve their antibacterial properties. However, the potential toxic effect of this material on pulp cells should be investigated in order to avoid additional damage to the pulp tissue. This study evaluated the cytotoxicity of conventional and resin-modified glass ionomer cements (GIC) with and without addition of NAg. Material and Methods NAg were added to the materials at two different concentrations by weight: 0.1% and 0.2%. Specimens with standardized dimensions were prepared, immersed in 400 µL of culture medium and incubated at 37°C and 5% CO2 for 48 h to prepare GIC liquid extracts, which were then incubated in contact with cells for 48 h. Culture medium and 0.78% NAg solution were used as negative and positive controls, respectively. Cell viability was determined by MTT and Trypan Blue assays. ANOVA and the Tukey test (α=0.05) were used for statistical analyses. Results Both tests revealed a significant decrease in cell viability in all groups of resin modified cements (p<0.001). There were no statistically significant differences between groups with and without NAg (p>0.05). The differences in cell viability between any group of conventional GIC and the negative control were not statistically significant (p>0.05). Conclusions NAg did not affect the cytotoxicity of the GIC under evaluation. Key words:Glass ionomer cements, totoxicity, cell culture techniques, nanotechnology, metal nanoparticles. PMID:26644839

  14. Structure of bioactive glass and its application to glass ionomer cement.

    PubMed

    Matsuya, S; Matsuya, Y; Ohta, M

    1999-06-01

    We prepared a new glass ionomer cement using bioactive CaO-P2O5-SiO2(-MgO) glass and investigated its setting process using FT-IR and MAS NMR analyses. The compressive strengths of the cements depended on the glass composition and a maximum strength of 33.3 +/- 4.7 MPa was obtained using cement with the glass composition of MgO:4.6, CaO:44.9, SiO2:34.2 and P2O5:16.3% in weight. FT-IR analysis showed that the COOH group in the polyacrylic acid decreased and carboxylate ion (COO-Ca2+) increased after the setting reaction. A broad signal appeared around -82 ppm in 29Si MAS-NMR spectra of the glass and a new signal corresponding to hydrated silica gel formation appeared around -102 and -111 ppm after setting. This suggests that Ca2+ was released from the glass powder to form carboxylate salt and that a degree of polymerization in the silicate network increased. The setting mechanism of the cement was found to be essentially the same as in conventional glass ionomer cement. PMID:10786128

  15. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  16. [Comparative in vitro evaluation of modern glass ionomer cements for adhesion strength and fluoride release].

    PubMed

    Zhitkov, M Yu; Rusanov, F S; Poyurovskaya, I Ya

    2016-01-01

    The study proved similar adhesion strength and fluoride release level in aqueous extracts of glass ionomer cements Cemion (VladMiVa, Russia), Glassin Rest (Omega-Dent, Russia), Cemfil 10 (StomaDent, Russia) and Fuji VIII (GC Corporation, Japan). Despite of close concentrations of fluoride in glasses, the rate of fluoride release in water from calcium and calcium-barium glasses is much higher than that of strontium glasses. PMID:27239999

  17. Effect of Adhesive Pretreatments on Marginal Sealing of Aged Nano-ionomer Restorations.

    PubMed

    Shafiei, Fereshteh; Akbarian, Sahar; Karim Etminan, Mohammad

    2015-01-01

    Background and aims. Nano-ionomer (NI) interacts with tooth structures superficially, and there is a concern about the enamel bonding ability of mild self-etch Ketac primer. This study compared the effect of different adhesive procedures (self-etching and etch-and-rinse approach) on long-term marginal microleakage of nano-filled resin-modified glass-ionomer (NI) cervical restorations. Materials and methods. Class V cavities were prepared on 72 maxillary premolars. The teeth were divided into six groups: G1: No treatment (NC); G2: Ketac primer (K primer); G3: Etchant + Ketac primer (E+K primer); G4: Self-etch adhesive (Bond Force); G5: Etchant + Bond Force (E+Bond Force); G6: Etchant + Adper Single Bond (Etch and rinse adhesive). All the cavities were restored with Ketac N100. The samples were stored in water for 6 months and thermocycled for 2000 cycles. Marginal sealing was assessed using dye penetration technique. Data were analyzed with non-parametric tests (α=0.05). Results. All the adhesive pretreatments resulted in a lower marginal leakage than that of NC (P≤0.01), except for E+Bond Force at the dentin margin. There was no significant difference between K primer and Bond Force. Microleakage differed significantly between K primer pretreatment and E+K primer (P=0.003), E+Bond Force (P=0.002) and etch-and-rinse adhesive (P=0.001) at the enamel margin, but it did not differ at the dentin margin. E+ Bond Force group showed insignificantly lower leakage at the enamel margin and significantly higher leakage at the dentin margin (P=0.02). Conclusion. Etch-and-rinse adhesive and selective enamel etching along with self-etch adhesive/Ketac primer might improve marginal sealing of aged nano-ionomer restoration. PMID:26697146

  18. Effect of Adhesive Pretreatments on Marginal Sealing of Aged Nano-ionomer Restorations

    PubMed Central

    Shafiei, Fereshteh; Akbarian, Sahar; Karim Etminan, Mohammad

    2015-01-01

    Background and aims. Nano-ionomer (NI) interacts with tooth structures superficially, and there is a concern about the enamel bonding ability of mild self-etch Ketac primer. This study compared the effect of different adhesive procedures (self-etching and etch-and-rinse approach) on long-term marginal microleakage of nano-filled resin-modified glass-ionomer (NI) cervical restorations. Materials and methods. Class V cavities were prepared on 72 maxillary premolars. The teeth were divided into six groups: G1: No treatment (NC); G2: Ketac primer (K primer); G3: Etchant + Ketac primer (E+K primer); G4: Self-etch adhesive (Bond Force); G5: Etchant + Bond Force (E+Bond Force); G6: Etchant + Adper Single Bond (Etch and rinse adhesive). All the cavities were restored with Ketac N100. The samples were stored in water for 6 months and thermocycled for 2000 cycles. Marginal sealing was assessed using dye penetration technique. Data were analyzed with non-parametric tests (α=0.05). Results. All the adhesive pretreatments resulted in a lower marginal leakage than that of NC (P≤0.01), except for E+Bond Force at the dentin margin. There was no significant difference between K primer and Bond Force. Microleakage differed significantly between K primer pretreatment and E+K primer (P=0.003), E+Bond Force (P=0.002) and etch-and-rinse adhesive (P=0.001) at the enamel margin, but it did not differ at the dentin margin. E+ Bond Force group showed insignificantly lower leakage at the enamel margin and significantly higher leakage at the dentin margin (P=0.02). Conclusion. Etch-and-rinse adhesive and selective enamel etching along with self-etch adhesive/Ketac primer might improve marginal sealing of aged nano-ionomer restoration. PMID:26697146

  19. A laboratory study of glass ionomer cement as a retrograde root-filling material.

    PubMed

    Roth, S

    1991-10-01

    This laboratory study investigated the use of various glass ionomer cements for retrograde root filling from the point of view of sealing qualities, ion release and ease of application. The sealing qualities of the material were tested by dye penetration and microscopic and SEM examination. Fluoride and silver ion release tests showed an initial loss of these two ions from the glass ionomer cement. A modified system for mixing and application was developed. Dye penetration did not differ from that of controls using vertically condensed gutta-percha. Glass ionomer cement is possibly a clinical alternative for the sealing of retrograde cavities; however, the silver-reinforced materials may cause tissue irritation from release of silver ions and their corrosion products. PMID:1721806

  20. Biocompatibility of glass ionomer cements with and without chlorhexidine

    PubMed Central

    Iz, Sultan Gulce; Ertugrul, Fahinur; Eden, Ece; Gurhan, S. Ismet Deliloglu

    2013-01-01

    Objective: The aim of the present study is to evaluate the biocompatibility of glass ionomer cements (GICs) with and without chlorhexidine (CHX) as well as coated with varnish or not using in vitro cytotoxicity test. Materials and Methods: Biocompatibility of Fuji IX, Fuji IX with varnish, Fuji IX with 1% CHX diacetate and Fuji IX with 1% CHX diacetate with varnish was determined with in vitro cytotoxicity assay by using L929 mouse connective tissue fibroblasts. After 72 h, cell viabilities were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay to determine the effects of the cements on the mitochondrial function and microscopic images were taken by scanning electron microscopy. Results: Statistical analysis was performed by one-way analysis of variance followed by the Bonferroni post-hoc test at a significance level of P < 0.05. 72 h after treatment, there were statistically significant differences between Fuji IX and Fuji IX-CHX (P < 0.001). In addition, the reduction of the cytotoxicity by coating the GICs with varnish was indicative and increased the cell viability ratio (P < 0.001). Conclusions: Fuji IX coated with varnish was found to be the most biocompatible one among others. Thus adding CHX significantly reduced the cell viability, it is assumed that, due to the leakage of CHX and the other components of the GICs to the cell culture medium, the cell viabilities were decreased, so it is highly recommended to use varnish not only to reduce the water loss from the GICs, but also to reduce the cytotoxicity of the GICs. PMID:24966735

  1. Glass ionomer cement in otological microsurgery: experience over 16 years.

    PubMed

    Righini-Grunder, F; Häusler, R; Chongvisal, S; Caversaccio, M

    2015-10-01

    A retrospective evaluation of glass ionomer cement (GIC) in middle ear surgery with emphasis on short- and long-term safety was conducted at the tertiary referral center. GIC was applied between 1995 and 2006 in 444 patients in otologic surgery. Technical aspects, safety, benefits and complications due to GIC were analysed until 2011 (follow-up 5-16 years; mean 10 years). GIC was applied in stapes surgery (228 primary, 92 revisions), cochlear implants (108) and implantable hearing aids (7), ossiculoplasty (7), for coverage of opened mastoid air cells towards the external ear canal (1) and inner ear fistula closure (1). GIC turned out to be very handy in stapes surgery for optimal prosthesis fixation at the incus (260) and on the malleus handle (60) without complications. Results suggest that GIC may diminish the danger of incus necrosis in primary stapedotomy. In cochlear implants and implantable hearing aids, GIC was used for casing alone (74), casing and electrode fixation (27) and electrode alone fixation (14). Inflammatory reactions were observed in five cases (4.3%), mostly after trauma. Broken cement fragments appeared to promote foreign body rejection. In seven cases an incudo-stapedial gap was repaired with GIC with excellent hearing gain; in three cases (43%) revision surgery was needed due to cement breakage. In one case, GIC was applied for a watertight coverage of opened mastoid cells, and in the other for fistula closure of the lateral semi-circular canal over cartilage, covered with bone pathé; follow-up was uneventful. Targeted use of GIC in middle ear surgery rarely poses problems. GIC cannot be used in neuro-otosurgery in contact with cerebrospinal fluid because of possible aluminium encephalopathy. PMID:25209434

  2. Cytotoxicity of modified glass ionomer cement on odontoblast cells.

    PubMed

    Chen, Song; Mestres, Gemma; Lan, Weihua; Xia, Wei; Engqvist, Håkan

    2016-07-01

    Recently a modified glass ionomer cement (GIC) with enhanced bioactivity due to the incorporation of wollastonite or mineral trioxide aggregate (MTA) has been reported. The aim of this study was to evaluate the cytotoxic effect of the modified GIC on odontoblast-like cells. The cytotoxicity of a conventional GIC, wollastonite modified GIC (W-mGIC), MTA modified GIC (M-mGIC) and MTA cement has been evaluated using cement extracts, a culture media modified by the cement. Ion concentration and pH of each material in the culture media were measured and correlated to the results of the cytotoxicity study. Among the four groups, conventional GIC showed the most cytotoxicity effect, followed by W-mGIC and M-mGIC. MTA showed the least toxic effect. GIC showed the lowest pH (6.36) while MTA showed the highest (8.62). In terms of ion concentration, MTA showed the largest Ca(2+) concentration (467.3 mg/L) while GIC showed the highest concentration of Si(4+) (19.9 mg/L), Al(3+) (7.2 mg/L) and Sr(2+) (100.3 mg/L). Concentration of F(-) was under the detection limit (0.02 mg/L) for all samples. However the concentrations of these ions are considered too low to be toxic. Our study showed that the cytotoxicity of conventional GIC can be moderated by incorporating calcium silicate based ceramics. The modified GIC might be promising as novel dental restorative cements. PMID:27221819

  3. Effect of air polishing on the fluoride release of (resin-modified) glass ionomer cements and of a polyacid-modified composite resin.

    PubMed

    Jost-Brinkmann, P G

    1998-06-01

    Eight different conventional and resin-modified glass ionomers as well as a polyacid-modified composite were air polished and their fluoride release was determined in comparison to untreated controls. The air polishing was done with two different devices at medium and maximum setting for powder and water. Ninety discs of 1.5 mm thickness and 7.0 mm diameter were produced from each cement. These discs were stored in 5 ml deionized water at 37 degrees C. After 1 day and 1, 4, 8, 12, and 16 weeks, the specimens were transferred into new vials with fresh deionized water. From the 4th week onward, the specimens (except for the untreated controls) were air polished on half of their upper and lower surfaces for 2 s each before being put into a new vial. After 20 weeks the fluoride released during the previous 4 weeks was determined with a fluoride ion-sensitive electrode. With the exception of Ketac-Cem, all cements released significantly more fluoride ions after air polishing, irrespective of the devices' settings. The differences in the amount of fluoride released among the investigated materials were greater than the changes in fluoride release patterns caused by air polishing. Air polishing increased the fluoride release by 20-60% in most of the materials investigated. PMID:15490782

  4. Dentin bond strength of light-cured glass-ionomer cements.

    PubMed

    Hinoura, K; Miyazaki, M; Onose, H

    1991-12-01

    The purpose of this study was to investigate the influence of surface treatments and irradiation conditions on the bond strength of light-cured glass-ionomer cements to dentin. The light-cured glass-ionomer cements used in this study were Vitrabond, XR Ionomer, and Fuji Lining LC. Three experiments were designed to study the influence of the following factors on bond strength to dentin: (1) effect of the surface treatment of the dentin, (2) effect of the irradiation time, (3) effect of an increase in the interval between mixing of the cement and irradiation. Samples were stored in water for 24 hours, after which shear bond testing was performed at a cross-head speed of 1 mm/min. For Vitrabond, the Scotchprep and Gluma 2 treatments gave the greatest shear bond strengths. For XR Ionomer and Fuji Lining LC, the Scotchprep treatment gave the greatest shear bond strengths. The bond strengths for all cements increased with prolonged irradiation time. Bond strengths decreased with a longer elapsed time between mixing and light-curing. This means that light-curing should be done soon after the cement is placed. The failure mode was found to be cohesive in the ionomer. PMID:1774385

  5. The ART approach using glass-ionomers in relation to global oral health care.

    PubMed

    Frencken, Jo E

    2010-01-01

    Dental caries is the most prevalent non-communicable disease in the world. Its management in high-income countries over the last four decades has resulted in relatively low caries prevalence in child and adolescent populations. In low- and middle-income countries, caries management is virtually non-existent and this may lead to serious physical and mental complications, particularly in children. Toothache is predominantly treated by extracting the cavitated tooth. Absence of restorative oral care is partly due to the copying from high-income countries, of restorative treatment reliant on electrically driven equipment and often inappropriate for use in many low- and middle-income countries. Atraumatic Restorative Treatment (ART), which does not rely on electrically driven equipment, has yielded good results over the last two decades. ART uses hand instruments and high-viscosity glass-ionomers. Its introduction into public oral healthcare systems has been piloted in several countries. Initial short-term results show that the introduction of ART, using high-viscosity glass-ionomers, has increased the ratio of restorations to extractions. Moreover, the percentage of ART restorations in relation to the total number of restorations placed increased steeply after its introduction and has remained high. However, ART introduction faced a few barriers, the most important being high patient workloads and the absence of a constant supply of dental instruments and glass-ionomers. High-viscosity glass-ionomer has become an essential element in public oral healthcare systems, particularly in those operating inadequately. PMID:19804903

  6. Management of a Large Internal Resorption Lesion with Metal Reinforced Glass Ionomer Cement

    PubMed Central

    Bhuyan, Atool Chandra; Arora, Suraj; Sethi, Kunal; Kalra, Tarun

    2014-01-01

    Mineral trioxide aggregate is the mainstay of treatment of large internal resorption defects. But its cost may be a deterrent to its use in some patients. The present case report describes the successful endodontic management of an extensive internal resorptive lesion in a mandibular molar with metal reinforced glass ionomer cement. PMID:25436156

  7. Initial Sliding Wear Kinetics of Two Types of Glass Ionomer Cement: A Tribological Study

    PubMed Central

    Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P < 0.0001). The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material. PMID:25093185

  8. Invitro Evaluation of Fluoride Release from Hydroxyapatite Reinforced Glass Ionomer with or without Protective Coating

    PubMed Central

    Nandlal, Bhojraj

    2016-01-01

    Introduction Glass Ionomer Cement (GIC) is well known for its fluoride releasing property but has its own drawbacks of poor mechanical properties, sensitivity to initial desiccation and moisture contamination. To overcome these, search led to the reinforcement of hydroxyapatite and application of surface coating agent but their effect on fluoride release is still not clear. Aim To evaluate and compare the release of fluoride from Hydroxyapatite Reinforced Glass Ionomer (HA-GIC) with and without protective coating. Materials and Methods Specimens were prepared as follows- Eight percent by weight conventional glass ionomer was replaced by hydroxyapatite powder (HA) and an indigenous product was prepared (HA-GIC). This powder was mixed with liquid of conventional GIC and allowed to set, then G coat plus coating agent was applied in surface coated group and light cured. Fluoride release of the sample was measured every 24 hrs for seven days and weekly from 7th to 21st day using combination ion selective electrode. Results Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both the groups. Results of repeated measure ANOVA revealed statistically significant difference between two groups (p <0.001). Conclusion Coating the hydroxyapatite reinforced glass ionomer will allow for slow and steady release of fluoride for a long period of time into oral environment. PMID:27190957

  9. Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements

    PubMed Central

    Souza, Júlio C. M.; Silva, Joel B.; Aladim, Andrea; Carvalho, Oscar; Nascimento, Rubens M.; Silva, Filipe S.; Martinelli, Antonio E.; Henriques, Bruno

    2016-01-01

    Background: Glass-ionomer cements perform a protective effect on the dentin-pulp complex considering the F ions release and chemical bonding to the dental structures. On the other hand, those materials have poor physic-mechanical properties in comparison with the restorative resin composite. The main aim of this work was to evaluate the influence of zirconia and/or alumina fillers on the microstructure and strength of a resin modified glass-ionomer cement after thermal cycling. Methods: An in vitro experimental study was carried out on 9 groups (n = 10) of cylindrical samples (6 x 4 mm) made from resin modified glass-ionomer (Vitremer, 3M, USA) with different contents of alumina and/or zirconia fillers. A nano-hybrid resin composite was tested as a control group. Samples were mechanically characterized by axial compressive tests and electron scanning microscopy (SEM) coupled to energy dispersive X-ray spectrophotometry (EDS), before and after thermal cycling. Thermal cycling procedures were performed at 3000, 6000 and 10000 cycles in Fusayama´s artificial saliva at 5 and 60 oC. Results: An improvement of compressive strength was noticed on glass-ionomer reinforced with alumina fillers in comparison with the commercial glass ionomer. SEM images revealed the morphology and distribution of alumina or zirconia in the microstructure of glass-ionomers. Also, defects such as cracks and pores were detected on the glass-ionomer cements. The materials tested were not affected by thermal cycling in artificial saliva. Conclusion: Addition of inorganic particles at nano-scale such as alumina can increase the mechanical properties of glass-ionomer cements. However, the presence of cracks and pores present in glass-ionomer can negatively affect the mechanical properties of the material because they are areas of stress concentration. PMID:27053969

  10. The Effect of Glass Ionomer and Adhesive Cements on Substance P Expression in Human Dental Pulp

    PubMed Central

    Ariza-Garcia, German; Camelo, Patricia; Mejia, Monica; Ojeda, Karyn; Azuero-Holguin, Maria M.; Abad-Coronel, Dunia; Munoz, Hugo R.

    2013-01-01

    Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten healthy premolars where extracted without treatment and served as a negative control group. All pulp samples were processed and SP was measured by radioimmunoassay. Results: Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically significant differences between groups (p<0.0001). Tukey HSD post hoc tests showed statistically significant differences in SP expression between negative control group and the 3 other groups (p<0.01). Differences between the cavity-only group and the two experimental groups were also statistically significant (p<0.05 and p<0.01 respectively). There is also a statistically significant difference between the two experimental groups (p<0.01). Conclusions: These findings suggest that adhesive cements provoke a greater SP expression when compared with glass ionomer. Key words:Glass Ionomer, adhesive cement, Substance P, human dental pulp. PMID:23722145

  11. The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements.

    PubMed

    Wren, A; Clarkin, O M; Laffir, F R; Ohtsuki, C; Kim, I Y; Towler, M R

    2009-10-01

    Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO(2)-0.36 ZnO-0.12 CaO-0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T (g)). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M (w), 80,800) and water to form a GIC and the working time (T (w)) and the setting time (T (s)) of the resultant cements were then determined. The cement based on the solgel glass had a longer T (w) (78 s) as compared to the cement based on the melt derived glass (19 s). T (s) was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (sigma(c)) and biaxial flexure (sigma(f)), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system. PMID:19459033

  12. Evaluation of the relationship between the cost and properties of glass ionomer cements indicated for atraumatic restorative treatment.

    PubMed

    Calvo, Ana Flávia Bissoto; Kicuti, Ariane; Tedesco, Tamara Kerber; Braga, Mariana Minatel; Raggio, Daniela Prócida

    2016-01-01

    The aim of this study was to evaluate microshear bond strength (μSBS), water sorption and solubility of glass ionomer cements (GIC) indicated for atraumatic restorative treatment (ART). Cylindrical specimens (6 x 2.4 mm) were used to test the sorption and solubility of each GIC (n = 5). The specimens were weighed before and after immersion in water and desiccation. For the μSBS test, 60 primary molars were ground to obtain flat surfaces from both enamel and dentin. The teeth were then assigned to the tested GIC (n = 10) groups, namely Fuji IX - FIX, Ketac Molar - KM and Maxxion R - MX. The exposed surfaces were pre-treated with GIC liquid. Polyethylene tubes were placed on the pre-treated surface and filled with one of the GIC. After 24 h, the specimens were submitted to the μSBS test. The failure mode was assessed using a stereomicroscope (400 x magnification). The powder to liquid ratio and cost of material were also determined (n = 3). The data were analyzed by ANOVA and Tukey's post hoc test. Linear regression was used to determine the relation between cost and the other variables. Overall, MX showed lower μSBS values (enamel: 3.93 ± 0.38; dentin: 5.04 ± 0.70) than FIX (enamel: 5.95 ± 0.85; dentin: 7.01 ± 1.06) and KM (enamel: 5.91 ± 0.78; dentin: 6.88 ± 1.35), as well as higher sorption and solubility. The regression analyses showed a significant and positive correlation between cost and μSBS in enamel (R2 = 0.62; p < 0.001) and dentin (R2 = 0.43; p < 0.001); and a negative correlation between cost and water sorption (R2 = 0.93; p < 0.001) and solubility (R2 = 0.79; p < 0.001). In conclusion, the materials indicated for ART exhibit distinct physical and mechanical properties; in addition, low-priced materials may interfere with GIC properties. PMID:26676191

  13. Bonding dental amalgam to a light-curing glass-ionomer liner/base.

    PubMed

    Aboush, Y E; Elderton, R J

    1991-03-23

    At a time when amalgam is used widely, yet when the criteria for its use are still evolving, the incorporation of an element of adhesive bonding between the amalgam and the base material may come into greater prominence and aid the general move towards more conservative new or replacement cavity preparations. This study assessed the 24-hour tensile bond strength of amalgam (Dispersalloy) to a light-curing glass-ionomer liner/base (Vitrabond), using Scotchbond dual cure, uncured Vitrabond or Vitrabond liquid as intermediaries. Using the Weibull distribution function, it was found that uncured Vitrabond was a better intermediary than Scotchbond or Vitrabond liquid. The bond strengths obtained with uncured Vitrabond intermediary were of the same order as those which can be expected between a glass-ionomer cement and dentine. This suggests scope for developing techniques for bonding amalgam to parts of cavity preparations. PMID:2021495

  14. Abrasion resistance of restorative glass-ionomer cements with a light-cured surface coating.

    PubMed

    Hotta, M; Hirukawa, H

    1994-01-01

    This is a comparative study of the Knoop hardness number and the toothbrush wear of a surface coating agent applied to the surface of a glass-ionomer restorative cement. A reduction in surface hardness of the coating agent resulted in an increase in brush wear. The light-cured glazing agent (Bellfeel Brightener) proved to be significantly harder than those coated with a light-cured bonding agent (Occlusin). Occlusin bonding agent was removed by comparatively rapid abrasion; however, the Bellfeel Brightener was significantly more resistant to such abrasion. The analysis of the surface hardness and scanning electron microscopy observations of the brushed surfaces of the samples suggested that Bellfeel Brightener was effective as a glazing material for glass-ionomer cement restorations. PMID:8008609

  15. How mobile are protons in the structure of dental glass ionomer cements?

    PubMed Central

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555

  16. How mobile are protons in the structure of dental glass ionomer cements?

    NASA Astrophysics Data System (ADS)

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-03-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.

  17. The influence of polyacid molecular weight on some properties of glass-ionomer cements.

    PubMed

    Wilson, A D; Hill, R G; Warrens, C P; Lewis, B G

    1989-02-01

    The influence of the molecular weight of the poly(acrylic acid) component on some properties of glass-ionomer cement has been investigated. The results can be explained by treatment of glass-ionomer cements as thermoplastic composites. Many of the concepts of polymer science can be applied successfully in a qualitative way to these cements, including the ideas of entanglements and reptation. Molecular weight of the polyacid had a pronounced influence on setting rate, acid erosion rate, toughness, fracture toughness, and wear resistance. The chain length of the polyacid was found to be an important parameter in formulation of a cement, and the higher the molecular weight, the better the properties. However, in practice the molecular weight is limited by viscosity, and some balance has to be achieved among concentration, molecular weight, and viscosity. PMID:2918140

  18. Comparative Evaluation of Microleakage Between Nano-Ionomer, Giomer and Resin Modified Glass Ionomer Cement in Class V Cavities- CLSM Study

    PubMed Central

    Hari, Archana; Thumu, Jayaprakash; Velagula, Lakshmi Deepa; Bolla, Nagesh; Varri, Sujana; Kasaraneni, Srikanth; Nalli, Siva Venkata Malathi

    2016-01-01

    Introduction Marginal integrity of adhesive restorative materials provides better sealing ability for enamel and dentin and plays an important role in success of restoration in Class V cavities. Restorative material with good marginal adaptation improves the longevity of restorations. Aim Aim of this study was to evaluate microleakage in Class V cavities which were restored with Resin Modified Glass Ionomer Cement (RMGIC), Giomer and Nano-Ionomer. Materials and Methods This in-vitro study was performed on 60 human maxillary and mandibular premolars which were extracted for orthodontic reasons. A standard wedge shaped defect was prepared on the buccal surfaces of teeth with the gingival margin placed near Cemento Enamel Junction (CEJ). Teeth were divided into three groups of 20 each and restored with RMGIC, Giomer and Nano-Ionomer and were subjected to thermocycling. Teeth were then immersed in 0.5% Rhodamine B dye for 48 hours. They were sectioned longitudinally from the middle of cavity into mesial and distal parts. The sections were observed under Confocal Laser Scanning Microscope (CLSM) to evaluate microleakage. Depth of dye penetration was measured in millimeters. Statistical Analysis The data was analysed using the Kruskal Wallis test. Pair wise comparison was done with Mann Whitney U Test. A p-value<0.05 is taken as statistically significant. Results Nano-Ionomer showed less microleakage which was statistically significant when compared to Giomer (p=0.0050). Statistically no significant difference was found between Nano Ionomer and RMGIC (p=0.3550). There was statistically significant difference between RMGIC and Giomer (p=0.0450). Conclusion Nano-Ionomer and RMGIC showed significantly less leakage and better adaptation than Giomer and there was no statistically significant difference between Nano-Ionomer and RMGIC. PMID:27437363

  19. Bonding of a light-curing glass-ionomer cement to dental amalgam.

    PubMed

    Aboush, Y E; Elderton, R J

    1991-04-01

    In the clinical situation, the need may arise for placement of a glass-ionomer cement over an existing amalgam restoration. This study assessed the tensile bond strength of a recently developed light-curing glass ionomer (Vitrabond) to dental amalgam (Dispersalloy), with and without the use of Scotchbond dual cure as an intermediary. Amalgam adherend specimens were prepared, then aged in water at 37 degrees C for seven days. Immediately before being bonded, the amalgam surfaces were finished flat on 600-grit paper. Forty specimens were used for bonding in this condition, and another 40 were covered with a thin layer of Scotchbond, which was light-cured for 10 s. The glass-ionomer was applied to the adherend surface in two increments, each light-cured for 30 s. After being bonded, half the specimens were stored in water at 37 degrees C, while half were stored in an environment of 95 +/- 5% RH at 37 degrees C. The 24-hour tensile bond strengths, in MPa, were: for specimens stored in water, without Scotchbond 8.4 +/- 1.2, with Scotchbond 4.7 +/- 1.3%; and for specimens stored in 95 +/- 5% RH, without Scotchbond 9.2 +/- 2.1, with Scotchbond 4.6 +/- 1.5. The data were further analyzed by the Weibull distribution function. It was concluded that a strong reliable bond can be achieved between Vitrabond and set Dispersalloy, and that the use of Scotchbond as an intermediary is contra-indicated. PMID:1936641

  20. Antimicrobial Effects of Dental Luting Glass Ionomer Cements on Streptococcus mutans

    PubMed Central

    Altenburger, Markus; Spitzmüller, Bettina; Anderson, Annette; Hellwig, Elmar

    2014-01-01

    Objective. To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. Methods. Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. Results. Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. Conclusion. All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo. PMID:24795539

  1. A study of the interactions between glass-ionomer cement and S. sanguis biofilms

    NASA Astrophysics Data System (ADS)

    Hengtrakool, Chanotai

    Glass-ionomer cements (GIC) have been used for dental procedures for many years and more recently in other medical applications such as bone cements, for bone reconstruction and also as drug release agents. The postulated caries-preventive activities of GIC are thought to result from their sealing ability, remineralization potential and antibacterial effects. Extensive 'in vitro' investigations have attempted to quantify these effects. In this study, an artificial mouth model, simulating 'in vivo' conditions at the tooth surface, was used to achieve a better understanding of the interaction of oral bacteria with the cements. This study investigated the interaction of Streptococcus sanguis, a common mouth commensal, with two glass-ionomer formulations (one containing fluoride and the other without fluoride ion) with particular reference to bacterial growth, changes in surface roughness and hardness of the glass-ionomer cement with respect to time. Restorative materials with rough surfaces will promote bacterial accumulation 'in vivo' and plaque formation is one factor in surface degradation. The constant depth film fermenter (CDFF) permits the examination of these phenomena and was used to investigate glass-ionomer/S. sanguis biofilm interaction over periods up to 14 days. In conjunction with these studies, surface roughness was measured using a 3-dimension laser profilometer and the surface hardness evaluated using a micro-indenter. Fluoride release from the cement was measured over 84 days. The results showed that autoclaving the CDFF prior to bacterial innoculate did not appear to affect the long-term fluoride release of the GIC. Laser profilometry revealed that the initial roughness and surface area of the GICs was significantly greater than the hydroxyapatite control. S. sanguis viable counts were significantly reduced for both glass-ionomer formulations in the shortterm, the greater reduction being with fluoride-GIC. S. sanguis biofilms produced similar

  2. Surface pH of resin-modified glass polyalkenoate (ionomer) cements.

    PubMed

    Woolford, M J; Chadwick, R G

    1992-12-01

    The recently developed group of materials known as light-activated, or resin-modified, glass polyalkenoate (ionomer) cements have been produced in response to clinical demands for a command set cavity base material. This study monitored the surface pH of three commercially available resin-modified glass ionomer cements over a 60-min period following either mixing alone or mixing followed by a 30-s exposure to a curing lamp. The results indicate that each material behaves in a unique manner. For all materials and conditions the pH reached after a 60-min period was significantly (P < 0.001) higher than the initial value. Light curing the materials significantly increased (P < 0.01) the surface pH of two of the materials (Baseline VLC and Vitrebond) as compared to the same materials in the uncured state. In the case of XR-Ionomer, however, no significant (P > 0.05) effect of light curing upon the surface pH was apparent. The precise clinical consequences of a low surface pH are unclear but may be an aetiological factor in postoperative pulpal sensitivity. It is therefore recommended that a sublining of a proprietary calcium hydroxide lining material should be placed routinely beneath these materials and every effort made to ensure effective light curing. PMID:1452877

  3. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  4. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics.

    PubMed

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1-100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  5. COMPARISON OF TWO MINIMALLY INVASIVE METHODS ON THE LONGEVITY OF GLASS IONOMER CEMENT RESTORATIONS: SHORT-TERM RESULTS OF A PILOT STUDY

    PubMed Central

    Barata, Terezinha Jesus Esteves; Bresciani, Eduardo; Mattos, Maria Cecília Ribeiro; Lauris, José Roberto Pereira; Ericson, Dan; Navarro, Maria Fidela de Lima

    2008-01-01

    The purpose of this study was to evaluate the clinical performance of glass ionomer cement (GIC) restorations comparing two minimally invasive methods in permanent teeth after 12 months. Fifty pregnant women (second trimester of pregnancy), mean age 22 ± 5.30 years, were treated by two previously trained operators. The treatment approaches tested were: chemomechanical method (CarisolvTM; MediTeam) and atraumatic restorative treatment (ART). A split-mouth study design was used in which the two treatments were randomly placed in 50 matched pairs of permanent teeth. The chemomechanical method (CM) was the test group and the ART was the control group. The treatments were performed in Public Health Centers. The tested restorative material was a high-strength GIC (Ketac Molar; 3M/ESPE). The restorations were placed according to the ART guidelines. Two calibrated independent examiners evaluated the restorations in accordance with ART criteria. The interexaminer kappa was 0.97. Data were analyzed using 95% confidence interval on the binomial distribution and Fisher's exact test at 5% significance level. In a 12-month follow-up, 86% of the restorations were evaluated. In the test group (CM), 100% (CI=93.3-100%) of the restorations were considered successful. In the control group (ART) 97.6% (CI=87.4-99.9%) of the restorations were considered successful and 2.4% unsuccessful (marginal defect >0.5 mm). There was no statistically significant difference between the 12-mounth success rate for both groups (Fisher's exact test: P=0.49) and between the two operators (Fisher's exact test: P=1.00). Both minimally invasive methods, chemomechanical method and ART, showed a similar clinical performance after 12 months of follow up. PMID:19089209

  6. The effects of glass ionomer and flowable composite liners on the fracture resistance of open-sandwich class II restorations.

    PubMed

    Güray Efes, Begüm; Yaman, Batu Can; Gümüştaş, Burak; Tıryakı, Murat

    2013-01-01

    This in vitro study aimed to investigate the effects of glass-ionomer and flowable composite liners on the fracture resistance of Class II amalgam and composite restorations. Group 1 cavities were restored with amalgam and Group 4 cavities with nanofill composite after the application of a dentin-bonding agent. For the remaining groups, light-cured-glass-ionomer liner was used in a gingival floor proximal box (Groups 2, 5) or flowable composite was used as a liner (Groups 3, 6), the remainder of the cavity was restored with amalgam (Groups 2, 3) or composite (Groups 5, 6). The restorations were loaded in compression to failure. The data was analyzed using Tukey's multiple comparison test. The fracture resistance was significantly higher (p<0.05) in Group 3 than in all other groups, except Group 2 (p>0.05). Flowable composite, glass-ionomer liners increased the fracture resistance of open-sandwich Class II amalgam restorations. PMID:24240900

  7. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum. PMID:25822408

  8. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  9. Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Abour, Mohamed Abour Bashir

    These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical

  10. Finished surface texture, abrasion resistance, and porosity of Aspa glass-ionomer cement.

    PubMed

    Smales, R; Joyce, K

    1978-11-01

    1. With the finishing agents tested Concise had a smoother surface texture than Aspa. 2. The smoothest surface was on Concise polymerized against a Mylar matrix strip. The smoothest surface for Aspa was obtained with a silicon carbide disk. 3. Aspa abraded about three times as rapidly by volume as Concise when tested by a two-body abrasion method. 4. Significantly more air bubbles were entrapped by hand mixing within Aspa than within Concise. 5. Controlled clinical studies of the glass-ionomer cements are needed before they can be fully evaluated as restorative materials. PMID:281506

  11. Wire-reinforced, light-cured glass ionomer-resin provisional restoration: a description of the technical procedure.

    PubMed

    Liebenberg, W H

    1994-09-01

    A procedure to use round-wire and glass ionomer-resin cement to make practical provisional restorations is presented. The viability of the use of glass ionomer-resin cement and the need for embrasure perfection in provisional restorations is discussed. This procedure is suitable as a long-term provisional restoration where extensive coronal destruction has occurred. The inherent disadvantage of the procedure is the need to involve occlusal surfaces of the proximal teeth; thus its use is restricted to mouths in which the adjacent teeth are to receive simultaneous restorative treatment. PMID:7965911

  12. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.

    PubMed

    Gomes, Filipa O; Pires, Ricardo A; Reis, Rui L

    2013-04-01

    Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b=0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25±5 MPa) and higher compressive elastic modulus (492±17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a=0.125 and b=0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. PMID:23827583

  13. Enamel fluoride levels after orthodontic band cementation with glass ionomer cement.

    PubMed

    Akkaya, S; Uner, O; Alaçam, A; Değim, T

    1996-02-01

    The aim of this investigation was to examine the fluoride uptake by enamel after application of glass ionomer cement for orthodontic band cementation compared with zinc phosphate cement. The study was conducted on 21 children whose mean age was 14 years. All the children were reared in the Middle Anatolian cities where the water fluoride concentration was below the level of 0.50 ppm. The subjects were randomly divided into three groups. The first experimental group, had seven subjects whose teeth were topically fluoridated with 2 per cent NaF solution, before orthodontic band cementation with zinc phosphate cement. The second experimental group also had seven subjects whose orthodontic bands were cemented with glass ionomer cement. The third group, consisted of seven control subjects and no dental procedures were performed in this group. All the participants were followed for 3 months and at the end of this period maxillary first premolars, which were in the ninth developmental stage according to Nolla (1960), were extracted for orthodontic purposes. The enamel fluoride concentrations were determined on the left maxillary first premolars at three successive etch depths by means of a fluor ion electrode, whereas the calcium concentrations were determined with an atomic absorption spectrophotometer. The results of this investigation showed that in both cementation groups enamel fluoride concentrations at three successive etch depths were highly increased compared with the control group. However, the difference between the cementation groups was not statistically significant. PMID:8746180

  14. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    PubMed

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function. PMID:26046268

  15. Chemical and structural characterization of glass ionomer cements indicated for atraumatic restorative treatment.

    PubMed

    Guedes, Orlando Aguirre; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Nakatani, Mariana Kyosen; de Araújo Estrela, Cyntia Rodrigues; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2015-01-01

    Glass ionomer cements (GICs) are restorative materials, which clinical use has increased significantly during the last decade. The aim of the present study was to analyze the chemical constitution and surface morphology of four glass ionomer cements: Maxxion R, VitroFill, Vidrion R and Vitremer. Twelve polyethylene tubes with an internal diameter of 3 and 3 mm in length were prepared, filled and then transferred to a chamber with 95% relative humidity and a temperature of 37°C. The surface morphology of the tested materials was examined by scanning electron microscopy (SEM) and main components were investigated by energy-dispersive X-ray microanalysis (EDX). Scanning electron microscopy revealed irregular and rough external surface. Cracking was not observed. The main constituents were found to be aluminum, silicon, calcium, sodium and fluoride. Phosphorus, sulfur and barium were only observed in Vidrion R, while chlorine were only observed in Maxxion R. Elemental mapping of the outer surface revealed high concentration of aluminum and silicon. Significant irregularities on the surface of the tested materials were observed. The chemical constitution of all GIC was similar. PMID:25876952

  16. Etching conditions for resin-modified glass ionomer cement for orthodontic brackets.

    PubMed

    Valente, Rudolfo M; De Rijk, Waldemar G; Drummond, James L; Evans, Carla A

    2002-05-01

    This study reports the tensile bond strength of orthodontic eyelets (RMO, Inc, Denver, Colo) bonded to human extracted teeth with a resin-modified glass ionomer cement (RMGIC) (Fuji Ortho LC, GC America, Alsip, Ill) and various acid etchants (Etch-37 and All-Etch, Bisco, Schaumburg, Ill; Ultra Etch, 3M Unitek, St Paul, Minn) for enamel preparation before bonding. The enamel etch conditions were as follows: 37% phosphoric acid with silica; 37% phosphoric acid, silica-free; 10% phosphoric acid, silica-free; 10% polyacrylic acid; and unetched enamel. Bond strength was measured by pulling in tension on the eyelet with a 0.018-in steel wire perpendicular to the enamel surface with a testing machine (Instron model 1125, Canton, Mass) at a speed of 2 mm/min. A light-cured resin cement (Transbond XT, 3M Unitek, Monrovia, Calif) applied to enamel etched with 37% phosphoric acid containing silica served as a control. Each group included 30 specimens. The Weibull distribution (m) was used for statistical analysis with a 90% CI. The different etchants used with RMGIC did not affect tensile bond strength. The resin cement group had the highest tensile strength. Significantly lower bond strengths were observed when glass ionomer cement was used to bond orthodontic attachments to nonetched teeth. However, unlike resin cement, RMGIC can bond effectively to etched teeth in a moist environment without an additional bonding agent. PMID:12045770

  17. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements.

    PubMed

    Valliant, Esther Mae; Gagnier, David; Dickey, Brett Thomas; Boyd, Daniel; Filiaggi, Mark Joseph

    2015-07-01

    Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement. PMID:25627650

  18. Resin content in cement liquids of resin-modified glass ionomers.

    PubMed

    Ikeda, K; Fujishima, A; Suzuki, M; Inoue, M; Sasa, R; Miyazaki, T

    1999-09-01

    Qualitative and quantitative analyses were conducted on four kinds of resin-modified glass ionomer (RMGI) cement liquids, LC, LC II, LC III (hereinafter referred to as LCs) and VM, using HPLC and laser Raman spectroscopic methods. HPLC revealed that among the RMGI liquids LCs contain 31-32% HEMA (2-Hydroxyethyl methacrylate), and VM contains 18% of the same. The composition of RMGI cement liquids varied significantly between manufacturers. In Raman spectroscopic analyses, the spectra of liquids of various ratios of polyacrylic acid and HEMA were measured, and calculations were made on the peak intensity ratios of C=C stretch vibration to C=O stretch vibration, common in both HEMA and polyacrylic acid. The composition ratio of polycarboxylic acid to HEMA of commercial glass ionomer cements was assessed by the regression curve generated by a combination of peak intensity ratios and composition ratios. In addition, Raman spectroscopy was able to identity the differences in form of the methacryloyloxy group. PMID:10786135

  19. An evaluation of commercial and experimental resin-modified glass-ionomer cements

    NASA Astrophysics Data System (ADS)

    Kanchanavasita, Widchaya

    Glass-ionomer cement (GIG) has become widely accepted as a restorative material due to its bonding ability and sustained release of fluoride. The cement is, however, sensitive to moisture imbalance and lacks toughness. Recently, resin-modified glass-ionomer cements (RMGIC) have been introduced. These materials contain monomeric species, such as 2-hydroxyethyl methacrylate (HEMA) in addition to the components of the conventional glass-ionomer cements. Disadvantages of RMGICs include a relatively high contraction and exotherm on polymerisation. HEMA is known to be cytotoxic, leading to problems of biocompatibility, and polyHEMA swells on exposure to water, leading to dimensional instability of the cements. Addressing these problems is important in the development of the RMGICs. Using alternative monomers to replace or reduce the amount of HEMA used in the current RMGIC formulations would be appropriate. This study was divided into two parts. Initially certain properties such as water sorption, micro-hardness, flexural strength and polymerisation exotherm of commercially available RMGICs were evaluated. Long-term storage of RMGICs in aqueous solutions resulted in their high water uptakes and solubilities and large volumetric expansions. However, the surface hardness and strengths of the restorative grade RMGICs were not affected on storage in distilled water. When the materials were immersed in artificial saliva, significantly higher water uptake were obtained; the equilibrium water uptake were not reached after 20 months. As a consequence, plastic behaviour and reduced surface hardness were observed. The RMGICs also produced high exotherm during polymerisation. The second part of the study investigated the use of an experimental resin as an alternative to HEMA. The experimental resin has the advantage of low toxicity to the pulp and relatively low polymerisation shrinkage. This study compared the polymerisations of the resin and HEMA, and of mixtures of these two

  20. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    PubMed

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives. PMID:19241096

  1. Setting shrinkage and hygroscopic expansion of resin-modified glass-ionomer in experimental cylindrical cavities.

    PubMed

    Kim, Y G; Hirano, S

    1999-03-01

    The effects of the C-value (bonded surface area/unbonded surface area) and the volume of the cavity on the volumetric dimensional changes [volumetric setting shrinkage (VSS) and volumetric hygroscopic expansion (VHE)] of a resin-modified glass-ionomer (RMGI) filled in experimental cylindrical cavities were evaluated. The VSS and the VHE rate decreased with increasing C-value. There was a high inverse regression between the cavity C-value and volumetric dimensional changes, but a low regression between cavity volume and volumetric dimensional changes. Therefore, it was thought that greater contraction stress would remain in high C-value cavities than low C-value cavities during the setting process. It was also confirmed that the volumetric dimensional changes of RMGI in cavity were influenced primarily by the cavity C-value. PMID:10786149

  2. N-vinylpyrrolidone modified glass-ionomer resins for improved dental restoratives

    NASA Astrophysics Data System (ADS)

    Xie, Dong

    The studies described in this dissertation focus on improvement of mechanical properties of current glass-ionomer cements. Thermal properties and microstructures of the cements were correlated with their mechanical strengths. The first study evaluated mechanical properties of selected commercial glass-ionomer cements and examined their microstructures. The results showed that resin-modified glass-ionomer cements (RM GICs) exhibited much higher flexural (FS) and diametral tensile strengths (DTS), compared to conventional GICs (C GICs). In addition, they exhibited comparable compressive strength (CS), relatively low microhardness and less wear resistance than C GICs. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The mechanical properties of the GICs were closely related to their microstructures. Factors such as the density of the microstructure, the integrity of the interface between the glass particles and polymer matrix, particle size and the number and size of voids have important roles in determining the mechanical properties. The second study evaluated thermal properties of these GICs. The results showed that the RM GICs exhibited higher thermal transition temperatures than those of the C GICs, thermal expansion coefficients of these cements were close to those of human teeth, and the indentation creep of the RM GICs were higher than the C GICs. The third study explored and evaluated the effect of a water-soluble monomer, N-vinylpyrrolidone (NVP), on the performance of current C GICs, indicating a significant improvement in both mechanical and working properties. The fourth study demonstrated the process of determining the optimal molar ratio of the NVP-containing copolymers, using design of experiment. The results showed that the optimal molar ratio for these copolymers was 7:1:3 for poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone), based on the FS test. The molar ratio of 8:2:1 (AA

  3. Comparative Evaluation of Fluoride Recharge Ability of Conventional and Hydroxyapatite Modified Glass Ionomer Cement with Daily Low Fluoride Exposure- An Invitro Study

    PubMed Central

    Sudeep, S.; Sharma, Shalini; Mohanty, Susant

    2016-01-01

    Introduction Glass ionomer cement (GIC) has best suited paediatric dentists and is well recognised in the preventive era of dentistry. However its use is affected by its inferior mechanical properties. Hydroxyapatite whiskers have been lately introduced as strengthening additive without affecting its fluoride releasing property, but literature lacks data related to its effect on recharging ability of glass ionomer cement. Aim To evaluate and compare fluoride release from hydroxyapatite incorporated glass ionomer cement following recharging with low fluoride dentifrices. Materials and Methods An 8% Hydroxyapatite whiskers were added to Conventional Glass ionomer powder and 40 specimens each of conventional and Hydroxyapatite Glass ionomer cement were prepared using customised Teflon mould (5mm x 2mm) and were suspended in deionised water. Recharging of aged specimens was done using low fluoridated dentifrices containing 500ppm fluoride, twice daily and water was replenished every 24 hours. Fluoride release was analysed daily for 7 days and then weekly till 21 days using Sension 4 pH/ion selective electrode. Data thus obtained was statistically analysed by descriptive analysis followed by repeated measures ANOVA. Results Significant (p<0.01) increase in fluoride release was observed in both the materials following recharging regimen. Recharge pattern of hydroxyapatite glass ionomer was found to be similar to conventional glass ionomer cement. Conclusion Within the limitations of this study it can be evinced that fluoride rechargability and re-release remains unaffected by the addition of hydroxyapatite whiskers and hence proves to be more acceptable additive to glass ionomer cement to improve its mechanical properties widening its arena of usage by clinicians. PMID:27042586

  4. A Confocal Microscopic Evaluation of the Dehydration Effect on Conventional, Resin Reinforced Powder/Liquid and Paste to Paste Glass Ionomer Luting Cements

    PubMed Central

    George, Liza; Kandaswamy, D

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of dehydration of resin-modified glass ionomer powder/liquid system, resin-modified glass ionomer paste/paste luting cements in three different quantities and to compare them with a conventional glass ionomer luting cement using confocal laser scanning microscope. Materials and Methods: A conventional glass ionomer (Group I), a resin modified powder/liquid system (Group II), and a resin-modified paste/paste system (Group III) were selected for the study. In Group III, there were three subgroups based on the quantity of material dispensed. 50 premolar teeth were selected and randomly divided among the groups with 10 samples in each. The teeth were ground flat to expose a flat occlusal dentin. A device was made to standardize the thickness of cement placed on the teeth. The teeth were stored in distilled water for 24 h and then longitudinally sectioned to examine the tooth dentin interface under a confocal microscope. The specimens were allowed to dehydrate under the microscope for different time intervals. The width of the crack after dehydration near the dentinal interface was measured at definite intervals in all the groups and analyzed statistically using Student’s t-test. Results: Conventional glass ionomer cement showed the maximum width of the crack followed by resin modified paste/paste system during the dehydration period. Resin modified powder/liquid system did not show cohesive failure. Conclusions: Conventional glass ionomer luting cement is more susceptible to cohesive failure when subjected to dehydration compared to resin-modified glass ionomer paste/paste luting cement. Among the luting cements, resin-modified glass ionomer powder/liquid system showed the best results when subjected to dehydration. PMID:26464535

  5. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    NASA Astrophysics Data System (ADS)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  6. Comparative Evaluation of Shear Bond Strength and Fluoride Release of Conventional Glass Ionomer with 1% Ethanolic Extract of Propolis Incorporated Glass Ionomer Cement –Invitro Study

    PubMed Central

    Prabhakar, Attiguppe Ramashetty; Basappa, Nadig

    2016-01-01

    Introduction Atraumatic restorative treatment is a minimal intervention approach which involves manual removal of caries followed by restoration using adhesive restorative material. Due to incomplete manual caries excavation, there is a high chance of secondary caries under the restoration. Hence, many antibacterial agents have been incorporated in cement to enhance their antibacterial effect. Propolis is one of the natural medicines that has highlighted application in dentistry. Aim The current study evaluated the shear bond strength and fluoride release of Glass Ionomer Cement (GIC) combined with 1% Ethanolic Extract of Propolis (EEP). The research hypothesis was that the incorporation of 1% EEP in GIC has an effect on shear bond strength and fluoride release. Materials and Methods A study was conducted among two groups. Group A conventional GIC (control), Group B GIC incorporated with 1% EEP (experimental). Shear bond strength: Thirty samples were prepared. Dentinal surface was restored and bond strength was assessed using a universal testing machine. Fluoride release: Thirty samples were prepared and stored in distilled water at a constant temperature until the time of measurement. The fluoride release was assessed by ion selective electrode after 1st day and 7th day. Data obtained by shear bond strength analysis was subjected to statistical analysis using an unpaired t-test and the data obtained by the fluoride release analysis was subjected to an unpaired t-test and paired t-test. Results Result showed that there was no statistically significant difference in shear bond strength between the groups (p-value 0.77). A statistically significant difference was noticed in fluoride release among the groups after 1st and 7th day (p-0.001). However, the release was lesser in both the groups after the 1st day. Conclusion A 1% EEP incorporated GIC enhanced the fluoride release without causing a significant effect on shear bond strength of GIC. PMID:27437368

  7. Comparison of the push-out shear bond strength of four types of glass ionomers when used to bond amalgam: An in vitro study

    PubMed Central

    Mathew, Vinod Babu; Ramachandran, S; Indira, R; Shankar, P

    2011-01-01

    Background: Dental amalgam is the primary direct posterior restorative material used worldwide, but it have certain shortcomings due to the lack of adhesiveness to the cavity. The introduction of the concept of bonded amalgam helped improve the use of amalgam as a restorative material. Aim: Evaluation of the comparative push-out shear bond strength of four types of conventional glass ionomers used to bond amalgam to tooth in simulated class I situations. Materials and Methods: Four chemical cure glass ionomers are used: GC Fuji I, GC Fuji II, GC Fuji III and GC Fuji VII, and are compared with unbonded amalgam. The push-out bond strength was tested using the Instron Universal Testing Machine at a crosshead speed of 0.5 mm/min. Statistical Analysis: One-way ANOVA and post hoc Bonferroni tests were used to analyze the data. Results: The results showed that the use of glass ionomer to bond amalgam resulted in an increase in the bond strength of amalgam. The Type VII glass ionomer showed the highest bond strength in comparison with the other glass ionomers. Conclusions: Conventional glass ionomer bonds to amalgam and shows a beneficial increase in the bond strength of the restoration in comparison with unbonded amalgam. PMID:22144798

  8. An in vitro study to assess the setting and surface crazing of conventional glass ionomer cement when layered over partially set mineral trioxide aggregate.

    PubMed

    Ballal, Suma; Venkateshbabu, Nagendrababu; Nandini, Suresh; Kandaswamy, Deivanayagam

    2008-04-01

    The aim of our study was to assess the setting time and surface crazing of glass ionomer cement when layered over partially set mineral trioxide aggregate (MTA). To assess setting time, 40 hollow, cylindrical stainless steel molds were taken and equally divided into 4 groups. In groups I, II, and III glass ionomer cement was layered over partially setting MTA at 45 minutes, 4 hours, and 3 days, respectively. Group IV was used as a control. An additional 50 specimens were prepared for assessment of surface crazing. Twenty specimens (groups I and II) were prepared to study normal and desiccated patterns of conventional glass ionomer cement, respectively. Thirty specimens (groups III, IV, and V) were prepared by layering glass ionomer cement over partially set MTA at various time intervals. All the specimens were stained with red ink and analyzed for craze lines by light microscopy. From our study, it was observed that there was no statistical difference in setting time of glass ionomer cement when layered over partially set MTA in comparison to that of the control group. No craze lines were observed in those specimens (groups III, IV, and V) when viewed under staining and light microscopy. It could be concluded that conventional glass ionomer cement might be layered over partially set MTA after 45 minutes and could be used for single visit procedures. PMID:18358902

  9. Sealing capacity of a resin-modified glass-ionomer and resin composite placed in vivo in Class 5 restorations.

    PubMed

    Ferrari, M; Davidson, C L

    1996-01-01

    A 2% methylene blue dye was used to assess the leakage resistance of class 5 resin-modified glass-ionomer and resin composite restorations placed in 17 adults. The teeth were extracted 75 to 90 days after placement of the restorations and immersed for 24 hours in the dye solution. Within 7 days after extraction the teeth were sectioned inciso-apically through the center of the restoration and inspected under a stereomicroscope at X20 to determine the depth of dye penetration. No significant differences between the resin-modified glass-ionomer and resin composite restorations at the incisal or cervical margins were found. Although no more than 30% of the restorations of either group exhibited microleakage, neither of the restorative systems was able to completely prevent leakage at either incisal or cervical margins. PMID:8957921

  10. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements.

    PubMed

    Gjorgievska, Elizabeta; Van Tendeloo, Gustaaf; Nicholson, John W; Coleman, Nichola J; Slipper, Ian J; Booth, Samantha

    2015-04-01

    Conventional glass-ionomer cements (GICs) are popular restorative materials, but their use is limited by their relatively low mechanical strength. This paper reports an attempt to improve these materials by incorporation of 10 wt% of three different types of nanoparticles, aluminum oxide, zirconium oxide, and titanium dioxide, into two commercial GICs (ChemFil® Rock and EQUIA™ Fil). The results indicate that the nanoparticles readily dispersed into the cement matrix by hand mixing and reduced the porosity of set cements by filling the empty spaces between the glass particles. Both cements showed no significant difference in compressive strength with added alumina, and ChemFil® Rock also showed no significant difference with zirconia. By contrast, ChemFil® Rock showed significantly higher compressive strength with added titania, and EQUIA™ Fil showed significantly higher compressive strength with both zirconia and titania. Fewer air voids were observed in all nanoparticle-containing cements and this, in turn, reduced the development of cracks within the matrix of the cements. These changes in microstructure provide a likely reason for the observed increases in compressive strength, and overall the addition of nanoparticles appears to be a promising strategy for improving the physical properties of GICs. PMID:25691120

  11. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and Ef) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

  12. Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement.

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and E f ) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

  13. An evaluation of microleakage of various glass ionomer based restorative materials in deciduous and permanent teeth: An in vitro study

    PubMed Central

    Singla, Teena; Pandit, I.K.; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika

    2011-01-01

    Aim To evaluate the microleakage of recently available glass ionomer based restorative materials (GC Fuji IX GP, GC Fuji VII, and Dyract) and compare their microleakage with the previously existing glass ionomer restorative materials (GC Fuji II LC) in primary and permanent teeth. Method One hundred and fifty (75 + 75) non-carious deciduous and permanent teeth were restored with glass ionomer based restorative materials after making class I cavities. Samples were subjected to thermocycling after storing in distilled water for 24 h. Two coats of nail polish were applied 1 mm short of restorative margins and samples sectioned buccolingually after storing in methylene blue dye for 24 h. Microleakage was assessed using stereomicroscope. Result Significant differences (P < 0.05) were found when inter group comparisons were done. Except when GC Fuji VII (Group III) was compared with GC Fuji II LC (Group II) and Dyract (Group IV), non-significant differences (P > 0.05) were observed. It was found that there was no statistically significant difference when the means of microleakage of primary teeth were compared with those of permanent teeth. Conclusions GC Fuji IX GP showed maximum microleakage and GC Fuji VII showed least microleakage. PMID:23960526

  14. INFLUENCE OF HEMA CONTENT ON THE MECHANICAL AND BONDING PROPERTIES OF EXPERIMENTAL HEMA-ADDED GLASS IONOMER CEMENTS

    PubMed Central

    Lim, Ho-Nam; Kim, Seong-Hwan; Yu, Bin; Lee, Yong-Keun

    2009-01-01

    The purpose of this study was to determine the influence of incrementally added uncured HEMA in experimental HEMA-added glass ionomer cement (HAGICs) on the mechanical and shear bond strength (SBS) of these materials. Increasing contents of uncured HEMA (10-50 wt.%) were added to a commercial glass ionomer cement liquid (Fuji II, GC, Japan), and the compressive and diametral tensile strengths of the resulting HAGICs were measured. The SBS to non-precious alloy, precious alloy, enamel and dentin was also determined after these surfaces were subjected to either airborne-particle abrasion (Aa) or SiC abrasive paper grinding (Sp). Both strength properties of the HAGICs first increased and then decreased as the HEMA content increased, with a maximum value obtained when the HEMA content was 20% for the compressive strength and 40% for the tensile strength. The SBS was influenced by the HEMA content, the surface treatment, and the type of bonding surface (p<0.05). These results suggest that addition of an appropriate amount of HEMA to glass ionomer cement would increase diametral tensile strength as well as bond strength to alloys and teeth. These results also confirm that the optimal HEMA content ranged from 20 to 40% within the limitations of this experimental condition. PMID:19668995

  15. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Khor, K A

    2005-03-01

    Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO(2))-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO(2) powders were heat treated at 700 degrees Celsius and 800 degrees Celsius for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO(2)-GICs. The effects of different volume percentages of HA/ZrO(2) powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO(2)-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO(2) particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO(2) improved the mechanical properties of the HA/ZrO(2)-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO(2)-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO(2)-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO(2)-GICs were found to be much better than those of HA-GICs because ZrO(2) has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO(2) does not dissolve with increasing soaking time. PMID:15350775

  16. Comparative evaluation of microleakage of three restorative glass ionomer cements: An in vitro study

    PubMed Central

    Diwanji, Amish; Dhar, Vineet; Arora, Ruchi; Madhusudan, A.; Rathore, Ambika Singh

    2014-01-01

    Purpose: The aim of this study was to compare the microleakage of glass ionomers (conventional and resin modified) with that of recently introduced nanoionomers. Materials and Methods: Standardized class I and class V cavities were prepared on 120 young permanent teeth. Samples were equally divided into group I (class I restorations) and group II (class V restorations), and further divided into subgroups. The subgroups were restored with Fuji IX, Fuji II LC, and newly introduced Ketac™ N 100 (KN 100). Samples were thermocycled and submerged in Acridine dye for 24 h. Samples were sectioned to view under fluorescent microscope and marginal leakage was evaluated by Chi-square and Kruskal — Wallis test. Results: Fuji IX showed the maximum leakage, followed by LC II and the least was observed in KN 100. In class I restorations, there was significant difference while comparing Fuji IX with Fuji LC II and KN 100 and nonsignificant difference between LC II and KN100. In class V restorations, Fuji IX and KN100, KN 100 and LC II showed significant difference. Fuji IX and LC II showed nonsignificant difference. Conclusion: Within the limitations of this study, Fuji IX showed the maximum microleakage. KN 100 showed minimum leakage, better sealing ability, and was more consistent. PMID:25097418

  17. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement

    PubMed Central

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2016-01-01

    Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight) were used. One hundred and twenty specimens were fabricated for measuring microleakage, compressive strength, tensile strength, water sorption, and solubility. Statistical Analysis: One-way analysis of variance and Tukey's tests were used for measuring significance between means where P ≤ 0.05. Results: RMGIC specimens without any additives showed significantly highest microleakage and lowest compressive and tensile strengths. Conclusion: Silica particles added to RMGIC have the potential as a reliable restorative material with increased compressive strength, tensile strength, and water sorption but decreased microleakage and water solubility. PMID:27095901

  18. Failure of a Glass Ionomer to Remineralize Apatite-depleted Dentin

    PubMed Central

    Kim, Y.K.; Yiu, C.K.Y.; Kim, J.R.; Gu, L.; Kim, S.K.; Weller, R.N.; Pashley, D.H.; Tay, F.R.

    2010-01-01

    Remineralization of demineralized dentin lesions adjacent to glass-ionomer cements (GICs) has been reported in the literature. This study tested the hypothesis that a strontium-based GIC can remineralize completely demineralized dentin by nucleation of new apatite crystallites within an apatite-free dentin matrix. Human dentin specimens were acid-etched, bonded with Fuji IXGP, and immersed in a calcium-and-phosphate-containing 1.5X simulated body fluid (SBF) for 1-4 months. Polyacrylic acid and polyvinylphosphonic acid biomimetic analogs were added to the SBFs to create 2 additional remineralization media. Specimens were processed by transmission electron microscopy (TEM). No apatite deposition could be identified in the completely demineralized dentin in any of the specimens immersed in the 3 remineralization media, despite TEM/EDX evidence of diffusion of ions specific to the strontium-based GIC into the demineralized dentin. The hypothesis was rejected; mineral concentration alone is not a sufficient endpoint for assessing the success of contemporary remineralization strategies. PMID:20110510

  19. Sealing furcation perforations with silver glass ionomer cement: an in vitro evaluation.

    PubMed

    Fuss, Z; Abramovitz, I; Metzger, Z

    2000-08-01

    Furcation perforations sealed with silver glass ionomer cement (Chelon Silver) were evaluated in vitro compared with amalgam. Access cavities were prepared in 25 extracted human molar teeth. The coronal orifices of the root canals were sealed with amalgam and varnish. Naturally occurring coronal leakage through the intact pulp chamber floor was determined quantitatively for each tooth, using a modified fluid transport model, under pressure of 1.2 Atm. Each tooth was then disconnected from the system, perforated at the furcation, and the perforation sealed with either Chelon Silver (10 teeth) or amalgam (10 teeth); five remaining teeth served as a negative control. After incubation for 24 h at 37 degrees C in 100% humidity, teeth were reconnected to the modified fluid transport system, and coronal leakage under pressure was evaluated at 1, 2, 6, 15, and 24 h. Leakage through each tooth was compared with that of its own intact pulp chamber floor before perforation and the groups compared with each other. No significant difference was found between the mean leakage of the intact pulp chamber floors of the two groups. Chelon Silver had a significantly better sealing ability than amalgam (p < 0.01): leakage rate of 0.007 and 0.017 microliter/min, respectively. It is concluded that Chelon Silver could be an adequate sealer for furcation perforations. PMID:11199781

  20. Class II glass ionomer cermet tunnel, resin sandwich and amalgam restorations over 2 years.

    PubMed

    Wilkie, R; Lidums, A; Smales, R

    1993-08-01

    This study compared the clinical behavior of a glass ionomer (polyalkenoate) silver cermet, a posterior resin composite used with the "tunnel" technique, a posterior resin composite used with the "closed sandwich" technique, and a high-copper amalgam for restoring small, proximal surface carious lesions. Two dentists placed 86 restorations in the posterior permanent teeth of 26 adults treated at a dental hospital. Restorations were assessed at 6-month intervals over 2 years for gingivitis adjacent to them, the tightness of proximal contacts, occlusal wear, surface voids, roughness and cracking, surface and marginal staining, and marginal fracture. Small filling defects, surface voids and occlusal wear were obvious with the cermet material, with surface crazing and cracking present in 48% of the tunnel restorations. Two of the posterior resin composites, but none of the amalgam restorations, also failed. The cermet cannot be recommended as a long-term permanent restorative material in situations where it is likely to be subjected to heavy occlusal stresses and abrasive wear. PMID:7803004

  1. PERFORMANCE OF BRAZILIAN AND IMPORTED GLASS IONOMER CEMENTS USED IN ATRAUMATIC RESTORATIVE TREATMENT (ART) REGARDING MICROLEAKAGE IN PRIMARY MOLARS

    PubMed Central

    Ferreira, Fernanda de Morais; do Vale, Miriam Pimenta Parreira; Jansen, Wellington Corrêa; Paiva, Saul Martins; Pordeus, Isabela Almeida

    2006-01-01

    With the aim of assessing the performance of Brazilian and imported glass ionomer cements (GIC) with regard to microleakage, 40 primary molars received two standard class II cavity preparations with margins in enamel. Twenty cavities were filled with Brazilian materials (Vidrion® R and Vidrion® RCaps) and the other 20 cavities were filled with imported materials (Fuji® IX and Fuji® IXGPFast capsule). All fillings were performed by a single operator according to the manufacturer's instructions. Teeth were immersed in 0.5% methylene blue and half-sectioned. Three independent calibrated examiners assessed microleakage using scores (0-3). Data were submitted to the Kruskal-Wallis statistical test and Wilcoxon analysis. High microleakage indexes were verified for all ionomer cements: 59.5% of the samples restored with Vidrion® R or Vidrion® RCaps and 83.4% of the samples restored with Fuji® IX or Fuji® IXGpFast capsule obtained the maximum score (3). The Brazilian ionomer cements presented less microleakage than imported cements, although this difference was only significant (p=0.003) among the encapsulated materials. PMID:19089050

  2. Effect of two prophylaxis methods on marginal gap of Cl Vresin-modified glass-ionomer restorations

    PubMed Central

    Kimyai, Soodabeh; Pournaghi-Azar, Fatemeh; Daneshpooy, Mehdi; Abed Kahnamoii, Mehdi; Davoodi, Farnaz

    2016-01-01

    Background. This study evaluated the effect of two prophylaxis techniques on the marginal gap of CI V resin-modified glass-ionomer restorations. Methods. Standard Cl V cavities were prepared on the buccal surfaces of 48 sound bovine mandibular incisors in this in vitro study. After restoration of the cavities with GC Fuji II LC resin-modified glass-ionomer, the samples were randomly assigned to 3 groups of 16. In group 1, the prophylactic procedures were carried out with rubber cup and pumice powder and in group 2 with air-powder polishing device (APD). In group 3 (control), the samples did not undergo any prophylactic procedures. Then the marginal gaps were measured. Two-way ANOVA was used to compare marginal gaps at the occlusal and gingival margins between the groups. Post hoc Tukey test was used for two-by-two comparisons. Statistical significance was set at P < 0.05. Results. There were significant differences in the means of marginal gaps in terms of prophylactic techniques (P < 0.001), with significantly larger marginal gaps in the APD group compared to the pumice and rubber cup group, which in turn exhibited significantly larger marginal gaps compared to the control group (P < 0.0005). In addition, the means of marginal gaps were significant in terms of the margin type (P < 0.001), with significantly larger gaps at gingival margins compared to the occlusal margins (P < 0.0005). Conclusion. The prophylactic techniques used in this study had a negative effect on the marginal gaps of Cl V resin-modified glass-ionomer restorations. PMID:27092211

  3. Effect of two prophylaxis methods on marginal gap of Cl Vresin-modified glass-ionomer restorations.

    PubMed

    Kimyai, Soodabeh; Pournaghi-Azar, Fatemeh; Daneshpooy, Mehdi; Abed Kahnamoii, Mehdi; Davoodi, Farnaz

    2016-01-01

    Background. This study evaluated the effect of two prophylaxis techniques on the marginal gap of CI V resin-modified glass-ionomer restorations. Methods. Standard Cl V cavities were prepared on the buccal surfaces of 48 sound bovine mandibular incisors in this in vitro study. After restoration of the cavities with GC Fuji II LC resin-modified glass-ionomer, the samples were randomly assigned to 3 groups of 16. In group 1, the prophylactic procedures were carried out with rubber cup and pumice powder and in group 2 with air-powder polishing device (APD). In group 3 (control), the samples did not undergo any prophylactic procedures. Then the marginal gaps were measured. Two-way ANOVA was used to compare marginal gaps at the occlusal and gingival margins between the groups. Post hoc Tukey test was used for two-by-two comparisons. Statistical significance was set at P < 0.05. Results. There were significant differences in the means of marginal gaps in terms of prophylactic techniques (P < 0.001), with significantly larger marginal gaps in the APD group compared to the pumice and rubber cup group, which in turn exhibited significantly larger marginal gaps compared to the control group (P < 0.0005). In addition, the means of marginal gaps were significant in terms of the margin type (P < 0.001), with significantly larger gaps at gingival margins compared to the occlusal margins (P < 0.0005). Conclusion. The prophylactic techniques used in this study had a negative effect on the marginal gaps of Cl V resin-modified glass-ionomer restorations. PMID:27092211

  4. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.

    PubMed

    Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei

    2016-01-01

    Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries. PMID:27357319

  5. Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements.

    PubMed

    Goenka, Sumit; Balu, Rajkamal; Sampath Kumar, T S

    2012-03-01

    Glass ionomer cements (GICs) are clinically attractive filling materials often employed in the field of dentistry as restorative and luting materials. The present work aims to formulate bioactive nanocrystalline calcium deficient hydroxyapatite (nCDHA)-GIC composite cements with improved mechanical and resorption properties of the set cement than GICs. The nCDHA was synthesized via an accelerated microwave process and characterized by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) methods. The synthesized nCDHA was mixed with GIC in different compositions (5, 10 and 15 wt%) maintaining the powder to liquid ratio. Cylinders of dimensions 8 mm height and 4 mm diameter were formed using a Teflon mold following a conventional cement forming technique. The XRD and FT-IR of the cylinders showed increased intensity and characteristic bands of CDHA with increase in nCDHA content. The surface cracks and the elemental composition of the set cements were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Decreased surface hardness was observed for composite cements with increase in nCDHA addition. The cement cylinders were tested for ionic release in Millipore water (pH=7) via inductive coupled plasma (ICP) spectroscopy and in demineralization solution of pH=5 to find out the weight loss in an acidic environment at 37 °C performed periodically for 5 weeks. The ionic release percentage, weight loss and compressive strength were observed to increase with an increase in nCDHA addition. PMID:22340686

  6. Effect of Bonding Application Time on Bond Strength of Composite Resin to Glass Ionomer Cement

    PubMed Central

    Panahandeh, Narges; Torabzadeh, Hassan; Ghassemi, Amir; Mahdian, Mina; Akbarzadeh Bagheban, Alireza; Moayyedi, Seddigheh

    2015-01-01

    Objectives: This experimental study evaluated the effect of bonding application time on the microshear bond strength of composite resin to different types of glass ionomer cements (GICs). Materials and Methods: One-hundred and sixty specimens (two conventional and two resin-modified GICs) were prepared and divided into 16 groups. The surface of all specimens was prepared using two different bonding systems (Frog and Stea) at three different times. After setting, the composite resin (Z100) was placed over the GICs. The specimens were then stored in distilled water for 24 hours (37°C) and exposed to microshear stresses at a crosshead speed of 1 mm/min. The results were analyzed using three-way ANOVA and Tukey’s test (P<0.05). Results: In conventional GICs, bond strength was affected by the type of bonding system at different times, and bond strength was significantly higher in the Fuji II group compared to Riva Self Cure group. In the Riva Self Cure group, bond strength was significantly affected by time; whereas, the type of bonding system failed to exert a significant effect on bond strength. There was no significant correlation between the type of bonding system and the two brands of resin-modified GICs. Bond strength was not affected by the type of bonding agent; however, among the two brands of resin-modified GICs, Fuji II LC yielded a significantly stronger bond. Conclusion: It appears that the type of bonding agent does not affect the microshear bond strength, and the bonding application time affects the microshear bond strength in Riva Self Cure GICs. PMID:27507998

  7. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles

    PubMed Central

    2014-01-01

    Background Glass ionomer cements (GICs) are a class of dental biomaterials. They have a wide range of uses including permanent restorations (fillings), cavity linings, fissure sealants and adhesives. One of the most common reasons for replacing a dental restoration is recurrent bacterial tooth decay around the margins of the biomaterial. Therefore, a dental biomaterial which creates a sustained antimicrobial environment around the restoration would be of considerable clinical benefit. In this manuscript, the formulation of a GIC containing novel antimicrobial nanoparticles composed of chlorhexidine hexametaphosphate at 1, 2, 5, 10 and 20% powder substitution by mass is reported. The aim is to create GICs which contain chlorhexidine-hexametaphosphate nanoparticles and characterize the nanoparticle size, morphology and charge and the release of chlorhexidine and fluoride, tensile strength and morphology of the GICs. Results The GICs released chlorhexidine, which is a broad spectrum antimicrobial agent effective against a wide range of oral bacteria, over the duration of the experiment in a dose-dependent manner. This was not at the expense of other properties; fluoride release was not significantly affected by the substitution of antimicrobial nanoparticles in most formulations and internal structure appeared unaffected up to and including 10% substitution. Diametral tensile strength decreased numerically with substitutions of 10 and 20% nanoparticles but this difference was not statistically significant. Conclusion A series of GICs functionalized with chlorhexidine-hexametaphosphate nanoparticles were created for the first time. These released chlorhexidine in a dose-dependent manner. These materials may find application in the development of a new generation of antimicrobial dental nanomaterials. PMID:24456793

  8. Effectiveness of a resin-modified glass ionomer liner in reducing hypersensitivity in posterior restorations

    PubMed Central

    Strober, Brad; Veitz-Keenan, Analia; Barna, Julie Ann; Matthews, Abigail G.; Vena, Donald; Craig, Ronald G.; Curro, Frederick A.; Thompson, Van P.

    2014-01-01

    Background The objectives of this randomized comparative effectiveness study conducted by members of the Practitioners Engaged in Applied Research and Learning (PEARL) Network were to determine whether using a resin-modified glass ionomer (RMGI) liner reduces postoperative hypersensitivity (POH) in dentin-bonded Class I and Class II resin-based composite (RBC) restorations, as well as to identify other factors (putative risk factors) associated with increased POH. Methods PEARL Network practitioner-investigators (P-Is) (n = 28) were trained to assess sensitivity determination, enamel and dentin caries activity rankings, evaluation for sleep bruxism, and materials and techniques used. The P-Is enrolled 341 participants who had hypersensitive posterior lesions. Participants were randomly assigned to receive an RBC restoration with or without an RMGI liner before P-Is applied a one-step, self-etching bonding agent. P-Is conducted sensitivity evaluations at baseline, at one and four weeks after treatment, and at all visits according to patient-reported outcomes. Results P-Is collected complete data regarding 347 restorations (339 participants) at baseline, with 341 (98 percent) (333 participants) recalled at four weeks. Treatment groups were balanced across baseline characteristics and measures. RBC restorations with or without an RMGI liner had the same one-week and four-week POH outcomes, as measured clinically (by means of cold or air stimulation) and according to patient-reported outcomes. Conclusions Use of an RMGI liner did not reduce clinically measured or patient-reported POH in moderate-depth Class I and Class II restorations. Cold and air clinical stimulation findings were similar between groups. Practical Implications The time, effort and expense involved in placing an RMGI liner in these moderate-depth RBC restorations may be unnecessary, as the representative liner used did not improve hypersensitivity outcomes. PMID:23904575

  9. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    PubMed Central

    GARCIA-CONTRERAS, Rene; SCOUGALL-VILCHIS, Rogelio Jose; CONTRERAS-BULNES, Rosalía; SAKAGAMI, Hiroshi; MORALES-LUCKIE, Raul Alberto; NAKAJIMA, Hiroshi

    2015-01-01

    The use of nanoparticles (NPs) has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC) compared to GIC supplemented with titanium dioxide (TiO2) nanopowder at 3% and 5% (w/w). Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc), Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05). In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05), flexural and compressive strength (p<0.05), and antibacterial activity (p<0.001), without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II) is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force. PMID:26221928

  10. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    NASA Astrophysics Data System (ADS)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  11. Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective: The objective of the present study is to investigate the reinforcement effect of polymer-grade montmorillonite (PGN nanoclay) on physical properties of glass ionomer cement (GIC). Materials and Methods: The PGN nanoclay was dispersed in the liquid portion of GIC (HiFi, Advanced Healthcare, Kent, UK) at 1%, 2% and 4% (w/w). Fourier-transform infrared (FTIR) spectroscopy was used to quantify the polymer liquid of GICs after dispersion of nanoclay. The molecular weight (Mw) of HiFi liquid was determined by gel permeation chromatography. The compressive strength (CS), diametral-tensile strength, flexural strength (FS) and flexural modulus (Ef) of cements (n = 20) were measured after storage for 1 day, 1 week and 1 month. Fractured surface was analyzed by scanning electron microscopy. The working and setting time (WT and ST) of cements was measured by a modified Wilson's rheometer. Results: The FTIR results showed a new peak at 1041 cm−1 which increased in intensity with an increase in the nanoclay content and was related to the Si-O stretching mode in PGN nanoclay. The Mw of poly (acrylic acid) used to form cement was in the range of 53,000 g/mol. The nanoclay reinforced GICs containing <2% nanoclays exhibited higher CS and FS. The Ef cement with 1% nanoclays was significantly higher. The WT and ST of 1% nanoclay reinforced cement were similar to the control cement but were reduced with 2% and 4% nanoclay addition. Conclusion: The dispersion of nanoclays in GICs was achieved, and GIC containing 2 wt% nanoclay is a promising restorative materials with improved physical properties. PMID:25512724

  12. EFFECT OF ACID ETCHING OF GLASS IONOMER CEMENT SURFACE ON THE MICROLEAKAGE OF SANDWICH RESTORATIONS

    PubMed Central

    Bona, Álvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-01-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE – conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN – same as Group CIE, except for acid etching of the CI surface; Group RME – same as CIE, but using a resin modified GIC (RMGIC); Group RMN – same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24°C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (α=0.05). Dye penetration scores were as follow: CIE – 2.5; CIN – 2.5; RME – 0.9; and RMN – 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite- dentin interfaces than CI. PMID:19089135

  13. A novel high-wear-resistant glass-ionomer cement for class I and class II restorations.

    PubMed

    Zhao, Jun; Weng, Yiming; Xie, Dong

    2009-02-01

    This study reports the results of an evaluation on the in vitro wear of a newly developed experimental light-cured glass-ionomer cement composed of the synthesized six-arm star-shape poly(acrylic acid) and Fuji II LC glass fillers. The resin composite P-60, as well as glass-ionomer cements Fuji II and Fuji II LC, were used for comparison. All specimens were conditioned in distilled water at 37 degrees C for 1 d prior to testing. The experimental cement exhibited statistically the same wear-resistance to abrasion as P-60, but the wear-resistance was 14 times higher for the experimental cement than for Fuji II and Fuji II LC. Furthermore, the experimental cement showed a degree of wear-resistance to attrition that was 1.4 times higher than both Fuji II and Fuji II LC but six times lower than that of P-60. Impressively, after 1 month of aging the experimental cement was able to compete with P-60 in wear-resistance to attrition, showing a degree of wear depth that was only 1.3 times more than that of P-60. It appears that this novel cement is a clinically attractive dental restorative that can be potentially used for high-wear sites such as class I and class II restorations. PMID:19196323

  14. Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs

    PubMed Central

    Nualart-Grollmus, Zacy-Carola

    2014-01-01

    Objectives: The aim of this research is to evaluate the retention of sealants of resin and resin-modified ionomeric glass pits and fissures, on first permanent molars of special patients. Material and Methods: The sample was comprised by 32 children. The ages were between 7 and 18 years. The sealing procedure was made with the relative isolation of the molars to be sealed, through the use of cotton rolls. Two molars were sealed with Clinpro Sealant 3M Dental and the others with Vitremer. Checking of the sealants was made after 3 and 6 months of their placement, evaluating with 3 values: TR: Totally Restrained; PR: Partially Restrained; and CL: Completely Lost. Results: 67.18% of the resinous sealants, and 70.31% of the glass ionomer sealants were successful after three months. After six months, 57.81% of the resin-based sealants and 51.56% of the glass ionomer sealants were successful. When performing the Chi-square statistical analysis (P<0.05) no statistical significance was observed after 6 months. Conclusions: The retention of the resin sealant was similar to that of the glass ionomer cement at the end of six months and the retention of sealants on maxillary teeth was higher than on mandibular teeth. Key words:Sealant, glass ionomer, retention, caries, special needs. PMID:25674325

  15. Effect of different cavity conditioners on microleakage of glass ionomer cement with a high viscosity in primary teeth

    PubMed Central

    Mazaheri, Romina; Pishevar, Leila; Shichani, Ava Vali; Geravandi, Sanas

    2015-01-01

    Background: Glass ionomer cement is a common material used in pediatric dentistry. The aim of this study was to evaluate the microleakage of high-viscosity glass ionomer restorations in deciduous teeth after conditioning with four different conditioners. Materials and Methods: Fifty intact primary canines were collected. Standard Class V cavities (2 mm × 1.5 mm × 3 mm) were prepared by one operator on all buccal tooth surfaces, including both enamel and dentin. The samples were divided into five groups with different conditioners (no conditioner, 20% acrylic acid, 35% phosphoric acid, 12% citric acid, and 17% ethylenediaminetetraacetic acid [EDTA]). Two-way — ANOVA, Kruskal–Wallis and Mann–Whitney tests were used to compare the means of microleakage between the five groups. The significance level was set at P < 0.05. Results: There was no significant difference between the means of microleakage in incisal (enamel) and gingival (dentin) margins (P = 0.34). Furthermore, there was no significant difference between the means of microleakage in enamel and dentin margins (P = 0.4). There was a significant difference between the means of microleakage in different groups (P = 0.03). Conclusion: Within the limitations of this study, it is suggested that 20% acrylic acid and 17% EDTA be used for cavity conditioning which can result in better chemical and micromechanical adhesion. PMID:26288623

  16. Comparative Evaluation of Antimicrobial Efficacy of Resin-Modified Glass Ionomers, Compomers and Giomers – An Invitro Study

    PubMed Central

    Reddy, J. Sharada; Suhasini, K.; Hemachandrika, I.

    2015-01-01

    Background Dental restorative materials, especially those applied in direct contact with the contaminated substrate, should have appropriate antibacterial activity in order to prevent residual bacteria from continuing their metabolic activity in addition to impairing new bacteria from reaching the tooth-restoration interface. Aim To determine the antibacterial efficacy of three different restorative materials against the common cariogenic microorganism i.e., Streptococcus mutans. Materials and Methods Three different restorative materials were evaluated in this study: Giomer (Beautifil), Compomer (F2000) & Resin modified Glass ionomer (Fuji II LC) for their anti microbial efficacy against Streptococcus mutans by standard agar diffusion method and zones of inhibition for each restorative material were calculated. Statistical Analysis Inhibition zones around each restorative material were measured and values were subjected to one-way ANOVA with least square difference (LSD) Post-hoc test. Results The mean inhibitory zones for Resin modified glass ionomers, Giomers & Compomers ranged from 10.1 – 6.90mm. Fuji II LC exhibited the highest mean inhibitory zone of 10.1 ± 1.97 for S.mutans. Beautifil exhibited mean inhibitory zone of 8.20 ± 1.62, whereas F2000 showed the least mean inhibitory zone of 6.90 ± 1.29. Conclusion Based on the inhibitory zones of three restorative materials, Fuji II LC is recommended as the best restorative material among the three tested restorative materials. PMID:26393212

  17. The influence of dicarboxylic acids: Oxalic acid and tartaric acid on the compressive strength of glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Permana, Ahmadi Jaya; Setyawati, Harsasi; Hamami, Murwani, Irmina Kris

    2016-03-01

    Glass ionomer cement (GIC) has limitation on the mechanical properties especially compressive strength. The change of compressive strength of GIC by adding oxalic acid and tartaric acid has been investigated. Oxalic acid and tartaric acid was added to the liquid components at concentrations of 0 - 15% (w/w). Powder component of GIC was made from optimum experimental powder glass SiO2-Al2O3-CaF2. GIC was characterized by compressive strength test, SEM-EDX and FTIR. The addition of tartaric acid to GIC has greater improvement than addition of oxalic acid. The addition of tartaric acid at 10 % (w/w) to GIC has greatest value of compressive strength.

  18. Histological evaluation of repair using a bioresorbable membrane beneath a resin-modified glass ionomer after mechanical furcation perforation in dogs' teeth.

    PubMed

    Salman, M A; Quinn, F; Dermody, J; Hussey, D; Claffey, N

    1999-03-01

    Resorbable barriers have been shown both clinically and histologically to produce favorable periodontal regenerative outcomes. The purpose of the present study was to evaluate the histological response to one such resorbable barrier (Atrisorb) when used as a matrix under a resin-modified glass ionomer (RMGI) sealant in the repair of furcation perforations in experimental animals. After anesthesia, pulp extirpation and filling of radicular canals with zinc oxide-eugenol cement, furcal perforations were made in 30 lower premolar (P2, P3, and P4) teeth of labrador dogs with a 1 mm diameter round bur in a conventional handpiece. The perforated teeth were randomly divided into two groups of 15 teeth. Group 1 teeth were treated with RMGI alone and group 2 with the resorbable barrier under RMGI. Six teeth without perforations served as negative controls. Pulp chambers of all teeth were filled with RMGI cement. Animals were sacrificed after 3 months. The teeth and the surrounding structures were processed for light microscopy. There were no differences found between results for glass ionomer alone and barrier with glass ionomer. The conclusion of this study is that placement of a resorbable barrier at the pulp chamber aspect of a furcation perforation did not result in superior healing, compared with the use of resin-modified glass ionomer alone. PMID:10321183

  19. Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements

    PubMed Central

    FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço

    2010-01-01

    Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288

  20. An in-vitro study to compare the microhardness of glass ionomer cement set conventionally versus set under ultrasonic waves

    PubMed Central

    Baloch, FA; Mirza, AJ; Baloch, D.

    2010-01-01

    Objective: To assess the difference of surface hardness of glass ionomer cement (GIC) set by conventional setting method and under ultrasonically energized method. Method: 20 cylindrical samples measuring 2.5mm (diameter) and 5mm (length) were prepared with type IX GIC. Ten of these samples were allowed to set by conventional setting method and other ten were set under ultrasonic excitation energy. After finishing and polishing of the samples, three indentations were made on each sample using Vicker’s hardness machine with a load of 300 gm for 15 seconds. The surface microhardness of the indents was calculated by Vicker’s hardness formula. Results: Surface microhardness of samples set by ultrasound setting method was significantly higher than samples set by conventional method. Conclusion: This can be beneficial for the dental patients as when used as a restorative material, it will have a long lasting effect and can also be used in posterior load bearing areas. PMID:21475553

  1. Comparative evaluation of the microleakage of two modified glass ionomer cements on primary molars. An in vivo study.

    PubMed

    Masih, Shaila; Thomas, Abi Mathew; Koshy, George; Joshi, J L

    2011-01-01

    This in vivo study was conducted to compare and evaluate the microleakage of two modified glass ionomer cements on deciduous molars. Thirty children (10-16 years) were selected. In each patient, standardized class V cavities were prepared on the buccal surfaces of two different retained deciduous molars and these cavities were restored with GC Fuji II LC (Improved) and GC Fuji IX GP, respectively. Following a period of four weeks after the restoration, these teeth were extracted and immersed in 2% Basic Fuschin dye solution for 24 hours. The depth of dye penetration was assessed after sectioning the teeth and the microleakage determined. The results were statistically analyzed using Student 't' test. It was concluded that both the materials, GC Fuji II LC (Improved) and GC Fuji IX GP were comparable in performance and can be considered to be materials safe for Pedodontics usage, and decrease bacterial penetration. PMID:21911952

  2. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, V.; Černohorský, T.; Zvolská, M.

    2013-10-01

    The influence of He atmosphere and gate width in laser-induced breakdown spectroscopy (LIBS) determination of fluorine concentration was investigated in detail. The measurements were realized on two double pulse LIBS devices featuring different parameters. Calibration curves, describing the relationship between the fluorine concentration and the corresponding intensity of the LIBS signal, were constructed for both LIBS devices, with and without He flow, respectively. Detection limits achieved were in the range 1.18-0.47 wt.%. The best LOD value was obtained in He atmosphere. The LIBS measurement of fluorine content is influenced by different gate widths and the atmosphere in the working chamber. The proposed method was successfully applied to the determination of fluorine concentration in glass ionomer cements.

  3. Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal.

    PubMed

    Duque, Cristiane; Negrini, Thais de Cássia; Sacono, Nancy Tomoko; Spolidorio, Denise Madalena Palomari; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2009-12-01

    The aims of this study were to evaluate clinically and microbiologically the effects of two resin-modified glass-ionomer cements (RMGICs) used as liners after incomplete dentine caries removal and to identify Streptococcus mutans and Streptococcus sobrinus strains isolated from dentine samples, before and after indirect pulp treatment. Twenty-seven primary molars with deep carious lesions, but without signs and symptoms of irreversible pulpitis, were submitted to indirect pulp treatment. Treatment consisted of incomplete excavation of the carious dentine, application of one of the RMGICs (Vitrebond or Fuji Lining LC) or calcium hydroxide cement (Dycal), and sealing for 3 months. Clinical evaluation (consistency, color, and wetness of dentine) and carious dentine collects were performed before temporary sealing and after the experimental period. Microbiological samples were cultivated in specific media for subsequent counting of mutans streptococci (MS) and lactobacilli (LB). MS colonies were selected for identification of S. mutans and S. sobrinus by polymerase chain reaction. After 3 months, the remaining dentine was hard and dry, and there was a significant decrease in the number of MS and LB, in all groups, although complete elimination was not achieved in 33% and 26% of the teeth for MS and LB, respectively. From 243 MS colonies selected, 216 (88.9%) were identified as S. mutans and only 2 (0.8%) as S. sobrinus. The use of resin-modified glass-ionomer liners after incomplete caries removal, as well as a calcium hydroxide cement, promoted significant reduction of the viable residual cariogenic bacteria in addition to favorable clinical changes in the remaining carious dentine. PMID:19548010

  4. Effect of Marginal Sealant on Shear Bond Strength of Glass Ionomer Cement: Used as A Luting Agent

    PubMed Central

    Nazirkar, Girish; Singh, Shailendra; Badgujar, Mayura; Gaikwad, Bhushan; Bhanushali, Shilpa; Nalawade, Sumit

    2014-01-01

    Background: Moisture sensitivity and dissolution has been a known drawback of glass ionomer cement (GIC). When used as a luting agent for cementation of casted indirect restoration, the exposed cement at the margins is often a primary factor for marginal leakage and consequent failure of the restoration. The following in vitro study was planned to evaluate the effect of a marginal sealant on GIC used as luting agent. Materials and Methods: Sixty healthy extracted premolars were selected and prepared to receive metal-ceramic prosthesis. The prepared restorations were cemented using GIC and were divided randomly into two groups. The specimens in Group A were directly immersed in artificial saliva solution without any protection at the margins, while the exposed cement for Group B specimens was protected using a marginal sealant before immersing it in the artificial saliva solution. The specimens were tested after 24 h using a crown pull test on the universal testing machine to measure the shear bond strength of the cement. Result: The specimens in Group B showed statistically significant difference from the specimens in Group A with the mean shear bond strength of 6.60 Mpa and 5.32 respectively. Conclusion: Protection of GIC exposed at the margins of indirect cast restorations with a marginal sealant can significantly increase the longevity of the prosthesis by reducing the marginal leakage and perlocation of fluids. How to cite the article: Nazirkar G, Singh S, Badgujar M, Gaikwad B, Bhanushali S, Nalawade S. Effect of marginal sealant on shear bond strength of glass ionomer cement: Used as a luting agent. J Int Oral Health 2014;6(3):65-9 PMID:25083035

  5. Minimal intervention dentistry II: part 7. Minimal intervention in cariology: the role of glass-ionomer cements in the preservation of tooth structures against caries.

    PubMed

    Ngo, H; Opsahl-Vital, S

    2014-05-01

    Glass-ionomer cements (GICs) are essential materials in clinical practice because of their versatility, self-adhesion to enamel and dentine, and good biocompatibility. In addition, being chemically cured, with no shrinkage stress, makes them well suited for minimally invasive restorative techniques. This article looks at some of the clinical situations where the chemical adhesion and high biocompatibility of GIC are important for clinical success: excavation of deep carious lesions, fissure sealing and protection of root surfaces against caries. PMID:24852986

  6. Failure Rate of Direct High-Viscosity Glass-Ionomer Versus Hybrid Resin Composite Restorations in Posterior Permanent Teeth - a Systematic Review

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2015-01-01

    Purpose Traditionally, resin composite restorations are claimed by reviews of the dental literature as being superior to glass-ionomer fillings in terms of restoration failures in posterior permanent teeth. The aim of this systematic review is to answer the clinical question, whether conventional high-viscosity glass-ionomer restorations, in patients with single and/or multi-surface cavities in posterior permanent teeth, have indeed a higher failure rate than direct hybrid resin composite restorations. Methods Eight databases were searched until December 02, 2013. Trials were assessed for bias risks, in-between datasets heterogeneity and statistical sample size power. Effects sizes were computed and statistically compared. A total of 55 citations were identified through systematic literature search. From these, 46 were excluded. No trials related to high-viscosity glass-ionomers versus resin composite restorations for direct head-to-head comparison were found. Three trials related to high-viscosity glass-ionomers versus amalgam and three trials related to resin composite versus amalgam restorations could be included for adjusted indirect comparison, only. Results The available evidence suggests no difference in the failure rates between both types of restoration beyond the play of chance, is limited by lack of head-to-head comparisons and an insufficient number of trials, as well as by high bias and in-between-dataset heterogeneity risk. The current clinical evidence needs to be regarded as too poor in order to justify superiority claims regarding the failure rates of both restoration types. Sufficiently large-sized, parallel-group, randomised control trials with high internal validity are needed, in order to justify any clinically meaningful judgment to this topic. PMID:26962372

  7. Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement.

    PubMed

    Fleming, Garry J P; Farooq, Ahmed A; Barralet, Jake E

    2003-10-01

    The influence of powder/liquid mixing regime on the performance of a hand-mixed restorative glass-ionomer cement (GIC) was evaluated in terms of compressive strength, working characteristics and the porosity distribution. Mean compressive fracture strengths, standard deviations and associated Weibull moduli (m) were determined from series of 20 cylindrical specimens (6mm height, 4mm diameter) prepared by hand-mixing the relative proportions of the powder and liquid constituents. Working characteristics were assessed using an oscillating rheometer whilst scanning electron microscopy and image analysis were used to investigate the influence of the mixing regime on pore distribution. For a constant volume of liquid (1ml) the mean compressive strength decreased from 102.1+/-23.1MPa for 7.4g of powder, to 93.8+/-22.9, 82.6+/-18.5 and 55.7+/-17.2MPa for 6.66, 5.94 and 3.7g of powder, respectively. A concomitant increase in both the working and setting times was also observed.GICs manipulated to a powder/liquid mixing consistency below the manufacturers' recommend ratio, for a constant volume of liquid, resulted in reduced porosity levels in the cement mass and extended working and setting times. Unfortunately, a reduction in the concentration of reinforcing glass particles in the set material below that specified by the manufacturers decreases the cements' load bearing capacity so that they fail at lower compressive stress levels in the posterior region of the mouth. PMID:12853247

  8. Energy dispersive X-ray microanalysis, fluoride release, and antimicrobial properties of glass ionomer cements indicated for atraumatic restorative treatment

    PubMed Central

    Saxena, Sudhanshu; Tiwari, Sonia

    2016-01-01

    Aim: The aim of this study was to compare constituents of glass powder, fluoride release, and antimicrobial properties of new atraumatic restorative treatment material with zirconia fillers and conventional glass ionomer cement (GIC) type IX. Materials and Methods: Thisin vitro study comparing Zirconomer and Fuji IX was executed in three parts: (1) energy dispersive X-ray microanalysis of glass powders (2) analysis of fluoride release at 1st, 3rd, 7th, 15th, and 30th day, and (3) antimicrobial activity against Streptococcus mutans, Lactobacillus casei, and Candida albicans at 48 hours. Data was analyzed using unpaired t-test and two way analysis of variance followed by least significant difference post hoc test. A P value of < 0.05 was considered statistically significant. Results: Energy dispersive X-ray microanalysis revealed that, in both Zirconomer and Fuji IX glass powders, mean atomic percentage of oxygen was more than 50%. According to the weight percentage, zirconium in Zirconomer and silica in Fuji IX were the second main elements. Calcium, zinc, and zirconium were observed only in Zirconomer. At all the time intervals, statistically significant higher amount of fluoride release was observed with Zirconomer than Fuji IX. At 48 hours, mean ± standard deviation (SD) of zone of inhibition against Streptococcus mutans was 11.14 ± 0.77 mm and 8.51 ± 0.43 mm for Zirconomer and Fuji IX, respectively. Against Lactobacillus casei, it was 14.06 ± 0.71 mm for Zirconomer and 11.70 ± 0.39 mm for Fuji IX. No antifungal activity was observed against Candida albicans by Zirconomer and Fuji IX. Conclusion: Zirconomer had higher antibacterial activity against Streptococcus mutans and Lactobacillus casei, which may be attributed to its composition and higher fluoride release. However, it failed to show antifungal effect againstCandida albicans. PMID:27583226

  9. Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An in vitro study

    PubMed Central

    Chohan, Hitesh; Dewan, Harisha; Annapoorna, B. M.; Manjunath, M. K.

    2015-01-01

    Background and Objectives: Root-end filling is a prudent procedure aimed at sealing the root canal to prevent penetration of tissue fluids into the root canals. An ideal root-end filling material should produce a complete apical seal. Therefore, the aim of this study is to compare the leakage behavior of four different root-end filling materials. Materials and Methods: Sixty-eight maxillary central incisors were obturated with laterally condensed gutta-percha and AH plus sealer. The roots were resected at the level of 3 mm perpendicular to the long axis of the tooth. Root-end cavities were prepared with straight fissure stainless steel bur. The teeth were then divided into four experimental and two control groups, and cavities restored as per the groupings. The teeth were immersed in methylene blue for 48 h, split longitudinally, and dye penetration was measured. Results: A highly significant difference existed in the mean dye penetration of Group I (conventional glass ionomer) and the other groups (resin-modified glass ionomer, polyacid-modified composite, and composite resin). There was no statistically significant difference among the three groups. Conclusions: (1) Significant difference was found in the dye penetration values of conventional glass ionomer cement and other groups. (2) No statistically significant difference was found in the dye penetration values of groups II, III, and IV. PMID:26759803

  10. One year comparative clinical evaluation of EQUIA with resin-modified glass ionomer and a nanohybrid composite in noncarious cervical lesions

    PubMed Central

    Vaid, Deepa Sunil; Shah, Nimisha Chinmay; Bilgi, Priyanka Shripad

    2015-01-01

    Aims: Comparative evaluation of EQUIA with a resin-modified glass ionomer cement (RMGIC; GC Gold Label glass ionomer light cured universal restorative cement) and a nanohybrid composite (Tetric N-Ceram) in noncarious cervical lesions (NCCLs). Background: To establish the most suitable material for the restoration of NCCLs. Settings and Design: In vivo study. Materials and Methods: Eighty-seven NCCLs were randomly restored with EQUIA, a RMGIC, and a nanohybrid composite. Clinical evaluation of the restorations was done following the Unites States Public Health criteria by a single-blinded investigator. Data were formulated, and statistical analysis was done by Chi-square test. Statistical Analysis Used: Chi-square test. Results: No significant difference was found between EQUIA, RMGIC, and nanohybrid composite at 1-month, at 6 months, and at 1-year (P > 0.05). Conclusions: EQUIA, resin-modified glass ionomer, and nanohybrid composite performed equally at 1-month, 6 months, and 1-year follow-up periods. PMID:26752837

  11. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  12. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    PubMed Central

    Dong-Ae, KIM; Hany, ABO-MOSALLAM; Hye-Young, LEE; Jung-Hwan, LEE; Hae-Won, KIM; Hae-Hyoung, LEE

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved. Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements. Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitro rat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC. Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs. Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  13. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    NASA Astrophysics Data System (ADS)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  14. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method

    PubMed Central

    Ghandehari, M.; Mighani, G.; Shahabi, S.; Chiniforush, N.; Shirmohammadi, Z.

    2012-01-01

    Objective: One of the main criteria in evaluating the restorative materials is the degree of microleakage. The aim of this study was to compare the microleakage of glass ionomer restored cavities prepared by Er:YAG laser or turbine and bur. Materials and Methods: Twenty extracted caries-free deciduous posterior teeth were selected for this study. The teeth were randomly divided into two groups for cavity preparation. Cavities in group one were prepared by high speed turbine and bur. In the second group, Er:YAG laser with a 3W output power, 300 mJ energy and 10 Hz frequency was used. Cavities were restored with GC Fuji II LC. After thermocycling, the samples were immersed into 0.5% methylene blue solution. They were sectioned for examination under optic microscope. Results: The Wilcoxon signed ranks test showed no significant difference between microleakage of the laser group and the conventional group (P>0.05). Conclusion: Er:YAG laser with its advantages in pediatric dentistry may be suggested as an alternative device for cavity preparation. PMID:23119130

  15. Surface Treatments that Demonstrate a Significant Positive Effect on the Shear Bond Strength of Repaired Resin-modified Glass Ionomer.

    PubMed

    Welch, D; Seesengood, B; Hopp, C

    2015-01-01

    This study examined surface treatment options used to repair resin-modified glass ionomer (RMGI; GC Fuji II LC, GC America). Two hundred forty specimens were equally divided into four different water/temperature cycling environmental conditions. The conditions were 1) five-minute delay, 2) one-week delay with one thermocycle, 3) 500 thermocycles, and 4) 24-hour delay in a dry environment, followed by 500 thermocycles. Within each of the condition groups, the specimens were equally divided again into three different surface treatment groups with 20 specimens in each. The treatment groups comprised A) sanding, B) sanding and acid etch, and C) sanding, acid etch, and dental bonding agent. Our results suggest that RMGI is extremely susceptible to the simultaneous exposure of temperature cycling and water during the first 24 hours. Our main results reflect that 1) during the first five minutes after the initial placement, the surface treatments made no difference in terms of the shear bond strength (NS); and 2) when we weakened the RMGI by exposing it to water and temperature cycling immediately after initial placement, each of the treatments (A

  16. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC. PMID:24865692

  17. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  18. Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: a feed forward neural network modelling.

    PubMed

    Rajabzadeh, Ghadir; Salehi, Sahar; Nemati, Ali; Tavakoli, Razeih; Solati Hashjin, Mehran

    2014-01-01

    Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5wt%. The effect of different weight percentages of YSZ:HA on GIC was investigated by measuring the compressive strength, diametral tensile strength, microhardness and fluoride release. The results showed that, after 1 and 7 days of setting, the 20wt% nanohydroxyapatite/80wt% stabilized zirconia cement exhibited higher compressive strength (1857-245MPa), higher diametral tensile strength (11-14MPa) and greater microhardness (104-106MPa) as compared with the pure GIC (65-88MPa in compressive strength, 5-9.5MPa in diametral tensile strength and 70-89MPa in microhardness). The reinforced cement, also, exhibited higher fluoride release compared with pure GIC. The artificial neural network (ANN) was trained for modeling the system. Results obtained by ANN have proved to be completely in accordance with expectations. PMID:24140732

  19. Comparative evaluation of intracanal sealing ability of mineral trioxide aggregate and glass ionomer cement: An in vitro study

    PubMed Central

    Malik, Gauri; Bogra, Poonam; Singh, Simranjeet; Samra, Rupandeep K

    2013-01-01

    Aims: The purpose of this study was to compare the sealing ability of Mineral Trioxide Aggregate (MTA) and Glass Ionomer Cement (GIC) when used over gutta-percha as intracanal sealing materials. The study also evaluated the sealing ability of Zinc oxide eugenol (ZOE) cement and Acroseal sealer. Materials and Methods: Teeth were obturated with gutta-percha using sealer ZOE (group A, C, D) and Acroseal (group B). The groups were further divided into 2 subgroups (15 premolars each) on the basis of intracanal sealing material used: GIC subgroups (A1, B1) and MTA in subgroups (A2, B2). The clearing technique was used in this study for leakage evaluation. Seventy mandibular premolars were prepared using step-back technique and divided into experimental groups A and B (30 premolars each) and the positive and negative control groups C and D (5 premolars each). Statistical analysis used: Coronal microleakage was determined under stereomicroscope using 15X magnification. Data was statistically analyzed using one-way ANOVA followed by Post-Hoc Multiple comparison (Bonferroni). Results: MTA group leaked significantly less than GIC group (P < 0.05). Acroseal exhibited better sealing ability than ZOE sealer. Teeth with no intracanal barrier showed almost complete leakage. Conclusions: MTA may be preferred over GIC as an intracanal barrier. PMID:24347890

  20. Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics

    PubMed Central

    Mittal, Sudhir; Soni, Heena; Sharma, Devender Kumar; Mittal, Kavita; Pathania, Vasundhara; Sharma, Samridhi

    2015-01-01

    Objective: To evaluate the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) containing chlorhexidine and antibiotics at varying concentrations. Materials and Methods: Chlorhexidine diacetate and antibiotics (ciprofloxacin, metronidazole, and minocycline) were incorporated into GIC Fuji IX at 1.5% and 3% w/w ratio to form the experimental groups. The experimental GIC specimens were placed on brain heart infusion agar plates inoculated with Streptococcus mutans, and the area of inhibition was measured after 48 h. The 24-h compressive strength of the set specimens was evaluated using a Universal Testing Machine. Results: The control group demonstrated no zone of inhibition. All experimental groups showed inhibition against S. mutans (P < 0.05), with larger zones of inhibition found in the higher concentration groups. Compressive strength at the end of 24 h decreased in the experimental groups as compared to the control group (P < 0.05), but no difference was found between the experimental groups (P > 0.05). Conclusion: The present study demonstrated that experimental GICs containing chlorhexidine diacetate and antibiotics were effective in inhibiting S. mutans, and incorporation of 1.5% ABX was optimal to give the appropriate antibacterial and physical properties. PMID:26310885

  1. The effect of pre-warming and delayed irradiation on marginal integrity of a resin-modified glass-ionomer.

    PubMed

    Khoroushi, Maryam; Mansoori-Karvandi, Tayebeh; Hadi, Saeed

    2012-01-01

    Recent studies have indicated that the acid-base reactions and polymerization of resin-modified glass-ionomers (RMGIs) compete with and inhibit each other; however, external energy can also influence the properties of RMGIs. This in vitro study evaluated the effect of pre-warming and/or delayed light irradiation on marginal integrity of RMGIs in cervical restorations. Standard Class V cavities were prepared on the buccal aspects of 60 human maxillary premolars. Each cavity was treated with a cavity conditioner for 10 seconds, rinsed, and gently air-dried. An RMGI was applied to the prepared cavities as dictated by the study protocol. Group 1 samples were treated per manufacturers' instructions. Group 2 samples were photocured after a delay of 2 minutes. For samples in Group 3, the encapsulated material was pre-warmed (at 40° C) for 90 seconds; for Group 4 samples, capsules were pre-warmed and photocuring was delayed for 2.4 minutes. Microleakage scores were determined using dye penetration technique; Kruskal-Wallis and Mann-Whitney U tests were used for statistical analysis (α = 0.05). The enamel groups exhibited statistically significant differences (P = 0.036), while the dentin groups did not (P = 0.122); however, in both cases, Group 2 demonstrated the highest marginal integrity. Based on the results of this study, pre-warming could jeopardize the marginal integrity of RMGIs in cervical restorations, while delaying the curing process might improve it (particularly for enamel). PMID:23220316

  2. Influence of Thermo-Light Curing with Dental Light-Curing Units on the Microhardness of Glass-Ionomer Cements.

    PubMed

    Gavic, Lidia; Gorseta, Kristina; Borzabadi-Farahani, Ali; Tadin, Antonija; Glavina, Domagoj; van Duinen, Raymond N; Lynch, Edward

    2016-01-01

    The purpose of this study was to verify for various glass-ionomer cement (GIC) products whether the application of thermo-light curing on the initial curing material produces an increase in microhardness, and to determine whether this hardness varies depending on the depths of the GIC samples. The efficacy of various polymerization units on this additional hardening was also examined. The GIC samples were thermo-light cured for 60 seconds with three polymerization units. The Vickers microhardness was measured at three different depths: 2 mm, 3 mm, and 4 mm. Analysis of variance and Newman-Keuls test showed statistically significant differences among tested samples for all three GIC groups (P < .001). The results of linear regression analysis showed a statistically significant relationship between the hardness of the material and the temperature for samples with depths of 2 mm (R = 0.78; P = .0028) and 3 mm (R = 0.59; P = .045). The findings of this study indicate that thermo-light curing of GIC with different polymerization units for 60 seconds during setting reaction increases the microhardness of the GICs at all depths tested and may increase resistance to mastication forces, which can be validated in future clinical studies. PMID:27100813

  3. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement

    PubMed Central

    Bhavana, Vankayala; Chaitanya, Krishna Popuri; Gandi, Padma; Patil, Jayaprakash; Dola, Binoy; Reddy, Rahul B.

    2015-01-01

    Objective: To evaluate the antibacterial and antifungal properties of calcium-based cement, Biodentine (Ca3SiO2), compared to commercial glass ionomer cements (GICs) and mineral trioxide aggregate (MTA). Materials and Methods: Pellets of GICs, ProRoot MTA, and Biodentine were prepared to test the influence of these cements on the growth of four oral microbial strains: Streptococcus mutans, Enterococcus faecalis, Escherichia coli, and Candida albicans; using agar diffusion method. Wells were formed by removing the agar and the manipulated materials were immediately placed in the wells. The pellets were lodged in seeded plates and the growth inhibition diameter around the material was measured after 24-72 h incubation at 37°C. The data were analyzed using analysis of variance (ANOVA) test to compare the differences among the three cements at different concentrations. Results: Test indicates that the antimicrobial activity of Biodentine, on all the microorganisms tested, was very strong, showing a mean inhibition zone of 3.2 mm, which extends over time towards all the strains. For Biodentine, GIC, and MTA, the diameters of the inhibition zones for S. mutans were significantly larger than for E. faecalis, Candida, and E. coli (P < 0.05). Conclusion: All materials showed antimicrobial activity against the tested strains except for GIC on Candida. Largest inhibition zone was observed for Streptococcus group. Biodentine created larger inhibition zones than MTA and GIC. PMID:25657526

  4. Comparative study of fluoride released and recharged from conventional pit and fissure sealants versus surface prereacted glass ionomer technology

    PubMed Central

    Salmerón-Valdés, Elias Nahum; Scougall-Vilchis, Rogelio J; Alanis-Tavira, Jorge; Morales-Luckie, Raúl Alberto

    2016-01-01

    Context: The fluoride release of sealants in vitro shows a marked decrease. Giomers are distinguishable from manufactured resin-based sealants and contain prereacted glass-ionomer particles (PRG). Aims: To compare the amounts of fluoride released from the main pit and fissure of a resin-based sealant with that from a Giomer and to assess the abilities of the sealant and the Giomer to recharge when exposed to regular use of fluoride rinse. Materials and Methods: The readings for the fluoride concentration were carried out for 60 days using a fluoride ion-specific electrode. After this period, the samples were recharged using a fluoride mouth rinse. The amount of fluoride released after this recharge was determined for 5 days. The data were analyzed using Student's t- and analysis of variance tests. Results: In general, all materials presented higher fluoride release in the first 24 h; G1 and G4 showed a higher fluoride release in this period. On the other hand, G3 and G1 presented the most constant fluoride release until the 8th day, wherein all the sealants considerably decreased in the amount of fluoride released. Conclusion: G1 and G3 released higher concentrations of fluoride, although no significant differences were found. Giomers recharged in the first 24 h after polymerization presented an improved and sustained fluoride release. PMID:26957792

  5. Biocompatibility of a restorative resin-modified glass ionomer cement applied in very deep cavities prepared in human teeth.

    PubMed

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Scheffel, Débora Lopes Sales; Giro, Elisa Maria Aparecida; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-01-01

    This study evaluated whether a restorative resin-modified glass ionomer cement, Vitremer (VM), would be biocompatible with pulp tissue when used as a liner in very deep cavities prepared in young human permanent teeth. Two dental cements in current use as liner materials, Vitrebond (VB) and Dycal (DY), were compared to VM. Class V cavities were prepared in 36 sound premolars that were scheduled for extraction, and the cavity floor was lined with the restorative cement (VM) or a liner/base control cement (VB or DY). For VM specimens, the cavity floor was pretreated with a primer (polyacrylic acid plus 2-hydroxyethyl methacrylate). Teeth were extracted after 7 or 30 days and processed for microscopic evaluation. In the VM group, inward diffusion of dental material components through dentinal tubules, associated with disruption of the odontoblastic layer, moderate to intense inflammatory response, and resorption of inner dentin, was observed in 2 teeth at 7 days. These histologic features were observed in 1 tooth at 30 days. In the VB group, mild inflammatory reactions and tissue disorganization observed at 7 days were resolved at 30 days. No pulpal damage occurred in the DY specimens. Of the materials tested, only Vitremer was not considered biocompatible, because it caused persistent pulpal damage when applied in very deep cavities (remaining dentin thickness less than 0.3 mm). PMID:27367631

  6. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  7. Absence of carious lesions at margins of glass-ionomer cement and amalgam restorations: An update of systematic review evidence

    PubMed Central

    2011-01-01

    Background This article aims to update the existing systematic review evidence elicited by Mickenautsch et al. up to 18 January 2008 (published in the European Journal of Paediatric Dentistry in 2009) and addressing the review question of whether, in the same dentition and same cavity class, glass-ionomer cement (GIC) restored cavities show less recurrent carious lesions on cavity margins than cavities restored with amalgam. Methods The systematic literature search was extended beyond the original search date and a further hand-search and reference check was done. The quality of accepted trials was assessed, using updated quality criteria, and the risk of bias was investigated in more depth than previously reported. In addition, the focus of quantitative synthesis was shifted to single datasets extracted from the accepted trials. Results The database search (up to 10 August 2010) identified 1 new trial, in addition to the 9 included in the original systematic review, and 11 further trials were included after a hand-search and reference check. Of these 21 trials, 11 were excluded and 10 were accepted for data extraction and quality assessment. Thirteen dichotomous datasets of primary outcomes and 4 datasets with secondary outcomes were extracted. Meta-analysis and cumulative meta-analysis were used in combining clinically homogenous datasets. The overall results of the computed datasets suggest that GIC has a higher caries-preventive effect than amalgam for restorations in permanent teeth. No difference was found for restorations in the primary dentition. Conclusion This outcome is in agreement with the conclusions of the original systematic review. Although the findings of the trials identified in this update may be considered to be less affected by attrition- and publication bias, their risk of selection- and detection/performance bias is high. Thus, verification of the currently available results requires further high-quality randomised control trials. PMID

  8. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    PubMed

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP. PMID:24398913

  9. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  10. BOND STRENGTH OF RESIN MODIFIED GLASS IONOMER CEMENT TO PRIMARY DENTIN AFTER CUTTING WITH DIFFERENT BUR TYPES AND DENTIN CONDITIONING

    PubMed Central

    Nicoló, Rebeca Di; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-01-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer – 3M/ESPE) prepared according to the manufacturer’s instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37°C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  11. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    PubMed

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC. PMID:24598500

  12. Efficacy of Glass Ionomer Cements for Prevention of White Spot Lesions During Orthodontic Banding: A Randomized Clinical Trial

    PubMed Central

    Fallahinejad Ghajari, Masoud; Eslamian, Ladan; Naji Rad, Azam; Morovati, Seyyedeh Pouya

    2015-01-01

    Objectives: This study aimed to compare the incidence of white spot lesions (WSLs) around orthodontic bands following the application of two glass ionomer (GI) cements namely GC Gold Label and GC Fuji Plus for six to 12 months. Materials and Methods: A total of 186 permanent first molars of orthodontic patients requiring banding of at least two permanent first molars were chosen. The teeth were examined for caries and presence of WSLs by visual inspection and by DIAGNOdent (scores 0–29). Orthodontic bands were randomly cemented to the right or left molars using GC Gold Label or GC Fuji Plus GI cements. Samples were randomly divided into three groups and bands were removed after six, nine and 12 months in groups 1, 2 and 3, respectively. The teeth were then examined for caries and presence of WSLs by visual inspection. DIAGNOdent was used on the buccal and lingual surfaces to determine the presence of WSLs. The data were statistically analyzed using one-way ANOVA, multivariate repeated measures ANOVA, the Kruskal Wallis and the Mann-Whitney tests. Results: Totally 174 teeth were evaluated. DIAGNOdent scores were not significantly different before cementation and after removal of bands in buccal and lingual surfaces of the teeth in the two cement groups. Lesions simulating WSLs were seen in 21 out of 174 teeth but DIAGNOdent scores were not indicative of caries. Conclusion: Remarkable WSLs were not detected visually or by DIAGNOdent at six, nine or 12 months following the cementation of bands with two GI cements. PMID:27559351

  13. Adhesion of Streptococcus Mutans to Glass Ionomer, BisCem Cement and Enamel: An in Vitro Study

    PubMed Central

    Jalalian, Ezzatollah; Ahmadpour, Sogol

    2015-01-01

    Objectives: Considering the adhesion of some microorganisms such as Streptococcus mutans (S. mutans) to restorative materials and the unrecognized consequences of this phenomenon, and due to the controversies in this regard, it is important to discover the materials to which the lowest adhesion of S. mutans occurs. The objective of this study was to assess the level of adhesion of S. mutans to glass ionomer (GI), BisCem Cement and enamel. Materials and Methods: In this in vitro experimental study, 12 specimens including five GI blocks (GC America Inc., Alsip, IL, USA), five BisCem blocks (Bisco Inc., Schaumburg, IL, USA) and two enamel blocks were exposed to a bacterial suspension (1×106 mg/mL). After incubation for one hour at 37°C, the swab samples were taken and cultured in blood agar. The S. mutans colonies were counted by unaided vision after 48 hours of incubation. The results were analyzed using ANOVA followed by the Tukey’s test. Results: The number of colonies attributed to enamel, GI, and BisCem blocks was 24±2, 24.2±2.7 and 14.8±1.7 colonies/mm2, respectively. There was no difference between enamel and GI in terms of adhesion of S. mutans (P=0.08 and P>0.001, respectively); however, the difference between these two and BisCem was statistically significant (P= 0.00075 and P<0.001, respectively). Conclusion: Within the limitations of this study, BisCem cement is superior to GI for the cementation of indirect restorations. PMID:27148379

  14. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  15. Characterization of the Mineral Trioxide Aggregate–Resin Modified Glass Ionomer Cement Interface in Different Setting Conditions

    PubMed Central

    Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya

    2012-01-01

    Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P < .05). Hardness testing 8 days after MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220

  16. Influence of the use of Er:YAG laser for cavity preparation and surface treatment in microleakage of resin-modified glass ionomer restorations.

    PubMed

    Chinelatti, Michelle A; Ramos, Renata P; Chimello, Daniela T; Borsatto, Maria C; Pécora, Jesus D; Palma-Dibb, Regina G

    2004-01-01

    This study quantitatively assessed the amount of microleakage on Class V cavities prepared by Er:YAG laser and high-speed handpiece, varying the surface treatment and restoring with a resin-modified glass ionomer cement. Fifty cavities were prepared using either an Er:YAG laser device or a carbide bur at high speed. The surface treatment was performed as follows: Er:YAG laser irradiation (G1); 40% polyacrylic acid (G2); laser + acid (G3); finishing with low speed + laser + acid (G4); conventional bur preparation + acid (G5-control). The samples were restored with Fuji II LC, thermocycled, isolated and immersed in a 50% AgNO3 solution. The restorations were serially sectioned and the extent of dye penetration was measured in milimeters using specific computer software. Data were analyzed by two-way ANOVA and Tukey test. The lowest degree of microleakage was observed for G5, which was statistically similar (p>0.05) to G4 but different (p<0.05) from all the other experiental groups. Lesser microleakage was observed at the occlusal margins than at the cervical margins (p<0.05). It may be concluded that the use of Er:YAG laser for cavity preparation and surface treatment negatively affected the marginal sealing of resin-modified glass ionomer restorations. PMID:15279483

  17. Transmission of composite polymerization contraction force through a flowable composite and a resin-modified glass ionomer cement.

    PubMed

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-12-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm(2) for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N + 0.2N; G2: 9.8 + 0.2N; G3: 1.8 + 0.2N; G4: 6.8N + 0.2N; G5: 6.9N + 0.3N; G6: 4.0N + 0.4N and G7: 2.8N + 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  18. Marginal microleakage of a resin-modified glass-ionomer restoration: Interaction effect of delayed light activation and surface pretreatment

    PubMed Central

    Shafiei, Fereshteh; Yousefipour, Bahareh; Farhadpour, Hajar

    2015-01-01

    Background: Despite widespread clinical uses of resin-modified glass-ionomers (RMGIs), their sealing ability is still a concern. This study evaluated the effect of delayed light activation (DLA) of RMGI on marginal sealing in differently pretreated cavities. Materials and Methods: In this in vitro study, two standardized Class V cavities were prepared on the buccal and lingual surfaces of 56 sound maxillary premolars at the cementoenamel junction. The cavities were randomly divided into eight equal groups. In groups 1-4 (immediate light activation [ILA]), no pretreatment (negative control [NC]) and three surface pretreatments were used, respectively as follows: Cavity conditioner, Vitremer primer, cavity conditioner plus and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Fuji II LC (GC, Japan) was prepared and placed in the cavities and immediately light-cured according to manufacturer's instructions. In groups 5-8 (DLA), the same pretreatments were applied, respectively. After placing Fuji II LC in the cavities, the restorations were light-cured after a 3-min delay. After finishing the restorations, the specimens were placed in water for 1-week and thermocycled. Microleakage scores were determined using the dye penetration technique. Kruskal–Wallis test and Mann–Whitney U-test were used to analyze the obtained data (α = 0.05). Results: At the dentin margins, DLA resulted in a lower microleakage for no treatment (NC), cavity conditioner and cavity conditioner plus ACP-CPP pretreatments groups (P ≤ 0.004); however, no difference was observed for Vitremer group (P > 0.05). At the enamel margins, no difference was observed between DLA and ILA for all groups (P > 0.05); only NC group exhibited a lower microleakage in case of DLA (P = 0.007). Conclusion: Delayed light activation of RMGI may lead to different effects on marginal sealing, depending on pretreatment procedures used in the cavity. It might improve dentin sealing when no treatment and

  19. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers.

    PubMed

    Ikemura, Kunio; Tay, Franklin R; Endo, Takeshi; Pashley, David H

    2008-05-01

    This paper reviews our recent studies on fluoride-releasing adhesives and the related studies in this field based on information from original research papers, reviews, and patent literatures. A revolutionary PRG (pre-reacted glass ionomer) filler technology--where fillers were prepared by the acid-base reaction of a fluoroaluminosilicate glass with polyalkenoic acid in water, was newly developed, and a new category as "Giomer" was introduced into the market. On fluoride release capability, SIMS examination revealed in vitro fluoride ion uptake by dentin substrate from the PRG fillers in dental adhesive. On bonding durability, it was found that the improved durability of resin-dentin bonds might be achieved not only via the strengthened dentin due to fluoride ion uptake from the PRG-Ca fillers, but also due to retention of relatively insoluble 4-AETCa formed around remnant apatite crystallites within the hybrid layer in 4-AET-containing self-etching adhesives. On ultramorphological study of the resin-dentin interface, TEM images of the PRG-Ca fillers revealed that the dehydrated hydrogel was barely distinguishable from normal glass fillers, if not for the concurrent presence of remnant, incompletely reacted glass cores. In conclusion, it was expected that uptake of fluoride ions with cariostatic effect from PRG-Ca fillers would endow dentin substrates with the benefit of secondary caries prevention, together with an effective and durable adhesion to dentin. PMID:18717159

  20. Three-year survival of one-surface ART restorations and glass-ionomer sealants in a school oral health programme in Zimbabwe.

    PubMed

    Frencken, J E; Makoni, F; Sithole, W D; Hackenitz, E

    1998-01-01

    An oral health care programme in secondary schools using the atraumatic restorative treatment (ART) approach for dental caries was started in 1993. Glass ionomer (restorative type II, 1) was used as the restorative and sealant material. Sealants were placed using the 'press-finger' technique. Results after 3 years revealed a survival percentage for one-surface ART restorations of 85.3 (95% CL: 89.7-80.9%), which ranged from 96.1 to 69.3% per operator. Failures were related to 'unacceptable marginal defects' (8.1%), 'falling out' (6.1%) and 'excessive wear' (2.5%). Of the 33 failed one-surface ART restorations, 17 were material-related, 7 had caries and no information was available for 9 restorations. Sealants were placed only on surfaces diagnosed as early enamel lesions and on some small dentinal lesions. After 3 years, 50.1% (95% CL: 55.1-45.1%) of the fully and partially retained sealants survived with a range of 68.5-25.9% per operator. Regardless of the low rate of retention, the sealed surfaces had a 4 times lower chance of developing caries than unsealed surfaces with early enamel lesions over the 3-year period. The retention of sealants and the survival of one-surface ART restorations were influenced by an operator effect. The mean treatment time for one-surface ART restorations without chairside assistance was 22.1 min (range per operator of 19.8-23.6 min), whilst the mean time for placing sealants was 9.3 min (range per operator of 8.2-10.8 min). It is concluded that the ART approach and the use of glass-ionomer sealants have made preventive and restorative dental care available for this student population and further that ART seems to be appropriate for population groups currently not receiving preventive and restorative dental care. PMID:9544860

  1. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study

    PubMed Central

    D, Krishnakanth Reddy; V, Kishore M S; Safeena, Safeena

    2013-01-01

    Background: The purpose of this study was to determine shear bond strength and the effect on the bracket/ adhesive failure mode when an acidic primer and other etchants were used to condition the enamel surface before bonding. Materials & Methods: Group I: Brackets bonded with Ultimate cure-on-light Light-cure composite adhesive system. Group II: Brackets bonded with Ortho-one no-mix. Self-cure composite adhesive system. Group III: Brackets bonded with Light-cure glass ionomer adhesive system. Group IV: Brackets bonded with Transbond plus self etching primer. Results: The results of this study indicated that the shear bond strength when using Transbond plus self etching primer showed the highest bond strength Group- IV(8.69 2.54 MPa) followed by Ultimate cure-on-light Group-I (8.62 1.84 MPa), Ortho-one no-mix (Bisco Inc. USA)Group-II (8.07 1.72 MPa), and least bond strength was seen in G.C. Fuji Ortho L.C. Group-III (6.01 1.6) MPa Conclusion: Use of self etching primer saves chairside time and satisfactory high bond strength was obtained. Care should be taken during debonding of ceramic brackets How to cite this article: Reddy K D, Kishore M S V, Safeena S. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study. J Int Oral Health 2013; 5(3):73-78. PMID:24155606

  2. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  3. Studies of Glassy Dynamics in Ionomer melts

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Kumar, Sanat; Bhattacharya, Aniket

    2006-03-01

    In this work we investigate one of the challenging problems, the dynamics of ionomer aggregates using Molecular Dynamics simulations. Experimental results show that the glass transition temperature (Tg), diffusion and relaxation mechanisms can be influenced dramatically by ion-incorporation or by changing temperature of the system e.g., increase in ion content raises the Tg. In this work we show the dynamical behavior of ionomer melts as it goes from liquid to glass/gel state. In the context of ionomers, we investigated the analogy between reversible gelation and the glass transition, and show that many of the beneficial properties of ionomers and difficulties in understanding them can be understood in this framework.

  4. Morphological analysis of ionomers

    SciTech Connect

    Not Available

    1991-01-01

    Anomalous small-angle x-ray scattering (SAXS) investigations were carried out on amorphous and semi-crystalline ionomers (Ni- neutralized sulfonated polystyrene ionomers, polyurethane ionomer). Ionomers with semicrystalline matrices (three-phase materials) were also studied with SAXS (poly(ethylene-co-methacrylic acid) ionomer). Ethylene oxide units were incorporated into the backbone of sulfonated polyurethane ionomers in an attempt to induce aggregate dissociation. Small-angle neutron scattering was used to study the effect of ionic aggregation on ionomer chain dimensions in telechelic and model polyurethane ionomers. Studies have been completed on carboxylated and sulfonated model polyurethane ionomers in order to determine the effect of the pendant ionic group on ionomer structure- property relationships (mechanical properties). (DLC)

  5. Dielectric properties of conductive ionomers

    NASA Astrophysics Data System (ADS)

    Klein, Robert James

    plasticized PEO-based ionomer were also studied in comparison to conductivity, with the conclusion that the glass transition temperature (a manifestation of the segmental segments) is the primary property governing conduction behavior in single-phase ionomers. Consideration of the solvent quality parameters yielded a similar result, that the plasticization effect on the glass transition is far stronger than the dielectric constant, donor number, or viscosity of the solvents.

  6. Caries-Preventive Effect of High-Viscosity Glass Ionomer and Resin-Based Fissure Sealants on Permanent Teeth: A Systematic Review of Clinical Trials

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2016-01-01

    Background Glass-ionomers are traditionally regarded to be inferior to resin as fissure sealants in protecting teeth from dental caries, due to their comparatively lower retention rate. Unlike low-viscosity glass-ionomers, high-viscosity glass-ionomer cements (HVGIC) are placed as sealants by pressing the material into pits and fissures with a petroleum-jelly-coated index finger. Hence, HVGIC sealants are assumed to penetrate pits and fissures deeper, resulting in a higher material retention rate, which may increase its caries-preventive effect. Methods The aim of this review was to answer the question as to whether, in patients with fully erupted permanent molar teeth, HVGIC based fissure sealants are less effective to protect against dental carious lesions in occlusal pits and fissures than resin-based fissure sealants? A systematic literature search in eight databases was conducted. Heterogeneity of accepted trials and imprecision of the established evidence were assessed. Extracted sufficiently homogenous datasets were pooled by use of a random-effects meta-analysis. Internal trial validity was evaluated. The protocol of this systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO / Nr.: CRD42015016007). Results Seven clinical trials were provisionally included for further review. Of these, one was excluded. Seven trial reports reporting on six trials were accepted. From these, 11 datasets were extracted and pooled in four meta-analyses. The results suggest no statistically significant differences after up to 48 months and borderline significant differences in favour of HVGIC sealants after 60 months (RR 0.29; 95% CI: 0.09–0.95; p = 0.04 / RD -0.07; 95% CI: -0.14, -0.01). The point estimates and upper confidence levels after 24, 36, 48 and 60 months of RR 1.36; RR 0.90; RR 0.62; RR 0.29 and 2.78; 1.67; 1.21; 0.95, respectively, further suggest a chronological trend in favour of HVGIC above resin

  7. EVALUATION OF GLASS IONOMER SEALANTS PLACED ACCORDING TO THE ART APPROACH IN A COMMUNITY WITH HIGH CARIES EXPERIENCE: 1-YEAR FOLLOW-UP

    PubMed Central

    Vieira, Ana Luiza Falavinha; Zanella, Nildiceli Leite Melo; Bresciani, Eduardo; Barata, Terezinha de Jesus Esteves; da Silva, Salete Moura Bonifácio; Machado, Maria Aparecida de Andrade Moreira; Navarro, Maria Fidela de Lima

    2006-01-01

    The aim of this study was to investigate the retention rates and effect on occlusal caries incidence of two glass ionomers used as sealants, placed according to the Atraumatic Restorative Treatment (ART) approach, in a high caries-risk community. A total of 150 newly erupted first molars of 42 schoolchildren, between 6-8 years of age were selected. The teeth were divided into two groups: experimental and control groups. In the experimental group, 76 teeth were sealed using Vidrion R-SS White (conventional GIC) and in the control group, 74 teeth were sealed using ChemFlex–Dentsply (high-viscosity conventional GIC). The sealants were applied by one operator following the "press finger technique", described in the ART-WHO manual. Two calibrated independent examiners carried out the evaluation according to the ART criteria. The intra and inter-examiner agreements were 0.84 and 0.81, respectively. Data were submitted to Mann-Whitney and Chi-square tests (p<0.05). At the 1-year follow-up, 136 (90.7%) sealants were evaluated. In the control group: 28 (41.8%) of the sealants were partially or completely retained, 38 (56.7%) completely lost, and 1 (1.5%) was replaced by another treatment. In the experimental group, 30 (43.5%) of the sealants were partially or completely retained, 38 (55.1%) were clinically scored as complete loss and 1 (1.4%) were replaced by another treatment. Seven sealants in both groups were not evaluated. Secondary caries was not observed in both groups. There was no statistically significant difference between the retention (p=0.49) and effect on caries incidence rates for both groups (p=0.84). The clinical performance of the glass ionomer sealants of both groups was considered satisfactory with a high success rate (98.5%). Although the sealants placed according to the ART approach showed retention rates lower than 50% after 1 year in newly erupted first molars, this approach seems to be appropriate for communities with high caries experience. PMID

  8. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    PubMed Central

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  9. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    PubMed Central

    Daniel, L. C.; Araújo, F. C.; Zancopé, B. R.; Hanashiro, F. S.; Nobre-dos-Santos, M.; Youssef, M. N.; Souza-Zaroni, W. C.

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations. PMID:26347900

  10. Pulp response to high fluoride releasing glass ionomer, silver diamine fluoride, and calcium hydroxide used for indirect pulp treatment: An in-vivo comparative study

    PubMed Central

    Korwar, Atish; Sharma, Sidhartha; Logani, Ajay; Shah, Naseem

    2015-01-01

    Aims and Objectives: The study aims at determining pulp response of two high fluoride releasing materials silver diamine fluoride (SDF) and Type VII glass ionomer cement (GIC) when used as indirect pulp treatment (IPT) materials. Materials and Methods: Deep Class V cavities were made on four first premolars indicated for extraction for orthodontic reasons. SDF, Type VII GIC, and calcium hydroxide base are given in three premolars, and one is kept control. Premolars were extracted 6 weeks after the procedure and subjected to histopathological examination to determine the pulp response. The results were analyzed using Chi-square test. Results: No inflammatory changes were observed in any of the groups. Significantly more number of specimens in SDF and Type VII GIC groups showed tertiary dentin deposition (TDD) when compared to control group. No significant difference was seen in TDD when intergroup comparison was made. Odontoblasts were seen as short cuboidal cells with dense basophilic nucleus in SDF and Type VII GIC group. Conclusion: The study demonstrated TDD inducing ability of SDF and Type VII GIC and also established the biocompatibility when used as IPT materials. PMID:26321822

  11. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  12. Evaluation of sealing ability two self-etching adhesive systems and a glass ionomer lining LC under composite restoration in primary tooth: An in vitro study

    PubMed Central

    Pragasam, Ananda Xavier; Duraisamy, Vinola; Nayak, Ullal Anand; Reddy, Venugopal; Rao, Arun Prasad

    2015-01-01

    Aims and Objectives: To evaluate the sealing ability of two self-etching adhesive systems and glass ionomer cement (GIC) lining Light cure (LC) under composite restorations in primary teeth. Materials and Methods: Class V cavities are prepared on the cervical third of the facial and lingual surfaces of primary molars. The specimens are then assigned into four experimental groups. The restored primary molars are stored in distilled water and subjected to thermocycling. Each section was examined using a stereomicroscope to assess dye penetration at the margin of the restoration and evaluated via pictures. Statistical Analysis Used: The degree of microleakage was analyzed using Kruskal–Wallis test and the intergroup significance by multiple comparison analysis. Results: The mean rank of the groups are Group I (Adper Prompt™ + Z−100) 19.44, Group II (UniFil BOND + Solare) 5.38, Group III (GIC lining LC + Z−100) 20.06, and Group IV (GIC lining LC + Solare) 21.13 with the P < 0.001. Conclusion: Composite resin restorations bonded with two-step self-etching adhesive system (UniFil Bond) exhibited lesser microleakage than one-step self-etching adhesive system (Adperprompt™) in primary teeth. PMID:26538910

  13. Long-term clinical evaluation of fracture and pulp injury following glass-ionomer cement or composite resin applied as a base filling in teeth restored with amalgam.

    PubMed

    De C Luz, M A; Ciaramicoli-Rodrigues, M T; Garone Netto, N; De Lima, A C

    2001-07-01

    The aim of this research was to analyse the long-term clinical behaviour of two dental materials applied as filling under silver amalgam restorations: glass-ionomer cement (GIC) and composite resin with adhesive system (CR). In this study, 117 posterior teeth (29 premolars and 88 molars) were selected with carious lesions which resulted in great loss of dentin and cusps with unsupported enamel. After caries removal, cavities were prepared and totally filled with GIC or with CR. In a following visit, new cavities were prepared, leaving the employed filling material as a base and support for the enamel, which were then restored with silver amalgam. Restorations were evaluated periodically after 6 months and up to 5 years. Both fracture and pulpal involvement rates were low. Although differences could be observed in the behaviour of the materials, statistical survival estimation showed that the performances of GIC and CR as filling material were similar. There was a significant association both between kind of tooth (molar or premolar) and long-term survival of the restorations; and between degree of unsupported enamel and the same long-term survival. Our results confirmed that the technique in which GIC or CR are used as filling under silver amalgam restorations is clinically acceptable. PMID:11422695

  14. A novel glass ionomer cement containing MgCO(3 )apatite induced the increased proliferation and differentiation of human pulp cells in vitro.

    PubMed

    Laiteerapong, Arunee; Lochaiwatana, Yossakit; Hirata, Isao; Okazaki, Masayuki; Mori, Kenta; Murakami, Shinya; Poolthong, Suchit

    2012-01-01

    This study aimed to investigate the in vitro biological response of human dental pulp cells to glass ionomer cement (GIC, Fuji IX GP(®)) containing 2.5% magnesium carbonate apatite (MgCO(3)Ap). MgCO(3)Ap was synthesized by wet method and characterized using FT-IR, XPS, and SEM. Fuji IX GP(®) served as a control. Test and control cements were prepared by encapsulated mixing the powder with Fuji IX-liquid (P/L=3.6:1). Eluates from cements extracted by 1 mL culture medium were collected at day 1, 7 and 14, and used for WST-1 proliferation assay. For ALPase activity, cells were maintained with cements in transwells, harvested and enzyme activity was measured at day 1, 4, 7, 14, and 21. We found a higher cell proliferation and increased ALPase activity by pulp cells in the test group compared to the control. This suggests the potential of GIC containing this novel biological apatite as a restorative material for pulp-dentin regeneration. PMID:23037840

  15. Effect of the CO2 laser on the microleakage of conventional and laser apicetomized teeth retrofilled with glass ionomer: in vitro study

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.; Martorelli, Sergio B. F.

    2000-03-01

    There is a need for further improvement on the level of apical sealing. The use of lasers on apical surgery is still not fully understood, however some good results have been reported. The aim of this study was to assess the effect of the use of the CO2 laser following conventional apicoectomy and retrofilling with glass ionomer using different combinations of power and types of emission 'In Vitro.' Seventy extracted human upper anterior teeth were used on this study. The teeth after conventional apicoectomy were retrofilled with VitremerTM. The samples were randomized into seven groups of 10, Group I acted as negative control. Groups II, III and IV were lased on defocused mode with superpulsed CO2 laser on CW with power output of 0,5; 3 and 7 Watts during 5 seconds respectively. Groups V, VI e VII were lased on defocused mode with continuous emission on CW mode with power output of 1, 10 and 20 Watts during 5 seconds respectively. All specimens were immersed on 2% Methylene Blue solution during 48 h, washed in running tap water and longitudinally sectioned. Three calibrated examiners regarding apical infiltration graded the samples. The results showed difference between groups, where Group II showed smaller level of apical infiltration. It is concluded that improving on apical sealing is better achieved by using 0.5 W on superpulsed on CW.

  16. Effect of light-cure initiation time on polymerization and orthodontic bond strength with a resin-modified glass-ionomer

    NASA Astrophysics Data System (ADS)

    Thomas, Jess

    Introduction: The polymerization and acid-base reactions in resin-modified glass-ionomers (RMGI) are thought to compete with and inhibit one another. The objective of this study was to examine the effect of visible light-cure (VLC) delay on the polymerization efficiency and orthodontic bond strength of a dual-cured RMGI. Methods: An RMGI light-cured immediately, 2.5, 5, or 10 minutes after mixing comprised the experimental groups. Isothermal and dynamic temperature scan differential scanning calorimetry (DSC) analysis of the RMGI was performed to determine extents of VLC polymerization and acid-base reaction exotherms. Human premolars (n = 18/group) were bonded with the RMGI. Shear bond strength and adhesive remnant index (ARI) scores were determined. Results: DSC results showed the 10 minute delay RMGI group experienced significantly (P <0.05) lower VLC polymerization compared to the other groups. Acid-base reaction exotherms were undetected in all groups except the 10 minute delay group. No significant differences (P >0.05) were noted among the groups for mean shear bond strength. A chi-square test showed no significant difference (P = 0.428) in ARI scores between groups. Conclusions: Delay in light-curing may reduce polymerization efficiency and alter the structure of the RMGI, but orthodontic shear bond strength does not appear to be compromised.

  17. Leakage of AH26 and Ketac-Endo used with injected warm gutta-percha.

    PubMed

    Wu, M K; De Gee, A J; Wesselink, P R

    1997-05-01

    Condensing warm gutta-percha (GP) can greatly reduce the distance between the GP and the root canal walls (RCW). Different sealers with different film thicknesses may seal such close fits differently. With the use of a fluid transport model, leakage of AH26 and Ketac-Endo used with injected warm GP to fill root canals was measured. The distance between the condensed GP and RCW and the film thickness of the two sealers was determined as well. After condensation, the distance between GP and RCW was mostly less than 25 microns. AH26, with a film thickness of 39 microns, leaked more than Ketac-Endo (p < 0.05) of which the film thickness was 22 microns. It seems that film thickness of sealer is an influencing factor on the sealing ability of a root canal filling when condensation of thermoplasticized GP is performed. PMID:9545939

  18. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    PubMed Central

    Sawhney, Surbhi; Vivekananda Pai, A.R.

    2015-01-01

    Background Addition of glass ionomer cement (GIC) has been suggested to improve the setting time and handling characteristics of mineral trioxide aggregate (MTA). This study evaluated the effect of adding GIC to MTA in terms of calcium release, an issue that has not been previously studied. Materials and methods The study comprised four groups with five samples each: a control group of MTA alone and experimental groups I (1MTA:1GIC), II (2MTA:1GIC), and III (1MTA:2GIC) based on the mixture of MTA and GIC powders in the respective proportions by volume. Calcium release from the samples was measured by atomic absorption spectrophotometry at 15 min, 6 h, 24 h, and 1 week after setting. The level of statistical significance was set at p < 0.05. Results Groups I (1MTA:1GIC) and III (1MTA:2GIC) released significantly less calcium than the control group at all time periods, except at 15 min for group I. Group II (2MTA:1GIC) showed no significant difference in calcium release compared to the control at any time period. Group II exhibited greater calcium release than group I or III at all time periods, with significant differences between groups I and II at 1 week and between groups I and III at 24 h and 1 week. There were no statistical differences in calcium release between groups I and III. Conclusions Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies. PMID:26644757

  19. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    PubMed Central

    Sharma, Padmaja; Valiathan, Ashima; Arora, Ankit; Agarwal, Sachin

    2013-01-01

    Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs), due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL) on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel) and NaOCL on the rate of bond failure (with immediate ligation at 30 min) of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1) Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2) Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3) Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4) Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC. PMID:24014999

  20. Remineralizing efficacy of silver diamine fluoride and glass ionomer type VII for their proposed use as indirect pulp capping materials – Part II (A clinical study)

    PubMed Central

    Sinha, N; Gupta, A; Logani, A; Shah, N

    2011-01-01

    Aim: To evaluate in vivo the remineralizing efficacy of silver diamine fluoride (SDF), glass ionomer Type VII (GC VII) and calcium hydroxide (Dycal). Materials and Methods: 60 subjects in the age group of 18-35 years, matching the inclusion criteria and having deep carious lesions in the permanent first and second molars were selected. The teeth were aseptically opened under rubber dam and after gross caries removal, approximately 0.4mg of soft discolored dentin was removed with a sharp spoon excavator from the mesial or distal aspect of the cavity. The test material was randomly selected and applied in a thickness of 1.5-2mm and the cavity sealed with cavit. The patients were followed up at regular intervals with radiographic evaluation at 12 weeks. At 3 months the temporary restoration was removed and dentin samples were collected from the other half of the cavity which was left in the first appointment. Atomic absorption spectrophotometry, Colorimetric test using UV-vis spectrometer and potentiometric titration were used for determining calcium, phosphorous and fluoride respectively. Results: Almost equivalent rise in the percentage of calcium level was seen in GC VII and Ca(OH)2 groups, followed by SDF group. Highest percentage rise in phosphate ions was seen in GC VII group followed by SDF group and Ca(OH)2 group. Highest percentage of fluoride rise was seen in GC VII group followed by SDF group and Ca(OH)2 group. Conclusions: The results indicated that both GC VII and SDF can be potential indirect pulp capping materials. PMID:22025824

  1. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®)

    PubMed Central

    CANTEKİN, Kenan; AVCİ, Serap

    2014-01-01

    Objectives Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Material and Methods Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. Results The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively). Conclusions The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite. PMID:25141202

  2. The effects of ambient temperature and mixing time of glass ionomer cement material on the survival rate of proximal ART restorations in primary molars

    PubMed Central

    Kemoli, Arthur M

    2014-01-01

    Objective: Temperature fluctuations and material mixing times are likely to affect the consistency and integrity of the material mixture, and hence the restoration made out of it. The purpose of the present study was to determine the influence of the ambient temperature and the mixing time of glass ionomer cement (GIC) restorative material on the survival rate of proximal atraumatic restorative treatment (ART) restorations placed in primary molars. Materials and Methods: A total of 804 restorations were placed in the primary molars of 6-8-year-olds using the ART approach. The restorations were then followed for a period of 2 years and evaluated at given intervals. The data collected were analyzed using SPSS computer statistical program, and the results tested and compared using the Chi-square, Kaplan Meier survival analysis and Cox Proportional hazard statistical tests. Results: The cumulative survival rate of the restorations dropped from the initial 94.4% to 30.8% at the end of 2 years. The higher survival rate of the restorations was associated with the experienced operators and assistants when using the rubber dam isolation method. However, there was no statistically significant difference in the survival rate of the restorations when related to the room temperature and the mixing time of the GIC materials used in spite of the variations in the temperature recoded and the methods used in mixing the materials. Conclusion: The ambient temperature and mixing time of GIC did not have a significant effect on the survival of the proximal ART restorations. PMID:24808692

  3. Evaluation of the Effect of Different Food Media on the Marginal Integrity of Class V Compomer, Conventional and Resin-Modified Glass-Ionomer Restorations: An In Vitro Study

    PubMed Central

    Dinakaran, Shiji

    2015-01-01

    Background: Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract®), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. Materials and Methods: After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Results: Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P < 0.05 were considered statistically significant. Conclusions: Among the three tested materials Compomer (Dyract®) showed more marginal integrity than the other two. Micro leakage values of Fuji II and Fuji II LC improved were statistically significant in acidic media (lime juice and Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins. PMID:25878480

  4. Comparison of the sealing capabilities of Ketac-silver and extra high copper alloy amalgam when used as retrograde root canal filling.

    PubMed

    al-Ajam, A D; McGregor, A J

    1993-07-01

    Apical microleakage following reverse retrograde root filling with extra high copper amalgam alloy was compared with that following a silver-glass ionomer retrofilling. The root canals of 56 extracted, single-rooted anterior human teeth were instrumented and obturated with laterally condensed gutta-percha and zinc oxide-eugenol sealer. Each tooth was apically resected at 45 degrees to its long axis and the root surface isolated with nail varnish. Teeth were divided into three groups. The first group received extra high copper amalgam retrograde fillings, the second group was retrofilled with a silver-glass ionomer, and the control group had no retrograde root filling placed. Following immersion in 1% methylene blue dye at 37 degrees C, the roots were sectioned and dye penetration was measured using an image analyzer. The sealing effectiveness of these materials was determined by their ability to inhibit dye penetration at 24 and 48 h. The results of this study show that a silver glass-ionomer is just as effective as extra high copper amalgam in terms of sealing capability. There was no statistically significant difference between the two materials. PMID:8245758

  5. Viscoelastic properties of Ionomer Melt

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Kumar, Sanat

    2007-03-01

    Viscoelastic prperties of a model telechelic ionomer, i.e., a melt of non-polar polymers with a charge at each chain end along with neutralizing counterions, have been examined using molecular dynamics simulation. Equlibrium calculation of the loss modulus G^''(φ) and storage modulus G^'(φ) shows plateau at lower temperatures when the systems are not relaxed. In this situation the specific heat (Cv) peak corresponds to the self-assembly of the system, at lower temperatures the specific heat begins to plateau. Similarities of the dynamic features found for telechelic melts with those observed in glass-forming liquids and entangled polymers have been shown. Furthremore, using an athermal 'probe', the properties of these materials is being distinctly classified as 'strong' glass or physical gels.

  6. Do Laboratory Results Concerning High-Viscosity Glass-Ionomers versus Amalgam for Tooth Restorations Indicate Similar Effect Direction and Magnitude than that of Controlled Clinical Trials? - A Meta-Epidemiological Study

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2015-01-01

    Background A large percentage of evidence concerning dental interventions is based on laboratory research. The apparent wealth of laboratory evidence is sometimes used as basis for clinical inference and recommendations for daily dental practice. In this study two null-hypotheses are tested: whether trial results from laboratory and controlled clinical trials concerning the comparison of high-viscosity glass-ionomer cements (HVGIC) to amalgam for restorations placed in permanent posterior teeth have: (i) similar effect direction and (ii) similar effect magnitude. Methods 7 electronic databases were searched, as well as reference lists. Odds ratios (OR) and Standardised Mean Differences (SMD) with 95% Confidence intervals were computed for extracted dichotomous and continuous data, respectively. Pooled effect estimates for laboratory and clinical data were computed to test for effect direction. Odds ratios were converted into SMDs. SMDs from laboratory and clinical data were statistically compared to test for differences in effect magnitude. The analysed results were further investigated within the context of potential influencing or confounding factors using a Directed acyclic graph. Results Of the accepted eight laboratory and nine clinical trials, 13 and 21 datasets could be extracted, respectively. The pooled results of the laboratory datasets were highly statistically significant in favor of amalgam. No statistically significant differences, between HVGICs and amalgam, were identified for clinical data. For effect magnitude, statistically significant differences between clinical and laboratory trial results were found. Both null-hypotheses were rejected. Conclusion Laboratory results concerning high-viscosity glass-ionomers versus amalgam for tooth restorations do not indicate similar effect direction and magnitude than that of controlled clinical trials. PMID:26168274

  7. Ionomer Design Principles for Single Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph; Liang, Siwei; Liu, Wenjuan; Hyeok Choi, U.; Runt, James; Shiau, Huai-Suen; Janik, Michael

    2012-02-01

    Single-ion conducting ionomers with low glass transition temperature, high dielectric constant and containing bulky ions with diffuse charge, are needed for polymer membranes that transport small counterions. Overarching design principles emerging from quantum chemistry calculations suggest that diffuse charge can be attained from simple considerations of atomic electronegativity. For lithium or sodium batteries, perfluorinated tetraphenyl borate ionomers with solvating polar comonomers are proposed. For fluoride or hydroxide batteries and for iodide transporting solar cells, tetra-alkyl phosphonium ionomers with anion receptors are proposed. First attempts to construct such ionomers to test these ideas will be discussed, with results from dielectric spectroscopy to measure conductivity, dielectric constant and number density of simultaneously conducting ions.

  8. Plasticizer Influence on Ionic Morphology and Transport in PEO Ionomers

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Masser, Hanqing; King, Daniel; Painter, Paul; Colby, Ralph; Runt, James; Winey, Karen

    2013-03-01

    Sulfonated poly(ethylene oxide) ionomers have been blended with a miscible, oligomeric poly(ethylene glycol) in order to study the effect of plasticizers on ionomer performance. Plasticizers can increase ionic conductivity in ionomers by depressing the glass transition temperature and dissolving ionic aggregates. In this study, the relative volume fractions of ionic aggregates in various blend compositions is investigated by curve fitting the X-ray scattering aggregate peak. Two fitting parameters are utilized to quantify aggregate composition, peak area and peak position. Fitting results conclude that plasticizer content dilutes and dissolves ionic aggregates, providing higher conducting ion density than comparable neat ionomers. Dielectric relaxation spectroscopy data confirms that ionic conductivity improves with plasticizer content. Similar curve fitting methods were executed for FT-IR signals, and quantification of aggregate structure is compared with X-ray scattering.

  9. Ionomics and the Study of the Plant Ionome

    SciTech Connect

    Salt,D.; Baxter, I.; Lahner, B.

    2008-01-01

    The ionome is defined as the mineral nutrient and trace element composition of an organism and represents the inorganic component of cellular and organismal systems. Ionomics, the study of the ionome, involves the quantitative and simultaneous measurement of the elemental composition of living organisms and changes in this composition in response to physiological stimuli, developmental state, and genetic modifications. Ionomics requires the application of high-throughput elemental analysis technologies and their integration with both bioinformatic and genetic tools. Ionomics has the ability to capture information about the functional state of an organism under different conditions, driven by genetic and developmental differences and by biotic and abiotic factors. The relatively high throughput and low cost of ionomic analysis means that it has the potential to provide a powerful approach to not only the functional analysis of the genes and gene networks that directly control the ionome, but also to the more extended gene networks that control developmental and physiological processes that affect the ionome indirectly. In this review we describe the analytical and bioinformatics aspects of ionomics, as well as its application as a functional genomics tool.

  10. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study

    PubMed Central

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-01-01

    Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

  11. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  12. The preparation and investigation into properties of ionomer fiber

    NASA Astrophysics Data System (ADS)

    Ejigiri, Everest Emmanuel

    The purpose of this study was to demonstrate the preparation and characterization of ionomer fiber. Two outstanding features of oriented-fiber composites are their high strength-to- weight ratio and controlled anisotropy which is because fibers are formed when polymer chains (in case of polymeric materials) are all lined up in the same direction. And the chains can pack together tightly. Materials can be made into fiber for the purpose of getting better properties and to make the application flexible. In this study, ionomer fiber was prepared. The physical and mechanical properties were examined through a variety of tests- including tensile test, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), free shape recovery test, and constrained stress recovery test. The ionomer fibers were made into muscles fiber, and the tensile actuation behavior of the muscle was studied. From the DMA, Storage modulus, loss modulus, tan delta and glass transition temperature were obtained. DSC was also used to obtain the glass transition temperature which also closely aligned with glass transition obtained from DMA. Also according to the test results, ionomer fiber (filament) demonstrated considerable stress recovery, high ductility and however, the filament did not produce high recovery ratio. The fiber was made into artificial muscle and actuation test was also carried out, which indicated that because the fiber being too much elastic - the fiber was not able to expand and contract when heat was applied to it. Instead it showed continuous expansion.

  13. An in vitro study of apical and coronal microleakage of laterally condensed gutta percha with Ketac-Endo and AH-26.

    PubMed

    Oliver, C M; Abbott, P V

    1998-08-01

    The purpose of this in vitro study was to compare both apical and coronal dye penetration when Ketac-Endo and AH-26 sealers were used with laterally condensed gutta percha. Crowns were removed from 28 teeth and the root canals were biomechanically prepared. The teeth were divided into two groups of 12-teeth each and a control group of 4 teeth. Root canals in the two experimental groups were filled with laterally condensed gutta percha and either Ketac-Endo or AH-26 sealer. The Ketac-Endo group had the coronal 3 mm of gutta percha and sealer removed and the resultant cavity was filled with Ketac-Endo alone. After the sealers had set, the root surfaces were coated with nail varnish except at the apex and at the coronal end. Positive controls had no root fillings and were coated with nail varnish in the same manner while the negative controls were sealed apically and coronally with Cavit prior to sealing the entire external root surface with nail varnish. Specimens were placed in 2% methylene blue dye in a vacuum of 660 mm of mercury for five minutes and then left immersed for a further two days. The roots were vertically sectioned to determine the following mean levels of dye penetration: Ketac-Endo, 1.08 mm apically and 6.29 mm coronally; AH-26, 0.75 mm apically and 6.67 mm coronally. Positive controls had total leakage and negative controls had no leakage. This study demonstrated that the apical and coronal seals obtained with Ketac-Endo and AH-26 were not significantly different although the apical seal obtained with each material was significantly better than the corresponding coronal seal. PMID:9775474

  14. Counterion Diffusion in Ionomers

    NASA Astrophysics Data System (ADS)

    Walter, Russell; Winey, Karen; Kim, Joon-Seop; Composto, Russell

    2004-03-01

    Diffusion of Cs counterions to the air/ionomer film interface is followed using Rutherford backscattering spectrometry and results compared with the "sticky reptation" model[1]. The ionomer system is poly(styrene-ran-methacrylic acid) (Cs-SMAA) neutralized at 100% by Cs. The concentration profiles exhibit a surface excess, z*, of Cs followed by a depletion of Cs. The z* and depletion layer thickness grow as t1/2, consistent with diffusion limited growth. Annealing studies at 130 °C, 145 °C and 208 °C were used to extract the diffusion coefficient, D. In all cases, D is greater than that of the matrix chains. These results suggest that the diffusion rate is controlled by the fraction of counterions that disassociate from the acid groups and migrate through the matrix. Moreover, the "sticky reptation" model doesn't appear to predict the diffusion behavior in the Cs-SMAA system. [1] Leibler, L, Ludwick, L., Rubinstein, M., Colby, R.H., Macromolecules 24 (1991) 4701.

  15. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  16. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  17. Polysiloxane-graft-PEG/Phosphonium Ionomer Morphology and Ion Transport

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Liang, Siwei; Bartels, Joshua; Runt, James; Colby, Ralph; Winey, Karen

    2013-03-01

    A series of random polysiloxane-based copolymer single ion conductors with phosphonium and polyethylene glycol side chains have been synthesized at various compositions and counterions. Morphology is investigated via X-ray scattering, and reveals microphase separation on extremely small length scales. Despite the low molecular weight of the PEG side chain, polysiloxane and PEG assemble into microdomains with covalently bound phosphonium cations at the interface. Exceptionally low glass transition temperatures in these microphase separated ionomers allow for high ionic mobility for both bulky, charge delocalized counterions as well as small, electronegative counterions. Morphology interpretation is complemented by measurement of ion transport properties via dielectric relaxation spectroscopy.

  18. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.

    2000-09-05

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  19. Proton exchange membranes based on the short-side-chain perfluorinated ionomer

    NASA Astrophysics Data System (ADS)

    Ghielmi, A.; Vaccarono, P.; Troglia, C.; Arcella, V.

    Due to the renovated availability of the base monomer for the synthesis of the short-side-chain (SSC) perfluorinated ionomer, fuel cell membrane development is being pursued using this well known ionomer structure, which was originally developed by Dow in the 1980s. The new membranes under development have the trade name Hyflon Ion. After briefly reviewing the literature on the Dow ionomer, new characterization data are reported on extruded Hyflon Ion membranes. The data are compared to those available in the literature on the Dow SSC ionomer and membranes. Comparison is made also with data obtained in this work or available in the literature on the long-side-chain (LSC) perfluorinated ionomer (Nafion). Thermal, visco-elastic, water absorption and mechanical properties of Hyflon Ion are studied. While the general behavior is similar to that shown in the past by the Dow membranes, slight differences are evident in the hydration behavior at equivalent weight (EW) < 900, probably due to different EW distributions. Measurements on dry membranes confirm that Hyflon Ion has a higher glass transition temperature compared to Nafion, which makes it a more promising material for high temperature proton exchange membrane (PEM) fuel cell operation ( T > 100 °C). Beginning of life fuel cell performance has also been confirmed to be higher than that given by a Nafion membrane of equal thickness.

  20. Influence of Neutralization on Amorphous-Phase Properties in Semicrystalline Ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    2005-03-01

    Ethylene-methacrylic acid (E-MAA) ionomers contain lamellar polyethylene crystallites, amorphous copolymer segments and ionic aggregates, each of which affects the mechanical properties of the material. For a quantitative assessment of the contributions from each of the three structural motifs, we measured the ionomer modulus at 70 ^oC, where the materials still contain substantial crystallinity, and applied a two-phase composite treatment (Davies Model) to extract the modulus of the amorphous phase. The amorphous phase modulus at 70 ^oC increases with neutralization level as a consequence of physical crosslinking by the ionic aggregates; amorphous phase moduli for ionomers with varying comonomer content and neutralization levels approximately collapsed when plotted against the number density of ionic groups, with the modulus increasing with ion content in general agreement with simple rubber elasticity theory. Between 25 and 70 ^oC, the relaxation behavior of ionomers differs substantially from that for unneutralized E-MAA copolymers. The ionomers exhibit two-step drops in the storage modulus prior to primary crystal melting, which we attribute to melting of secondary crystallites and devitrification of the amorphous phase, whose glass transition is elevated by neutralization.

  1. Next-generation ionomer encapsulants for thin film technology

    NASA Astrophysics Data System (ADS)

    Czyzewicz, Robin; Smith, C. Anthony

    2011-09-01

    The characteristic properties of newly developed ionomer-based encapsulants are highlighted along with an in-depth analysis of moisture ingress, electrical and mechanical properties. The mechanical properties of these encapsulants with their high stiffness and strength have been found to allow the use of thinner glass and a possible shift from tempered to annealed glass. Lower-cost mounting options may be explored through full-module stress/deflection measurement capability and competencies developed in world-class finite-element modeling of system parameters. The superior electrical and moisture properties may allow modules to be produced without the use of an additional edge seal. These new materials have improved melt flow properties when compared to other encapsulant families such as EVA or PVB. This allows for faster processing which reduces production cost by shortening the lamination cycle. During the lamination process the sheets show excellent dimensional stability and low shrinkage behavior; and there is no need for curing, thus energy costs are lower due to lower lamination temperature. As advancement of technology proceeds across the entire PV industry, next generation ionomer encapsulants have been developed to keep up with the pace.

  2. Comparative evaluation of microleakage in conventional glass ionomer cements and triclosan incorporated glass ionomer cements

    PubMed Central

    Somani, Rani; Jaidka, Shipra; Jawa, Deepti; Mishra, Shreya

    2014-01-01

    Aim and Objective: The aim of the following study is to comparatively evaluate the microleakage of triclosan incorporated GIC with conventional restorative GIC. Materials and Methods: Triclosan in powder form was added to conventional GIC to formulate a concentration of 2.5%. Class five cavities were prepared in non-carious extracted molars and were respectively restored with conventional restorative GIC and triclosan incorporated GIC. Samples were kept in 10% methylene blue dye. Ground sections were obtained and were observed under a binocular microscope for dye penetration. Result: No significant difference was found in the microleakage of two groups. Conclusion: Triclosan incorporated GIC can be considered as an alternative to GIC with enhanced antibacterial property. PMID:24808702

  3. Ionic Association States in Polyester Copolymer Ionomers

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing; Dou, Shichen; Colby, Ralph; Painter, Paul; Runt, James

    2013-03-01

    A series of random copolyester ionomers were previously synthesized from poly(ethylene oxide) (PEO600) and poly(tetramethylene oxide) (PTMO650) oligomers, separated by the lithium or sodium salt of a sulfonated phthalate. PEO exhibits better solvating ability, while PTMO based ionomers have somewhat lower Tg. By changing the ratio of PEO/PTMO, the polymer's ability to solvate ions at the same ion content was varied, in order to explore the trade-off between ion solvation and lower Tg. Ionomers with different PEO/PTMO ratios were investigated by FTIR spectroscopy. The results show a systematic change in the ion association states and ion aggregation geometries with PEO/PTMO ratio and temperature. Ionomers with sodium cations have more ion pairs compared to the Lithium ionomers at the same PEO/PTMO ratio, which correspond to the higher dielectric constants in the sodium ionomers. These findings agree with previous X-ray scattering and dielectric relaxation spectroscopy results that the system microphase separates into PEO-rich and a PTMO-rich microphases and the majority of the cations reside in the PEO-rich microphase.

  4. The Effects of Confinement of Thin Spin Cast Films of Perfluorinated Ionomers

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora; Hill, Teresa

    2003-03-01

    The surface structure and its response to annealing upon confinement of spin coated perfluorinated ion-containing polymer have been studied by atomic force microscopy, X-ray scattering, and non-polarized neutron reflectometry. Similar to self- assembled films, the spin coated ionomers form structured films consisting of bundles of micelles. In contrast to self-assembled films, in spin coated ones hexagonal arrangements of the basic structural units are observed. Films with thickness ranging from 350 Å to 1050 Å have been investigated as a function of annealing time above the glass transition temperature of the fluorinated backbones. The films remain intact and do not de-wet when heated above the glass transition temperature of the polymer, contrary to what has been observed in thin di-block copolymers. The film thickness affects the ability of the ionomer to rearrange and releases constraints imposed by the spin coating procedure.

  5. Oxygen reduction at platimun/ionomer interface: effects of phase separation of ionomer

    SciTech Connect

    Chlistunoff, Jerzy

    2008-01-01

    Oxygen reduction reaction (ORR) at the interface between platinum and recast ionomers (Nafion EW 1100 and 950 and 6F-40) was studied at different temperatures (20--80{sup o}C) and humidities (10--100%) employing smooth Pt and Pt-black-covered ultramicroelectrodes. ORR was strongly inhibited on smooth electrodes. The inhibition increased with the reduction time, temperature and humidity, but was absent for Nafion EW 1100 in contact with liquid water. It was attributed to the hydrophobic component of ionomer blocking both active sites and oxygen transport. It was postulated that the dynamic changes in interfacial phase separation of ionomer are facilitated by the attractive interactions between the hydrophobic component of ionomer and bare platinum and between oxide-covered Pt and the hydrophilic component of ionomer. These interactions were also proposed to be responsible for the differences in ORR voltammetry for films prepared and equilibrated under different conditions. The decrease in ORR inhibition, Nafion EW 950> Nafion EW 1100> 6F-40, was correlated with physical and molecular properties of the ionomers. The lack of inhibition for Pt-black-covered electrodes was attributed to the more random distribution of ionomer chains and the high activation barriers for the ionomer restructuring at rough interfaces.

  6. Thermal analytical study of polyamide copolymer/Surlyn Ionomers Blends

    SciTech Connect

    Qin, C.; Ding, Y.P.

    1993-12-31

    Thermal analytical technique was used as a screening method to study polyamide(Nylon)/ethylene-co-methacrylic acid copolymer-based ionomer(Surlyn)blends. The retardation of crystallization process from molten state of Nylon-12 by the existence of the ionomer was observed, but the crystallization of Nylon-12 can not be thwarted even at high concentration of ionomers. Zinc ionomers shows stronger effect than sodium ionomers. A Nylon copolymer, polyamide-6,6-co-polyamide-6,10, was used to blend with different ionomers and the crystallization process from molten state of Nylon copolymer could be thwarted at high concentration of zinc ionomer even at very cooling rate. Interesting cold crystallization behavior of polyamide copolymer was observed during second DSC heating cycle in the temperature range of the melting process of ionomer.

  7. Effect of Ion Content on Conductivity and Morphology of Single-Ion Conducting Ionomers

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Han Helen; Colby, Ralph H.

    2013-03-01

    Ionomers based on short poly(ethylene oxide) side chains and sodium sulfonated styrene are synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization, to systematically study the effect of ion content and counterion species on ionic conductivity. Glass transition temperature increases gradually as ions are incorporated at low ion content then sharply as the ion content reaches 1:4 ions to ether oxygen (EO) ratio. Dielectric relaxation spectroscopy is used to measure the conductivity, dielectric constant and segmental relaxations in these ionomers. The ionomer with 1:80 ions to EO ratio shows highest room temperature conductivity that results from the best combination of number density of simultaneously conducting ions and their mobility, assessed by an electrode polarization model. The micro-phase separation that is anticipated in the ionomers with higher ion contents is probed by x-ray scattering. Sodium counterions are mostly trapped in ionic aggregates while larger counterions, such as tetramethylammonium, exhibit higher conductivity and conducting ion concentration.

  8. Molecular dynamics simulations of ionic aggregates in a coarse%3CU%2B2010%3Egrained ionomer melt.

    SciTech Connect

    Hall, Lisa Michelle; Frischknecht, Amalie Lucile; Stevens, Mark Jackson

    2010-11-01

    Ionomers--polymers containing a small fraction of covalently bound ionic groups--have potential application as solid electrolytes in batteries. Understanding ion transport in ionomers is essential for such applications. Due to strong electrostatic interactions in these materials, the ions form aggregates, tending to slow counterion diffusion. A key question is how ionomer properties affect ionic aggregation and counterion dynamics on a molecular level. Recent experimental advances have allowed synthesis and extensive characterization of ionomers with a precise, constant spacing of charged groups, making them ideal for controlled measurement and more direct comparison with molecular simulation. We have used coarse-grained molecular dynamics to simulate such ionomers with regularly spaced charged beads. The charged beads are placed either in the polymer backbone or as pendants on the backbone. The polymers, along with the counterions, are simulated at melt densities. The ionic aggregate structure was determined as a function of the dielectric constant, spacing of the charged beads on the polymer, and the sizes of the charged beads and counterions. The pendant ion architecture can yield qualitatively different aggregate structures from those of the linear polymers. For small pendant ions, roughly spherical aggregates have been found above the glass transition temperature. The implications of these aggregates for ion diffusion will be discussed.

  9. Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices

    NASA Astrophysics Data System (ADS)

    Tudryn, Gregory J.

    A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading

  10. Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Chang, Alberto A.; Patel, Jasbir N.; Cordoba, Cristina; Kaminska, Bozena; Kavanagh, Karen

    2014-03-01

    An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.

  11. The Ionomic Study of Vegetable Crops.

    PubMed

    Watanabe, Toshihiro; Maejima, Eriko; Yoshimura, Tomoko; Urayama, Masaru; Yamauchi, Aiko; Owadano, Masako; Okada, Ryosuke; Osaki, Mitsuru; Kanayama, Yoshinori; Shinano, Takuro

    2016-01-01

    Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome) in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment. In this study, we cultivated various vegetable crop species and cultivars under the same field conditions and analyzed the level of accumulation of each element in the edible and nonedible parts using ionomic techniques. The concentration of each element in the edible parts differed between species, which could be partly explained by differences in the types of edible organs (root, leaf, seed, and fruit). For example, the calcium concentration was lower in seeds and fruit than in other organs because of the higher dependency of calcium accumulation on xylem transfer. The concentration of several essential microelements and nonessential elements in the edible parts also varied greatly between cultivars of the same species, knowledge of which will help in the breeding of vegetables that are biofortified or contain lower concentrations of toxic elements. Comparison of the ionomes of the fruit and leaves of tomato (Solanum lycopersicum) and eggplant (S. melongena) indicated that cadmium and boron had higher levels of accumulation in eggplant fruit, likely because of their effective transport in the phloem. We also found that homologous elements that have been reported to share the same uptake/transport system often showed significant correlation only in a few families and that the slopes of these relationships differed between families. Therefore, these differences in the characteristics of mineral accumulation are likely to affect the ionomic profiles of different families. PMID:27478901

  12. The Ionomic Study of Vegetable Crops

    PubMed Central

    Watanabe, Toshihiro; Maejima, Eriko; Yoshimura, Tomoko; Urayama, Masaru; Yamauchi, Aiko; Owadano, Masako; Okada, Ryosuke; Osaki, Mitsuru; Kanayama, Yoshinori; Shinano, Takuro

    2016-01-01

    Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome) in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment. In this study, we cultivated various vegetable crop species and cultivars under the same field conditions and analyzed the level of accumulation of each element in the edible and nonedible parts using ionomic techniques. The concentration of each element in the edible parts differed between species, which could be partly explained by differences in the types of edible organs (root, leaf, seed, and fruit). For example, the calcium concentration was lower in seeds and fruit than in other organs because of the higher dependency of calcium accumulation on xylem transfer. The concentration of several essential microelements and nonessential elements in the edible parts also varied greatly between cultivars of the same species, knowledge of which will help in the breeding of vegetables that are biofortified or contain lower concentrations of toxic elements. Comparison of the ionomes of the fruit and leaves of tomato (Solanum lycopersicum) and eggplant (S. melongena) indicated that cadmium and boron had higher levels of accumulation in eggplant fruit, likely because of their effective transport in the phloem. We also found that homologous elements that have been reported to share the same uptake/transport system often showed significant correlation only in a few families and that the slopes of these relationships differed between families. Therefore, these differences in the characteristics of mineral accumulation are likely to affect the ionomic profiles of different families. PMID:27478901

  13. Ionomer Dynamics: Insights from Broadband Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Runt, James

    2015-03-01

    Ionomers (polymers containing ionic functionality) have been traditionally used as packaging materials and in molding applications, and are now of increasing interest as candidate single ion conductors for energy storage devices, in energy conversion, and for other electroactive materials applications. The focus of this presentation is on the insight that broadband dielectric (impedance) spectroscopy brings to our understanding of ion and polymer dynamics of this family of materials. As an example of our recent work on relatively conductive ionomers, the first portion of the presentation will focus on anion conducting polyphosphazene ionomers, in which polymer bound cations are quaternized with either short alkyl or short ether oxygen chains. The low Tg, amorphous nature, and cation-solvating backbone distinguish polyphosphazenes as promising materials for ion conduction, the iodide variants being of particular interest in solar cells. In the second part of this overview, the first findings on the molecular dynamics of linear precise polyethylene-based ionomers containing 1-methylimidazolium bromide pendants on exactly every 9th, 15th, or 21st carbon atom will be summarized. In order to develop a robust interpretation of the dynamics of these materials, it is imperative to develop a thorough understanding of microphase separation (e.g. ion aggregation), and each of the above studies is complimented by multiangle X-ray scattering experiments. Supported by the NSF Polymers Program and DOE Basic Energy Sciences.

  14. Microleakage of newly developed glass carbomer cement in primary teeth

    PubMed Central

    Cehreli, Sevi Burcak; Tirali, R. Ebru; Yalcinkaya, Zeynep; Cehreli, Zafer C.

    2013-01-01

    Objective: Glass carbomer cement represents a new generation of dental material, which mineralizes gradually into fluorapatite. The aim of this study was to evaluate the microleakage and marginal integrity of newly developed glass carbomer cement with and without protective surface coating (SC) in primary molars. Methods: Standardized cavities were prepared on extracted human primary molars, and the teeth were randomly assigned into the following groups (n = 10/each): (1) conventional glass ionomer cement (GIC) without SC; (2) GIC with SC; (3) glass carbomer cement without SC; (4) glass carbomer cement with SC; and (5) compomer without SC. Following thermocycling (5 ± 2°C–55 ± 2°C, dwell time 15 s, 2000×), the specimens were immersed in 0.5% basic fuchsin solution, sectioned, and digitally photographed. Microleakage was evaluated quantitatively by using open-source image analysis toolkit (ImageJ), and the data were analyzed statistically by using Kruskal-Wallis and Conover’s Multiple Comparison tests (P=.05). Results: The greatest amount of dye leakage was observed in the uncoated glass carbomer specimens, followed by the uncoated glass ionomer group (P<.05). There was no significant difference between the microleakage values of coated glass ionomer, coated glass carbomer, and the compomer (P>.05). The following statistical ranking was observed among microleakage of the test materials: uncoated glass carbomer > uncoated glass ionomer > coated glass ionomer ≈ coated glass carbomer ≈ compomer. Uncoated glass carbomer exhibited severe internal ice crack-like lines. Conclusion: The use of the new glass carbomer cement without SC results in severe microleakage and catastrophic internal cracks. PMID:23408469

  15. Inorganic backbone ionomers: Design and dielectric response of single-ion conducting polymers

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua

    analysis of the static dielectric constant and show excellent agreement with x-ray scattering and DFT calculations, each ionomer strongly favoring the formation of quadrupoles. Finally a polysiloxane ionomer was considered and was mixed with three anion and/or cation solvating additives, tetraglyme, tetraethylene glycol, and branched poly(ethylenimine). The EP model of the dielectric response gives the conducting ion concentration and the mobility of conducting ions and shows an increase in conducting ion concentration with both anion solvating and cation solvating additives. The static dielectric constant indicates an increased preference for ion pairs when anion receptors are present. Most interestingly, the additive that best decreased the glass transition temperature and increased the static dielectric constant did not result in the best dc conductivity. The best dc conductivity resulted from tetraglyme because it solvated cations without interacting with the polymer. High ion conductivities have not been observed in polymer systems that decouple charge transport from polymer motion, and therefore low Tg ionomers are the natural path forward for commercially viable ionomers. Inorganic backbone polymers impart a low Tg without bringing any strong disadvantage to ionomers. These materials are very important for developing superior ion conductors and should be pursued in future ionomer research.

  16. Comparison of a SiO(2)-CaO-ZnO-SrO glass polyalkenoate cement to commercial dental materials: glass structure and physical properties.

    PubMed

    Wren, A W; Coughlan, A; Laffir, F R; Towler, M R

    2013-02-01

    Glass polyalkenoate cements (GPCs) have previously been considered for orthopedic applications. A Zn-GPC (BT 101) was compared to commercial GPCs (Fuji IX and Ketac Molar) which have a setting chemistry analogous to BT 101. Handling properties (working, T (w) and setting, T (s) times) for BT 101 were shorter than the commercial GPCs. BT 101 also had a higher setting exotherm (S (x) -34 °C) than the commercial GPCs (29 °C). The maximum strengths for BT 101, Fuji IX, and Ketac Molar were 75, 238, and 216 MPa (compressive, σ (c)), and 34, 54, and 62 MPa (biaxial flexural strengths, σ (f)), respectively. The strengths of BT 101 are more suitable for spinal applications than commercial GPCs. PMID:23179999

  17. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  18. Simulation study of proton transport in ionomers

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Allahyarov, Elshad

    2008-03-01

    Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion-like ionomer by the imposition of a strong electric field. We observe that proton transport through this polymer electrolyte membrane is accompanied by morphological changes that include the formation of structures aligned along the direction of the applied field. The polar head groups of the ionomer side chains assemble into clusters, which then form rod-like formations, and these cylindrical structures then assemble into a hexagonally ordered array aligned with the direction of current flow. For dry ionomers, at current densities in excess of 1 A/cm^2 these rod-like clusters undergo an inner micro-phase separation, in which distinct wire-like lines of sulfonate head groups are accompanied by similar wire-like alignments of bound protons. The clusters appear to be of two types. If there are two, four, or five lines of sulfonates then there is an equal number of lines of protons, but if there are three lines of sulfonates then they are accompanied by four lines of protons. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexagonal array of rod-like structures remains, but the microphase separation disappears below the threshold current of 1 A/cm^2.

  19. Morphological analysis of ionomers. Progress report, August 1, 1987--December 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    Anomalous small-angle x-ray scattering (SAXS) investigations were carried out on amorphous and semi-crystalline ionomers (Ni- neutralized sulfonated polystyrene ionomers, polyurethane ionomer). Ionomers with semicrystalline matrices (three-phase materials) were also studied with SAXS (poly(ethylene-co-methacrylic acid) ionomer). Ethylene oxide units were incorporated into the backbone of sulfonated polyurethane ionomers in an attempt to induce aggregate dissociation. Small-angle neutron scattering was used to study the effect of ionic aggregation on ionomer chain dimensions in telechelic and model polyurethane ionomers. Studies have been completed on carboxylated and sulfonated model polyurethane ionomers in order to determine the effect of the pendant ionic group on ionomer structure- property relationships (mechanical properties). (DLC)

  20. Ionomer Design, Synthesis and Characterization for Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph H.

    2013-03-01

    For ionic actuators and battery separators, it is vital to utilize single-ion conductors that avoid the detrimental polarization of other ions; the commonly studied dual-ion conductors simply will not be used in the next generation of materials for these applications. Ab initio quantum chemistry calculations at 0 K in vacuum characterize ion interactions and ion solvation by various functional groups, allowing identification of constituents with weak interactions to be incorporated in ionomers for facile ion transport. Simple ideas for estimating the ion interactions and solvation at practical temperatures and dielectric constants are presented that indicate the rank ordering observed at 0 K in vacuum should be preserved. Hence, such ab initio calculations are useful for screening the plethora of combinations of polymer-ion, counterion and polar functional groups, to decide which are worthy of synthesis for new ionomers. Single-ion conducting ionomers are synthesized based on these calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for ionic actuators and battery separators. Characterization by X-ray scattering, dielectric spectroscopy, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. Examples are shown of how ab initio calculations can be used to understand experimental observations of dielectric constant, glass transition temperature and conductivity of polymerized ionic liquids with counterions being either lithium, sodium, fluoride, hydroxide (for batteries) or bulky ionic liquids (for ionic actuators). This work was supported by the Department of Energy under Grant BES-DE-FG02-07ER46409.

  1. Chain and Ion Dynamics in Ionomer Melts

    NASA Astrophysics Data System (ADS)

    Register, Richard A.

    2003-03-01

    Ionomers contain a minor quantity of covalently-bound ionic sites, such as carboxylic or sulfonic acid salts, typically distributed randomly along the polymer backbone. Associations between these ionic groups greatly increase the melt viscosity and elasticity through the formation of a reversible network, where the ionic crosslinks gradually relax by a ``hopping" of ionic groups between aggregates. Because terminal relaxation of the chain requires an accumulation of many hops, the time scales for ion and chain motion differ by several orders of magnitude, so we employ mechanical rheometry to probe chain motion, and gauge ion motion through cation diffusion, by annealing for a preset interval and measuring the cation concentration profile through electron probe microanalysis or electron spin resonance spectroscopy. We have investigated both ethylene-methacrylic acid (E/MAA) ionomers, with a broad molecular weight distribution and substantial long-chain branching, as well as new linear-chain ionomers of narrow distribution based on lightly-sulfonated styrene-ethylene-butene (SSEB) terpolymers. Our E/MAA results support the ion-hopping mechanism, with similarly-large activation energies for terminal relaxation and cation diffusion. The choice of neutralizing metal cation has only a modest effect on the dynamics, though the terminal time increases exponentially with neutralization level. Unneutralized acid groups can accelerate the ion-hopping process by "plasticizing" the ionic aggregates. The model SSEB ionomers, which are noncrystallizable and have a low Tg, permit measurements over a much wider range of effective frequencies and are found to deviate substantially from time-temperature superposition, because the outermost portions of the polymer chains, which contain no ionic groups, relax with a smaller activation energy. Relaxation of these chain segments leads to a dilution of the entanglement network, and a plateau modulus below that for highly

  2. Influence of the polymer backbone structure on the properties of aromatic ionomers with pendant sulfobenzoyl side chains for use as proton-exchange membranes.

    PubMed

    Jutemar, Elin Persson; Jannasch, Patric

    2010-12-01

    Six different ionomers having various aromatic polymer backbones with pendant 2-sulfobenzoyl side chains were prepared by nucleophilic aromatic substitution reactions of lithium 2,6-difluoro-2'-sulfobenzophenone with 4,4-biphenol, 2,7-dihydroxynaphthalene, 4,4-isopropylidenediphenol, 4,4-dihydroxydiphenyl ether, 4,4'-thiodiphenol, and 4,4'-thiobisbenzenethiol, respectively, to produce four poly(arylene ether)s, one poly(arylene ether sulfide), and one poly(arylene sulfide). Mechanically tough proton-exchange membranes with ion-exchange capacities in the narrow range from 1.9 to 2.3 mequiv/g were cast from the high-molecular-weight ionomers, and subsequently investigated with respect to their structure-property relationships. Glass transitions were only detected for ionomers in the sodium salt form, and increasing glass-transition temperatures (Tg) were found to give higher thermal decomposition temperatures. Analysis by small-angle X-ray scattering indicated that the ionic clustering was promoted for ionomers with flexible polymer backbones and low Tg values. The proton conductivity of the membranes at 80 °C under fully humidified conditions was found between 0.02 and 0.2 S/cm and appeared to depend primarily on the Tg. PMID:21138250

  3. Effects of ionomer morphology on oxygen reduction on Pt

    SciTech Connect

    Chlistunoff, Jerzy; Pivovar, Bryan

    2015-05-21

    In this paper, the oxygen reduction reaction (ORR) at the interface between platinum and Nafion 1100 equivalent weight was studied as a function of temperature (20–80 °C), humidity (10–100%), scan rate, the manner in which Nafion film was deposited, and the state of the Pt surface using ultramicroelectrodes employing cyclic voltammetry and chronoamperometry. ORR on smooth electrodes was strongly inhibited under specific conditions dependent on temperature, humidity, and scan rate. From the data presented, we postulate that dynamic changes in the molecular structure of the ionomer at the platinum interface result in differences in ORR voltammetry for films prepared and equilibrated under different conditions. The lack of similar changes for rough, platinized electrodes has been attributed to differences in initial ionomer structure and a higher energy barrier for ionomer restructuring. Finally, these model system studies yield insight into the ionomer-catalyst interface of particular interest for polymer electrolyte fuel cells.

  4. Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomers.

    PubMed

    Oza, Yogita V; MacFarlane, Douglas R; Forsyth, Maria; O'Dell, Luke A

    2016-07-28

    Li(+) cation conducting ionomers based on poly(2-acrylamido-2-methyl-1-propane sulphonic acid) (PAMPS) incorporating a low molecular weight plasticizer have been characterized. Previously we have observed an apparent decoupling of ionic conductivity and lithium ion dynamics from the Tg of this ionomer along with an increase in ionic conductivity obtained by incorporating a quaternary ammonium co-cation. The incorporation of tetraglyme as a coordinating plasticizer was investigated in order to further improve the ion dissociation and dynamics. Solid-state NMR, thermal analysis, impedance spectroscopy and infrared spectroscopy were used to characterize these systems. As expected, the glass transition temperature Tg decreased upon the addition of the plasticizer. However, in contrast to the previously reported Na-conducting systems, the ionic conductivity was also decreased by several orders of magnitude, indicating that the tetraglyme recouples the conductivity back to the polymer dynamics. Temperature dependent (7)Li NMR line width and T1 measurements were used to probe the Li(+) dynamics, which were found to be dependent on the Li(+) concentration, the nature of the co-cation and the presence or absence of tetraglyme. PMID:27355988

  5. Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. [Adhesive strengths of cast crowns with various types of cements].

    PubMed

    Utz, K H; Grüner, M; Büscher, M

    1990-12-01

    In an in vitro study the adhesive strength of sand-blasted castings (gold alloy) was tested on human teeth prepared and finished in different ways. For cementation we used two glass ionomer and one phosphate cement. On the surfaces treated with carbide finishing instruments the force required for separating the crown from the tooth was about 1.9 N/mm2 for Ketac-cem, about 2 N/mm2 for Fuji Ionomer, and about 1.8 N/mm2 for Harvard (a zinc oxide phosphate cement). Compared with this, the values obtained for dentin surfaces pretreated with fine diamonds (red ring) were 1.5 N/mm2 for Ketac-cem, 1.6 N/mm2 for Fuji Ionomer, and 1.9 N/mm2 for Harvard. The measured differences between the various types of cement were statistically not significant. PMID:2135267

  7. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE PAGESBeta

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; Frischknecht, Amalie L.

    2016-07-25

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  8. Nonequilibrium simulations of model ionomers in an oscillating electric field.

    PubMed

    Ting, Christina L; Sorensen-Unruh, Karen E; Stevens, Mark J; Frischknecht, Amalie L

    2016-07-28

    We perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understood by comparison with relevant time scales in the systems, obtained from independent calculations. PMID:27475392

  9. Fractography of glasses and ceramics II

    SciTech Connect

    Frechette, V.D.; Varner, J.R.

    1991-01-01

    Topics addressed include finite element stress analysis and crack path prediction of imploding CRT; fractography and fracture mechanics of combustion growth diamond thin films; the fracture behavior of machineable hydroxyapatite; a fractal approach to crack branching (bifurcation) in glass; the fracture of glass-ionomer cements; the effect of quartz particle size on the strength and toughness of whitewares; and a proposed standard practice for fractographic analysis of monolithic advanced ceramics. Also treated are thermal exposure effects on ceramic matrix composites, fractography applied to rock core analysis, fractography of flexurally fractured glass rods, the fractographic determination of K(IC) and effects of microstructural effects in ceramics.

  10. Preparation and properties of ionomers of bisphenol A polycarbonate

    SciTech Connect

    Drumright, R.E.; Stevens, C.; Mullins, M.J.

    1996-12-31

    The preparation and properties of bisphenol A polycarbonate with a small percentage (0.5-10 mol%) of sulfonate groups attached randomly along the backbone are described. This small modification has a dramatic influence on the polymer properties, particularly the rheology. The melt viscosity at low shear rates is comparable to a branched polycarbonate, and the ionomers have improved flame and solvent resistance. Water absorption is increased, but the increase is not large. These ionomers can be prepared inexpensively using a reactive blending process starting with commercial bisphenol A polycarbonate and a diphenyl ester of sulfoisophthalic acid, a monomer used for PET fiber.