Science.gov

Sample records for glasses materials

  1. Volcanic Glasses: Construction Materials

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    1998-01-01

    Natural glass is the product of rapidly cooled molten rock. Two natural sources of the melt are volcanic eruption and meteoritic impact. Pure glass is an amorphous aggregate. Volcanic glass is a material that could be utilized in the construction of extraterrestrial outposts. Pumice and perlite are volcanic glasses currently used in the building industry. Samples of natural volcanic glass found in the lunar regolith were returned to Earth as part of the Apollo and Luna programs. An alpha proton X-ray spectrometer onboard the Pathfinder recently examined martian rocks located in the vicinity of the lander craft. Preliminary results of chemical composition by weight of SiO2 50-55%, Al203 11-13%, K20 1-2%, Na20 2-5%, CaO 4-6%, MgO 3-7%, FeO 12-14%, S03 2-5%, and MnO <1% were given for two rocks. Parenthetically, the values for K and Mn were perhaps too high, and the analysis was based on X-ray data only. The appreciable amount of silica already found on Mars and empirical evidence to support the hypothesis that the planet once had water sufficient to rapidly cool magma imply the possibility of discovering natural glass of volcanic origin in subsequent missions.

  2. Specialty glass raw materials: Status and developments

    SciTech Connect

    Bauer, R.J.; Gray, S.L.

    1996-12-31

    The authors highlight several key raw materials used in the specialty glass industry. The focus here is to update changes and shifts underway in the worldwide availability and processes that will impact both costs and efficient use of these products. The glass types that use these materials generally are those other than container, float, and fiber glass. Those high-volume consumers of glass raw materials are discussed in a companion paper in this volume. In the specialty glass field, the batch materials involve minerals, and the chemicals derived from them, which are less readily available domestically. These are much more critically defined by specifications of assay, contamination, and particle size, resulting in their being more expensive. They are seldom commodity products. The scope of materials for this fragmented industry includes those for leads, borosilicates, aluminosilicates, opals, sealing and frit glasses, optical glass, ophthalmic glass, cathode ray tubes (CRTs) for TV and display, and glass-ceramics as major segments. They use lead oxides, nearly all the alkalies and alkaline earth portions of the periodic table, as well as rare earths, transition element oxides, phosphates, boron minerals and chemicals, zircon, zinc, most of the halogens, and many of the anions. They often require very special particle size specifications. The requirements for these batch materials are often based on chemistry, the absence of contaminants that impact melting, very wide ranges of the electromagnetic spectrum, glass homogeneity, and freedom from solid and gaseous inclusions down to ppm levels in both size and number.

  3. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  4. Glasses, ceramics, and composites from lunar materials

    NASA Astrophysics Data System (ADS)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  5. Fiber glass reinforced structural materials for aerospace application

    NASA Technical Reports Server (NTRS)

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  6. Cordierite Glass-Ceramics for Dielectric Materials

    SciTech Connect

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-05-09

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor {beta}-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly {alpha}-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component.

  7. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    SciTech Connect

    Forsberg, C.W.; Ferrada, J.J.

    1996-03-19

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials.

  8. Tempered glass and thermal shock of ceramic materials

    NASA Technical Reports Server (NTRS)

    Bunnell, L. Roy

    1992-01-01

    A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.

  9. Glass cullet as a new supplementary cementitious material (SCM)

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Mohammadreza

    Finely ground glass has the potential for pozzolanic reactivity and can serve as a supplementary cementitious material (SCM). Glass reaction kinetics depends on both temperature and glass composition. Uniform composition, amorphous nature, and high silica content of glass make ground glass an ideal material for studying the effects of glass type and particle size on reactivity at different temperature. This study focuses on how three narrow size ranges of clear and green glass cullet, 63--75 mum, 25--38 mum, and smaller than 25 mum, as well as combination of glass types and particle sizes affects the microstructure and performance properties of cementitious systems containing glass cullet as a SCM. Isothermal calorimetry, chemical shrinkage, thermogravimetric analysis (TGA), quantitative analysis of X-ray diffraction (XRD), and analysis of scanning electron microscope (SEM) images in backscattered (BS) mode were used to quantify the cement reaction kinetics and microstructure. Additionally, compressive strength and water sorptivity experiments were performed on mortar samples to correlate reactivity of cementitious materials containing glass to the performance of cementitious mixtures. A recently-developed modeling platform called "muic the model" was used to simulated pozzolanic reactivity of single type and fraction size and combined types and particle sizes of finely ground glass. Results showed that ground glass exhibits pozzolanic properties, especially when particles of clear and green glass below 25 mum and their combination were used at elevated temperatures, reflecting that glass cullet is a temperature-sensitive SCM. Moreover, glass composition was seen to have a large impact on reactivity. In this study, green glass showed higher reactivity than clear glass. Results also revealed that the simultaneous effect of sizes and types of glass cullet (surface area) on the degree of hydration of glass particles can be accounted for through a linear addition

  10. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  11. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  12. Properties of a glass-ionomer/resin-composite hybrid material.

    PubMed

    Mathis, R S; Ferracane, J L

    1989-09-01

    A small percentage of the liquid resin used in commercial dental composites was added to the liquid used in a commercial glass-ionomer restorative in order to produce a fluoride-containing hybrid restorative-type material that would adhere to dentin while being stronger, less brittle, and less sensitive to desiccation in the oral cavity than glass ionomer. Compressive strength, yield strength, elastic modulus, fracture toughness, and tensile strength were analyzed for this hybrid, light-cured material. In addition, the solubility in water, adhesion to dentin, and surface roughness were also examined in vitro. The results suggest that the early (one-hour) mechanical properties of the hybrid material exceed those of glass ionomer. In addition, the brittleness and solubility of the material are less than those of commercial glass ionomer, while adhesion to dentin is unaffected. Most importantly, surface crazing, a documented problem with some glass ionomers when they become desiccated, is alleviated with this hybrid formulation. PMID:2638281

  13. Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1996-01-27

    The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale.

  14. Materials processing apparatus development for fluoride glass

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue; Workman, Gary L.

    1994-01-01

    Fluoride glasses have great potential for optical fiber communications due to the high transmittance when no microcrystallites occur during drawing operations. This work has developed apparatus to test the occurrence of microcrystallites during recrystallization in reduced gravity on the KC-135. The apparatus allows fluoride glass fiber, such as ZBLAN, to be melted and recrystallized during both the low and high g portions the parabolic flight.

  15. Glass ceramic ionic conductor materials and method of making

    SciTech Connect

    Badzioch, S.

    1985-03-26

    Solid, crystalline glass ceramic compositions which are useful as ionic conductor materials, especially for use as solid electrolytes in high temperature, high energy density storage batteries. The glass ceramics are derived from sodium or calcium borates containing one or more metal halide, preferably the chlorides and bromides of the metals from Group 2 to 8 of the Periodic Table of the Elements.

  16. The effect of investment materials on the surface of cast fluorcanasite glasses and glass-ceramics.

    PubMed

    Bandyopadhyay-Ghosh, Sanchita; Reaney, Ian M; Johnson, Antony; Hurrell-Gillingham, Kathryn; Brook, Ian M; Hatton, P V

    2008-02-01

    Modified fluorcanasite glass-ceramics were produced by controlled two stage heat-treatment of as-cast glasses. Castability was determined using a spiral castability test and the lost-wax method. Specimens were cast into moulds formed from gypsum and phosphate bonded investments to observe their effect on the casting process, surface roughness, surface composition and biocompatibility. Both gypsum and phosphate bonded investments could be successfully used for the lost-wax casting of fluorcanasite glasses. Although the stoichiometric glass composition had the highest castability, all modified compositions showed good relative castability. X-ray diffraction showed similar bulk crystallisation for each glass, irrespective of the investment material. However, differences in surface crystallisation were detected when different investment materials were used. Gypsum bonded investment discs showed slightly improved in vitro biocompatibility than equivalent phosphate bonded investment discs under the conditions used. PMID:17665105

  17. Correlation of Local Structure and Electronic Properties of Glass Materials

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Adelstein, Nicole

    2015-03-01

    Wide band gap glasses such as silica and its derivatives are typically considered insulators. However, electronic transport in glasses can be important for certain applications, such as when used as the host material for a scintillator radiation detector. Here we explore the relationship between local structure in glass materials and the corresponding electronic properties of carrier transport and charge trapping. We present a novel analysis that decomposes the distribution of localized band tail states in terms of specific local structural features in the glass. Comparison of the structure-related transport properties of different glass compositions is given, using silica and sodium silicate as prototypes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Glass-ceramics: A class of nanostructured materials for photonics

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Ferrari, M.; Pascual, M. J.; Righini, G. C.

    2015-07-01

    Glass-ceramics (GCs) are constituted by nanometer-to-micron-sized crystals embedded in a glass matrix; usually, their structural or functional elements (clusters, crystallites or molecules) have dimensions in the 1 to 100nm range. As the name says, GCs must be considered an intermediate material between inorganic glasses and ceramics; in most cases the crystallinity is between 30 and 50%. GCs share many properties with both glasses and ceramics, offering low defects, extra hardness, high thermal shock resistance (typical of ceramics) together with the ease of fabrication and moulding (typical of glasses). The embedded crystalline phase, however, can enhance the existing properties of the matrix glass or lead to entirely new properties. GCs are produced by controlled crystallization of certain glasses, generally induced by nucleating additives; they may result opaque or transparent. Transparent GCs are now gaining a competitive advantage with respect to amorphous glasses and, sometimes, to crystals too. The aim of the present paper is to introduce the basic characteristics of transparent glass-ceramics, with particular attention to the relationship between structure and transparency and to the mechanism of crystallization, which may also be induced by selective laser treatments. Their applications to the development of guided-wave structures are also briefly described.

  19. Semiconducting glasses: A new class of thermoelectric materials?

    SciTech Connect

    Goncalves, A.P.; Vaney, J.B.; Lenoir, B.; Piarristeguy, A.; Pradel, A.; Monnier, J.; Ochin, P.; Godart, C.

    2012-09-15

    The deeper understanding of the factors that affect the dimensionless figure of merit, ZT, and the use of new synthetic methods has recently led to the development of novel systems with improved thermoelectric performances. Albeit up to now with ZT values lower than the conventional bulk materials, semiconducting glasses have also emerged as a new family of potential thermoelectric materials. This paper reviews the latest advances on semiconducting glasses for thermoelectric applications. Key examples of tellurium-based glasses, with high Seebeck coefficients, very low thermal conductivities and tunable electrical conductivities, are presented. ZT values as high as 0.2 were obtained at room temperature for several tellurium-based glasses with high copper concentrations, confirming chalcogenide semiconducting glasses as good candidates for high-performance thermoelectric materials. However, the temperature stability and electrical conductivity of the reported glasses are still not good enough for practical applications and further studies are still needed to enhance them. - Graphical abstract: Power factor as a function of the temperature for the Cu{sub 27.5}Ge{sub 2.5}Te{sub 70} and Cu{sub 30}As{sub 15}Te{sub 55} seniconducting glasses. Highlights: Black-Right-Pointing-Pointer A review of semiconducting glasses for thermoelectrics applications is presented. Black-Right-Pointing-Pointer The studied semiconducting glasses present very low thermal conductivities. Black-Right-Pointing-Pointer Composition can tune electrical conductivity and Seebeck coefficient. Black-Right-Pointing-Pointer ZT=0.2 is obtained at 300 K for different semiconducting glasses.

  20. Hyperpolarized cesium ions doped in a glass material

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi

    2014-12-01

    Hyperpolarized (HP) 133 Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4 T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP 133 Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.

  1. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    PubMed

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. PMID:24463731

  2. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  3. Effects of rocks and backfill materials on waste glass leaching

    SciTech Connect

    Ishiguro, K.; Sasaki, N.; Kashihara, H.; Yamamoto, M.

    1986-12-31

    Extensive studies have been made on the interactions between a waste glass and repository materials under static conditions. One of the PNC reference glasses was leached in the solution prepared from water in contact with crushed granite, tuff, diabase and backfill materials such as bentonite and zeolite. The leachant solutions except for some bentonite solutions reduced the glass leach rate compared with that measured in distilled water. The extent of the reduction was a function of silicon concentration in solution. The bentonite solutions enhanced the glass dissolution rate by a factor of 2 to 3 at low bentonite/water ratios but the effect was found to be less important at high bentonite/water ratios and in the long-term experiment. Addition of granite and zeolite to the bentonite solutions decreased the leach rate below the value measured in distilled water.

  4. MOLYBDENUM DISILICIDE MATERIALS FOR GLASS MELTING SENSOR SHEATHS

    SciTech Connect

    J. PETROVIC; R. CASTRO; ET AL

    2001-01-01

    Sensors for measuring the properties of molten glass require protective sensor sheaths in order to shield them from the extremely corrosive molten glass environment. MoSi{sub 2} has been shown to possess excellent corrosion resistance in molten glass, making it a candidate material for advanced sensor sheath applications. MoSi{sub 2}-coated Al{sub 2}O{sub 3} tubes, MoSi{sub 2}-Al{sub 2}O{sub 3} laminate composite tubes, and MoSi{sub 2}-Al{sub 2}O{sub 3} functionally graded composite tubes have been produced by plasma spray-forming techniques for such applications.

  5. Photon Interaction Studies with Some Glasses and Building Materials

    SciTech Connect

    Singh, Harvinder; Singh, Kulwant; Sharma, Gopi; Nathuram, R.; Sahota, H.S.

    2002-11-15

    Mass attenuation coefficients of some shielding materials, namely, Bakelite, black cement, white cement, plaster of paris, and concrete were determined at 356-, 511-, 662-, 1173-, and 1332-keV energies, and those of glasses containing oxides of B, Cd, Pb, and Bi were determined only at 662 keV using a narrow beam transmission method. These coefficients of glasses were then used to determine their interaction cross sections, effective atomic numbers, and electron densities. Good agreement was observed between the experimental and theoretical values. It has been proven that glasses have a potential application as a transparent radiation shielding.

  6. Spin glasses: redux: an updated experimental/materials survey

    NASA Astrophysics Data System (ADS)

    Mydosh, J. A.

    2015-05-01

    This article reviews the 40+ year old spin-glass field and one of its earliest model interpretations as a spin density wave. Our description is from an experimental phenomenological point of view with emphasis on new spin glass materials and their relation to topical problems and strongly correlated materials in condensed matter physics. We first simply define a spin glass (SG), give its basic ingredients and explain how the spin glasses enter into the statistical mechanics of classical phase transitions. We then consider the four basic experimental properties to solidly characterize canonical spin glass behavior and introduce the early theories and models. Here the spin density wave (SDW) concept is used to explain the difference between a short-range SDW, i.e. a SG and, in contrast, a long-range SDW, i.e. a conventional magnetic phase transition. We continue with the present state of SG, its massive computer simulations and recent proposals of chiral glasses and quantum SG. We then collect and mention the various SG ‘spin-off’s'. A major section uncovers the fashionable unconventional materials that display SG-like freezing and glassy ground states, such as (high temperature) superconductors, heavy fermions, intermetallics and Heuslers, pyrochlor and spinels, oxides and chalogenides and exotics, e.g. quasicrystals. Some conclusions and future directions complete the review.

  7. Nonlinear energy response of glass forming materials

    NASA Astrophysics Data System (ADS)

    Tagawa, Fumitaka; Odagaki, Takashi

    2008-01-01

    A theory for the nonlinear energy response of a system subjected to a heat bath is developed when the temperature of the heat bath is modulated sinusoidally. The theory is applied to a model glass forming system, where the landscape is assumed to have 20 basins and transition rates between basins obey a power law distribution. It is shown that the statistics of eigenvalues of the transition rate matrix, the glass transition temperature Tg, the Vogel-Fulcher temperature T0 and the crossover temperature Tx can be determined from the first- and second-order ac specific heats, which are defined as coefficients of the first- and second-order energy responses. The imaginary part of the first-order ac specific heat has a broad peak corresponding to the distribution of the eigenvalues. When the temperature is decreased below Tg, the frequency of the peak decreases and the width increases. Furthermore, the statistics of eigenvalues can be obtained from the frequency dependence of the first-order ac specific heat. The second-order ac specific heat shows extrema as a function of the frequency. The extrema diverge at the Vogel-Fulcher temperature T0. The temperature dependence of the extrema changes significantly near Tg and some extrema vanish near Tx.

  8. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  9. Glass-ceramic materials from electric arc furnace dust.

    PubMed

    Kavouras, P; Kehagias, T; Tsilika, I; Kaimakamis, G; Chrissafis, K; Kokkou, S; Papadopoulos, D; Karakostas, Th

    2007-01-31

    Electric arc furnace dust (EAFD) was vitrified with SiO2, Na2CO3 and CaCO3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO3) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase. PMID:16716504

  10. Interactions of bioactive glass materials in the oral environment

    NASA Astrophysics Data System (ADS)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive

  11. Understanding the glass transition in GeSbTe materials

    NASA Astrophysics Data System (ADS)

    Martyna, Glenn

    2010-03-01

    Moore's law demands the continual reduction in size of the components of computers. One future direction for memory technology involves the use of phase change materials which can be switched by pulsed electrically heating from a conducting crystalline phase to an insulating amorphous phase. These materials are typically alloys of Germanium, Antimony and Tellurium (GST). In order to form multi-state bits, it is necessary to arrest the glass transition via varying annealing time such that differences in resistivity can be measured based. As might be expected, this process is hinder by ``creep'' of the glass towards higher resistance states after the quench is halted. In this lecture, simulation studies are employed to study the glass transition from the crystalline state and discern the mechanism for the gap opening. The nature of mid gaps states found from the simulated quenches gives insight into the mechanism of the creep and suggests ways in which the phenomena can be arrested.

  12. Composite material based on fluoroplast and low melting oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.

    2016-05-01

    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  13. Sealing ceramic material in low melting point glass

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.

  14. Temperature Measurement of a Glass Material Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1997-01-01

    Temperature measurement of a substance that is transparent using the traditional 1-color, 2-color and other pyrometers has been difficult. The radiation detected by pyrometers do not come from a well defined location in the transparent body. The multiwavelength pyrometer developed at the NASA Lewis Research Center can measure the surface temperature of many materials. We show in this paper that it also measures the surface and a bulk subsurface temperature of transparent materials like glass.

  15. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.

    2000-09-05

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  16. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.; Klemchuk, Peter P.

    2001-02-13

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  17. Fluoride glass starting materials - Characterization and effects of thermal treatment

    NASA Technical Reports Server (NTRS)

    Chen, William; Dunn, Bruce; Shlichta, Paul; Neilson, George F.; Weinberg, Michael C.

    1987-01-01

    The production of heavy metal fluoride (HMF) glasses, and the effects of thermal treatments on the HMF glasses are investigated. ZrF4, BaF2, AlF3, LaF3, and NaF were utilized in the synthesis of zirconium-barium-lanthanum-aluminum-sodium fluoride glass. The purity of these starting materials, in particular ZrF4, is evaluated using XRD analysis. The data reveal that low temperature heating of ZrF4-H2O is effective in removing the water of hydration, but causes the production of ZrF4 and oxyfluorides; however, dehydration followed by sublimation results in the production of monoclinic ZrFe without water or oxyfluoride contaminants.

  18. Characterization of Glass Fiber Separator Material for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  19. Material Removal Rate for Magnetorheological Finishing (MRF) of Optical Glasses with Nanodiamond MR Fluid

    SciTech Connect

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Bishop, A.L.; Jacobs, S.D.

    2007-07-13

    We present a material removal rate model for MRF of optical glasses using nanodiamond MR fluid. The new model incorporates terms for drag force, polishing particle properties, chemical durability and glass composition into an existing model that contains only terms for the glass mechanical properties. Experimental results for six optical glasses are given that support this model.

  20. Solid spherical glass particle impingement studies of plastic materials

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.

  1. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  2. Glass-ceramic material and method of making

    DOEpatents

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  3. Development and characterization of charcoal filled glass-composite materials made from SLS waste glass

    NASA Astrophysics Data System (ADS)

    Mustafa, Zaleha; Ismail, Mohd Ikwan; Juoi, Jariah Mohd; Shamsudin, Zurina; Rosli, Zulkifli M.; Fadzullah, Siti Hajar Sheikh Md; Othman, Radzali

    2015-07-01

    Glass-composite materials were prepared from the soda lime silicate (SLS) waste glass, ball clay and charcoal powder at various carbon content, of 1wt. % C, 5wt.% C and 10 wt.% C, fired to temperature of 850 °C as an alternative method for land site disposal method as well as effort for recycling waster glass. The effect of charcoal powder on the porosity, water absorption and hardness properties were studied. Phase analysis studies revealed the present of quartz (ICDD: 00001-0649, 2θ = 25.6° and 35.6°), cristobalite (ICDD 00004-0379, 2θ = 22.0° and 38.4°) and wollastonite (ICDD 00002-0689, 2θ = 30.1° and 26.9°). The results showed that the composite prepared from the mixture of 84 wt.% SLS, 1 wt.% of charcoal and 15 wt.% ball clay containing average pore size of 10 µm has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 0.76 %, lowest porosity percentage of 1.76 %, highest 4.6 GPa for Vickers Microhardness.

  4. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  5. Machinable glass-ceramics forming as a restorative dental material.

    PubMed

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM. PMID:21597218

  6. Dielectric Relaxation of Materials that Form Ultra-Stable Glasses

    NASA Astrophysics Data System (ADS)

    Richert, Ranko

    2015-03-01

    Physical vapor deposition of glass forming materials onto substrates at temperatures around 0.8 Tg produces glasses of high density and low enthalpy. Using interdigitated electrode cells as substrates, such stable glasses can be studied by dielectric spectroscopy in situ. This technique is applied to monitor the dynamics of stable films upon their conversion to the ordinary supercooled liquid state. The dielectric loss during transformation indicates that the softening proceeds by a growth front mechanism and generates the ordinary liquid state without forming intermediates. The same technique is also used to assess the residual dynamics of the stable glassy state. We observe that processes such as the Johari-Goldstein beta relaxation are strongly suppressed in this stable state, consistent with the relatively low fictive temperature of these glassy states. coauthors: Hai-Bin Yu, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85278; Michael Tylinski, and Mark D. Ediger, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.

  7. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material: ATM-10 glass

    SciTech Connect

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-..mu..m iron-chrome (suspected spinel) crystals and /approximately/0.5-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 ..mu..m, was observed in all samples. 4 refs., 10 figs., 21 tabs.

  8. Comparative wear resistance of reinforced glass ionomer restorative materials.

    PubMed

    Yap, A U; Teo, J C; Teoh, S H

    2001-01-01

    This study investigated the wear resistance of three restorative reinforced glass ionomer cements (Fuji IX GP FAST [FJ], Miracle Mix [MM] and Ketac Silver [KS]). Microfilled (Silux [SX]) and mini-filled (Z100 [ZO]) composites were used for comparison. Six specimens were made for each material. The specimens were conditioned for one week in distilled water at 37 degrees C and subjected to wear testing at 20 MPa contact stress against SS304 counterbodies using a reciprocal compression-sliding wear instrumentation. Distilled water was used as lubricant. Wear depth (microm) was measured using profilometry every 2,000 cycles up to 10,000 cycles. Results were analyzed using ANOVA/Scheffe's test (p<0.05). After 10,000 cycles of wear testing, ranking was as follows: KS>ZO>MM>FJ>SX. Wear ranged from 26.1 microm for SX to 71.5 microm for KS. The wear resistance of KS was significantly lower than FJ, MM and SX at all wear intervals. Although KS had significantly more wear than ZO at 2,000 to 6,000 cycles, no significant difference in wear was observed between these two materials at 8,000 and 10,000 cycles. Sintering of silver particles to glass ionomer cement (KS) did not appear to improve wear resistance. The simple addition of amalgam alloy to glass ionomer may improve wear resistance but results in poor aesthetics (silver-black color). FJ, which relies on improved chemistry instead of metal fillers, showed comparable wear resistance to the composites evaluated and is tooth-colored. It may serve as a potential substitute for composites in low-stress situations where fluoride release is desirable and aesthetic requirements are not high. PMID:11504433

  9. Comparison of glass surfaces as a countertop material to existing surfaces

    SciTech Connect

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  10. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  11. Nano-materials enabled thermoelectricity from window glasses.

    PubMed

    Inayat, Salman B; Rader, Kelly R; Hussain, Muhammad M

    2012-01-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m(2) window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology. PMID:23150789

  12. Nano-materials Enabled Thermoelectricity from Window Glasses

    NASA Astrophysics Data System (ADS)

    Inayat, Salman B.; Rader, Kelly R.; Hussain, Muhammad M.

    2012-11-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  13. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  14. Deformation of rectangular thin glass plate coated with magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Yao, Youwei; Liu, Tianchen; Liu, Chian; Ulmer, M. P.; Cao, Jian

    2016-08-01

    As magnetic smart materials (MSMs), magnetostrictive materials have great potential to be selected as coating materials for lightweight x-ray telescope mirrors due to their capability to tune the mirror profile to the desired shape under a magnetic field. To realize this potential, it is necessary to study the deformation of the mirror substrate with the MSM coating subjected to a localized magnetic field. In this paper, an analytical model is developed to calculate the deformation of rectangular coated samples locally affected by magnetostrictive strains driven by an external magnetic field. As a specific case to validate the model, a square glass sample coated with MSMs is prepared, and its deformation is measured in a designed experimental setup by applying a magnetic field. The measured deformation of the sample is compared with the results calculated from the analytical model. The comparison results demonstrate that the analytical model is effective in calculating the deformation of a coated sample with the localized mismatch strains between the film and the substrate. In the experiments, different shape patterns of surface profile changes are achieved by varying the direction of the magnetic field. The analytical model and the experimental method proposed in this paper can be utilized to further guide the application of magnetostrictive coating to deformable lightweight x-ray mirrors in the future.

  15. Marginal leakage of visible light-cured glass ionomer restorative materials.

    PubMed

    Crim, G A

    1993-06-01

    This study examined the sealing of two visible light-cured glass ionomer restorative materials and a conventional glass ionomer. Class V cavity preparations were completed at the cementoenamel junction on the facial and lingual surfaces of extracted human molars. The cavity preparations were restored with either VariGlass VLC, GC Fuji II LC, or GC Fuji II glass ionomer cements. The restored teeth were thermocycled, immersed in fuchsin dye for 24 hours, sectioned, and evaluated with a measuring microscope. No microleakage occurred at the enamel/glass ionomer or dentin/glass ionomer cement interfaces of any samples, but the enamel adjacent to the VariGlass glass ionomer cement restorations exhibited crazing and staining. PMID:8320640

  16. ZnO glass-ceramics: An alternative way to produce semiconductor materials

    SciTech Connect

    Masai, Hirokazu; Toda, Tatsuya; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Fabrication of transparent glass-ceramics containing ZnO nanocrystallites has been reported. The obtained material shows UV-excited photoluminescence consisting of both broad emission in the visible region and the free exciton emission at 3.28 eV. Since the observed emission depends on the precipitated state of ZnO in the glass matrix, the glass-ceramics obtained by this way will give an alternative selection of semiconductor material with unique optical and electronic functions.

  17. Temperature accelerated dynamics in glass-forming materials.

    PubMed

    Tsalikis, Dimitrios G; Lempesis, Nikolaos; Boulougouris, Georgios C; Theodorou, Doros N

    2010-06-17

    In this work we propose a methodology for improving dynamical sampling in molecular simulations via temperature acceleration. The proposed approach combines the novel methods of Voter for temperature-accelerated dynamics with the multiple histogram reweighting method of Ferrenberg and Swendsen, its dynamical extension by Nieto-Draghi et al., and with hazard plot analysis, allowing optimal sampling with small computational cost over time scales inaccessible to classical molecular dynamics simulations by utilizing the "inherent structure" idea. The time evolution of the system is viewed as a succession of transitions between "basins" in its potential energy landscape, each basin containing a local minimum of the energy (inherent structure). Applying the proposed algorithm to a glass-forming material consisting of a mixture of spherical atoms interacting via Lennard-Jones potentials, we show that it is possible to perform an exhaustive search and evaluate rate constants for basin-to-basin transitions that cover several orders of magnitude on the time scale, far beyond the abilities of any competitive dynamical study, revealing an extreme ruggedness of the potential energy landscape in the vicinity of the glass transition temperature. By analyzing the network of inherent structures, we find that there are characteristic distances and rate constants related to the dynamical entrapment of the system in a neighborhood of basins (a metabasin), whereas evidence to support a random energy model is provided. The multidimensional configurational space displays a self-similar character depicted by a fractal dimension around 2.7 (+/-0.5) for the set of sampled inherent structures. Only transitions with small Euclidean measure can be considered as localized. PMID:20491458

  18. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    PubMed

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth. PMID:23386212

  19. Utilization of calcite and waste glass for preparing construction materials with a low environmental load.

    PubMed

    Maeda, Hirotaka; Imaizumi, Haruki; Ishida, Emile Hideki

    2011-11-01

    In this study, porous calcite materials are hydrothermally treated at 200 °C using powder compacts consisting of calcite and glasses composed of silica-rich soda-lime. After treatment, the glasses are converted into calcium aluminosilicate hydrates, such as zeolite phases, which increase their strength. The porosity and morphology of new deposits of hydrothermally solidified materials depend up on the chemical composition of glass. The use of calcite and glass in the hydrothermal treatment plays an important role in the solidification of calcite without thermal decomposition. PMID:21794973

  20. Noncontact temperature measurement in glass and other transparent materials

    NASA Technical Reports Server (NTRS)

    Doremus, Robert H.

    1988-01-01

    The relationship between the optical properties of glass and temperature measurements in it by radiation pyrometry are described. Equations for the calculation of emissivity are presented and the transmittance, surface reflection and absorption characteristics of glass are defined. Recommendations are given regarding the selection of pyrometer wavelength sensitivity and the use of a blackbody radiator.

  1. Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.

    1995-06-27

    A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development.

  2. Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material.

    PubMed

    Ragel, C V; Vallet-Regí, M; Rodríguez-Lorenzo, L M

    2002-04-01

    Hydroxyapatite/solgel glass biphasic material has been obtained in order to improve the bioactivity of the hydroxyapatite (OHAp). A mixture of stoichiometric OHAp and the precursor gel of a solgel glass, with nominal composition in mol% CaO-26, SiO2-70, P205-4, has been prepared. The amounts of components used have been selected to obtain a final relationship for OHAp/solgel glass of 60/40 on heating. Two different thermal treatments have been used: (i) 700 degrees C, temperature of solgel glass stabilisation and (ii) 1000 degrees C, lower temperature of hydroxyapatite sintering. The bioactivity of the resulting materials has been examined in vitro by immersion in simulated body fluid at 37 degrees C. The results obtained show that both materials are bioactive. The apatite-like layer grown is greater for the new materials than for the OHAp and the solgel glass themselves. PMID:11950057

  3. Prediction of material strength and fracture of glass using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.

    1994-08-01

    The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, and data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

  4. Glass corrosion in the presence of iron-bearing materials and potential corrosion suppressors

    SciTech Connect

    Reiser, Joelle T.; Neill, Lindsay; Weaver, Jamie L.; Parruzot, Benjamin; Musa, Christopher; Neeway, James J.; Ryan, Joseph V.; Qafoku, Nikolla; Gin, Stephane; Wall, Nathalie

    2015-07-16

    A complete understanding of radioactive waste glass interactions with near-field materials is essential for appropriate nuclear waste repository performance assessment. In many geologic repository designs, Fe is present in both the natural environment and in the containers that will hold the waste glasses. In this paper we discuss investigations into the alteration of International Simple Glass (ISG) in the presence of Fe0 foil and hematite (Fe2O3). ISG alteration is more pronounced in the presence of Fe0 than with hematite. Additionally, minimal glass corrosion is observed for distances equal to 5 mm between Fe materials and ISG, but substantial glass corrosion is observed for systems exhibiting full contact between Fe0 material and ISG. Diatomaceous earth appears to be a better corrosion suppressant than silica when present with iron and ISG.

  5. Research study for gel precursors as glass and ceramic starting materials for space processing applications research

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Miller, W. J.

    1983-01-01

    The development of techniques for the preparation of glass and ceramic starting materials that will result in homogeneous glasses or ceramic products when melted and cooled in a containerless environment is described. Metal-organic starting materials were used to make compounds or mixtures which were then decomposed by hydrolysis reactions to the corresponding oxides. The sodium tungstate system was chosen as a model for a glass with a relatively low melting temperature. The alkoxide tungstates also have interesting optical properties. For all the compositions studied, comparison samples were prepared from inorganic starting materials and submitted to the same analyses.

  6. On the mechanism of material removal in nanometric cutting of metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Pengzhe; Fang, Fengzhou

    2014-08-01

    Metallic glasses find wide applications in nanotechnology and micro electro-mechanical systems because of their unique physical properties due to their amorphous structures. The material removal mechanism in nanometric cutting of Cu50Zr50, a typical metallic glass, is studied using molecular dynamics method. The chip formation, workpiece deformation and scratching forces under various scratching depths, scratching velocities and temperatures are investigated. The effect of void defect on the cutting behaviors of metallic glass is also explored. The results show that the material removal in nanometric cutting process is based on extrusion instead of shearing, achieving a good understanding of material removal at the nanoscale.

  7. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  8. Development of the new generation of glass-based neutron detection materials

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, Alexey E.; Dosovitskiy, Georgy A.; Korjik, Mikhail V.

    2012-10-01

    Approach to obtaining of neutron detector material alternative to 3He containing ionization gas detectors is proposed. Recently, a severe deficit of the 3He has pushed its price up strongly, so alternative cheaper detecting materials are demanded. Possible alternatives to 3He are materials containing 10B and 6Li isotopes. These two elements form many inorganic materials, either crystalline or amorphous. Glass scintillators look very advantageous as detector materials, especially for large area detectors, as their manufacturing could be cheaper and easier-to-scale, compared to single crystals and ceramics. A poor exciton transport, which is a fundamental feature of glass scintillators, limits their light yield and, therefore, practical use. Here we discuss a possibility to improve energy transfer to luminescent centers by creation of high concentration of crystalline luminophore particles in the glass matrix. This could be achieved through the controlled crystallization of the glass. We demonstrate how this approach works in well known Li-Al-Si (LAS) glass system. Partially crystallized Ce3+-doped glass with nanocrystalline inclusions is obtained, which shows the superior scintillation properties compared to amorphous glass. The material is characterized by an emission spectrum shift towards shorter wavelengths, which provides low light self-absorption.

  9. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    SciTech Connect

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  10. Strongly Nonlinear Optical Glass Fibers from Noncentrosymmetric Phase-Change Chalcogenide Materials

    SciTech Connect

    Chung, In; Jang, Joon I.; Malliakas, Christos D.; Ketterson, John B.; Kanatzidis, Mercouri G.

    2010-08-27

    We report that the one-dimensional polar selenophosphate compounds APSe{sub 6} (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients {chi}{sup (2)} of 151.3 and 149.4 pm V{sup -1} for K{sup +} and Rb{sup +} salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe{sub 6} exhibits comparable SHG intensities to the top infrared NLO material AgGaSe{sub 2} without any poling treatments. APSe{sub 6} exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe{sub 6} (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe{sub 6} bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  11. Fabrication and characterization of MCC approved testing material: ATM-9 glass

    SciTech Connect

    Wald, J.W.

    1986-06-01

    The Materials Characterization Center ATM-9 glass is designed to be representative of glass to be produced by the Defense Waste Processing Facility at the Savannah River Plant, Aiken, South Carolina. ATM-9 glass contains all of the major components of the DWPF glass and corresponds to a waste loading of 29 wt %. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 Black Frit to which was added Ba, Cs, Md, Nd, Zr, as well as /sup 99/Tc, depleted U, /sup 237/Np, /sup 239 +240/Pu, and /sup 243/Am. The glass was produced under reducing conditions by the addition of 0.7 wt % graphite during the final melting process. Three kilograms of the glass were produced from April to May of 1984. On final melting, the glass was formed into stress-annealed rectangular bars of two sizes: 1.9 x 1.9 x 10 cm and 1.3 x 1.3 x 10 cm. Seventeen bars of each size were made. The analyzed composition of ATM-9 glass is listed. Examination by optical microscopy of a single transverse section from one bar showed random porosity estimated at 0.36 vol % with nominal pore diameters ranging from approx. 5 ..mu..m to 200 ..mu..m. Only one distinct second phase was observed and it was at a low concentraction level in the glass matrix. The phase appeared as spherical metallic particles. X-ray diffraction analysis of this same sample did not show any diffraction peaks from crystalline components, indicating that the glass contained less than 5 wt % of crystalline devitrification products. The even shading on the radiograph exposure indicated a generally uniform distribution of radioactivity throughout the glass matrix, with no distinct high-concentration regions.

  12. Barium-borate-flyash glasses: As radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  13. Use of natural raw material for the production of photochromic glasses

    SciTech Connect

    Kiyan, V.I.; Artamonova, M.V.; Solinov, V.F.

    1986-07-01

    The authors investigated the possibility of using natural raw materials as replacements for soda and alumina for obtaining photochromic glasses and to determine their properties. Glasses of the sodium aluminoborosilicate system were studied. The characteristics of the batches and some of the properties of the glasses are given in a table. Sodium oxide was added to batches Nos. 1 and 2 as soda or borax. Composition Nos. 3, 4, and 5 were prepared using acid, basic, and neutral rocks by means of which the oxides of sodium and aluminum were added. The glasses were synthesized in SiC-heater furnaces. The differential thermal analysis of compositions Nos. 1 and 5 showed that the presence of natural materials leads to the formation of a liquid phase at lower temperatures which helps to intensify the processes of silicate- and glass-formation.

  14. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  15. Characterization of porous glass-ceramic material as absorber of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kazmina, O.; Suslyaev, V.; Dushkina, M.; Semukhin, B.

    2015-04-01

    Investigations of a foam glass-ceramic material synthesized from raw siliceous earth material by the two-stage method at temperatures below 950°C have demonstrated the improvement of its physic mechanical properties in comparison with foam glass synthesized from glass cullet. This material actively interacts with microwaves and can be used for the development of protective screens reducing the adverse effect of microwaves on biological objects, anechoic chambers, and rooms with low level of electromagnetic background noise. Spectra of the transmission and absorption coefficients and of the complex dielectric permittivity for frequencies in the range 26-260 GHz are presented. The observed effects demonstrate the existence of regions with partial and total reflection arising on the glass-pore boundary and of the microwave interaction with ultradisperse carbon particles that remain after foaming with incomplete frothier transition from the soot to the gas phase.

  16. Interaction study between nuclear waste-glass melt and ceramic melter bellow liner materials

    NASA Astrophysics Data System (ADS)

    Sengupta, Pranesh

    2011-04-01

    Identification of proper materials for plant scale vitrification furnaces, engaged in immobilization of high level nuclear waste has always been a great challenge. Fast degradation of pour spout materials very often cause problem towards smooth pouring of waste-glass melt in canister and damages bellow kept in between. The present experimental study describes the various reaction products that form due to interaction between waste-glass melt and potential bellow liner materials such as copper, stainless steel and nickel based Superalloys (Alloy 690, 625). The results indicate that copper based material has lesser tendency to form adherent glassy layer.

  17. Glass-containing composite cathode contact materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Cheng, Lei; DeJonghe, Lutgard C.

    2011-10-01

    The feasibility of adding glass to conventional SOFC cathode contact materials in order to improve bonding to adjacent materials in the cell stack is assessed. A variety of candidate glass compositions are added to LSM and SSC. The important properties of the resulting composites, including conductivity, sintering behavior, coefficient of thermal expansion, and adhesion to LSCF and Mn1.5Co1.5O4-coated 441 stainless steel are used as screening parameters. Adhesion of LSM to LSCF improved from 3.9 to 5.3 MPa upon addition of SCZ-8 glass. Adhesion of LSM to coated stainless steel improved from 1.8 to 3.9 MPa upon addition of Schott GM31107 glass. The most promising cathode contact material/glass composites are coated onto Mn1.5Co1.5O4-coated 441 stainless steel substrates and subjected to area-specific resistance testing at 800 °C. In all cases, area-specific resistance is found to be in the range 2.5-7.5 mOhm cm2 and therefore acceptable. Indeed, addition of glass is found to improve bonding of the cathode contact material layer without sacrificing acceptable conductivity.

  18. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    NASA Astrophysics Data System (ADS)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous

  19. Graphite immobilisation in iron phosphate glass composite materials produced by microwave and conventional sintering routes

    NASA Astrophysics Data System (ADS)

    Mayzan, M. Z. H.; Stennett, M. C.; Hyatt, N. C.; Hand, R. J.

    2014-11-01

    An investigation of microwave and conventional processing of iron phosphate based graphite glass composite materials as potential wasteforms for the immobilisation of irradiated graphite is reported. For the base iron phosphate glass, full reaction of the raw materials and formation of a glass melt occurs with consequent removal of porosity at 8 min microwave processing. When graphite is present, iron phosphate crystalline phases are formed with higher levels of residual porosity than in the sample prepared using conventional sintering under argon. It is found that graphite reacts with the microwave field when in powder form but this reaction is minimised when the graphite is incorporated into a pellet, and that the graphite also impedes sintering of the glass. Mössbauer spectroscopy indicates that reduction of iron also occurs with concomitant graphite oxidation. Conventionally sintered samples had lower porosities than the equivalent microwaved ones.

  20. Nanoimprint of Glass Materials with Glassy Carbon Molds Fabricated by Focused-Ion-Beam Etching

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaharu; Sugimoto, Kohichi; Maeda, Ryutaro

    2005-07-01

    Micro/nano-imprinting or hot embossing is a target of interest for the industrial production of microdevices. In fluidic micro electromechanical systems (MEMS) applications, polymer materials have been employed for their low cost in the fabrication of economical products. However, glasses are much more suitable for higher-temperature applications or use in reactive chemical environments. In optical MEMS as well, glasses are good candidate materials for enhanced optical properties. In this study, micro/nano-imprinting was employed for Pyrex glass and quartz glass molding, and test structures were successfully fabricated with good fidelity for a 10× 10× 7 μm microstructure and a 0.3 μm line-and-space pattern with a depth of 0.4 μm.

  1. Percolation Model for Slow Dynamics in Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Lois, Gregg; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2009-01-01

    We identify a link between the glass transition and percolation of regions of mobility in configuration space. We find that many hallmarks of glassy dynamics, for example, stretched-exponential response functions and a diverging structural relaxation time, are consequences of the critical properties of mean-field percolation. Specific predictions of the percolation model include the range of possible stretching exponents 1/3≤β≤1 and the functional dependence of the structural relaxation time τα and exponent β on temperature, density, and wave number.

  2. Glass-based fluorescence reference materials used for optical and biophotonic applications

    NASA Astrophysics Data System (ADS)

    Engel, A.; Ottermann, C.; Resch-Genger, U.; Hoffmann, K.; Schweizer, S.; Selling, J.; Spaeth, J.-M.; Rupertus, V.

    2006-04-01

    Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and biotechnical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. For routine measurements by fluorescence techniques the existence of an improved quality assurance is one of the basic needs. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values only. Typical requirements onto fluorescence reference materials or standards deal with the verification of the instrument performance as well as the improvement of the data comparability. Especially for biomedical applications fluorescence labels are used for the detection of proteins. In particular these labels consist of nano crystalline materials like CdS and CdSe. The field of Non-Cadmium containing materials is under investigation. In order to evaluate whether glass based materials can be used as standards it is necessary to calculate absolute values like absorption/excitation cross sections or relative quantum yields. This can be done using different quantities of dopands in glass, glass ceramics or crystals. The investigated materials are based on different types of glass, silicate, phosphate and boron glass, which play a dominant role for the absorption and emission mechanism. Additional to the so-called elementary fluorescence properties induced by raw earth elements the formation of defects lead to higher cross sections additionally. The main investigations deal with wavelength accuracy and lifetime of doped glasses, glass ceramics and crystalline samples. Moreover intensity patterns, homogeneity aspects and photo stability will be discussed.

  3. Advanced materials for aerospace and biomedical applications: New glasses for hermetic titanium seals

    SciTech Connect

    Brow, R.K.; Tallant, D.R.; Crowder, S.V.

    1996-11-01

    Titanium and titanium alloys have an outstanding strength-to-weight ratio and corrosion resistance and so are materials of choice for a variety of aerospace and biomedical applications. Such applications are limited by the lack of a viable hermetic glass sealing technology. Conventional silicate sealing glasses are readily reduced by titanium to form interfacial silicides that are incompatible with a robust glass/metal seal. Borate-based glasses undergo a similar thermochemistry and are reduced to a titanium boride. The kinetics of this reactions, however, are apparently slower and so a deleterious interface does not form. Chemically durable lanthanoborate glasses were examined as candidate sealing compositions. The compositions, properties, and structures of several alkaline earth, alumina, and titania lanthanoborate glass forming systems were evaluated and this information was used as the basis for a designed experiment to optimize compositions for Ti-sealing. A number of viable compositions were identified and sealing procedures established. Finally, glass formation, properties, and structure of biocompatible Fe{sub 2}O{sub 3}- and TiO{sub 2}-doped calcium phosphate systems were also evaluated.

  4. Analysis of glass-reinforced epoxy material for radio frequency resonator.

    PubMed

    Zaman, M R; Islam, M T; Misran, N; Yatim, Baharudin

    2014-01-01

    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior. PMID:24977230

  5. Analysis of Glass-Reinforced Epoxy Material for Radio Frequency Resonator

    PubMed Central

    Islam, M. T.; Misran, N.; Yatim, Baharudin

    2014-01-01

    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than −20 dB for C band and −34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior. PMID:24977230

  6. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    NASA Astrophysics Data System (ADS)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  7. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics.

    PubMed

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  8. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  9. Material Characterization of Glass, Carbon, and Hybrid-Fiber SCRIMP Panels

    SciTech Connect

    KURAISHI, AKIRA; TSAI, STEPHEN W.; WANG, JULIE

    2002-12-01

    The purpose of this study was to generate the material database for carbon and glass composite panels created by the SCRIMP process. The materials tested were glass/polyester composites, two types of carbon/polyester composites, and carbon and glass hybrid composites. The differences between the two types of carbon/polyester, which we call Type 1 and Type 2, are the ply thickness (.037 inch/ply and .048 inch/ply) and slightly different treatment of polyester resin. The tests that were performed for this study are four-point-bending tests, tension tests, panel warping tests, and beam bend-twist coupling tests. The material properties of interest were basic longitudinal and transverse stiffness and strength, residual stress due to curing, and the effect of bend-twist coupling. The bend-twist coupling is a feature that can be added to the composite laminate or structure, such that when it is bent, it will also twist.

  10. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing. PMID:19540649

  11. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    NASA Technical Reports Server (NTRS)

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  12. Characterization & Modeling of Materials in Glass-To-Metal Seals: Part I

    SciTech Connect

    Chambers, Robert S.; Emery, John M.; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.

    2014-01-01

    To support higher fidelity modeling of residual stresses in glass-to-metal (GTM) seals and to demonstrate the accuracy of finite element analysis predictions, characterization and validation data have been collected for Sandia’s commonly used compression seal materials. The temperature dependence of the storage moduli, the shear relaxation modulus master curve and structural relaxation of the Schott 8061 glass were measured and stress-strain curves were generated for SS304L VAR in small strain regimes typical of GTM seal applications spanning temperatures from 20 to 500 C. Material models were calibrated and finite element predictions are being compared to measured data to assess the accuracy of predictions.

  13. An in vitro comparison of micro leakage in three glass ionomer cements used as retrograde filling materials.

    PubMed

    Rosales, J I; Vallecillo, M; Osorio, R; Bravo, M; Toledano, M

    1996-02-01

    The aim of this study was to evaluate the sealing ability of conventional self-cured glass ionomer cement, silver glass ionomer cement and light-cured glass ionomer cement as retrofilling materials. Micro-leakage was assessed by introducing the samples into a 1 per cent solution of methylene blue for eight days at a constant temperature of 37 degrees C. Dye penetration was greater when silver glass ionomer cement was used in comparison to the other two materials tested; the difference was statistically significant. Conversely, the sealing ability of light-cured glass ionomer cement was significantly higher than that of conventional glass ionomer cement. The condition of the dentine-filling material interface and the marginal adaptation of the glass ionomer cements under study were assessed using scanning electron microscopy. PMID:8744913

  14. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material---ATM-2, ATM-3, and ATM-4 glasses

    SciTech Connect

    Wald, J.W.

    1988-03-01

    Materials Characterization Center glasses ATM-2, ATM-3, and ATM-4 are designed to simulate high-level waste glasses that are likely to result from the reprocessing of commercial nuclear reactor fuels. The three Approved Testing Materials (ATMs) are borosilicate glasses based upon the MCC-76-68 glass composition. One radioisotope was added to form each ATM. The radioisotopes added to form ATM-2, ATM-3, and ATM-4 were /sup 241/Am, /sup 237/Np, and /sup 239/Pu, respectively. Each of the ATM lots was produced in a nominal lot size of 450 g from feed stock melted in a nitrogen-atmosphere glove box at 1200/degree/C in a platinum crucible. Each ATM was then cast into bars. Analyzed compositions of these glasses are listed. The nonradioactive elements were analyzed by inductively coupled argon plasma atomic emission spectroscopy (ICP), and the radioisotope analyses were done by alpha energy analysis. Results are discussed. 7 refs., 3 figs., 5 tabs.

  15. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  16. Data on Material Properties and Panel Compressive Strength of a Plastic-bonded Material of Glass Cloth and Canvas

    NASA Technical Reports Server (NTRS)

    Zender, George W; Schuette, Evan H; Weinberger, Robert A

    1944-01-01

    Results are presented of tests for determining the tensile, compressive, and bending properties of a material of plastic-bonding glass cloth and canvas layers. In addition, 10 panel specimens were tested in compression. Although the material is not satisfactory for primary structural use in aircraft when compared on a strength-weight basis with other materials in common use, there appears to be potential strength in the material that will require research for development. These points are considered in some detail in the concluding discussion of the report. An appendix shows that a higher tensile strength can be obtained by changes in the type of weave used in the glass-cloth reinforcement.

  17. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    SciTech Connect

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables.

  18. A laboratory study of glass ionomer cement as a retrograde root-filling material.

    PubMed

    Roth, S

    1991-10-01

    This laboratory study investigated the use of various glass ionomer cements for retrograde root filling from the point of view of sealing qualities, ion release and ease of application. The sealing qualities of the material were tested by dye penetration and microscopic and SEM examination. Fluoride and silver ion release tests showed an initial loss of these two ions from the glass ionomer cement. A modified system for mixing and application was developed. Dye penetration did not differ from that of controls using vertically condensed gutta-percha. Glass ionomer cement is possibly a clinical alternative for the sealing of retrograde cavities; however, the silver-reinforced materials may cause tissue irritation from release of silver ions and their corrosion products. PMID:1721806

  19. Fundamental chemistry and materials science of americium in selected immobilization glasses

    SciTech Connect

    Haire, R.G.; Stump, N.A.

    1996-12-01

    We have pursued some of the fundamental chemistry and materials science of Am in 3 glass matrices, two being high-temperature (850 and 1400 C mp) silicate-based glasses and the third a sol-gel glass. Optical spectroscopy was the principal tool. One aspect of this work was to determine the oxidation state exhibited by Am in these matrices, as well as factors that control or may alter this state. A correlation was noted between the oxidation state of the f-elements in the two high-temperature glasses with their high-temperature oxide chemistries. One exception was Am: although AmO{sub 2} is the stable oxide encountered in air, when this dioxide was incorporated into the high-temperature glasses, only trivalent Am was found in the products. When Am(III) was used to prepare the sol-gel glasses at ambient temperature, and after these products were heated in air to 800 C, only Am(III) was observed. Potential explanations for the unexpected Am behavior is offered in the context of its basic chemistry. Experimental spectra, spectroscopic assignments, etc. are discussed.

  20. Assessing Aptitude of Plated Ni-W Film as Mold Materials for Borosilicate Glass

    NASA Astrophysics Data System (ADS)

    Yasui, Manabu; Motoizumi, Yu; Kaneko, Satoru; Hirai, Kiyohito; Sugimoto, Koh-ichi; Hirabayashi, Yasuo; Takahashi, Masaharu; Maeda, Ryutaro

    2009-06-01

    We propose the Ni-W plating film as a mold material for the hot embossing of borosilicate glass. The lifetime of a Ni-W plating mold is important from a practical perspective. However, there have been no previous reports on the life of a mold. Contact angle has been reported as a parameter for the comparative assessment of wettability. In this report, we identified the components of borosilicate glass reacted with a Ni-W film by elemental analysis together with a wettability test. In the wettability test, increasing temperature caused a decrease in of contact angle, which is caused by the chemical reaction at the center of glass. In the results of the elemental analysis of the Ni-W film in contact with glass, Zn, a constituent of the glass, was not detected in the noncontact zone, but was detected in the contact zone. There is no binary alloy phase diagram of W-Zn. It is considered that W does not form an alloy with Zn. Results from the reaction of Zn on Ni indicated an increase in the wettability of borosilicate glass for the Ni-W plating film.

  1. Inelastic Neutron Scattering Studies of the Dynamics of Glass-Forming Materials in Confinement

    NASA Astrophysics Data System (ADS)

    Zorn, Reiner

    2015-03-01

    The study of the dynamics of glass-forming liquids in nanoscopic confinement may contribute to the understanding of the glass transition. Especially, the question of a cooperativity length scale may be addressed. In this presentation, results obtained by inelastic neutron scattering are presented. The first experiments were done to study the α relaxation of glass-forming liquids and polymers in nanoporous silica. Neutron scattering is a suitable method to study such composite materials because the scattering of the liquid component can be emphasized by proper choice of isotopes. By combining time-of-flight spectroscopy and backscattering spectroscopy it is possible to cover the large dynamical range spanned by the dynamics of glass-forming materials. The experiments demonstrated a broadening of the spectrum of relaxation times with faster as well as slower components compared to the bulk. In later experiments `soft' confinement in a microemulsion was used to reduce surface effects. In this system a definite acceleration of the dynamics was observed. In all cases the glass-specific fast vibrational dynamics (boson peak) was also studied, revealing a characteristic confinement dependence which allows conclusions on its nature. Finally, studies were carried out on polymers by neutron spin echo spectroscopy with the aim of observing the confinement effect on polymer specific dynamics (Rouse motion). These studies showed that a comparatively simple model is able to explain the deviation from bulk behavior.

  2. Fabrication and characterization of MCC approved testing material: ATM-11 glass

    SciTech Connect

    Wald, J.W.; Daniel, J.L.

    1986-08-01

    ATM-11 glass is designed to be representative of defense high-level waste glasses that will be produced by the Defense Waste Processing Facility at the Savannah River Plant in Aiken, South Carolina. It is representative of a 300-year-old nuclear waste glass and was intended as a conservative compromise between 10-year-old waste and 1000-year-old waste. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 black frit to which was added Ba, Cs, Mo, Nd, Ni, Pd, Rb, Ru, Sr, Te, Y, and Zr, as well as /sup 241/Am, /sup 237/Np, /sup 239+240/Pu, /sup 151/Sm, /sup 99/Tc, and depleted U. The glass was melted under the reducing conditions that resulted from the addition of 0.7 wt% graphite during the final melting process. Nearly 3 kg of ATM-11 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1250/sup 0/C in Denver Fire Clay crucibles. After final melting, the glass was formed into stress-annealed rectangular bars 1.9 x 1.9 x 10 cm nominal size. Twenty-six bars were cast with a nominal weight of about 100 g each. The analyzed composition of ATM-11 glass is tabulated. Examination of a single transverse section from one bar by reflected light microscopy showed random porosity estimated at 0.4 vol% with nominal pore diameters ranging from approx.5 ..mu..m to 175 ..mu..m. A distinct randomly distributed second phase was observed at a very low concentration in the glass matrix as agglomerated, metallic-like clusters. One form of the aggregates contained mainly a high concentration of iron, while a second form had regions of high nickel concentration, and of high palladium concentration. All aggregates also contained a low concentration of technetium and/or ruthenium. An autoradiograph of the sample provided an indication of the total radionuclide ditribution. X-ray diffraction analysis of this same sample indicates that the glass probably contained 5 wt% crystalline material.

  3. Surface modified, collapsible controlled pore glass materials for sequestration and immobilization of trivalent metal ions.

    SciTech Connect

    Shkrob, I.; Tisch, A.; Marin, T.; Muntean, J.; Kaminski, M.; Kropf, A.

    2011-04-20

    We report a one-pot method for sequestration, containment, and immobilization of lanthanide (Ln) ions from dilute aqueous waste streams. The approach is based on the use of collapsible, surface modified controlled pore glass (CPG) nanomaterials. We present several approaches for a single-step chemical modification of 3-propylaminated CPGs that yield highly efficient Ln-extracting materials with distribution coefficients exceeding 10000 mL/g. The resulting Ln complexes were studied using X-ray absorption, magnetic resonance, and time-resolved luminescence spectroscopies. One of these CPG materials involving an imidodi(methanediphosphate) moiety demonstrated high extraction efficacy, significant ionic radius sensitivity, and exceptional tolerance to masking agents, which is conducive to its use for removal of traces of radionuclide ions from aqueous TALSPEAK raffinate (trivalent actinide-lanthanide separation by phosphorus reagent extraction from aqueous complexes process used in processing of spent nuclear fuel). The glass loaded with the extracted metal ions can be calcined and sintered at 1100 C, yielding fused material that buries Ln ions in the vitreous matrix. This processing temperature is significantly lower than 1700 C that is required for direct vitrification of lanthanide oxides in high-silica glass. X-ray absorption spectroscopy and acid leaching tests indicate that the immobilized ions are isolated and dispersed in the fused glass matrix. Thus, the method integrates Ln ions into the glass network. The resulting glass can be used for temporary storage or as the source of silica for production of borosilicate waste forms that are used for long-term disposal of high level radioactive waste.

  4. A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses

    NASA Astrophysics Data System (ADS)

    Anand, L.; Su, C.

    2005-06-01

    This study develops a finite-deformation, Coulomb-Mohr type constitutive theory for the elastic-viscoplastic response of pressure-sensitive and plastically-dilatant isotropic materials. The constitutive model has been implemented in a finite element program, and the numerical capability is used to study the deformation response of amorphous metallic glasses. Specifically, the response of an amorphous metallic glass in tension, compression, strip-bending, and indentation is studied, and it is shown that results from the numerical simulations qualitatively capture major features of corresponding results from physical experiments available in the literature.

  5. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    PubMed

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. PMID:27479896

  6. Preparation of glass-forming materials from granulated blast furnace slag

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  7. Tunneling with very long relaxation times in glasses, organic materials, and Nb-Ti-H (D)

    NASA Astrophysics Data System (ADS)

    Schwark, M.; Pobell, F.; Kubota, M.; Mueller, R. M.

    1985-01-01

    The long-time ( t=10 200 h) heat releasedot Q from glasses, from organic materials, and from Nb-Ti-H (D) was measured at 30≤ T≤70 mK. For Suprasil W glass, Dimethyl-Siloxan, Stycast 1266, Stycast 2850 FT, Vespel, and for Nb-Ti-H (D) with various Ti and D concentrations, we founddot Q ˜ t^{ - 1}. Typical values aredot Q = 0.05 nW/g for the organic materials and for Nb-Ti-H (D) anddot Q = 0.005 nW/g for the glass at t=100 h after cooldown from room temperature. For charging temperatures T i <5 K, we find the predicted dependencedot Q ˜ t_i^2 (investigated for Suprasil W glass and for Nb-Ti-D). The observed time and temperature dependences agree with predictions of the conventional two-level tunneling model for amorphous materials even at these very long times. No heat release was observed for Teflon, graphite, and Al2O3.

  8. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum. PMID:25822408

  9. Industrial recycling of glass, plastic and wood materials

    SciTech Connect

    Caccavo, F.N.; Posusney, J.R.

    1998-12-31

    The intent of this paper is to discuss in detail the development and implementation of a recycling program encompassing these three residual waste streams at a major plant site of a large United States company. The paper will review the history of the program`s development, the vendor selection and recycling processes, the initial efforts to include failures and successes, and the cost recovery and profit that can be realized through a well-managed recycling program. The facility that is the subject of this paper is located approximately 20 lies north west of Philadelphia, Pa and supports a site population of over 6,200 employees working in three divisions of the parent company. The primary business of this firm is the manufacture, distribution, and sale of pharmaceutical drugs. This plant is the company`s largest facility engaging its employees in predominantly research and manufacturing operations. The manufacturing operations being the largest division encompassing the widest range of activities from the receipt of raw material through packaging and shipping operations. This site and the company it represents enjoy an excellent relationship within the community stemming in part to the commitment to environmental stewardship demonstrated by this successful program. The site retains its own internal waste management and disposal operations for the wide variety of refuse materials generated and it is this department which is responsible for the creation and maintenance of the site`s extensive recycling effort. The paper will review the ongoing development of these elements of this company`s growing recycling operations and attempt to demonstrate that extensive recycling can be both a productive and cost effective alternative to conventional disposal through incineration`s or landfill.

  10. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    PubMed

    Mannstadt, Wolfgang

    2008-02-13

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic ab initio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'ab initio' simulations in the computer

  11. Computational materials science aided design of glass ceramics and crystal properties (abstract only)

    NASA Astrophysics Data System (ADS)

    Mannstadt, Wolfgang

    2008-02-01

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic ab initio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'ab initio' simulations in the computer

  12. Glass Formation of a Coordination Polymer Crystal for Enhanced Proton Conductivity and Material Flexibility.

    PubMed

    Chen, Wenqian; Horike, Satoshi; Umeyama, Daiki; Ogiwara, Naoki; Itakura, Tomoya; Tassel, Cédric; Goto, Yoshihiro; Kageyama, Hiroshi; Kitagawa, Susumu

    2016-04-18

    The glassy state of a two-dimensional (2D) Cd(2+) coordination polymer crystal was prepared by a solvent-free mechanical milling process. The glassy state retains the 2D structure of the crystalline material, albeit with significant distortion, as characterized by synchrotron X-ray analyses and solid-state multinuclear NMR spectroscopy. It transforms to its original crystal structure upon heating. Thus, reversible crystal-to-glass transformation is possible using our new processes. The glass state displays superior properties compared to the crystalline state; specifically, it shows anhydrous proton conductivity and a dielectric constant two orders of magnitude greater than the crystalline material. It also shows material flexibility and transparency. PMID:26990042

  13. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  14. Tellurite glass as a waste form for a simulated mixed chloride waste stream: Candidate materials selection and initial testing

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-02-02

    Tellurite glasses have been researched widely for the last 60 years since they were first introduced by Stanworth. These glasses have been primarily used in research applications as glass host materials for lasers and as non-linear optical materials, though many other uses exist in the literature. Tellurite glasses have long since been used as hosts for various, and even sometimes mixed, halogens (i.e., multiple chlorides or even chlorides and iodides). Thus, it was reasonable to expect that these types of glasses could be used as a waste form to immobilize a combination of mixed chlorides present in the electrochemical separations process involved with fuel separations and processing from nuclear reactors. Many of the properties related to waste forms (e.g., chemical durability, maximum chloride loading) for these materials are unknown and thus, in this study, several different types of tellurite glasses were made and their properties studied to determine if such a candidate waste form could be fabricated with these glasses. One of the formulations studied was a lead tellurite glass, which had a low sodium release and is on-par with high-level waste silicate glass waste forms.

  15. Study of glass preforms for glass fiber optics applications (study of space processing of ceramic materials). [light transmission

    NASA Technical Reports Server (NTRS)

    Wang, F. F. Y.

    1974-01-01

    The feasibility, and technical and economic desirability was studied of space processing of glass preforms for optical fiber transmission applications. The results indicate that space processing can produce glass preforms of equal quality at lower cost than earth bound production, and can produce diameter modulation in the glass preform which promotes mode coupling and lowers the dispersion. The glass composition can be modified through the evaporative and diffusion processes, and graded refractive index profiles can be produced. A brief summary of the state of the art in optical fiber transmission is included.

  16. Tensile behavior of glass/ceramic composite materials at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Jacobs, J.

    1987-01-01

    This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.

  17. A method for developing design diagrams for ceramic and glass materials using fatigue data

    NASA Technical Reports Server (NTRS)

    Heslin, T. M.; Magida, M. B.; Forrest, K. A.

    1986-01-01

    The service lifetime of glass and ceramic materials can be expressed as a plot of time-to-failure versus applied stress whose plot is parametric in percent probability of failure. This type of plot is called a design diagram. Confidence interval estimates for such plots depend on the type of test that is used to generate the data, on assumptions made concerning the statistical distribution of the test results, and on the type of analysis used. This report outlines the development of design diagrams for glass and ceramic materials in engineering terms using static or dynamic fatigue tests, assuming either no particular statistical distribution of test results or a Weibull distribution and using either median value or homologous ratio analysis of the test results.

  18. Modeling of the Effective Elastic and Thermal Properties of Glass-Ceramic Solid Oxide Fuel Cell Seal Materials

    SciTech Connect

    Milhans, Jacqueline; Ahzi, Said; Garmestani, Hamid; Khaleel, Mohammad A.; Sun, Xin; Koeppel, Brian J.

    2009-05-01

    In this study, the effective elastic properties and coefficients of thermal expansion (CTE) of a glass-ceramic were predicted using homogenization techniques. Using G18, a glass-ceramic solid oxide fuel cell (SOFC) sealant as an initial reference material, the effectiveness of different homogenization models was investigated for a two-phase glass-ceramic. The elastic properties and CTEs of the G18 amorphous phase are currently unknown. Thus, estimated values were used as an input to the models. The predictive model offers accurate macroscopic values on both the elastic modulus and the CTE of glass-ceramic materials, providing the estimated amorphous values are reasonable. This model can be used in designing glass-ceramic SOFC seal materials for its specific operation conditions.

  19. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    NASA Astrophysics Data System (ADS)

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  20. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.

    PubMed

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  1. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  2. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers.

    PubMed

    Novais, Rui M; Ascensão, G; Seabra, M P; Labrincha, J A

    2016-06-01

    Nowadays the stunning volume of generated wastes, the exhaustion of raw materials, and the disturbing greenhouse gases emission levels show that a paradigm shift is mandatory. In this context, the possibility of using wastes instead of virgin raw materials can mitigate the environmental problems related to wastes, while reducing the consumption of the Earth's natural resources. This innovative work reports the incorporation of unexplored waste glass coming from end-of-life fluorescent lamps into geopolymers. The influence of the waste glass incorporation level, NaOH molarity and curing conditions on the microstructure, physical and mechanical properties of the geopolymers was evaluated. Results demonstrate that curing conditions are the most influential factor on the geopolymer characteristics, while the NaOH molarity is less important. Geopolymers containing 37.5% (wt) waste glass were successfully produced, showing compressive strength of 14MPa (after 28days of curing), suggesting the possibility of their use in non-structural applications. Porous waste-based geopolymers for novel applications were also fabricated. PMID:27067423

  3. Factors Affecting the Morphology of Pb-Based Glass Frit Coated with Ag Material Prepared by Electroless Silver Plating

    NASA Astrophysics Data System (ADS)

    Huang, Bei; Gan, Weiping; Zhou, Jian; Li, Yingfen; Lin, Tao; Liu, Xiaogang

    2014-05-01

    Pb-based glass frit coated with nanosilver material for Si solar cell applications has been directly prepared by electroless silver plating. Activation of the glass frit was accomplished by using glycol, with the aim of reducing the silver ions to elemental silver on the surface of the glass frit. Electroless silver plating onto the glass frit was successfully realized using two kinds of electroless plating bath. However, the morphology of the composite powder greatly affected the modality, sheet resistance, series resistance, and photoelectric conversion efficiency of the conducting silver films. We found that the activation temperature affected the number and distribution of silver nanoparticles. Meanwhile, the average grain size of the silver particles and the silver content in the Pb-based glass frit coated with Ag material could be controlled by adjusting the pH value and loading capacity, respectively, during plating.

  4. Aging characteristics of short glass fiber reinforced ZA-27 alloy composite materials

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Girish, B. M.; Satish, B. M.; Kamath, R.

    1998-12-01

    Aging characteristics of short glass fiber reinforced ZA-27 alloy composite materials have been evaluated in the present study. The liquid metallurgy technique was used to fabricate the composites, in which preheated short glass fibers were introduced into the ZA-27 alloy melt above its liquidus temperature. The aging temperature employed was 125 °C for 6, 12,18, and 24 h. The aged alloy (no fibers) reached the peak hardness after 18 h, while the composites (regardless of filler content) reached the same hardness in 12 h. It is hypothesized that the aging treatment of a composite improves the strength of the interface between the short fibers and the matrix. This is confirmed by the tensile fractograph analysis, which indicates that at a given aging temperature, the composites aged for 18 h exhibit short fibers that remain attached to the metal matrix, while those aged for 6 h undergo debonding.

  5. Substrate-blind photonic integration based on high-index glass materials

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao; Li, Lan; Zou, Yi; Du, Qingyang; Ogbuu, Okechukwu; Smith, Charmayne; Koontz, Erick; Musgraves, David; Richardson, Kathleen; Hu, Juejun

    2014-11-01

    Conventional photonic integration technologies are inevitably substrate-dependent, as different substrate platforms stipulate vastly different device fabrication methods and processing compatibility requirements. Here we capitalize on the unique monolithic integration capacity of composition-engineered non-silicate glass materials (amorphous chalcogenides and transition metal oxides) to enable multifunctional, multi-layer photonic integration on virtually any technically important substrate platforms. We show that high-index glass film deposition and device fabrication can be performed at low temperatures (< 250 °C) without compromising their low loss characteristics, and is thus fully compatible with monolithic integration on a broad range of substrates including semiconductors, plastics, textiles, and metals. Application of the technology is highlighted through three examples: demonstration of high-performance mid-IR photonic sensors on fluoride crystals, direct fabrication of photonic structures on graphene, and 3-D photonic integration on flexible plastic substrates.

  6. Metal-ion spin-on glasses: Novel materials for active waveguides

    SciTech Connect

    Ashby, C.I.H.; Sullivan, C.T.; Vawter, G.A.; Hohimer, J.P.; Hadley, G.R.; Neal, D.R.

    1993-12-31

    Monolithic integration of a rare-earth-ion-based active waveguide on the same wafer as its diode pump laser would permit compact packaging of the technology demonstrated in fiber lasers and amplifiers. This new monolithic technology would offer the potential for developing compact infrared and visible (up-conversion) lasers, amplifiers, and other photonic integrated circuit components. One approach that we are investigating for such monolithic integration uses a high concentration of one or more rare-earth ions incorporated into polysiloxane spin-on glasses that are solvent-cast onto III-V semiconductor wafers. This ``fiber on a chip`` technology substitute a relatively high-ion-concentration, short-length metal-ion spin-on glass (MISOG) waveguide for the low-ion-concentration, long-length fiber. Progress to data on developing MISOG waveguide materials and technology is discussed.

  7. Surface diffusion of molecular glasses: Material dependence and impact on physical stability

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Yu, Lian

    Surface diffusion coefficients have been measured for molecular glasses tris-naphthylbenzene (TNB) and PMMA oligomers by surface grating decay. Surface diffusion on TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg, while the process is very slow on PMMA. Along with the previous results on o - terphenyl, nifedipine, indomethacin, and polystyrene oligomers, we find that surface diffusion slows down with increasing molecular size and intermolecular forces, whereas bulk diffusion has a weaker material dependence. The molecular glasses studied show fast crystal growth on the free surface. A general correlation is observed between the coefficient of surface diffusion and the velocity of surface crystal growth, indicating surface crystallization is supported by surface mobility. (Zhu, L., et al. Phys. Rev. Lett. 106 (2011): 256103; Zhang, W., et al. J. Phys. Chem. B 119 (2015): 5071-5078) Nsf.

  8. Influence of cerium on the pulsed UV nanosecond laser processing of photostructurable glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Adams, P. M.; Helvajian, H.

    2005-07-01

    Photostructurable glass ceramic (PSGC) materials contain a sensitizer that is used to facilitate the optical exposure process. The primary role of the sensitizer is to absorb incident radiation and generate photoelectrons. With thermal treatment, these photoelectrons can then interact with nascent metal ions to induce the formation of metallic clusters and the precipitation of a soluble crystalline phase in the glass matrix. The photo-ionization efficiency of the sensitizer species is strongly dependent on its spectral absorption and oxidation state in the base glass. Stabilizing compounds are typically added to the glass matrix to maintain the photo-active oxidation state and promote efficient exposure. To investigate the effectiveness of the photo-initiator, we have conducted experiments in which sample coupons of a commercial PSGC material (Foturan™, Schott Corp., Germany) were carefully exposed to various photon doses by pulsed UV nanosecond lasers at λ = 266 nm and 355 nm. Foturan is a lithium aluminosilicate glass that contains trace amounts of cerium as the photosensitive agent (0.01-0.04 wt.% admixture Ce 2O 3). The photo-initiator efficiency was investigated by using samples with cerium and without cerium. The irradiation wavelengths were selected because they lie above and below the primary absorption band of the cerium photo-initiator. Optical transmission spectroscopy (OTS) was employed to identify and monitor the population density of the photo-induced trapped electron state as a function of incident laser irradiance. The irradiated samples were thermally processed and then analyzed again with OTS to measure the quenching of the trapped electron state and the concurrent growth of a spectral band associated with the formation of nanometer-scale metallic clusters. The growth of metallic clusters signifies the "fixing" of the exposure and permanent image formation in the glass. The OTS results reveal that for λ = 266 nm laser irradiation, at least two

  9. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  10. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications.

    PubMed

    Lee, Yl Kwon; Lee, Jin Seok; Heo, Jong; Im, Won Bin; Chung, Woon Jin

    2012-08-01

    Phosphor-in-glass (PiG) typed robust color converters were fabricated using Pb-free silicate glasses for high-power white LED applications. SiO2-B2O3-RO(R=Ba,Zn) glass powder showed good sintering behavior and high visible transparency under the sintering condition of 750 °C for 30 min without noticeable interaction with phosphors. By simply changing the thickness of the PiG plate or mixing ratio of glass to Y3Al5O12:Ce3+ phosphor, CIE chromaticity coordinates of the LED can be easily controlled. Enhanced thermal quenching property of PiG compared to phosphor with conventional silicone resin suggests its prominent feasibility for high-power/high-brightness white LEDs. PMID:22859157

  11. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Chen, G.

    2012-08-01

    In the present paper, the penetration experiments of tungsten-fiber/metallic-glass matrix composite material bullets into 45# steel targets are conducted by employing H25 artillery. In which, an experimental technique of sub-caliber penetration is constructed. The quasi static and dynamic behaviours of tungsten-fiber/metallic-glass matrix composite material are also experimental investigated. The self-sharpening phenomenon of composite material is observed. Integrated with metallographic analysis, the failure modes of tungsten-fiber/metallic-glass matrix composite material are identified systemically and compared with the quasi-static and dynamic material tests. It includes four failure modes, i.e., shear fracture of tungsten fiber, brittle fracture of tungsten fiber and shear fracture of metallic glass matrix as well as melting of tungsten fiber and metallic glass matrix. Comparatively, three failure mechanisms of tungsten fiber in the bullet nose are also identified, i.e., shear fracture, splitting fracture and bending or/and buckling. Finally, the mechanism of self-sharpening behaviour of tungsten-fiber/metallic-glass matrix composite material is discussed.

  12. Use of glass ceramic as a structural material for a high-precision space telescope

    NASA Astrophysics Data System (ADS)

    Juranek, Hans J.; Kleer, G.; Doell, W.

    1994-09-01

    SILEX is the acronym for Satellite InterLink EXperiment. By this experiment ESA (European Space Agency) starts the optical communication technique in space. Similar to the usual RF-communication technique the optical technique requires antennas for transmitting and receiving signals. Such antennas are telescopes. For Silex a two mirror telescope of an aperture of 250 mm was specified. To gain the benefits of optical communication such a telescope must fulfil extreme optical performances, especially concerning the wavefront quality which is strongly governed by the stability of the telescope structure. Thus the structure of SILEX telescope must guarantee a stability of +/- 2 microns over 320 mm in length. This figure must be maintained for 10 years under extreme environmental conditions, this especially concerns temperature, irradiation, ageing and above all launch loads. Looking at this area the glass ceramic ZERODUR was a very promising material to be used as a structural material provided one overcomes the justified concern on its mechanical reliability due to the fact that it is a brittle material similar to glass. This contribution presents solutions of the basic problems in structural design, the means of material and process qualification, and final qualification against launch loads of the critical structural item.

  13. Energy and material use in the production of insulating glass windows

    SciTech Connect

    Saito, Masaya; Shukuya, Masanori

    1996-10-01

    Waste heat, waste material, and waste water are estimated for the production of glass sheets and aluminum frames for architectural window systems. The purpose is to compare the wasted energy and matter in the production process and the heat loss through the window systems. Raw materials, fossil fuels, and fresh water are inputs, while waste heat, waste material, and waste water in addition to the products are outputs. Waste heat of 16.9 MJ versus 502.5 MJ, waste materials of 0.7 kg versus 5.4 kg, and waste water of 0.05m{sup 3} versus 0.37m{sup 3} are given off in the production of a glass sheet of 1 kg versus an aluminum frame of 1 kg. A comparison of a single glazed window and a double glazed window was made in terms of the waste heat at the production stage and the heat loss through the windows. It was found that the sum of the waste heat and the heat loss in the case of a double glazed window becomes smaller than in the case of a single glazed window within the first winter season in Tokyo. 9 refs., 5 figs., 1 tab.

  14. A continuum thermo-inelastic model for damage and healing in self-healing glass materials

    SciTech Connect

    Xu, Wei; Sun, Xin; Koeppel, Brian J.; Zbib, Hussein M.

    2014-07-08

    Self-healing glass, a recent advancement in the class of smart sealing materials, has attracted great attention from both research and industrial communities because of its unique capability of repairing itself at elevated temperatures. However, further development and optimization of this material rely on a more fundamental and thorough understanding of its essential thermo-mechanical response characteristics, which is also pivotal in predicting the coupling and interactions between the nonlinear stress and temperature dependent damage and healing behaviors. In the current study, a continuum three-dimensional thermo-inelastic damage-healing constitutive framework has been developed for the compliant self-healing glass material. The important feature of the present model is that various phenomena governing the mechanical degradation and recovery process, i.e. the nucleation, growth, and healing of the cracks and pores, are described with distinct mechanism-driven kinetics, where the healing constitutive relations are propagated from lower-length scale simulations. The proposed formulations are implemented into finite element analyses and the effects of various loading conditions and material properties on the material’s mechanical resistance are investigated.

  15. Influence of material selection and fabrication process repeatability on mechanical properties of glass-polymer matrix composite structures

    NASA Astrophysics Data System (ADS)

    Edwards, Charles

    This study has aimed to evaluate property uniformity from data obtained utilizing one design of a single layup composite plaque, three sources of glass fibers and a single, industry accepted resin to produce a repeatable fabrication process. This thesis has investigated the following: (1) Whether the type of glass (E-Glass, S-Glass, and R-Glass) influences the property values of individually tested samples compared between glass types. (2) Whether the type of glass influences the property uniformity throughout the set of tested samples. (3) Whether the composite plaque design and resulting performance, as defined by ASTM Standards or industry accepted parameters, is adequate for use in the defined military application or wind specific application. The resulting data showed trends that established the relationship between the mechanical properties of the materials used in constructing the composites and the properties of fabricated composite test plaques. The S-glass resulted in the highest ultimate fracture strength and modulus, yet had the highest properties per cost value. The E-glass demonstrated the worst mechanical properties of the three grades, however had the highest value comparing properties to cost. All of the composites were fabricated at <2% void content and considered a quality test sample.

  16. Simulated alteration tests on non-radioactive SON 68 nuclear glass in the presence of corrosion products and environmental materials

    NASA Astrophysics Data System (ADS)

    Jollivet, Patrick; Minet, Yves; Nicolas, Michèle; Vernaz, Étienne

    2000-10-01

    Alteration tests with non-radioactive French SON 68 (R7T7-type) nuclear glass in the presence of simulated metal canister corrosion products (CP) or environmental materials (EM) were simulated using the LIXIVER2 computer code. The code incorporates hypotheses concerning glass alteration in aqueous media based on the first-order kinetic law for total silicon with variable silicon retention in the gel and silicon diffusion in the gel interstitial water, coupled with silicon adsorption and diffusion in the materials in contact with the glass. The canister CP are considered as a localized medium with a mass adsorption capacity Rad, while the EM are considered as a porous medium with a diffusion coefficient Dp and a distribution coefficient Kd. L IXIVER2 simulates these media in one-dimensional Cartesian geometry. The Kd values determined by simulating alteration tests logically increase with the aggressiveness of the materials with respect to the glass.

  17. Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment

    NASA Technical Reports Server (NTRS)

    Berkebile, Stephen; Street, Kenneth W., Jr.; Gaier, James R.

    2012-01-01

    The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions

  18. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials

    NASA Astrophysics Data System (ADS)

    Khamzin, A. A.; Popov, I. I.; Nigmatullin, R. R.

    2013-06-01

    In the frame of fractional-kinetic approach, the model of the structural α-relaxation in the presence of the secondary β-relaxation processes is suggested. The model is based on the rigorous bond between β-processes with α-process and leads to the generalized and justified expression for the complex dielectric permittivity (CDP). It allows to form a new sight on the problem of the fitting of multi-peak structure of the dielectric loss spectra in glass-forming materials. The consistency of the CDP expressions obtained is based on a good fit of experimental data for binary methanol-water mixtures.

  19. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials.

    PubMed

    Khamzin, A A; Popov, I I; Nigmatullin, R R

    2013-06-28

    In the frame of fractional-kinetic approach, the model of the structural α-relaxation in the presence of the secondary β-relaxation processes is suggested. The model is based on the rigorous bond between β-processes with α-process and leads to the generalized and justified expression for the complex dielectric permittivity (CDP). It allows to form a new sight on the problem of the fitting of multi-peak structure of the dielectric loss spectra in glass-forming materials. The consistency of the CDP expressions obtained is based on a good fit of experimental data for binary methanol-water mixtures. PMID:23822251

  20. Laser Induced Reverse Transfer with metal and hybrid material prepared with sol-gel process used on glass substrate

    NASA Astrophysics Data System (ADS)

    Flury, Manuel; Pédri, Claude

    2013-08-01

    This article presents a possible use of Laser Induced Reverse Transfer (LIRT) for metal deposition combined with hybrid material prepared using the sol-gel process. The goal was to obtain two dimensional metal gratings with inorganic-organic hybrid material protection on low cost glass substrates. The hybrid material using the sol-gel material is employed here to give better adhesion of metal deposited by LIRT on glass substrates, and also to possibly cover the metal structure. The hybrid material was an organically modified silicate glass based on methacryloxypropyltri-methoxysilane (MATPMS) and zirconium propoxide. The proposed process permits to prototype rapidly small diffractive structure in amplitude mode or to mark two dimensional complicated patterns without complex technologies employing a focalized and computer controlled Nd-YAG laser at 1064 nm. The different steps of the technology are also discussed.

  1. Axially substituted phthalocyanine/naphthalocyanine doped in glass matrix: an approach to the practical use for optical limiting material.

    PubMed

    Yuan, Hua; Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Yang, Guoqiang

    2016-05-01

    A novel glass matrix doped with phthalocyanine or naphthalocyanine is prepared by a modified sol-gel technique. The photophysical and optical limiting properties of the phthalocyanine compounds both in glass matrix and in THF solution were investigated. The obtained glass matrix is homogeneous and transparent, as well as mechanically and thermodynamically stable enough to withstand very high laser fluence; the optical limiting performances of these compound samples are better than that of benchmark materials like C60 in toluene, carbon black in water, and graphene oxide in water or ethanol under nanosecond pulsed laser at 532 nm. Two prototypes of optical limiters doped in the glass matrix have very good optical limiting performances, which may provide potential practical use for optical limiting materials in a near future. PMID:27137586

  2. Effect of Industrial Raw Materials on the Glass-Forming Ability, Magnetic and Mechanical Properties of Fe-Based Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Cai, Yongqian; Ling, Haibo; Jiang, Tao

    2015-12-01

    Pseudo-ternary Fe78P13C9 (the real composition is Fe77.6Si1.4P12.7C8.3) bulk metallic glasses (BMGs) with the maximum diameter of 1.5 mm based on industrial raw materials has been prepared by J-quenching technique using the master alloys with fluxing treatment, whereas fully amorphous alloy rod with the diameter of 1.0 mm cannot be obtained by the same preparation method using the master alloy without fluxing treatment. It is indicated that the glass formation ability (GFA) of the present Fe-based alloys based on industrial raw materials can be greatly enhanced through fluxing treatment. For comparison, the amorphous alloy rod with the same composition based on the pure raw materials has also been prepared by the same preparation technique and the critical diameter for fully glass formation gets to 2.0 mm. The DSC result indicates that the present Fe-based BMG based on industrial raw materials reveals higher thermal stability compared with the BMG based on pure raw materials. The magnetic tests show that the saturation magnetizations of the present Fe-based BMGs prepared by pure raw materials and industrial raw material are around 1.40 T, and have no significant difference. Compressive tests show that the present Fe-based BMG based on industrial raw materials exhibits higher compressive fracture strength (3.11 GPa) and slightly less plastic strain (0.8 pct) compared with the BMG based on pure raw materials with the same composition.

  3. Thermal Insulation Properties Research of the Composite Material "Water Glass - Graphite Microparticles"

    NASA Astrophysics Data System (ADS)

    Gostev, V. A.; Pitukhin, E. A.; Ustinov, A. S.; Shelestov, A. S.

    2016-04-01

    Research results for the composite material (CM) "water glass - graphite microparticles" with high thermal stability and thermal insulation properties are given. A composition is proposed consisting of graphite (42 % by weight), water glass Na2O(SiO2)n (50% by weight) and the hardener - sodium silicofluoride Na2SiF6 (8% by weight). Processing technology of such composition is suggested. Experimental samples of the CM with filler particles (graphite) of a few microns in size were obtained. This is confirmed by a study of samples using X-ray diffraction analysis and electron microscopy. The qualitative and quantitative phase analysis of the CM structure was done. Values of limit load causing destruction of the CM were identified. The character of the rupture surface was detected. Numerical values of the specific heat and thermal conductivity were defined. Dependence of the specific heat capacity and thermal conductivity on temperature during monotonic heating was obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. The CM with such properties can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  4. The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials.

    PubMed

    Saygili, Gülbin; Sahmali, Sevil M; Demirel, Figen

    2003-01-01

    The fracture resistance of provisional restorations is an important concern for the restorative dentist. The fracture resistance of a material is directly related to its transverse strength. Six specimens of similar dimensions were prepared from three resins (PMMA, PEMA and BIS acryl-composite). The resins were reinforced with glass and aramid fibers. The samples were tested immediately after the material set, following seven days of wet storage using three-point compression loading. The results were analyzed with an analysis of variance (ANOVA). Fracture resistance of the specimens was statistically different (p < 0.001) among the materials. Specimens reinforced with glass fibers showed higher transverse strength (149.82 MPa). The fiber reinforcement of resin materials increased the strength values (20-50%). Within the limitations of this study, the transverse strengths of PMMA, PEMA and BIS acryl-resin composites were improved after reinforcement with glass and aramid fibers. PMID:12540123

  5. Mesoscale Modeling of Heterogeneous Materials Systems: From Solid Oxide Fuel Cells to Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Abdeljawad, Fadi F.

    Heterogeneous materials systems hold the key to the future development of a broad range of increasingly complex technological applications. For example, multi-phase and/or multi-component materials are at the forefront research on the development of efficient energy devices, and the future generation of structural materials with optimal mechanical properties. In this dissertation, we focus on two materials systems, namely, solid oxide fuel cells (SOFCs) and bulk metallic glasses (BMGs), where we investigate, through theoretical and mesoscale computational models, the role of microstructure on the properties of these heterogeneous systems. For the solid oxide fuel cell project, a computational framework is developed to investigate the topological evolution of Ni phase in SOFC porous anodes, and the accompanying changes to a wide range of microstructural attributes that affect electrochemical performance. Additionally, with the aid of this framework, we study the reduction-oxidation instability, mechanical deformation and damage accumulation in SOFC anodes. In particular, the SOFC project is focused on the role of anode microstructure, characterized by particle size and ratio, on the microstructural stability and mechanical durability of SOFC anodes. For the bulk metallic glass project, a mesoscale model is introduced that accounts for the structural heterogeneity of monolithic BMGs and BMG composites, and captures the fundamental aspects of plastic deformation in such systems. We examine the effect of internal structure, characterized by rigid/soft short range order (SRO), on the deformation behavior of monolithic BMGs, while for BMG composites, we study the role of ductile phase microstructure, particle size, morphology and area fraction, on the mechanical properties and overall ductility of these systems.

  6. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  7. Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass

    SciTech Connect

    Forsberg, C.W.; Elam, K.R.

    1995-01-31

    With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

  8. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  9. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  10. Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.

  11. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    SciTech Connect

    Teixeira, Silvio R.; Souza, Agda E.; Carvalho, Claudio L.; Reynoso, Victor C.S.; Romero, Maximina; Rincón, Jesús Ma.

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  12. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  13. Case Report: Analytical Electron Microscopy of Lung Granulomas Associated with Exposure to Coating Materials Carried by Glass Wool Fibers

    PubMed Central

    Ferreira, Angela S.; Moreira, Valéria B.; Castro, Marcos César S.; Soares, Porfírio J.; Algranti, Eduardo; Andrade, Leonardo R.

    2010-01-01

    Context Man-made vitreous fibers (MMVFs) are noncrystalline inorganic fibrous material used for thermal and acoustical insulation (e.g., rock wool, glass wool, glass microfibers, and refractory ceramic fibers). Neither epidemiologic studies of human exposure nor animal studies have shown a noticeable hazardous effect of glass wools on health. However, MMVFs have been anecdotally associated with granulomatous lung disease in several case reports. Case presentation Here, we describe the case of a patient with multiple bilateral nodular opacities who was exposed to glass wool fibers and coating materials for 7 years. Bronchoalveolar lavage fluid revealed an increased total cell count (predominantly macrophages) with numerous cytoplasmic particles. Lung biopsy showed peribronchiolar infiltration of lymphoid cells and many foreign-body–type granulomas. Alveolar macrophages had numerous round and elongated platelike particles inside the cytoplasm. X-ray microanalysis of these particles detected mainly oxygen/aluminum/silicon and oxygen/magnesium/silicon, compatible with kaolinite and talc, respectively. No elemental evidence for glass fibers was found in lung biopsy. Discussion The contribution of analytical electron microscopy applied in the lung biopsy was imperative to confirm the diagnosis of pneumoconiosis associated with a complex occupational exposure that included both MMVFs and coating materials. Relevance to clinical or professional practice This case study points out the possible participation of other components (coating materials), beyond MMVFs, in the etiology of pneumoconiosis. PMID:20123612

  14. The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material

    NASA Astrophysics Data System (ADS)

    Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.

  15. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    This special issue of Journal of Physics: Condensed Matter presents the Proceedings of the Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, held in Pisa from 17-22 September 2006. This was the fourth of a series of workshops on this theme started in 1995 as a joint initiative of the Università di Pisa and the Scuola Normale Superiore. The 2006 edition was attended by about 200 participants from Europe, Asia and the Americas. As for the earlier workshops, the main objective was to bring together scientists from different areas of science, technology and engineering, to comparatively discuss experimental facts and theoretical predictions on the dynamical processes that occur in supercooled fluids and other disordered materials in non-equilibrium states. The underlying conceptual unity of the field provides a common background for the scientific community working in its various areas. In this edition the number of sessions was increased to cover a wider range of topics of general and current interest, in a larger number of stimulating lectures. The core of the workshop was a set of general lectures followed by more specific presentations on current issues in the main areas of the field. The sessions were in sequence devoted to: non-equilibrium dynamics, aging and secondary relaxations, biomaterials, polyamorphism and water, polymer dynamics I, complex systems, pressure-temperature scaling, thin films, nanometre length-scale studies, folded states of proteins and polymer crystals, theoretical aspects and energy landscape approaches, relaxation and heterogeneous dynamics, rheology in fluids and entangled polymers, biopolymers, and polymer dynamics II. We thank the session chairmen and all speakers for the high quality of their contributions. The structure of this issue of the proceedings follows the sequence of the oral presentations in the workshop, complemented by some papers selected from the poster sessions. Two

  16. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    SciTech Connect

    Simmons-Potter, K.

    1998-07-01

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm{sup {minus}1} and 0.088 cm{sup {minus}1} were calculated at 800 nm and 660 nm respectively.

  17. An Improved Mechanical Material Model for Ballistic Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Pandurangan, B.; Bell, W. C.; Coutris, N.; Cheeseman, B. A.; Fountzoulas, C.; Patel, P.; Templeton, D. W.; Bishnoi, K. D.

    2009-11-01

    In our recent work (Grujicic et al., Int. J. Impact Eng., 2008), various open-literature experimental findings pertaining to the ballistic behavior of soda-lime glass were used to construct a simple, physically based, high strain rate, high-pressure, large-strain mechanical model for this material. The model was structured in such a way that it is suitable for direct incorporation into standard commercial transient non-linear dynamics finite element-based software packages like ANSYS/Autodyn (Century Dynamics Inc., 2007) or ABAQUS/Explicit (Dessault Systems, 2007). To validate the material model, a set of finite element analyses of the edge-on-impact tests was conducted and the results compared with their experimental counterparts obtained in the recent work of Strassburger et al. ( Proceedings of the 23rd International Symposium on Ballistics, Spain, April 2007; Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada). In general, a good agreement was found between the computational and the experimental results relative to: (a) the front shapes and the propagation velocities of the longitudinal and transverse waves generated in the target during impact and (b) the front shapes and propagation velocities of a coherent-damage zone (a zone surrounding the projectile/target contact surface which contains numerous micron and submicron-size cracks). However, substantial computational analysis/experiment disagreements were found relative to the formation of crack centers, i.e. relative to the presence and distribution of isolated millimeter-size cracks nucleated ahead of the advancing coherent-damage zone front. In the present work, it was shown that these disagreements can be substantially reduced if the glass model (Grujicic et al., Int. J. Impact Eng., 2008) is advanced to include a simple macrocracking algorithm based on the linear elastic fracture mechanics.

  18. Process Parameter Effects on Material Removal in Magnetorheological Finishing of Borosilicate Glass

    SciTech Connect

    Miao, C.; Lambroopulos, J.C.; Jacobs, S.D.

    2010-04-14

    We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, with the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth.

  19. Process parameter effects on material removal in magnetorheological finishing of borosilicate glass.

    PubMed

    Miao, Chunlin; Lambropoulos, John C; Jacobs, Stephen D

    2010-04-01

    We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, with the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth. PMID:20357881

  20. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  1. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    SciTech Connect

    Myers, B. R.; Brummond, W.; Armantrout, G.; Shaw, H.; Jantzen, C. M.; Jostons, A.; McKibben, M.; Strachan, D.; Vienna, J. D.

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between the forms

  2. Patterning of silica MCM-41 high-order material on a glass surface by XeCl laser irradiation

    NASA Astrophysics Data System (ADS)

    Panahibakhsh, Somayeh; Hadi Maleki, Mohammad; Jelvani, Saeid

    2015-08-01

    Silica glass samples (with the compositions of SiO2 96.66, Na2O 0.62, MgO 0.80, Al2O3 1.66 and CaO 0.26 in wt%) were irradiated with 5 pulses of a nanosecond XeCl excimer laser at a fluence of 300mJ/cm2 and 1Hz repetition rate. Scanning electron microscopy images of the irradiated area showed that micro and nanostructures were developed on the glass surface by the XeCl laser irradiation. It is found from energy dispersive X-ray analysis, X-ray diffraction analysis and micro-Raman spectroscopy that the structures are fine crystalline patterns of silica MCM-41 materials. It is supposed that crystallization of the glass is induced through the absorption of 308nm wavelength XeCl laser irradiation by silicon ions. Therefore, it is proposed that this method of spatially selective crystallization of glass could be applicable to other glass materials for potential optics and photonics applications.

  3. Effect of the Dosage of Tourmaline on Far Infrared Emission Properties of Tourmaline/Glass Composite Materials.

    PubMed

    Zhang, Hongchen; Meng, Junping; Liang, Jinsheng; Liu, Jie; Zeng, Zhaoyang

    2016-04-01

    Tourmaline/glass composite materials were prepared by sintering at 600 °C using micron-size tourmaline mineral and glass powders as raw materials. The glass has lower melting point than the transition temperature of tourmaline. The Fourier transform infrared spectroscopy showed that the far infrared emissivity of composite was significantly higher than that of either tourmaline or glass powders. A highest far infrared emissivity of 0.925 was obtained when the dosage of tourmaline was 10 wt%. The effects of the amount of tourmaline on the far infrared emission properties of composite was also systematically studied by field emission scanning electron microscope and X-ray diffraction. The tourmaline phase was observed in the composite, showing a particle size of about 70 nm. This meant that the tourmaline particles showed nanocrystallization. They distributed homogenous in the glass matrix when the dosage of tourmaline was not more than 20 wt%. Two reasons were attributed to the improved far infrared emission properties of composite: the particle size of tourmaline-doped was nanocrystallized and the oxidation of Fe2+ (0.076 nm in radius) to Fe3+ (0.064 nm in radius) took place inside the tourmaline-doped. This resulted in the shrinkage of unit cell of the tourmaline in the composite. PMID:27451734

  4. Gel Precursors as Glass and Ceramic Starting Materials for Space Processing Applications Research

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Miller, W. J.

    1985-01-01

    The crystallization kinetics and glass forming ability of reluctant glass formers is investigated. This could ultimately aid the formation of bulk samples of unique glass compositions outside of normal glass forming regions allowing the optimization of certain properties of the glass. One important aspect of processing in space is the containerless undercooling of molten substances. Theoretically, the extent of undercooling can be greatly enhanced by solidifying in the absence of heterogeneous nucleation resulting from contact with crucibles or molds. Techniques were established for the measurement of crystallization kinetics and critical cooling rates. The glass formation ability and crystallization kinetics of Ga2O-43CaO and several Al2O3-CaO compositions were measured. An apparatus was set up to measure the temperature of spherical samples on a thermocouple at large cooling rates. The time and temperature of nucleation is recorded and the probability of nucleation at various cooling rates can be measured.

  5. Structure and high temperature physical properties of glass seal materials in solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Hao, Jie; Zan, Qingfeng; Ai, Desheng; Ma, Jingtao; Deng, Changsheng; Xu, Jingming

    2012-09-01

    Three series of BaO-CaO-SiO2-Al2O3, SrO-SiO2-Al2O3, and SrO-CaO-SiO2-Al2O3 glasses are prepared. Their basic physical properties are measured using dilatometry and differential scanning calorimetry from room temperature to the softening temperature. Their structures are characterized with infrared spectroscopy. The wetting characteristics of all glasses are examined by monitoring the change in shape of a cube specimen on crofer22 substrates from room temperature to flow temperature with a high temperature shape microscope. Five main absorption bands can be distinguished in the infrared absorption spectra of the three systems. The optimum ranges of sealing temperature of the glasses are determined. The 24SrO-16CaO-25SiO2-8Al2O3 glass is found to be the best sealant for the solid oxide electrolyzer/fuel cells under low loading without leakage. SrO improves the wetting ability of the glass by decreasing the contact angle between the glass and crofer22 substrates. The thermal properties of all the glasses fulfill the requirements for sealing solid oxide electrolysis/fuel cells. In terms of air tightness, the SrO-containing glass shows the best wetting ability among other glasses, and is the most suitable sealant for planar solid oxide electrolyzers/fuel cells.

  6. Sodium sulfate from mine-effluent water as a raw material for the glass industry

    SciTech Connect

    Maksin, V.I.; Klyuchnik, I.A.; Krauchenko, L.D.; Standritchuk, O.Z.; Zolotareva, R.S.

    1985-09-01

    The aim of the present study was to investigate the possibilty of using sodium sulfate in glass production. About 20 kg of an experimental batch of sodium sulfate was obtained from the pilot-plant equipment of the Petrovskaya mine under the aegis of the Donets Coal Planning Organization. The particle size distribution of the experimental Na/sub 2/SO/sub 4/ is presented. The analysis of the samples of glass showed that the melting of the glass was identical and that the fining process of the glass occurs more rapidly with the experimental sulfate (1500 degrees C, dwell of 0.5 h) than with the Karabogazsk sulfate.

  7. Optical lead flint glasses: key material in optics since centuries and in future

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2015-09-01

    About 350 years ago a new kind of glass types was invented for decorative purposes such as drinking glasses, bowls and vases. It needed more than 70 years until the capability of these lead flint glasses was discovered to improve the performance of optical systems markedly. Color correction enabled images with resolution more than ten times better than earlier systems opening the view of researchers for new fields in the micro and macro world. Within the next 150 years the progress in optical glass production concentrated on improving quality especially homogeneity, characterization of its properties and achieving larger lenses. The introduction of glass types with considerably different compositions in the 1880s led to complementation of the glass program but not to a replacement of the lead flint glasses. Their outstanding optical properties together with their favorable melting behavior kept them being workhorses in optical systems design. One of the outstanding properties of lead flint glasses is their capability of being cast in large volumes. The size development reached a summit by the end of the 19th century with the lenses of the largest refracting telescopes. Their use as radiation shielding glasses since the second half of the 20th century led to even bigger castings of up to two tons of weight. In the 1990s the other outstanding property made lead flint glass types playing an important role in microlithography. Transmissive optics working with the mercury i-line needs crown and flint glass for dispersion correction of the comparatively broad i-line. The flint glasses had to have utmost transmission in the near UV to reduce thermal lensing as far as possible. This combination of requirements on dispersion and transmission could be fulfilled only by using lead flint glasses. It remains valid in fluorescence microscopy. Here the trend goes to an ever broader spectral range extending from the IR into the UV allowing diffraction limited resolution for many

  8. Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements

    PubMed Central

    Zarr, Robert R; Heckert, N Alan; Leigh, Stefan D

    2014-01-01

    Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m−3 to 180 kg·m−3, and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: λ(ρ,T)=a0+a1ρ+a2T+a3T3+a4e−(T−a5a6)2where λ(ρ,T) is the predicted thermal conductivity (W·m−1·K−1), ρ is the bulk density (kg·m−3), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. λ(ρ,T)=a0+a1ρ+a2T One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs. PMID:26601034

  9. Porous glasses as a matrix for incorporation of photonic materials. Pore determination by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Reisfeld, Pore determination by positron annihilation lifetime spectroscopy R.; Saraidarov, T.; Jasinska, B.

    2004-07-01

    Porous glasses prepared by the sol-gel technique have a variety of applications when incorporated by photonic materials: tunable lasers, sensors, luminescence solar concentrators, semiconductor quantum dots, biological markers. The known methods of pore size determinations, the nitrogen adsorption and mercury porosimetry allow to determine the sizes of open pores. Positron annihilation lifetime spectroscopy (PALS) allows to determine pore sizes also of closed pores. As an example we have performed measurements of non-doped zirconia-silica-polyurethane (ZSUR) ormocer glasses and the same glasses doped with lead sulfide quantum dots. The pore radii range between 0.25-0.38 nm, total surface area 15.5-23.8 m 2/g.

  10. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials

    PubMed Central

    Pazmiño Betancourt, Beatriz A.; Hanakata, Paul Z.; Starr, Francis W.; Douglas, Jack F.

    2015-01-01

    The study of glass formation is largely framed by semiempirical models that emphasize the importance of progressively growing cooperative motion accompanying the drop in fluid configurational entropy, emergent elasticity, or the vanishing of accessible free volume available for molecular motion in cooled liquids. We investigate the extent to which these descriptions are related through computations on a model coarse-grained polymer melt, with and without nanoparticle additives, and for supported polymer films with smooth or rough surfaces, allowing for substantial variation of the glass transition temperature and the fragility of glass formation. We find quantitative relations between emergent elasticity, the average local volume accessible for particle motion, and the growth of collective motion in cooled liquids. Surprisingly, we find that each of these models of glass formation can equally well describe the relaxation data for all of the systems that we simulate. In this way, we uncover some unity in our understanding of glass-forming materials from perspectives formerly considered as distinct. PMID:25713371

  11. Perspectives of photo-modification of glass materials for creating of frequency micro- and nano-converters

    NASA Astrophysics Data System (ADS)

    Smirnov, Vitaly A.; Vostrikova, Liubov I.

    2015-03-01

    Perspectives of photo-modification of different glass materials for creating of the optical frequency micro- and nanoconverters are considered. The experimental results of the nonlinear conversions of the visible laser radiation on the photo-integrated volumetric lattices of the second-order susceptibility, which were fabricated in isotropic glass materials by the action of the pulsed powerful bi-chromatic inter-coherent radiation of YAG:Nd laser, are presented. The experimental investigations of the frequency conversion of the light laser radiation have been performed in potentially perspective materials with variations of the chemical compounds of the fundamental matrix and also by the small changes of the additional doped concentrates. The separate attention was given to considering the samples with content of the rare-earth elements and the detailed analysis of the influence of the chemical compound was carried out.

  12. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method.

    PubMed

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-10-01

    Bioactive glasses (SiO2-P2O5-CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol-gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. PMID:23910279

  13. Measuring the glass transition temperature of EPDM roofing materials: Comparison of DMA, TMA, and DSC techniques

    SciTech Connect

    Paroli, R.M.; Penn, J.

    1994-09-01

    Two ethylene-propylene-diene monomer (EPDM) roofing membranes were aged at 100 C for 7 and 28 days. The T{sub g} of these membranes was then determined by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC) and the results compared. It was found that: (1) T{sub g} data can be obtained easily using the DMA and TMA techniques. The DSC method requires greater care due to the broad step change in the baseline which is associated with heavily plasticized materials. (2) The closest correspondence between techniques was for TMA and DSC (half-height). The latter, within experimental error, yielded the same glass transition temperature before and after heat-aging. (3) The peak maxima associated with tan{delta} and E{double_prime} measurements should be cited with T{sub g} values as significant differences can exist. (4) The T{sub g}(E{double_prime}) values were closer to the T{sub g}(TMA) and T{sub g}(DSC) data than were the T{sub g}(tan{delta}) values. Data obtained at 1 Hz (or possibly less) should be used when making comparisons based on various techniques. An assessment of T{sub g} values indicated that EPDM 112 roofing membrane is more stable than the EPDM 111 membrane. The T{sub g} for EPDM 112 did not change significantly with heat-aging for 28 days at 130 C.

  14. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Haschke, Jan; Amkreutz, Daniel; Rech, Bernd

    2016-04-01

    Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.

  15. Dynamic Mechanical Properties, Crystallization Behavior and Morphology of Nanoscale Tin Fluorophosphate Glass/Polyamide 66 Hybrid Materials.

    PubMed

    Liu, Huiwen; Yang, Jing; Yu, Honglin; Zou, Xiaoxuan; Jing, Bo; Dai, Wenli

    2016-04-01

    The dynamic mechanical properties, crystallization behavior and morphology of nanoscale Tg tin fluorophosphate glass (TFP glass)/polyamide 66 (PA66) hybrid materials were investigated by XRD, DSC and SEM. The experimental results showed that the Tg of TFP/PA66 hybrid decreased and the third relaxation in the highly filled hybrid appeared due to the interaction between the TFP glass and amide groups of PA66. The storage modulus of the hybrid materials increased with increase in the content of TFP at low temperatures but had little effect at high temperatures. This result was attributed to the stiffness depression of the TFP glass when the temperature rose above its Tg and the similar elasticity of the two phases because of the interaction between the components. The degree of crystallinity and a, y crystal content of PA66 both decreased due to the interaction between the two phases. In addition, the phase defect, the size distribution and the compatibility of TFP in the PA66 matrix were discussed by SEM, the results showed that the TFP appeared aggregation partly, but had the favorable compatibility in the PA66 matrix. PMID:27451779

  16. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  17. Iodine confinement into metal-organic frameworks (MOFs)-low temperature sintering glasses to form novel glass composite material (GCM) alternative waste forms.

    SciTech Connect

    Nenoff, Tina Maria; Garino, Terry J.; Sava, Dorina Florentina

    2010-11-01

    The safe handling of reprocessed fuel addresses several scientific goals, especially when considering the capture and long-term storage of volatile radionuclides that are necessary during this process. Despite not being a major component of the off-gas, radioiodine (I{sub 2}) is particularly challenging, because it is a highly mobile gas and {sup 129}I is a long-lived radionuclide (1.57 x 10{sup 7} years). Therefore, its capture and sequestration is of great interest on a societal level. Herein, we explore novel routes toward the effective capture and storage of iodine. In particular, we report on the novel use of a new class of porous solid-state functional materials (metal-organic frameworks, MOFs), as high-capacity adsorbents of molecular iodine. We further describe the formation of novel glass-composite material (GCM) waste forms from the mixing and sintering of the I{sub 2}-containing MOFs with Bi-Zn-O low-temperature sintering glasses and silver metal flakes. Our findings indicate that, upon sintering, a uniform monolith is formed, with no evidence of iodine loss; iodine is sequestered during the heating process by the in situ formation of AgI. Detailed materials characterization analysis is presented for the GCMs. This includes powder X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), thermal analysis (thermogravimetric analysis (TGA)), and chemical durability tests including aqueous leach studies (product consistency test (PCT)), with X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) of the PCT leachate.

  18. Comparative study of the ballistic performance of glass reinforced plastic materials

    SciTech Connect

    Vasudev, A.; Mehlman, M.J.

    1987-07-01

    The study consisted of two parts: 1) selection and characterization of E and S-2 Glass woven roving prepregs suitable for thick ballistic laminate fabrication; and 2) comparative evaluation of the ballistic performance of flat composite laminates ranging in thickness from 1.4'' to 1.9'' fabricated with the prepregs. E and S-2 glass woven roving reinforcements were prepregged with polyester, polyester Interpenetrating Network (IPN), vinylester and epoxy resins. A total of 14 different prepregs (2 E glass, 12 S-2 glass) from seven vendors were selected for evaluation. Two types of fiber finishes (epoxy compatible and starch-oil) were chosen to vary the level of surface compatibility (bond strength) with the particular matrix resin chosen. 8 references, 3 figures, 2 tables.

  19. Evaluation of new geological reference materials for uranium-series measurements: Chinese Geological Standard Glasses (CGSG) and macusanite obsidian.

    PubMed

    Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A

    2013-10-15

    Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community. PMID:24004454

  20. Fabrication and characterization of MCC approved testing material: ATM-WV/205 glass

    SciTech Connect

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-08-01

    The ATM-WV/205 glass was produced in accordance with PNL's QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of this work. The method and procedure to be used in the fabrication and characterization of the ATM-WV/205 glass were specified in two run plans for glass preparation and a characterization plan. The ATM-WV/205 glass meets all specifications. The elemental composition and oxidation state of the glass are within the sponsor's specifications. Visually, the ATM-WV/205 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination and x-ray diffraction revealed low (about 0.5 wt %) concentrations of 3-..mu..m iron chrome spinel crystals and 1-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 20 to 135 ..mu..m, was observed in all samples. 3 refs., 10 figs., 21 tabs.

  1. Gain Enhancement of a Multiband Resonator Using Defected Ground Surface on Epoxy Woven Glass Material

    PubMed Central

    Islam, Mohammad Tariqul; Arshad, Haslina

    2014-01-01

    A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ  × 0.52λ  × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design. PMID:24883354

  2. Gain enhancement of a multiband resonator using defected ground surface on epoxy woven glass material.

    PubMed

    Alam, Md Shahidul; Islam, Mohammad Tariqul; Arshad, Haslina

    2014-01-01

    A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ  × 0.52λ  × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design. PMID:24883354

  3. He-irradiation effects on glass-ceramics for joining of SiC-based materials

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Casalegno, V.; Ghigo, G.; Moskalewicz, T.; Czyrska-Filemonowicz, A.; Ferraris, M.

    2016-04-01

    CaO-Al2O3 (CA) and SiO2-Al2O3-Y2O3 (SAY) glass-ceramics are promising candidates for SiC/SiC indirect joints. In view of their use in locations where high radiation level is expected (i.e. fusion plants) it is important to investigate how radiation-induced damage can modify the material microstructure. To this aim, pellets of both types were irradiated with 5.5 MeV 4He+ ions at an average temperature of 75 °C up to a fluence of almost 2.3·1018 cm-2. This produces a displacement defect density that increases with depth and reaches a value of about 40 displacements per atom in the ion implantation region, where the He-gas reaches a concentration of several thousands of atomic parts per million. X-ray diffractometry and scanning electron microscopy showed no change in the microstructure and in the morphology of the pellet surface. Moreover, a transmission electron microscopy investigation on cross-section lamellas revealed the occurrence of structural defects and agglomerates of He-bubbles in the implantation region for the CA sample and a more homogeneous He-bubble distribution in the SAY pellet, even outside the implantation layer. In addition, no amorphization was found in both samples, even in correspondence to the He implantation zone. The radiation damage induced only occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY).

  4. An evaluation of microleakage of various glass ionomer based restorative materials in deciduous and permanent teeth: An in vitro study

    PubMed Central

    Singla, Teena; Pandit, I.K.; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika

    2011-01-01

    Aim To evaluate the microleakage of recently available glass ionomer based restorative materials (GC Fuji IX GP, GC Fuji VII, and Dyract) and compare their microleakage with the previously existing glass ionomer restorative materials (GC Fuji II LC) in primary and permanent teeth. Method One hundred and fifty (75 + 75) non-carious deciduous and permanent teeth were restored with glass ionomer based restorative materials after making class I cavities. Samples were subjected to thermocycling after storing in distilled water for 24 h. Two coats of nail polish were applied 1 mm short of restorative margins and samples sectioned buccolingually after storing in methylene blue dye for 24 h. Microleakage was assessed using stereomicroscope. Result Significant differences (P < 0.05) were found when inter group comparisons were done. Except when GC Fuji VII (Group III) was compared with GC Fuji II LC (Group II) and Dyract (Group IV), non-significant differences (P > 0.05) were observed. It was found that there was no statistically significant difference when the means of microleakage of primary teeth were compared with those of permanent teeth. Conclusions GC Fuji IX GP showed maximum microleakage and GC Fuji VII showed least microleakage. PMID:23960526

  5. Combinatorial evaluation system for thermal properties of glass materials using a vertical furnace with temperature gradient

    NASA Astrophysics Data System (ADS)

    Todoroki, S.; Inoue, S.; Matsumoto, T.

    2002-04-01

    Critical cooling rate Q for zinc terullite glass system is determined based on the time-temperature-transfer (T-T-T) diagrams, which are compiled by analyzing the crystallized area in the glass sample libraries annealed simultaneously by a furnace with temperature gradient. This method reduces the laborious routine work for preparation compared with the conventional one. Since the surface/volume ratio of the present samples is large, their crystallization is mainly governed by heterogeneous nucleation. Thus, the Q values in this study can be used as a practical index for the glass products whose surface should be free of being ground and/or polished, such as fire-polished lenses, optical fibers and waveguides.

  6. Atomistic materials modeling of complex systems: Carbynes, carbon nanotube devices and bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, Weiqi

    The key to understanding and predicting the behavior of materials is the knowledge of their structures. Many properties of materials samples are not solely determined by their average chemical compositions which one may easily control. Instead, they are profoundly influenced by structural features of different characteristic length scales. Starting in the last century, metallurgical engineering has mostly been microstructure engineering. With the further evolution of materials science, structural features of smaller length scales down to the atomic structure, have become of interest for the purpose of properties engineering and functionalizing materials and are, therefore, subjected to study. As computer modeling is becoming more powerful due to the dramatic increase of computational resources and software over the recent decades, there is an increasing demand for atomistic simulations with the goal of better understanding materials behavior on the atomic scale. Density functional theory (DFT) is a quantum mechanics based approach to calculate electron distribution, total energy and interatomic forces with high accuracy. From these, atomic structures and thermal effects can be predicted. However, DFT is mostly applied to relatively simple systems because it is computationally very demanding. In this thesis, the current limits of DFT applications are explored by studying relatively complex systems, namely, carbynes, carbon nanotube (CNT) devices and bulk metallic glasses (BMGs). Special care is taken to overcome the limitations set by small system sizes and time scales that often prohibit DFT from being applied to realistic systems under realistic external conditions. In the first study, we examine the possible existence of a third solid phase of carbon with linear bonding called carbyne, which has been suggested in the literature and whose formation has been suggested to be detrimental to high-temperature carbon materials. We have suggested potential structures for

  7. Degradation of zinc containing phosphate-based glass as a material for orthopedic tissue engineering.

    PubMed

    Qaysi, Mustafa Al; Petrie, Aviva; Shah, Rishma; Knowles, Jonathan C

    2016-10-01

    Phosphate-based glasses have been examined in many studies as a potential biomaterial for bone repair because of its degradation properties, which can be controlled and allow the release of various elements to promote osteogenic tissue growth. However most of these experiments studied either tertiary or quaternary glass systems. This study investigated a qinternary system that included titanium dioxide for degradation rate control and zinc that is considered to have a role in bone formation. Zinc and titanium phosphate glass discs of different compositions were melt synthesized and samples of each composition was tested for different physical, chemical and biological characteristics via density measurement, X-ray diffraction, differential thermal analysis, mass loss, ion release, scanning electron microscopy, biocompatibility studies via live/dead assays at three time points (day 1, 4, and 7). The results showed that the glass was amorphous and that the all thermal variables decreased as zinc oxide amount raised, mass loss as well as ion release increased as zinc oxide increased, and the maximum rise was with ZnO15. The cellular studies showed that all the formulation showed similar cytocompatibility properties with MG63 except ZnO15, which displayed cytotoxic properties and this was confirmed also by the scanning electron microscope images. In conclusion, replacing calcium oxide with zinc oxide in proportion less than 10 % can have a positive effect on bone forming cells. PMID:27620740

  8. Laser glass: a key material in the search for fusion energy

    SciTech Connect

    Campbell, J H

    1999-06-02

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation.

  9. Fully compatible magneto-optical sol-gel material with glass waveguides technologies: application to mode converters

    NASA Astrophysics Data System (ADS)

    Royer, François; Jamon, Damien; Broquin, Jean-Emmanuel; Amata, Hadi; Kekesi, Renata; Neveu, Sophie; Blanc-Mignon, Marie-Françoise; Ghibaudo, Elise

    2011-01-01

    To overcome the difficult problem of the integration of magneto-optical materials with classical technologies, our group has developped a composite magneto-optical material made of a hybrid organic-inorganic silica type matrix doped by magnetic nanoparticles. Thin films of this material are obtained through a soft chemistry sol-gel process which gives a full compatibility with an integration on glass substarte. Due to an interesting magneto optical activity (Faraday rotation of 310°/cm) several magneto-optical functionnalities have been realized. A thin film of such composite material coated on a pyrex™ substrate acts as non-reciprocal TE/TM mode converter. An hybrid stucture made of a composite film coated on an ion-exchanged glass waveguide has been realized with a good propagation of light through a hybrid mode. Finally, the sol gel process has been adapted in order to obtain 3D inverse opals which should behave as magnetophotonic crystals. Transmittance curves reveal the photonic band gap of such opals doped with magnetic nanoparticles.

  10. Ultra-thin porous glass membranes--an innovative material for the immobilization of active species for optical chemosensors.

    PubMed

    Müller, R; Anders, N; Titus, J; Enke, D

    2013-03-30

    In addition to polymers, porous glasses can be used for the immobilization of indicators, chromoionophores or enzymes. Advantages of these materials include, among others, the photochemical and thermal stability. Porous glass membranes (CPG) based on phase-separated alkali borosilicate glasses with thicknesses of 250-300 μm and dimensions of approximately 9-13 mm² were used in this work. The average pore diameter was found to be between 12 and 112 nm. Initially, the membrane permeability for water was determined. Furthermore, the absorption spectra for the water-soaked membranes were recorded optically. CPG membranes which are pH-sensitive were prepared based on the covalent immobilization of thymol blue and a derivative of styryl acridine. In each case, the absorption spectra of the immobilized indicators are shown. The t90-times vary between 4 and 20 min and were determined for the thermodynamic equilibrium. The influence of the ionic strength on the characteristic curve is discussed and detailed results are given. After the storage time of about 900 days a pH-sensitivity for a CPG membrane styryl acridine derivative sample was still detectable. PMID:23598220

  11. Environmental impact assessment of chlorine in liquid crystal display glass (LCDG) based on material flow analysis.

    PubMed

    Kotani, Kensuke; Masunaga, Shigeki

    2012-12-15

    Liquid crystal display glass (LCDG) may contain chlorine in trace amounts to attain some of its special properties. LCDG is primarily manufactured by glass companies, which then supply the electronic industry for utilization in the manufacture of items such as televisions, computer monitors, etc. In order to be seen as environmentally friendly, some electronic companies that utilize LCDG request that glass companies eliminate halogens such as chlorine from LCDG. The issue of halogens in products is often associated with dioxin-like problems. By using halogen-free LCDG in their manufacturing process, electronic companies aim to enhance their eco-friendly branding. Nevertheless, the real gains in terms of environmental improvement are yet to be assessed. In this study, we discussed the effectiveness of reducing or eliminating chlorine in electrical and electronic products on a scientific basis, by carrying out a quantitative assessment of cancer risk posed by potential emissions of dioxins when discarded LCDG is incinerated. The results indicate that the maximum increase of individual lifetime cancer risk is 3.2 × 10(-10). This level of cancer risk is negligible. Consequently, we suggest that there is no need to introduce stricter standards for chlorine content in LCDG, from the viewpoint of potential dioxin formation. PMID:22947227

  12. Glass lasers.

    PubMed

    Snitzer, E

    1966-10-01

    After a general discussion of the merits of glass vs. crystals as host materials for laser ions, a summary is given of the various glass lasers. Because of its importance as an efficient, room temperature laser the properties of neodymium are considered in greater detail. This includes the nonlaser properties of Nd(3+) in glass, the spectral and temporal emission characteristics of Nd(3+) lasers, and Nd(3+) laser configurations. Separate sections deal with the other two room temperature lasers which use Yb(3+) or Er(3+). The problem of thermal stability of laser cavities is also discussed. Finally, a survey is given of the glasses that are useful as Faraday rotators. PMID:20057584

  13. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  14. Ash from the combustion of Ekibastuzsk coals - a raw material for obtaining glasses and aluminium

    SciTech Connect

    Suleimenov, S.T.

    1984-01-01

    The ash content of the Ekibastuzsk coal deposit is up to 45%. The ash contains 26-30% Al2O3, 60-65% SiO2 and at least 4-5% coke. It was mixed with 20-30% slag from the phosphorus industry and 4-5% sodium sulphate for the making of glass ceramic tiles. The good acid resistance of these tiles makes them suitable for lining the equipment in which Al is extracted from the same ash for producing aluminium sulphate.

  15. Microstructural evolution and electrical properties of base-metal electroded BaTi4O9 materials with B-Si-Ba-Zn-O glass system.

    PubMed

    Chou, Chen-Chia; Su, Yu-Hsuan; Liu, Ze-Ming; Utami, Brianti Satrianti; Chen, Cheng-Sao; Chu, Li-Wen

    2012-09-01

    Barium titanate-based microwave dielectrics usually require relatively high temperatures to sinter, which prevents the use of base metals such as copper for electrodes. In this work, BaTi(4)O(9) microwave dielectric ceramics co-fired with copper electrodes are made possible by adding B-Si-Ba- Zn-O glass to induce liquid-phase sintering at sufficiently low temperature and in reduced atmosphere. The microstructures and electric properties of the BaTi(4)O(9) ceramics thus obtained are carefully examined and studied. Proper glass composition may significantly facilitate mass transportation in the low-temperature co-fired ceramic (LTCC) material, resulting in better densification without serious degradation of electric properties. Although the B2O3/SiO2 ratio enhances the glass mobility during sintering, the BaO/ZnO ratio contributes to the chemical affinity of glass to BaTi(4)O(9) ceramics. In addition, various Ba-Ti-O phases with different Ba/Ti ratios may be found in the specimen through the X-ray diffraction patterns when the BaO/ZnO ratio is varied. If the BaO/ZnO ratio is high and the glass flows easily in the material, the Ba(4)Ti(13)O(30) phase is formed. If the BaO/ZnO ratio is low and the glass flows easily in the material, the BaTi(6)O(13) phase appears. We find that glass-induced Ba(4)Ti(13)O(30) transformation may significantly decrease Qxf values in the BT4-BSBZ materials. Therefore, the appropriate glass composition must be selected to ensure the phase stability of dielectrics to achieve the best performance possible. PMID:23007760

  16. Glass Transition Temperature of Polyetherimide: Relationship between Thin Films and Nanoporous Materials

    NASA Astrophysics Data System (ADS)

    Ozisik, Rahmi; Liu, Tong; Siegel, Richard W.

    2006-03-01

    The glass transition temperature (Tg) of nanoporous polyetherimide (PEI) was investigated using differential scanning calorimetry. Nanosized pores were created by spin coating a solution of PEI and polycaprolactone-diol (PCLD) in their common solvent dichloromethane. The nanoporous structure was created by fast phase separation during spin coating and subsequent removal of PCLD with acetone. Atomic force microscopy, scanning electron microscopy and statistical methods were used to characterize the pore structure. The glass transition temperatures of both the thin PEI films and nanoporous PEI samples were lower than that of bulk PEI. The Tg of nanoporous PEI was found to depend strongly on pore volume fraction. A Monte Carlo simulation was performed to investigate the relationship between thin films and nanoporous systems. The distribution of nearest neighbor distances (h) were obtained from the Monte Carlo simulation, which was biased to create the pore size distribution obtained from experiments. Various moments of h was calculated and used to compare the findings to thin film data.

  17. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  18. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    SciTech Connect

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James; Rodriguez, Mark A.

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  19. Catalytic fabric filtration for simultaneous NO sub x and particulate control. [Catalyst mounted on glass cloth filter material

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-08-01

    The objective of this program is to develop advanced concepts for the removal of NO{sub x} from flue gas emitted by coal-fired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x} emissions to 60 ppm or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). The EERC approach to meeting the program objective involves the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The idea of applying either permanent or throwaway catalysts to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than the maximum operating temperatures of commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost.

  20. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: Sealing glass stability, microstructure and interfacial reactions

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-03-01

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part II of the work examined the sealing glass stability, microstructure development, interfacial reaction, and volatility issues of a 3-cell stack with LSM-based cells. After 6000 h of testing, the refractory sealing glass YSO7 showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

  1. Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji

    2016-07-01

    The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.

  2. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    SciTech Connect

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG. The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.

  3. Near-IR Photoluminescence of Pr/Cu/Sn Tridoped Phosphate Glass: Nonplasmonic Material System Versus Plasmonic Nanocomposite

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Sendova, Mariana

    2015-04-01

    An optical spectroscopy study of Pr2O3, CuO, and SnO tridoped barium phosphate glass prepared by the melt-quenching technique has been carried out, emphasizing near-infrared (IR) emission properties. The material is studied in its nonplasmonic state (as synthesized) and plasmonic form (heat-treated), aiming to elucidate the effects of Cu nanoparticles. The data indicate that Cu+ ions and Sn centers are stabilized in the melt-quenched glass. Broad ultraviolet excitations of both species can lead to near-IR emission of Pr3+ ions via energy transfer. The plasmonic nanocomposite is produced upon heat treatment as Sn2+ reduces Cu+ to Cu0 atoms, ultimately precipitating as Cu nanoparticles sustaining the surface plasmon resonance. Consequently, depletion of primarily Cu+ modified the ultraviolet excitation properties for the sensitized near-IR Pr3+ emission. Further, suppression of the Pr3+ emission from near-IR emitting states 1D2 and 1G4 was observed in the Cu nanocomposite in accord with a "plasmonic diluent" role of the nanoparticles.

  4. Absorption characteristics of glass fiber materials at normal and oblique incidence. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1974-01-01

    The absorption characteristics of several fibrous materials of the Owens Corning 700 Fiberglas Series were measured to determine the variation in impedance as a function of incident angle of the sound wave. The results, indicate that the fibrous absorbents behave as extended reacting materials. The poor agreement between measurement and theory for sound absorption based on the parameters of flow resistance and porosity indicates that this theory does not adequately predict the acoustic behavior of fibrous materials. A much better agreement with measured results is obtained for values calculated from the bulk acoustic parameters of the material.

  5. High-temperature glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Katvala, V. E.; Leiser, D. B.

    1977-01-01

    Reaction-cured glasses resist thermal shock and maintain properties over range of -100 degrees Centrigrade to +1,480 degrees Centigrade. Stability makes these excellent materials for high-temperature glassware and tubing or as coatings for porous materials.

  6. δ18O and chemical composition of Libyan Desert Glass, country rocks, and sands: New considerations on target material

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Sighinolfi, Giampaolo; de Michele, Vincenzo; Selmo, Enricomaria

    2011-02-01

    Oxygen isotope and chemical measurements were carried out on 25 samples of Libyan Desert Glass (LDG), 21 samples of sandstone, and 3 of sand from the same area. The δ18O of LDG samples range from 9.0‰ to 11.9‰ (Vienna Standard Mean Ocean Water [VSMOW]); some correlations between isotope data and typological features of the LDG samples are pointed out. The initial δ18O of a bulk parent material may be slightly increased by fusion due to the loss of isotopically light pore water with no isotope exchange with oxygen containing minerals. Accordingly, the δ18O of the bulk parent material of LDG may have been about 9.0 ± 1‰ (VSMOW). The measured bulk sandstone and sand samples have δ18O values ranging from 12.6‰ to 19.5‰ and are consequently ruled out as parent materials, matching the results of previous studies. However, separated quartz fractions have δ18O values compatible with the LDG values suggesting that the modern surface sand inherited quartz from the target material. This hypothesis fits previous findings of lechatelierite and baddeleyite in these materials. As the age of the parent material reported in previous studies is Pan-African, we measured the δ18O values of bulk rock and quartz from intrusives of Pan-African age and the results obtained were compatible with the LDG values. The main element abundances (Fe, Mg, Ca, K, Na) in our LDG samples conform to previous estimates; Fe, Mg, and K tend to be higher in heterogeneous samples with dark layers. The hypothesis of a low-altitude airburst involving silica-rich surface materials deriving from weathered intrusives of Pan-African age, partially melted and blown over a huge surface by supersonic winds matches the results obtained.

  7. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  8. Potential utilization of glass experiments in space

    NASA Technical Reports Server (NTRS)

    Kreidl, N. J.

    1984-01-01

    Materials processing in space utilizing the microgravity environment is discussed; glass processing in particular is considered. Attention is given to the processing of glass shells, critical cooling rate and novel glasses, gel synthesis of glasses, immiscibility, surface tension, and glass composites. Soviet glass experiments in space are also enumerated.

  9. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered. PMID:22098879

  10. A study of rheology, processing and phase behavior of engineered inorganic glass-organic polymer hybrid materials

    NASA Astrophysics Data System (ADS)

    Guschl, Peter Christopher

    Due to the consequence of expensive development costs that arise with manufacturing and synthesizing new polymers, interest in polymer blends has gained considerable attention in recent years. It is well known that the production of miscible and immiscible blends of polymers can lead to composite materials with special chemical, thermal, mechanical, and rheological properties. The morphology of immiscible polymer blends arises during mixing and is affected by the processing conditions, particular interactions, and the interfacial tension and viscosity ratio between the components. The significance of the interfacial energy between the blend components and its inherent effect on the rheology is of extreme importance to others and our research. Understanding the effect that the blending conditions and compositions of the phases have on the overall morphology can allow manipulation of this morphology that can lead to uniquely tailored materials. Recent developments of low-Tg inorganic phosphate glasses (Pglass) have led to interest in inorganic-organic hybrids that can be processed via conventional thermoplastic blending and injection molding at low temperatures (below 350°C). This dissertation discusses the continued research of Otaigbe and coworkers by using a special low-Tg (˜120°C), tin-based phosphate glass (Pglass) blended with thermoplastics such as polystyrene (PS), low-density polyethylene (LDPE), and polypropylene (PP). The present research demonstrates a facile method for producing unique inorganic-organic hybrids under low temperatures with tailored properties. This is made possible by the relative ease of deformation and elongation of the low-Tg Pglass phase within the polymer melt matrix. We analyzed the rheology, morphology, and ultimately the processing conditions on the Pglass-polymer hybrids. Additionally, the crystallization behavior was observed for the semicrystalline LDPE and PP matrices with varying amounts of Pglass. Experiments on the phase

  11. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    DOE PAGESBeta

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less

  12. Materials and design experience in a slurry-fed electric glass melter

    SciTech Connect

    Barnes, S.M.; Larson, D.E.

    1981-08-01

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant.

  13. Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Livingston, Frank E.; Adams, Paul M.; Helvajian, Henry

    2004-10-01

    We have performed experiments in which sample coupons of a commercial photostructurable glass ceramic (PSGC) material have been carefully exposed to various photon doses by pulsed UV nanosecond lasers at λ = 266 nm and λ = 355 nm. Following UV laser irradiation, the samples were analyzed by optical transmission spectroscopy to investigate the latent image and identify the photo-induced trapped (defect) state. The irradiated samples were thermally processed and the quenching of this trapped state and the concurrent growth of a spectral band associated with the formation of nanometer-scale metallic clusters was then observed using optical transmission spectroscopy. The results show that exposure at λ = 266 nm generates a defect state distribution that is markedly broader compared with the defect state distribution that is generated via λ = 355 nm excitation. The defect concentration formed with λ = 266 nm radiation is also much larger compared with the defect concentration associated with λ = 355 nm exposure. The results reveal that the metallic cluster concentration saturates with increasing laser irradiance, while the defect state concentration does not saturate. These studies have identified two precursor states of the exposed PSGC material that are tractable via spectroscopic techniques and could be used to refine the laser exposure and thermal processing of PSGC materials.

  14. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation.

    PubMed

    Renno, A C M; Nejadnik, M R; van de Watering, F C J; Crovace, M C; Zanotto, E D; Hoefnagels, J P M; Wolke, J G C; Jansen, J A; van den Beucken, J J J P

    2013-08-01

    Calcium phosphate cements (CPCs) have been widely used as an alternative to biological grafts due to their excellent osteoconductive properties. Although degradation has been improved by using poly(D,L-lactic-co-glycolic) acid (PLGA) microspheres as porogens, the biological performance of CPC/PLGA composites is insufficient to stimulate bone healing in large bone defects. In this context, the aim of this study was to investigate the effect of incorporating osteopromotive bioactive glass (BG; up to 50 wt %) on setting properties, in vitro degradation behavior and morphological characteristics of CPC/BG and CPC/PLGA/BG. The results revealed that the initial and final setting time of the composites increased with increasing amounts of incorporated BG. The degradation test showed a BG-dependent increasing effect on pH of CPC/BG and CPC/PLGA/BG pre-set scaffolds immersed in PBS compared to CPC and CPC/PLGA equivalents. Whereas no effects on mass loss were observed for CPC and CPC/BG pre-set scaffolds, CPC/PLGA/BG pre-set scaffolds showed an accelerated mass loss compared with CPC/PLGA equivalents. Morphologically, no changes were observed for CPC and CPC/BG pre-set scaffolds. In contrast, CPC/PLGA and CPC/PLGA/BG showed apparent degradation of PLGA microspheres and faster loss of integrity for CPC/PLGA/BG pre-set scaffolds compared with CPC/PLGA equivalents. Based on the present in vitro results, it can be concluded that BG can be successfully introduced into CPC and CPC/PLGA without exceeding the setting time beyond clinically acceptable values. All injectable composites containing BG had suitable handling properties and specifically CPC/PLGA/BG showed an increased rate of mass loss. Future investigations should focus on translating these findings to in vivo applications. PMID:23364896

  15. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    PubMed

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-01

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers. PMID:26281016

  16. Novel glass-forming organic materials. 2. Structure and fluorescence of pyrene- and carbazole-containing cyclohexane, bicyclooctene, and adamantane

    SciTech Connect

    Mastrangelo, J.C.; Conger, B.M.; Chen, S.H.

    1997-01-01

    A series of novel glass-forming organic materials consisting of pyrenyl and carbazolyl groups attached to cyclohexane with a 1-axial-2-equatorial configuration, bicyclo[2.2.2]oct-7-ene with an all-exo configuration, and adamantane were synthesized and characterized. On the basis of proton NMR spectra, it was found that the rotation of pendant pyrenyl and carbazolyl groups is restricted in the bicyclic system presumably because of steric hindrance in the all-exo configuration. In contrast, free rotation was found to prevail in cyclohexane- and adamantane-based systems. Fluorescence spectra gathered in solution at room temperature show evidence exclusively for intramolecular excimer formation in pyrene-containing compounds up to a concentration of 10{sup -4} M. On the contrary, carbazole-containing compounds are not prone to excimer formation in the concentration range 10{sup -6}-10{sup -3} M, presumably because of the more stringent requirements of interchromophoric distance and orientation. Although both pyrene and carbazole are highly crystalline on their own, attachment to cyclic, bicyclic, and tricyclic central cores was found to contribute to an ease of vitrification of the hybrid systems with a T{sub g} ranging from 43 to 132 {degrees}C. Moreover, the quenched glasses of all seven model systems were found to possess morphological stability in view of the absence of recrystallization upon heating from 0 to 200 {degrees}C at a heating rate ranging from 0.2 to 20{degrees}C/min. Morphological stability was further supported by the absence of recrystallization upon prolonged thermal annealing at temperatures above T{sub g}. 24 refs., 6 figs.

  17. Multimillion-to-billion atom molecular dynamics simulations of deformation, damage, nanoindentation, and fracture in silica glass and energetic materials

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun

    Multimillion-to-billion molecular dynamics (MD) simulations are carried out to study atomistic mechanisms of deformation, damage and failure in silica glass and energetic materials. The simulations are based on experimentally validated interatomic potentials and employ highly efficiently algorithms for parallel architectures. The onset of void-void interaction is investigated by performing MD simulations of amorphous silica under hydrostatic tension. The simulations reveal that nanocavities in amorphous silica (a-SiO2), which are linked to Si-O rings, play an important role in void-void coalescence and inter-void ligament failure. Nanocracks nucleated by the migration of three-fold coordinated Si and nonbridging O on ---Si-O-Si-O--- rings are observed in the multimillion MD simulations of a single void in amorphous silica subjected to a high shear rate. With the increase in shear strain, nanocracks appear on void surfaces and the voids deform into a threadlike structure. At a strain of 40%, the voids break into fragments. The results are similar to experimental and theoretical studies of bubble deformation and breakup under shear. Defects such as voids are known to be important in the detonation of energetic materials. To investigate deformation of a void in an RDX crystal under high shear rate, we have performed million-atom reactive force field (ReaxFF) MD simulations. Simulations reveal that without breaking a bond, the excess strain energy leads to translational and rotational motion of RDX molecules. At a strain of 13%, molecules with high kinetic energy collapse inward without affecting the rest of the system. MD simulations of nanoindentation in amorphous silica reveal migration of defects and their recombination in the densified plastic region under and the material pileup region around the indenter. The plastic flow of silica glass is related to the defect transport mechanism where a defect migrates a considerable distance via a chain of bond

  18. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  19. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  20. Glass and ceramics. [lunar resources

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  1. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: sealing glass stability, microstructure and interfacial reactions.

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-03-15

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part I of the work addressed the stack fixture, seal system and cell performance of a 3-cell short stack tested at 800oC for 6000h. Commercial NiO-YSZ anode-supported thin YSZ electrolyte cells with LSM cathodes were used for assessment and were tested in constant current mode with dilute (~50% H2) fuel versus air. Part II of the work examined the sealing glass stability, microstructure development, interfacial reactions, and volatility issues. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell degradation. After 6000h of testing, the refractory sealing glass YSO77 (Ba-Sr-Y-B-Si) showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified, consistent with thermodynamic calculations. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time (40,000h) weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

  2. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    PubMed

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  3. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOEpatents

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  4. Materials for the General Aviation Industry: Effect of Environment on Mechanical Properties of Glass Fabric/Rubber Toughened Vinyl Ester Laminates

    NASA Technical Reports Server (NTRS)

    McBride, Timothy M.

    1995-01-01

    A screening evaluation is being conducted to determine the performance of several glass fabric/vinyl ester composite material systems for use in primary General Aviation aircraft structures. In efforts to revitalize the General Aviation industry, the Integrated Design and Manufacturing Work Package for General Aviation Airframe and Propeller Structures is seeking to develop novel composite materials and low-cost manufacturing methods for lighter, safer and more affordable small aircraft. In support of this Work Package, this study is generating material properties for several glass fabric/rubber toughened vinyl ester composite systems and investigates the effect of environment on property retention. All laminates are made using the Seemann Composites Resin Infusion Molding Process (SCRIMP), a potential manufacturing method for the General Aviation industry.

  5. Sol-gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Hamzaoui, Hicham El; Bouazaoui, Mohamed; Ouerdane, Youcef; Boukenter, Aziz; Girard, Sylvain; Marcandella, Claude; Duhamel, Olivier

    2016-01-01

    The light emission from a sol-gel-derived Cu-doped silica glass was studied under 10 keV X-ray irradiation using a fibered setup. Both radioluminescence (RL) and optically stimulated luminescence (OSL) were analyzed at different high dose rates up to 50 Gy/s and for different exposure times, yielding accumulated doses up to 50 kGy (in SiO2). Even if a darkening effect appears at this dose level, the material remains X-sensitive after exposure to several kGy. At low dose rate, the scintillation mechanisms are similar to photoluminescence, involving the Cu+ ions electronic levels, contrary to the nonlinear domain (for dose rates higher than 30 Gy/s). This RL, as well as the OSL, could be exploited in their linear domain to measure doses as high as 3 kGy. A thorough study of the OSL signal has shown that it must be employed with caution in order to take the fading phenomenon and the response dependency on stimulation source intensity into consideration.

  6. Material development in the SI sub 3 N sub 4 system using glass encapsulated Hip'ing

    SciTech Connect

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP'ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  7. Baseline LAW Glass Formulation Testing

    SciTech Connect

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  8. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-05-01

    Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO2 glasses with other oxides (PbO, Al2O3 + B2O3, WO3, P2O5, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO2-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  9. Glass strengthening and patterning methods

    DOEpatents

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  10. Comparison of a SiO(2)-CaO-ZnO-SrO glass polyalkenoate cement to commercial dental materials: glass structure and physical properties.

    PubMed

    Wren, A W; Coughlan, A; Laffir, F R; Towler, M R

    2013-02-01

    Glass polyalkenoate cements (GPCs) have previously been considered for orthopedic applications. A Zn-GPC (BT 101) was compared to commercial GPCs (Fuji IX and Ketac Molar) which have a setting chemistry analogous to BT 101. Handling properties (working, T (w) and setting, T (s) times) for BT 101 were shorter than the commercial GPCs. BT 101 also had a higher setting exotherm (S (x) -34 °C) than the commercial GPCs (29 °C). The maximum strengths for BT 101, Fuji IX, and Ketac Molar were 75, 238, and 216 MPa (compressive, σ (c)), and 34, 54, and 62 MPa (biaxial flexural strengths, σ (f)), respectively. The strengths of BT 101 are more suitable for spinal applications than commercial GPCs. PMID:23179999

  11. Mechanisms of wear in single- and two-phase materials: Final report. [Cu, Pb, Al/sub 2/O/sub 3/, Pb borosilicate glass, SiC (Pb-Cu), (Pb-Al/sub 2/O/sub 3/), (glass-Cu), (glass-Al/sub 2/O/sub 3/)

    SciTech Connect

    Macmillan, N.H.

    1987-11-01

    A comparative study has been made of the rolling-tumbling-sliding wear and solid particle erosion behavior of four single-phase materials (Cu, Pb, Al/sub 2/O/sub 3/, and a lead borosilicate glass and of series of ductile-ductile (Pb-Cu), ductile-brittle (Pb-Al/sub 2/O/sub 3/), brittle-ductile (glass-Cu), and brittle-brittle (glass-Al/sub 2/O/sub 3/) composites prepared from them. The same irregularly shaped 600 ..mu..m WC-8 wt.% Co abrasive particles were used throughout this work. Additional erosion measurements have been made on Danto Koruntz, Abresist, and sintered ..cap alpha..-SiC, using similar particles. Some subtle influences of erosive particle wear are documented for the first time, and the inadequacy of the currently available theoretical models to describe the influence of microstructure on erosion is exposed. 77 refs., 154 figs.

  12. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials.

    PubMed

    Jo, Ji-Hoon; Lee, Eun-Jung; Shin, Du-Sik; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag; Jang, Jun-Hyeog

    2009-10-01

    In this study, a poly(epsilon-caprolactone) (PCL)/bioactive glass (BG) nanocomposite was fabricated using BG nanofibers (BGNFs) and compared with an established composite fabricated using microscale BG particles. The BGNFs were generated using sol-gel precursors via the electrospinning process, chopped into short fibers and then incorporated into the PCL organic matrix by dissolving them in a tetrahydrofuran solvent. The biological and mechanical properties of the PCL/BGNF composites were evaluated and compared with those of PCL/BG powder (BGP). Because the PCL/BG composite containing 20 wt % BG showed the highest level of alkaline phosphatase (ALP) activity, all evaluations were performed at this concentration except for that of the ALP activity itself. In vitro cell tests using the MC3T3 cell line demonstrated the enhanced biocompatibility of the PCL/BGNF composite compared with the PCL/BGP composite. Furthermore, the PCL/BGNF composite showed a significantly higher level of bioactivity compared with the PCL/BGP composite. In addition, the results of the in vivo animal experiments using Sprague-Dawley albino rats revealed the good bone regeneration capability of the PCL/BGNF composite when implanted in a calvarial bone defect. In the result of the tensile test, the stiffness of the PCL/BG composite was further increased when the BGNFs were incorporated. These results indicate that the PCL/BGNF composite has greater bioactivity and mechanical stability when compared with the PCL/BG composite and great potential as a bone regenerative material. PMID:19422050

  13. INTRINSIC DOSIMETRY OF GLASS CONTAINERS USED TO TRANSPORT NUCLEAR MATERIALS: Potential Implications to the Field of Nuclear Forensics

    SciTech Connect

    Schwantes, Jon M.; Miller, Steven D.; Piper, Roman K.; Murphy, Mark K.; Amonette, James E.; Bonde, Steven E.; Duckworth, Douglas C.

    2008-09-15

    Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 minutes to ~60 days following exposure to a dose of up to 10,000 Rad. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 50-100 Rad. Three peaks were identified in the TL glow curve at roughly 110oC, 205oC, and 225oC. The intensity of the 205oC peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and little or no variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205oC peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 330 Rad, a 10,000 Rad dose would still be detected 2.7E3 years after exposure. This paper introduces the concept of intrinsic dosimetry, the consideration of a measured dose received to container walls in concert with the physical characteristics of the radioactive material contained inside those walls, as a method for gathering rather unique pathway information about the history of that sample. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.

  14. Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An in vitro study

    PubMed Central

    Chohan, Hitesh; Dewan, Harisha; Annapoorna, B. M.; Manjunath, M. K.

    2015-01-01

    Background and Objectives: Root-end filling is a prudent procedure aimed at sealing the root canal to prevent penetration of tissue fluids into the root canals. An ideal root-end filling material should produce a complete apical seal. Therefore, the aim of this study is to compare the leakage behavior of four different root-end filling materials. Materials and Methods: Sixty-eight maxillary central incisors were obturated with laterally condensed gutta-percha and AH plus sealer. The roots were resected at the level of 3 mm perpendicular to the long axis of the tooth. Root-end cavities were prepared with straight fissure stainless steel bur. The teeth were then divided into four experimental and two control groups, and cavities restored as per the groupings. The teeth were immersed in methylene blue for 48 h, split longitudinally, and dye penetration was measured. Results: A highly significant difference existed in the mean dye penetration of Group I (conventional glass ionomer) and the other groups (resin-modified glass ionomer, polyacid-modified composite, and composite resin). There was no statistically significant difference among the three groups. Conclusions: (1) Significant difference was found in the dye penetration values of conventional glass ionomer cement and other groups. (2) No statistically significant difference was found in the dye penetration values of groups II, III, and IV. PMID:26759803

  15. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  16. Measuring space radiation impact on the characteristics of optical glasses; measurement results and recommendations from testing a selected set of materials

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Gusarov, Andrei I.; Doyle, Dominic B.

    2002-09-01

    Radiation sensitivity of glass is a general concern for the designer of Space optical instruments. ASTRIUM, in cooperation with SCK-CEN, has conducted a study (under ESA sponsorship) to define the approach for the gathering of a comprehensive database to quantify these effects through the use of linear sensitivity coefficients (called "Dose Coefficients"). These "Dose coefficients" cover not only transmittance but also other characteristics such as refractive index. After having recalled the basics of the proposed approach, results of the first irradiation tests which have been run on a selected set of classical glasses nd their Radiation hardened Cerium doped analogs (including BK7, K5, LaK9 and other Schott glasses) will be discussed. PRotons and gamma radiation have been performed with the aim to demonstrate equivalence, thus allowing to further considering only gamma radiation for an extensive testing of available glasses. Relaxation impacts on some months period have been tentatively analyzed. All these measurements have been processed and the modeling approach of the radiations impacts has been derived, as shown in the publication from A. Gusarov at this conference. This will constitute the grounds for the building of a comprehensive "Dose Coefficients" data base, as expressed in the publication from D. Doyle also at this conference. From this, recommendations for a sound characterization of radiation impacts on refractive optical materials have been established and are the subject of this publication.

  17. Apollo 15 green glasses.

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Reid, A. M.; Warner, J. L.; Brown, R. W.

    1973-01-01

    The samples analyzed include 28 spheres, portions of spheres, and angular fragments from soil 15101. Emerald green glasses from other soils are identical to those from 15101. The composition of the green glass is unlike that of any other major lunar glass group. The Fe content is comparable to that in mare basalts, but Ti is much lower. The Mg content is much higher than in most lunar materials analyzed to date, and the Cr content is also high. The low Al content is comparable to that of mare basalt glasses.

  18. Er3+ doped germanate-tellurite glass for mid-infrared 2.7 μm fiber laser material

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Cai, Muzhi; Cao, Ruijie; Qian, Shan; Xu, Shiqing; Zhang, Junjie

    2016-03-01

    2.7 μm fluorescence has been achieved in the different concentration Er3+ doped germanate-tellurite glasses. The germanate-tellurite glass shows a good thermal stability and Fourier transform infrared spectra indicates that the mid-infrared transmission spectra performance is good. Based on the measured absorption spectra, the Judd-Ofelt parameters were calculated and discussed. Moreover, the emission spectra of Er3+ doped glasses show that the emission intensity at ~2.7 μm reaches a maximal value and no obvious concentration quenching phenomenon happens even if the ErF3-doping concentration is 1.5 mol%. In addition, the 2.7 μm radiative transition probability and emission cross section is 35.57 s-1 and 13.87×10-21 cm2 corresponding to the Er3+:4I11/2→4I13/2 transition and superior gain performance was also obtained from the prepared glass. Meanwhile, energy transfer mechanism has been investigated in detail. Hence, the spectroscopic characteristics as well as the good thermal property indicate that this kind of glass is an attractive host for developing mid-infrared fiber laser.

  19. Thermodynamics of Glass Melting

    NASA Astrophysics Data System (ADS)

    Conradt, Reinhard

    First, a model based on linear algebra is described by which the thermodynamic properties of industrial multi-component glasses and glass melts can be accurately predicted from their chemical composition. The model is applied to calculate the heat content of glass melts at high temperatures, the standard heat of formation of glasses from the elements, and the vapor pressures of individual oxides above the melt. An E-fiber glass composition is depicted as an example. Second, the role of individual raw materials in the melting process of E-glass is addressed, with a special focus on the decomposition kinetics and energetic situation of alkaline earth carriers. Finally, the heat of the batch-to-melt conversion is calculated. A simplified reaction path model comprising heat turnover, content of residual solid matter, and an approach to batch viscosity is outlined.

  20. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  1. Annual book of ASTM standards. Part 17. Refractories, glass, and other ceramic materials; manufactured carbon and graphite products

    SciTech Connect

    Not Available

    1980-01-01

    The standards are assembled in each part in alphanumeric sequence of their ASTM designation numbers. Each part has two tables of contents: a list of the standards in alphanumeric sequence of their ASTM designations; and a list of the standards classified according to subject. A subject index of the standards and tentatives in each part appears at the back of each volume. This part contains standards concerning refractories; glass and glass products; ceramic whitewares; porcelain enamel and related ceramic-metal systems; ceramics for electronics; manufactured carbon and graphite products; and general methods of testing.

  2. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  3. Transmission electron microscopy for archaeo-materials research: Nanoparticles in glazes and red/yellow glass and inorganic pigments in painted context

    NASA Astrophysics Data System (ADS)

    Fredrickx, Peggy

    2004-10-01

    This dissertation addresses the application of Transmission Electron Microscopy (TEM) to historic objects, concentrating on colour-causing nanoparticles in vitreous materials and pigments with the focus on substrates in lake pigments used in thin glaze layers, and on manuscript illustrations. TEM is well suited for archaeometry: it gives chemical elemental information, imaging and diffraction information and the amount of material needed is minimal. Sample preparation techniques suitable for historic materials are discussed. Nanoparticles can be incorporated in glass through staining. Yellow coloured glass plates contain Ag particles. Baking temperatures and different Ag-salts determine the density of the nanoparticles. Dense layers cause more saturated colours. Red glass plates can be obtained by staining with Cu-salts. Metallic Cu particles have a diameter of about 24 nm. Comparison with XRF results suggests that often a combination of Cu and Ag was used for warmer colours. Red glass can be "flashed" to the substrate glass. Then, the colour is also caused by metallic Cu particles. The red layer often displays a band structure of stacked red and transparent bands. In the transparent bands, no nanoparticles have been found. In lustre-ware, Ag and metallic Cu occur. Their distribution throughout the material determines the colour of the fragment. In both there is a dense top layer with particles of sizes smaller than 15 nm. If this top layer consists of Ag particles, the resulting colour is golden. In one sample, under this top layer the amount of Cu particles increases. This underlying layer causes the colour to redden. Particles are mainly between 5 and 15 nm in diameter. Using reconstructions, it has been demonstrated that TEM can detect and identify a stacking of thin layers in parchment decorations. A pink powder sample from Pompeii consists of a basis of allophane type clay. The lake substrates consist of Al, O, S and their amorphous structure does not seem to

  4. Glass sealing

    SciTech Connect

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  5. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  6. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  7. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baumer, Ursula; Dietemann, Patrick; Koller, Johann

    2009-07-01

    Objects of hinterglasmalerei, reverse-glass paintings, are painted on the back side of glass panels. Obviously, the paint layers are applied in reverse order, starting with the uppermost layer. The finished hinterglas painting is viewed through the glass, thus revealing an impressive gloss and depth of colour. The binding media of two precious objects of hinterglasmalerei from the 16th and 17th century have been identified as almost exclusively resinous. Identification was performed by a special optimised analysis procedure, which is discussed in this paper: solvent extracts are analysed by gas chromatography/mass spectrometry, both with and without derivatisation or hydrolysis. In an additional step, oxalic acid is added to the methanol extracts prior to injection. This attenuates the peaks of the non-acidic compounds, whereas the acids elute with good resolution. The non-acidic compounds are emphasised after injection of the underivatised extracts. This approach minimises compositional changes caused by the sample preparation and derivatisation steps. Chromatograms of aged samples with a very complex composition are simplified, which allows a more reliable and straightforward identification of significant markers for various materials. The binding media of the hinterglas objects were thus shown to consist of mixtures of different natural resins, larch turpentine, heat-treated Pinaceae resin or mastic. Typical compounds of dragon's blood, a natural red resin, were also detectable in red glazes by the applied analysis routine. Identification of the binding media provides valuable information that can be used in the development of an adequate conservation treatment.

  8. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  9. Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications

    NASA Astrophysics Data System (ADS)

    Ferraris, M.; Casalegno, V.; Rizzo, S.; Salvo, M.; Van Staveren, T. O.; Matejicek, J.

    2012-10-01

    This paper reports on the microstructure and properties of two glass-ceramics based on SiO2-Al2O3-MgO (SAMg) and SiO2-Al2O3-Y2O3 (SAY), which have been designed to be used as pressure-less low activation joining materials for SiC/SiC and SiC based components for nuclear applications. Glass-ceramic pellets (SAY and SAMg) were irradiated for approximately 1 year in the reactor core of the LVR-15 research reactor at Nuclear Research Institute Rez, Czech Republic, at about 50 °C, 6.92 × 1024 n/m2 (E > 1 MeV, about 1 dpa in steel); SiC/SiC composites joined by SAY were irradiated about 1 year at High Flux Reactor (HFR), Petten, The Netherlands, 550 °C, 9-11 × 1024 n/m2 (E > 1 MeV, about 1.4-1.8 dpa in C), 600 °C, 16-22 × 1024 n/m2 (E > 1 MeV, about 2.6-3.3 dpa in C) and 820 °C 31-32 × 1024 n/m2(E > 1 MeV, about 5 dpa in C). Optical microscopy with image analysis and scanning electron microscopy (SEM) with X-ray microanalysis (EDS) were used to investigate the glass-ceramics morphology and composition, showing a remarkable similarity before and after neutron irradiation for both glass-ceramics. Comparison of bending strength for irradiated and non-irradiated SAY joined SiC/SiC indicate that the mechanical strength is unaffected by irradiation at these conditions.

  10. Tuning a Wine Glass via Material Tailoring — AN Application of a Method for Optimal Acoustic Design

    NASA Astrophysics Data System (ADS)

    KOOPMANN, G. H.; BELEGUNDU, A. D.

    2001-01-01

    This paper describes a method for optimally designing a structure to “best fit” a specified set of acoustic characteristics, e.g., sound spectrum or radiated power. The method links the disciplines of structural dynamics, acoustics and optimization into a unified methodology. The design variables include, for example, the addition of masses or multiply-tuned resonators to the structure as well as distributions of stiffeners or constrained damping layers. In all cases, the design variables are introduced as external forces (via their impedances) in the equation for the structure that is given as a series expansion of eigen functions. This step eliminates the need for solution of large matrix eigenvalue problems. An acoustic program POWER is used to assess the radiated sound power as a function of the design variables. Various search engines are used within the computer program MATLAB® to determine which design variables give the ‘best fit’ to the acoustic specifications. To illustrate the design method, a wine glass is tuned optimally to move the first four eigenvalues into harmonic relationships. The design variables are small masses that are added to the upper surface of the wine glass. Comparison of the wine glass's radiated sound power with and without the optimal masses indicates an excellent agreement between the specified and measured spectra.