Science.gov

Sample records for glial glutamate uptake

  1. Neuronal vs glial glutamate uptake: Resolving the conundrum.

    PubMed

    Danbolt, N C; Furness, D N; Zhou, Y

    2016-09-01

    Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox. PMID:27235987

  2. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  3. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells.

    PubMed

    Mendez-Flores, Orquidia G; Hernández-Kelly, Luisa C; Suárez-Pozos, Edna; Najimi, Mustapha; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology. PMID:27184733

  4. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells.

    PubMed

    Barbour, B; Szatkowski, M; Ingledew, N; Attwell, D

    Activation of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus, possibly by blocking glutamate uptake. We have studied the effect of arachidonic acid on glutamate uptake into glial cells using the whole-cell patch-clamp technique to monitor the uptake electrically. Micromolar levels of arachidonic acid inhibit glutamate uptake, mainly by reducing the maximum uptake rate with only small effects on the affinity for external glutamate and sodium. On removal of arachidonic acid a rapid (5 minutes) phase of partial recovery is followed by a maintained suppression of uptake lasting at least 20 minutes. Surprisingly, the action of arachidonic acid is unaffected by cyclo-oxygenase or lipoxygenase inhibitors suggesting that it inhibits uptake directly, possibly by increasing membrane fluidity. As blockade of phospholipase A2 prevents the induction of long-term potentiation (LTP), inhibition of glutamate uptake by arachidonic acid may contribute to the increase of synaptic gain that occurs in LTP. During anoxia, release of arachidonic acid could severely compromise glutamate uptake and thus contribute to neuronal death. PMID:2512508

  5. Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice.

    PubMed

    Melendez, Roberto I; Roman, Cristina; Capo-Velez, Coral M; Lasalde-Dominicci, Jose A

    2016-06-01

    The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients. PMID:26567011

  6. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake.

    PubMed

    Rivera-Aponte, D E; Méndez-González, M P; Rivera-Pagán, A F; Kucheryavykh, Y V; Kucheryavykh, L Y; Skatchkov, S N; Eaton, M J

    2015-12-01

    Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of rat astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5mM). These reductions occurred within 4-7 days of exposure to hyperglycemia, whereas reversal occurred between 7 and 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100-μM barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K(+)]o from 3 to 10mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke

  7. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemia-like injury in vitro.

    PubMed

    Panickar, K S; Polansky, M M; Graves, D J; Urban, J F; Anderson, R A

    2012-01-27

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury, including cell swelling, increased free radical production, increased intracellular calcium ([Ca(2+)](i)), mitochondrial dysfunction, and the reduction in glutamate uptake. Astrocyte (glial) swelling is a major component of cytotoxic brain edema in ischemia and, along with vasogenic edema, may contribute to increased intracranial pressure, brain herniation, and additional ischemic injuries. C6 glial cultures were exposed to oxygen-glucose deprivation (OGD) for 5 h, and cell swelling was determined at 90 min after the end of OGD. OGD-induced increases in glial swelling were significantly blocked by trimer 1, but not by the major nonpolyphenol fractions of CE including cinnamaldehyde and coumarin. Increased free radical production, a contributing factor in cell swelling following ischemic injury, was also significantly reduced by trimer 1. Mitochondrial dysfunction, another key feature of ischemic injury, is hypothesized to contribute to glial swelling. Depolarization of the inner mitochondrial membrane potential (ΔΨ(m)) was assessed using a fluorescent dye (tetramethylrhodamine ethyl ester [TMRE]), and was significantly attenuated by trimer 1 as was OGD-induced increased [Ca(2+)](i). Taken together with our previous observation that blockers of [Ca(2+)](i) reduce cell swelling, our results indicate that trimer 1 may attenuate cell swelling by regulating [Ca(2+)](i). Trimer 1 also significantly attenuated the OGD-induced decrease in glutamate uptake. In addition, cyclosporin A, a blocker of the mitochondrial permeability pore (mPT), but not FK506 (that does not block the mPT), reduced the OGD-induced decline in glutamate uptake indicating a role of the mPT in such effects. Thus, the effects of trimer 1 in attenuating the

  8. Retinal Glial Cell Glutamate Transporter is Coupled to an Anionic Conductance

    NASA Astrophysics Data System (ADS)

    Eliasof, Scott; Jahr, Craig E.

    1996-04-01

    Application of L-glutamate to retinal glial (Muller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.

  9. Mechanisms underlying the protective effects of myricetin and quercetin following oxygen/glucose deprivation-induced cell swelling and the reduction in glutamate uptake in glial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    C6 glial cells were exposed to oxygen-glucose deprivation (OGD) in cell culture for 5 hr and cell swelling was determined 90 min after the end of OGD. The OGD-induced increase in swelling was significantly blocked by the two flavonoids studied, quercetin and myricetin. The OGD-induced increase in ...

  10. Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells.

    PubMed

    López-Colomé, Ana María; López, Edith; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-07-01

    Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na(+)-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [(3)H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dose-dependent increase in the transporter activity was detected. This effect was dependent on the activation of the N-methyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function. PMID:27017513

  11. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  12. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  13. Regulation of glutamate carboxypeptidase II hydrolysis of N-acetylaspartylglutamate (NAAG) in crayfish nervous tissue is mediated by glial glutamate and acetylcholine receptors.

    PubMed

    Urazaev, Albert K; Grossfeld, Robert M; Lieberman, Edward M

    2005-05-01

    Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors. PMID:15836619

  14. Transplantation of glial progenitors that overexpress glutamate transporter GLT1 preserves diaphragm function following cervical SCI.

    PubMed

    Li, Ke; Javed, Elham; Hala, Tamara J; Sannie, Daniel; Regan, Kathleen A; Maragakis, Nicholas J; Wright, Megan C; Poulsen, David J; Lepore, Angelo C

    2015-03-01

    Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI. PMID:25492561

  15. Glutamate release from satellite glial cells of the murine trigeminal ganglion.

    PubMed

    Wagner, Lysann; Warwick, Rebekah A; Pannicke, Thomas; Reichenbach, Andreas; Grosche, Antje; Hanani, Menachem

    2014-08-22

    It has been proposed that glutamate serves as a mediator between neurons and satellite glial cells (SGCs) in sensory ganglia and that SGCs release glutamate. Using a novel method, we studied glutamate release from SGCs from murine trigeminal ganglia. Sensory neurons with adhering SGCs were enzymatically isolated from wild type and transgenic mice in which vesicular exocytosis was suppressed in glial cells. Extracellular glutamate was detected by microfluorimetry. After loading the cells with a photolabile Ca(2+) chelator, the intracellular Ca(2+) concentration was raised in SGCs by a UV pulse, which resulted in glutamate release. The amount of released glutamate was decreased in cells with suppressed exocytosis and after pharmacological block of hemichannels. The data demonstrate that SGCs of the trigeminal ganglion release glutamate in a Ca(2+)-dependent manner. PMID:24993296

  16. Changes in NAD(P)H fluorescence and membrane current produced by glutamate uptake into salamander Müller cells.

    PubMed Central

    Barbour, B; Magnus, C; Szatkowski, M; Gray, P T; Attwell, D

    1993-01-01

    1. Glutamate uptake into isolated, whole-cell patch-clamped glial cells was studied by monitoring the increase of cell fluorescence generated as glutamate and NAD(P) were converted into alpha-ketoglutarate and NAD(P)H by glutamate dehydrogenase. The current generated by the glutamate uptake carrier was recorded simultaneously. 2. L-Glutamate evoked an increase of cell fluorescence and an inward uptake current. L- and D-aspartate generated an uptake current but no fluorescence response, consistent with the amino acid specificity of glutamate dehydrogenase. 3. In the absence of external sodium the glutamate-evoked fluorescence response and uptake current were abolished, showing that there is no sodium-independent glutamate uptake across the cell membrane. 4. Varying the glutamate concentration altered both the fluorescence response and the uptake current. The fluorescence response saturated at a lower glutamate concentration than the uptake current, and depended in a Michaelis-Menten fashion on the uptake current. 5. The fluorescence response and the uptake current were reduced by membrane depolarization, and also by removal of intracellular potassium. 6. The dependence of the fluorescence response on uptake current when membrane potential was altered or intracellular potassium was removed was the same as that seen when the external glutamate concentration was altered. 7. These fluorescence studies show that glutamate uptake is inhibited by depolarization and by removal of intracellular potassium, consistent with the conclusion of earlier work in which uptake was monitored solely as a membrane current. The data are consistent with high-affinity electrogenic sodium- and potassium-dependent glutamate uptake with fixed stoichiometry being the only significant influx route for glutamate. Other possible interpretations of the data are also discussed. PMID:8105078

  17. Glial and light-dependent glutamate metabolism in the suprachiasmatic nuclei.

    PubMed

    Leone, M J; Beaule, C; Marpegan, L; Simon, T; Herzog, E D; Golombek, D A

    2015-05-01

    The suprachiasmatic nuclei, the main circadian clock in mammals, are entrained by light through glutamate released from retinal cells. Astrocytes are key players in glutamate metabolism but their role in the entrainment process is unknown. We studied the time dependence of glutamate uptake and glutamine synthetase (GS) activity finding diurnal oscillations in glutamate uptake (high levels during the light phase) and daily and circadian fluctuations in GS activity (higher during the light phase and the subjective day). These results show that glutamate-related astroglial processes exhibit diurnal and circadian variations, which could affect photic entrainment of the circadian system. PMID:25798929

  18. Impairment of Neuronal Glutamate Uptake and Modulation of the Glutamate Transporter GLT-1 Induced by Retinal Ischemia

    PubMed Central

    Varano, Giuseppe Pasquale; Milanese, Marco; Adornetto, Annagrazia; Nucci, Carlo; Bonanno, Giambattista; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto

    2013-01-01

    Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus. PMID:23936321

  19. Nonvesicular Release of Glutamate by Glial xCT Transporters Suppresses Glutamate Receptor Clustering In Vivo

    PubMed Central

    Augustin, Hrvoje; Grosjean, Yael; Chen, Kaiyun; Sheng, Qi; Featherstone, David E.

    2008-01-01

    We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named “genderblind” (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200–300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses. PMID:17202478

  20. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    PubMed

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  1. Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse

    PubMed Central

    Scofield, Michael D.; Boger, Heather; Hensley, Megan; Kalivas, Peter W.

    2014-01-01

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration. PMID:24741055

  2. High-glucose and S100B stimulate glutamate uptake in C6 glioma cells.

    PubMed

    Tramontina, Ana Carolina; Nardin, Patrícia; Quincozes-Santos, André; Tortorelli, Lucas; Wartchow, Krista Minéia; Andreazza, Ana Cristina; Braganhol, Elizandra; de Souza, Diogo Onofre Gomes; Gonçalves, Carlos-Alberto

    2012-07-01

    Diabetes mellitus is a disease associated with several changes in the central nervous system, including oxidative stress and abnormal glutamatergic neurotransmission, and the astrocytes play an essential role in these alterations. In vitro studies of astroglial function have been performed using cultures of primary astrocytes or C6 glioma cells. Herein, we investigated glutamate uptake, glutamine synthetase and S100B secretion in C6 glioma cells cultured in a high-glucose environment, as well as some parameters of oxidative stress and damage. C6 glioma cells, cultured in 12 mM glucose medium, exhibited signals of oxidative and nitrosative stress similar to those found in diabetes mellitus and other models of diabetic disease (decrease in glutathione, elevated NO, DNA damage). Interestingly, we found an increase in glutamate uptake and S100B secretion, and a decrease in glutamine synthetase, which might be linked to the altered glutamatergic communication in diabetes mellitus. Moreover, glutamate uptake in C6 glioma cells, like primary astrocytes, was stimulated by extracellular S100B. Aminoguanidine partially prevented the glial alterations induced by the 12 mM glucose medium. Together, these data emphasize the relevance of astroglia in diabetes mellitus, as well as the importance of glial parameters in the evaluation of diabetic disease progression and treatment. PMID:22359053

  3. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells

    PubMed Central

    da Silva, Larissa Bittencourt; Poulsen, Jeppe Nørgaard; Arendt-Nielsen, Lars; Gazerani, Parisa

    2015-01-01

    This study investigated the presence of cell membrane docking proteins synaptosomal-associated protein, 25 and 23 kD (SNAP-25 and SNAP-23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time- and calcium-dependent manner following calcium-ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose-dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre-incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin-stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP-25 and SNAP-23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP-25 and/or SNAP-23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non-neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA. PMID:25754332

  4. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina.

    PubMed

    Marcaggi, Païkan; Jeanne, Marion; Coles, Jonathan A

    2004-02-01

    Ammonium (NH4+ and/or NH3) and K+ are released from active neurons and taken up by glial cells, and can modify glial cell behaviour. Study of these fluxes is most advanced in the retina of the honeybee drone, which consists essentially of identical neurons (photoreceptors) and identical glial cells (outer pigment cells). In isolated bee retinal glial cells, ammonium crosses the membrane as NH4+ on a Cl- cotransporter. We have now investigated, in the more physiological conditions of a retinal slice, whether the NH4+-Cl- cotransporter can transport K+ and whether the major K+ conductance can transport NH4+. We increased [NH4+] or [K+] in the superfusate and monitored uptake by recording from the glial cell syncytium or from interstitial space with microelectrodes selective for H+ or K+. In normal superfusate solution, ammonium acidified the glial cells but, after 6 min superfusion in low [Cl-] solution, ammonium alkalinized them. In the same low [Cl-] conditions, the rise in intraglial [K+] induced by an increase in superfusate [K+] was unchanged, i.e. no K+ flux on the Cl- cotransporter was detected. Ba2+ (5 mm) abolished the glial depolarization induced by K+ released from photoreceptors but did not reduce NH4+uptake. We estimate that when extracellular [NH4+] is increased, 62-100% is taken up by the NH4+-Cl- cotransporter and that when K+ is increased, 77-100% is taken up by routes selective for K+. This separation makes it possible that the glial uptake of NH4+ and of K+, and hence their signalling roles, might be regulated separately. PMID:15009144

  5. A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance

    PubMed Central

    Ageta-Ishihara, Natsumi; Yamazaki, Maya; Konno, Kohtarou; Nakayama, Hisako; Abe, Manabu; Hashimoto, Kenji; Nishioka, Tomoki; Kaibuchi, Kozo; Hattori, Satoko; Miyakawa, Tsuyoshi; Tanaka, Kohichi; Huda, Fathul; Hirai, Hirokazu; Hashimoto, Kouichi; Watanabe, Masahiko; Sakimura, Kenji; Kinoshita, Makoto

    2015-01-01

    The small GTPase-effector proteins CDC42EP1-5/BORG1–5 interact reciprocally with CDC42 or the septin cytoskeleton. Here we show that, in the cerebellum, CDC42EP4 is exclusively expressed in Bergmann glia and localizes beneath specific membrane domains enwrapping dendritic spines of Purkinje cells. CDC42EP4 forms complexes with septin hetero-oligomers, which interact with a subset of glutamate transporter GLAST/EAAT1. In Cdc42ep4−/− mice, GLAST is dissociated from septins and is delocalized away from the parallel fibre-Purkinje cell synapses. The excitatory postsynaptic current exhibits a protracted decay time constant, reduced sensitivity to a competitive inhibitor of the AMPA-type glutamate receptors (γDGG) and excessive baseline inward current in response to a subthreshold dose of a nonselective inhibitor of the glutamate transporters/EAAT1–5 (DL-TBOA). Insufficient glutamate-buffering/clearance capacity in these mice manifests as motor coordination/learning defects, which are aggravated with subthreshold DL-TBOA. We propose that the CDC42EP4/septin-based glial scaffold facilitates perisynaptic localization of GLAST and optimizes the efficiency of glutamate-buffering and clearance. PMID:26657011

  6. A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance.

    PubMed

    Ageta-Ishihara, Natsumi; Yamazaki, Maya; Konno, Kohtarou; Nakayama, Hisako; Abe, Manabu; Hashimoto, Kenji; Nishioka, Tomoki; Kaibuchi, Kozo; Hattori, Satoko; Miyakawa, Tsuyoshi; Tanaka, Kohichi; Huda, Fathul; Hirai, Hirokazu; Hashimoto, Kouichi; Watanabe, Masahiko; Sakimura, Kenji; Kinoshita, Makoto

    2015-01-01

    The small GTPase-effector proteins CDC42EP1-5/BORG1-5 interact reciprocally with CDC42 or the septin cytoskeleton. Here we show that, in the cerebellum, CDC42EP4 is exclusively expressed in Bergmann glia and localizes beneath specific membrane domains enwrapping dendritic spines of Purkinje cells. CDC42EP4 forms complexes with septin hetero-oligomers, which interact with a subset of glutamate transporter GLAST/EAAT1. In Cdc42ep4(-/-) mice, GLAST is dissociated from septins and is delocalized away from the parallel fibre-Purkinje cell synapses. The excitatory postsynaptic current exhibits a protracted decay time constant, reduced sensitivity to a competitive inhibitor of the AMPA-type glutamate receptors (γDGG) and excessive baseline inward current in response to a subthreshold dose of a nonselective inhibitor of the glutamate transporters/EAAT1-5 (DL-TBOA). Insufficient glutamate-buffering/clearance capacity in these mice manifests as motor coordination/learning defects, which are aggravated with subthreshold DL-TBOA. We propose that the CDC42EP4/septin-based glial scaffold facilitates perisynaptic localization of GLAST and optimizes the efficiency of glutamate-buffering and clearance. PMID:26657011

  7. Glutamate uptake block triggers deadly rhythmic bursting of neonatal rat hypoglossal motoneurons

    PubMed Central

    Sharifullina, Elina; Nistri, Andrea

    2006-01-01

    In the brain the extracellular concentration of glutamate is controlled by glial transporters that restrict the neurotransmitter action to synaptic sites and avoid excitotoxicity. Impaired transport of glutamate occurs in many cases of amyotrophic lateral sclerosis, a devastating motoneuron disease. Motoneurons of the brainstem nucleus hypoglossus are among the most vulnerable, giving early symptoms like slurred speech and dysphagia. However, the direct consequences of extracellular glutamate build-up, due to uptake block, on synaptic transmission and survival of hypoglossal motoneurons remain unclear and have been studied using the neonatal rat brainstem slice preparation as a model. Patch clamp recording from hypoglossal motoneurons showed that, in about one-third of these cells, inhibition of glutamate transport with the selective blocker dl-threo-β-benzyloxyaspartate (TBOA; 50 μ m) unexpectedly led to the emergence of rhythmic bursting consisting of inward currents of long duration with superimposed fast oscillations and synaptic events. Synaptic inhibition block facilitated bursting. Bursts had a reversal potential near 0 mV, and were blocked by tetrodotoxin, the gap junction blocker carbenoxolone, or antagonists of AMPA, NMDA or mGluR1 glutamate receptors. Intracellular Ca2+ imaging showed bursts as synchronous discharges among motoneurons. Synergy of activation of distinct classes of glutamate receptor plus gap junctions were therefore essential for bursting. Ablating the lateral reticular formation preserved bursting, suggesting independence from propagated network activity within the brainstem. TBOA significantly increased the number of dead motoneurons, an effect prevented by the same agents that suppressed bursting. Bursting thus represents a novel hallmark of motoneuron dysfunction triggered by glutamate uptake block. PMID:16455692

  8. Pre- and Postnatal Exposure to Moderate Levels of Ethanol Can Have Long-Lasting Effects on Hippocampal Glutamate Uptake in Adolescent Offspring

    PubMed Central

    de Souza, Daniela F.; Lopes, Fernanda M.; Leite, Marina C.; Gonçalves, Carlos-Alberto

    2015-01-01

    The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control), non-alcoholic beer (vehicle) or 10% (v/v) beer solution (moderate prenatal alcohol exposure—MPAE). Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2). The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge) with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH) content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood. PMID:25978644

  9. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  10. In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T.

    PubMed

    Lanz, Bernard; Xin, Lijing; Millet, Philippe; Gruetter, Rolf

    2014-01-01

    Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied. PMID:24117599

  11. A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking.

    PubMed

    Allam, Sushmita L; Ghaderi, Viviane S; Bouteiller, Jean-Marie C; Legendre, Arnaud; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2012-01-01

    Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy. PMID:23060782

  12. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression.

    PubMed

    Kim, Yong-Ku; Na, Kyoung-Sae

    2016-10-01

    Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel

  13. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer's disease.

    PubMed

    Takahashi, Kou; Kong, Qiongman; Lin, Yuchen; Stouffer, Nathan; Schulte, Delanie A; Lai, Liching; Liu, Qibing; Chang, Ling-Chu; Dominguez, Sky; Xing, Xuechao; Cuny, Gregory D; Hodgetts, Kevin J; Glicksman, Marcie A; Lin, Chien-Liang Glenn

    2015-03-01

    Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer's disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD. PMID:25711212

  14. Characterization of the Visceral Antinociceptive Effect of Glial Glutamate Transporter GLT-1 Upregulation by Ceftriaxone

    PubMed Central

    Roman, K.; Yang, M.; Stephens, Robert L.

    2013-01-01

    Recent studies demonstrate that glial glutamate transporter-1 (GLT-1) upregulation attenuates visceral nociception. The present work further characterized the effect of ceftriaxone- (CTX-) mediated GLT-1 upregulation on visceral hyperalgesia. Intrathecal pretreatment with dihydrokainate, a selective GLT-1 antagonist, produced a reversal of the antinociceptive response to bladder distension produced by CTX. The hyperalgesic response to urinary bladder distension caused by intravesicular acrolein was also attenuated by CTX treatment as was the enhanced time spent licking of abdominal area due to intravesicular acrolein. Bladder inflammation via cyclophosphamide injections enhanced the nociceptive to bladder distension; cohorts administered CTX and concomitant cyclophosphamide showed reduced hyperalgesic response. Cyclophosphamide-induced bladder hyperalgesia correlated with a significant 22% increase in GluR1 AMPA receptor subunit expression in the membrane fraction of the lumbosacral spinal cord, which was attenuated by CTX coadministration. Finally, neonatal colon insult-induced hyperalgesia caused by intracolonic mustard oil (2%) administration at P9 and P11 was attenuated by CTX. These studies suggest that GLT-1 upregulation (1) attenuates the hyperalgesia caused by bladder irritation/inflammation or by neonatal colonic insult, (2) acts at a spinal site, and (3) may produce antinociceptive effects by attenuating GluR1 membrane trafficking. These findings support further consideration of this FDA-approved drug to treat chronic pelvic pain syndromes.

  15. Adenosine Monophosphate-activated Protein Kinase Regulates Interleukin-1β Expression and Glial Glutamate Transporter Function in Rodents with Neuropathic Pain

    PubMed Central

    Maixner, Dylan W.; Yan, Xisheng; Gao, Mei; Yadav, Ruchi; Weng, Han-Rong

    2015-01-01

    Background Neuroinflammation and dysfunctional glial glutamate transporters (GTs) in the spinal dorsal horn (SDH) are implicated in the genesis of neuropathic pain. We determined if adenosine monophosphate-activated protein kinase (AMPK) in the SDH regulates these processes in rodents with neuropathic pain. Methods Hind paw withdrawal responses to radiant heat and mechanical stimuli were used to assess nociceptive behaviors. Spinal markers related to neuroinflammation and glial GTs were determined by Western blotting. AMPK activities were manipulated pharmacologically and genetically. Regulation of glial GTs was determined by measuring protein expression and activities of glial GTs. Results AMPK activities were reduced in the SDH of rats (n = 5) with thermal hyperalgesia induced by nerve injury, which were accompanied with the activation of astrocytes, increased production of interleukin-1beta and activities of glycogen synthase kinase 3β, and suppressed protein expression of glial glutamate transporter-1. Thermal hyperalgesia was reversed by spinal activation of AMPK in neuropathic rats (n = 10), and induced by inhibiting spinal AMPK in naïve rats (n = 7 to 8). Spinal AMPKα knockdown (n = 6) and AMPKα1 conditional knockout (n = 6) induced thermal hyperalgesia and mechanical allodynia. These genetic alterations mimicked the changes of molecular markers induced by nerve injury. Pharmacological activation of AMPK enhanced glial GT activity in mice with neuropathic pain (n = 8) and attenuated glial glutamate transporter-1 internalization induced by interleukin-1β (n = 4). Conclusion These findings suggest enhancing spinal AMPK activities could be an effective approach for the treatment of neuropathic pain. PMID:25710409

  16. Uptake and metabolism of L-(/sup 3/H)glutamate and L-(/sup 3/H)glutamine in adult rat cerebellar slices

    SciTech Connect

    de Barry, J.; Vincendon, G.; Gombos, G.

    1983-10-01

    Using very low concentrations (1 mumol range) of L-2-3-(/sup 3/H)glutamate, (/sup 3/H-Glu) or L-2-3-(/sup 3/H)glutamine (/sup 3/H-Gln), the authors have previously shown by autoradiography that these amino acids were preferentially taken up in the molecular layer of the cerebellar cortex. Furthermore, the accumulation of /sup 3/H-Glu was essentially glial in these conditions. Uptake and metabolism of either (/sup 3/H-Glu) or (/sup 3/H-Gln) were studied in adult rat cerebellar slices. Both amino acids were rapidly converted into other metabolic compounds: after seven minutes of incubation in the presence of exogenous /sup 3/H-Glu, 70% of the tissue accumulated radioactivity was found to be in compounds other than glutamate. The main metabolites were Gln (42%), alpha-ketoglutarate (25%) and GABA (1,4%). In the presence of exogenous /sup 3/H-Gln the rate of metabolism was slightly slower (50% after seven minutes of incubation) and the metabolites were also Glu (29%), alpha-ketoglutarate (15%) and GABA (5%). Using depolarizing conditions (56 mM KCl) with either exogenous /sup 3/H-Glu or /sup 3/H-Gln, the radioactivity was preferentially accumulated in glutamate compared to control. From these results we conclude: i) there are two cellular compartments for the neurotransmission-glutamate-glutamine cycle; one is glial, the other neuronal; ii) these two cellular compartments contain both Gln and Glu; iii) transmitter glutamate is always in equilibrium with the so-called ''metabolic'' pool of glutamate; iv) the regulation of the glutamate-glutamine cycle occurs at least at two different levels: the uptake of glutamate and the enzymatic activity of the neuronal glutaminase.

  17. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease.

    PubMed

    Zumkehr, Joannee; Rodriguez-Ortiz, Carlos J; Cheng, David; Kieu, Zanett; Wai, Thin; Hawkins, Charlesice; Kilian, Jason; Lim, Siok Lam; Medeiros, Rodrigo; Kitazawa, Masashi

    2015-07-01

    Glial glutamate transporter, GLT-1, is the major Na(+)-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD patients, yet the underlying molecular mechanism and its pathological consequence in AD are not well understood. Here, we find the temporal decrease in GLT-1 levels in the hippocampus of the 3xTg-AD mouse model and that the pharmacological upregulation of GLT-1 significantly ameliorates the age-dependent pathological tau accumulation, restores synaptic proteins, and rescues cognitive decline with minimal effects on Aβ pathology. In primary neuron and astrocyte coculture, naturally secreted Aβ species significantly downregulate GLT-1 steady-state and expression levels. Taken together, our data strongly suggest that GLT-1 restoration is neuroprotective and Aβ-induced astrocyte dysfunction represented by a functional loss of GLT-1 may serve as one of the major pathological links between Aβ and tau pathology. PMID:25964214

  18. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake.

    PubMed Central

    Coles, J A; Orkand, R K

    1983-01-01

    Intracellular recordings were made in photoreceptors and glial cells (outer pigment cells) of the superfused cut head of the honey-bee drone (Apis mellifera male). When the [K+] in the superfusate was abruptly increased from 3.2 mM to 17.9 mM both photoreceptors and glial cells depolarized. The time course of the depolarization of the photoreceptors was slower with increasing depth from the surface. Half time of depolarization was plotted against depth: this graph was compatible with the arrival of K+ being exclusively by diffusion through the extracellular clefts. However, as we then showed, this interpretation is inadequate. The time course of depolarization of the glial cells was almost the same at all depths. This indicates that they are electrically coupled. Consequently, current-mediated K+ flux (spatial buffering) through glial cells will contribute to the transport of K+ through the tissue: K+ ions enter the glial syncytium in the region of high external potassium concentration, [K+]0, and an equivalent quantity of K+ ions leave in regions of low [K+]0. Intracellular K+ activity (aiK) was measured with double-barrelled K+-sensitive micro-electrodes in slices of retina superfused on both faces. When [K+] in the superfusate was increased from 7.5 mM to 17.9 mM an increase in aiK was observed in glial cells at all depths in the slice (initial rate 1.7 mM min-1, S.E. of the mean = 0.2 mM min-1), but there was little increase in the photoreceptors (0.3 +/- 0.2 mM min-1). The increase in aiK in glial cells near the centre of the slice could not have been caused by spatial buffering; it presumably resulted from net uptake. We conclude that when [K+] is increased at the surface of this tissue, the build up of K+ in the extracellular clefts depends on extracellular diffusion, spatial buffering and net uptake. The latter two processes, which have opposing effects, involve about 10 times as much K+ as the first. This is in rough agreement with less direct experiments

  19. Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling.

    PubMed

    Hardaway, J Andrew; Sturgeon, Sarah M; Snarrenberg, Chelsea L; Li, Zhaoyu; Xu, X Z Shawn; Bermingham, Daniel P; Odiase, Peace; Spencer, W Clay; Miller, David M; Carvelli, Lucia; Hardie, Shannon L; Blakely, Randy D

    2015-06-24

    Glial cells play a critical role in shaping neuronal development, structure, and function. In a screen for Caenorhabditis elegans mutants that display dopamine (DA)-dependent, Swimming-Induced Paralysis (Swip), we identified a novel gene, swip-10, the expression of which in glia is required to support normal swimming behavior. swip-10 mutants display reduced locomotion rates on plates, consistent with our findings of elevated rates of presynaptic DA vesicle fusion using fluorescence recovery after photobleaching. In addition, swip-10 mutants exhibit elevated DA neuron excitability upon contact with food, as detected by in vivo Ca(2+) monitoring, that can be rescued by glial expression of swip-10. Mammalian glia exert powerful control of neuronal excitability via transporter-dependent buffering of extracellular glutamate (Glu). Consistent with this idea, swip-10 paralysis was blunted in mutants deficient in either vesicular Glu release or Glu receptor expression and could be phenocopied by mutations that disrupt the function of plasma membrane Glu transporters, most noticeably glt-1, the ortholog of mammalian astrocytic GLT1 (EAAT2). swip-10 encodes a protein containing a highly conserved metallo-β-lactamase domain, within which our swip-10 mutations are located and where engineered mutations disrupt Swip rescue. Sequence alignments identify the CNS-expressed gene MBLAC1 as a putative mammalian ortholog. Together, our studies provide evidence of a novel pathway in glial cells regulated by swip-10 that limits DA neuron excitability, DA secretion, and DA-dependent behaviors through modulation of Glu signaling. PMID:26109664

  20. Long-term NMDAR antagonism correlates reduced astrocytic glutamate uptake with anxiety-like phenotype

    PubMed Central

    Zimmer, Eduardo R.; Torrez, Vitor R.; Kalinine, Eduardo; Augustin, Marina C.; Zenki, Kamila C.; Almeida, Roberto F.; Hansel, Gisele; Muller, Alexandre P.; Souza, Diogo O.; Machado-Vieira, Rodrigo; Portela, Luis V.

    2015-01-01

    The role of glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been extensively studied in schizophrenia; however, less is known about its role in anxiety disorders. Recently, it was demonstrated that astrocytic GLT-1 blockade leads to an anxiety-like phenotype. Although astrocytes are capable of modulating NMDAR activity through glutamate uptake transporters, the relationship between astrocytic glutamate uptake and the development of an anxiety phenotype remains poorly explored. Here, we aimed to investigative whether long-term antagonism of NMDAR impacts anxiety-related behaviors and astrocytic glutamate uptake. Memantine, an NMDAR antagonist, was administered daily for 24 days to healthy adult CF-1 mice by oral gavage at doses of 5, 10, or 20 mg/kg. The mice were submitted to a sequential battery of behavioral tests (open field, light–dark box and elevated plus-maze tests). We then evaluated glutamate uptake activity and the immunocontents of glutamate transporters in the frontoparietal cortex and hippocampus. Our results demonstrated that long-term administration of memantine induces anxiety-like behavior in mice in the light–dark box and elevated plus-maze paradigms. Additionally, the administration of memantine decreased glutamate uptake activity in both the frontoparietal cortex and hippocampus without altering the immunocontent of either GLT-1 or GLAST. Remarkably, the memantine-induced reduction in glutamate uptake was correlated with enhancement of an anxiety-like phenotype. In conclusion, long-term NMDAR antagonism with memantine induces anxiety-like behavior that is associated with reduced glutamate uptake activity but that is not dependent on GLT-1 or GLAST protein expression. Our study suggests that NMDAR and glutamate uptake hypofunction may contribute to the development of conditions that fall within the category of anxiety disorders. PMID:26089779

  1. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  2. Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling

    NASA Astrophysics Data System (ADS)

    Cornell-Bell, Ann H.; Finkbeiner, Steven M.; Cooper, Mark S.; Smith, Stephen J.

    1990-01-01

    The finding that astrocytes possess glutamate-sensitive ion channels hinted at a previously unrecognized signaling role for these cells. Now it is reported that cultured hippocampal astrocytes can respond to glutamate with a prompt and oscillatory elevation of cytoplasmic free calcium, visible through use of the fluorescent calcium indicator fluo-3. Two types of glutamate receptor-one preferring quisqualate and releasing calcium from intracellular stores and the other preferring kainate and promoting surface-membrane calcium influx-appear to be involved. Moreover, glutamate-induced increases in cytoplasmic free calcium frequently propagate as waves within the cytoplasm of individual astrocytes and between adjacent astrocytes in confluent cultures. These propagating waves of calcium suggest that networks of astrocytes may constitute a long-range signaling system within the brain.

  3. Sodium-Dependent Glutamate Uptake by an Alkaliphilic, Thermophilic Bacillus Strain, TA2.A1

    PubMed Central

    Peddie, Catherine J.; Cook, Gregory M.; Morgan, Hugh W.

    1999-01-01

    A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70°C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (ΔpNa) across the cell membrane. N,N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillus strain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (ΔΨ), but only when sodium was present. In the absence of sodium, the rate of ΔΨ-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of ΔpNa alone (i.e., no ΔΨ). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 μM, and the Vmax was 0.7 nmol · min−1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues. PMID:10322019

  4. Effect of carnitine on muscular glutamate uptake and intramuscular glutathione in malignant diseases

    PubMed Central

    Breitkreutz, R; Babylon, A; Hack, V; Schuster, K; Tokus, M; Böhles, H; Hagmüller, E; Edler, L; Holm, E; Dröge, W

    2000-01-01

    Abnormally low intramuscular glutamate and glutathione (GSH) levels and/or a decreased muscular uptake of glutamate by the skeletal muscle tissue have previously been found in malignant diseases and simian immunodeficiency virus (SIV) infection and may contribute to the development of cachexia. We tested the hypothesis that an impaired mitochondrial energy metabolism may compromise the Na+-dependent glutamate transport. A randomized double-blind clinical trial was designed to study the effects of L -carnitine, i.e. an agent known to enhance mitochondrial integrity and function, on the glutamate transport and plasma glutamate level of cancer patients. The effect of carnitine on the intramuscular glutamate and GSH levels was examined in complementary experiments with tumour-bearing mice. In the mice, L -carnitine treatment ameliorated indeed the tumour-induced decrease in muscular glutamate and GSH levels and the increase in plasma glutamate levels. The carnitine-treated group in the randomized clinical study showed also a significant decrease in the plasma glutamate levels but only a moderate and statistically not significant increase in the relative glutamate uptake in the lower extremities. Further studies may be warranted to determine the effect of L -carnitine on the intramuscular GSH levels in cancer patients. © 2000 Cancer Research Campaign PMID:10646895

  5. Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models.

    PubMed

    Parsons, Matthew P; Vanni, Matthieu P; Woodard, Cameron L; Kang, Rujun; Murphy, Timothy H; Raymond, Lynn A

    2016-01-01

    It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. PMID:27052848

  6. Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models

    PubMed Central

    Parsons, Matthew P.; Vanni, Matthieu P.; Woodard, Cameron L.; Kang, Rujun; Murphy, Timothy H.; Raymond, Lynn A.

    2016-01-01

    It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. PMID:27052848

  7. Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina.

    PubMed Central

    Schwartz, E A; Tachibana, M

    1990-01-01

    1. Müller cells were isolated from salamander retinas and their membrane voltage was controlled with a whole-cell voltage clamp. External D-aspartate, L-aspartate and L-glutamate each induced a membrane current. D-Glutamate, kainate, quisqualate and N-methyl-D-aspartate were more than 100x less effective than L-aspartate. Kynurenic acid had no effect on the current produced by L-glutamate, L-aspartate or D-aspartate. 2. The current induced by an acidic amino acid (AAA) was completely dependent on the presence of external Na+. Neither Li+, Cs+, choline nor TEA+ were able to substitute for Na+. The relationship between external Na+ concentration and current amplitude can be explained if the binding of three Na+ ions enabled transport. The apparent affinity constant for Na+ binding was 41 mM. Altering K+, H+ and Cl- concentrations demonstrated that these ions are not required for transport. 3. The shape of the current-voltage relation did not depend on the external amino acid concentration. The relationship between D-aspartate concentration and current amplitude can be described by the binding of D-aspartate to a single site with an apparent affinity constant of 20 microM. 4. Influx and efflux of AAA were not symmetric. Although influx was electrogenic, efflux did not produce a current. Moreover, influx stimulated efflux; but efflux inhibited influx. 5. Removing external Na+ demonstrated that Na+ carried a current in the absence of an AAA. Li+ was a very poor substitute for Na+. This current may be due to the uncoupled movement of Na+ through the transporter. The relationship between the external Na+ concentration and the amplitude of the uncoupled current can be explained if the binding of two or three Na+ ions enabled the translocation of Na+ in the absence of an AAA. The apparent affinity constant for Na+ binding was approximately 90 mM. 6. The temperature dependence of the AAA-induced current had a Q10 between 8 and 18 degrees C of 1.95. The Q10 is consistent

  8. The high-mobility group box 1 cytokine induces transporter-mediated release of glutamate from glial subcellular particles (gliosomes) prepared from in situ-matured astrocytes.

    PubMed

    Bonanno, Giambattista; Raiteri, Luca; Milanese, Marco; Zappettini, Simona; Melloni, Edon; Pedrazzi, Marco; Passalacqua, Mario; Tacchetti, Carlo; Usai, Cesare; Sparatore, Bianca

    2007-01-01

    The multifunctional protein high-mobility group box 1 (HMGB1) is expressed in restricted areas of adult brain where it can act as a proinflammatory cytokine. We report here that HMGB1 affects CNS transmission by inducing glutamatergic release from glial (gliosomes) but not neuronal (synaptosomes) resealed subcellular particles isolated from mouse cerebellum and hippocampus. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins such as GFAP and S-100, but not with neuronal proteins such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several approximately 30-nm nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin or ATP, by mechanisms involving extracellular Ca(2+) and Ca(2+) release from intracellular stores. HMGB1-induced release of the stable glutamate analogue [(3)H]d-aspartate and endogenous glutamate form gliosomes, whereas nerve terminals were insensitive to the protein. The HMGB1-evoked release of glutamate was independent on modifications of cytosolic Ca(2+) concentration, but it was blocked by dl-threo-beta-benzyloxyaspartate, suggesting the involvement of transporter-mediated release mechanisms. Moreover, dihydrokainic acid, a selective inhibitor of glutamate transporter 1 does not block the HMGB1 effect, indicating a role for the glial glutamate-aspartate transporter (GLAST) subtype in this response. HMGB1 bind to gliosomes but not to synaptosomes and can physically interact with GLAST and receptor for advanced glycation end products (RAGE). Taken together, these results suggest that the HMGB1 cytokine

  9. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  10. High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells

    PubMed Central

    Thomas, Ajit G.; Sattler, Rita; Tendyke, Karen; Loiacono, Kara A.; Hansen, Hans; Sahni, Vishal; Hashizume, Yutaka; Rojas, Camilo; Slusher, Barbara S.

    2015-01-01

    The cystine-glutamate antiporter (system xc-) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc- expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc- in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc- is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc- inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc-. Human glioma cells were chosen based on their high system xc- activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of

  11. Targeting glutamate uptake to treat alcohol use disorders

    PubMed Central

    Rao, P.S.S.; Bell, Richard L.; Engleman, Eric A.; Sari, Youssef

    2015-01-01

    Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence. PMID:25954150

  12. Glutamate release from platelets: exocytosis versus glutamate transporter reversal.

    PubMed

    Kasatkina, Ludmila A; Borisova, Tatiana A

    2013-11-01

    Platelets express neuronal and glial glutamate transporters EAAT 1-3 in the plasma membrane and vesicular glutamate transporters VGLUT 1,2 in the membrane of secretory granules. This study is focused on the assessment of non-exocytotic glutamate release, that is, the unstimulated release, heteroexchange and glutamate transporter reversal in platelets. Using the glutamate dehydrogenase assay, the absence of unstimulated release of endogenous glutamate from platelets was demonstrated, even after inhibition of glutamate transporters and cytoplasmic enzyme glutamine synthetase by dl-threo-β-benzyloxyaspartate and methionine sulfoximine, respectively. Depolarization of the plasma membrane by exposure to elevated [K(+)] did not induce the release of glutamate from platelets that was shown using the glutamate dehydrogenase assay and radiolabeled l-[(14)C]glutamate. Glutamate efflux by means of heteroexchange with transportable inhibitor of glutamate transporters dl-threo-β-hydroxyaspartate (dl-THA) was not observed. Furthermore, the protonophore cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) and inhibitor of V-type H(+)-ATPase bafilomycin A1 also failed to stimulate the release of glutamate from platelets. However, exocytotic release of glutamate from secretory granules in response to thrombin stimulation was not prevented by elevated [K(+)], dl-THA, FCCP and bafilomycin A1. In contrast to nerve terminals, platelets cannot release glutamate in a non-exocytotic manner. Heteroexchange, transporter-mediated and unstimulated release of glutamate are not inherent to platelets. Therefore, platelets may be used as a peripheral marker/model for the analysis of glutamate uptake by brain nerve terminals only (direct function of transporters), whereas the mechanisms of glutamate release are different in platelets and nerve terminals. Glutamate is released by platelets exclusively by means of exocytosis. Also, reverse function of vesicular glutamate transporters of platelets is

  13. Conditional Deletion of the Glutamate Transporter GLT-1 Reveals That Astrocytic GLT-1 Protects against Fatal Epilepsy While Neuronal GLT-1 Contributes Significantly to Glutamate Uptake into Synaptosomes

    PubMed Central

    Petr, Geraldine T.; Sun, Yan; Frederick, Natalie M.; Zhou, Yun; Dhamne, Sameer C.; Hameed, Mustafa Q.; Miranda, Clive; Bedoya, Edward A.; Fischer, Kathryn D.; Armsen, Wencke; Wang, Jianlin; Danbolt, Niels C.; Rotenberg, Alexander; Aoki, Chiye J.

    2015-01-01

    GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake. PMID:25834045

  14. [Effect of cholinomimetics on L-glutamic acid release and uptake in the neostriatum of rats].

    PubMed

    Godukhin, O V; Budantsev, A Iu; Selifonova, O V; Agapova, V N

    1983-12-01

    The effects of cholinomimetics on release and uptake of exogenic glutamic acid in the rat brain neostriatum in vivo and in vitro were studied. Carbocholine and nicotin were shown to inhibit the release, carbocholine acting directly on the presynaptic receptors whereas nicotin acting indirectly through the interneurons of neostriatum. PMID:6141074

  15. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    PubMed

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival. PMID:10864655

  16. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    SciTech Connect

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P. . E-mail: Bressler@kennedykrieger.org

    2007-05-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

  17. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    PubMed Central

    Armbruster, Moritz; Hampton, David; Yang, Yongjie; Dulla, Chris G.

    2014-01-01

    Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL) model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM), which combines glutamate transport current (TC) recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes. PMID:25249939

  18. Elevated Myo-Inositol, Choline, and Glutamate Levels in the Associative Striatum of Antipsychotic-Naive Patients With First-Episode Psychosis: A Proton Magnetic Resonance Spectroscopy Study With Implications for Glial Dysfunction.

    PubMed

    Plitman, Eric; de la Fuente-Sandoval, Camilo; Reyes-Madrigal, Francisco; Chavez, Sofia; Gómez-Cruz, Gladys; León-Ortiz, Pablo; Graff-Guerrero, Ariel

    2016-03-01

    Glial disturbances are highly implicated in the pathophysiology of schizophrenia and may be linked with glutamatergic dysregulation. Myo-inositol (mI), a putative marker of glial cells, and choline (Cho), representative of membrane turnover, are both present in larger concentrations within glial cells than in neurons, and their elevation is often interpreted to reflect glial activation. Proton magnetic resonance spectroscopy ((1)H-MRS) allows for the evaluation of mI, Cho, glutamate, glutamate + glutamine (Glx), and N-acetylaspartate (NAA). A collective investigation of these measures in antipsychotic-naive patients experiencing their first nonaffective episode of psychosis (FEP) can improve the understanding of glial dysfunction and its implications in the early stages of schizophrenia. 3-Tesla (1)H-MRS (echo time = 35ms) was performed in 60 antipsychotic-naive patients with FEP and 60 age- and sex-matched healthy controls. mI, Cho, glutamate, Glx, and NAA were estimated using LCModel and corrected for cerebrospinal fluid composition within the voxel. mI, Cho, and glutamate were elevated in the FEP group. After correction for multiple comparisons, mI positively correlated with grandiosity. The relationships between mI and glutamate, and Cho and glutamate, were more positive in the FEP group. These findings are suggestive of glial activation in the absence of neuronal loss and may thereby provide support for the presence of a neuroinflammatory process within the early stages of schizophrenia. Dysregulation of glial function might result in the disruption of glutamatergic neurotransmission, which may influence positive symptomatology in patients with FEP. PMID:26320195

  19. Voltage Regulated Uptake and Release of L-Glutamate from a Molecularly Selective Switch for Physiological Applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Kathrin; Hauff, Elizabeth von; Parisi, Jürgen; Weiler, Reto

    2009-12-01

    In this paper results are presented on the development of a device demonstrating the uptake and release of L-glutamate in solutions with neutral pH. A device which selectively regulates the concentration of biomolecules, such as the primary neural transmitter L-glutamate, could be useful for many biological and medical applications. In the literature it has been demonstrated that polypyrrole (PPy) is a promising material for the recognition basis of molecularly selective devices [1, 2]. In this study we investigated the feasibility of the PPy based "glutamate switch" for the voltage dependent uptake and release of L-glutamate for physiological applications

  20. Effect of hyperoxia on glutamate uptake and glutathione levels in calf pulmonary artery endothelial cells

    SciTech Connect

    Deneke, S.M.; Lee, S.L.; Fanburg, B.L.

    1986-05-01

    Glutathione (GSH) levels increase 90 +/- 5% in cultured endothelial cells exposed to 80% O/sub 2/ for 24h. This is an early effect, preceding induced increases in such protective enzymes as superoxide dismutase (SOD). An increase in intracellular glutamate could stimulate synthesis of GSH via interference with the GSH feedback inhibition of the glutamylcysteine synthetase enzyme reaction, the control step of the synthesis of GSH. They have found that endothelial cells exposed to 80% O/sub 2/, 5% CO/sub 2/ for 24h in RPMI 1640 + 10% calf serum show an increase of 46 +/- 4% (N = 4 experiments) in uptake of 1.25 mM /sup 3/H glutamic acid. Cell densities were 0.8 to 1.3 x 10/sup 6/ cells per 35 mm dish and incubation time with the labeled glutamate was 10 min. This effect was concentration dependent with smaller O/sub 2/ induced increases in uptake at 1.25 x 10/sup -4/M glutamic acid and no significant differences at 1.25 x 10/sup -5/M suggesting a diffusion related phenomenon. The effect is not likely to be due to a general membrane leakiness since no significant changes were seen in uptake of 1.25 mM /sup 14/C aminosobutyric acid, a non-metabolized amino acid, and no membrane changes were observed by electron microscopy of cultured cells at 24h of exposure to 80% O/sub 2/. Thus increased glutamic acid uptake may be a factor in the observed increases in GSH in hyperoxic endothelial cells.

  1. Differing effects of transport inhibitor on glutamate uptake by nerve terminals before and after exposure of rats to artificial gravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.; Himmelreich, N.

    Glutamate is the major excitatory neurotransmitter in the brain. Subsequent to its release from glutamatergic neurons and activation of receptors, it is removed from extracellular space by high affinity Na^+-dependent glutamate transporters, which utilize the Na^+/K^+ electrochemical gradient as a driving force and located in nerve terminals and astrocytes. The glutamate transporters may modify the time course of synaptic events. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity (e.g. cerebral ischemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia). The present study assessed transporter inhibitor for the ability to inhibit glutamate uptake by synaptosomes at the normal and hypergravity conditions (rats were rotated in a long-arm centrifuge at ten-G during one-hour period). DL-threo-beta-benzyloxyaspartate (DL-TBOA) is a newly developed competitive inhibitor of the high-affinity, Na^+-dependent glutamate transporters. As a potent, non- transported inhibitor of glutamate transporters, DL-TBOA promises to be a valuable new compound for the study of glutamatergic mechanisms. We demonstrated that DL-TBOA inhibited glutamate uptake ( 100 μM glutamate, 30 sec incubation period) in dose-dependent manner as in control as in hypergravity. The effect of this transport inhibitor on glutamate uptake by control synaptosomes and synaptosomes prepared of animals exposed to hypergravity was different. IC50 values calculated on the basis of curves of non-linear regression kinetic analysis was 18±2 μM and 11±2 μM ((P≤0,05) before and after exposure to artificial gravity, respectively. Inhibition caused by 10 μM DL-TBOA was significantly increased from 38,0±3,8 % in control group to 51,0±4,1 % in animals, exposed to hypergravity (P≤0,05). Thus, DL-TBOA had complex effect on glutamate uptake process and perhaps, became more potent under

  2. Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling.

    PubMed

    Vandresen-Filho, S; Martins, W C; Bertoldo, D B; Rieger, D K; Maestri, M; Leal, R B; Tasca, C I

    2016-08-01

    Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38(MAPK) or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway. PMID:27084771

  3. Effect of methotrexate on perfusion and nitrogen-13 glutamate uptake in the Walker-256 carcinosarcoma

    SciTech Connect

    Knapp, W.H.; Panzer, M.; Helus, F.; Layer, K.; Sinn, H.J.; Ostertag, H.

    1988-02-01

    The tissue uptake of (/sup 13/N)glutamate (glu) was related to that of (/sup 11/C)butanol (but), a highly diffusible perfusion tracer. In 25 rats bearing Walker-256 carcinomas tumor-to-muscle glu uptake averaged 6.34 +/- 2.84 (s.d.) prior to interventions and the respective uptake of but was 6.79 +/- 3.08 (y = 0.03 + 0.94x). One hour after selective intraarterial administration of methotrexate (mtx), glu uptake fell by 47%, whereas blood flow remained within the pretreatment range (N = 9). Four hours after mtx, perfusion was reduced by approximately 40%, and 2 days later both perfusion and glu uptake reached extremely low levels. No significant difference in the effect of 10 and 50 mg/kg mtx was observed. Regional tissue mtx uptake estimations using /sup 77/Br-labeled bromomethotrexate did not reveal any significant uptake in muscle. The relationship between tumor-to-muscle uptake of glu and but (/sup 13/N//sup 11/C-index) was 0.94 +/- 0.015 (s.e.m., N = 25) before intervention. After methotrexate (1 hr, 4 hr, and 2 days) this index was 0.58 +/- 0.06 (N = 9), and 0.85 +/- 0.04 (N = 11) and 1.03 +/- 0.05 (N = 5), respectively. These values demonstrate an early mtx-induced uncoupling of glu uptake with respect to perfusion.

  4. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  5. Nitrogen-13 glutamate uptake and perfusion in Walker 256 carcinosarcoma before and after single-dose irradiation

    SciTech Connect

    Knapp, W.H.; Helus, F.; Layer, K.; Panzer, M.; Hoever, K.H.O.; Ostertag, H.

    1986-10-01

    Nitrogen-13 (13N) glutamate uptake was recorded in 18 anesthetized rats, both before and at least once after intervention. Each investigation was immediately followed by imaging of blood flow distribution using (11C)butanol. All animals had Walker 256 carcinosarcoma implants in one hind leg. Tumors were locally irradiated with a dose of 800 rad in 14 rats; in four rats, the vasoactive substance 5-hydroxytryptamine (5-HT) was administered. Prior to interventions, the (13N)glutamate tumor-to-muscle uptake showed a linear correlation with blood flow close to identity (y = 0.117 + 0.915x, r = 0.97). After irradiation, a discordant pattern was observed: blood flow tended to increase, while (13N)glutamate tumor-to-muscle uptake dropped from 4.30 +/- 0.66 (s.e.m.) to 3.06 +/- 0.36 (p less than 0.005) during 30 min and attained 4.04 +/- 0.67 2 days later. If (13N)glutamate tumor-to-muscle uptake was related to that of (11C) butanol in each individual animal, this index dropped from 0.93 +/- 0.03 (s.e.m.) to 0.62 +/- 0.04 (p less than 0.001) 30 min after irradiation and attained 0.90 +/- 0.09 after 2 days. In animals treated with 5-HT, (13N)glutamate and (11C)butanol showed a parallel drop from 6.60 +/- 0.84 to 2.10 +/- 0.60 (p less than 0.05) and from 6.8 +/- 0.78 to 2.08 +/- 0.74 (p less than 0.05), respectively. Thus, single-dose irradiation causes (13N)glutamate uptake to be uncoupled with respect to flow, while (13N)glutamate uptake in untreated tumors is flow-limited and responds together with flow on vasomotion.

  6. Neuregulin 1 Controls Glutamate Uptake by Up-regulating Excitatory Amino Acid Carrier 1 (EAAC1).

    PubMed

    Yu, Ha-Nul; Park, Woo-Kyu; Nam, Ki-Hoan; Song, Dae-Yong; Kim, Hye-Sun; Baik, Tai-Kyoung; Woo, Ran-Sook

    2015-08-14

    Neuregulin 1 (NRG1) is a trophic factor that is thought to have important roles in the regulating brain circuitry. Recent studies suggest that NRG1 regulates synaptic transmission, although the precise mechanisms remain unknown. Here we report that NRG1 influences glutamate uptake by increasing the protein level of excitatory amino acid carrier (EAAC1). Our data indicate that NRG1 induced the up-regulation of EAAC1 in primary cortical neurons with an increase in glutamate uptake. These in vitro results were corroborated in the prefrontal cortex (PFC) of mice given NRG1. The stimulatory effect of NRG1 was blocked by inhibition of the NRG1 receptor ErbB4. The suppressed expression of ErbB4 by siRNA led to a decrease in the expression of EAAC1. In addition, the ablation of ErbB4 in parvalbumin (PV)-positive neurons in PV-ErbB4(-/-) mice suppressed EAAC1 expression. Taken together, our results show that NRG1 signaling through ErbB4 modulates EAAC1. These findings link proposed effectors in schizophrenia: NRG1/ErbB4 signaling perturbation, EAAC1 deficit, and neurotransmission dysfunction. PMID:26092725

  7. Diphenyl ditelluride induces anxiogenic-like behavior in rats by reducing glutamate uptake.

    PubMed

    Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2014-06-01

    Anxiety-related disorders are a common public health issue. Several lines of evidence suggest that altered glutamatergic neurotransmission underlies anxiety. The present study evaluated the effect of diphenyl ditelluride [(PhTe)2] exposure on the behavioral performance of rats and examined whether the behavioral effects could be attributed to changes in the modulation of glutamatergic function. Rats were exposed to (PhTe)2 (subcutaneously) during 8 weeks-final dose one third LD50 (124 μg/kg). The testing schedule included elevated plus-maze, open-field, T-maze, rotorod, and Morris water maze tests. Synaptosomal basal [(3)H] glutamate release and uptake were also evaluated. The time spent in the open arm and the ratio of time spent in the open arm/total were decreased in the (PhTe)2 group. Furthermore, the [(3)H] glutamate uptake was decreased in this experimental group. The results suggest that exposure to (PhTe)2 did not change motor abilities whereas it may result in anxiogenic-like behavior, induced by changes in the glutamatergic system at the pre-synaptic level. PMID:24715661

  8. Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test.

    PubMed

    Carvalho, Fabiana M; Pereira, Silvia R C; Pires, Rita G W; Ferraz, Vany P; Romano-Silva, Marco Aurélio; Oliveira-Silva, Ieda F; Ribeiro, Angela M

    2006-04-01

    Using an animal model of Wernicke-Korsakoff syndrome, in which rats were submitted to a chronic ethanol treatment with or without a thiamine deficiency episode, the glutamate uptake in the prefrontal cortex and spatial memory aspects were studied. It was found that (i) thiamine deficiency, but not chronic ethanol consumption, induced a significant decrease of glutamate uptake; (ii) thiamine-deficient subjects showed an impaired performance in the water maze spatial memory test though these animals were able to learn the task during the acquisition. In spite of the fact that thiamine deficiency affects both glutamate uptake and spatial reference memory, there was no significant correlation between these two data. The present results show that, although prefrontal cortex is considered by some authors a not vulnerable area to lesions caused by thiamine deficiency, this vitamin deficiency does cause a neurochemistry dysfunction in that region. PMID:16687165

  9. Regional myocardial nitrogen-13 glutamate uptake in patients with coronary artery disease: inverse post-stress relation to thallium-201 uptake in ischemia

    SciTech Connect

    Zimmermann, R.; Tillmanns, H.; Knapp, W.H.; Helus, F.; Georgi, P.; Rauch, B.; Neumann, F.J.; Girgensohn, S.; Maier-Borst, W.; Kuebler, W.

    1988-03-01

    The purpose of the present study was to evaluate the clinical significance of myocardial scintigraphy with nitrogen-13 (N-13) glutamate as a marker of myocardial metabolism. Within 2 weeks after cardiac catheterization, 25 patients with single vessel left anterior descending coronary artery disease underwent thallium-201 imaging (5 min and 3 h after injection) and N-13 glutamate scintigraphy (10 min after injection). Radionuclide studies were performed in the 30 degrees left anterior oblique projection after symptom-limited bicycle exercise, and regional tracer uptake was quantified by computer-assisted placement of regions of interest within the regions of myocardial activity. Poststenotic tracer uptake in the perfusion bed of the left anterior descending coronary artery (septum) was then normalized to the tracer uptake in the nondiseased left circumflex territory (posterolateral segments = 100%). In 14 patients with a history of previous myocardial infarction (Subgroup A), deficient poststenotic N-13 uptake correlated closely with thallium-201 uptake in both initial (r = 0.82, p less than 0.001) and redistribution (r = 0.74, p less than 0.01) scintigrams. By contrast, in 11 patients with no previous myocardial infarction and normal left ventricular function at rest (Subgroup B), initial uptake of both tracers was inverse: poststenotic N-13 glutamate uptake increased with decreasing thallium-201 uptake during exercise-induced ischemia (r = -0.64, p less than 0.05) and was closely correlated with the percent thallium-201 redistribution (r = 0.74, p less than 0.01). Thus, augmented accumulation of N-13 glutamate in reversibly ischemic (that is, viable) myocardium, and decreased uptake in myocardial scar tissue suggest the clinical usefulness of this metabolic tracer in the differentiation between viable (metabolically active) and irreversibly damaged myocardium.

  10. Role of Na,K-ATPase α1 and α2 Isoforms in the Support of Astrocyte Glutamate Uptake

    PubMed Central

    Illarionava, Nina B.; Brismar, Hjalmar; Aperia, Anita; Gunnarson, Eli

    2014-01-01

    Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na+ co-transporters. This transport is driven by the transmembrane Na+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na+ co-transporters via the 1st intracellular loop. PMID:24901986

  11. Activation of glial glutamate transporter via MAPK p38 prevents enhanced and long-lasting non-evoked resting pain after surgical incision in rats.

    PubMed

    Reichl, Sylvia; Segelcke, Daniel; Keller, Viktor; Jonas, Robin; Boecker, Armin; Wenk, Manuel; Evers, Dagmar; Zahn, Peter K; Pogatzki-Zahn, Esther M

    2016-06-01

    Pain after surgery has recently become a major issue not only due to lack of treatment success in the acute phase; even more alarming is the large number of patients developing prolonged pain after surgery. Because spinal glutamate as well as spinal glia plays a major role in acute incisional pain, we investigated the role of the spinal glial glutamate transporters (GT), GLAST, GLT-1, for acute and prolonged pain and hyperalgesia caused by an incision. Spinal administration of the GT-inhibitor DL-TBOA increased non-evoked pain but not evoked pain behavior (hyperalgesia) up to 2 weeks after incision. In accordance, spinal GLAST (and to a lesser degree GLT-1) were upregulated after incision for several days. Long-term incision induced GT upregulation was prevented by long-lasting p38-inhibitor administration but not by long-lasting ERK1/2-inhibition after incision. In accordance, daily treatment with the p38-inhibitor (but not the ERK1/2 inhibitor) prolonged non-evoked but not evoked pain behavior after incision. In electrophysiological experiments, spontaneous activity of high threshold (HT) (but not wide dynamic range (WDR)) neurons known to transmit incision induced non-evoked pain was increased after prolonged treatment with the p38-inhibitor. In conclusion, our findings indicate a new spinal pathway by which non-evoked pain behavior after incision is modulated. The pathway is modality (non-evoked pain) and neuron (HT) specific and disturbance contributes to prolonged long-term pain after surgical incision. This may have therapeutic implications for the treatment of acute and - even more relevant - for prevention of chronic pain after surgery in patients. PMID:26920805

  12. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  13. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake.

    PubMed

    Springer, J E; Azbill, R D; Mark, R J; Begley, J G; Waeg, G; Mattson, M P

    1997-06-01

    Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult. One such event is the accumulation of free radicals that damage lipids, proteins, and nucleic acids. A major reactive product formed following lipid peroxidation is the aldehyde, 4-hydroxynonenal (HNE), which cross-links to side chain amino acids and inhibits the function of several key metabolic enzymes. In the present study, we used immunocytochemical and immunoblotting techniques to examine the accumulation of protein-bound HNE, and synaptosomal preparations to study the effects of spinal cord injury and HNE formation on glutamate uptake. Protein-bound HNE increased in content in the damaged spinal cord at early times following injury (1-24 h) and was found to accumulate in myelinated fibers distant to the site of injury. Immunoblots revealed that protein-bound HNE levels increased dramatically over the same postinjury interval. Glutamate uptake in synaptosomal preparations from injured spinal cords was decreased by 65% at 24 h following injury. Treatment of control spinal cord synaptosomes with HNE was found to decrease significantly, in a dose-dependent fashion, glutamate uptake, an effect that was mimicked by inducers of lipid peroxidation. Taken together, these findings demonstrate that the lipid peroxidation product HNE rapidly accumulates in the spinal cord following injury and that a major consequence of HNE accumulation is a decrease in glutamate uptake, which may potentiate neuronal cell dysfunction and death through excitotoxic mechanisms. PMID:9166741

  14. GLT-1: The elusive presynaptic glutamate transporter.

    PubMed

    Rimmele, Theresa S; Rosenberg, Paul A

    2016-09-01

    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  15. Differential Regulation of Two Isoforms of the Glial Glutamate Transporter EAAT2 by DLG1 and CaMKII

    PubMed Central

    Wheeler, David S.; Amara, Susan G.

    2015-01-01

    The gene for EAAT2, the major astrocytic glutamate transporter, generates two carrier isoforms (EAAT2a and EAAT2b) that vary at their C termini as a consequence of alternative RNA splicing. The EAAT2b cytoplasmic C terminus contains a postsynaptic density-95/Discs large/zona occludens-1 (PDZ) ligand, which is absent in EAAT2a. To understand how the distinct C termini might affect transporter trafficking and surface localization, we generated Madin-Darby canine kidney (MDCK) cells that stably express EGFP-EAAT2a or EGFP-EAAT2b and found robust basolateral membrane expression of the EAAT2b isoform. In contrast, EAAT2a displayed a predominant distribution within intracellular vesicle compartments, constitutively cycling to and from the membrane. Addition of the PDZ ligand to EAAT2a as well as its deletion from EAAT2b confirmed the importance of the motif for cell-surface localization. Using EAAT2 constructs with an extracellular biotin acceptor tag to directly assess surface proteins, we observed significant PDZ ligand-dependent EAAT2b surface expression in cultured astrocytes, consistent with observations in cell lines. Discs large homolog 1 (DLG1; SAP97), a PDZ protein prominent in both astrocytes and MDCK cells, colocalized and coimmunoprecipitated with EAAT2b. shRNA knockdown of DLG1 expression decreased surface EAAT2b in both MDCK cells and cultured astrocytes, suggesting that the DLG scaffolding protein stabilizes EAAT2b at the surface. DLG1 can be phosphorylated by Ca2+/calmodulin-dependent protein kinase (CaMKII), resulting in disruption of its PDZ-mediated interaction. In murine astrocytes and acute brain slices, activation of CaMKII decreases EAAT2b surface expression but does not alter the distribution of EAAT2a. These data indicate that the surface expression and function of EAAT2b can be rapidly modulated through the disruption of its interaction with DLG1 by CaMKII activation. PMID:25834051

  16. Genomic organization, promoter analysis, and chromosomal localization of the gene for the mouse glial high-affinity glutamate transporter Slc1a3

    SciTech Connect

    Hagiwara, Tatsuya; Tanaka, Kohichi; Maeno-Hikichi, Yuka

    1996-05-01

    The mouse gene encoding glial high-affinity, Na -dependent glutamate transporter Slcla3 (GluT-1/GLAST) was isolated, and its structural organization was characterized. The gene appeared to exist as a single copy in the mouse genome and comprised 10 exons spanning more than 56 kilobases. The transcription initiation sites were mapped to positions 503, which is the first transcriptional point (defined as +1), 128 (+376), and 64 (+440) basepairs upstream of the 3{prime}-end of exon 1 by primer extension. The 5{prime}-flanking region of the mouse GluT-1 gene had a typical CCAAT box and a GC box but lacked at TATA box. These features of the promoter region were characteristic of housekeeping genes. The fusion plasmids containing approximately 4 kb of the 5{prime}-flanking region (-3830 to +450) and the firefly luciferase gene induced a significant luciferase activity when transfected into COS-1 cells. Distal deletion of the 5{prime}-flanking region, leaving 619 bp (-169 to +450), resulted in a marked decrease in luciferase activity in COS-1 cells, suggesting that a CCAAT box, which was positioned at -200, is necessary for the expression of this gene. In situ hybridization localized this gene. In situ hybridization localized this gene to mouse chromosome 15A2. These structural features will lead to a better understanding of the regulatory mechanism of the expression of the GluT-1 gene by ischemia and will also provide a basis for future evolutionary comparisons with other neurotransmitter transporters. 40 refs., 6 figs., 1 tab.

  17. Gas1 Knockdown Increases the Neuroprotective Effect of Glial Cell-Derived Neurotrophic Factor Against Glutamate-Induced Cell Injury in Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhou, Fanfan; Zhu, Ling

    2016-05-01

    Growth arrest-specific 1 (Gas1) protein acts as an inhibitor of cell growth and a mediator of cell death in nervous system during development and is also re-expressed in adult neurons during excitotoxic insult. Due to its structural similarity to the glial cell-derived neurotrophic factor family receptors α (GFRα), Gas1 is likely to interfere with the neuroprotective effect of GDNF. In the present study, we investigated the expression profile of Gas1 during glutamate insults in human SH-SY5Y neuroblastoma cells as well as the influence of Gas1 inhibition on the protective effect of GDNF against glutamate-induced cell injury. Our data showed that Gas1 expression was significantly increased with the treatment of glutamate in SH-SY5Y cells. The silencing of Gas1 by small interfering RNA promoted the protective effect of GDNF against glutamate-induced cytotoxicity as well as cell apoptosis, which effect was likely mediated through activating Akt/PI3 K-dependent cell survival signaling pathway and inhibiting mitochondrial-dependent cell apoptosis signaling pathway via Bad dephosphorylation blockade. In summary, this study showed the synergistic effect of Gas1 inhibition and GDNF against glutamate-induced cell injury in human SH-SY5Y neuroblastoma cells, which information might significantly contribute to better understanding the function of Gas1 in neuronal cells and form the basis of the therapeutic development of GDNF in treating human neurodegenerative diseases in the future. PMID:26215053

  18. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  19. Isoforms of the neuronal glutamate transporter gene, SLC1A1/EAAC1, negatively modulate glutamate uptake: relevance to obsessive-compulsive disorder

    PubMed Central

    Porton, B; Greenberg, B D; Askland, K; Serra, L M; Gesmonde, J; Rudnick, G; Rasmussen, S A; Kao, H-T

    2013-01-01

    The SLC1A1 gene, which encodes the neuronal glutamate transporter, EAAC1, has consistently been implicated in obsessive-compulsive disorder (OCD) in genetic studies. Moreover, neuroimaging, biochemical and clinical studies support a role for glutamatergic dysfunction in OCD. Although SLC1A1 is an excellent candidate gene for OCD, little is known about its regulation at the genomic level. Here, we report the identification and characterization of three alternative SLC1A1/EAAC1 mRNAs: a transcript derived from an internal promoter, termed P2 to distinguish it from the transcript generated by the primary promoter (P1), and two alternatively spliced mRNAs: ex2skip, which is missing exon 2, and ex11skip, which is missing exon 11. All isoforms inhibit glutamate uptake from the full-length EAAC1 transporter. Ex2skip and ex11skip also display partial colocalization and interact with the full-length EAAC1 protein. The three isoforms are evolutionarily conserved between human and mouse, and are expressed in brain, kidney and lymphocytes under nonpathological conditions, suggesting that the isoforms are physiological regulators of EAAC1. Moreover, under specific conditions, all SLC1A1 transcripts were differentially expressed in lymphocytes derived from subjects with OCD compared with controls. These initial results reveal the complexity of SLC1A1 regulation and the potential clinical utility of profiling glutamatergic gene expression in OCD and other psychiatric disorders. PMID:23695234

  20. Lack of effect of entorhinal kindling on L-(/sup 3/H)glutamic acid presynaptic uptake and postsynaptic binding in hippocampus

    SciTech Connect

    Slevin, J.T.; Ferrara, L.P.

    1985-07-01

    Sodium-independent L-(/sup 3/H)glutamic acid binding and sodium-dependent L-(/sup 3/H)glutamic acid high affinity uptake were measured in hippocampal membranes of rats administered electroshock seizures or kindled to class 5 seizures by entorhinal cortical stimulation. There were no differences in these glutamatergic synaptic markers among electroshocked, kindled, or surgical control animals. Entorhinal kindling is not a reflection of activity-regulated facilitation of perforant path glutamatergic neurotransmission.

  1. Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust.

    PubMed

    Hanson, Elizabeth; Danbolt, Niels Christian; Dulla, Chris G

    2016-05-01

    Developmental cortical malformations (DCMs) are linked with severe epilepsy and are caused by both genetic and environmental insults. DCMs include several neurological diseases, such as focal cortical dysplasia, polymicrogyria, schizencephaly, and others. Human studies have implicated astrocyte reactivity and dysfunction in the pathophysiology of DCMs, but their specific role is unknown. As astrocytes powerfully regulate glutamate neurotransmission, and glutamate levels are known to be increased in human epileptic foci, understanding the role of astrocytes in the pathological sequelae of DCMs is extremely important. Additionally, recent studies examining astrocyte glutamate uptake in DCMs have reported conflicting results, adding confusion to the field. In this study we utilized the freeze lesion (FL) model of DCM, which is known to induce reactive astrocytosis and cause significant changes in astrocyte morphology, proliferation, and distribution. Using whole-cell patch clamp recording from astrocytes, we recorded both UV-uncaging and synaptically evoked glutamate transporter currents (TCs), widely accepted assays of functional glutamate transport by astrocytes. With this approach, we set out to test the hypothesis that astrocyte membrane properties and glutamate transport were disrupted in this model of DCM. Though we found that the developmental maturation of astrocyte membrane resistance was disrupted by FL, glutamate uptake by individual astrocytes was robust throughout FL development. Interestingly, using an immunolabeling approach, we observed spatial and developmental differences in excitatory amino acid transporter (EAAT) expression in FL cortex. Spatially specific differences in EAAT2 (GLT-1) and EAAT1 (GLAST) expression suggest that the relative contribution of each EAAT to astrocytic glutamate uptake may be altered in FL cortex. Lastly, we carefully analyzed the amplitudes and onset times of both synaptically- and UV uncaging-evoked TCs. We found that in

  2. The effect of spider toxin PhTx3-4, ω-conotoxins MVIIA and MVIIC on glutamate uptake and on capsaicin-induced glutamate release and [Ca2+]i in spinal cord synaptosomes.

    PubMed

    Gonçaves, Jomara M; Ferreira, Juliano; Prado, Marco Antonio M; Cordeiro, Marta N; Richardson, Michael; Pinheiro, Ana Cristina do Nascimento; Silva, Marco A Romano; Junior, Celio José de Castro; Souza, Alessandra H; Gomez, Marcus Vinicius

    2011-03-01

    In spinal cord synaptosomes, the spider toxin PhTx3-4 inhibited capsaicin-stimulated release of glutamate in both calcium-dependent and -independent manners. In contrast, the conus toxins, ω-conotoxin MVIIA and xconotoxin MVIIC, only inhibited calcium-dependent glutamate release. PhTx3-4, but not ω-conotoxin MVIIA or xconotoxin MVIIC, is able to inhibit the uptake of glutamate by synaptosomes, and this inhibition in turn leads to a decrease in the Ca(2+)-independent release of glutamate. No other polypeptide toxin so far described has this effect. PhTx3-4 and ω-conotoxins MVIIC and MVIIA are blockers of voltage-dependent calcium channels, and they significantly inhibited the capsaicin-induced rise of intracellular calcium [Ca(2+)](i) in spinal cord synaptosomes, which likely reflects calcium entry through voltage-gated calcium channels. The inhibition of the calcium-independent glutamate release by PhTx3-4 suggests a potential use of the toxin to block abnormal glutamate release in pathological conditions such as pain. PMID:21061150

  3. Effect of poly-glutamate on uptake efficiency and cytotoxicity of cell penetrating peptides.

    PubMed

    Farkhani, Samad Mussa; Shirani, Ali; Mohammadi, Samaneh; Zakeri-Milani, Parvin; Shahbazi Mojarrad, Javid; Valizadeh, Hadi

    2016-04-01

    Cell penetrating peptides (CPPs) were developed as vehicles for efficient delivery of various molecules. An ideal CPP-peptide should not display any toxicity against cancer cells as well as healthy cells and efficiently enter into the cell. Because of the cationic nature and the intrinsic vector capabilities, these peptides can cause cytotoxicity. One of the possible reasons for toxicity of CPPs is direct translocation and consequently, pore formation on the plasma membrane. In this study it was demonstrated that interaction of poly-glutamate with CPP considerably reduced their cytotoxicity in A549 cell. This strategy could be useful for efficient drug delivery mediated by CPP. PMID:27074859

  4. LEUCINE-NITROGEN METABOLISM IN THE BRAIN OF CONSCIOUS RATS: ITS ROLE AS A NITROGEN CARRIER IN GLUTAMATE SYNTHESIS IN GLIAL AND NEURONAL METABOLIC COMPARTMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The source of nitrogen (N) for the de novo synthesis of brain glutamate, glutamine, and gamma-aminobutyrate (GABA)remains controversial. Because leucine is readily transported into the brain and the brain contains high activities of branched-chain aminotransferase, we hypothesized that leucine is th...

  5. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.

    PubMed

    Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto

    2016-02-01

    Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients. PMID:26347375

  6. GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling.

    PubMed

    Martínez-Lozada, Zila; Guillem, Alain M; Flores-Méndez, Marco; Hernández-Kelly, Luisa C; Vela, Carmelita; Meza, Enrique; Zepeda, Rossana C; Caba, Mario; Rodríguez, Angelina; Ortega, Arturo

    2013-05-01

    Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium-dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium-dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so-called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time-dependent Na⁺-dependent glutamate/aspartate transporter/EAAT1-induced System N-mediated glutamine release could be demonstrated. Furthermore, D-aspartate, a specific glutamate transporter ligand, was capable of enhancing the co-immunoprecipitation of Na⁺-dependent glutamate/aspartate transporter and Na⁺-dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron-derived glutamate through their contribution to the neurotransmitter turnover. PMID:23418736

  7. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression

    PubMed Central

    Kim, Jin-Mo; Cha, Seon-Heui; Choi, Yu Ree; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2016-01-01

    Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD. PMID:27346864

  8. Centrifuge-induced hypergravity: [ 3H]GABA and L-[ 14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Himmelreich, N. H.

    The effects of centrifuge-induced hypergravity on the presynaptic events have been investigated in order to provide further insight into regulation of glutamate and GABA neurotransmission and correlation between excitatory and inhibitory responses under artificial gravity conditions. Exposure of animals to hypergravity (centrifugation of rats at 10 G for 1 h) has been found to cause changes in the synaptic processes of brain, in particular neurotransmitter release and uptake in rat brain synaptosomes. Hypergravity loading resulted in more than two-fold enhancement of GABA transporter activity ( Vmax increased from 1.4 ± 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for the animals exposed to hypergravity ( P ⩽ 0.05)). The maximal velocity of L-[ 14C]glutamate uptake decreased from 12.5 ± 3.2 to 5.6 ± 0.9 nmol/min/mg of protein under artificial gravity conditions. Depolarization-evoked exocytotic release of the neurotransmitters has also changed in response to hypergravity. It increased for GABA (7.2 ± 0.54% and 11.74 ± 1.2% of total accumulated label for control and hypergravity, respectively ( P ⩽ 0.05)), but reduced for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%, for control and hypergravity, respectively). Thus, comparative analysis of the neurotransmitter uptake and release has demonstrated that short-term centrifuge-induced 10 G hypergravity loading intensified inhibitory and attenuated excitatory processes in nerve terminals. The activation or reduction of neurotransmitter uptake appeared to be coupled with similarly directed alterations of the neurotransmitter release.

  9. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes.

    PubMed

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L; Frago, Laura M; Dickson, Suzanne L; Argente, Jesús; Chowen, Julie A

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  10. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  11. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. PMID:26994581

  12. p-Chloro-diphenyl diselenide reverses memory impairment-related to stress caused by corticosterone and modulates hippocampal [(3)H]glutamate uptake in mice.

    PubMed

    Zborowski, Vanessa A; Sari, Marcel H M; Heck, Suélen O; Stangherlin, Eluza C; Neto, José S S; Nogueira, Cristina W; Zeni, Gilson

    2016-10-01

    Chronic stress or chronically high levels of glucocorticoids can result in memory impairment. This study aimed to investigate if 4,4'-dichloro-diphenyl diselenide (p-ClPhSe)2 reverses memory impairment-related to stress caused by corticosterone administration in mice and its possible mechanism of action. Swiss mice received corticosterone (20μg/ml) in their drinking water during four weeks. In the last week, the animals were treated with (p-ClPhSe)2 (1 or 5mg/kg) by the intragastric route (i.g.) once a day for 7days. The cognitive performance of mice was assessed through the object recognition test (ORT), the object location test (OLT) and the step-down passive avoidance test (SDPA), some of predictive tests of memory. Biochemical parameters were determined and locomotor activity of mouse was performed to gain insight in (p-ClPhSe)2 toxicity. The findings demonstrated that treatment with (p-ClPhSe)2 in both doses was effective in reversing memory deficits in the ORT, the OLT and the SDPA caused by corticosterone exposure in mice. Treatment with (p-ClPhSe)2 at both doses reversed the increase in the [(3)H] glutamate uptake by hippocampal slices of mice treated with corticosterone. By contrast, [(3)H] glutamate uptake by brain cortical slices was not altered in mice exposed to corticosterone. The Na(+)K(+)ATPase activity was not altered in hippocampus and cerebral cortices of mice treated with corticosterone. There was no sign of toxicity in mice treated with (p-ClPhSe)2. This organoselenium compound reversed memory impairment-related to stress caused by corticosterone and modulated hippocampal [(3)H]glutamate uptake in mice. PMID:27211333

  13. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood. PMID:26037264

  14. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs.

    PubMed

    Shigeri, Yasushi; Seal, Rebecca P; Shimamoto, Keiko

    2004-07-01

    L-Glutamate serves as a major excitatory neurotransmitter in the mammalian central nervous system (CNS) and is stored in synaptic vesicles by an uptake system that is dependent on the proton electrochemical gradient (VGLUTs). Following its exocytotic release, glutamate activates fast-acting, excitatory ionotropic receptors and slower-acting metabotropic receptors to mediate neurotransmission. Na+-dependent glutamate transporters (EAATs) located on the plasma membrane of neurons and glial cells rapidly terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels. Thus far, five Na+-dependent glutamate transporters (EAATs 1-5) and three vesicular glutamate transporters (VGLUTs 1-3) have been identified. Examination of EAATs and VGLUTs in brain preparations and by heterologous expression of the various cloned subtypes shows these two transporter families differ in many of their functional properties including substrate specificity and ion requirements. Alterations in the function and/or expression of these carriers have been implicated in a range of psychiatric and neurological disorders. EAATs have been implicated in cerebral stroke, epilepsy, Alzheimer's disease, HIV-associated dementia, Huntington's disease, amyotrophic lateral sclerosis (ALS) and malignant glioma, while VGLUTs have been implicated in schizophrenia. To examine the physiological role of glutamate transporters in more detail, several classes of transportable and non-transportable inhibitors have been developed, many of which are derivatives of the natural amino acids, aspartate and glutamate. This review summarizes the development of these indispensable pharmacological tools, which have been critical to our understanding of normal and abnormal synaptic transmission. PMID:15210307

  15. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  16. Neuronal pyruvate carboxylation supports formation of transmitter glutamate.

    PubMed

    Hassel, B; Brâthe, A

    2000-02-15

    Release of transmitter glutamate implies a drain of alpha-ketoglutarate from neurons, because glutamate, which is formed from alpha-ketoglutarate, is taken up by astrocytes. It is generally believed that this drain is compensated by uptake of glutamine from astrocytes, because neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates, which requires pyruvate carboxylation. Here we show that cultured cerebellar granule neurons form releasable [(14)C]glutamate from H(14)CO(3)(-) and [1-(14)C]pyruvate via pyruvate carboxylation, probably mediated by malic enzyme. The activity of pyruvate carboxylation was calculated to be approximately one-third of the pyruvate dehydrogenase activity in neurons. Furthermore, intrastriatal injection of NaH(14)CO(3) or [1-(14)C]pyruvate labeled glutamate better than glutamine, showing that pyruvate carboxylation occurs in neurons in vivo. This means that neurons themselves to a large extent may support their release of glutamate, and thus entails a revision of the current view of glial-neuronal interactions and the importance of the glutamine cycle. PMID:10662824

  17. L-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas.

    PubMed Central

    Brandon, C; Lam, D M

    1983-01-01

    We have combined immunocytochemical localization of L-aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1; glutamic-oxaloacetic transaminase) with autoradiographic localization of high-affinity uptake sites for L-glutamate or L-aspartate to identify the neurotransmitters of mammalian photoreceptors. In both human and rat retinas, high aspartate aminotransferase immunoreactivity is found in cones but not in rods; certain putative bipolar and amacrine cells are also heavily stained. In the human retina, and perhaps also in the rat retina, cones possess a high-affinity uptake mechanism for L-glutamate but not L-aspartate, whereas rods and Müller (glial) cells take up both L-glutamate and L-aspartate. Taken together, our results indicate that (i) L-glutamate is much more likely than L-aspartate to be the transmitter for human cones, and possibly for cones of other mammalian species as well, and (ii) major differences exist between mammalian cones and rods in the transport and metabolism or utilization of L-aspartate and L-glutamate. Images PMID:6136039

  18. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemic injury in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury including cell swelling, increased free radical production, ...

  19. Transport dynamics in a glutamate transporter homologue

    PubMed Central

    Akyuz, Nurunisa; Altman, Roger B.; Blanchard, Scott C.; Boudker, Olga

    2013-01-01

    Summary Glutamate transporters are integral membrane proteins that catalyze neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons1. Their mechanism involves transitions between extracellular- (outward-) and intracellular- (inward-) facing conformations, whereby substrate binding sites become accessible to the opposite sides of the membrane2. This process has been proposed to entail trans-membrane movements of three discrete transport domains within a trimeric scaffold3. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging4, we have directly observed large-scale transport domain movements in a bacterial homologue of glutamate transporters for the first time. We find that individual transport domains alternate between periods of quiescence and periods of rapid transitions, reminiscent of bursting patterns first recorded in single ion channels using patch-clamp methods5,6. We suggest that the switch to the dynamic mode in glutamate transporters is due to separation of the transport domain from the trimeric scaffold, which precedes domain movements across the bilayer. This spontaneous dislodging of the substrate-loaded transport domain is approximately 100-fold slower than subsequent trans-membrane movements and may be rate determining in the transport cycle. PMID:23792560

  20. Morphological changes in glial fibrillary acidic protein immunopositive astrocytes in the hippocampus of dietary-induced obese mice.

    PubMed

    Cano, Victoria; Valladolid-Acebes, Ismael; Hernández-Nuño, Francisco; Merino, Beatriz; Del Olmo, Nuria; Chowen, Julie A; Ruiz-Gayo, Mariano

    2014-06-01

    Long-term consumption of a high-fat diet (HFD) has been shown to trigger both metabolic and cardiovascular diseases. In contrast, the effect of this type of dietary regime on the central nervous system, particularly outside the hypothalamus, has been investigated poorly. Astrocytes, the most abundant population of glial cells in the brain, are pivotal in regulating glutamatergic transmission as they are responsible for most of the glutamate uptake and metabolism. Mice on an HFD show deficits in learning and memory, together with neurochemical and electrophysiological changes compatible with the impairment in hippocampal glutamatergic activity. Because astrocyte function and morphology have been shown to be interdependent, we speculated whether HFD would trigger changes in astrocyte morphology. For this purpose, we have used a model of diet-induced obesity in mice. We have analyzed astrocyte morphology and density by glial fibrillary acidic protein immunohistochemistry, as well as the expression of the glutamate transporters, GLT-1 (glutamate transporter type-1), and GLAST (astrocyte glutamate transporter), in the CA3 area of the hippocampus. We found that astrocytes from HFD mice showed longer and less abundant projections. These changes were accompanied by the upregulation of both GLT-1 and GLAST. Our data show that the functional impairment detected previously in HFD mice is concomitant with morphological changes within the hippocampus. PMID:24911388

  1. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes.

    PubMed

    Keller, J N; Mark, R J; Bruce, A J; Blanc, E; Rothstein, J D; Uchida, K; Waeg, G; Mattson, M P

    1997-10-01

    Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke, and Alzheimer's, Parkinson's and Huntington's diseases. Although cell culture data indicate that oxidative insults can impair key membrane regulatory systems including ion-motive ATPases and amino acid transport systems, the effects of oxidative stress on synapses, and the mechanisms that mediate such effects, are largely unknown. This study provides evidence that 4-hydroxynonenal, an aldehydic product of lipid peroxidation, mediates oxidation-induced impairment of glutamate transport and mitochondrial function in synapses. Exposure of rat cortical synaptosomes to 4-hydroxynonenal resulted in concentration- and time-dependent decreases in [3H]glutamate uptake, and mitochondrial function [assessed with the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)]. Other related aldehydes including malondialdehyde and hexanal had little or no effect on glutamate uptake or mitochondrial function. Exposure of synaptosomes to insults known to induce lipid peroxidation (FeSO4 and amyloid beta-peptide) also impaired glutamate uptake and mitochondrial function. The antioxidants propyl gallate and glutathione prevented impairment of glutamate uptake and MTT reduction induced by FeSO4 and amyloid beta-peptide, but not that induced by 4-hydroxynonenal. Western blot analyses using an antibody to 4-hydroxynonenal-conjugated proteins showed that 4-hydroxynonenal bound to multiple cell proteins including GLT-1, a glial glutamate transporter present at high levels in synaptosomes. 4-Hydroxynonenal itself induced lipid peroxidation suggesting that, in addition to binding directly to membrane regulatory proteins, 4

  2. SLC1 Glutamate Transporters

    PubMed Central

    Grewer, Christof; Gameiro, Armanda; Rauen, Thomas

    2014-01-01

    The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 (SLC1) family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions. PMID:24240778

  3. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats. PMID:26738966

  4. Intercellular calcium waves in glial cells with bistable dynamics

    NASA Astrophysics Data System (ADS)

    Wei, Fang; Shuai, Jianwei

    2011-04-01

    A two-dimensional model is proposed for intercellular calcium (Ca2 +) waves with Ca2 +-induced IP3 regeneration and the diffusion of IP3 through gap junctions. Many experimental observations in glial cells, i.e. responding to local mechanical stimulation, glutamate application, mechanical stimulation followed by ACh application, and glutamate followed by mechanical stimulation, are reproduced and classified by the model. We show that a glial cell model with bistable dynamics, i.e. a Ca2 + oscillation state coexisting with a fixed point, can cause a prolonged plateau of Ca2 + signals in the cells nearby the stimulated cell when the cell network responds to the local mechanical stimulation.

  5. WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1,3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake

    PubMed Central

    Dunlop, John; Eliasof, Scott; Stack, Gary; McIlvain, H Beal; Greenfield, Alexander; Kowal, Dianne; Petroski, Robert; Carrick, Tikva

    2003-01-01

    The pharmacological profile of a novel glutamate transport inhibitor, WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1,3-dicarboxylic acid), on the activity of the human forebrain glutamate transporters EAAT1, EAAT2 and EAAT3 expressed in stable mammalian cell lines and in Xenopus laevis oocytes is presented. WAY-855 inhibited glutamate uptake mediated by all three subtypes in a concentration-dependent manner, with preferential inhibition of the CNS-predominant EAAT2 subtype in both cells and oocytes. IC50 values for EAAT2 and EAAT3 inhibition in cells were 2.2 and 24.5 μM, respectively, while EAAT1 activity was inhibited by 50% at 100 μM (IC50 values determined in oocytes were 1.3 μM (EAAT2), 52.5 μM (EAAT3) and 125.9 μM (EAAT1)). Application of WAY-855 to EAAT-expressing oocytes failed to induce a transporter current, and the compound failed to exchange with accumulated [3H]D-aspartate in synaptosomes consistent with a nonsubstrate inhibitor. WAY-855 inhibited D-aspartate uptake into cortical synaptosomes by a competitive mechanism, and with similar potency to that observed for the cloned EAAT2. WAY-855 failed to agonise or antagonise ionotropic glutamate receptors in cultured hippocampal neurones, or the human metabotropic glutamate receptor subtype 4 expressed in a stable cell line. WAY-855 represents a novel structure in glutamate transporter pharmacology, and exploration of this structure might provide insights into the discrimination between EAAT2 and other EAAT subtypes. PMID:14517179

  6. Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions.

    PubMed

    Heidinger, V; Hicks, D; Sahel, J; Dreyfus, H

    1999-02-01

    Glutamate is the most abundant excitatory amino acid in the central nervous system. It has also been described as a potent toxin when present in high concentrations because excessive stimulation of its receptors leads to neuronal death. Glial influence on neuronal survival has already been shown in the central nervous system, but the mechanisms underlying glial neuroprotection are only partly known. When cells isolated from newborn rat retina were maintained in culture as enriched neuronal populations, 80% of the cells were destroyed by application of excitotoxic concentrations of glutamate. Massive neuronal death was also observed in newborn retinal cultures containing large numbers of glia, or when neurons were seeded onto feeder layers of purified cells prepared from immature (postnatal 8 day) rat retina. When newborn retinal neurons were seeded onto feeder layers of purified glial cells prepared from adult retinas, application of excitotoxic amino acids no longer led to neuronal death. Furthermore, neuronal death was not observed in mixed neuron/glial cultures prepared from adult retina. However, in all cases (newborn and adult) application of kainate led to amacrine cell-specific death. Activity of glutamine synthetase, a key glial enzyme involved in glutamate detoxification, was assayed in these cultures in the presence or absence of exogenous glutamate. Whereas pure glial cultures alone (from young or adult retina) showed low activity that was not stimulated by glutamate addition, mixed or co-cultured neurons and adult glia exhibited up to threefold higher levels of activity following glutamate treatment. These data indicate that two conditions must be satisfied to observe glial neuroprotection: maturation of glutamine synthetase expression, and neuron-glial signalling through glutamate-elicited responses. PMID:9932869

  7. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2.

    PubMed

    Simonin, Alexandre; Montalbetti, Nicolas; Gyimesi, Gergely; Pujol-Giménez, Jonai; Hediger, Matthias A

    2015-12-18

    Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes. PMID:26483543

  8. Mechanisms of a Glial Modulating Agent, Propentofylline: Potential New Treatment for Glioblastoma Multiforme

    NASA Astrophysics Data System (ADS)

    Jacobs, Valerie

    Glioblastoma multiforme is the most common and aggressive primary brain tumor with a very poor prognosis despite multi-modalities of treatment. As a result, there is a critical need to develop alternative therapies. Propentofylline (PPF) is a methyl xanthine with glial modulating properties. Based on known mechanisms of PPF and the important role of glial cells in glioma growth, we hypothesized that PPF can target glial cells in the tumor microenvironment, decreasing tumor growth. More specifically, PPF can target microglia and astrocytes. In Chapter 3 we demonstrate that PPF decreases microglia migration towards CNS-1 cells, decreases CNS-1 cells invasion when cultured with microglia and decreases MMP-9 expression in microglia. In Chapter 4 we showed that PPF decreases TROY expression in microglia. In Chapter 5 we showed PPF causes astrocytes to increase glutamate uptake through the GLT-1 transporter, leading to less glutamate available for CNS-1 cells, ultimately resulting in increased CNS-1 cell apoptosis. Finally, in Chapter 6 we present supportive data that PPF uniquely targets resident microglia in the CNS due to pharmacological differences between species and cell types. This thesis describes the following major contributions to the field of glioma research: 1) identification of propentofylline as a possible new drug for GBM treatment that targets microglia and astrocytes, decreasing brain tumor growth in vivo, and further supporting a different functional role of microglia and infiltrating macrophages in the tumor microenvironment, 2) identification of TROY as a novel signaling molecule expressed in microglia in response to CNS-1 cells and involved in microglia migration, and 3) identification of differential responses between species and cell types with propentofylline treatment.

  9. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation.

    PubMed

    Li, Jiajia; Tang, Jun; Ma, Jun; Du, Mengmeng; Wang, Rong; Wu, Ying

    2016-01-01

    The gliotransmitter glutamate released from astrocytes can modulate neuronal firing by activating neuronal N-methyl-D-aspartic acid (NMDA) receptors. This enables astrocytic glutamate(AG) to be involved in neuronal physiological and pathological functions. Based on empirical results and classical neuron-glial "tripartite synapse" model, we propose a practical model to describe extracellular AG oscillation, in which the fluctuation of AG depends on the threshold of calcium concentration, and the effect of AG degradation is considered as well. We predict the seizure-like discharges under the dysfunction of AG degradation duration. Consistent with our prediction, the suppression of AG uptake by astrocytic transporters, which operates by modulating the AG degradation process, can account for the emergence of epilepsy. PMID:27573570

  10. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation

    PubMed Central

    Li, Jiajia; Tang, Jun; Ma, Jun; Du, Mengmeng; Wang, Rong; Wu, Ying

    2016-01-01

    The gliotransmitter glutamate released from astrocytes can modulate neuronal firing by activating neuronal N-methyl-D-aspartic acid (NMDA) receptors. This enables astrocytic glutamate(AG) to be involved in neuronal physiological and pathological functions. Based on empirical results and classical neuron-glial “tripartite synapse” model, we propose a practical model to describe extracellular AG oscillation, in which the fluctuation of AG depends on the threshold of calcium concentration, and the effect of AG degradation is considered as well. We predict the seizure-like discharges under the dysfunction of AG degradation duration. Consistent with our prediction, the suppression of AG uptake by astrocytic transporters, which operates by modulating the AG degradation process, can account for the emergence of epilepsy. PMID:27573570

  11. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance.

    PubMed

    Cui, Wanpeng; Mizukami, Hiroaki; Yanagisawa, Michiko; Aida, Tomomi; Nomura, Masatoshi; Isomura, Yoshikazu; Takayanagi, Ryoichi; Ozawa, Keiya; Tanaka, Kohichi; Aizawa, Hidenori

    2014-12-01

    The lateral habenula (LHb) regulates the activity of monoaminergic neurons in the brainstem. This area has recently attracted a surge of interest in psychiatry because studies have reported the pathological activation of the habenula in patients with major depression and in animal models. The LHb plays a significant role in the pathophysiology of depression; however, how habenular neurons are activated to cause various depression symptoms, such as reduced motivation and sleep disturbance, remain unclear. We hypothesized that dysfunctional astrocytes may cause LHb hyperactivity due to the defective uptake activity of extracellular glutamate, which induces depressive-like behaviors. We examined the activity of neurons in habenular pathways and performed behavioral and sleep analyses in mice with pharmacological and genetic inhibition of the activity of the glial glutamate transporter GLT-1 in the LHb. The habenula-specific inhibition of GLT-1 increased the neuronal firing rate and the level of c-Fos expression in the LHb. Mice with reduced GLT-1 activity in the habenula exhibited a depressive-like phenotype in the tail suspension and novelty-suppressed feeding tests. These animals also displayed increased susceptibility to chronic stress, displaying more frequent avoidant behavior without affecting locomotor activity in the open-field test. Intriguingly, the mice showed disinhibition of rapid eye movement sleep, which is a characteristic sleep pattern in patients with depression. These results provide evidence that disrupting glutamate clearance in habenular astrocytes increases neuronal excitability and depressive-like phenotypes in behaviors and sleep. PMID:25471567

  12. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    PubMed

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism. PMID:25894677

  13. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling.

    PubMed

    Rudolph, Ramona; Jahn, Hannah M; Courjaret, Raphael; Messemer, Nanette; Kirchhoff, Frank; Deitmer, Joachim W

    2016-07-01

    Synaptic transmission has been shown to be modulated by glial functions, but the modes of specific glial action may vary in different neural circuits. We have tested the hypothesis, if Bergmann GLIA (BG) are involved in shaping neuronal communication in the mouse cerebellar cortex, using acutely isolated cerebellar slices of wild-type (WT) and of glia-specific receptor knockout mice. Activation of P2Y1 receptors by ADP (100 µM) or glutamatergic receptors by AMPA (0.3 µM) resulted in a robust, reversible and repeatable rise of evoked inhibitory input in Purkinje cells by 80% and 150%, respectively. The ADP-induced response was suppressed by prior application of AMPA, and the AMPA-induced response was suppressed by prior application of ADP. Genetic deletion or pharmacological blockade of either receptor restored the response to the other receptor agonist. Both ADP and AMPA responses were sensitive to Rose Bengal, which blocks vesicular glutamate uptake, and to the NMDA receptor antagonist D-AP5. Our results provide strong evidence that activation of both ADP and AMPA receptors, located on BGs, results in the release of glutamate, which in turn activates inhibitory interneurons via NMDA-type glutamate receptors. This infers that BG cells, by means of metabotropic signaling via their AMPA and P2Y1 receptors, which mutually suppress each other, would interdependently contribute to the fine-tuning of Purkinje cell activity in the cerebellar cortex. GLIA 2016. GLIA 2016;64:1265-1280. PMID:27144942

  14. Glial cell inclusions and the pathogenesis of neurodegenerative diseases

    PubMed Central

    Miller, David W.; Cookson, Mark R.; Dickson, Dennis W.

    2006-01-01

    In this review, we discuss examples that show how glial-cell pathology is increasingly recognized in several neurodegenerative diseases. We also discuss the more provocative idea that some of the disorders that are currently considered to be neurodegenerative diseases might, in fact, be due to primary abnormalities in glia. Although the mechanism of glial pathology (i.e. modulating glutamate excitotoxicity) might be better established for amyotrophic lateral sclerosis (ALS), a role for neuronal–glial interactions in the pathogenesis of most neurodegenerative diseases is plausible. This burgeoning area of neuroscience will receive much attention in the future and it is expected that further understanding of basic neuronal–glial interactions will have a significant impact on the understanding of the fundamental nature of human neurodegenerative disorders. PMID:16614753

  15. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism.

    PubMed

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula

    2015-02-01

    The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [(13)C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide information about glutamine transfer. The present review will give information about glutamine trafficking and the tools used to map it as exemplified by discussions of published work employing brain cell cultures as well as intact animals. It will be documented that considerably more glutamine is transferred from astrocytes to glutamatergic than to GABAergic neurons. However, glutamine does have an important role in GABAergic neurons despite their capability of re-utilizing their neurotransmitter by re-uptake. PMID:25380696

  16. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    PubMed

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  17. Binding and uptake of 125iodine-labelled, oxidized low density lipoprotein by macrophages: comparison of the effects of alpha-tocopherol, probucol, pyridoxal-5'-phosphate and magnesium-pyridoxal-5'-phosphate-glutamate.

    PubMed

    Selmer, D; Senekowitsch-Schmidtke, R; Schneider, W; Elstner, E F

    1997-01-01

    Specific and unspecific binding and uptake (internalization) by macrophages of 125iodine-labelled, copper-oxidized human low density lipoprotein is differently influenced by the anti-oxidants alpha-tocopherol (alpha-Toc), probucol (Prob), pyridoxal-5'-phosphate (PP) and the magnesium-pyridoxal-5'-phosphate glutamate complex (MPPG). Binding as well as internalization, mediated by the so-called "scavenger receptor" is lower in the presence of MPPG whereas both specific binding and internalization are enhanced. The comparison of the effects in vitro allows a rating of the potentially anti-atherogenic and thus protective effects of the tested substances as follows: MPPG > PP > alpha-Toc > Prob. PMID:9090072

  18. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    ERIC Educational Resources Information Center

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  19. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance

    PubMed Central

    Cheung, Giselle; Sibille, Jérémie; Zapata, Jonathan; Rouach, Nathalie

    2015-01-01

    Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis. PMID:26346563

  20. Physiological properties of retinal Muller glial cells from the cynomolgus monkey, Macaca fascicularis--a comparison to human Muller cells.

    PubMed

    Pannicke, Thomas; Biedermann, Bernd; Uckermann, Ortrud; Weick, Michael; Bringmann, Andreas; Wolf, Sebastian; Wiedemann, Peter; Habermann, Gunnar; Buse, Eberhard; Reichenbach, Andreas

    2005-06-01

    Retinae from rabbits and laboratory rodents are often used as 'models' of the human retina, although there are anatomical differences. To test whether monkey eyes provide a better model, a physiological study of Muller glial cells was performed comparing isolated cells and retinal wholemounts from the cynomolgus monkey, Macaca fascicularis and from man. The membrane conductance of Muller cells from both species was dominated by inward and outward K(+) currents. Cells displayed glutamate uptake currents and responded to nucleotides by intracellular Ca(2+) increases. However, there were also species differences, such as a lack of GABA(A) receptors and of Ca(2+)-dependent K(+) currents in monkey cells. Thus, the use of Muller cells from cynomolgus monkeys may be advantageous for investigating a few specific properties; in general, monkey cells are no more similar to human cells than those from standard laboratory animals. PMID:15797768

  1. Pharmacological inhibitions of glutamate transporters EAAT1 and EAAT2 compromise glutamate transport in photoreceptor to ON- bipolar cell synapses

    PubMed Central

    Tse, Dennis Y.; Chung, Inyoung; Wu, Samuel M.

    2015-01-01

    To maintain reliable signal transmission across a synapse, free synaptic neurotransmitters must be removed from the cleft in a timely manner. In the first visual synapse, this critical task is mainly undertaken by glutamate transporters (EAATs). Here we study the differential roles of the EAAT1, EAAT2 and EAAT5 subtypes in glutamate (GLU) uptake at the photoreceptor-to-depolarizing bipolar cell synapse in intact dark-adapted retina. Various doses of EAAT blockers and/or GLU were injected into the eye before the electroretinogram (ERG) was measured. Their effectiveness and potency in inhibiting the ERG b-wave were studied to determine their relative contributions to the GLU clearing activity at the synapse. The results showed that EAAT1 and EAAT2 plays different roles. Selectively blocking glial EAAT1 alone using UCPH101 inhibited the b-wave 2–24 hours following injection, suggesting a dominating role of EAAT1 in the overall GLU clearing capacity in the synaptic cleft. Selectively blocking EAAT2 on photoreceptor terminals had no significant effect on the b-wave, but increased the potency of exogenous GLU in inhibiting the b-wave. These suggest that EAAT2 play a secondary yet significant role in the GLU reuptake activity at the rod and the cone output synapses. Additionally, we have verified our electrophysiological findings with double-label immunohistochemistry, and extend the literature on the spatial distribution of EAAT2 splice variants in the mouse retina. PMID:25152321

  2. Inhibition of cystine uptake disrupts the growth of primary brain tumors.

    PubMed

    Chung, Wook Joon; Lyons, Susan A; Nelson, Gina M; Hamza, Hashir; Gladson, Candece L; Gillespie, G Yancey; Sontheimer, Harald

    2005-08-01

    Glial cells play an important role in sequestering neuronally released glutamate via Na+-dependent transporters. Surprisingly, these transporters are not operational in glial-derived tumors (gliomas). Instead, gliomas release glutamate, causing excitotoxic death of neurons in the vicinity of the tumor. We now show that glutamate release from glioma cells is an obligatory by-product of cellular cystine uptake via system xc-, an electroneutral cystine-glutamate exchanger. Cystine is an essential precursor for the biosynthesis of glutathione, a major redox regulatory molecule that protects cells from endogenously produced reactive oxygen species (ROS). Glioma cells, but not neurons or astrocytes, rely primarily on cystine uptake via system xc- for their glutathione synthesis. Inhibition of system xc- causes a rapid depletion of glutathione, and the resulting loss of ROS defense causes caspase-mediated apoptosis. Glioma cells can be rescued if glutathione status is experimentally restored or if glutathione is substituted by alternate cellular antioxidants, confirming that ROS are indeed mediators of cell death. We describe two potent drugs that permit pharmacological inhibition of system xc-. One of these drugs, sulfasalazine, is clinically used to treat inflammatory bowel disease and rheumatoid arthritis. Sulfasalazine was able to reduce glutathione levels in tumor tissue and slow tumor growth in vivo in a commonly used intracranial xenograft animal model for human gliomas when administered by intraperitoneal injection. These data suggest that inhibition of cystine uptake into glioma cells through the pharmacological inhibition of system xc- may be a viable therapeutic strategy with a Food and Drug Administration-approved drug already in hand. PMID:16079392

  3. GLIAL ABNORMALITIES IN MOOD DISORDERS

    PubMed Central

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2015-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this chapter, we will review the evidence for glial abnormalities in mood disorders. We will discuss glial cell biology and evidence from postmortem studies of mood disorders. This is not carry out a comprehensive review; rather we selectively discuss existing evidence in building an argument for the role of glial cells in mood disorders. PMID:25377605

  4. Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice.

    PubMed

    Stoffel, Wilhelm; Körner, Rafael; Wachtmann, Dagmar; Keller, Bernhard U

    2004-09-28

    The high affinity, Na(+)-dependent, electrogenic glial L-glutamate transporters GLAST1 and GLT1, and two neuronal EAAC1 and EAAT4, regulate the neurotransmitter concentration in excitatory synapses of the central nervous system. We dissected the function of the individual transporters in the monogenic null allelic mouse lines, glast1(-/-) and eaac1(-/-), and the derived double mutant glast(-/-)eaac1(-/-). Unexpectedly, the biochemical analysis and the behavioral phenotypes of these null allelic mouse lines were inconspicuous. Inhibition studies of the Na(+)-dependent glutamate transport by plasma membrane vesicles and by isolated astrocytes of wt and glast1(-/-) mouse brains indicated the pivotal compensatory role of GLT1 in the absence particularly of GLAST1 and GLAST1 and EAAC1 mutant mice. In electrophysiological studies, the decay rate of excitatory postsynaptic currents (EPSCs) of Purkinje cells (PC) after selective activation of parallel and climbing fibers proved to be similar in wt and eaac1(-/-), but was significantly prolonged in glast1(-/-) PCs. Bath application of the glutamate uptake blocker SYM2081 prolonged EPSC decay profiles in both wt and double mutant glast1(-/-)eaac1(-/-) PCs by 286% and 229%, respectively, indicating a prominent role of compensatory glutamate transport in shaping glast1(-/-)eaac1(-/-) EPSCs. PMID:15363892

  5. Multifactorial Gene Therapy Enhancing the Glutamate Uptake System and Reducing Oxidative Stress Delays Symptom Onset and Prolongs Survival in the SOD1-G93A ALS Mouse Model.

    PubMed

    Benkler, Chen; Barhum, Yael; Ben-Zur, Tali; Offen, Daniel

    2016-01-01

    The 150-year-long search for treatments of amyotrophic lateral sclerosis (ALS) is still fueled by frustration over the shortcomings of available therapeutics. Contributing to the therapeutic limitations might be the targeting of a single aspect of this multifactorial-multisystemic disease. In an attempt to overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding: EAAT2, GDH2, and NRF2, that act synergistically to address the band and width of the effected excito-oxidative axis, reducing extracellular-glutamate and glutamate availability while improving the metabolic state and the anti-oxidant response. This strategy yielded particularly impressive results, as all three genes together but not separately prolonged survival in ALS mice by an average of 19-22 days. This was accompanied by improvement in every parameter evaluated, including body-weight loss, reflex score, neurologic score, and motor performance. We hope to provide a novel strategy to slow down disease progression and alleviate symptoms of patients suffering from ALS. PMID:26691332

  6. Relevance of exocytotic glutamate release from retinal glia.

    PubMed

    Slezak, Michal; Grosche, Antje; Niemiec, Aurore; Tanimoto, Naoyuki; Pannicke, Thomas; Münch, Thomas A; Crocker, Britni; Isope, Philippe; Härtig, Wolfgang; Beck, Susanne C; Huber, Gesine; Ferracci, Geraldine; Perraut, Martine; Reber, Michael; Miehe, Monique; Demais, Valérie; Lévêque, Christian; Metzger, Daniel; Szklarczyk, Klaudia; Przewlocki, Ryszard; Seeliger, Mathias W; Sage-Ciocca, Dominique; Hirrlinger, Johannes; Reichenbach, Andreas; Reibel, Sophie; Pfrieger, Frank W

    2012-05-10

    Glial cells release molecules that influence brain development, function, and disease. Calcium-dependent exocytosis has been proposed as potential release mechanism in astroglia, but the physiological relevance of "gliotransmission" in vivo remains controversial. We focused on the impact of glial exocytosis on sensory transduction in the retina. To this end, we generated transgenic mice to block exocytosis by Cre recombinase-dependent expression of the clostridial botulinum neurotoxin serotype B light chain, which cleaves vesicle-associated membrane protein 1-3. Ubiquitous and neuronal toxin expression caused perinatal lethality and a reduction of synaptic transmission thus validating transgene function. Toxin expression in Müller cells inhibited vesicular glutamate release and impaired glial volume regulation but left retinal histology and visual processing unaffected. Our model to study gliotransmission in vivo reveals specific functions of exocytotic glutamate release in retinal glia. PMID:22578502

  7. Effects of therapeutic hypothermia on the glial proteome and phenotype.

    PubMed

    Kim, Jong-Heon; Seo, Minchul; Suk, Kyoungho

    2013-02-01

    Therapeutic hypothermia is a useful intervention against brain injury in experimental models and patients, but its therapeutic applications are limited due to its ill-defined mode of action. Glia cells maintain homeostasis and protect the central nervous system from environmental change, but after brain injury, glia are activated and induce glial scar formation and secondary injury. On the other hand, therapeutic hypothermia has been shown to modulate glial hyperactivation under various brain injury conditions. We considered that knowledge of the effect of hypothermia on the molecular profiles of glia and on their phenotypes would improve our understanding of the neuroprotective mechanism of hypothermia. Here, we review the findings of recent studies that examined the effect of hypothermia on proteome changes in reactive glial cells in vitro and in vivo. The therapeutic effects of hypothermia are associated with the inhibition of reactive oxygen species generation, the maintenance of ion homeostasis, and the protection of neurovascular units in cultured glial cells. In an animal model, a distinct pattern of protein alterations was detected in glia following hypothermia under ischemic/reperfusion conditions. In particular, hypothermia was found to exert a neuroprotective effect against ischemic brain injury by regulating specific glial signaling pathways, such as, glutamate signaling, cell death, and stress response, and by influencing neural dysfunction, neurogenesis, neural plasticity, cell differentiation, and neurotrophic activity. Furthermore, the proteins that were differentially expressed belonged to various pathways and could mediate diverse phenotypic changes of glia in vitro or in vivo. Therefore, hypothermia-modulated glial proteins and subsequent phenotypic changes may form the basis of the therapeutic effects of hypothermia. PMID:23441897

  8. [Glutamate and malignant gliomas, from epilepsia to biological aggressiveness: therapeutic implications].

    PubMed

    Blecic, Serge; Rynkowski, Michal; De Witte, Olivier; Lefranc, Florence

    2013-09-01

    In this review article, we describe the unrecognized roles of glutamate and glutamate receptors in malignant glioma biology. The neurotransmitter glutamate released from malignant glioma cells in the extracellular matrix is responsible for seizure induction and at higher concentration neuronal cell death. This neuronal cell death will create vacated place for tumor growth. Glutamate also stimulates the growth and the migration of glial tumor cells by means of the activation of glutamate receptors on glioma cells in a paracrine and autocrine manner. The multitude of effects of glutamate in glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters in the adjuvant treatment of malignant gliomas in neurology and neuro-oncology. Using the website www.clinicaltrials.gov/ as a reference - a service developed by the National Library of Medicine for the National Health Institute in USA - we have evoked the few clinical trials completed and currently ongoing with therapies targeting the glutamate receptors. PMID:23883552

  9. Astrocytic Dysfunction in Epileptogenesis: Consequences of Altered Potassium and Glutamate Homeostasis?

    PubMed Central

    David, Yaron; Cacheaux, Luisa P; Ivens, Sebastian; Lapilover, Ezequiel; Heinemann, Uwe; Kaufer, Daniela; Friedman, Alon

    2010-01-01

    Focal epilepsy often develops following traumatic, ischemic or infectious brain injury. While the electrical activity of the epileptic brain is well characterized, the mechanisms underlying epileptogenesis are poorly understood. We have recently shown that in the rat neocortex, long-lasting breakdown of the blood-brain barrier (BBB) or direct exposure of the neocortex to serum-derived albumin leads to rapid up-regulation of the astrocytic marker, glial fibrillary acidic protein (GFAP), followed by delayed (within 4–7 days) development of an epileptic focus. We investigated the role of astrocytes in epileptogenesis in the BBB-breakdown and albumin models of epileptogenesis. We found similar, robust changes in astrocytic gene expression in the neocortex within hours following treatment with deoxycholic acid (BBB breakdown) or albumin. These changes predict reduced clearance capacity for both extracellular glutamate and potassium. Electrophysiological recordings in-vitro confirmed the reduced clearance of activity-dependent accumulation of both potassium and glutamate 24 h following exposure to albumin. We used a NEURON model to simulate the consequences of reduced astrocytic uptake of potassium and glutamate on excitatory postsynaptic potentials (EPSPs). The model predicted that the accumulation of glutamate is associated with frequency-dependent (>100 Hz) decreased facilitation of EPSPs, while potassium accumulation leads to frequency-dependant (10–50 Hz) and N-methyl-D-aspartic acid (NMDA)-dependent synaptic facilitation. In-vitro electrophysiological recordings during epileptogenesis confirmed frequency-dependant synaptic facilitation leading to seizure-like activity. Our data indicate a transcription-mediated astrocytic transformation early during epileptogenesis. We suggest that the resulting reduction in the clearance of extracellular potassium underlies frequency-dependent neuronal hyper-excitability and network synchronization. PMID:19710312

  10. Molecular physiology of vesicular glutamate transporters in the digestive system

    PubMed Central

    Li, Tao; Ghishan, Fayez K.; Bai, Liqun

    2005-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas, skin, and testis. The glutamate receptors and VGLUTs in digestive system have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs. PMID:15793854

  11. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications.

    PubMed

    Kanai, Yoshikatsu; Hediger, Matthias A

    2003-10-31

    The solute carrier family 1 (SLC1) is composed of five high affinity glutamate transporters, which exhibit the properties of the previously described system XAG-, as well as two Na+-dependent neutral amino acid transporters with characteristics of the so-called "ASC" (alanine, serine and cysteine). The SLC1 family members are structurally similar, with almost identical hydropathy profiles and predicted membrane topologies. The transporters have eight transmembrane domains and a structure reminiscent of a pore loop between the seventh and eighth domains [Neuron 21 (1998) 623]. However, each of these transporters exhibits distinct functional properties. Glutamate transporters mediate transport of L-Glu, L-Asp and D-Asp, accompanied by the cotransport of 3 Na+ and one 1 H+, and the countertransport of 1 K+, whereas ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. Given the high concentrating capacity provided by the unique ion coupling pattern of glutamate transporters, they play crucial roles in protecting neurons against glutamate excitotoxicity in the central nervous system (CNS). The regulation and manipulation of their function is a critical issue in the pathogenesis and treatment of CNS disorders involving glutamate excitotoxicity. Loss of function of the glial glutamate transporter GLT1 (SLC1A2) has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), resulting in damage of adjacent motor neurons. The importance of glial glutamate transporters in protecting neurons from extracellular glutamate was further demonstrated in studies of the slc1A2 glutamate transporter knockout mouse. The findings suggest that therapeutic upregulation of GLT1 may be beneficial in a variety of pathological conditions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) but not the glial glutamate transporters may be of therapeutic interest, allowing blockage of glutamate exit from

  12. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    PubMed Central

    2014-01-01

    It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states. PMID:25276794

  13. Tea Polyphenols Protect Against Methylmercury-Induced Cell Injury in Rat Primary Cultured Astrocytes, Involvement of Oxidative Stress and Glutamate Uptake/Metabolism Disorders.

    PubMed

    Liu, Wei; Xu, Zhaofa; Yang, Tianyao; Deng, Yu; Xu, Bin; Feng, Shu

    2016-07-01

    Methylmercury (MeHg) is an extremely dangerous environmental contaminant, accumulating preferentially in CNS and causing a series of cytotoxic effects. However, the precise mechanisms are still incompletely understood. The current study explored the mechanisms that contribute to MeHg-induced cell injury focusing on the oxidative stress and Glu uptake/metabolism disorders in rat primary cultured astrocytes. Moreover, the neuroprotective effects of tea polyphenols (TP), a natural antioxidant, against MeHg cytotoxicity were also investigated. Astrocytes were exposed to 0, 2.5, 5, 10, and 20 μM MeHgCl for 6-30 h, or pretreated with 50, 100, 200, and 400 μM TP for 1-12 h; cell viability and LDH release were then determined. For further experiments, 50, 100, and 200 μM of TP pretreatment for 6 h followed by 10 μM MeHgCl for 24 h were performed for the examination of the responses of astrocytes, specifically addressing NPSH levels, ROS generation, ATPase activity, the expressions of Nrf2 pathway as well as Glu metabolism enzyme GS and Glu transporters (GLAST and GLT-1). Exposure of MeHg resulted in damages of astrocytes, which were shown by a loss of cell viability, and supported by high levels of LDH release, morphological changes, apoptosis rates, and NPSH depletion. In addition, astrocytes were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS overproduction; Nrf2 as well as its downstream genes HO-1 and γ-GCSh were markedly upregulated. Moreover, MeHg significantly inhibited GS activity, as well as expressions of GS, GLAST, and GLT-1. On the contrary, pretreatment with TP presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of astrocytes. In conclusion, the findings clearly indicated that MeHg aggravated oxidative stress and Glu uptake/metabolism dysfunction in astrocytes. TP possesses some abilities to prevent MeHg cytotoxicity through its antioxidative properties. PMID:25952541

  14. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition.

    PubMed

    Yoon, Bo-Eun; Woo, Junsung; Chun, Ye-Eun; Chun, Heejung; Jo, Seonmi; Bae, Jin Young; An, Heeyoung; Min, Joo Ok; Oh, Soo-Jin; Han, Kyung-Seok; Kim, Hye Yun; Kim, Taekeun; Kim, Young Soo; Bae, Yong Chul; Lee, C Justin

    2014-11-15

    GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain. PMID:25239459

  15. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics.

    PubMed

    Robinson, Michael B; Jackson, Joshua G

    2016-09-01

    In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or

  16. Disorders of glutamate metabolism.

    PubMed

    Kelly, A; Stanley, C A

    2001-01-01

    The significant role the amino acid glutamate assumes in a number of fundamental metabolic pathways is becoming better understood. As a central junction for interchange of amino nitrogen, glutamate facilitates both amino acid synthesis and degradation. In the liver, glutamate is the terminus for release of ammonia from amino acids, and the intrahepatic concentration of glutamate modulates the rate of ammonia detoxification into urea. In pancreatic beta-cells, oxidation of glutamate mediates amino acid-stimulated insulin secretion. In the central nervous system, glutamate serves as an excitatory neurotransmittor. Glutamate is also the precursor of the inhibitory neurotransmittor GABA, as well as glutamine, a potential mediator of hyperammonemic neurotoxicity. The recent identification of a novel form of congenital hyperinsulinism associated with asymptomatic hyperammonemia assigns glutamate oxidation by glutamate dehydrogenase a more important role than previously recognized in beta-cell insulin secretion and hepatic and CNS ammonia detoxification. Disruptions of glutamate metabolism have been implicated in other clinical disorders, such as pyridoxine-dependent seizures, confirming the importance of intact glutamate metabolism. This article will review glutamate metabolism and clinical disorders associated with disrupted glutamate metabolism. PMID:11754524

  17. HIV-1, Methamphetamine and Astrocyte Glutamate Regulation: Combined Excitotoxic Implications for Neuro-AIDS

    PubMed Central

    Cisneros, Irma E; Ghorpade, Anuja

    2012-01-01

    Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high abuse potential, and human immunodeficiency virus (HIV)-1 are implicated in the progression of neurocognitive malfunction. Both have been shown to induce common neurodegenerative effects such as astrogliosis, compromised blood brain barrier integrity, and excitotoxicity in the brain. Reduced glutamate uptake from neuronal synapses likely leads to the accumulation of glutamate in the extracellular spaces. Astrocytes express the glutamate transporters responsible for majority of the glutamate uptake from the synapse, as well as for vesicular glutamate release. However, the cellular and molecular mechanisms of astrocyte-mediated excitotoxicity in the context of METH and HIV-1 are undefined. Topics reviewed include dysregulation of the glutamate transporters, specifically excitatory amino acid transporter-2, metabotropic glutamate receptor(s) expression and the release of glutamate by vesicular exocytosis. We also discuss glutamate concentration dysregulation through astrocytic expression of enzymes for glutamate synthesis and metabolism. Lastly, we discuss recent evidence of various astrocyte and neuron crosstalk mechanisms implicated in glutamate regulation. Astrocytes play an essential role in the neuropathologies associated with METH/HIV-1-induced excitotoxicity. We hope to shed light on common cellular and molecular pathways astrocytes share in glutamate regulation during drug abuse and HIV-1 infection. PMID:22591363

  18. The Drosophila blood-brain barrier: development and function of a glial endothelium

    PubMed Central

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  19. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  20. Rapid Microelectrode Measurements and the Origin and Regulation of Extracellular Glutamate in Rat Prefrontal Cortex

    PubMed Central

    Hascup, E.R.; Hascup, K.N.; Stephens, M.; Pomerleau, F.; Huettl, P.; Gratton, A.; Gerhardt, G.A.

    2010-01-01

    Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal vs. astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays (MEAs) to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally-applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (TTX; sodium channel blocker), produced a significant (~40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally-applied ω-conotoxin (MVIIC; ~50%; calcium channel blocker), and the mGluR⅔ agonist, LY379268 (~20%), and a significant increase with the mGluR⅔ antagonist LY341495 (~40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-β-benzyloxyaspartate (TBOA; glutamate transporter inhibitor) produced an ~120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (CPG; cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of TTX completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the MEA technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically-evoked event is entirely neuronally derived. PMID:20969570

  1. Glial Tau Pathology in Tauopathies: Functional Consequences

    PubMed Central

    Kahlson, Martha A.; Colodner, Kenneth J.

    2015-01-01

    Tauopathies are a class of neurodegenerative diseases characterized by the presence of hyperphosphorylated and aggregated tau pathology in neuronal and glial cells. Though the ratio of neuronal and glial tau aggregates varies across diseases, glial tau aggregates can populate the same degenerating brain regions as neuronal tau aggregates. While much is known about the deleterious consequences of tau pathology in neurons, the relative contribution of glial tau pathology to these diseases is less clear. Recent studies using a number of model systems implicate glial tau pathology in contributing to tauopathy pathogenesis. This review aims to highlight the functional consequences of tau overexpression in glial cells and explore the potential contribution of glial tau pathology in the pathogenesis of neurodegenerative tauopathies. PMID:26884683

  2. Glutamate release from astrocytic gliosomes under physiological and pathological conditions.

    PubMed

    Milanese, Marco; Bonifacino, Tiziana; Zappettini, Simona; Usai, Cesare; Tacchetti, Carlo; Nobile, Mario; Bonanno, Giambattista

    2009-01-01

    Glial subcellular particles (gliosomes) have been purified from rat cerebral cortex or mouse spinal cord and investigated for their ability to release glutamate. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins, such as GFAP and S-100 but not neuronal proteins, such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin, high KCl, veratrine, 4-aminopyridine, AMPA, or ATP by mechanisms involving extracellular Ca2+, Ca2+ release from intracellular stores as well as reversal of glutamate transporters. In addition, gliosomes can release glutamate also by a mechanism involving heterologous transporter activation (heterotransporters) located on glutamate-releasing and glutamate transporter-expressing (homotransporters) gliosomes. This glutamate release involves reversal of glutamate transporters and anion channel opening, but not exocytosis. Both the exocytotic and the heterotransporter-mediated glutamate release were more abundant in gliosomes prepared from the spinal cord of transgenic mice, model of amyotrophic lateral sclerosis, than in controls; suggesting the involvement of astrocytic glutamate release in the excitotoxicity proposed as a cause of motor neuron degeneration. The results support the view that gliosomes may represent a viable preparation that allows to study mechanisms of astrocytic transmitter release and its regulation in healthy animals and in animal models of brain diseases. PMID:19607977

  3. Pathway Analyses Implicate Glial Cells in Schizophrenia

    PubMed Central

    Duncan, Laramie E.; Holmans, Peter A.; Lee, Phil H.; O'Dushlaine, Colm T.; Kirby, Andrew W.; Smoller, Jordan W.; Öngür, Dost; Cohen, Bruce M.

    2014-01-01

    Background The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge. Method Ten publically available gene sets (pathways) related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC) were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls), and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls). Results The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance) and also achieved nominal levels of significance with INRICH (p = 0.0057) and ALIGATOR (p = 0.022). For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002). Conclusions Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle). While not

  4. Metabotropic glutamate receptors inhibit microglial glutamate release

    PubMed Central

    McMullan, Stephen M; Phanavanh, Bounleut; Guo Li, Gary; Barger, Steven W

    2012-01-01

    Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors) were applied to primary rat microglia, and the export of glutamate into their culture medium was evoked by LPS (lipopolysaccharide). Agonists of group-II and -III mGluR ACPD [(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] and L-AP4 [L-(+)-2-amino-4-phosphonobutyric acid] were both capable of completely blocking the glutamate export without interfering with the production of NO (nitric oxide); the group-I agonist tADA (trans-azetidine-2,4-dicarboxylic acid) was ineffective. Consistent with the possibility of feedback, inhibition of mGluR by MSPG [(R,S)-α-2-methyl-4sulfonophenylglycine] potentiated glutamate export. As the group-II and -III mGluR are coupled to Gαi-containing G-proteins and the inhibition of adenylate cyclase, we explored the role of cAMP in this effect. Inhibition of cAMP-dependent protein kinase [also known as protein kinase A (PKA)] by H89 mimicked the effect of ACPD, and the mGluR agonist had its actions reversed by artificially sustaining cAMP through the PDE (phosphodiesterase) inhibitor IBMX (isobutylmethylxanthine) or the cAMP mimetic dbcAMP (dibutyryl cAMP). These data indicate that mGluR activation attenuates a potentially neurotoxic export of glutamate from activated microglia and implicate cAMP as a contributor to this aspect of microglial action. PMID:22770428

  5. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.

    PubMed

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2011-08-01

    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain. PMID:21437781

  6. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement.

    PubMed

    Atlante, A; Passarella, S; Pierro, P; Di Martino, C; Quagliariello, E

    1996-10-01

    Proline/glutamate antiport in rat kidney mitochondria has been studied in terms of two different features: energy dependence and glutamate-carrier contribution to accomplish proline movement across the mitochondrial membrane. Energy dependence of the proline/glutamate antiporter in rat kidney mitochondria has been investigated by means of both spectroscopic measurements and isotopic techniques, using either normal or [14C]glutamate-loaded mitochondria. The sensitivity of the proline/glutamate antiport to the ionophores valinomycin and nigericin, under conditions in which delta psi and delta pH are selectively affected, shows that the exchange is energy dependent. Measurements of both membrane potential and proton movement across the mitochondrial membrane suggest that proline/glutamate antiport is driven by the electrochemical proton gradient via the delta psi dependent proline/glutamate translocator and delta pH-dependent glutamate/OH- carrier. Such a carrier provides for re-uptake of glutamate that has already passed out of the mitochondria in exchange with incoming proline, made possible by the existence of a separate pool of glutamate in the intermembrane space, directly shown by means of HPLC measurements. PMID:8898903

  7. Excitatory amino acid-stimulated uptake of /sup 22/Na+ in primary astrocyte cultures

    SciTech Connect

    Kimelberg, H.K.; Pang, S.; Treble, D.H.

    1989-04-01

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems.

  8. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. PMID

  9. Modulation of intestinal L-glutamate transport by luminal leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; Lostao, María Pilar; Ducroc, Robert

    2015-06-01

    Leptin is secreted into the digestive tract and contributes to the absorption of dietary molecules by regulating transporters activity. Here, we studied the effect of luminal leptin on the intestinal transport of L-glutamate, an important component of human diet. We examined the effect of leptin on L-glutamate uptake in rat intestine in vitro measuring glutamate-induced short-circuit current (Isc) in Ussing chambers and L-[(3)H (U)]-glutamate uptake in jejunal everted rings. Glutamate-induced Isc was only observed in Na(+)-free conditions. This Isc was concentration (1-60 mmol L(-1)) and pH dependent. Luminal leptin increased glutamate Isc (∼100 %). Dose-response curve showed a biphasic pattern, with maximal stimulations observed at 10(-13) and 10(-10) mmol L(-1), that were sensitive to leptin receptor antagonist. In everted rings, two glutamate transport mechanisms were distinguished: a Na(+)-dependent, H(+)-independent, that was inhibited by leptin (∼20 %), and a Na(+)-independent but H(+)-dependent, that was enhanced by leptin (∼20 %), in line with data obtained in Ussing chambers. Altogether, these data reveal original non-monotonic effect of luminal leptin in the intestine and demonstrate a new role for this hormone in the modulation of L-glutamate transport, showing that luminal active gut peptides can influence absorption of amino acids. PMID:25935421

  10. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  11. Cystine/glutamate antiporter blockage induces myelin degeneration.

    PubMed

    Soria, Federico N; Zabala, Alazne; Pampliega, Olatz; Palomino, Aitor; Miguelez, Cristina; Ugedo, Luisa; Sato, Hideyo; Matute, Carlos; Domercq, María

    2016-08-01

    The cystine/glutamate antiporter is a membrane transport system responsible for the uptake of extracellular cystine and release of intracellular glutamate. It is the major source of cystine in most cells, and a key regulator of extrasynaptic glutamate in the CNS. Because cystine is the limiting factor in the biosynthesis of glutathione, and glutamate is the most abundant neurotransmitter, the cystine/glutamate antiporter is a central player both in antioxidant defense and glutamatergic signaling, two events critical to brain function. However, distribution of cystine/glutamate antiporter in CNS has not been well characterized. Here, we analyzed expression of the catalytic subunit of the cystine/glutamate antiporter, xCT, by immunohistochemistry in histological sections of the forebrain and spinal cord. We detected labeling in neurons, oligodendrocytes, microglia, and oligodendrocyte precursor cells, but not in GFAP(+) astrocytes. In addition, we examined xCT expression and function by qPCR and cystine uptake in primary rat cultures of CNS, detecting higher levels of antiporter expression in neurons and oligodendrocytes. Chronic inhibition of cystine/glutamate antiporter caused high toxicity to cultured oligodendrocytes. In accordance, chronic blockage of cystine/glutamate antiporter as well as glutathione depletion caused myelin disruption in organotypic cerebellar slices. Finally, mice chronically treated with sulfasalazine, a cystine/glutamate antiporter inhibitor, showed a reduction in the levels of myelin and an increase in the myelinated fiber g-ratio. Together, these results reveal that cystine/glutamate antiporter is expressed in oligodendrocytes, where it is a key factor to the maintenance of cell homeostasis. GLIA 2016. GLIA 2016;64:1381-1395. PMID:27247047

  12. Magnetic Resonance Spectroscopy Studies of Glutamate-Related Abnormalities in Mood Disorders

    PubMed Central

    Yüksel, Cagri; Öngür, Dost

    2010-01-01

    In mood disorders there is growing evidence for glutamatergic abnormalities derived from peripheral measures of glutamatergic metabolites in patients, postmortem studies on glutamate related markers, and animal studies on the mechanism of action of available treatments. Magnetic resonance spectroscopy (MRS) has the potential to corroborate and extend these findings with the advantage of in vivo assessment of glutamate-related metabolites in different disease states, in response to treatment, and in relation with functional imaging data. In this article we first review the biological significance of glutamate, glutamine, and Glx (composed mainly of glutamate and glutamine). Next we review the MRS literature in mood disorders examining these glutamate-related metabolites. Here, we find a highly consistent pattern of Glx level reductions in major depressive disorder and elevations in bipolar disorder. In addition, studies of depression regardless of diagnosis provide suggestive evidence for reduced glutamine/glutamate ratio, and in mania for elevated glutamine/glutamate ratio. These patterns suggest that the glutamate-related metabolite pool (not all of it necessarily relevant to neurotransmission) is constricted in major depressive disorder and expanded in bipolar disorder. Depressive and manic episodes may be characterized by modulation of the glutamine/glutamate ratio in opposite directions, possibly suggesting reduced vs. elevated glutamate conversion to glutamine by glial cells, respectively. We discuss the implications of these results for the pathophysiology of mood disorders, and suggest future directions for MRS studies. PMID:20728076

  13. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  14. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    PubMed Central

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  15. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    SciTech Connect

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-07-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of /sup 125/I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of /sup 125/I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of /sup 125/I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence (/sup 3/H) norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors.

  16. Structural Features of the Glutamate Transporter Family

    PubMed Central

    Slotboom, Dirk Jan; Konings, Wil N.; Lolkema, Juke S.

    1999-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary

  17. Transport Mechanism of a Bacterial Homologue of Glutamate Transporters

    SciTech Connect

    Reyes, N.; Ginter, C; Boudker, O

    2009-01-01

    Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, GltPh, which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt{sub Ph} in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt{sub Ph} and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.

  18. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  19. Transport mechanism of a glutamate transporter homologue GltPh.

    PubMed

    Ji, Yurui; Postis, Vincent L G; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-06-15

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  20. Transport mechanism of a glutamate transporter homologue GltPh

    PubMed Central

    Ji, Yurui; Postis, Vincent L.G.; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  1. Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels.

    PubMed

    Bay, Virginia; Butt, Arthur M

    2012-04-01

    Uptake of K(+) released by axons during action potential propagation is a major function of astrocytes. Here, we demonstrate the importance of glial inward rectifying potassium channels (Kir) in regulating extracellular K(+) ([K(+)](o)) and axonal electrical activity in CNS white matter of the mouse optic nerve. Increasing optic nerve stimulation frequency from 1 Hz to 10-35 Hz for 120 s resulted in a rise in [K(+)](o) and consequent decay in the compound action potential (CAP), a measure of reduced axonal activity. On cessation of high frequency stimulation, rapid K(+) clearance resulted in a poststimulus [K(+)](o) undershoot, followed by a slow recovery of [K(+)](o) and the CAP, which were more protracted with increasing stimulation frequency. Blockade of Kir (100 μM BaCl(2)) slowed poststimulus recovery of [K(+)](o) and the CAP at all stimulation frequencies, indicating a primary function of glial Kir was redistributing K(+) to the extracellular space to offset active removal by Na(+)-K(+) pumps. At higher levels of axonal activity, Kir blockade also increased [K(+)](o) accumulation, exacerbating the decline in the CAP and impeding its subsequent recovery. In the Kir4.1-/- mouse, astrocytes displayed a marked reduction of inward currents and were severely depolarized, resulting in retarded [K(+)](o) regulation and reduced CAP. The results demonstrate the importance of glial Kir in K(+) spatial buffering and sustaining axonal activity in the optic nerve. Glial Kir have increasing importance in K(+) clearance at higher levels of axonal activity, helping to maintain the physiological [K(+)](o) ceiling and ensure the fidelity of signaling between the retina and brain. PMID:22290828

  2. Implications of glial nitric oxide in neurodegenerative diseases

    PubMed Central

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  3. Glial abnormalities in substance use disorders and depression: Does shared glutamatergic dysfunction contribute to comorbidity?

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Sanacora, Gerard; Zarate, Carlos A.

    2014-01-01

    Objectives Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells – astrocytes, microglia, and oligodendrocytes – also play key roles in these disorders. Methods Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. Results Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism – specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology – appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. Conclusions Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity. PMID:24024876

  4. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.

    PubMed

    Tanui, Rose; Tao, Zhen; Silverstein, Nechama; Kanner, Baruch; Grewer, Christof

    2016-05-27

    Glutamate transporters actively take up glutamate into the cell, driven by the co-transport of sodium ions down their transmembrane concentration gradient. It was proposed that glutamate binds to its binding site and is subsequently transported across the membrane in the negatively charged form. With the glutamate binding site being located partially within the membrane domain, the possibility has to be considered that glutamate binding is dependent on the transmembrane potential and, thus, is electrogenic. Experiments presented in this report test this possibility. Rapid application of glutamate to the wild-type glutamate transporter subtype EAAC1 (excitatory amino acid carrier 1) through photo-release from caged glutamate generated a transient inward current, as expected for the electrogenic inward movement of co-transported Na(+) In contrast, glutamate application to a transporter with the mutation A334E induced transient outward current, consistent with movement of negatively charged glutamate into its binding site within the dielectric of the membrane. These results are in agreement with electrostatic calculations, predicting a valence for glutamate binding of -0.27. Control experiments further validate and rule out other possible explanations for the transient outward current. Electrogenic glutamate binding can be isolated in the mutant glutamate transporter because reactions, such as glutamate translocation and/or Na(+) binding to the glutamate-bound state, are inhibited by the A334E substitution. Electrogenic glutamate binding has to be considered together with other voltage-dependent partial reactions to cooperatively determine the voltage dependence of steady-state glutamate uptake and glutamate buffering at the synapse. PMID:27044739

  5. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange.

    PubMed

    Timmerman, M; Teng, C; Wilkening, R B; Fennessey, P; Battaglia, F C; Meschia, G

    2000-05-01

    Intravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanisms, hepatic amino acid uptake and conversion of L-[1-(13)C]glutamine to L-[1-(13)C]glutamate and (13)CO(2) were measured in six sheep fetuses before and in the last 2 h of a 26-h Dex infusion. Dex decreased hepatic glutamine and alanine uptakes (P < 0.01) and hepatic glutamate output (P < 0.001). Hepatic outputs of the glutamate (R(Glu,Gln)) and CO(2) formed from plasma glutamine decreased to 21 (P < 0.001) and 53% (P = 0.009) of control, respectively. R(Glu,Gln), expressed as a fraction of both outputs, decreased (P < 0.001) from 0.36 +/- 0.02 to 0.18 +/- 0.04. Hepatic glucose output remained virtually zero throughout the experiment. We conclude that Dex decreases fetal hepatic glutamate output by increasing the routing of glutamate carbon into the citric acid cycle and by decreasing the hepatic uptake of glucogenic amino acids. PMID:10780940

  6. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    PubMed Central

    Moises, Hans W; Zoega, Tomas; Gottesman, Irving I

    2002-01-01

    Background A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Presentation of the hypothesis Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Testing the hypothesis Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. Implications of the hypothesis The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments. PMID:12095426

  7. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila.

    PubMed

    Chaturvedi, Ratna; Reddig, Keith; Li, Hong-Sheng

    2014-02-18

    Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions. PMID:24550312

  8. Cornichons modify channel properties of recombinant and glial AMPA receptors

    PubMed Central

    Coombs, Ian D.; Soto, David; Zonouzi, Marzieh; Renzi, Massimiliano; Shelley, Chris; Farrant, Mark; Cull-Candy, Stuart G.

    2012-01-01

    Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. For AMPA-type glutamate receptors (AMPARs), significant advances have been made in our understanding of their regulation by transmembrane AMPAR regulatory proteins (TARPs). Less is known about the functional influence of cornichons – unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable (CI-) and GluA2-lacking calcium-permeable (CP-) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance and calcium permeability of CP-AMPARs, while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labelling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents – the relative efficacy of the partial agonist kainate (IKA/IGlu ratio 0.4), and a greater than five-fold potentiation of kainate responses by cyclothiazide – suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia. PMID:22815494

  9. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells.

    PubMed

    Xie, Wenjie; Dolder, Silvia; Siegrist, Mark; Wetterwald, Antoinette; Hofstetter, Willy

    2016-08-01

    Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response

  10. Glutamate Excitotoxicity Inflicts Paranodal Myelin Splitting and Retraction

    PubMed Central

    Fu, Yan; Sun, Wenjing; Shi, Yunzhou; Shi, Riyi; Cheng, Ji-Xin

    2009-01-01

    Paranodal myelin damage is observed in white matter injury. However the culprit for such damage remains unknown. By coherent anti-Stokes Raman scattering imaging of myelin sheath in fresh tissues with sub-micron resolution, we observed significant paranodal myelin splitting and retraction following glutamate application both ex vivo and in vivo. Multimodal multiphoton imaging further showed that glutamate application broke axo-glial junctions and exposed juxtaparanodal K+ channels, resulting in axonal conduction deficit that was demonstrated by compound action potential measurements. The use of 4-aminopyridine, a broad-spectrum K+ channel blocker, effectively recovered both the amplitude and width of compound action potentials. Using CARS imaging as a quantitative readout of nodal length to diameter ratio, the same kind of paranodal myelin retraction was observed with applications of Ca2+ ionophore A23187. Moreover, exclusion of Ca2+ from the medium or application of calpain inhibitor abolished paranodal myelin retraction during glutamate exposure. Examinations of glutamate receptor agonists and antagonists further showed that the paranodal myelin damage was mediated by NMDA and kainate receptors. These results suggest that an increased level of glutamate in diseased white matter could impair paranodal myelin through receptor-mediated Ca2+ overloading and subsequent calpain activation. PMID:19693274

  11. A review of glutamate's role in traumatic brain injury mechanisms

    NASA Astrophysics Data System (ADS)

    Good, Cameron H.

    2013-05-01

    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  12. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus

    PubMed Central

    Medrano, M C; Gerrikagoitia, I; Martínez-Millán, L; Mendiguren, A; Pineda, J

    2013-01-01

    Background and Purpose Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. Experimental Approach We measured the effect of different EAAT subtype inhibitors/enhancers on glutamate- and KCl-induced activation of LC neurons in rat slices. EAAT2–3 expression in the LC was also characterized by immunohistochemistry. Key Results The EAAT2–5 inhibitor DL-threo-β-benzyloxaspartic acid (100 μM), but not the EAAT2, 4, 5 inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (100 μM) or the EAAT2 inhibitor dihydrokainic acid (DHK; 100 μM), enhanced the glutamate- and KCl-induced activation of the firing rate of LC neurons. These effects were blocked by ionotropic, but not metabotrobic, glutamate receptor antagonists. DHK (100 μM) was the only EAAT inhibitor that increased the spontaneous firing rate of LC cells, an effect that was due to inhibition of EAAT2 and subsequent AMPA receptor activation. Chronic treatment with ceftriaxone (200 mg·kg−1 i.p., once daily, 7 days), an EAAT2 expression enhancer, increased the actions of glutamate and DHK, suggesting a functional impact of EAAT2 up-regulation on the glutamatergic system. Immuhistochemical data revealed the presence of EAAT2 and EAAT3 surrounding noradrenergic neurons and EAAT2 on glial cells in the LC. Conclusions and Implications These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus. PMID:23638698

  13. Glial Contributions to Neural Function and Disease.

    PubMed

    Rasband, Matthew N

    2016-02-01

    The nervous system consists of neurons and glial cells. Neurons generate and propagate electrical and chemical signals, whereas glia function mainly to modulate neuron function and signaling. Just as there are many different kinds of neurons with different roles, there are also many types of glia that perform diverse functions. For example, glia make myelin; modulate synapse formation, function, and elimination; regulate blood flow and metabolism; and maintain ionic and water homeostasis to name only a few. Although proteomic approaches have been used extensively to understand neurons, the same cannot be said for glia. Importantly, like neurons, glial cells have unique protein compositions that reflect their diverse functions, and these compositions can change depending on activity or disease. Here, I discuss the major classes and functions of glial cells in the central and peripheral nervous systems. I describe proteomic approaches that have been used to investigate glial cell function and composition and the experimental limitations faced by investigators working with glia. PMID:26342039

  14. Borderless regulates glial extension and axon ensheathment.

    PubMed

    Cameron, Scott; Chen, Yixu; Rao, Yong

    2016-06-15

    Ensheathment of axons by glial processes is essential for normal brain function. While considerable progress has been made to define molecular and cellular mechanisms underlying the maintenance of axon ensheathment, less is known about molecular details of early events for the wrapping of axons by glial processes in the developing nervous system. In this study, we investigate the role of the transmembrane protein Borderless (Bdl) in the developing Drosophila visual system. Bdl belongs to the immunoglobulin (Ig) superfamily, and its in vivo function is unknown. We show that Bdl is expressed in wrapping glia (WG) in the developing eye disc. Cell-type-specific transgene rescue and knockdown indicate that Bdl is specifically required in WG for the extension of glial processes along photoreceptor axons in the optic lobe, and axon ensheathment. Our results identify Bdl as a novel glia-specific cell-surface recognition molecule in regulating glial extension and axon ensheathment. PMID:27131624

  15. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    PubMed

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. PMID:27518562

  16. The role of glial-specific Kir4.1 in normal and pathological states of the CNS.

    PubMed

    Nwaobi, Sinifunanya E; Cuddapah, Vishnu A; Patterson, Kelsey C; Randolph, Anita C; Olsen, Michelle L

    2016-07-01

    Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit. PMID:26961251

  17. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes.

    PubMed

    Innocenti, B; Parpura, V; Haydon, P G

    2000-03-01

    A growing body of evidence proposes that glial cells have the potential to play a role as modulators of neuronal activity and synaptic transmission by releasing the neurotransmitter glutamate (Arague et al., 1999). We explore the spatial nature of glutamate release from astrocytes with an enzyme-linked assay system and CCD imaging technology. In the presence of glutamate, L-glutamic dehydrogenase (GDH) reduces NAD(+) to NADH, a product that fluoresces when excited with UV light. Theoretically, provided that GDH and NAD(+) are present in the bathing saline, the release of glutamate from stimulated astrocytes can be optically detected by monitoring the accumulation of NADH. Indeed, stimuli that induce a wave of elevated calcium among astrocytes produced a corresponding spread of extracellular NADH fluorescence. Treatment of cultures either with thapsigargin, to deplete internal calcium stores, or with the membrane-permeant calcium chelator BAPTA AM significantly decreased the accumulation of NADH, demonstrating that this fluorometric assay effectively monitors calcium-dependent glutamate release. With a temporal resolution of 500 msec and spatial resolution of approximately 20 micrometer, discrete regions of glutamate release were not reliably resolved. The wave of glutamate release that underlies the NADH fluorescence propagated at an average speed of approximately 26 micrometer/sec, correlating with the rate of calcium wave progression (10-30 micrometer/sec), and caused a localized accumulation of glutamate in the range of 1-100 microM. Further analysis of the fluorescence accumulation clearly demonstrated that glutamate is released in a regenerative manner, with subsequent cells that are involved in the calcium wave releasing additional glutamate. PMID:10684881

  18. Glial TDP-43 regulates axon wrapping, GluRIIA clustering and fly motility by autonomous and non-autonomous mechanisms

    PubMed Central

    Romano, Giulia; Appocher, Chiara; Scorzeto, Michele; Klima, Raffaella; Baralle, Francisco E.; Megighian, Aram; Feiguin, Fabian

    2015-01-01

    Alterations in the glial function of TDP-43 are becoming increasingly associated with the neurological symptoms observed in Amyotrophic Lateral Sclerosis (ALS), however, the physiological role of this protein in the glia or the mechanisms that may lead to neurodegeneration are unknown. To address these issues, we modulated the expression levels of TDP-43 in the Drosophila glia and found that the protein was required to regulate the subcellular wrapping of motoneuron axons, promote synaptic growth and the formation of glutamate receptor clusters at the neuromuscular junctions. Interestingly, we determined that the glutamate transporter EAAT1 mediated the regulatory functions of TDP-43 in the glia and demonstrated that genetic or pharmacological compensations of EAAT1 activity were sufficient to modulate glutamate receptor clustering and locomotive behaviors in flies. The data uncovers autonomous and non-autonomous functions of TDP-43 in the glia and suggests new experimentally based therapeutic strategies in ALS. PMID:26276811

  19. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  20. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.

    PubMed Central

    Rinehart, C A; Hubbard, J S

    1976-01-01

    When illuminated, washed cell suspensions of Ectothiorhodospira halophila carry out a concentrative uptake of glutamate or proline. Dark-exposed cells accumulate glutamate but not proline. Proline transport was strongly inhibited by carbonylcyanide-m-chlorophenylhydrazone (CCCP), a proton permeant that uncouples photophosphorylation, and by 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO), an inhibitor of photosynthetic electron transport. A stimulation of proline uptake was effected by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of membrane adenosine triphosphatase (ATPase) which catalyzes the phosphorylation. These findings suggest that the driving force for proline transport is the proton-motive force established during photosynthetic electron transport. Glutamate uptake in the light was inhibited by CCCP and HQNO, but to a lesser extent than was the proline system. DCCD caused a mild inhibition of glutamate uptake in the light, but strongly inhibited the uptake by dark-exposed cells. CCCP strongly inhibited glutamate uptake in the dark. The light-dependent transport of glutamate is apparently driven by the proton-motive force established during photosynthetic electron transport. Hydrolysis of adenosine triphosphate (ATP) by membrane ATPase apparently establishes the proton-motive force to drive the light-independent transport. These conclusions were supported by demonstrating that light- or dark-exposed cells accumulate [3H]triphenylmethylphosphonium, a lipid-soluble cation. Several lines of indirect evidence indicated that the proline system required higher levels of energy than did the glutamate system(s). This could explain why ATP hydrolysis does not drive proline transport in the dark. Membrane vesicles were prepared by the sonic treatment of E. halophila spheroplasts. The vesicles contained active systems for the uptake of proline and glutamate. PMID:956126

  1. Specific glial functions contribute to schizophrenia susceptibility.

    PubMed

    Goudriaan, Andrea; de Leeuw, Christiaan; Ripke, Stephan; Hultman, Christina M; Sklar, Pamela; Sullivan, Patrick F; Smit, August B; Posthuma, Danielle; Verheijen, Mark H G

    2014-07-01

    Schizophrenia is a highly polygenic brain disorder. The main hypothesis for disease etiology in schizophrenia primarily focuses on the role of dysfunctional synaptic transmission. Previous studies have therefore directed their investigations toward the role of neuronal dysfunction. However, recent studies have shown that apart from neurons, glial cells also play a major role in synaptic transmission. Therefore, we investigated the potential causal involvement of the 3 principle glial cell lineages in risk to schizophrenia. We performed a functional gene set analysis to test for the combined effects of genetic variants in glial type-specific genes for association with schizophrenia. We used genome-wide association data from the largest schizophrenia sample to date, including 13 689 cases and 18 226 healthy controls. Our results show that astrocyte and oligodendrocyte gene sets, but not microglia gene sets, are associated with an increased risk for schizophrenia. The astrocyte and oligodendrocyte findings are related to astrocyte signaling at the synapse, myelin membrane integrity, glial development, and epigenetic control. Together, these results show that genetic alterations underlying specific glial cell type functions increase susceptibility to schizophrenia and provide evidence that the neuronal hypothesis of schizophrenia should be extended to include the role of glia. PMID:23956119

  2. Specific Glial Functions Contribute to Schizophrenia Susceptibility

    PubMed Central

    de Leeuw, Christiaan; Ripke, Stephan; Hultman, Christina M.; Sklar, Pamela; Sullivan, Patrick F.; Smit, August B.; Posthuma, Danielle; Verheijen, Mark H. G.

    2014-01-01

    Schizophrenia is a highly polygenic brain disorder. The main hypothesis for disease etiology in schizophrenia primarily focuses on the role of dysfunctional synaptic transmission. Previous studies have therefore directed their investigations toward the role of neuronal dysfunction. However, recent studies have shown that apart from neurons, glial cells also play a major role in synaptic transmission. Therefore, we investigated the potential causal involvement of the 3 principle glial cell lineages in risk to schizophrenia. We performed a functional gene set analysis to test for the combined effects of genetic variants in glial type–specific genes for association with schizophrenia. We used genome-wide association data from the largest schizophrenia sample to date, including 13 689 cases and 18 226 healthy controls. Our results show that astrocyte and oligodendrocyte gene sets, but not microglia gene sets, are associated with an increased risk for schizophrenia. The astrocyte and oligodendrocyte findings are related to astrocyte signaling at the synapse, myelin membrane integrity, glial development, and epigenetic control. Together, these results show that genetic alterations underlying specific glial cell type functions increase susceptibility to schizophrenia and provide evidence that the neuronal hypothesis of schizophrenia should be extended to include the role of glia. PMID:23956119

  3. Effects of DNA synthesis inhibitors on post-traumatic glial cell proliferation

    SciTech Connect

    Billingsley, M.L.; Mandel, H.G.

    1982-09-01

    This study attempts to inhibit post-traumatic glial cell scarring in rats lesioned in the frontal cortex, by treatment with several antiproliferative drugs. (/sup 3/H)Thymidine ((/sup 3/H)TdR) incorporation into DNA served as the biochemical index of glial cell proliferation and histological observations confirmed the biochemical effects. Cytosine arabinoside (ara-C), given i.p. at a total daily dosage of 15 to 100 mg/kg, was found to inhibit the incorporation of (/sup 3/H)TdR into cortical DNA and also inhibited the proliferation of glial cells after cortical trauma. Treatment using ara-C induced marked histological changes in glial cells near the lesion, indicating that the inhibition by the drug of DNA synthesis correlated with cytotoxicity to proliferating glial cells. Experiments using (/sup 3/H)ara-C confirmed that this drug entered lesioned brain tissue, although at levels considerably lower than those found in the periphery. Cyclophosphamide also reduced (/sup 3/H)TdR incorporation into both lesioned and control cortices; however, this effect, unlike that of ara-C, was not proportionately greater in the lesioned cortex. Vincristine, but not vinblastine, also inhibited (/sup 3/H)TdR incorporation into the lesioned cortex, possibly reflecting differences in the neuronal uptake of the vinca alkaloids. We propose that ara-C can inhibit the proliferation of glial cells after neural trauma and that judicious use of this agent may lessen scarring in the injured central nervous system, possibly enhancing the regenerative capacity of the brain.

  4. I(2)01810 is a novel type of glutamate transporter that is responsible for megamitochondrial formation

    PubMed Central

    Shim, Myoung Sup; Kim, Jin Young; Lee, Kwang Hee; Jung, Hee Kyoung; Carlson, Bradley A.; Xu, Xue-Ming; Hatfield, Dolph L.; Lee, Byeong Jae

    2012-01-01

    l(2)01810 causes glutamine-dependent megamitochondrial formation when it is overexpressed in Drosophila cells. In the present study, we elucidated the function of l(2)01810 during megamitochondrial formation. The overexpression of l(2)01810 and the inhibition of glutamine synthesis showed that l(2)01810 is involved in the accumulation of glutamate. l(2)01810 was predicted to contain transmembrane domains and was found to be localized to the plasma membrane. By using 14C-labelled glutamate, l(2)01810 was confirmed to uptake glutamate into Drosophila cells with high affinity (Km =69.4 µM). Also, l(2)01810 uptakes glutamate in a Na+ -independent manner. Interestingly, however, this uptake was not inhibited by cystine, which is a competitive inhibitor of Na+ -independent glutamate transporters, but by aspartate. A signal peptide consisting of 34 amino acid residues targeting to endoplasmic reticulum was predicted at the N-terminus of l(2)01810 and this signal peptide is essential for the protein’s localization to the plasma membrane. In addition, l(2)01810 has a conserved functional domain of a vesicular-type glutamate transporter, and Arg146 in this domain was found to play a key role in glutamate transport and megamitochondrial formation. These results indicate that l(2)01810 is a novel type of glutamate transporter and that glutamate uptake is a rate-limiting step for megamitochondrial formation. PMID:21728998

  5. Importance of glutamate-generating metabolic pathways for memory consolidation in chicks.

    PubMed

    Gibbs, Marie E; Hertz, Leif

    2005-07-15

    Glutamatergic and noradrenergic stimulation is essential for formation of memory of single-trial discriminative avoidance of colored beads in the 1-day-old chick. Transmitter glutamate is released soon after training and again before memory consolidation 30 min after training. Memory consolidation is abolished by posttraining injection of iodoacetate, which inhibits glycolysis and thus not only energy metabolism but also pyruvate carboxylase-dependent glucose conversion to glutamate, needed for consolidation; a similar effect is evoked by the antagonists propranolol acting at beta(2)-adrenoceptors or SR59230A acting at beta(3)-adrenoceptors. This paper shows that the effect of these inhibitors can be overcome by central injection of glutamine, providing an alternate source of transmitter glutamate and compensating for the inhibition of glycolysis by iodoacetate or the blockade of adrenergic stimulation of glycogenolysis by propranolol or of glucose uptake by SR59230A. Conversely, inhibition of memory consolidation by methionine sulfoximine (MSO), an inhibitor of glutamine synthetase and thus of the glutamate-glutamine cycle, essential for neuronal reaccumulation of previously released transmitter glutamate, could be challenged by noradrenaline, stimulating glucose uptake and glycogenolysis and providing glutamate synthesis from glucose to compensate for the lack of return of previously released glutamate. Also, administration of either glutamine or noradrenaline could prevent the spontaneous decay of labile memory 30 min after training on a weakened stimulus, suggesting that direct supply of glutamate from glucose may secure sufficient supplies of transmitter glutamate for release prior to memory consolidation at 30 min. PMID:15929064

  6. Effects of aging on glutamate neurotransmission in the substantia nigra of Gdnf heterozygous mice

    PubMed Central

    Farrand, Ariana Q; Gregory, Rebecca A; Scofield, Michael D; Helke, Kristi L; Boger, Heather A

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) helps protect dopaminergic neurons in the nigrostriatal tract. Although the cause of nigrostriatal degeneration is unknown, one theory is that excess glutamate from the subthalamic nucleus (STN) results in excitotoxic events in the substantia nigra (SN). Since dopaminergic degeneration is accompanied by a reduction in GDNF, we examined glutamate neurotransmission in the SN using a Gdnf heterozygous mouse model (Gdnf+/−) at 8 and 12 months of age. At 8 months, Gdnf+/− mice have greater glutamate release and higher basal glutamate levels, which precede the SN dopaminergic degeneration observed at 12 months of age. However, at 12 months, Gdnf+/− mice have lower basal levels of glutamate and less glutamate release than wildtype (WT) mice. Also at 8 months, Gdnf+/− mice have lower levels of GLT-1 and greater GFAP levels in the SN compared to WT mice, differences that increase with age. These data suggest that reduced levels of GDNF induce excess glutamate release and dysregulation of GLT-1, causing excitotoxicity in the SN that precedes dopaminergic degeneration. PMID:25577412

  7. Glial Cell Regulation of Rhythmic Behavior

    PubMed Central

    Jackson, F. Rob; Ng, Fanny S.; Sengupta, Sukanya; You, Samantha; Huang, Yanmei

    2015-01-01

    Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia–glia or glia–neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia–neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia–neuron communication contributes to the regulation of rhythmic behavior. PMID:25707272

  8. GLIAL ANKYRINS FACILITATE PARANODAL AXOGLIAL JUNCTION ASSEMBLY

    PubMed Central

    Chang, Kae-Jiun; Zollinger, Daniel R.; Susuki, Keiichiro; Sherman, Diane L.; Makara, Michael A.; Brophy, Peter J.; Cooper, Edward C.; Bennett, Vann; Mohler, Peter J.; Rasband, Matthew N.

    2014-01-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions, and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, are essential for rapid saltatory conduction, and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and important for membrane domain establishment and maintenance in many cell types. Here, we show that ankyrinB, expressed by Schwann cells, and ankyrinG, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing central nervous system. PMID:25362471

  9. Glial ankyrins facilitate paranodal axoglial junction assembly.

    PubMed

    Chang, Kae-Jiun; Zollinger, Daniel R; Susuki, Keiichiro; Sherman, Diane L; Makara, Michael A; Brophy, Peter J; Cooper, Edward C; Bennett, Vann; Mohler, Peter J; Rasband, Matthew N

    2014-12-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na(+) channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS. PMID:25362471

  10. Serotonin impairs copulation and attenuates ejaculation-induced glutamate activity in the medial preoptic area.

    PubMed

    Dominguez, Juan M; Hull, Elaine M

    2010-08-01

    The medial preoptic area (MPOA) is critical for male sexual behavior. Glutamate is released in the MPOA of male rats during copulation, and increasing glutamate levels by reverse dialysis of glutamate uptake inhibitors facilitates mating. Conversely, increased release of serotonin (5-HT) inhibits sexual behavior. In both rats and men, selective serotonin reuptake inhibitors (SSRIs) impair erection, ejaculation, and libido. Here we reverse-dialyzed 5-HT through concentric microdialysis probes in the MPOA of male rats; concurrently we collected 2-min samples for analysis of glutamate and measured sexual behavior. Sexual activity, and especially ejaculation, increased levels of glutamate in the MPOA. However, reverse dialysis of 5-HT into the MPOA impaired ejaculatory ability and attenuated glutamate release. Implications of these results for impairment of sexual behavior that results from administration of SSRIs are discussed. PMID:20695654

  11. Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus.

    PubMed

    Saftenku, E E

    2005-06-01

    Synaptic conductances are influenced markedly by the geometry of the space surrounding the synapse since the transient glutamate concentration in the synaptic cleft is determined by this geometry. Our paper is an attempt to understand the reasons for slow glutamate diffusion in the cerebellar glomerulus, a structure situated around the enlarged mossy fiber terminal in the cerebellum and surrounded by a glial sheath. For this purpose, analytical expressions for glutamate diffusion in the glomerulus were considered in models with two-, three-, and fractional two-three-dimensional (2D-3D) geometry with an absorbing boundary. The time course of average glutamate concentration in the synaptic cleft of the mossy fiber-granule cell connection was calculated for both direct release of glutamate from the same synaptic unit, and for cumulative spillover of glutamate from neighboring release sites. Several kinetic schemes were examined, and the parameters of the diffusion models were estimated by identifying theoretical activation of AMPA receptors with direct release and spillover components of published experimental AMPA receptor-mediated EPSCs. For model selection, the correspondence of simulated paired-pulse ratio and EPSC increase after prevention of desensitization to experimental values were also taken into consideration. Our results suggest at least a 7- to 10-fold lower apparent diffusion coefficient of glutamate in the porous medium of the glomerulus than in water. The modeling of glutamate diffusion in the 2D-3D geometry gives the best fit of experimental EPSCs. We show that it could be only partly explained by normal diffusion of glutamate in the complex geometry of the glomerulus. We assume that anomalous diffusion of glutamate occurs in the glomerulus. A good match of experimental estimations and theoretical parameters, obtained in the simulations that use an approximation of anomalous diffusion by a solution for fractional Brownian motion, confirms our

  12. Swift Acetate Glial Assay (SAGA): An accelerated human 13C MRS brain exam for clinical diagnostic use

    NASA Astrophysics Data System (ADS)

    Sailasuta, Napapon; Tran, Thao T.; Harris, Kent C.; Ross, B. D.

    2010-12-01

    We demonstrate a robust procedure for the quantitative characterization of glial metabolism in human brain. In the past, the slope of the uptake and production of enriched label at steady state were used to determine metabolic rates, requiring the patient to be in the magnet for 120-160 min. In the present method, 13C cerebral metabolite profiles were acquired at steady state alone on a routine clinical MR scanner in 25.6 min. Results obtained from the new short method (SAGA) were comparable to those achieved in a conventional, long method and effective for determination of glial metabolic rate in posterior-parietal and frontal brain regions.

  13. Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks

    PubMed Central

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Diaz-Cabiale, Zaida; Rivera, Alicia; Ferraro, Luca; Tanganelli, Sergio; Tarakanov, Alexander O.; Garriga, Pere; Narváez, José Angel; Ciruela, Francisco; Guescini, Michele; Agnati, Luigi F.

    2012-01-01

    Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

  14. Chloride-dependent transport of NH4+ into bee retinal glial cells.

    PubMed

    Marcaggi, P; Thwaites, D T; Deitmer, J W; Coles, J A

    1999-01-01

    Mammalian astrocytes convert glutamate to glutamine and bee retinal glial cells convert pyruvate to alanine. To maintain such amination reactions these glial cells may take up NH4+/NH3. We have studied the entry of NH4+/NH3 into bundles of glial cells isolated from bee retina by using the fluorescent dye BCECF to measure pH. Ammonium caused intracellular pH to decrease by a saturable process: the rate of change of pH was maximal for an ammonium concentration of about 5 mM. This acidifying response to ammonium was abolished by the loop diuretic bumetanide (100 microM) and by removal of extracellular Cl-. These results strongly suggest that ammonium enters the cell by contransport of NH4+ with Cl-. Removal of extracellular Na+ did not abolish the NH(4+)-induced acidification. The NH(4+)-induced pH change was unaffected when nearly all K+ conductance was blocked with 5 mM Ba2+ showing that NH4+ did not enter through Ba(2+)-sensitive ion channels. Application of 2 mM NH4+ led to a large increase in total intracellular proton concentration estimated to exceed 13.5 mEq/L. As the cell membrane appeared to be permeable to NH3, we suggest that when NH4+ entered the cells, NH3 left, so that protons were shuttled into the cell. This shuttle, which was strongly dependent on internal and external pH, was quantitatively modelled. In retinal slices, 2 mM NH4+ alkalinized the extracellular space: this alkalinization was reduced in the absence of bath Cl-. We conclude that NH4+ enters the glial cells in bee retina on a cotransporter with functional similarities to the NH4+(K+)-Cl- cotransporter described in kidney cells. PMID:9987021

  15. Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system

    PubMed Central

    von Hilchen, Christian M.; Bustos, Álvaro E.; Giangrande, Angela; Technau, Gerhard M.; Altenhein, Benjamin

    2013-01-01

    One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo. PMID:23903191

  16. The combination of organoselenium compounds and guanosine prevents glutamate-induced oxidative stress in different regions of rat brains.

    PubMed

    Dalla Corte, Cristiane L; Bastos, Luíza L; Dobrachinski, Fernando; Rocha, João B T; Soares, Félix A A

    2012-01-01

    This study was designed to investigate the protective effects of the combination of guanosine and 2 organoselenium compounds (ebselen and diphenyl diselenide) against glutamate-induced oxidative stress in different regions of rat brains. Glutamate caused an increase in reactive oxygen species (ROS) generation and a decrease in [(3)H]-glutamate uptake in striatal, cortical, and hippocampal slices. Guanosine, ebselen, and diphenyl diselenide prevented glutamate-induced ROS production in striatal, cortical and hippocampal slices. The combination of guanosine with organoselenium compounds was more effective against glutamate-induced ROS production than the individual compounds alone. Guanosine prevented [(3)H]-glutamate uptake inhibition in striatal, cortical, and hippocampal slices. Thus, protection against the harmful effects of glutamate is possibly due to the combination of the antioxidant properties of organoselenium compounds and the stimulatory effect of guanosine on glutamate uptake. In conclusion, the combination of antioxidants and glutamatergic system modulators could be considered a potential therapy against the prooxidant effects of glutamate. PMID:22133308

  17. Evidence for brain glial activation in chronic pain patients

    PubMed Central

    Loggia, Marco L.; Chonde, Daniel B.; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R.; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D.; Zürcher, Nicole R.; Albrecht, Daniel S.; Vangel, Mark G.; Rosen, Bruce R.; Napadow, Vitaly; Hooker, Jacob M.

    2015-01-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand 11C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for 11C-PBR28, nine patient–control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29–63 for patients and 28–65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. PMID:25582579

  18. Evidence for brain glial activation in chronic pain patients.

    PubMed

    Loggia, Marco L; Chonde, Daniel B; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D; Zürcher, Nicole R; Albrecht, Daniel S; Vangel, Mark G; Rosen, Bruce R; Napadow, Vitaly; Hooker, Jacob M

    2015-03-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. PMID:25582579

  19. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems.

    PubMed

    Köles, László; Kató, Erzsébet; Hanuska, Adrienn; Zádori, Zoltán S; Al-Khrasani, Mahmoud; Zelles, Tibor; Rubini, Patrizia; Illes, Peter

    2016-03-01

    Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning. PMID:26542977

  20. Emerging role of glial cells in the control of body weight

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Argente, Jesús; Chowen, Julie A.

    2012-01-01

    Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field. PMID:24024117

  1. [Glutamate Metabotropic Receptors: Structure, Localisation, Functions].

    PubMed

    Perfilova, V N; Tyurenkov, I N

    2016-01-01

    The data on the structure, location and functions of the metabotropic glutamate receptor is shown. The family consists of 8 mGluRs subtypes and is divided into three groups: I group--mGluRs1/mGluRs5, II group--mGluRs2/mGluRs3, III group--mGluRs4/mGluRs6/mGluRs7/mGluRs8. They are associated with G-protein; signaling in the cells is carried out by IP3 or adenylate cyclase signaling pathways, in the result of which, mGluRs modify glial and neuronal excitability. Receptors are localized in the CNS and periphery in non-neuronal tissues: bone, heart, kidney, pancreas pod and platelets, the gastrointestinal tract, immune system. Their participation in the mechanisms of neurodegenerative diseases, mental and cognitive disorders, autoimmune processes, etc. is displayed. Agonists, antagonists, allosteric modulators of mGluRs are considered as potential medicines for treatment of mental diseases, including depression, fragile X syndrome, anxiety, obsessive-compulsive disorders, Parkinson's disease, etc. PMID:27530046

  2. Assessment of Glial Function in the In Vivo Retina

    PubMed Central

    Srienc, Anja I.; Kornfield, Tess E.; Mishra, Anusha; Burian, Michael A.; Newman, Eric A.

    2013-01-01

    Glial cells, traditionally viewed as passive elements in the CNS, are now known to have many essential functions. Many of these functions have been revealed by work on retinal glial cells. This work has been conducted almost exclusively on ex vivo preparations and it is essential that retinal glial cell functions be characterized in vivo as well. To this end, we describe an in vivo rat preparation to assess the functions of retinal glial cells. The retina of anesthetized, paralyzed rats is viewed with confocal microscopy and laser speckle flowmetry to monitor glial cell responses and retinal blood flow. Retinal glial cells are labeled with the Ca2+ indicator dye Oregon Green 488 BAPTA-1 and the caged Ca2+ compound NP-EGTA by injection of the compounds into the vitreous humor. Glial cells are stimulated by photolysis of caged Ca2+ and the activation state of the cells assessed by monitoring Ca2+ indicator dye fluorescence. We find that, as in the ex vivo retina, retinal glial cells in vivo generate both spontaneous and evoked intercellular Ca2+ waves. We also find that stimulation of glial cells leads to the dilation of neighboring retinal arterioles, supporting the hypothesis that glial cells regulate blood flow in the retina. This in vivo preparation holds great promise for assessing glial cell function in the healthy and pathological retina. PMID:22144328

  3. Development and organization of glial cells in Drosophila melanogaster.

    PubMed

    Giangrande, A

    1996-10-01

    Glial cells constitute a crucial component of the nervous system. They wrap the neuronal somata and axons and play a number of roles during normal neuronal development and activity as well as during axonal regeneration after wounding. The availability of cellular markers and genetic tools have made it possible in Drosophila to start identifying the genes and the cell-cell interactions leading to glial cell differentiation. The existence of multipotent precursor cells in the nervous system, the requirement for master genes determining the glial cell fate, the migratory abilities of fly glial cells and the existence of neuron-glial cell interactions during development are some of the features revealed by these approaches. These findings also indicate an evolutionary conservation in the developmental mechanisms between invertebrates and vertebrates. Finally, Drosophila is an ideal model system to determine in vivo the precise roles of glial cells and to study the etiology of pathologies associated with abnormal glial differentiation. PMID:8946240

  4. Metabotropic Glutamate Receptors

    PubMed Central

    Dillon, James; Franks, Christopher J.; Murray, Caitriona; Edwards, Richard J.; Calahorro, Fernando; Ishihara, Takeshi; Katsura, Isao; Holden-Dye, Lindy; O'Connor, Vincent

    2015-01-01

    Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C. elegans, three mGluR genes, mgl-1, mgl-2, and mgl-3, are organized into three subgroups, similar to their mammalian counterparts. Cellular reporters identified expression of the mgls in the nervous system of C. elegans and overlapping expression in the pharyngeal microcircuit that controls pharyngeal muscle activity and feeding behavior. The overlapping expression of mgls within this circuit allowed the investigation of receptor signaling per se and in the context of receptor interactions within a neural network that regulates feeding. We utilized the pharmacological manipulation of neuronally regulated pumping of the pharyngeal muscle in the wild-type and mutants to investigate MGL function. This defined a net mgl-1-dependent inhibition of pharyngeal pumping that is modulated by mgl-3 excitation. Optogenetic activation of the pharyngeal glutamatergic inputs combined with electrophysiological recordings from the isolated pharyngeal preparations provided further evidence for a presynaptic mgl-1-dependent regulation of pharyngeal activity. Analysis of mgl-1, mgl-2, and mgl-3 mutant feeding behavior in the intact organism after acute food removal identified a significant role for mgl-1 in the regulation of an adaptive feeding response. Our data describe the molecular and cellular organization of mgl-1, mgl-2, and mgl-3. Pharmacological analysis identified that, in these paradigms, mgl-1 and mgl-3, but not mgl-2, can modulate the pharyngeal microcircuit. Behavioral analysis identified mgl-1 as a significant determinant of the glutamate-dependent modulation of feeding, further highlighting the significance of mGluRs in complex C. elegans behavior. PMID:25869139

  5. On the potential role of glutamate transport in mental fatigue.

    PubMed

    Rönnbäck, Lars; Hansson, Elisabeth

    2004-11-01

    Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms.It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL)-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-alpha, IL-1beta and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+) in humans suffering from mental fatigue. At

  6. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors

    NASA Astrophysics Data System (ADS)

    Okumoto, Sakiko; Looger, Loren L.; Micheva, Kristina D.; Reimer, Richard J.; Smith, Stephen J.; Frommer, Wolf B.

    2005-06-01

    Glutamate is the predominant excitatory neurotransmitter in the mammalian brain. Once released, its rapid removal from the synaptic cleft is critical for preventing excitotoxicity and spillover to neighboring synapses. Despite consensus on the role of glutamate in normal and disease physiology, technical issues limit our understanding of its metabolism in intact cells. To monitor glutamate levels inside and at the surface of living cells, genetically encoded nanosensors were developed. The fluorescent indicator protein for glutamate (FLIPE) consists of the glutamate/aspartate binding protein ybeJ from Escherichia coli fused to two variants of the green fluorescent protein. Three sensors with lower affinities for glutamate were created by mutation of residues peristeric to the ybeJ binding pocket. In the presence of ligands, FLIPEs show a concentration-dependent decrease in FRET efficiency. When expressed on the surface of rat hippocampal neurons or PC12 cells, the sensors respond to extracellular glutamate with a reversible concentration-dependent decrease in FRET efficiency. Depolarization of neurons leads to a reduction in FRET efficiency corresponding to 300 nM glutamate at the cell surface. No change in FRET was observed when cells expressing sensors in the cytosol were superfused with up to 20 mM glutamate, consistent with a minimal contribution of glutamate uptake to cytosolic glutamate levels. The results demonstrate that FLIPE sensors can be used for real-time monitoring of glutamate metabolism in living cells, in tissues, or in intact organisms, providing tools for studying metabolism or for drug discovery. aspartate | hippocampal neuron | neurotransmitter | secretion | transport

  7. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression.

    PubMed

    Hunsberger, Holly C; Weitzner, Daniel S; Rudy, Carolyn C; Hickman, James E; Libell, Eric M; Speer, Rebecca R; Gerhardt, Greg A; Reed, Miranda N

    2015-10-01

    Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD. PMID:26146790

  8. Exposure to altered gravity conditions results in hypoxia-related enhancement of the presynaptic transporter-mediated release of glutamate.

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana

    High-affinity Na+-dependent glutamate transporters locate in the plasma membrane and maintain the low concentration of glutamate in synaptic cleft by the uptake of glutamate into neurons. Under hypoxic conditions glutamate transporters contribute to the glutamate release due to functioning in reverse mode. The release of glutamate via reverse-operated Na+-dependent glutamate transporters was investigated in brain synaptosomes under conditions of centrifugeinduced hypergravity. Flow cytometric analisis revealed similarity in the size and cytoplasmic granularity of control and hypergravity synaptosomes. Protonophore FCCP dissipates the proton gradient across synaptic vesicle thus synaptic vesicles are not able to keep glutamate inside. 1 microM FCCP induced the release of 4. 8 ±1. 0 % and 8. 0 ±1. 0 % of total accumulated synaptosomal label in control and G-loaded animals, respectively. Ca 2+-independent high- KCl stimulated L-[14C]glutamate release from synaptosomes preliminary treated with FCCP increased considerably from 27. 0 ± 2. 2 % to 35. 0 ± 2. 3 % after centrifuge-induced hypergravity. No-transportable inhibitor of glutamate transporter DL-threo-beta-benzyloxyaspartate was found to inhibit high-KCl and FCCP-stimulated release of L-[14C]glutamate, thus the release was concluded to occur due to reversal of glutamate transporters. We have also found the inhibition of the activity of Na \\ K ATPase in the plasma membrane of synaptosomes after hypergravity that might also contribute to the enhancement of the transporter-mediated release of glutamate. These hypergravity-induced alterations in the transporter-mediated release of glutamate were suggested to correlate with the hypoxic injury of neurons. The changes we have revealed for the transporter-mediated release of glutamate may lead to mental disorders, upcoming seizures and neurotoxicity under hypergravity conditions.

  9. Pivotal Enzyme in Glutamate Metabolism of Poly-γ-Glutamate-Producing Microbes

    PubMed Central

    Ashiuchi, Makoto; Yamamoto, Takashi; Kamei, Tohru

    2013-01-01

    The extremely halophilic archaeon Natrialba aegyptiaca secretes the L-homo type of poly-γ-glutamate (PGA) as an extremolyte. We examined the enzymes involved in glutamate metabolism and verified the presence of L-glutamate dehydrogenases, L-aspartate aminotransferase, and L-glutamate synthase. However, neither glutamate racemase nor D-amino acid aminotransferase activity was detected, suggesting the absence of sources of D-glutamate. In contrast, D-glutamate-rich PGA producers mostly possess such intracellular sources of D-glutamate. The results of our present study indicate that the D-glutamate-anabolic enzyme “glutamate racemase” is pivotal in the biosynthesis of PGA. PMID:25371338

  10. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain.

    PubMed

    Zhang, Zhi; Bassam, Bassam; Thomas, Ajit G; Williams, Monica; Liu, Jinhuan; Nance, Elizabeth; Rojas, Camilo; Slusher, Barbara S; Kannan, Sujatha

    2016-10-01

    Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by

  11. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice.

    PubMed

    Hunsberger, Holly C; Hickman, James E; Reed, Miranda N

    2016-06-01

    Those at risk for Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model. Here, we used enzyme-based ceramic microelectrode array technology to measure real-time phasic glutamate release and uptake events in the hippocampal subregions of TauP301L mice. For the first time, we demonstrate that perturbations in glutamate transients (rapid, spontaneous bursts of glutamate) exist in a tau mouse model of AD mouse model and that riluzole mitigates these alterations. These results help to inform our understanding of how glutamate signaling is altered in the disease process and also suggest that riluzole may serve as a clinically applicable therapeutic approach in AD. PMID:26744018

  12. Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity.

    PubMed

    Umebayashi, Daisuke; Natsume, Atsushi; Takeuchi, Hideyuki; Hara, Masahito; Nishimura, Yusuke; Fukuyama, Ryuichi; Sumiyoshi, Naoyuki; Wakabayashi, Toshihiko

    2014-12-15

    We previously demonstrated that activated microglia release excessive glutamate through gap junction hemichannels and identified a novel gap junction hemichannel blocker, INI-0602, that was proven to penetrate the blood-brain barrier and be an effective treatment in mouse models of amyotrophic lateral sclerosis and Alzheimer disease. Spinal cord injury causes tissue damage in two successive waves. The initial injury is mechanical and directly causes primary tissue damage, which induces subsequent ischemia, inflammation, and neurotoxic factor release resulting in the secondary tissue damage. These lead to activation of glial cells. Activated glial cells such as microglia and astrocytes are common pathological observations in the damaged lesion. Activated microglia release glutamate, the major neurotoxic factor released into the extracellular space after neural injury, which causes neuronal death at high concentration. In the present study, we demonstrate that reduction of glutamate-mediated exitotoxicity via intraperitoneal administration of INI-0602 in the microenvironment of the injured spinal cord elicited neurobehavioral recovery and extensive suppression of glial scar formation by reducing secondary tissue damage. Further, this intervention stimulated anti-inflammatory cytokines, and subsequently elevated brain-derived neurotrophic factor. Thus, preventing microglial activation by a gap junction hemichannel blocker, INI-0602, may be a promising therapeutic strategy in spinal cord injury. PMID:24588281

  13. Changes in immune and glial markers in the CSF of patients with Complex Regional Pain Syndrome.

    PubMed

    Alexander, Guillermo M; Perreault, Marielle J; Reichenberger, Erin R; Schwartzman, Robert J

    2007-07-01

    Complex Regional Pain Syndrome is a severe chronic pain condition characterized by sensory, autonomic, motor and dystrophic signs and symptoms. The pain in CRPS is continuous, it worsens over time, and it is usually disproportionate to the severity and duration of the inciting event. This study compares cerebrospinal fluid (CSF) levels of pro- and anti-inflammatory cytokines, chemokines and several biochemical factors (glial fibrillary acidic protein (GFAP), the nitric oxide metabolites (nitrate plus nitrite), the excitatory amino acid neurotransmitter glutamate, calcium, total protein and glucose) in patients afflicted with CRPS to levels found in patients suffering with other non-painful or painful conditions. The aim of the study is to determine the degree of involvement of glial cells and immune system mediators in the pathophysiology of CRPS. There was no elevation or reduction of a CSF marker that was specific for CRPS patients. However, there were several patterns of markers that could be helpful in both elucidating the mechanisms involved in the disease process and supporting the diagnosis of CRPS. The most common pattern was found in 50% (11 out of 22) of the CRPS patients and consisted of; elevated IL-6, low levels of IL-4 or IL-10, increased GFAP or MCP1 and increases in at least two of the following markers NO metabolites, calcium or glutamate. The results from this and other similar studies may aid in elucidating the mechanisms involved in the pathophysiology of CRPS. A better understanding of these mechanisms may lead to novel treatments for this very severe, life-altering illness. PMID:17129705

  14. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity

    PubMed Central

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H. P.

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba2+-sensitive K+ inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K+ inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap–junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K+]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K+]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K+ uptake limiting activity-dependent [K+]o increase in the perisomatic neuron domain. PMID:27161034

  15. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity.

    PubMed

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H P

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba(2+)-sensitive K(+) inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K(+) inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap-junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K(+)]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K(+)]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K(+) uptake limiting activity-dependent [K(+)]o increase in the perisomatic neuron domain. PMID:27161034

  16. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    PubMed

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction. PMID:12384093

  17. [Studies on potassium transport through glial cell membranes (author's transl)].

    PubMed

    Coles, J A; Gardner-Medwin, A R; Tsacopoulos, M

    1980-04-01

    The retina of the honeybee drone is used as a model for the study of ion movements across the membranes of the glial cells caused by changes in the extracellular potassium concentration. The values found for changes in extracellular potential suggest that at least some of the potassium that enters glial cells in an active region of tissue is associated with an efflux of potassium from parts of the glial syncytium not affected by an increase in extracellular potassium concentration. In addition, it appears that ions other than K+ cross the glial membrane. PMID:7421023

  18. Glutamate carboxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia.

    PubMed

    Ghose, Subroto; Weickert, Cynthia Shannon; Colvin, Sarah M; Coyle, Joseph T; Herman, Mary M; Hyde, Thomas M; Kleinman, Joel E

    2004-01-01

    There is decreased activity of glutamate carboxypeptidase II (GCP II) in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of patients with schizophrenia. GCP II hydrolzses N-acetyl-alpha L-aspartyl-L-glutamate (NAAG), a peptide in the mammalian brain that binds to the N-methyl D-aspartate (NMDA) receptor and a group II metabotropic glutamate receptor, both of which have been implicated in the pathophysiology of schizophrenia. We examined the expression of GCP II mRNA in the DLPFC, entorhinal cortex (ERC), and hippocampus in postmortem samples from patients with schizophrenia and normal controls using in situ hybridization followed by silver grain detection. GCP II mRNA was detected in glial cells. Glial-rich regions, specifically the DLPFC and ERC white matter and the molecular and polymorphic layers in the hippocampus, express high levels of GCP II mRNA. Given the earlier finding of decreased GCP II activity in brains of subjects with schizophrenia, we expected to find lower GCP II mRNA levels in schizophrenia. Contrary to this expectation, we found a significantly higher expression of GCP II mRNA in one of the brain areas examined, the hippocampal CA3 polymorphic region. This may reflect a compensatory increase to correct for the decreased activity of GCP II activity. Our findings support the notion that the hydrolysis of NAAG is disrupted in schizophrenia and that specific anatomical regions may show discrete abnormalities in GCP II synthesis. PMID:14560319

  19. Enteric glial cells have specific immunosuppressive properties.

    PubMed

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  20. Retinal Glial Cells Enhance Human Vision Acuity

    NASA Astrophysics Data System (ADS)

    Labin, A. M.; Ribak, E. N.

    2010-04-01

    We construct a light-guiding model of the retina outside the fovea, in which an array of glial (Muller) cells permeates the depth of the retina down to the photoreceptors. Based on measured refractive indices, we propagate light to obtain a significant increase of the intensity at the photoreceptors. For pupils up to 6 mm width, the coupling between neighboring cells is only a few percent. Low cross talk over the whole visible spectrum also explains the insensitivity to chromatic aberrations of the eye. The retina is revealed as an optimal structure designed for improving the sharpness of images.

  1. Characterization of the venom from the spider, Araneus gemma: search for a glutamate antagonist

    SciTech Connect

    Early, S.L.

    1985-01-01

    Venom from three spiders, Argiope aurantia, Neoscona arabesca, and Araneus gemma have been shown to inhibit the binding of L-(/sup 3/H)glutamate to both GBP and synaptic membranes. The venom from Araneus gemma was shown to be the most potent of the three venoms in inhibiting the binding of L-(/sup 3/H)glutamate to GBP. Therefore, Araneus gemma venom was selected for further characterization. Venom from Araneus gemma appeared to contain two factors which inhibit the binding of L-(/sup 3/H)glutamate to GBP and at least one factor that inhibits L-glutamate-stimulated /sup 35/SCN flux. Factor I is thought to be L-glutamic acid, based on: (1) its similar mobility to glutamic acid in thin-layer chromatography and amino acid analysis, (2) the presence of fingerprint molecular ion peaks for glutamate in the mass spectrum for the methanol:water (17:1) extract and for the fraction from the HPLC-purification of the crude venom, and (3) its L-glutamate-like interaction with the sodium-dependent uptake system. Factor II appears to be a polypeptide, possibly 21 amino acids in length, and does not appear to contain any free amino groups or tryptophan. While the venom does not appear to contain any indoleamines, three catecholamines (epinephrine, epinine, dopamine) and one catecholamine metabolite (DOPAC) were detected.

  2. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus.

    PubMed

    Hunsberger, Holly C; Wang, Desheng; Petrisko, Tiffany J; Alhowail, Ahmad; Setti, Sharay E; Suppiramaniam, Vishnu; Konat, Gregory W; Reed, Miranda N

    2016-07-01

    Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of

  3. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study.

    PubMed

    Kritis, Aristeidis A; Stamoula, Eleni G; Paniskaki, Krystallenia A; Vavilis, Theofanis D

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca(2+) levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione's reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  4. Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study

    PubMed Central

    Kritis, Aristeidis A.; Stamoula, Eleni G.; Paniskaki, Krystallenia A.; Vavilis, Theofanis D.

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  5. Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA.

    PubMed

    Torres, Felipe Vasconcelos; Hansen, Fernanda; Locks-Coelho, Lucas Doridio

    2013-08-01

    Glutamate concentration at the synaptic level must be kept low in order to prevent excitotoxicity. Astrocytes play a key role in brain energetics, and also astrocytic glutamate transporters are responsible for the vast majority of glutamate uptake in CNS. Experiments with primary astrocytic cultures suggest that increased influx of glutamate cotransported with sodium at astrocytes favors its flux to the tricarboxylic acid cycle instead of the glutamate-glutamine cycle. Although metabolic coupling can be considered an emergent field of research with important recent discoveries, some basic aspects of glutamate metabolism still have not been characterized in brain tissue. Therefore, the aim of this study was to investigate whether the presence of extracellular glutamate is able to modulate the use of glutamate and glucose as energetic substrates. For this purpose, isolated hippocampi of mice were incubated with radiolabeled substrates, and CO2 radioactivity and extracellular lactate were measured. Our results point to a diminished oxidation of glucose with increasing extracellular glutamate concentration, glutamate presumably being the fuel, and might suggest that oxidation of glutamate could buffer excitotoxic conditions by high glutamate concentrations. In addition, these findings were reversed when glutamate uptake by astrocytes was impaired by the presence of (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA). Taken together, our findings argue against the lactate shuttle theory, because glutamate did not cause any detectable increase in extracellular lactate content (or, presumably, in glycolysis), because the glutamate is being used as fuel instead of going to glutamine and back to neurons. PMID:23359514

  6. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  7. Computational Studies of Glutamate Transporters

    PubMed Central

    Setiadi, Jeffry; Heinzelmann, Germano; Kuyucak, Serdar

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review. PMID:26569328

  8. Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17β-oestradiol treatment

    PubMed Central

    Olsen, Michelle L.; Campbell, Susan C.; McFerrin, Michael B.; Floyd, Candace L.

    2010-01-01

    During neuronal activity astrocytes function to remove extracellular increases in potassium, which are largely mediated by the inwardly-rectifying potassium channel Kir4.1, and to take up excess glutamate via glutamate transporter 1, a glial-specific glutamate transporter. Here we demonstrate that expression of both of these proteins is reduced by nearly 80% following a crush spinal cord injury in adult male rats, 7 days post-injury. This loss extended to spinal segments several millimetres rostral and caudal to the lesion epicentre, and persisted at 4 weeks post-injury. Importantly, we demonstrate that loss of these two proteins is not a direct result of astrocyte loss, as immunohistochemistry at 7 days and western blots at 4 weeks demonstrate a marked up-regulation in glial fibrillary acidic protein expression. Kir4.1 and glutamate transporter 1 expression were partially rescued by post-spinal cord injury administration of physiological levels of 17β-oestradiol (0.08 mg/kg/day) in vivo. Utilizing an in vitro culture system we demonstrate that 17β-oestradiol treatment (50 nM) is sufficient to increase glutamate transporter 1 protein expression in spinal cord astrocytes. This increase in glutamate transporter 1 protein expression was reversed and Kir4.1 expression reduced in the presence of an oestrogen receptor antagonist, Fulvestrant 182 780 suggesting a direct translational regulation of Kir4.1 and glutamate transporter 1 via genomic oestrogen receptors. Using whole-cell patch-clamp recordings in cultured spinal cord astrocytes, we show that changes in protein expression following oestrogen application led to functional changes in Kir4.1 mediated currents. These findings suggest that the neuroprotective benefits previously seen with 17β-oestradiol after spinal cord injury may be in part due to increased Kir4.1 and glutamate transporter 1 expression in astrocytes leading to improved potassium and glutamate homeostasis. PMID:20375134

  9. Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17 beta-oestradiol treatment.

    PubMed

    Olsen, Michelle L; Campbell, Susan C; McFerrin, Michael B; Floyd, Candace L; Sontheimer, Harald

    2010-04-01

    During neuronal activity astrocytes function to remove extracellular increases in potassium, which are largely mediated by the inwardly-rectifying potassium channel Kir4.1, and to take up excess glutamate via glutamate transporter 1, a glial-specific glutamate transporter. Here we demonstrate that expression of both of these proteins is reduced by nearly 80% following a crush spinal cord injury in adult male rats, 7 days post-injury. This loss extended to spinal segments several millimetres rostral and caudal to the lesion epicentre, and persisted at 4 weeks post-injury. Importantly, we demonstrate that loss of these two proteins is not a direct result of astrocyte loss, as immunohistochemistry at 7 days and western blots at 4 weeks demonstrate a marked up-regulation in glial fibrillary acidic protein expression. Kir4.1 and glutamate transporter 1 expression were partially rescued by post-spinal cord injury administration of physiological levels of 17beta-oestradiol (0.08 mg/kg/day) in vivo. Utilizing an in vitro culture system we demonstrate that 17beta-oestradiol treatment (50 nM) is sufficient to increase glutamate transporter 1 protein expression in spinal cord astrocytes. This increase in glutamate transporter 1 protein expression was reversed and Kir4.1 expression reduced in the presence of an oestrogen receptor antagonist, Fulvestrant 182,780 suggesting a direct translational regulation of Kir4.1 and glutamate transporter 1 via genomic oestrogen receptors. Using whole-cell patch-clamp recordings in cultured spinal cord astrocytes, we show that changes in protein expression following oestrogen application led to functional changes in Kir4.1 mediated currents. These findings suggest that the neuroprotective benefits previously seen with 17beta-oestradiol after spinal cord injury may be in part due to increased Kir4.1 and glutamate transporter 1 expression in astrocytes leading to improved potassium and glutamate homeostasis. PMID:20375134

  10. CNS Injury, Glial Scars, and Inflammation

    PubMed Central

    Fitch, Michael T.; Silver, Jerry

    2008-01-01

    Spinal cord and brain injuries lead to complex cellular and molecular interactions within the central nervous system in an attempt to repair the initial tissue damage. Many studies have illustrated the importance of the glial cell response to injury, and the influences of inflammation and wound healing processes on the overall morbidity and permanent disability that result. The abortive attempts of neuronal regeneration after spinal cord injury are influenced by inflammatory cell activation, reactive astrogliosis and the production of both growth promoting and inhibitory extracellular molecules. Despite the historical perspective that the glial scar was a mechanical barrier to regeneration, inhibitory molecules in the forming scar and methods to overcome them have suggested molecular modification strategies to allow neuronal growth and functional regeneration. Unlike myelin associated inhibitory molecules, which remain at largely static levels before and after central nervous system trauma, inhibitory extracellular matrix molecules are dramatically upregulated during the inflammatory stages after injury providing a window of opportunity for the delivery of candidate therapeutic interventions. While high dose methylprednisolone steroid therapy alone has not proved to be the solution to this difficult clinical problem, other strategies for modulating inflammation and changing the make up of inhibitory molecules in the extracellular matrix are providing robust evidence that rehabilitation after spinal cord and brain injury has the potential to significantly change the outcome for what was once thought to be permanent disability. PMID:17617407

  11. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  12. Glial cells: Old cells with new twists

    PubMed Central

    Ndubaku, Ugo; de Bellard, Maria Elena

    2008-01-01

    Summary Based on their characteristics and function – migration, neural protection, proliferation, axonal guidance and trophic effects – glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed – as true stem cells in the nervous system – and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells. PMID:18068219

  13. Glutamate dysregulation in the trigeminal ganglion: a novel mechanism for peripheral sensitization of the craniofacial region.

    PubMed

    Laursen, J C; Cairns, B E; Dong, X D; Kumar, U; Somvanshi, R K; Arendt-Nielsen, L; Gazerani, P

    2014-01-01

    In the trigeminal ganglion (TG), satellite glial cells (SGCs) form a functional unit with neurons. It has been proposed that SGCs participate in regulating extracellular glutamate levels and that dysfunction of this SGC capacity can impact nociceptive transmission in craniofacial pain conditions. This study investigated whether SGCs release glutamate and whether elevation of TG glutamate concentration alters response properties of trigeminal afferent fibers. Immunohistochemistry was used to assess glutamate content and the expression of excitatory amino acid transporter (EAAT)1 and EAAT2 in TG sections. SGCs contained glutamate and expressed EAAT1 and EAAT2. Potassium chloride (10 mM) was used to evoke glutamate release from cultured rat SGCs treated with the EAAT1/2 inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)ben zoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA) or control. Treatment with TFB-TBOA (1 and 10 μM) significantly reduced the glutamate concentration from 10.6 ± 1.1 to 5.8 ± 1.4 μM and 3.0 ± 0.8 μM, respectively (p<0.05). Electrophysiology experiments were conducted in anaesthetized rats to determine the effect of intraganglionic injections of glutamate on the response properties of ganglion neurons that innervated either the temporalis or masseter muscle. Intraganglionic injection of glutamate (500 mM, 3 μl) evoked afferent discharge and significantly reduced muscle afferent mechanical threshold. Glutamate-evoked discharge was attenuated bythe N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonovalerate (APV) and increased by TFB-TBOA, whereas mechanical sensitization was only sensitive to APV. Antidromic invasion of muscle afferent fibers by electrical stimulation of the caudal brainstem (10 Hz) or local anesthesia of the brainstem with lidocaine did not alter glutamate-induced mechanical sensitization. These findings provide a novel mechanism whereby dysfunctional trigeminal SGCs could contribute to cranial muscle tenderness in

  14. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  15. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    PubMed

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  16. Genotoxicity of monosodium glutamate.

    PubMed

    Ataseven, Nazmiye; Yüzbaşıoğlu, Deniz; Keskin, Ayten Çelebi; Ünal, Fatma

    2016-05-01

    Monosodium glutamate (MSG) is one of the most widely used flavor enhancers throughout the world. The aim of this study is to investigate the genotoxic potential of MSG by using chromosome aberrations (CAs), sister-chromatid exchanges (SCEs), cytokinesis-blocked micronucleus (CBMN), and random amplified polymorphic DNA-polimerase chain reaction (RAPD-PCR) in cultured human lymphocytes and alkaline comet assays in isolated human lymphocytes, which were incubated with six concentrations (250, 500, 1000, 2000, 4000 and 8000 μg/mL) of MSG. The result of this study indicated that MSG significantly and dose dependently increased the frequencies of CAs, SCE and MN in all treatments and times, compared with control. However, the replication (RI) and nuclear division indices (NDI) were not affected. In this paper, in vitro genotoxic effects of the MSG was also investigated on human peripheral lymphocytes by analysing the RAPD-PCR with arbitrary 10-mer primers. The changes occurring in RAPD profiles after MSG treatment include increase or decrease in band intensity and gain or loss of bands. In the comet assay, this additive caused DNA damage at all concentrations in isolated human lymphocytes after 1-h in vitro exposure. Our results demonstrate that MSG is genotoxic to the human peripheral blood lymphocytes in vitro. PMID:26929995

  17. Glutamate transporters and presynaptic metabotropic glutamate receptors protect neocortical Cajal-Retzius cells against over-excitation.

    PubMed

    Dvorzhak, Anton; Unichenko, Petr; Kirischuk, Sergei

    2012-08-01

    Cajal-Retzius (CR) cells, early generated neurons in the marginal zone of developing neocortex, are reported to be highly vulnerable to excitotoxic damage. Because extracellular glutamate concentration in the central nervous system is mainly controlled by glutamate transporters (EAATs), we studied the effects of EAAT blockade on CR cells. DL: -TBOA, a specific EAAT antagonist, induced NMDA receptor-dependent bursting discharges in layer 2/3 pyramidal neurons, indicating that EAATs operate in the uptake mode and their blockade leads to elevation of extracellular glutamate concentration. In CR cells, however, DL: -TBOA failed to change either the membrane resistance or holding current, and moreover, it reduced the frequency of spontaneous GABAergic postsynaptic currents. DL: -TBOA decreased the mean amplitude and increased paired-pulse ratio of evoked GABAergic postsynaptic currents, indicating the presynaptic locus of its action. Indeed, LY379268, a specific agonist of group II metabotropic glutamate receptors (mGluR-II), mimicked the DL: -TBOA-mediated effects, and LY341495, an unspecific mGluR antagonist, eliminated the DL: -TBOA-induced effects. As dihydrokainic acid, a specific EAAT2 blocker, failed to affect evoked GABAergic postsynaptic currents, whereas TFB-TBOA, a selective blocker of EAAT1 and EAAT2, produced effects similar to that of DL: -TBOA, extracellular glutamate concentration in the marginal zone is mainly controlled by EAAT1 (GLAST). Thus, even though CR cells are highly vulnerable to excitotoxic damage, a number of mechanisms serve to protect them against excessive extracellular glutamate concentration including a lack of functional glutamatergic synapses, Mg(2+) blockade of NMDA receptors, and presynaptic mGluRs that inhibit transmission at GABAergic synapses. PMID:22665047

  18. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. PMID:27458821

  19. Glial cells as drug targets: What does it take?

    PubMed

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754. PMID:27121701

  20. Effect of the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon on the glutamate release from rat brain nerve terminals under altered gravity conditions.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.

    L-glutamate acts within the mammalian central nervous system as the predominant excitatory neurotransmitter and as a potent neurotoxin The balance between these physiological and pathological actions of glutamate is thought to be kept in check by the rapid removal of the neurotransmitter from the synaptic cleft The majority of uptake is mediated by the high-affinity Na -dependent glutamate transporters Depolarization leads to stimulation of glutamate efflux mediated by reversal of the high-affinity glutamate transporters The effects of the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon FCCP on the glutamate release from isolated nerve terminals rat brain synaptosomes were investigated in control and after centrifuge-induced hypergravity rats were rotated in a long-arm centrifuge at ten-G during one-hour period The treatment of synaptosomes with 1 mu M FCCP during 11 min resulted in the increase in L- 14 C glutamate release by 23 0 pm 2 3 of total accumulated synaptosomal label in control animals and 24 0 pm 2 3 animals subjected to hypergravity FCCP evoked release of L- 14 C glutamate from synaptosomes was not altered in animals exposed to hypergravity as compared to control Glutamate transport is of electrogenic nature and thus depends on the membrane potential The high-KCl stimulated L- 14 C glutamate release in Ca 2 -free media occurred due to reversal of the glutamate transporters Carrier --mediated release of L- 14 C glutamate 6 min slightly increased as a result of

  1. Glial heterotopia of the lip: A rare presentation

    PubMed Central

    Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma

    2016-01-01

    Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  2. Striatal interaction among dopamine, glutamate and ascorbate.

    PubMed

    Morales, Ingrid; Fuentes, Angel; Ballaz, Santiago; Obeso, Jose A; Rodriguez, Manuel

    2012-12-01

    Despite evidence suggesting the interaction among glutamate (GLU), dopamine (DA) and ascorbic acid (AA) in the striatum, their actions are often studied separately. Microdialysis was used here to quantify the extracellular interaction among GLU-DA-AA in the striatum of rats, an interaction which was compared with those studied in the substantia nigra (SN). Perfusion of GLU by reverse microdialysis increased DA and decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the extracellular medium of the striatum, but increased both DA and DOPAC in the SN. The increase of extracellular DA-concentration induced by the local DA-perfusion decreased the extracellular level of GLU and glutamine, an effect that, as suggested by the GLU and glutamine increase observed after the haloperidol administration, probably involves the D2 dopamine receptor. Local administration of AA increased the extracellular DA, decreased DOPAC and had no effect on GLU and glutamine. Present data suggest that, in the striatum, GLU-release inhibits DA-uptake, DA-release inhibits GLU-release, and AA-release prevents DA-oxidation increasing its extracellular diffusion. These effects were different in the SN where GLU probably promoted the DA-release instead of inhibiting the DA-uptake as presumably occurred in the striatum. Present data denote a marked GLU-DA-AA interaction in the striatum, which might be relevant for the pharmacological control of basal ganglia disorders. PMID:22959966

  3. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  4. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2010-10-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  5. Expression alterations of genes on both neuronal and glial development in rats after developmental exposure to 6-propyl-2-thiouracil.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2014-08-01

    The present study was performed to determine target gene profiles associated with pathological mechanisms of developmental neurotoxicity. For this purpose, we selected a rat developmental hypothyroidism model because thyroid hormones play an essential role in both neuronal and glial development. Region-specific global gene expression analysis was performed at postnatal day (PND) 21 on four brain regions representing different structures and functions, i.e., the cerebral cortex, corpus callosum, dentate gyrus and cerebellar vermis of rats exposed to 6-propyl-2-thiouracil in the drinking water at 3 and 10ppm from gestational day 6 to PND 21. Expression changes of gene clusters of neuron differentiation and development, cell migration, synaptic function, and axonogenesis were detected in all four regions. Characteristically, gene expression profiles suggestive of affection of ephrin signaling and glutamate transmission were obtained in multiple brain regions. Gene clusters suggestive of suppression of myelination and glial development were specifically detected in the corpus callosum and cerebral cortex. Immunohistochemically, immature astrocytes immunoreactive for vimentin and glial fibrillary acidic protein were increased, and oligodendrocytes immunoreactive for oligodendrocyte lineage transcription factor 2 were decreased in the corpus callosum. Immunoreactive intensity of myelin basic protein was also decreased in the corpus callosum and cerebral cortex. The hippocampal dentate gyrus showed downregulation of Ptgs2, which is related to synaptic activity and neurogenesis, as well as a decrease of cyclooxygenase-2-immunoreactive granule cells, suggesting an impaired synaptic function related to neurogenesis. These results suggest that multifocal brain region-specific microarray analysis can determine the affection of neuronal or glial development. PMID:24780913

  6. Structure and bonding of Cu(II)-glutamate complexes at the {gamma}-Al{sub 2}O{sub 3}-water interface

    SciTech Connect

    Fitts, J.P.; Persson, P.; Brown, G.E. Jr.; Parks, G.A.

    1999-12-01

    The composition and mode of attachment of Cu(II) complexes at the {gamma}-Al{sub 2}O{sub 3}-water interface in suspensions containing a simple amino acid (glutamate) were characterized with EXAFS and FTIR spectroscopies. The spectroscopic results indicate that two types of Cu(II)-glutamate-alumina interactions are primarily responsible for Cu(II) and glutamate uptake between pH 4 and 9. In acidic suspensions of alumina, glutamate forms a bridge between Cu(II) ions and the (hydr)oxide surface (Type B complex). In this Type B surface complex, Cu(II) is bonded to amino acid headgroups (i.e., {sup +}H{sub 3}NCHRCOO{sup {minus}}) of two glutamate molecules. Spectroscopic and ionic strength dependent uptake results are combined to propose that the nonbonded side chain carboxylate groups of this complex are attracted to the oxide surface through long-range forces, leading to enhanced Cu(II) uptake relative to the glutamate-free system. In alkaline suspensions the relative amount of surface-bound Cu(II) complexed by glutamate decreases, and a direct Cu(II)-surface bond becomes the dominant mode of attachment (Type A complex). These surface complexes differ markedly from the species found in the alumina-free Cu(II)-glutamate aqueous system under similar solution conditions, where Cu(H{sub 2}O){sub 6}{sup 2+} and Cu(glutamate){sub 2}{sup 2{minus}} are the dominant species in acidic and alkaline solutions, respectively. Based on these spectroscopic results, surface complexation reactions are proposed for the Cu(II) and glutamate ternary interactions with the alumina surface in this system. Similarities between the results of this study and Cu(II) uptake behavior and complexation in the presence of natural organic material (NOM) indicate that Cu(II)-glutamate interactions mimic those in more complex Cu(II)-NON-mineral-water systems.

  7. Inhibitory effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA) on the astrocytic sodium responses to glutamate.

    PubMed

    Bozzo, Luigi; Chatton, Jean-Yves

    2010-02-26

    Astrocytes are responsible for the majority of the clearance of extracellular glutamate released during neuronal activity. dl-threo-beta-benzyloxyaspartate (TBOA) is extensively used as inhibitor of glutamate transport activity, but suffers from relatively low affinity for the transporter. Here, we characterized the effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), a recently developed inhibitor of the glutamate transporter on mouse cortical astrocytes in primary culture. The glial Na(+)-glutamate transport system is very efficient and its activation by glutamate causes rapid intracellular Na(+) concentration (Na(+)(i)) changes that enable real time monitoring of transporter activity. Na(+)(i) was monitored by fluorescence microscopy in single astrocytes using the fluorescent Na(+)-sensitive probe sodium-binding benzofuran isophtalate. When applied alone, TFB-TBOA, at a concentration of 1 microM, caused small alterations of Na(+)(i). TFB-TBOA inhibited the Na(+)(i) response evoked by 200 microM glutamate in a concentration-dependent manner with IC(50) value of 43+/-9 nM, as measured on the amplitude of the Na(+)(i) response. The maximum inhibition of glutamate-evoked Na(+)(i) increase by TFB-TBOA was >80%, but was only partly reversible. The residual response persisted in the presence of the AMPA/kainate receptor antagonist CNQX. TFB-TBOA also efficiently inhibited Na(+)(i) elevations caused by the application of d-aspartate, a transporter substrate that does not activate non-NMDA ionotropic receptors. TFB-TBOA was found not to influence the membrane properties of cultured cortical neurons recorded in whole-cell patch clamp. Thus, TFB-TBOA, with its high potency and its apparent lack of neuronal effects, appears to be one of the most useful pharmacological tools available so far for studying glial glutamate transporters. PMID:20026319

  8. Axon ensheathment and metabolic supply by glial cells in Drosophila.

    PubMed

    Schirmeier, Stefanie; Matzat, Till; Klämbt, Christian

    2016-06-15

    Neuronal function requires constant working conditions and a well-balanced supply of ions and metabolites. The metabolic homeostasis in the nervous system crucially depends on the presence of glial cells, which nurture and isolate neuronal cells. Here we review recent findings on how these tasks are performed by glial cells in the genetically amenable model organism Drosophila melanogaster. Despite the small size of its nervous system, which would allow diffusion of metabolites, a surprising division of labor between glial cells and neurons is evident. Glial cells are glycolytically active and transfer lactate and alanine to neurons. Neurons in turn do not require glycolysis but can use the glially provided compounds for their energy homeostasis. Besides feeding neurons, glial cells also insulate neuronal axons in a way similar to Remak fibers in the mammalian nervous system. The molecular mechanisms orchestrating this insulation require neuregulin signaling and resemble the mechanisms controlling glial differentiation in mammals surprisingly well. We hypothesize that metabolic cross talk and insulation of neurons by glial cells emerged early during evolution as two closely interlinked features in the nervous system. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26367447

  9. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy. PMID:26677078

  10. Glutamate receptors at atomic resolution

    SciTech Connect

    Mayer, Mark L.

    2010-12-03

    At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.